WO2006126498A1 - 新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの利用法 - Google Patents

新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの利用法 Download PDF

Info

Publication number
WO2006126498A1
WO2006126498A1 PCT/JP2006/310170 JP2006310170W WO2006126498A1 WO 2006126498 A1 WO2006126498 A1 WO 2006126498A1 JP 2006310170 W JP2006310170 W JP 2006310170W WO 2006126498 A1 WO2006126498 A1 WO 2006126498A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
amino
formula
chemical
Prior art date
Application number
PCT/JP2006/310170
Other languages
English (en)
French (fr)
Inventor
Noriyuki Ito
Yoshihiko Yasohara
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2007517819A priority Critical patent/JP4922929B2/ja
Priority to DE602006008934T priority patent/DE602006008934D1/de
Priority to EP06746704A priority patent/EP1889907B1/en
Priority to US11/920,842 priority patent/US8133705B2/en
Publication of WO2006126498A1 publication Critical patent/WO2006126498A1/ja
Priority to US13/360,196 priority patent/US8431378B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/006Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/002Nitriles (-CN)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/008Preparation of nitrogen-containing organic compounds containing a N-O bond, e.g. nitro (-NO2), nitroso (-NO)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom

Definitions

  • Novel aminotransferase gene encoding the same, and use thereof
  • the present invention relates to an enzyme capable of efficiently converting a ketone compound into an optically active amino compound by a transamination reaction, and a method for producing an optically active amino compound using the enzyme.
  • the obtained optically active amino compound can be used as an intermediate for pharmaceuticals and agricultural chemicals.
  • an amino group is added to each of benzylacetone, phenylacetone, and acetophenone by using ⁇ -amino acid transaminase of Bacillus megaterium. It has been reported that an optically active amino compound corresponding to the ketonic compound can be synthesized by transferring the compound (Patent No. 2846074: Patent Document 1). However, the substrate concentration in the reaction solution is extremely low, and there is a problem for use on an industrial scale.
  • Patent Document 3 an aminotransferase that is not inhibited by gabaculin, one of enzyme inhibitors, is obtained from Bacillus sp. It has been described that by using this aminotransferase to transfer the amino group of ⁇ -butylamine to propiophenone, the corresponding optically active amino compound can be synthesized, but the substrate concentration in the reaction solution is extremely low. There is a problem in using it on an industrial scale.
  • Patent Document 1 Patent No. 2846074
  • Patent Document 2 WOOOZ26351
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-142793
  • An object of the present invention is to provide a method for efficiently producing an optically active amino compound useful as an intermediate for pharmaceuticals, agricultural chemicals and the like from a ketone compound, particularly a cyclic ketone compound.
  • the present inventors have discovered a microorganism having a high activity with respect to a cyclic ketone and an activity of transferring an amino group with a stereoselectivity. .
  • the enzyme having the activity was successfully isolated and purified from the microorganism.
  • the enzyme was found to be a benzylacetone such as benzylacetone, which can be used only with a cyclic ketone, when a-phenethylamine is used as an amino group donor.
  • the gene encoding the enzyme was obtained by gene recombination techniques and the nucleotide sequence was clarified. Furthermore, by breeding a transformant that produces the enzyme using the gene, the highly active transformant was produced, and a method capable of industrially producing an optically active amino compound was established. .
  • the present invention is an aminotransferase having the following physical properties (1) to (3):
  • Amino group donor (S)-exhibits activity against a-phenethylamine, and exhibits substantially no activity against ⁇ -phosphoranine, taurine, butretzin, DL orthine and DL-lysine,
  • Amino group receptor active against pyruvic acid and darioxylic acid, (3) Molecular weight: about 120,000 by gel filtration, about 53,000 by SDS-polyacrylamide gel electrophoresis.
  • the present invention also relates to an aminotransferase consisting of the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing, or 1 to several amino acids in the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing. It also has the ability to align, delete, substitute, insert or add amino acids, and acts on optically active (S) -a-phenethylamine and 1-benzyl-1-pyrrolidinone to react with acetophenone and 1-benzylthio 3-aminopyrrolidine. It is an aminotransferase having an activity to produce
  • the present invention is also a DNA encoding the enzyme, a vector containing the DNA, and a transformant transformed with the vector.
  • P and Q are optionally substituted alkyl group, branched chain alkyl group, aryl group, heteroaryl group, aryloxy group, heteroaryloxy group, alkoxy group, alkoxycarboxyl group ,
  • An alkyl group, an alkyl group, a cycloalkyl group, an aralkyl group, and a heteroaralkyl group, and P and Q may be bonded to each other to form a ring, provided that P represents a structure or a chiral group. It is different from Q in terms of tea.
  • the enzyme or a culture of a microorganism capable of producing the enzyme is allowed to act on the carbonyl compound represented by Equation (2):
  • R represents an optionally substituted aryl group having 6 to 14 carbon atoms, and 4 to 14 carbon atoms.
  • the general formula (4) is characterized in that the enzyme or a microorganism culture
  • n represents an integer of 2 to 4 (where n> m)
  • ring A represents an optionally substituted benzene ring.
  • a microbial culture having the ability to produce the enzyme in the presence of an amino group donor.
  • the present invention provides a compound represented by the general formula (9):
  • the present invention provides a compound represented by the general formula (11):
  • aryl group having 6 to 14 carbon atoms heteroaryl group having 4 to 14 carbon atoms, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, acyl group having 2 to 15 carbon atoms, carbon An alkoxycarbo group having 1 to 6 carbon atoms, an aralkyl group having 7 to 15 carbon atoms, an aralkyl group having 8 to 16 carbon atoms, or an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • a sulfol group substituted with a group is shown.
  • the above-mentioned enzyme or a culture of a microorganism capable of producing the enzyme is allowed to act on the carboxylic compound represented by the general formula (12):
  • the enzyme or a culture of a microorganism capable of producing the enzyme is allowed to act on the enantiomer mixture of the general formula (14):
  • An enzyme capable of stereoselectively transferring an amino group to a ketone compound, particularly a cyclic ketone compound, can be isolated, and a transformant having a high enzyme-producing ability can be obtained. Furthermore, it has become possible to efficiently produce an optically active amino compound by using the transformant.
  • FIG. 1 is a diagram showing a method for constructing the recombinant vector pNTMTA of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the enzyme of the present invention is an enzyme having the following physical properties:
  • (a) Amino group donor (S)-exhibits activity against a-phenethylamine, exhibits substantially no activity against ⁇ -phosphoranine, taurine, butretucin, DL orthine and DL-lysine, and
  • Optically active (S)-amino group transfer reaction which acts on a-phenethylamine and 1-benzyl-13-pyrrolidinone to produce acetophenone and 1-benzyl-13-aminopyrrolidine, respectively. Can be measured.
  • Purified enzyme solution prepared at a protein concentration of 2 mgZmL 0. ImL was added to 0.9 mL of a substrate solution having the following composition, reacted at 30 ° C for 1 hour, and then 3N HC1 was added at 0. ImL. Carry out the reaction to stop the reaction, and quantitate the produced 1-benzil 3-aminopyrrolidine by high performance liquid chromatography.
  • the enzyme of the present invention exhibits substantially no activity when ⁇ -alanine, taurine, putretcine, DL-orthine and DL-lysine are used as an amino group donor.
  • substantially no activity means that when the transamination activity is measured by the following method, the activity when the amino compound is used as an amino group donor is (S) -Means 1Z100 or less, preferably 1Z1000 or less, more preferably 1Z10000 or less when a-phenethylamine is used.
  • the transamination activity when the above amino group donor is used is as follows. First, 20 ⁇ L of a purified enzyme solution prepared at a protein concentration of 0.2 mgZmL was added to 380 substrate solutions having the following composition. After 1 hour of reaction at ° C, stop the reaction by adding 20 L of 3N hydrochloric acid. Next, 20 L of the obtained reaction solution is charged with 80 L of 0.2 M aqueous sodium carbonate solution and 200 L of acetone solution of 3.3 mg ZmL dub silk mouth lid, and reacted at 70 ° C for 10 minutes. To this, add 20 L of acetic acid, stir, analyze the reaction mixture by high-performance liquid chromatography, and quantify the alanine that has been doublysylated.
  • the enzyme of the present invention exhibits activity even when dalioxylic acid is used as an amino group receptor in place of 1-benzil 3-pyrrolidinone or pyruvic acid.
  • the molecular weight of the enzyme can be determined by a gel filtration analysis using a HiLoad 16/60 Superdex 200 prep grade (Amersham Bioscience) column, and a relative elution time force with respect to a standard protein.
  • a gel filtration analysis using a HiLoad 16/60 Superdex 200 prep grade (Amersham Bioscience) column, and a relative elution time force with respect to a standard protein.
  • 0.01 M phosphate buffer solution (PH8) containing 0.15M NaCU 0.01% (v / v) 2-mercaptoethanol, 20 mM pyridoxal phosphate, 0. ImM PMSF is used as the eluent.
  • the molecular weight of the subunit can be determined by the relative mobility with respect to the standard protein by 10% SDS-polyacrylamide gel electrophoresis.
  • the enzyme of the present invention may further have the following physical properties:
  • the optimal temperature for the enzymatic reaction is to measure the transamination activity using (S) - ⁇ -phenethylamine and 1-benzil 3-pyrrolidinone as substrates in the reaction temperature range of 20-60 ° C. Can be determined.
  • the thermal stability of the enzyme was determined by preparing the purified enzyme with 0.1 M potassium phosphate buffer (PH7.5) containing 0.02 mM pyridoxal phosphate to a protein concentration of 2 mg / mL. It can be determined by measuring the above transamination activity after treatment at 20-70 ° C for 30 minutes.
  • the enzyme of the present invention acts on a ketone compound other than 1-benzyl 3-pyrrolidinone, using (S) -a-phenethylamine as an amino group donor, and corresponds to acetophenone and the ketone compound. It can catalyze a transamination reaction to form an amino compound.
  • the enzyme of the present invention can be obtained from any enzyme that exhibits the above properties, for example, from microorganisms belonging to the genus Pseudomonas.
  • the microorganism that is the source of the enzyme of the present invention is preferably Pseudomonas fluorescens, and more preferably Pseudomonas fluorescens KNK08-18.
  • the culture medium for the microorganism having the enzyme of the present invention as long as the microorganism grows, a liquid nutrient medium containing a normal carbon source, nitrogen source, inorganic salts, organic nutrients and the like can be used.
  • the inducer of this enzyme When culturing the microorganism, propylamine, 1-butylamine, 2-butylamine, 2-pentylamine, isopropylamine, isobutylamine, 7-methoxy1-2aminotetralin, etc., are used as the inducer of this enzyme. It can also be added and cultured.
  • the inducers may be used alone or in admixture of two or more.
  • the amount of the inducer added is not particularly limited, but is preferably 1% by weight or less in the normal medium composition from the viewpoint of inhibiting the growth of bacteria.
  • the timing of addition of the inducer is not particularly limited. It may be at the start of the culture or during the culture.
  • Purification of the enzyme from the microorganism having the enzyme of the present invention can be performed by a known protein purification method.
  • a method for obtaining the polypeptide of the present invention the ability to describe an example using Shudomonas fluorescens KNK08-18 is not limited to this.
  • Syudomonas fluorescens KNK08-18 was added to a 50 mL medium in a 500 mL volumetric flask (composition: 5 g ZL KH PO, 5 g / L K HPO, 0.16 g / L MgSO ⁇
  • Serine, lOgZL yeast extract (manufactured by Nippon Pharmaceutical Co., Ltd.), 500 mgZL (S) -7-methoxy-2-aminotetralin (pH 7.2)) are inoculated and cultured at 30 ° C for 1 day to obtain a preculture solution.
  • the cell culture medium was collected by centrifugation and suspended in 0.01 M potassium phosphate buffer (pH 8.0) containing 0.01% 2-mercaptoethanol and 0.02 mM pyridoxal phosphate. It becomes cloudy. The resulting suspension is crushed by ultrasonic crushing. Next, the solid matter in the crushed material is removed by centrifugation, and a cell-free extract is prepared. Protamine sulfate is added to the obtained cell-free extract to remove nucleic acids.
  • the obtained protamine sulfate treatment solution can be used to purify the enzyme of the present invention by using various column chromatography typified by ion exchange chromatography, adsorption chromatography, hydrophobic chromatography and the like.
  • Examples of the enzyme thus obtained include an enzyme consisting of an amino acid sequence represented by SEQ ID NO: 1 in the sequence listing.
  • the enzyme of the present invention is not limited to this, and in the amino acid sequence shown by SEQ ID NO: 1 in the sequence listing, an enzyme having an amino acid sequence ability in which one or several amino acids are deleted, substituted, inserted or added, As long as it has an optically active (S) -a-phenethylamine and 1-benzyl-13-pyrrolidinone to produce acetofenone and 1-benzyl-3-aminopyrrolidine, it has this transamination activity. Included in the invention.
  • amino acid sequence represented by SEQ ID NO: 1 in the sequence listing a polypeptide comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added is represented by SEQ ID NO: 1 in the sequence listing.
  • amino acid sequence it can be prepared according to a known method described in an experimental document such as Current Protocols in Molecular Biology (Oohn Wiley and Sons, Inc., 1989).
  • the place of substitution, insertion, deletion or addition is not particularly limited, but it is preferable to avoid a highly conserved region.
  • the highly conserved region represents a position where amino acids are aligned between a plurality of sequences when amino acid sequences are optimally aligned and compared for a plurality of aminotransferases having different origins.
  • the number of amino acids to be substituted, inserted, deleted or added is preferably 10 or less, more preferably 5 or less, and even more preferably 3 or less.
  • the modified amino acid sequence may include only one type of modification (for example, substitution), or may include two or more types of modification (for example, substitution and insertion).
  • the amino acid after substitution is preferably a homologous amino acid of the original amino acid! /.
  • the DNA of the present invention is a DNA encoding the above-mentioned polypeptide, and any DNA can be used as long as it can express the above-mentioned polypeptide in a host cell introduced by the method described below.
  • the untranslated region may be included. If the above-mentioned purified polypeptide can be obtained, those skilled in the art can obtain such DNA from a microorganism that is the origin of the polypeptide by a known method.
  • the above-mentioned polypeptide (enzyme) purified from the cell-free extract of the microorganism is digested with an appropriate endopeptidase, and a fragment cleaved by reverse-phase HPLC is purified. A part of the amino acid sequence is determined by Sequencer (Applied Biosystems). Then, based on the obtained partial amino acid sequence information, a PCR (Polymerase Chain Reaction) primer for amplifying a part of the DNA encoding the polypeptide is synthesized.
  • conventional DNA isolation methods such as Murray et al. (Nucl., Acids Res., 8, 4321-4325, 1980) Chromosomal DNA of the microorganism is prepared from rice cake.
  • PCR is performed using the PCR primers described above to amplify a portion of the DNA encoding the above polypeptide, and determine its base sequence.
  • the base sequence can be determined using, for example, ABI373A DNA Sequencer (Applied Biosystems). If the partial base sequence of DNA encoding the polypeptide is clarified, the entire sequence can be determined by, for example, the inverse-PCR method (Nucl. Acids Res. 16, 8186 (1988)).
  • Examples of the DNA thus obtained include DNA having the base sequence described in SEQ ID NO: 2 in the Sequence Listing.
  • the DNA of the present invention is not limited to this, and all DNAs encoding the above-described polypeptides of the present invention are included in the present invention.
  • DNA that is complementary to the nucleotide sequence shown in SEQ ID NO: 2 in the sequence listing is hybridized under stringent conditions and optically active (S) -a-phenethylamine and 1 benzyl 3 pyrrolidinone.
  • DNA encoding a polypeptide having the activity of acting on and producing acetophenone and 1 benzyl-3-aminopyrrolidine is encompassed by the present invention.
  • DNA that hybridizes under stringent conditions with DNA complementary to the base sequence shown in SEQ ID NO: 2 in the sequence listing means the coguchi-one'hybridization method, plaque 'When a hybridization method or Southern hybridization method is performed, a DNA that has a nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NO: 2 in the sequence listing specifically forms a hybrid. Say DNA.
  • stringent conditions means, for example, using a filter on which colony or plaque-derived polynucleotides are immobilized, in the presence of 0.7 to 1.0 M NaCl at 65 ° C.
  • the filter was used at a temperature of 65 ° C using a 2x SSC solution (composition of 1x SSC solution consisting of 150 mM sodium chloride and 15 mM sodium citrate).
  • the conditions for washing can be raised.
  • the hybridization is performed in the same manner as described above, and then washed with an SSC solution having a 0.5-fold concentration at 65 ° C. More preferably, the hybridization is performed in the same manner as described above. After conducting the shilling, it is a condition to wash with a 0.2-fold concentration of SSC solution at 65 ° C, and more preferably as described above. This is the condition for washing with 0.1 times SSC solution at 65 ° C.
  • any of those described above can be used as long as the DNA can be introduced into the host cell and the gene encoded by the DNA can be expressed in the host cell.
  • examples of such vector DNA include a plasmid vector, a phage vector, and a cosmid vector.
  • a shuttle vector capable of gene exchange with other host strains can also be used.
  • Such a vector contains control elements such as an operably linked promoter (eg, lacUV5 promoter, trp promoter, trc promoter, tac promoter, lpp promoter, tufB promoter, recA promoter, pL promoter). It can be suitably used as a vector comprising an expression unit operably linked to the DNA of the present invention.
  • pUCNT WO94Z03613
  • pUCNT WO94Z03613
  • regulatory element refers to a base sequence having a functional promoter and any related transcription element (eg, enhancer, CCAAT box, TATA box, SPI site, etc.).
  • operably linked is linked to various regulatory elements such as a promoter that regulates the expression of a gene, such as an enzyme, in a state where it can operate in a host cell. That means. It is a matter well known to those skilled in the art that the type and kind of the control factor can vary depending on the host.
  • Examples of host cells that can be used in the present invention include microbial cells such as bacteria, yeast, and filamentous fungi, plant cells, animal cells, and the like, and Escherichia coli is particularly preferred because microbial cells are preferred.
  • the vector containing the DNA of the present invention can be introduced into a host cell by a known method. When Escherichia coli is used as a host cell, the vector can be introduced, for example, by the salted calcium method.
  • Examples of the transformant introduced with the vector containing the DNA of the present invention include E. coli HBlOl (pNTMTA) (FERM P-20238) described later.
  • a method for producing a photoactive amino compound using the aminotransferase of the present invention or a microorganism capable of producing the enzyme will be described.
  • the microorganism capable of producing the aminotransferase of the present invention include the aforementioned Pseudomonas fluorescens (Pseudomon as fluorescens) KNK08-18 (FERM BP-10599), and transformants into which a vector containing the DNA of the present invention has been introduced.
  • the optically active amino compound of the present invention is produced by a method of producing an optically active amino compound by stereoselectively transferring an amino group to a ketone compound having the same skeleton as the target amino compound.
  • the method of collecting amino compounds hereinafter referred to as production method I
  • the amino group of one enantiomer is selectively transferred to the amino group acceptor, and the remaining ⁇ antiomer (optically active amino acid)
  • production method II a method of collecting the compound
  • P and Q are optionally substituted alkyl groups, branched chain alkyl groups, aryl groups, heteroaryl groups, aryloxy groups, heteroaryloxy groups, alkoxy groups, alkoxycarbox groups.
  • An alkyl group, an alkyl group, a cycloalkyl group, an aralkyl group, and a heteroaralkyl group, and P and Q may be bonded to each other to form a ring, provided that P represents a structure or a chiral group.
  • the above-mentioned enzyme or a culture of a microorganism capable of producing the enzyme is allowed to act on the carbonyl compound represented by the formula (2).
  • q represents an integer of 0 to 7
  • r represents an integer of 0 to 2
  • R represents an optionally substituted aryl group having 6 to 14 carbon atoms, and 4 to 14 carbon atoms.
  • the general formula (4) is obtained by allowing the general formula
  • R is an optionally substituted aryl group having 6 to 14 carbon atoms, a heteroaryl group having 4 to 14 carbon atoms, an aryloxy group having 6 to 14 carbon atoms, or a heteroaryloxy group having 4 to 14 carbon atoms.
  • Examples of the aryl group having 6 to 14 carbon atoms include a phenol group and a naphthyl group.
  • Examples of the heteroaryl group having 4 to 14 carbon atoms include a pyridyl group, a enyl group, an oxadiazolyl group, an imidazolyl group, a thiazolyl group, a furyl group, and a pyrrolyl group.
  • Examples of the aryloxy group having 6 to 14 carbon atoms include a phenoxy group and a naphthoxy group.
  • heteroaryloxy group having 1 to 4 carbon atoms examples include a pyridyloxy group, a ceroxy group, an oxadiazoloxy group, an imidazolyloxy group, a thiazolyloxy group, a furoloxy group, and a pyrrolyloxy group.
  • alkoxy group having 1 to 5 carbon atoms examples include a methoxy group, an ethoxy group, and a tert-butoxy group.
  • alkoxycarbon group having 2 to 5 carbon atoms examples include a methoxycarbol group, an ethoxycarboro group, a tert-butoxycarboro group, and the like.
  • Examples of the branched alkyl group having 3 to 5 carbon atoms include isopropyl group, sec-butyl group, tert-butyl group and the like.
  • Examples of the alkenyl group having 2 to 5 carbon atoms include a beryl group and an aryl group.
  • An acetylene group etc. are mentioned as a C2-C5 alkyl group.
  • Examples of the cycloalkyl group having 5 to 7 carbon atoms include a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • the carbon number of the alkoxycarbonyl group is the number including the carbon carbon.
  • These groups may be further substituted, and examples of the substituent include a halogen atom, a hydroxyl group, a methoxy group, an ethoxy group and an alkoxy group having 1 to 4 carbon atoms such as methylenedioxy.
  • ketone compounds represented by the formula (3) compounds wherein X is a hydrogen atom and r is 1 to 2 are preferred.
  • n represents an integer of 2 to 4 (where n> m)
  • the ring A represents an optionally substituted benzene ring.
  • the substituent on the benzene ring include a C 1-4 alkoxy group such as a halogen atom, a hydroxyl group, a methoxy group, an ethoxy group, and a methylenedioxy group.
  • ketone compounds represented by the formula (7) compounds in which m is 1 and n is 2 are preferable.
  • R is a hydrogen atom, an aryl group having 6 to 14 carbon atoms, a heteroaryl group having 4 to 14 carbon atoms, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms ,
  • Examples of the aryl group having 6 to 14 carbon atoms include a phenol group and a naphthyl group.
  • Examples of the heteroaryl group having 4 to 14 carbon atoms include a pyridyl group, a enyl group, an oxadiazolyl group, an imidazolyl group, a thiazolyl group, a furyl group, and a pyrrolyl group.
  • Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec butyl group, and a tert butyl group.
  • Examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, and a tert butoxy group.
  • Examples of the acyl group having 2 to 15 carbon atoms include acetyl group, bivaloyl group, and benzoyl group.
  • Examples of the alkoxycarbo group having 1 to 6 carbon atoms include a methoxy carbo group, an ethoxy carbo group, and a tert-butoxy carbo group.
  • Examples of the aralkyl group having 7 to 15 carbon atoms include a benzyl group.
  • Examples of the aralkyloxy group having 8 to 16 carbon atoms include a benzyloxycarbonyl group.
  • Examples of the sulfonyl group substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 14 carbon atoms include a mesyl group and a tosyl group.
  • the number of carbons in the asil group, alkyloxy group, and aralkyloxy group includes carbon carbon.
  • R is a hydrogen atom, a phenol group, a benzyl group, a benzoyl group, a benzyloxy group,
  • a compound which is a carbo ol group, a tert butoxy carbo ol group, a mesyl group or a tosyl group is preferable.
  • Specific examples include 1-benzyl 1-3 pyrrolidinone, 1-tert-butoxycarbo 2 roux 3 pyrrolidinone, 1 tosyl-3 pyrrolidinone, 1-mesyl-3 pyrrolidinone, 1 monobenzyloxycarbolu 3-pyrrolidinone, 3-pyrrolidinone, etc. 1 benzyl 3 pyrrolidinone is more preferable.
  • R and R are each independently a hydrogen atom, an optionally substituted carbo
  • a xyl group, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 7 carbon atoms, an aralkyl group having 7 to 15 carbon atoms, or an aryl group having 6 to 14 carbon atoms. ) Things can be used.
  • Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group.
  • Examples of the cycloalkyl group having 5 to 7 carbon atoms include a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • Examples of the aralkyl group of 7 to 15 include a benzyl group.
  • Examples of the aryl group having 6 to 14 carbon atoms include a phenol group and a naphthyl group.
  • R is a C 1-10 substituent
  • R is a hydrogen atom, a carboxyl group, or carbon.
  • a hydrogen atom or a methyl group which is preferably a substituted or unsubstituted alkyl group of 1 to 2, is more preferable.
  • Specific examples of the compound represented by the formula (15) include ⁇ -phenethylamine, 2-butylamine, 2-pentylamine, 2-heptylamine, 2-octylamine, alanine, glycine, ⁇ -propylamine, ⁇ —Butyramine, ⁇ -amylamine, isopropylamine, benzylamine, j8-phenethylamine, and optically active forms thereof.
  • ⁇ -Phenethylamine is preferred even at low power (S)- ⁇ -Phenethylamine is more preferred
  • the ketone group compound represented by the formula (1), (3), (7) or (11) is added to the amino group donor represented by the formula (15).
  • the enzyme of the present invention or a culture of microorganisms capable of producing the enzyme is allowed to act.
  • the “culture” means a culture solution containing microbial cells, cultured microbial cells, or a processed product thereof.
  • the “treated product” means, for example, a cell-free extract, freeze-dried cells, acetone-dried cells, or a ground product of these cells.
  • these enzymes and cultures can be fixed by known means and used in the form of fixed enzymes or fixed cells. The fixation can be performed by a method well known to those skilled in the art (for example, a crosslinking method, a physical adsorption method, a comprehensive method, etc.).
  • the concentration of the substrate used in the reaction comprises, in a reaction solution composition, from 0.1 to 20 by weight 0/0, preferably from 1 to: a LO wt%, and an amino group donor If the body is chiralamine , Compared to case Bok Ni ⁇ was 80-1200 Monore 0/0, preferably it is preferred to use to a concentration of 100 to 600 Monore 0/0. When a racemic amine compound is used as the amino group donor, it is sufficient to use one of the enantiomers at the above concentration.
  • the lower limit when the enzyme of the present invention is allowed to act is preferably pH 5.0 or more, more preferably pH 6.0 or more, and the upper limit is The pH is preferably not more than 0.0, more preferably not more than 9.0.
  • the temperature at which the enzyme of the present invention is allowed to act is preferably 25 ° C or higher, more preferably 30 ° C or higher, and preferably 60 ° C from the viewpoint of the optimum temperature and thermal stability of the enzyme. It is below ° C, more preferably below 50 ° C.
  • reaction solvent an aqueous medium such as ion-exchanged water or a buffer solution is usually used, but the reaction can also be performed in a system containing an organic solvent.
  • organic solvent include alcohol solvents such as methanol, ethanol, propanol, isopropanol, and butanol, aliphatic hydrocarbon solvents such as pentane and hexane, aromatic hydrocarbon solvents such as benzene and toluene, Halogenated hydrocarbon solvents such as methylene chloride and chloroform, ether solvents such as jetyl ether and diisopropyl ether, ester solvents such as ethyl acetate and butyl acetate, ketone solvents such as acetone and methyl ethyl ketone, In addition, acetonitrile can be used as appropriate.
  • optically active amino compounds represented by the general formulas (2), (4), (8), and (12) are produced.
  • the produced optically active amino compound can be isolated from the reaction mixture by a known method such as extraction, distillation, recrystallization or column separation.
  • ethers such as jetyl ether and diisopropyl ether; esters such as ethyl acetate and butyl acetate; hydrocarbons such as hexane, octane and benzene; methylene chloride
  • the generated optically active amino compound remains in the aqueous phase with a general solvent such as halogenated hydrocarbons of the unreacted substrate and transamination reaction.
  • the ketone compound corresponding to the amino group donor generated by the reaction can be selectively removed.
  • the produced optically active amino compound and unreacted amino group donor can be extracted with a common organic solvent in the same manner, for example, by adjusting the pH to basicity.
  • the produced optically active amino compound and the unreacted amino group donor can be separated by, for example, distillation.
  • amino compounds represented by the formula (5) compounds in which X is a hydrogen atom and r is 1 to 2 are preferable.
  • amino compound represented by the formula (9) a compound in which m is 1 and n is 2 is preferable.
  • Each of k and R in the formulas (13) and (14) is the same as k and R in the formulas (11) and (12).
  • the amino compound represented by the formula (13) is preferably a compound in which j is 1 and k is 2.
  • R is a hydrogen atom, a phenol group, a benzyl group, a benzoyl group, a benzyloxyca
  • a compound which is a rubonyl group, a tert-butoxycarbonyl group, a mesyl group or a tosyl group is preferred.
  • a ketone compound is used as an amino group acceptor.
  • the ketonic compound may be any ketonic compound as long as it has activity as an amino group acceptor! / Preferably, pyruvic acid or daroxylic acid.
  • the enzyme of the present invention or the enzyme of the present invention is added to the enantiomeric mixture of the amino compound represented by the formula (5), (9) or (13) in the presence of the amino group receptor.
  • a culture of a transformant capable of producing an enzyme is allowed to act.
  • the enantiomer mixture of the amino compound represented by the formula (5), (9) or (13) means the enantiomer represented by the formula (6), (10) or (14). And a mixture of its enantiomers.
  • a racemic body it is preferable to use a racemic body as soon as the racemic body is inexpensive and available.
  • a production method II using a mixture in which the enantiomer represented by the above formula (6), (10) or (14) is contained in a slightly excess amount than the enantiomer is used. Therefore, the optical purity can be preferably increased.
  • the concentration of the amino compound (5), (9) or (13) in the reaction is 0.1 to 20% by weight, preferably 1 to LO weight% in the reaction solution composition.
  • reaction pH, reaction temperature, and reaction solvent may be the same as in Production Method I.
  • optically active amino compound represented by the formula (6), (10), or (14) is generated.
  • the produced optically active amino compound can be isolated from the reaction mixture in the same manner as in Production Method I.
  • the yield and purity of the optically active amino compound produced by these production methods are For example, using a reversed phase column (Cosmosil 5C18-AR, Nacalai Tester, etc.) as the reaction solution, 25% acetonitrile is separated as the mobile phase, and quantitative analysis can be performed by comparing the absorption at 210 nm with the control. .
  • a reversed phase column Cosmosil 5C18-AR, Nacalai Tester, etc.
  • the produced amino compound is combined with N carboxy L leucine anhydride to form a diastereomer, which is used as a reverse phase column (Cosmosil 5C18-AR, Nacalai Tester, etc.). It can be measured by high performance liquid chromatography using
  • the cells were then collected from the culture by centrifugation and suspended in 0.01 M potassium phosphate buffer (PH 8.0) containing 0.01% 2-mercaptoethanol and 0.02 mM pyridoxal phosphate. did.
  • the obtained suspension was crushed by ultrasonic crushing.
  • the solid matter in the crushed material was removed by centrifugation to prepare a cell-free extract.
  • Protamine sulfate was added to the obtained cell-free extract to remove nucleic acids. Ammonium sulfate was added to the resulting protamine sulfate treatment solution so as to be 30% saturated and dissolved, and then the resulting precipitate was removed by centrifugation. Ammonium sulfate was added to this supernatant so as to be 60% saturation, and this was dissolved, and then the precipitate produced by centrifugation was collected.
  • the crude enzyme solution obtained above was equilibrated in advance with lOmM phosphate buffer (pH 8.0) containing 0.01% 2-mercaptoethanol, 20 mM pyridoxalphosphate, and 0. ImM PMSF. It was applied to a sepharose 16Z10HP column (manufactured by Amersham Biosciences) to adsorb the active fraction. After washing the column with the same buffer, the active fraction was eluted with a linear gradient of sodium chloride (0 M force up to 0.7 M).
  • the concentrated crude enzyme solution was pre-equilibrated with lOmM phosphate buffer ( ⁇ 8.0) containing 0.01% 2-mercaptoethanol, 20 mM pyridoxalphosphate, 0. ImM PMSF, 0.15 M sodium chloride.
  • Hi LOAD 16/60 Superdex200pZg column A single purified enzyme preparation was obtained electrophoretically.
  • this enzyme is referred to as MTA.
  • the MTA purified enzyme obtained in Example 1 was examined for its physical properties. (1) Action:
  • 0.1 mL of purified enzyme solution prepared at a protein concentration of 2 mgZmL was added to 0.9 mL of a substrate solution having the following composition, and reacted at 30 ° C. After 1 hour, 0.1 mL of 3N hydrochloric acid was added to stop the reaction, and the reaction solution was analyzed by high performance liquid chromatography. As a result, MTA was confirmed to have transamination activity, which acts on optically active (S) -a-phenethylamine and 1-benzyl-1-pyrrolidinone to produce acetophenone and 1-benzyl-3-aminopyrrolidine. It was done.
  • S optically active
  • the activity was measured in the temperature range of 20 ° C to 70 ° C under the same conditions as above (PH 7.0). As a result, the optimum reaction temperature was 30-50 ° C.
  • MTA was treated in 0.1 M phosphate buffer ( ⁇ 7.5) containing 0.02 M pyridoxal phosphate at a temperature of 20 ° C to 70 ° C for 30 minutes, and the same conditions as above (temperature of 30 ° C, Activity was measured at pH 7.0). As a result, more than 90% of the activity remained after treatment at 20 ° C to 40 ° C compared to before treatment.
  • the molecular weight of MTA was measured by gel filtration using a HiLoad 16/60 Superdex 200 prep grade (Amersham Bioscience) column, and was found to be about 120,000. In addition, the molecular weight of the subunit was measured by SDS polyacrylamide gel electrophoresis and found to be about 53,000.
  • the purified enzyme obtained in Example 1 was examined for the reactivity of a typical ⁇ amino acid transaminase to a substrate.
  • the purified enzyme obtained in Example 1 was examined for substrate specificity for the amino group receptor.
  • 30 liters of 0.1 M phosphate buffer (pH 7.5) containing 14 mM of (S) a phenethylamine and 14 mM of various ketone compounds is added to 20 liters of purified enzyme.
  • C 20 L of 3N hydrochloric acid was added to stop the reaction.
  • the obtained reaction solution was analyzed by high-performance liquid chromatography, and the produced acetophenone was quantified.
  • Table 3 as relative activities with the activity when pyruvic acid is used as an amino group receptor as 100.
  • the measurement conditions by high performance liquid chromatography are as follows. As shown in Table 3, this enzyme is highly active in pyruvate and darioxylate, and 2-ketoglutar The acid showed no activity.
  • Example 1 The purified enzyme obtained in Example 1 was examined for substrate specificity for the amino group receptor in the same manner as in Example 5. The results are shown in Table 4.
  • Example 1 With respect to the purified enzyme obtained in Example 1, the reactivity of this enzyme to a representative ⁇ -amino acid transaminase substrate was examined. First, 20 ⁇ L of the purified enzyme solution prepared at a protein concentration of 0.2 mg / mL is added to 380 ⁇ L of a substrate solution having the following composition, reacted at 30 ° C for 1 hour, and then 3 L hydrochloric acid is added to 20 L. In addition, the reaction was stopped. Next, 80 L of a 0.2 M aqueous sodium carbonate solution and 200 L of an acetone solution of 3.3 mg ZmL dub silk mouthlid were added to 20 L of the obtained reaction solution, respectively, and reacted at 70 ° C. for 10 minutes.
  • this enzyme does not act on the substrates of typical ⁇ -amino acid transaminases such as ⁇ -alanine, taurine, putretin and 4-aminobutyric acid, and is specific for (S) -a-phenethylamine. Showed high activity.
  • Enzyme ⁇ ) ⁇ -amino acid pyruvate transaminase
  • the amino acid sequence of the ⁇ terminal of the purified cocoon obtained in Example 1 was determined by ⁇ 492 type protein sequencer (PerkinElmer Biosystems).
  • the purified MTA obtained in Example 1 was denatured in the presence of 8M urea, and then digested with lysyl endopeptidase derived from Achromopacter (manufactured by Wako Pure Chemical Industries, Ltd.).
  • the sequence was determined in the same manner as the N-terminal amino acid sequence.
  • synthesized primer 1 SEQ ID NO: 3 in the sequence listing
  • primer 2 SEQ ID NO: 4 in the sequence listing
  • Chromosomal DNA was extracted from the culture solution of S. fluorescens KNK08-18 according to the method described by Murray et al. (Nucl. Acids Res., 8, 4321, 1980). The obtained chromosomal DNA was subjected to PCR using the primers synthesized above in a saddle shape. As a result, a DNA fragment of about 540 bp considered to be a part of the MTA gene was obtained. PCR was carried out using TaKaRa Ex Taq (manufactured by Takara Shuzo Co., Ltd.) as a DNA polymerase, and the reaction conditions were in accordance with the instruction manual.
  • This DNA fragment is cloned into the plasmid pT7Blue T-Vector (Novagen) and used with ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer) and ABI 310 DNA Sequencer (Perkin Elmer). The base sequence was determined. Its base sequence is shown in SEQ ID NO: 5 in the sequence listing. did.
  • Example 9 Including MTA transfer ⁇ . 3 ⁇ 4 Plasmid preparation
  • primer 3 (SEQ ID NO: 6 in the sequence listing) with an Ndel moiety added to the start codon part of the MTA gene, and primer with an EcoRI site added immediately after the start codon of the MTA gene 4 (SEQ ID NO: 7 in the sequence listing) was synthesized.
  • the chromosomal DNA of Pseudomonas fluorescens KNK08-18 obtained in Example 2 is used as a saddle, PCR is performed using these primers, an Ndel site is added to the start codon portion of the MTA gene, and EcoRI is immediately after the start codon. Double-stranded DNA with added sites was obtained.
  • PCR was performed using TaKaRa LA Taq with GC buffer (manufactured by Takara Shuzo Co., Ltd.), and the reaction conditions were in accordance with the instruction manual.
  • This DNA was digested with Ndel and EcoRI and inserted between the Ndel recognition site downstream of the lac promoter and the EcoRI recognition site of the plasmid pUCNT (WO94Z03613) to obtain a recombinant vector pNTMTA.
  • E. coli E. coli HB101 (Takara Shuzo Co., Ltd.) was transformed with the recombinant vector pNTMTA obtained in Example 9 to obtain recombinant E. coli HBlOl (pNTMTA).
  • the transformant E. coli HB101 (pNTMTA) obtained in this way was dated October 5, 2004 and under the accession number: FERM P-20238. 305- 8566 Tsukuba Sagahigashi, Ibaraki Prefecture 1-1-1 1 Central 6)
  • the transformant E. coli HB101 (pNTMTA) obtained in this way was dated October 5, 2004 and under the accession number: FERM P-20238. 305- 8566 Tsukuba Sagahigashi, Ibaraki Prefecture 1-1-1 1 Central 6)
  • the transformant E. coli HB101 (pNTMTA) obtained in this way was dated October 5, 2004 and under the accession number: FERM P-20238. 305-
  • E. coli HBlOl (pNTMTA) obtained in Example 10 was mixed with 2 X YT medium containing 200 / zg / ml ampicillin ( ⁇ lipton 1.6%, yeast extract 1.0%, NaCl 0.5%, pH 7. After cell collection, the cells were suspended in lOOmM phosphate buffer (pH 7.5), and a cell-free extract was obtained by ultrasonic disruption. The transaminase activity of this cell-free extract was measured by the activity measurement method shown in Example 1 using acetophenone and 1 benzyl 3 pyrrolidinone as substrates. As a result, the cell-free extract of E. coli HBlOl (pNTMTA) showed 1 U of the activity per 1 mg of protein.
  • E. coli HB101 (pNTMTA) obtained in Example 10 was mixed with 50 mL of 2 X YT medium (tryptone 1.6%, yeast extract 1.0%, NaCl 0.5%, ampicillin 200 ⁇ l in a 500 mL volumetric flask. After inoculating gZml, pH 7.0), the cells were cultured at 28 ° C for 3 days. The cells are collected from the culture solution by centrifugation, suspended in 0.01 M potassium phosphate buffer (pH 8.0) containing 0.01% 2-mercaptoethanol and 0.02 mM pyridoxal phosphate, and the same buffer solution is used. The volume was adjusted to 5 ml to obtain a cell suspension.
  • 2 X YT medium tryptone 1.6%, yeast extract 1.0%, NaCl 0.5%, ampicillin 200 ⁇ l in a 500 mL volumetric flask. After inoculating gZml, pH 7.0), the cells were cultured at 28 ° C for 3 days. The cells are
  • a cell suspension was prepared in the same manner as in Example 12. 3 ml of the above cell suspension, 3.7 mg of pyridoxal phosphate, 1M potassium phosphate buffer in a flask containing 1-benzil-3 pyrrolidinone 900 mg in advance and (S) a-phenethylamine 928.2 mg (pH 6.8) 3 mL was added, and deionized water was added to make the total volume 30 mL. This was reacted at 30 ° C. with stirring for 16 hours. After completion of the reaction, the reaction solution was analyzed by HPLC under the following conditions. As a result, 1-benzyl-3-aminopyrrolidine was produced at a conversion rate of 75.1%. The configuration was (S) and the optical purity was 79.2% e.e.
  • reaction solution was basified with an appropriate amount of sodium carbonate, derivatized with Z chloride, and then analyzed under the following conditions.
  • a cell suspension was prepared in the same manner as in Example 12. 3 ml of the above cell suspension, 3.7 mg of pyridoxalphosphoric acid, 1M in a flask containing 1-Fe-Lu 3 butanone 504.6 mg and (3) -0; 3 mL of potassium phosphate buffer (pH 6.8) was added, and deionized water was added to make the total volume 30 mL. This was reacted at 30 ° C. with stirring for 16 hours. After completion of the reaction, the reaction solution was analyzed as follows. As a result, 1-ferro-3-ptylamine was produced at a conversion rate of 68%, the configuration was (S) and the optical purity was 95.8% ee.
  • reaction solution was basified with an appropriate amount of sodium carbonate, derivatized with acetic anhydride, and then analyzed under the following conditions.
  • Example 15 Production of optically active 7 methoxy-2-aminotetralin by production method II A cell suspension was prepared in the same manner as in Example 12. 3 ml of the above cell suspension, 1.2 mg of pyridoxal phosphate, 1M potassium phosphate buffer ( PH 7) in a flask containing racemic 7-methoxy-2-aminotetralin 100 mg and 62 mg of pinolevic acid in advance. 0) Add lmL and add deionized water to make the total volume 10mL. This was reacted at 30 ° C. for 21 hours with stirring. After completion of the reaction, analysis was carried out in the same manner as in Example 12. As a result, 7-methoxy1-2-aminotetralin was present at a residual rate of 44%. The configuration was (R) and the optical purity was 100% ee.
  • E. coli HB101 (pNTMTA) obtained in Example 10 was mixed with 50 mL of 2 X YT medium ( ⁇ Lipton 1.6%, yeast extract 1.0%, NaCl 0.5%, pH 7.0 in a 500 mL volumetric flask. ) And then cultured at 28 ° C for 3 days. The cells are collected from the culture solution by centrifugation and suspended in 0.01 M potassium phosphate buffer (PH8.0) containing 0.01% 2-mercaptoethanol and 0.02 mM pyridoxal phosphate. Prepared to 5 ml and made into a cell suspension.
  • 2 X YT medium ⁇ Lipton 1.6%, yeast extract 1.0%, NaCl 0.5%, pH 7.0 in a 500 mL volumetric flask.
  • reaction solution was basified with an appropriate amount of sodium carbonate, derivatized with dinitrobenzoyl chloride, and then analyzed under the following conditions.
  • a cell suspension was prepared in the same manner as in Example 16. 3 ml of the above cell suspension, 3.7 mg of pyridoxal phosphate, 1M phosphoric acid in a flask containing 1-Boc-3-pyrrolidinone 900111 8 and (S) -a-phenethylamine 883 mg in advance 3 mL of potassium buffer (pH 6.8) was added, and deionized water was added to make the total volume 30 mL. This was reacted at 30 ° C. with stirring for 8 hours. After completion of the reaction, L of 40% sodium hydroxide aqueous solution was added to 0.1 mL of the reaction solution, extracted with 1 mL of ethyl acetate, and the extract was analyzed as follows. As a result, 1-Boc-3-amiminopyrrolidine was produced at a conversion rate of 82%, and its configuration was (S) and optical purity was 99.4% ee.
  • reaction solution was basified with an appropriate amount of sodium carbonate, derivatized with dinitrobenzoyl chloride, and then analyzed under the following conditions.
  • a cell suspension was prepared in the same manner as in Example 16. 3 ml of the above cell suspension, 3.7 mg of pyridoxal phosphate, 1M potassium phosphate buffer (pH 6.) in a flask containing 1-Boc 3 piberidinone 900 mg and (S) -a-phenethylamine 821 mg in advance. 8) Add 3mL and add deionized water to make the total volume 30mL. This was reacted at 30 ° C. with stirring for 5 hours. After completion of the reaction, 0.2 mL of the reaction solution was added with 50 / z L of 40% sodium hydroxide aqueous solution, extracted with 1 mL of ethyl acetate, and the extract was analyzed as follows. As a result, 1-Boc-3 aminobiperidine was produced at a conversion rate of 83%, the configuration was (S), and the optical purity was> 99.9% e.e.
  • reaction solution was basified with an appropriate amount of sodium carbonate, derivatized with dinitrobenzoyl chloride, and then analyzed under the following conditions.

Abstract

 本発明は、新規なアミノ基転移酵素、該酵素をコードするDNA、該DNAを導入された組換えベクター、該ベクターを導入された形質転換体に関する。また本発明は、該酵素又は形質転換体を利用した光学活性アミノ化合物の製造方法にも関する。  本発明のアミノ基転移酵素はケトン化合物、特に環状ケトン化合物を効率よく光学活性アミノ化合物に変換する能力を有し、本発明により、光学活性アミノ化合物、特に光学活性環状アミノ化合物の効率的な製造方法が提供される。                                                                                     

Description

明 細 書
新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの 利用法
技術分野
[0001] 本発明は、アミノ基転移反応により、ケトンィ匕合物を効率よく光学活性アミノ化合物 に変換しうる酵素および該酵素を用いた光学活性アミノ化合物の製造方法に関する 。得られる光学活性アミノ化合物は、医薬品や農薬等の中間体として利用しうる。 背景技術
[0002] 従来、アミノ基転移反応を用いて光学活性アミノ化合物を製造する例としては、バ シラス'メガテリゥムの ω—アミノ酸トランスアミナーゼを用いて、ベンジルアセトン、フ ェニルアセトン、及びァセトフエノンのそれぞれにアミノ基を転移させることにより、該 ケトンィ匕合物に対応する光学活性アミノ化合物が合成できることが報告されている( 特許第 2846074号:特許文献 1)。しカゝしながら、反応液中の基質濃度はきわめて低 ぐ工業的規模での利用には課題を有する。
[0003] 一方、 WOOOZ26351公報(特許文献 2)では、 3—ヒドロキシァセトフヱノンや 3— トリフルォロメチルフエ-ルアセトンなどのァリールアルキルケトンに(S)—フエネチル ァミン:ピルビン酸トランスアミナーゼを作用させて、該ケトン化合物に対応する光学 活性アミノ化合物を生成することが記載されている。し力しながら、環状ケトンに関し ては記載がない。
[0004] 特開 2002— 142793公報(特許文献 3)では、バシラス.エスピーから、酵素阻害 剤の 1種であるガバクリンに阻害されないことを特徴とするアミノ基転移酵素を取得し ている。このアミノ基転移酵素を用いて、プロピオフエノンに η—ブチルァミンのァミノ 基を転移することにより、対応する光学活性アミノ化合物を合成できることが記載され ているが、反応液中の基質濃度はきわめて低ぐ工業的規模での利用には課題を有 する。
特許文献 1:特許第 2846074号
特許文献 2 :WOOOZ26351公報 特許文献 3 :特開 2002— 142793公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明の課題は、医薬品や農薬等の中間体として有用な光学活性アミノ化合物を 、ケトンィ匕合物、特に環状ケトン化合物から効率よく製造するための方法を提供する ことにある。
課題を解決するための手段
[0006] 本発明者らは、様々な土壌分離菌を対象としたスクリーニングを行なった結果、環 状ケトンに対し高い活性および立体選択性でアミノ基を転移する活性を有する微生 物を発見した。また、その微生物から該活性を有する酵素の単離精製に成功した。さ らに、このアミノ基転移酵素の反応特性について詳細な検討を行った結果、該酵素 は ) aーフエネチルァミンなどをァミノ基供与体として用いると、環状ケトンだけで なぐベンジルアセトンなどのァリールアルキルケトンやピルビン酸などの広範なケトン 化合物に対して高い活性を示し、対応する光学活性アミノ化合物に変換するという優 れた性質を有することを見出した。さらに、該酵素をコードする遺伝子を遺伝子組換 えの手法で取得し、その塩基配列を明らかにした。さらに、該遺伝子を用いて当該酵 素を産生する形質転換体を育種することで、より高活性な該形質転換体を作製し、 光学活性なァミノ化合物を工業的に製造し得る方法を確立した。
[0007] 即ち、本発明は、下記(1)から (3)の理ィ匕学的性質を有するアミノ基転移酵素であ る:
(1)作用:光学活性(S) - a—フエネチルァミンと 1—ベンジル一 3 ピロリジノンとに 作用してァセトフエノンと 1 ベンジル 3 ァミノピロリジンとを生成するァミノ基転移 反応を触媒する、
(2)基質特異性:
(a)アミノ基供与体: (S) - a—フエネチルァミンに対し活性を示し、 β—了ラニン、 タウリン、ブトレツシン、 DL オル-チンおよび DL リシンに対し実質的に活性を示 さない、
(b)アミノ基受容体:ピルビン酸およびダリオキシル酸に対し活性を示す、 (3)分子量:ゲルろ過で約 120, 000、 SDS—ポリアクリルアミドゲル電気泳動で約 5 3, 000。
[0008] また、本発明は、配列表の配列番号 1で示されるアミノ酸配列からなるアミノ基転移 酵素、又は、配列表の配列番号 1で示されるアミノ酸配列において、 1〜数個のァミノ 酸が欠失、置換、挿入もしくは付加されたアミノ酸配列力もなり、かつ、光学活性 (S) - a—フエネチルァミンと 1—ベンジル一 3—ピロリジノンとに作用してァセトフエノンと 1一べンジルー 3—ァミノピロリジンとを生成する活性を有するアミノ基転移酵素であ る。
[0009] また、本発明は、前記酵素をコードする DNA、該 DNAを含むベクター、及び、この ベクターにより形質転換された形質転換体でもある。
[0010] また、本発明は、一般式(1):
[0011] [化 1]
Figure imgf000004_0001
[0012] (式中、 P及び Qは置換されていてもよい、アルキル基、分岐鎖アルキル基、ァリール 基、ヘテロァリール基、ァリールォキシ基、ヘテロァリールォキシ基、アルコキシ基、ァ ルコキシカルボ-ル基、ァルケ-ル基、アルキ-ル基、シクロアルキル基、ァラルキル 基、ヘテロァラルキル基を示し、 Pと Qの両者が互いに結合して環を形成していてもよ い。但し、 Pは構造またはキラリティーの点で Qと異なる。)で表されるカルボニル化合 物に、アミノ基供与体の存在下、前記酵素あるいは該酵素の産生能を持つ微生物の 培養物を作用させることを特徴とする、一般式 (2):
[0013] [化 2]
Figure imgf000004_0002
[0014] (式中、 P及び Qは前記式(1)と同じ。)で表される光学活性アミノ化合物の製造方法 である。
[0015] また、本発明は、下記一般式 (3):
[0016] [化 3]
Figure imgf000005_0001
[0017] (式中、 qは 0〜7の整数を示し、 rは 0〜2の整数を示し、 Rは置換されていてもよい、 炭素数 6〜14のァリール基、炭素数 4〜14のへテロアリール基、炭素数 6〜14のァリ ールォキシ基、炭素数 4〜 14のへテロアリールォキシ基、炭素数 1〜5のアルコキシ 基、炭素数 2〜5のアルコキシカルボニル基、炭素数 3〜5の分岐鎖アルキル基、炭 素数 2〜5のァルケ-ル基、炭素数 2〜5のアルキ-ル基、炭素数 5〜7のシクロアル キル基、メチル基又はカルボキシル基を示し、 Xは水素原子又は置換されていてもよ いメチル基を示す。但し、 R力 Sメチル基の場合には q> =rである。)で表されるカルボ ニル化合物に、アミノ基供与体の存在下、前記酵素あるいは該酵素の産生能を持つ 微生物の培養物を作用させることを特徴とする、一般式 (4):
[0018] [化 4]
Figure imgf000005_0002
[0019] (式中、 q、 r、 Rおよび Xは、前記式(3)と同じ。)で表される光学活性アミノ化合物の 製造方法である。
[0020] また、本発明は、一般式 (5):
[0021] [化 5]
Figure imgf000006_0001
[0022] (式中、 q、 r、 Rおよび Xは、前記式(3)と同じ。)で表わされるァミノ化合物のェナンチ ォマー混合物に、アミノ基受容体の存在下、前記酵素あるいは該酵素の産生能を持 つ微生物の培養物を作用させることを特徴とする、一般式 (6):
[0023] [化 6]
Figure imgf000006_0002
[0024] (式中、 q、 r、 Rおよび Xは前記式(5)と同じ。)で表わされる光学活性アミノ化合物の 製造方法である。
[0025] また、本発明は、一般式 (7):
[0026] [化 7] )
Figure imgf000006_0003
[0027] (式中、 mは 0〜3の整数を示し、 nは 2〜4の整数を示し(ただし、 n>mである)、環 A は置換されていても良いベンゼン環を示す。)で表されるカルボ二ルイ匕合物に、ァミノ 基供与体の存在下、前記酵素あるいは該酵素の産生能を持つ微生物の培養物を作 用させることを特徴とする、一般式 (8):
[0028] [化 8]
Figure imgf000007_0001
[0029] (式中、 m、 n、環 Aのそれぞれは、前記式(7)と同じ。)で表される光学活性アミノ化 合物の製造方法である。
[0030] また、本発明は、一般式 (9):
[0031] [化 9]
Figure imgf000007_0002
[0032] (式中、 m、 n、環 Aのそれぞれは、前記式(7)と同じ。)で表されるァミノ化合物のェ ナンチォマー混合物に、アミノ基受容体の存在下、前記酵素あるいは該酵素の産生 能を持つ微生物の培養物を作用させることを特徴とする、一般式(10):
[0033] [化 10]
Figure imgf000007_0003
[0034] (式中、 m、 n、環 Aのそれぞれは、前記式(9)と同じ。)で表わされる光学活性アミノ 化合物の製造方法である。
[0035] また、本発明は、一般式(11):
[0036] [化 11]
Figure imgf000008_0001
[0037] (式中、 jおよび kはそれぞれ 1〜3の整数を示し (但し、 k> =jである)、 Rは、水素原
5 子、炭素数 6〜14のァリール基、炭素数 4〜14のへテロアリール基、炭素数 1〜6の アルキル基、炭素数 1〜6のアルコキシ基、炭素数 2〜15のァシル基、炭素数 1〜6 のアルコキシカルボ-ル基、炭素数 7〜 15のァラルキル基、炭素数 8〜16のァラル キルォキシカルボ-ル基、又は、炭素数 1〜6のアルキル基もしくは炭素数 6〜14の ァリール基で置換されたスルホ -ル基を示す。)で表されるカルボ-ル化合物に、アミ ノ基供与体の存在下、前記酵素あるいは該酵素の産生能を持つ微生物の培養物を 作用させることを特徴とする、一般式(12):
[0038] [化 12]
Figure imgf000008_0002
[0039] (式中、 j、 k、および Rのそれぞれは、前記式(11)と同じ。)で表される光学活性アミ
5
ノ化合物の製造方法である。
[0040] また、本発明は、一般式(13):
[0041] [化 13]
Figure imgf000009_0001
[0042] (式中、 j、 k、および Rのそれぞれは、前記式(11)と同じ。)で表されるァミノ化合物
5
のェナンチォマー混合物に、アミノ基受容体の存在下、前記酵素あるいは該酵素の 産生能を持つ微生物の培養物を作用させることを特徴とする、一般式(14):
[0043] [化 14]
Figure imgf000009_0002
[0044] (式中、 j、 k、 Rは、前記式(13)と同じ。)で表される光学活性アミノ化合物の製造方
5
法である。
発明の効果
[0045] ケトン化合物、特に環状ケトン化合物に対し、立体選択的にアミノ基を転移する酵 素を単離し、該酵素産生能の高い形質転換体を得ることが可能となった。さらに、該 形質転換体を用いることにより、光学活性アミノ化合物を効率良く製造することが可 能となった。
図面の簡単な説明
[0046] [図 1]本発明の組換えベクター pNTMTAの構築方法を示す図である。 発明を実施するための最良の形態
[0047] 以下、本発明を詳細に説明する。なお、本明細書において記述されている DNAの 単離、ベクターの調製、形質転換等の遺伝子操作は、特に明記しない限り、 Molecula r Cloning 2ηα Edition (Cold bpnng Harbor Laboratory Press, 1989)、 Current Protoc ols in Molecular Biology (Greene Publishing Associates and Wiley- Interscience)等の 成書に記載されている方法により行なうことができる。
[0048] 本発明の酵素は、下記の理ィ匕学的性質を有する酵素である:
(1)作用:光学活性(S) - a—フエネチルァミンと 1—ベンジル一 3 ピロリジノンとに 作用してァセトフエノンと 1 ベンジル 3 ァミノピロリジンとを生成するァミノ基転移 反応を触媒する、
(2)基質特異性:
(a)アミノ基供与体: (S) - a—フエネチルァミンに対し活性を示し、 β—了ラニン、 タウリン、ブトレツシン、 DL オル-チンおよび DL リシンに対し実質的に活性を示 さない、および
(b)アミノ基受容体:ピルビン酸およびダリオキシル酸に対し活性を示す、
(3)分子量:ゲルろ過で約 120, 000、 SDS ポリアクリルアミドゲル電気泳動で約 5 3, 000。
[0049] 光学活性(S) - a—フエネチルァミンと 1—ベンジル一 3 ピロリジノンとに作用して それぞれァセトフエノンと 1—ベンジル一 3 ァミノピロリジンとを生成するァミノ基転移 反応の活性は、以下の方法により測定することができる。
[0050] タンパク質濃度を 2mgZmLに調製した精製酵素液 0. ImLを、下記組成を有する 基質溶液 0. 9mLに添カ卩し、 30°C、 1時間反応させた後、 3N HC1を 0. ImL添カロし て反応を停止させ、生成した 1一べンジルー 3 ァミノピロリジンを高速液体クロマトグ ラフィ一により定量する。
[0051] [基質溶液組成]
(S) α フヱネチルァミン 28. 3mM
1—ベンジル一 3 ピロリジノン 28. 3mM
ピジド、キサノレジン 0. 02mM リン酸カリウム緩衝液 (pH7. 0) 0. 1M
[高速液体クロマトグラフィーによる測定条件]
カラム: Finepak SIL C18—T (日本分光社製)
溶離液:蒸留水 1260mLZァセトニトリル 740mLZ
KH PO 10g/SDS 2. 88g (pH3. 6)
2 4
流速: lmLZ分
検出: 254nm
カラム温度: 40°C。
[0052] 本発明の酵素は、 β—ァラニン、タウリン、プトレツシン、 DL—オル-チンおよび D L—リジンをァミノ基供与体とした場合には、実質的に活性を示さない。ここで、実質 的に活性を示さな ヽとは、以下の方法でアミノ基転移活性を測定した場合にぉ ヽて、 上記アミノ化合物をァミノ基供与体として用いた場合の活性が、 (S) - a—フエネチ ルァミンを用いた場合の 1Z100以下、好ましくは 1Z1000以下、更に好ましくは 1Z 10000以下であることを意味する。
[0053] 上記のアミノ基供与体を用いた際のアミノ基転移活性は、まず、タンパク質濃度を 0 . 2mgZmLに調製した精製酵素液 20 μ Lを下記組成を有する基質溶液 380 こ 添加し、 30°C、 1時間反応させた後、 3N塩酸を 20 Lカ卩えて反応を停止させる。次 に、得られた反応液 20 Lに 0. 2M炭酸ナトリウム水溶液 80 L、 3. 3mgZmLダ ブシルク口リドのアセトン溶液 200 Lをそれぞれカロえ、 70°Cで 10分間反応させる。 これに酢酸 20 Lを加えて攪拌し、この反応液を高速液体クロマトグラフィーで分析 し、ダブシルイ匕したァラニンを定量する。
[0054] [基質溶液組成]
各種アミノ化合物 14mM
ピノレビン酸 14mM
ピジド、キサノレジン 0. 02mM
リン酸カリウム緩衝液 (pH7. 5) 0. 1M
[高速液体クロマトグラフィーによる測定条件]
カラム: Deverosil ODS— HG— 3 (NOMURA CHEMICAL製) 溶離液:ァセトニトリル /0. 045M酢酸緩衝液 (pH4. 1)
= 35Z65 (体積比)
流速: 0. 9mLZ分
検出: 254nm
[0055] また、本発明の酵素は、 1一べンジルー 3—ピロリジノンあるいはピルビン酸に代え て、ダリオキシル酸をァミノ基受容体としても活性を示す。
[0056] 酵素の分子量は、 HiLoad 16/60 Superdex 200 prep grade (アマシャムバイオサイエ ンス社製)カラムを用いたゲルろ過分析により、標準タンパク質に対する相対溶出時 間力 決定しうる。溶離液としては、 0. 15M NaCU 0. 01% (v/v) 2—メルカプト エタノール、 20mM ピリドキサルリン酸、 0. ImM PMSFを含む 0. 01M リン酸力 リウム緩衝液 (PH8)を用いる。また、サブユニットの分子量は、 10%SDS—ポリアタリ ルアミドゲル電気泳動により、標準タンパク質に対する相対移動度力 決定しうる。
[0057] また、本発明の酵素はさらに、下記の理ィ匕学的性質を有していてもよい:
(4)至適 pH : 7〜9、
(5)作用至適温度: 30〜50°C、
(6)熱安定性: pH7. 0、 30〜40°Cの温度で 30分間処理したとき、処理前の活性に 対して 90%以上の残存活性を保持する。
[0058] 酵素反応の至適 pHは、(S)— α—フエネチルァミンと 1一べンジルー 3—ピロリジノ ンを基質としたアミノ基転移活性を、 ρΗ4. 0〜: L 1. 0の範囲で測定することで決定し うる。ただし、上記測定方法において、測定を行う pHに応じて基質溶液における緩 衝液は下記のものを用いる。
ρΗ4. 0〜6. 0 : 0. 1M酢酸ナトリウム緩衝液
ρΗ6. 0〜8. 5 : 0. 1Mリン酸カリウム緩衝液
ρΗ8. 0〜9. 0 : 0. 1Mトリスー塩酸緩衝液
ΡΗ9. 0〜: L 1. 0 : 0. 1M炭酸ナトリウム緩衝液。
[0059] 酵素反応の至適温度は、(S)— α—フエネチルァミンと 1一べンジルー 3—ピロリジ ノンを基質としたアミノ基転移活性を、反応温度 20〜60°Cの範囲で測定することで 決定しうる。 [0060] 酵素の熱安定性は、精製酵素を 0. 02mMのピリドキサルリン酸を含む 0. 1Mリン 酸カリウム緩衝液 (PH7. 5)でタンパク質濃度が 2mg/mLとなるように調製し、これ を 20〜70°Cで 30分間処理した後、上記アミノ基転移活性を測定することで決定しう る。
[0061] 一般的に、アミノ基転移酵素は反応液中のピリドキサルリン酸の濃度を高くすると、 その至適温度および熱安定性が向上することがある。
[0062] さらに、本発明の酵素は、 (S) - a—フエネチルアミンをァミノ基供与体として、 1 - ベンジル 3—ピロリジノン以外のケトンィ匕合物にも作用し、ァセトフエノンと該ケトン 化合物に対応するァミノ化合物とを生成するァミノ基転移反応を触媒しうる。
[0063] 本発明の酵素は、上記性質を示す酵素であれば、いかなる酵素であっても含まれ る力 例えば、シユードモナス(Pseudomonas)属の微生物から取得できる。本発明の 酵素の起源となる微生物としては、好ましくはシユードモナス ·フルォレツセンス (Pseu domonas fluorescens)が挙げられ、さらに好ましくは、シユードモナス'フルォレツセン ス(Pseudomonas fluorescens) KNK08— 18が挙げられる。
[0064] この、シユードモナス 'フルォレツセンス KNK08— 18は、受託番号 FERM BP
10599として、独立行政法人産業技術総合研究所 特許生物寄託センター (IPO D:〒 305— 8566 茨城県つくば巿東 1 1 1 中央第 6)に寄託されている(原寄 託日力 2004年 10月 5日の国内寄託株を 2006年 4月 27日付けでブダペスト条約に 基づく国際寄託に移管)。
[0065] 本発明の酵素を有する微生物のための培養培地としては、その微生物が増殖する 限り、通常の炭素原、窒素原、無機塩類、有機栄養素などを含む液体栄養培地が用 いられ得る。
[0066] なお、前記微生物を培養する際に、本酵素の誘導物質として、プロピルァミン、 1 ブチルァミン、 2—ブチルァミン、 2—ペンチルァミン、イソプロピルァミン、イソブチル ァミン、 7—メトキシ一 2 アミノテトラリンなどを培地に添加し、培養することもできる。 前記誘導物質は、単独で又は 2種類以上を混合して用いてもよい。前記誘導物質の 添加量は、特に制限されるものではないが、菌の生育阻害などの観点から、通常培 地組成中 1重量%以下が好ましい。また、前記誘導物質の添加時期は、特に制限さ れるものではなぐ培養開始時、又は、培養途中のいずれでもよい。
[0067] 本発明の酵素を有する微生物からの該酵素の精製は、公知のタンパク質精製法に より行ない得る。以下に、本発明のポリペプチドを取得する方法として、シユードモナ ス.フルォレツセンス KNK08— 18を用いた例を記載する力 本発明はこれに限定さ れない。
[0068] まず、シユードモナス'フルォレツセンス KNK08— 18を、 500mL容坂ロフラスコ 中 50mLの培地(組成: 5gZL KH PO、 5g/L K HPO、 0. 16g/L MgSO ·
2 4 2 4 4
7H 0、 0. 018g/L FeSO - 7H 0、 0. 012g/L ZnSO -H 0、 0. 002g/L
2 4 2 4 2
MnSO - 7H 0、 0. OOlg/L CuSO - 7H 0、 0. 02g/L NaCl、 20g/L グリ
4 2 4 2
セリン、 lOgZL イーストエキス(日本製薬社製)、 500mgZL (S)— 7—メトキシ— 2 アミノテトラリン (pH7. 2) )に植菌し、 30°Cで 1日培養し、前培養液を得る。次に、 5L容ミ-ジャー中 3. 0Lの培地 (前記と同組成)に、得られた前培養液を植菌し、通 気 0. 6wm、攪拌 400rpm、温度 30°Cの条件で 28時間培養する。
[0069] ついで、遠心分離により培養液力 菌体を集め、 0. 01% 2—メルカプトエタノー ルおよび、 0. 02mM ピリドキサルリン酸を含む 0. 01M リン酸カリウム緩衝液(pH 8. 0)に懸濁する。得られた懸濁液を超音波破砕により破砕する。次に、該破砕物中 の固形物を遠心分離により除去し、無細胞抽出液を調製する。得られた無細胞抽出 液に硫酸プロタミンを添加し、核酸を除去する。
[0070] 得られた硫酸プロタミン処理液は、イオン交換クロマトグラフィー、吸着クロマトグラフ ィー、疎水クロマトグラフィーなどに代表される各種カラムクロマトグラフィーを用いるこ とにより、本発明の酵素が精製され得る。
[0071] このようにして得られる酵素としては、例えば、配列表の配列番号 1で示されるァミノ 酸配列からなる酵素を挙げることができる。しかし、本発明の酵素はこれに限定され ず、配列表の配列番号 1で示されるアミノ酸配列において、 1若しくは数個のアミノ酸 が欠失、置換、挿入もしくは付加されたアミノ酸配列力もなる酵素も、それが、光学活 性(S) - a—フエネチルァミンと 1—ベンジル一 3 ピロリジノンとに作用して、ァセト フエノンと 1 ベンジル 3 ァミノピロリジンとを生成するァミノ基転移反応活性を有 する限り、本発明に包含される。 [0072] 配列表の配列番号 1で示されるアミノ酸配列において、 1若しくは数個のアミノ酸が 欠失、置換、挿入もしくは付加されたアミノ酸配列からなるポリペプチドは、配列表の 配列番号 1で示されるアミノ酸配列を利用して、 Current Protocols in Molecular Biolo gy Oohn Wiley and Sons, Inc., 1989)等の実験書に記載の公知の方法に準じて調製 することができる。
[0073] 置換、挿入、欠失又は付加の場所は特に制限されないが、高度保存領域を避ける のが好ましい。ここで、高度保存領域とは、由来の異なる複数のアミノ基転移酵素に ついて、アミノ酸配列を最適に整列させて比較した場合に、複数の配列間でアミノ酸 がー致して 、る位置を表す。
[0074] 置換、挿入、欠失又は付加されるアミノ酸の数としては、 10以下が好ましぐ 5以下 力 り好ましぐ 3以下が更に好ましい。改変されたアミノ酸配列は、 1種類の改変(例 えば置換)のみを含むものであっても良いし、 2種以上の改変(例えば、置換と挿入) を含んでいても良い。また、置換の場合には、置換後のアミノ酸はもとのアミノ酸の同 族アミノ酸であるのが好まし!/、。
[0075] 本発明の DNAは、上記ポリペプチドをコードする DNAであり、後述する方法に従 つて導入された宿主細胞内で上記ポリペプチドを発現し得るものであればいかなるも のでもよぐ任意の非翻訳領域を含んでいてもよい。精製された上記ポリペプチドが 取得できれば、当業者であれば公知の方法により、該ポリペプチドの起源となる微生 物よりこのような DNAを取得することができる。
[0076] 以下に、本発明の DNAを取得する方法として、シユードモナス'フルォレツセンス ( Pseudomonas fluorescens) KNK08 - 18 (FERM BP— 10599)を用いた例を記載 するが、本発明はこれに限定されない。
[0077] まず、該微生物の無細胞抽出液より精製した上記ポリペプチド (酵素)を、適当なェ ンドぺプチダーゼにより消化し、逆相 HPLCにより切断された断片を精製後、例えば 、 ABI492型プロテインシークェンサ一(Applied Biosystems社製)によりアミノ酸配列 の一部を決定する。そして、得られた部分アミノ酸配列情報をもとにして、該ポリぺプ チドをコードする DNAの一部を増幅するための PCR (Polymerase Chain Reaction) プライマーを合成する。次に、通常の DNA単離法、例えば Murray等の方法 (Nucl., Acids Res., 8, 4321-4325, 1980)〖こより、該微生物の染色体 DNAを調製する。この 染色体 DNAを铸型として、先述の PCRプライマーを用いて PCRを行い、上記ポリべ プチドをコードする DNAの一部を増幅し、その塩基配列を決定する。塩基配列は、 例えば、 ABI373A型 DNA Sequencer (Applied Biosystems社製)等を用いて決 定し得る。該ポリペプチドをコードする DNAの一部の塩基配列が明らかになれば、 例えば、 inverse— PCR法(Nucl. Acids Res.16,8186(1988))によりその全体の配列を 決定することができる。
[0078] このようにして得られる DNAとしては、例えば、配列表の配列番号 2に記載の塩基 配列を有する DNAを挙げることができる。しかし、本発明の DNAはこれに限定され ず、上述した本発明のポリペプチドをコードする DNAはすべて本発明に包含される 。例えば、配列表の配列番号 2に示す塩基配列と相補的な塩基配列からなる DNAと ストリンジェントな条件下でノヽイブリダィズし、かつ、光学活性 (S) - a—フエネチルァ ミンと 1 ベンジル 3 ピロリジノンとに作用して、ァセトフエノンと 1 ベンジル - 3 ーァミノピロリジンとを生成する活性を有するポリペプチドをコードする DNAは本発明 に包含される。
[0079] ここで、「配列表の配列番号 2に示す塩基配列と相補的な塩基配列力 なる DNAと ストリンジェントな条件下でハイブリダィズする DNA」とは、コ口-一'ハイブリダィゼー シヨン法、プラーク 'ハイブリダィゼーシヨン法、あるいはサザンハイブリダィゼーシヨン 法等を実施した際、配列表の配列番号 2に示す塩基配列と相補的な塩基配列力 な る DNAが、特異的にハイブリッドを形成する DNAを言う。
[0080] ここで、「ストリンジェントな条件」とは、例えば、コロニーあるいはプラーク由来のポリ ヌクレオチドを固定化したフィルターを用いて、 0. 7〜1. 0Mの NaCl存在下、 65°C でノ、イブリダィゼーシヨンを行った後、 2倍濃度の SSC溶液(1倍濃度の SSC溶液の 組成は、 150mM塩化ナトリウム、 15mMクェン酸ナトリウムよりなる)を用い、 65°Cの 条件下でフィルターを洗浄する条件をあげることができる。好ましくは、上記同様にハ イブリダィゼーシヨンを行った後、 65°Cで 0. 5倍濃度の SSC溶液で洗浄を行う条件 であり、より好ましくは上記と同様にノ、イブリダィゼーシヨンを行った後、 65°Cで 0. 2 倍濃度の SSC溶液で洗浄する条件であり、更に好ましくは上記と同様にハイブリダィ ゼーシヨンを行った後、 65°Cで 0. 1倍濃度の SSC溶液で洗浄する条件である。
[0081] 本発明のベクターとしては、上記 DNAを宿主細胞内に導入でき、宿主細胞内で該 DNAがコードする遺伝子を発現できるものであれば!/、ずれもが用いられ得る。このよ うなベクター DNAとしては、例えば、プラスミドベクター、ファージベクター、コスミドべ クタ一などが挙げられる。また、他の宿主株との間での遺伝子交換が可能なシャトル ベクターも使用され得る。
[0082] このようなベクターは、作動可能に連結されたプロモーター(例えば、 lacUV5プロ モーター、 trpプロモーター、 trcプロモーター、 tacプロモーター、 lppプロモーター、 tufBプロモーター、 recAプロモーター、 pLプロモーター)等の制御因子を含み、本 発明の DNAと作動可能に連結された発現単位を含むベクターとして好適に用いら れ得る。例えば、 pUCNT(WO94Z03613)等が好適に用いられ得る。
[0083] 本明細書で用いる用語「制御因子」は、機能的プロモーター及び、任意の関連する 転写要素(例えばェンハンサー、 CCAATボックス、 TATAボックス、 SPI部位など) を有する塩基配列をいう。
[0084] 本明細書で用いる用語「作動可能に連結」は、遺伝子の発現を調節するプロモー ター、ェンノヽンサ一等の種々の調節エレメントと遺伝子力 宿主細胞中で作動し得る 状態で連結されることをいう。制御因子のタイプ及び種類力 宿主に応じて変わり得 ることは、当業者に周知の事項である。
[0085] 本発明で使用しうる宿主細胞としては、細菌、酵母、糸状菌等の微生物細胞、植物 細胞、動物細胞などが挙げられ、微生物細胞が好ましぐ大腸菌が特に好ましい。本 発明の DNAを含むベクターは公知の方法により宿主細胞に導入し得る。宿主細胞 として大腸菌を用いた場合、例えば塩ィ匕カルシウム法により、当該ベクターを導入す ることができる。本発明の DNAを含むベクターを導入された形質転換体としては、後 で詳述する E. coli HBlOl (pNTMTA) (FERM P— 20238)等を挙げることが できる。
[0086] 次に、本発明のアミノ基転移酵素又は当該酵素の生産能を持つ微生物を用いて光 学活性アミノ化合物を製造する方法について説明する。本発明のアミノ基転移酵素 の生産能を持つ微生物としては、前記シユードモナス ·フルォレツセンス (Pseudomon as fluorescens) KNK08— 18 (FERM BP— 10599)、及び、本発明の DNAを含 むベクターを導入された形質転換体が挙げられる。
[0087] 本発明の光学活性アミノ化合物の製造方法としては、目的とするアミノ化合物と同じ 骨格のケトンィ匕合物に、アミノ基供与体力も立体選択的にアミノ基を転移させ、生成 する光学活性アミノ化合物を採取する方法 (以下、製造方法 Iとする)と、ァミノ化合物 のェナンチォマー混合物のうち、一方のェナンチォマーのアミノ基を選択的にアミノ 基受容体に転移させ、残存するヱナンチォマー (光学活性アミノ化合物)を採取する 方法 (以下、製造方法 IIという)が挙げられる。
[0088] まず、製造方法 Iについて説明する。
本製造方法によれば、一般式(1):
[0089] [化 15]
Figure imgf000018_0001
[0090] (式中、 P及び Qは置換されていてもよい、アルキル基、分岐鎖アルキル基、ァリール 基、ヘテロァリール基、ァリールォキシ基、ヘテロァリールォキシ基、アルコキシ基、ァ ルコキシカルボ-ル基、ァルケ-ル基、アルキ-ル基、シクロアルキル基、ァラルキル 基、ヘテロァラルキル基を示し、 Pと Qの両者が互いに結合して環を形成していてもよ い。但し、 Pは構造またはキラリティーの点で Qと異なる。)で表されるカルボニル化合 物に、アミノ基供与体の存在下、前記酵素あるいは該酵素の産生能を持つ微生物の 培養物を作用させることにより、一般式 (2):
[0091] [化 16]
Figure imgf000018_0002
[0092] (式中、 P及び Qは前記式(1)と同じ。)で表される光学活性アミノ化合物を製造する ことができる。
[0093] 例えば、下記一般式(3):
[0094] [化 17]
Figure imgf000019_0001
[0095] (式中、 qは 0〜7の整数を示し、 rは 0〜2の整数を示し、 Rは置換されていてもよい、 炭素数 6〜14のァリール基、炭素数 4〜14のへテロアリール基、炭素数 6〜14のァリ ールォキシ基、炭素数 4〜 14のへテロアリールォキシ基、炭素数 1〜5のアルコキシ 基、炭素数 2〜5のアルコキシカルボニル基、炭素数 3〜5の分岐鎖アルキル基、炭 素数 2〜5のァルケ-ル基、炭素数 2〜5のアルキ-ル基、炭素数 5〜7のシクロアル キル基、メチル基又はカルボキシル基を示し、 Xは水素原子又は置換されていてもよ いメチル基を示す。但し、 R力 Sメチル基の場合には q> =rである。)で表されるカルボ ニル化合物に、アミノ基供与体の存在下、前記酵素あるいは該酵素の産生能を持つ 微生物の培養物を作用させることにより、一般式 (4):
[0096] [化 18]
Figure imgf000019_0002
[0097] (式中、 q、 r、 Rおよび Xは、前記式(3)と同じ。)で表される光学活性アミノ化合物を 製造することができる。
[0098] 前記式(3)及び(4)にお!/、て、 qは 0〜7の整数を示し、 rは 0〜2の整数を示す。 R は置換されていてもよい、炭素数 6〜14のァリール基、炭素数 4〜14のへテロアリー ル基、炭素数 6〜 14のァリールォキシ基、炭素数 4〜 14のへテロアリールォキシ基、 炭素数 1〜5のアルコキシ基、炭素数 2〜5のアルコキシカルボニル基、炭素数 3〜5 の分岐鎖アルキル基、炭素数 2〜5のァルケ-ル基、炭素数 2〜5のアルキ-ル基、 炭素数 5〜7のシクロアルキル基、メチル基又はカルボキシル基を示し、 Xは水素原 子又は置換されていてもよいメチル基を示す。但し、 R力 Sメチル基の場合には q> =r である。
[0099] 炭素数 6〜 14のァリール基としては、フエ-ル基、ナフチル基等が挙げられる。炭 素数 4〜14のへテロアリール基としては、ピリジル基、チェニル基、ォキサジァゾリル 基、イミダゾリル基、チアゾリル基、フリル基、ピロリル基等が挙げられる。炭素数 6〜1 4のァリールォキシ基としては、フエノキシ基、ナフトキシ基等が挙げられる。炭素数 1 〜4のへテロァリールォキシ基としては、ピリジルォキシ基、チェ-ルォキシ基、ォキ サジァゾリルォキシ基、イミダゾリルォキシ基、チアゾリルォキシ基、フリルォキシ基、 ピロリルォキシ基等が挙げられる。炭素数 1〜5のアルコキシ基としては、メトキシ基、 エトキシ基、 tert—ブトキシ基等が挙げられる。炭素数 2〜5のアルコキシカルボ-ル 基としては、メトキシカルボ-ル基、エトキシカルボ-ル基、 tert—ブトキシカルボ-ル 基等が挙げられる。炭素数 3〜5の分岐アルキル基としてはイソプロピル基、 sec—ブ チル基、 tert—ブチル基等が挙げられる。炭素数 2〜5のアルケニル基としては、ビ -ル基、ァリル基等が挙げられる。炭素数 2〜5のアルキ-ル基としては、アセチレン 基等が挙げられる。炭素数 5〜7のシクロアルキル基としては、シクロペンチル基、シ クロへキシル基、シクロへプチル基等が挙げられる。なお、アルコキシカルボニル基 の炭素数はカルボ-ル炭素を含めた数である。
[0100] これらの基は更に置換されていてもよぐその置換基としては、ハロゲン原子、水酸 基、メトキシ基、エトキシ基ゃメチレンジォキシ等の炭素数 1〜4のアルコキシ基等が 挙げられる。
[0101] 前記式(3)で表わされるケトン化合物の中では、 Xが水素原子かつ rが 1〜2である 化合物が好ましい。具体的には、例えば、 2—ブタノン、 2—ペンタノン、 2—へキサノ ン、 2—へプタノン、 2—ォクタノン、 3—へキサノン、 3—へプタノン、 3—ォクタノン、メ トキシプロパノン、 1ーメトキシー2—ブタノン、 1ーメトキシー3—ブタノン、ァセトフエノ ン、 2—クロロアセトフエノン、 3—クロロアセトフエノン、 4—クロロアセトフエノン、 2—ヒ ドロキシァセトフエノン、 3 ヒドロキシァセトフエノン、 4ーヒドロキシァセトフエノン、 2— メトキシァセトフエノン、 3—メトキシァセトフエノン、 4ーメトキシァセトフエノン、 2, 4— ジメトキシァセトフエノン、 3, 4 ジメトキシァセトフエノン、 2 トリフノレオロメチノレアセト フエノン、 3—トリフルォロメチルァセトフエノン、 4—トリフルォロメチルァセトフエノン、 フエ-ルアセトン、 2 クロ口フエ-ルアセトン、 3 クロ口フエ-ルアセトン、 4 クロ口 フエ-ルアセトン、 2 ヒドロキシフエ-ルアセトン、 3 ヒドロキシフエ-ルアセトン、 4 ーヒドロキシフエ-ルアセトン、 2—メトキシフエ-ルアセトン、 3—メトキシフエ-ルァセ トン、 4—メトキシフエ二ルアセトン、 2, 4 ジメトキシフエニルアセトン、 3, 4 ジメトキ シフエニルアセトン、 2 トリフルォロメチルフエニルアセトン、 3 トリフルォロメチルフ ェ-ルアセトン、 4 トリフルォロメチルフエ-ルアセトン、ベンジルアセトン、 2 クロ口 ベンジルアセトン、 3 クロ口べンジルアセトン、 4 クロ口べンジルアセトン、 2 ヒドロ キシベンジルアセトン、 3—ヒドロキシベンジルアセトン、 4ーヒドロキシベンジルァセト ン、 2—メトキシベンジルアセトン、 3—メトキシベンジルアセトン、 4ーメトキシベンジノレ アセトン、 2, 4ージメトキシベンジルアセトン、 3, 4 ジメトキシベンジルアセトン、 2— トリフルォロメチルベンジルアセトン、 3—トリフルォロメチルベンジルアセトン、 4 トリ フルォロメチルベンジルアセトン、 1 ナフチルアセトン、 2—ナフチルアセトン、 2— ァセチルビリジン、 3 ァセチルビリジン、 4 ァセチルビリジン、ァセチルビラジン、 2 ァセチルフラン、 3 ァセチルフラン、 2 ァセチルチオフェン、 3 ァセチルチオ フェン、 2—ァセチルチアゾール、ベンゾィル酢酸ェチル等が挙げられる。
[0102] また、本製造方法 Iでは、一般式 (7):
[0103] [化 19]
Figure imgf000021_0001
[0104] で表されるカルボ-ルイ匕合物に、アミノ基供与体の存在下、前記酵素あるいは該酵 素の産生能を持つ微生物の培養物を作用させることにより、一般式 (8): [0105] [化 20]
Figure imgf000022_0001
[0106] で表される光学活性アミノ化合物を製造できる。
[0107] 前記式(7)及び(8)にお!/、て、 mは 0〜3の整数を示し、 nは 2〜4の整数を示し(た だし、 n >mである)、環 Aは置換されていても良いベンゼン環を示す。ベンゼン環の 置換基としては、ハロゲン原子、水酸基、メトキシ基、エトキシ基ゃメチレンジォキシ基 等の炭素数 1〜4のアルコキシ基等が挙げられる。
[0108] 前記式(7)で表されるケトンィ匕合物の中では、 mが 1かつ nが 2である化合物が好ま しい。具体的には、 1—インダノン、 4—メトキシ一 1—インダノン、 5—メトキシ一 1—ィ ンダノン、 6—メトキシ 1 インダノン、 7—メトキシ 1 インダノン、 2—テトラロン、 5 ーメトキシー 2—テトラロン、 6—メトキシー 2—テトラロン、 7—メトキシー 2—テトラロン 、 8—メトキシー2—テトラロン、 5 ヒドロキシー2—テトラロン、 6 ヒドロキシー2—テト ラロン、 7 ヒドロキシー 2—テトラロン、 8 ヒドロキシー 2—テトラロン、 1ーテトラロン、 5—メトキシー 1ーテトラロン、 6—メトキシー 1ーテトラロン、 7—メトキシー 1ーテトラロン 、 8—メトキシ一 1—テトラロン、等が挙げられ、さらに好ましくは、 1—テトラロン、 2—テ トラロン、 5ーメトキシー 2—テトラロン、 6—メトキシー 2—テトラロン、 7—メトキシー 2— テトラロン、 8—メトキシ一 2—テトラロンが挙げられる。もっとも好ましくは、 7—メトキシ 2—テトラロンである。
[0109] 更に、本製造方法 Iでは、一般式(11) :
[0110] [化 21]
Figure imgf000023_0001
[0111] で表されるカルボ-ルイ匕合物に、アミノ基供与体の存在下、前記酵素あるいは該酵 素の産生能を持つ前記微生物の培養物を作用させることことにより、一般式(12): [0112] [化 22]
Figure imgf000023_0002
[0113] で表される光学活性アミノ化合物を製造できる。
[0114] 前記式(11)及び(12)において、 jおよび kはそれぞれ 1〜3の整数を示し (但し、 k
> =jである)、 Rは、水素原子、炭素数 6〜14のァリール基、炭素数 4〜14のへテロ ァリール基、炭素数 1〜6のアルキル基、炭素数 1〜6のアルコキシ基、炭素数 2〜15 のァシル基、炭素数 1〜6のアルコキシカルボ-ル基、炭素数 7〜 15のァラルキル基 、炭素数 8〜 16のァラルキルォキシカルボ-ル基、又は、炭素数 1〜6のアルキル基 もしくは炭素数 6〜 14のァリール基で置換されたスルホ二ル基を示す。
[0115] 炭素数 6〜 14のァリール基としては、フエ-ル基、ナフチル基等が挙げられる。炭 素数 4〜14のへテロアリール基としては、ピリジル基、チェニル基、ォキサジァゾリル 基、イミダゾリル基、チアゾリル基、フリル基、ピロリル基等が挙げられる。炭素数 1〜6 のアルキル基としては、メチル基、ェチル基、 n—プロピル基、イソプロピル基、 n—ブ チル基、 sec ブチル基、 tert ブチル基等が挙げられる。炭素数 1〜6のアルコキ シ基としては、メトキシ基、エトキシ基、 tert ブトキシ基等が挙げられる。炭素数 2〜 15のァシル基としては、ァセチル基、ビバロイル基、ベンゾィル基等が挙げられる。 炭素数 1〜6のアルコキシカルボ-ル基としては、メトキシカルボ-ル基、エトキシカル ボ-ル基、 tert—ブトキシカルボ-ル等が挙げられる。炭素数 7〜 15のァラルキル基 としてはベンジル基等が挙げられる。炭素数 8〜16のァラキルォキシ基としては、ベ ンジルォキシカルボ-ル基等が挙げられる。炭素数 1〜6のアルキル基もしくは炭素 数 6〜 14のァリール基で置換されたスルホニル基としては、メシル基、トシル基等が 挙げられる。なお、上記ァシル基、アルキルォキシ基およびァラルキルォキシ基にお ける炭素数は、カルボ-ル炭素を含めた数である。
[0116] 前記式(11)で表されるケトンィ匕合物の中では、 jが 1かつ kが 2である化合物が好ま しい。また、 Rが水素原子、フエ-ル基、ベンジル基、ベンゾィル基、ベンジルォキシ
5
カルボ-ル基、 tert ブトキシカルボ-ル基、メシル基、又はトシル基である化合物 が好ましい。具体的には、 1—ベンジル一 3 ピロリジノン、 1— tert—ブトキシカルボ 二ルー 3 ピロリジノン、 1 トシルー 3 ピロリジノン、 1ーメシルー 3 ピロリジノン、 1 一べンジルォキシカルボ-ルー 3—ピロリジノン、 3—ピロリジノン等が挙げられ、更に 好ましくは、 1 ベンジル 3 ピロリジノンである。
[0117] アミノ基供与体としては、一般式(15):
[0118] [化 23]
Figure imgf000024_0001
(式中、 Rおよび Rはそれぞれ独立して、水素原子、置換されていてもよい、カルボ
6 7
キシル基、炭素数 1〜10のアルキル基、炭素数 5〜7のシクロアルキル基、炭素数 7 〜 15のァラルキル基又は炭素数 6〜 14のァリール基を示す。)で示されるァミン化合 物が用いられうる。
[0120] 炭素数 1〜10のアルキル基としては、メチル基、ェチル基、 n—プロピル基、イソプ 口ピル基、 n—ブチル基、 sec—ブチル基、 tert—ブチル基等が挙げられる。炭素数 5〜7のシクロアルキル基としては、シクロペンチル基、シクロへキシル基、シクロヘプ チル基等が挙げられる。 7〜15のァラルキル基としてはベンジル基等が挙げられる。 炭素数 6〜 14のァリール基としては、フエ-ル基、ナフチル基等が挙げられる。
[0121] 前記式(15)で表されるァミン化合物のなかでは、 Rは、炭素数 1〜10の置換もしく
6
は無置換の直鎖あるいは分岐鎖アルキル基又は炭素数 6〜: LOの置換もしくは無置 換のァリール基が好ましぐ炭素数 1〜5の置換もしくは無置換のアルキル基又はフエ -ル基がより好ましい。前記 Rとしては、水素原子、カルボキシル基、あるいは炭素
7
数 1〜2の置換もしくは無置換のアルキル基が好ましぐ水素原子又はメチル基がより 好ましい。
[0122] 前記式(15)で表わされる化合物の具体例としては、 α—フ ネチルァミン、 2—ブ チルァミン、 2—ペンチルァミン、 2—へプチルァミン、 2—ォクチルァミン、ァラニン、 グリシン、 η—プロピルァミン、 η—ブチルァミン、 η—アミルァミン、イソプロピルァミン、 ベンジルァミン、 j8—フヱネチルァミンおよびそれらの光学活性体が挙げられる。な 力でも、 α—フエネチルァミンが好ましぐ(S)— α—フエネチルァミンがより好ましい
[0123] 製造方法 Iにおいては、前記式(1)、(3)、(7)又は(11)で表されるケトンィ匕合物に 、前記式(15)で表されるアミノ基供与体の存在下、前記本発明の酵素又は当該酵 素の生成能を有する微生物の培養物を作用させる。ここで、「培養物」とは、菌体を含 む培養液、培養菌体、又はその処理物を意味する。ここで「その処理物」とは、例え ば、無細胞抽出液、凍結乾燥菌体、アセトン乾燥菌体、又はそれら菌体の磨砕物等 を意味する。さらにこれら酵素及び培養物は、公知の手段により固定ィ匕して、固定ィ匕 酵素あるいは固定ィ匕菌体の形態として用いることもできる。固定ィ匕は、当業者に周知 の方法 (例えば架橋法、物理的吸着法、包括法等)で行うことができる。
[0124] 反応に用いる基質の濃度としては、ケトンィ匕合物は、反応液組成中、 0. 1〜20重 量0 /0、好ましくは 1〜: LO重量%であり、また、アミノ基供与体は、キラルァミンの場合 は、ケ卜ンィ匕合物に対し、 80〜1200モノレ0 /0、好ましくは 100〜600モノレ0 /0の濃度に なるように用いることが好ましい。なお、前記アミノ基供与体としてラセミ体のアミン化 合物を用いる場合は、一方のェナンチォマーが上記の濃度となるように使用すること ちでさる。
[0125] 本発明の酵素を作用させる際の pHは、酵素の至適 pHの観点から、下限は、好ま しくは pH5. 0以上であり、より好ましくは pH6. 0以上であり、上限は、好ましくは pHl 0. 0以下であり、より好ましくは pH9. 0以下である。
[0126] 本発明の酵素を作用させる際の温度は、酵素の至適温度および熱安定性の観点 から、好ましくは 25°C以上であり、より好ましくは 30°C以上であり、好ましくは 60°C以 下であり、より好ましくは 50°C以下である。
[0127] 反応溶媒は、通常、イオン交換水、緩衝液等の水性媒体を使用するが、有機溶媒 を含んだ系でも反応を行なうことができる。有機溶媒としては、例えば、メタノール、ェ タノール、プロパノール、イソプロパノール、ブタノール等のアルコール系溶媒、ペン タン、へキサン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン等の芳香族炭化水 素系溶媒、塩化メチレン、クロ口ホルム等のハロゲンィ匕炭化水素系溶媒、ジェチルェ 一テル、ジイソプロピルエーテル等のエーテル系溶媒、酢酸ェチル、酢酸ブチル等 のエステル系溶媒、アセトン、メチルェチルケトン等のケトン系溶媒、その他、ァセトニ トリル等を適宜使用できる。
[0128] これらの有機溶媒を水への溶解度以上に加えて 2相系で反応を行なうこともできる 。有機溶媒を反応系に共存させることで、選択率、変換率、収率などが向上する場合 も多い。
[0129] 上記の反応により、一般式 (2)、(4)、(8)、(12)で表される光学活性アミノ化合物 が生成する。生成した光学活性アミノ化合物は、反応混合液から抽出、蒸留、再結晶 、カラム分離など公知の方法によって単離することができる。
[0130] 例えば、 pHを酸性に調節後、ジェチルエーテル、ジイソプロピルエーテル等のェ 一テル類;酢酸ェチル、酢酸ブチル等のエステル類;へキサン、オクタン、ベンゼン等 の炭化水素類;塩化メチレン等のハロゲンィ匕炭化水素等一般的な溶媒により、生成 した光学活性アミノ化合物を水相に残したまま、未反応の基質およびアミノ基転移反 応により生じたアミノ基供与体に対応するケトンィ匕合物を選択的に除くことができる。 生成した光学活性アミノ化合物および未反応のアミノ基供与体は、例えば、 pHを塩 基性に調節し、同様に一般的な有機溶媒で抽出することができる。生成した光学活 性ァミノ化合物と未反応のアミノ基供与体は、例えば、蒸留により分離することができ る。
[0131] 次に、本発明の製造方法 IIについて説明する。本方法においては、一般式 (5): [0132] [化 24]
Figure imgf000027_0001
[0133] で表わされるァミノ化合物のェナンチォマー混合物に、アミノ基受容体の存在下、前 記酵素あるいは該酵素の産生能を持つ微生物の培養物を作用させることにより、一 般式 (6) :
[0134] [化 25]
Figure imgf000027_0002
[0135] で表わされる光学活性アミノ化合物を得ることができる。
[0136] 前記式(5)及び(6)における q、 r、 Rおよび Xは、前記式(3)及び (4)における q、 r 、 R及び Xと同じである。
[0137] 前記式(5)で表わされるァミノ化合物の中では、 Xが水素原子かつ rが 1〜2である 化合物が好ましい。具体的には、例えば、 2—ブチルァミン、 2—ペンチルァミン、 2— へキシルァミン、 2—ヘプチノレアミン、 2—才クチノレァミン、 3—へキシノレアミン、 3—へ プチルァミン、 3—ォクチルァミン、メトキシプロピルァミン、 1ーメトキシー 2—ブチルァ ミン、 1—メトキシ一 3—ブチルァミン、 a—フエネチルァミン、 2—クロ口一 a—フエネ チルァミン、 3 クロ口一 α—フエネチルァミン、 4 クロ口一 α—フエネチルァミン、 2 —ヒドロキシ一 α—フエネチルァミン、 3—ヒドロキシ一 α—フエネチルァミン、 4—ヒド 口キシ一 at—フエネチルァミン、 2—メトキシ一 at—フエネチルァミン、 3—メトキシ一 a—フエネチルァミン、 4—メトキシ一 at—フエネチルァミン、 2, 4 ジメトキシ一 at - フエネチルァミン、 3, 4 ジメトキシ— at—フエネチルァミン、 2 トリフルォロメチル— a—フエネチルァミン、 3—トリフルォロメチル— α—フエネチルァミン、 4 トリフルォ ロメチルー a—フエネチルァミン、 1—フエ-ルー 2—ァミノプロパン、 1— (2—クロ口 フエニル) 2 ァミノプロパン、 1— (3 クロ口フエ二ノレ) 2 ァミノプロパン、 1— ( 4 クロ口フエ-ル) 2 ァミノプロパン、 1— (2 ヒドロキシフエ-ル) 2 アミノプ 口パン、 1— (3 ヒドロキシフエ-ル)一 2 ァミノプロパン、 1— (4 ヒドロキシフエ- ル) 2 ァミノプロパン、 1— (2—メトキシフエ-ル) 2 ァミノプロパン、 1— (3—メ トキシフエ-ル) 2 ァミノプロパン、 1— (4—メトキシフエ-ル) 2 ァミノプロパン 、 1— (2, 4 ジメトキシフエ-ル)一 2 ァミノプロパン、 1— (3, 4 ジメトキシフエ- ル) 2—ァミノプロパン、 1— (2—トリフルォロメチルフエ-ル) 2—ァミノプロパン、 1— (3—トリフルォロメチルフエ-ル) 2—ァミノプロパン、 1— (4—トリフルォロメチ ルフエ-ル)一 2 ァミノプロパン、 1—フエ-ルー 3 ブチルァミン、 1— (2 クロロフ ェニル) 3—ブチルァミン、 1— (3—クロ口フエニル) 3—ブチルァミン、 1— (4—ク ロロフエ-ル) 3 ブチルァミン、 1— (2—ヒドロキシフエ-ル) 3 ブチルァミン、 1— (3—ヒドロキシフエ-ル) 3—ブチルァミン、 1— (4—ヒドロキシフエ-ル) 3— ブチルァミン、 1— (2—メトキシフエ-ル) 3 ブチルァミン、 1— (3—メトキシフエ- ル)一 3 ブチルァミン、 1— (4—メトキシフエ-ル)一 3 ブチルァミン、 1— (2, 3— ジメトキシフエ-ル)— 3 ブチルァミン、 1— (2, 4 ジメトキシフエ-ル)— 3 ブチ ルァミン、 1— (3, 4 ジメトキシフエ-ル)— 3 ブチルァミン、 1— (2 トリフルォロメ チルフエ-ル) 3 ブチルァミン、 1一(3 トリフルォロメチルフエ-ル) 3 ブチ ルァミン、 1— (4 トリフルォロメチルフエ-ル)— 3 ブチルァミン、 1— ( 1—ナフチ ル) 2—ァミノプロパン、 1— (2—ナフチル) 2—ァミノプロパン、 1— (2—ピリジル )ェチルァミン、 1— (3—ピリジル)ェチルァミン、 1— (4—ピリジル)ェチルァミン、 1 —ビラジルェチルァミン、 1— (2 フリル)ェチルァミン、 1— (3 フリル)ェチルァミン 、 1一(2 チェ-ル)ェチルァミン、 1一(3 チェ-ル)ェチルァミン、 1ー(2 チア ゾィル)ェチルァミン、 /3 フエ-ルァラニン等が挙げられる。
[0138] また、製造方法 IIでは、一般式 (9):
[0139] [化 26]
Figure imgf000029_0001
[0140] で表されるァミノ化合物のェナンチォマー混合物に、アミノ基受容体の存在下、前記 酵素あるいは前記微生物の培養物を作用させることにより、一般式(10):
[0141] [化 27]
Figure imgf000029_0002
[0142] で表わされる光学活性アミノ化合物を得ることができる。
[0143] 前記式(9)および(10)における m、 n、環 Aのそれぞれは、前記式(7)および(8) における m、 n、環 Aと同じである。
[0144] 前記式(9)で表されるァミノ化合物としては、 mが 1かつ nが 2である化合物が好まし い。具体的には、 1—ァミノインダン、 4—メトキシ一 1—ァミノインダン、 5—メトキシ一 1 ーァミノインダン、 6—メトキシ 1ーァミノインダン、 7—メトキシ 1ーァミノインダン、 2 アミノテトラリン、 5—メトキシー 2 アミノテトラリン、 6—メトキシー2 アミノテトラリ ン、 7—メトキシ一 2 アミノテトラリン、 8—メトキシ一 2 アミノテトラリン、 5—ヒドロキシ 2 アミノテトラリン、 6 ヒドロキシー2 アミノテトラリン、 7 ヒドロキシー2 ァミノ テトラリン、 8 ヒドロキシー2 アミノテトラリン、 1 アミノテトラリン、 5—メトキシー1 アミノテトラリン、 6—メトキシ 1 アミノテトラリン、 7—メトキシ 1 アミノテトラリン、 8—メトキシ一 1—アミノテトラリン、等が挙げられ、さらに好ましくは、 1—アミノテトラリ ン、 2—アミノテトラリン、 5—メトキシ一 2—アミノテトラリン、 6—メトキシ一 2—アミノテト ラリン、 7—メトキシ一 2—アミノテトラリン、 8—メトキシ一 2—アミノテトラリンが挙げられ る。もっとも好ましくは、 7—メトキシ一 2—テトラリンである。
[0145] さらに、本製造方法 IIでは、一般式(13):
[0146] [化 28]
Figure imgf000030_0001
[0147] で表されるァミノ化合物のェナンチォマー混合物に、アミノ基受容体の存在下、前記 酵素あるいは該酵素の産生能を持つ微生物の培養物を作用させることにより、一般 式(13) :
[0148] [化 29]
Figure imgf000030_0002
[0149] で表される光学活性アミノ化合物を得ること得ることができる。
[0150] 前記式(13)および(14)における k、および Rのそれぞれは、前記式(11)およ び(12)における kおよび Rと同じである。 [0151] 前記式(13)で表されるァミノ化合物としては、 jが 1かつ kが 2である化合物が好まし い。また、 Rは水素原子、フエ-ル基、ベンジル基、ベンゾィル基、ベンジルォキシカ
5
ルボニル基、 tert ブトキシカルボ-ル基、メシル基、又はトシル基である化合物が 好ましい。具体的には、 1—ベンジル一 3 ァミノピロリジン、 1— tert—ブトキシカル ボ-ル 3 ァミノピロリジン、 1—トシル一 3 ァミノピロリジン、 1—メシル 3 ァミノ ピロリジン、 1一べンジルォキシカルボ-ルー 3 ァミノピロリジン、 3 ァミノピロリジン が挙げられ、好ましくは、 1—ベンジル一 3 ァミノピロリジンである。
[0152] 本方法においては、ケトンィ匕合物をァミノ基受容体として用いる。当該ケトンィ匕合物 としては、アミノ基受容体としての活性があれば 、かなるケトンィ匕合物であってもよ!/ヽ 力 好ましくは、ピルビン酸あるいはダリオキシル酸である。
[0153] 製造方法 IIにおいては、前記式(5)、 (9)又は(13)で表わされるァミノ化合物のェ ナンチォマー混合物に、上記アミノ基受容体の存在下、前記本発明の酵素又は当 該酵素の生成能を有する形質転換体の培養物を作用させる。
[0154] ここで、前記式(5)、 (9)又は(13)で表されるァミノ化合物のェナンチォマー混合 物とは、前記式 (6)、 (10)又は(14)で表されるェナンチォマーとその鏡像体の混合 物を表す。通常は、ラセミ体が安価で入手しやすぐラセミ体を用いることが好ましい。 ただし、ラセミ体に限定されず、例えば、前記式 (6)、 (10)又は(14)で表されるェナ ンチォマーがその鏡像体よりも若干過剰に含まれる混合物を用いて、製造方法 IIによ り、その光学純度を高めることも好ましく行い得る。
[0155] また、「培養物」の意味するところは、前述の製造方法 Iの場合と同様である。
[0156] 反応における、ァミノ化合物(5)、 (9)又は(13)の濃度は、反応液組成中、 0. 1〜 20重量%、好ましくは 1〜: LO重量%である。また、アミノ基受容体は、ァミノ化合物に 対し、 30〜: LOOモル0 /0、好ましくは 50〜60モル0 /0の濃度で用いることが好ましい。
[0157] 反応 pH、反応温度、反応溶媒は製造方法 Iと同様の条件が用いられ得る。
[0158] 上記の反応により、前記式 (6)、 (10)、又は(14)で表される光学活性アミノ化合物 が生成する。生成した光学活性アミノ化合物は、製造方法 Iと同様の方法で反応混合 液から単離することができる。
[0159] これらの製造方法により製造された光学活性アミノ化合物の収率および純度は、例 えば、反応液を逆相カラム(コスモシル 5C18— AR、ナカライテスタ等)を用い、 25% ァセトニトリル等を移動相として分離し、 210nmの吸収を対照と比較することにより定 量分析を行なうことができる。また、光学純度を測定する方法としては、生成したアミ ノ化合物を N カルボキシ L ロイシンアンヒドライド等と結合させてジァステレオマ 一を形成させ、これを逆相カラム (コスモシル 5C18— AR、ナカライテスタ等)を用い た高速液体クロマトグラフィーにより測定することができる。
実施例
[0160] 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に なんら限定されるものではな 、。
[0161]
Figure imgf000032_0001
土壌より分離したシユードモナス'フルォレツセンス KNK08- 18 (FERM BP—
10599)を 500mL容坂ロフラスコ中 50mLの 317培地(組成:587 KH PO
2 4、 5g
/L K HPO、 0. 16g/L MgSO · 7Η 0、 0. 018g/L FeSO - 7H 0、 0. 01
2 4 4 2 4 2
2g/L ZnSO -H 0、 0. 002g/L MnSO - 7H 0、 0. OOlg/L CuSO - 7H
4 2 4 2 4 2
O、0. 02g/L NaCU 20g/L グリセリン、 10gZL イーストエキス(日本製薬社 製)、 500mg/L (S)— 7—メトキシ一 2 アミノテトラリン (pH7. 2) )に植菌し、 30 °Cで 1日培養し、前培養液を得た。次に、 5L容ミ-ジャー中 3. 0Lの培地 (前記と同 組成)に、得られた前培養液を植菌し、通気 0. 6wm、攪拌 400rpmで温度 30°Cで 28時間培養した。ついで、遠心分離により培養液から菌体を集め、 0. 01% 2—メ ルカプトエタノールおよび、 0. 02mM ピリドキサルリン酸を含む 0. 01M リン酸カリ ゥム緩衝液 (PH8. 0)に懸濁した。得られた懸濁液を超音波破砕により破砕した。次 に、該破砕物中の固形物を遠心分離により除去し、無細胞抽出液を調製した。
[0162] 得られた無細胞抽出液に硫酸プロタミンを添加し、核酸を除去した。得られた硫酸 プロタミン処理液に 30%飽和となるように硫酸アンモ-ゥムを添カ卩し、これを溶解させ 、ついで生じた沈殿を遠心分離により除去した。この上清に 60%飽和となるように硫 酸アンモ-ゥムを添加し、これを溶解させて、ついで遠心分離により生じた沈殿を回 収した。
[0163] この沈殿を 0. 01%2—メルカプトエタノール、 20mM ピリドキサルリン酸、 0. lm M フエ-ルメチルスルホ -ルフルオリド(PMSF)を含む lOmM リン酸緩衝液(ρΗ 8. 0)で溶解させ、さらに同緩衝液に対して透析を行なった。これを、同じ緩衝液で 平衡化させた DEAE—TOYOPEARL 650M (東ソ一株式会社製)カラム(300m L)に供し、活性画分を吸着させた。同一緩衝液でカラムを洗浄した後、塩化ナトリウ ムのリニアグラジェント(OM力も 0. 3Mまで)により活性画分を溶出させた。
[0164] 溶出させた活性画分^^めて、これに、終濃度 1. 2Mとなるように硫酸アンモ-ゥ ムを溶解し、 1. 2M 硫酸アンモ-ゥム、 0. 01% 2—メルカプトエタノール、 20mM ピリドキサルリン酸、 0. ImM PMSFを含む lOmM リン酸緩衝液(pH8. 0)であ らかじめ平衡化した Phenyl—TOYOPEARL 650M (東ソ一株式会社製)カラム( 120mL)に供し、活性画分を吸着させた。同一緩衝液でカラムを洗浄した後、硫酸 アンモ-ゥムのリニアグラジェント(1. 2Mから 0Mまで)により活性画分を溶出させた 。活性画分^^め、 0. 01% 2—メルカプトエタノール、 20mMピリドキサルリン酸、 0 . ImM PMSFを含む lOmM リン酸緩衝液(pH8. 0)に対して透析を行なった。
[0165] 上記で得られた粗酵素液を 0. 01% 2—メルカプトエタノール、 20mM ピリドキサ ルリン酸、 0. ImM PMSFを含む lOmMリン酸緩衝液(pH8. 0)であらかじめ平衡 化させた Q— sepharose 16Z10HPカラム(アマシャムバイオサイエンス株式会社 製)に供し、活性画分を吸着させた。同一緩衝液でカラムを洗浄した後、塩化ナトリウ ムのリニアグラジェント(0M力も 0. 7Mまで)により活性画分を溶出させた。
[0166] 溶出させた活性画分^^めて、これに、終濃度 1. 0Mとなるように硫酸アンモ-ゥ ムを溶解し、 1. 0M 硫酸アンモ-ゥム、 0. 01% 2—メルカプトエタノール、 20mM ピリドキサルリン酸、 0. ImM PMSFを含む lOmM リン酸緩衝液(pH8. 0)であ らかじめ平衡化した Butyl— TOYOPEARL 650S (東ソ一株式会社製)カラム(25 mL)に供し、活性画分を吸着させた。同一緩衝液でカラムを洗浄した後、硫酸アン モ-ゥムのリニアグラジェント(1. 0M力も 0Mまで)により活性画分を溶出させた。得 られた活性粗酵素液を限外ろ過にて濃縮した。
[0167] 濃縮した粗酵素液を、 0. 01% 2—メルカプトエタノール、 20mM ピリドキサルリ ン酸、 0. ImM PMSF, 0. 15M 塩化ナトリウムを含む lOmM リン酸緩衝液(ρΗ 8. 0)であらかじめ平衡化させた Hi LOAD 16/60 Superdex200pZgカラム( アマシャムバイオサイエンス株式会社製)に供し、電気泳動的に単一な精製酵素標 品を得た。以後、この酵素を MTAと称する。
[0168] (実施例 2) 精製酵素の理化学的件 1
実施例 1で得た MTA精製酵素について、その理ィ匕学的性質について調べた。 (1)作用:
タンパク質濃度を 2mgZmLに調製した精製酵素液 0. lmLを、下記組成を有する 基質溶液 0. 9mLに添カ卩し、 30°Cで反応させた。 1時間後、 3N塩酸を 0. lmL添カロ して反応を停止させ、反応液を高速液体クロマトグラフィーで分析した。その結果、 M TAは光学活性(S) - a—フエネチルァミンと 1—ベンジル一 3 ピロリジノンとに作 用してァセトフエノンと 1 ベンジル 3 ァミノピロリジンとを生成する、アミノ基転移 活性を有することが確認された。
[0169] [基質溶液組成]
(S) aーフエネチルァミン 28. 3mM
1—ベンジル一 3 ピロリジノン 28. 3mM
ピジド、キサノレジン 0. 02mM
リン酸カリウム緩衝液 (pH7. 0) 0. 1M
[高速液体クロマトグラフィーによる測定条件]
カラム: Finepak SIL C18—T (日本分光社製)
溶離液:蒸留水 1260mLZァセトニトリル 740mLZKH PO 10g
2 4
/SDS 2. 88g (pH3. 6)
流速: lmLZ分
検出: 254nm
カラム温度: 40°C
[0170] (2)至適 pH :
pH4〜: L 1の範囲で、上記と同様にしてアミノ基転移活性を測定し、 MTAの至適 p Hを調べた (ただし、測定する pHの応じて緩衝液は下記のものを用いた)。その結果 、至適 pHは 7〜9であった。
隱 ί液] pH4. 0〜6. 0の場合 : 0. 1M酢酸ナトリウム緩衝液
pH6. 0〜8. 5の場合 :0. 1Mリン酸カリウム緩衝液
pH8. 0〜9. 0の場合 :0. 1Mトリスー塩酸緩衝液
PH9. 0〜: L 1. 0の場合: 0. 1M炭酸ナトリウム緩衝液。
[0171] (3)至適温度:
上記と同様の条件 (PH7. 0)にて、温度 20°C〜70°Cの範囲で、活性測定を行なつ た。その結果、反応至適温度は 30〜50°Cであった。
[0172] (4)熱安定性:
MTAを、 0. 02M ピリドキサルリン酸を含む 0. 1M リン酸緩衝液(ρΗ7. 5)中、 温度 20°C〜70°Cで 30分間処理した後、上記と同様の条件 (温度 30°C、 pH7. 0)で 活性測定を行なった。その結果、処理前に比べて、 20°C〜40°C処理では 90%以上 の活性が残存していた。
[0173] (5)分子量:
MTAの分子量を HiLoad 16/60 Superdex 200 prep grade (アマシャムバイオサイエ ンス社製)カラムを用いたゲルろ過法により測定した結果、約 120, 000であった。ま た、サブユニットの分子量を SDS ポリアクリルアミドゲル電気泳動により測定したと ころ、約 53, 000であった。
[0174] rnms) まの ¾ :アミノ某他
精製酵素 20 しに、各種アミンィ匕合物 14mM (ラセミ体の場合は 28mM)、 7—メト キシ一 2—テトラロン 14mMを含む 0. 1M リン酸カリウム緩衝液(pH7. 5) 380 Lを添加し、 30°C、 1時間反応させた後、 3N塩酸を 20 Lカ卩えて反応を停止させた 。得られた反応液を高速液体クロマトグラフィーで分析し、生成した 7—メトキシ一 2— アミノテトラリンを定量し、各種アミノ化合物に対するアミノ基転移活性を測定した。そ の結果を、 (S) - a—フエネチルァミンを用いたときの活性を 100とした相対活性とし て表 1に示す。表 1に示すように本酵素は(S)— a フ ネチルァミンに対し、特に高 い活性を示した。
[0175] [高速液体クロマトグラフィーによる測定条件]
カラム: Cosmosil 5C8— MS (ナカライテスタ社製) 溶離液: 30mM リン酸カリウム緩衝液 (pH2. 5) /ァセトニトリル Zメタノ
=4ZlZl (体積比)
流速: 0. 9mLZ分
検出: 254nm
[0176] [表 1] アミノ基供与体 相対活性 (¾
±2—プチルァミン 48
土 2—ペンチルァミン 60
±2—ヘプチルァミン 93
±3—ヘプチルァミン 19
n-ェチルァミン 6
n-プロピルアミン 6
n-プチルァミン 7
n-アミルァミン 1 1
イソプロピルアミン 10
イソブチルァミン 8
L-ァラニン 20
±3 -ァミノ- 1 -フエニルフタン 90
±3',4' -ジメトキシアンフエタミン 88
ベンジルァミン 35
; S -フエネチルァミン 22
シクロへキシルァミン 22
β -ァラニン 0
DL-リジン 0
(S)_ or-フエネチルァミン 100
[0177] ( M4) 精製酵表の ィ k学的件晳:アミノ某他 #:;|#虽 2
実施例 1で得た精製酵素について、代表的な ω アミノ酸トランスアミナーゼの基 質に対する反応性について調べた。まず、タンパク質濃度を 0. 2mgZmLに調製し た精製酵素液 20 Lを下記組成を有する基質溶液 380 Lに添加し、 30°C、 1時間 反応させた後、 3N塩酸を 20 Lカ卩えて反応を停止させた。次に、得られた反応液 2 0 // Lに 0. 2M 炭酸ナトリウム水溶液を 80 レ 3. 3mg/mL ダブシルク口リドの アセトン溶液を 200 ;z Lをそれぞれ加え、 70°Cで 10分間反応させた。これに酢酸 20 μ Lをカ卩えて攪拌し、この反応液を高速液体クロマトグラフィーで分析し、ダブシルイ匕 したァラニンを定量した。その結果を、(S)— a フエネチルアミンをァミノ基供与体 として用いたときの活性を 100とした相対活性として表 2に示す。表 2に示すように、 本酵素は j8—ァラニン、タウリン、プトレツシン、 DL—オル-チン、 DL—リジンに対し て活'性を示さなかった。
[0178] [基質溶液組成]
各種アミノ化合物 14mM
ピノレビン酸 14mM
ピジド、キサノレジン 0. 02mM
リン酸カリウム緩衝液 (pH7. 5) 0. 1M
[高速液体クロマトグラフィーによる測定条件]
カラム: Deverosil ODS— HG— 3 (NOMURA CHEMICAL)
溶離液:ァセトニトリル /0. 045M 酢酸緩衝液 (pH4. 1)
= 35Z65 (体積比)
流速: 0. 9mLZ分
検出: 254nm
[0179] [表 2] アミノ基供与体 相対活性 (%)
β-了ラニン 0
タウリン 0
ブトレツシン 0
DL-オル二チン 0
DL-リジン 0
(S)- -フ Iネチルァミン 1∞
[0180]
Figure imgf000037_0001
実施例 1で得た精製酵素について、アミノ基受容体に対する基質特異性について 調べた。精製酵素 20 Lに、 (S) a フヱネチルァミン 14mM、各種ケトン化合 物 14mMを含む 0. 1Mリン酸緩衝液(pH7. 5) 380 Lを添加し、 30。C、 1時間反 応させた後、 3N塩酸を 20 L加えて反応を停止させた。得られた反応液を高速液 体クロマトグラフィーで分析し、生成したァセトフエノンを定量した。その結果を、ピル ビン酸をァミノ基受容体として用いたときの活性を 100とした相対活性として表 3に示 す。高速液体クロマトグラフィーによる測定条件は以下の通りである。表 3に示すよう に、本酵素はピルビン酸およびダリオキシル酸に高い活性を示し、 2—ケトグルタル 酸には活性を示さなカゝつた。
[0181] [高速液体クロマトグラフィーによる測定条件]
カラム: Cosmosil 5C8— MS (ナカライテスタ社製)
溶離液: 30mMリン酸カリゥム緩衝液 (pH2. 5) /ァセトニトリル/メタノール
=4ZlZl (体積比)
流速: 0. 9mLZ分
検出: 254nm
[0182] [表 3] アミノ基受容体 相対活性 (%)
ピゾレビン酸 100
2 -ケトグルタル酸 0
グリオキシル酸 99
プロピオンアルデヒド 5
ブチルアルデヒド 18
ベンズアルデヒド 2
2-ケト酷酸 2
2-ケト -n -吉草酸 0.1
[0183] (実施例 6) 精製酵素の理ィ k学的件晳:アミノ某^ ¾体特件 2
実施例 1で得た精製酵素について、実施例 5と同様の方法で、アミノ基受容体に対 する基質特異性について調べた。結果を表 4に示す。
[0184] [表 4] アミノ基受容体 相対活性(%)
2 -ヘプタン 7
3 -メトキシァセトフエノン 10
ベンジルアセトン 33
3-ァセチルビリジン 10
ァセチルビラジン 100
メトキシプロパノン 13
卜ベンジル- 3 -ピロリジノン 20
ベンゾィル酢酸ェチル 13
3'-ヒドロキシァセトフエノン 3
3'-トリフルォロメチルァセトフエノン 40
4'-クロロアセトフエノン 30
2 -亍卜ラロン 1 7
7-メトキシ -2-テトラロン 10 [0185] (実施例 7) 某晳特異性: ω アミノ酸トランスアミナーゼとの比較
実施例 1で得た精製酵素について、代表的な ω—アミノ酸トランスアミナーゼの基 質に対する、本酵素の反応性について調べた。まず、タンパク質濃度を 0. 2mg/m Lに調製した精製酵素液 20 μ Lを下記組成を有する基質溶液 380 μ Lに添加し、 30 °C、 1時間反応させた後、 3N塩酸を 20 L加えて反応を停止させた。次に、得られ た反応液 20 Lに 0. 2M 炭酸ナトリウム水溶液 80 L、 3. 3mgZmLダブシルク口 リドのアセトン溶液 200 Lをそれぞれ加え、 70°Cで 10分間反応させた。これに酢酸 20 Lをカ卩えて攪拌し、この反応液を高速液体クロマトグラフィーで分析し、ダブシル 化したァラニンあるいはグルタミン酸を定量した。その結果を、(S) - a—フエネチル アミンをァミノ基供与体として用いたときの活性を 100とした相対活性として表 5に示 す。表 5の ω—アミノ酸:ピルビン酸トランスアミナーゼおよび 4ーァミノ酪酸: 2 ケト グルタル酸トランスアミナーゼの活性値は文献 (Agric. Biol. Chem. 41 , 1701-1706 (1 977), Arch. Biochem. Biophys. 200, 156- 164(1980))から引用した。表 5に示すように 、本酵素は、 βーァラニン、タウリン、プトレツシン、 4ーァミノ酪酸などの代表的な ω アミノ酸トランスアミナーゼの基質に作用せず、(S)— aーフエネチルァミンに対し 特異的に高い活性を示した。
[0186] [基質溶液組成]
各種アミノ化合物 14mM
ピルビン酸又は 2 ケトグルタル酸 14mM
ピジド、キサノレジン 0. 02mM
リン酸カリウム緩衝液 (pH7. 5) 0. 1M
[高速液体クロマトグラフィーによる測定条件]
カラム: Deverosil ODS— HG— 3 (NOMURA CHEMICAL)
溶離液:ァセトニトリル /0. 045M酢酸緩衝液 (pH4. 1)
= 35Z65 (体積比)
流速: 0. 9mLZ分
検出: 254nm
[0187] [表 5] アミノ¾挺与体 アミノ基受容体
A Β C
(S)- α-フエネチルァミン ピルビン酸 100 ― ―
β -ァラニン ピルビン酸 0 100 ―
タウリン ピルビン酸 0 132 一
ブトレツシン ピレビン酸 0 18 ―
β -ァラニン 2—ケトグルタル酸 0 一 0
4ーァミノ酪酸 2—ケトグルタル酸 0 ― 100 タウリン 2—ケトグルタル酸 0 ― 8
酵素 A) ΜΤΑ (本発明)
酵素 Β) ω-アミノ酸:ピルビン酸トランスアミナ一ゼ
(シユードモナス F- 126由来)
酵素 C) 4-ァミノ酪酸 : 2-ケトグルタル酸トランスアミダ
(シユードモナス F-126由来)
[0188] (実施例 8) ΜΤΑ遣伝子のクローニング
(PCRプライマーの作成)
実施例 1で得られた精製 ΜΤΑの Ν末端アミノ酸配列を ΑΒΙ492型プロティンシー ケンサ一(PerkinElmer Biosystems社)により決定した。また、実施例 1で得られた精製 MTAを 8M尿素存在下で変性させた後、ァクロモパクター由来のリシルエンドぺプ チダーゼ (和光純薬工業株式会社製)で消化し、得られたペプチド断片のアミノ酸配 列を N末端アミノ酸配列と同様の方法で決定した。このアミノ酸配列から予想される 塩基配列を考慮し、 MTA遺伝子の一部を PCRにより増幅するためのプライマー 1 ( 配列表の配列番号 3)、および、プライマー 2 (配列表の配列番号 4)を合成した。
[0189] (PCRによる MTA遺伝子の増幅)
シユードモナス'フルォレツセンス KNK08— 18の培養液から、 Murray等の方法 (Nucl. Acids Res., 8, 4321, 1980)に記載の方法に従って染色体 DNAを抽出した。 得られた染色体 DNAを铸型に、上記で合成したプライマーを用いて PCRを行った。 その結果、 MTA遺伝子の一部と考えられる約 540bpの DNA断片を取得した。 PCR は、 DNAポリメラ—ゼとして TaKaRa Ex Taq (宝酒造株式会社製)を用いて行い、反 応条件はその取り扱い説明書に従った。この DNA断片を、プラスミド pT7Blue T-Vec tor(Novagen社製)にクローユングし、 ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer社製)および ABI 310 DNA Sequencer (Perkin Elme r社製)を用いてその塩基配列を決定した。その塩基配列を配列表の配列番号 5に示 した。
[0190] (inverse— PCR法による MTA遺伝子の全長配列の決定)
シユードモナス ·フルォレツセンス KNK08— 18の染色体 DNAを制限酵素 EcoRI 、 Fbal、 Ncol又は Sphlを用いて完全消化し、得られた消化物を T4DNAリガーゼ( 宝酒造株式会社製)を用いて各々分子内環化させた。これを铸型として用い、上記 で判明した MTA遺伝子の部分塩基配列情報をもとに、 inverse— PCR法 (Nucl. Aci ds Res., 16, 8186 (1988))〖こより、染色体 DNA上の MTA遺伝子の全塩基配列を決 定した。 PCRは、 TaKaRa LA Taq with GC buffer (宝酒造株式会社製)を用いて行い 、反応条件はその取り扱い説明書に従った。決定した塩基配列を配列表の配列番号 2に示した。また、該塩基配列がコードするアミノ酸配列を配列表の配列番号 1に示し た。
[0191] 施例 9) MTA遣伝早 含む鉬. ¾ プラスミドの作製
実施例 8で決定した塩基配列に基づき、 MTA遺伝子の開始コドン部分に Ndel部 位を付加したプライマー 3 (配列表の配列番号 6)と、 MTA遺伝子の終始コドンの直 後に EcoRI部位を付加したプライマー 4 (配列表の配列番号 7)とを合成した。実施例 2で得たシユードモナス ·フルォレツセンス KNK08 - 18の染色体 DNAを铸型とし 、これらのプライマーを用いて PCRを行い、 MTA遺伝子の開始コドン部分に Ndel 部位を付加し、かつ終始コドンの直後に EcoRI部位を付加した二本鎖 DNAを取得 した。 PCRは、 TaKaRa LA Taq with GC buffer (宝酒造株式会社製)を用いて行い、 反応条件はその取り扱い説明書に従った。この DNAを Ndel及び EcoRIで消化し、 プラスミド pUCNT(WO94Z03613)の lacプロモーターの下流の Ndel認識部位と EcoRI認識部位の間に挿入し、組換えベクター pNTMTAを得た。
[0192] (実施例 10) 組椽ぇ大腸菌の作製
実施例 9で得た組換えベクター pNTMTAを用いて大腸菌 E. coli HB101 (宝酒造 株式会社製)を形質転換し、組換え大腸菌 E. coli HBlOl(pNTMTA)を得た。こうして 得られた形質転換体 E. coli HB101 (pNTMTA)は、平成 16年 10月 5日付けで、受託 番号: FERM P— 20238として、独立行政法人産業技術総合研究所 特許生物寄 託センター(〒 305— 8566 茨城県つくば巿東 1— 1— 1 中央第 6)に寄託されてい る。
[0193] (実施例 11) 組換え大腸菌における MTA遣伝子の発現
実施例 10で得た E. coli HBlOl(pNTMTA)を 200 /z g/mlのアンピシリンを含む 2 X YT培地(卜リプトン 1. 6%、イーストエキス 1. 0%、NaCl 0. 5%、 pH7. 0)で培養し 、集菌後、 lOOmMリン酸緩衝液 (pH7. 5)に懸濁し、超音波破砕により無細胞抽出 液を得た。この無細胞抽出液のトランスアミナーゼ活性を、実施例 1に示した、ァセト フエノンと 1 ベンジル 3 ピロリジノンを基質とした活性測定法により測定した。そ の結果、 E. coli HBlOl(pNTMTA)の無細胞抽出液では、タンパク質 lmgあたり 1Uの 該活性が見られた。
[0194] 施例 ί 2)観告方法 Πこよる光学活件 7 メトキシ— 2 アミノテトラリンの観告
実施例 10で得た E. coli HB101 (pNTMTA)を 500mL容坂ロフラスコ中の 50mLの 2 X YT培地(トリプトン 1. 6%、イーストエキス 1. 0%、NaCl 0. 5%、アンピシリ ン 200 μ gZml、 pH7. 0)に植菌後、 28°Cで 3日間培養した。遠心分離により培養 液から菌体を集め、 0. 01 % 2—メルカプトエタノールおよび、 0. 02mM ピリドキ サルリン酸を含む 0. 01M リン酸カリウム緩衝液 (pH8. 0)に懸濁し、同緩衝液で体 積 5mlに調製し、菌体懸濁液とした。
[0195] あらかじめ基質である 7—メトキシー2—テトラロン 300mg、および、(S)— a フエ ネチルァミン 309. 4mgを入れたフラスコに上記菌体懸濁液 3ml、ピリドキサルリン酸 3. 7mg、 1Mリン酸カリウム緩衝液 (pH6. 8) 3mLを入れて、脱イオン水をカ卩えて全 体積を 30mLとした。これを、 30°Cで、 24時間、攪拌しながら反応させた。反応終了 後、反応液中に生成した 7—メトキシ 2 アミノテトラリンを HPLCで下記条件にて 分析した。その結果、 7—メトキシ一 2 アミノテトラリンが変換率 85%で生成していた 。その立体配置は(S)体で光学純度は 96. 7%e. e.であった。
[0196] [高速液体クロマトグラフィーによる測定条件]
<定量分析 >
カラム: Cosmosil 5C8— MS (ナカライテスタ社製)
溶離液: 30mM リン酸カリウム緩衝液 (pH2. 5) /ァセトニトリル Zメタノール
=4ZlZl (体積比) 検出: 254nm
<光学純度分析 >
カラム: Crownpak CR ( + ) (ダイセルィ匕学工業社製)
溶離液:過塩素酸水溶液 (pHl. 5) Zメタノール =85/15 (体積比)
流速: 0. 9mLZ分
検出: 220nm
カラム温度: 47°C
[0197] (実施例 13)製造方法 Iによる光学活性 1 ベンジル 3 ァミノピロリジンの製造
実施例 12と同様の方法で菌体懸濁液を調製した。あらかじめ基質である 1—ベン ジル— 3 ピロリジノン 900mg、および、(S) a—フエネチルァミン 928. 2mgを入 れたフラスコに上記菌体懸濁液 3ml、ピリドキサルリン酸 3. 7mg、 1M リン酸カリウム 緩衝液 (pH6. 8) 3mLを入れて、脱イオン水をカ卩えて全体積を 30mLとした。これを 、 30°Cで、 16時間攪拌しながら反応させた。反応終了後、反応液を HPLCにて下記 条件で分析した。その結果、 1—ベンジル— 3 ァミノピロリジンが変換率 75. 1%で 生成していた。その立体配置は(S)体で光学純度は 79. 2%e. e.であった。
[0198] [高速液体クロマトグラフィーによる測定条件]
<定量分析 >
カラム: Finepak SIL C18—T (日本分光社製)
溶離液:蒸留水 1260mLZァセトニトリル 740mL/KH PO 10g
2 4
/SDS 2. 88g (pH3. 6)
流速: lmLZ分
検出: 254nm
カラム温度: 40°C
<光学純度分析 >
反応液を適量の炭酸ナトリウムで塩基性にしたのち、 Z クロリドで誘導体ィ匕した後 、以下の条件で分析した。
カラム: Chiralcel OD— H (ダイセル化学工業社製) 溶離液:へキサン Zイソプロピルアルコール = 90Z10 (体積比)
流速: 1. OmLZ分
検出: 254nm
カラム温度:室温
[0199] (実施例 14) 製造方法 Iによる光学活性 1 フ ニル 3 プチルァミンの製造
実施例 12と同様の方法で菌体懸濁液を調製した。あらかじめ基質である 1—フエ- ルー 3 ブタノン 504. 6mg、および、(3)— 0;—フェネチルァミン618. 8mgを入れ たフラスコに上記菌体懸濁液 3ml、ピリドキサルリン酸 3. 7mg、 1M リン酸カリウム緩 衝液 (pH6. 8) 3mLを入れて、脱イオン水をカ卩えて全体積を 30mLとした。これを、 3 0°Cで、 16時間、攪拌しながら反応させた。反応終了後、反応液を以下のように分析 した。その結果、 1—フエ-ルー 3—プチルァミンが変換率 68%で生成しており、その 立体配置は(S)体で光学純度は 95. 8%e. e.であった。
[0200] [高速液体クロマトグラフィーによる測定条件]
<定量分析 >
カラム: Cosmosil 5C8— MS (ナカライテスタ社製)
溶離液: 30mMリン酸カリウム緩衝液 (pH2. 5) /ァセトニトリル Zメタノール
=4ZlZl (体積比)
流速: 0. 9mLZ分
検出: 254nm
<光学純度分析 >
反応液を適量の炭酸ナトリウムで塩基性にしたのち、無水酢酸で誘導体化した後、 以下の条件で分析した。
カラム: Chiralcel OJ— H (ダイセルィ匕学工業社製)
溶離液:へキサン Zエタノール = 95Z5 (体積比)
流速: 1. OmLZ分
検出: 220nm
カラム温度:室温
[0201] (実施例 15) 製造方法 IIによる光学活性 7 メトキシ— 2 アミノテトラリンの製造 実施例 12と同様の方法で菌体懸濁液を調製した。あらかじめ基質であるラセミ体 7 —メトキシ一 2—アミノテトラリン 100mg、および、ピノレビン酸 62mgを入れたフラスコ に上記菌体懸濁液 3ml、ピリドキサルリン酸 1. 2mg、 1M リン酸カリウム緩衝液 (PH 7. 0) lmLを入れて、脱イオン水をカ卩えて全体積を 10mLとした。これを、 30°Cで、 2 1時間、攪拌しながら反応させた。反応終了後、実施例 12と同様に分析を行なったと ころ、 7—メトキシ一 2—アミノテトラリンが残存率 44%で存在していた。その立体配置 は (R)体で光学純度は 100%e. e.であった。
[0202] (実施例 16) 製造方法 Iによる光学活性 2—ァミノヘプタンの製造
実施例 10で得た E. coli HB101 (pNTMTA)を 500mL容坂ロフラスコ中の 50mLの 2 X YT培地(卜リプトン 1. 6%、イーストエキス 1. 0%, NaCl 0. 5%、 pH7. 0)に 植菌後、 28°Cで 3日間培養した。遠心分離により培養液から菌体を集め、 0. 01 % 2—メルカプトエタノールおよび、 0. 02mM ピリドキサルリン酸を含む 0. 01M リン 酸カリウム緩衝液 (PH8. 0)に懸濁し、同緩衝液で体積 5mlに調製し、菌体懸濁液と した。
[0203] あらかじめ基質である 2—へプタノン 600mg、および、(S)— aーフエネチルァミン 955. lmgを入れたフラスコに上記菌体懸濁液 3ml、ピリドキサルリン酸 3. 7mg、 1 M リン酸カリウム緩衝液 (pH6. 8) 3mLを入れて、脱イオン水をカ卩えて全体積を 30 mLとした。これを、 30°Cで、 16時間、攪拌しながら反応させた。反応終了後、反応 液 2mLに 200 μ Lの 40%水酸化ナトリウム水溶液を添カ卩し、 4mLの tert—ブチルメ チルエーテルを用いて抽出し、その抽出液を以下のように分析した。その結果、 2 - ァミノヘプタンが変換率 47%で生成しており、その立体配置は(S)体で光学純度は 98. 8%e. e.であった。
[0204] [ガスクロマトグラフィーによる測定条件]
<定量分析 >
カラム: Rtx— 5 Amine 30mx0. 25mm (RESTEK社製)
カラム温度: 150°C
インジェクター温度: 250°C
ディテクター温度: 250°C キャリアガス: He
検出: FID
[高速液体クロマトグラフィーによる測定条件]
<光学純度分析 >
反応液を適量の炭酸ナトリウムで塩基性にしたのち、ジニトロべンゾイルク口ライドで 誘導体化した後、以下の条件で分析した。
カラム: Chiralpak AD— H (ダイセル化学工業社製)
溶離液:へキサン Zエタノール =9Zl (体積比)
流速: 1. OmLZ分
検出: 240nm
カラム温度: 35°C
[0205]
Figure imgf000046_0001
実施例 16と同様の方法で菌体懸濁液を調製した。あらかじめ基質である 1— Boc ー3—ピロリジノン9001118、および、(S)— aーフエネチルァミン 883mgを入れたフラ スコに上記菌体懸濁液 3ml、ピリドキサルリン酸 3. 7mg、 1M リン酸カリウム緩衝液( pH6. 8) 3mLを入れて、脱イオン水をカ卩えて全体積を 30mLとした。これを、 30°Cで 、 8時間、攪拌しながら反応させた。反応終了後、反応液 0. lmLに Lの 40%水 酸ィ匕ナトリウム水溶液を添加し、 lmLの酢酸ェチルを用いて抽出し、その抽出液を 以下のように分析した。その結果、 1— Boc— 3—ァミノピロリジンが変換率 82%で生 成しており、その立体配置は(S)体で光学純度は 99. 4%e. e.であった。
[0206] [ガスクロマトグラフィーによる測定条件]
<定量分析 >
カラム: Rtx— 5 Amine 30mx0. 25mm (RESTEK社製)
カラム温度: 150°C
インジェクター温度: 250°C
ディテクター温度: 250°C
キャリアガス: He
検出: FID [高速液体クロマトグラフィーによる測定条件]
<光学純度分析 >
反応液を適量の炭酸ナトリウムで塩基性にしたのち、ジニトロべンゾイルク口ライドで 誘導体化した後、以下の条件で分析した。
カラム: Chiralpak AD— H (ダイセル化学工業社製)
溶離液:へキサン Zエタノール =75Z25 (体積比)に 0. 1%ジェチルァミンを添加。 流速: 0. 7mLZ分
検出: 240nm
カラム温度: 40°C
[0207] mis) 観告方法 πこよる光学活件 i _B〇c_ 3—アミノビペリジンの観告
実施例 16と同様の方法で菌体懸濁液を調製した。あらかじめ基質である 1— Boc 3 ピベリジノン 900mg、および、(S) - a—フエネチルァミン 821mgを入れたフ ラスコに上記菌体懸濁液 3ml、ピリドキサルリン酸 3. 7mg、 1M リン酸カリウム緩衝 液 (pH6. 8) 3mLを入れて、脱イオン水をカ卩えて全体積を 30mLとした。これを、 30 °Cで、 5時間、攪拌しながら反応させた。反応終了後、反応液 0. 2mLに 50 /z Lの 40 %水酸ィ匕ナトリウム水溶液を添加し、 lmLの酢酸ェチルを用いて抽出し、その抽出 液を以下のように分析した。その結果、 1— Boc— 3 アミノビペリジンが変換率 83% で生成しており、その立体配置は(S)体で光学純度は > 99. 9%e. e.であった。
[0208] [ガスクロマトグラフィーによる測定条件]
<定量分析 >
カラム: Rtx— 5 Amine 30mx0. 25mm (RESTEK社製)
カラム温度: 150°C
インジェクター温度: 250°C
ディテクター温度: 250°C
キャリアガス: He
検出: FID
[高速液体クロマトグラフィーによる測定条件]
<光学純度分析 > 反応液を適量の炭酸ナトリウムで塩基性にしたのち、ジニトロべンゾイルク口ライドで 誘導体化した後、以下の条件で分析した。
カラム: Chiralpak AD— H (ダイセル化学工業社製)
溶離液:へキサン Zエタノール =75Z25 (体積比)に 0. 1%ジェチルァミンを添加。 流速: 0. 7mLZ分
検出: 240nm
カラム温度: 40°C

Claims

請求の範囲
[1] 下記(1)カゝら (3)の理化学的性質を有するアミノ基転移酵素:
(1)作用:光学活性(S) - a—フエネチルァミンと 1—ベンジル一 3 ピロリジノンとに 作用してァセトフエノンと 1 ベンジル 3 ァミノピロリジンとを生成するァミノ基転移 反応を触媒する、
(2)基質特異性:
(a)アミノ基供与体: (S) - a—フエネチルァミンに対し活性を示し、 β—ァラニン、タ ゥリン、ブトレツシン、 DL オル-チンおよび DL リジンに対し実質的に活性を示さ ない、
(b)アミノ基受容体:ピルビン酸およびダリオキシル酸のそれぞれに対し活性を示す、
(3)分子量:ゲルろ過で約 120, 000、 SDS ポリアクリルアミドゲル電気泳動で約 5 3, 000。
[2] さらに以下の (4)から (6)の理化学的性質を有する請求項 1記載のアミノ基転移酵素
(4)至適 pH : 7〜9、
(5)作用至適温度: 30〜50°C、
(6)熱安定性: pH7. 0、 30〜40°Cで 30分間処理したとき、処理前の全活性の 90% 以上の残存活性を保持する。
[3] 前記酵素が、シユードモナス (Pseudomonas)属に属する微生物力も得られた酵素で ある請求項 1又は 2記載のアミノ基転移酵素。
[4] 前記酵素が、シユードモナス ·フルォレツセンス (Pseudomonas fluorescens)力ら得ら れた酵素である請求項 1又は 2記載のアミノ基転移酵素。
[5] 前記酵素力 シユードモナス 'フルォレツセンス(Pseudomonas fluorescens) KNK08
— 18 (FERM BP— 10599)力も得られた酵素である請求項 1又は 2記載のアミノ基 転移酵素。
[6] 配列表の配列番号 1で示されるアミノ酸配列力 なるアミノ基転移酵素。
[7] 配列表の配列番号 1で示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠 失、置換、挿入もしくは付加されたアミノ酸配列からなり、かつ、光学活性 (S) - a - フエネチルァミンと 1―ベンジル 3 ピロリジノンとに作用してァセトフエノンと 1—ベ ンジルー 3—ァミノピロリジンとを生成するァミノ基転移酵素。
[8] 請求項 1〜7のいずれかに記載のアミノ基転移酵素をコードする DNA。
[9] 下記 (A)又は (B)に示す DNA:
(A)配列表の配列番号 2に記載の塩基配列を含む DNA、
(B)配列表の配列番号 2に記載の塩基配列と相補的な DNAとストリンジ ントな条件 下でハイブリダィズし、かつ、光学活性(S) - a—フエネチルァミンと 1—ベンジル— 3 -ピロリジノンとに作用してァセトフエノンと 1―ベンジル 3 ァミノピロリジンとを生 成するァミノ基転移活性を有する酵素をコードする DNA。
[10] 請求項 8又は 9記載の DNAを含むベクター。
[11] 請求項 10記載のベクターにより宿主細胞を形質転換して得られる形質転換体。
[12] 前記宿主細胞が大腸菌である請求項 11に記載の形質転換体。
[13] 一般式 (1) :
[化 1]
Figure imgf000050_0001
(式中、 P及び Qは置換されていてもよい、アルキル基、分岐鎖アルキル基、ァリール 基、ヘテロァリール基、ァリールォキシ基、ヘテロァリールォキシ基、アルコキシ基、ァ ルコキシカルボ-ル基、ァルケ-ル基、アルキ-ル基、シクロアルキル基、ァラルキル 基、ヘテロァラルキル基を示し、 Pと Qの両者が互いに結合して環を形成していてもよ い。但し、 Pは構造またはキラリティーの点で Qと異なる。)で表されるカルボニル化合 物に、アミノ基供与体の存在下、請求項 1〜7のいずれかに記載のアミノ基転移酵素
、シユードモナス ·フルォレツセンス (Pseudomonas fluorescens) KNK08— 18 (FER
M BP— 10599)の培養物、又は、請求項 11又は 12に記載の形質転換体の培養 物を作用させることを特徴とする、一般式 (2): [化 2]
Figure imgf000051_0001
(式中、 P及び Qは前記式(1)と同じ。)で表される光学活性アミノ化合物の製造方法 一般式 (3) :
[化 3]
Figure imgf000051_0002
(式中、 qは 0〜7の整数を示し、 rは 0〜2の整数を示し、 Rは置換されていてもよい、 炭素数 6〜14のァリール基、炭素数 4〜14のへテロアリール基、炭素数 6〜14のァリ ールォキシ基、炭素数 4〜 14のへテロアリールォキシ基、炭素数 1〜5のアルコキシ 基、炭素数 2〜5のアルコキシカルボニル基、炭素数 3〜5の分岐鎖アルキル基、炭 素数 2〜5のァルケ-ル基、炭素数 2〜5のアルキ-ル基、炭素数 5〜7のシクロアル キル基、メチル基又はカルボキシル基を示し、 Xは水素原子又は置換されていてもよ いメチル基を示す。但し、 R力 Sメチル基の場合には q > =rである。)で表されるカルボ -ル化合物に、アミノ基供与体の存在下、請求項 1〜7のいずれかに記載のアミノ基 転移酵素、シユードモナス .フルォレツセンス (Pseudomonas fluorescens) KNK08 — 18 (FERM BP— 10599)の培養物、又は、請求項 11又は 12に記載の形質転 換体の培養物を作用させることを特徴とする、一般式 (4):
[化 4]
Figure imgf000052_0001
(式中、 q、 r、 Rおよび Xは、前記式(3)と同じ。)で表される光学活性アミノ化合物の 製造方法。
一般式 (5) :
[化 5]
Figure imgf000052_0002
(式中、 qは 0〜7の整数を示し、 rは 0〜2の整数を示し、 Rは置換されていてもよい、 炭素数 6〜14のァリール基、炭素数 4〜14のへテロアリール基、炭素数 6〜14のァリ ールォキシ基、炭素数 4〜 14のへテロアリールォキシ基、炭素数 1〜5のアルコキシ 基、炭素数 2〜5のアルコキシカルボニル基、炭素数 3〜5の分岐鎖アルキル基、炭 素数 2〜5のァルケ-ル基、炭素数 2〜5のアルキ-ル基、炭素数 5〜7のシクロアル キル基、メチル基又はカルボキシル基を示し、 Xは水素原子又は置換されていてもよ いメチル基を示す。但し、 R力 Sメチル基の場合には q > =rである。)で表わされるアミ ノ化合物のェナンチォマー混合物に、アミノ基受容体の存在下、請求項 1〜7のいず れかに記載のアミノ基転移酵素、シユードモナス 'フルォレツセンス(Pseudomonas flu orescens) KNK08— 18 (FERM BP— 10599)の培養物、又は、請求項 11又は 12に記載の形質転換体の培養物を作用させることを特徴とする、一般式 (6):
[化 6]
Figure imgf000053_0001
(式中、 q、 r、 Rおよび Xは前記式(5)と同じ。)で表わされる光学活性アミノ化合物の 製造方法。
[16] 前記式(3)〜(6)において、 Xが水素原子かつ rが 1又は 2である請求項 14又は 15に 記載の製造方法。
[17] 前記式(3)〜(6)にお 、て、 R力 ハロゲン原子、ハロゲン原子によって置換されて!ヽ てもよい炭素数 1〜3のアルキル基、ニトロ基、水酸基、メトキシ基、シァノ基およびトリ フルォロメチル基カゝらなる群より選ばれた置換基により少なくとも 1ケ所を置換された ァリール基である請求項 14〜16のいずれかに記載の製造方法。
[18] 前記式(3)〜(6)において、 R力 メチル基、メトキシ基、フエニル基、 2 クロ口フエ二 ル基、 3 クロ口フエ-ル基、 4 クロ口フエ-ル基、 2 ヒドロキシフエ-ル基、 3 ヒド ロキシフエ-ル基、 4 ヒドロキシフエ-ル基、 2—メトキシフエ-ル基、 3—メトキシフエ -ル基、 4ーメトキシフエ-ル基、 2 トリフルォロメチルフエ-ル基、 3 トリフルォロメ チルフヱ-ル基、 4 トリフルォロメチルフヱ-ル基、ピリジル基、ピラジュル基からな る群力も選ばれた基である請求項 14〜16のいずれかに記載の製造方法
[19] 一般式 (7) :
[化 7]
Figure imgf000053_0002
(式中、 mは 0〜3の整数を示し、 nは 2〜4の整数を示し(ただし、 n>mである)、環 A は置換されていても良いベンゼン環を示す。)で表されるカルボ二ルイ匕合物に、ァミノ 基供与体の存在下、請求項 1〜7のいずれかに記載のアミノ基転移酵素、シユードモ ナス ·フルォレツセンス (Pseudomonas fluorescens) KNK08— 18 (FERM BP— 1 0599)の培養物、又は、請求項 11又は 12のいずれかに記載の形質転換体の培養 物を作用させることを特徴とする、一般式 (8):
[化 8]
Figure imgf000054_0001
(式中、 m、 n、環 Aのそれぞれは、前記式(7)と同じ。)で表される光学活性アミノ化 合物の製造方法。
一般式 (9) :
[化 9]
Figure imgf000054_0002
(式中、 mは 0〜3の整数を示し、 nは 2〜4の整数を示し(ただし、 n>mである)、環 A は置換されて 、ても良 、ベンゼン環を示す。 )で表されるァミノ化合物のェナンチォ マー混合物に、アミノ基受容体の存在下、請求項 1〜7のいずれかに記載のアミノ基 転移酵素、シユードモナス .フルォレツセンス (Pseudomonas fluorescens) KNK08 - 18 (FERM BP— 10599)の培養物、又は、請求項 11又は 12のいずれかに記 載の形質転換体の培養物を作用させることを特徴とする、一般式 (10):
[化 10]
Figure imgf000055_0001
(式中、 m、 n、環 Aのそれぞれは、前記式(9)と同じ。)で表わされる光学活性アミノ 化合物の製造方法。
[21] 前記式 (7)〜(10)において、環 Aの置換基が、水素原子、ハロゲン原子、水酸基、 シァノ基、ニトロ基、炭素数 1〜3のアルコキシ基、ハロゲン原子で置換されていてもよ い炭素数 1〜3のアルキル基力も選ばれる基である請求項 19又は 20に記載の製造 方法。
[22] 前記式(7)〜(10)において、 mが 1かつ nが 2である請求項 19〜21のいずれかに記 載の製造方法。
[23] 前記式(7)で表されるカルボ-ルイ匕合物力 1—テトラロン、 2—テトラロン、 5—メトキ シー 2—テトラロン、 6—メトキシー 2—テトラロン、 7—メトキシー 2—テトラロンあるいは 8—メトキシー2—テトラロンである請求項 19に記載の製造方法。
[24] 前記式(9)で表されるァミノ化合物が、 1—アミノテトラリン、 2—アミノテトラリン、 5—メ トキシー 2—アミノテトラリン、 6—メトキシー2—アミノテトラリン、 7—メトキシー2—アミ ノテトラリンあるいは 8—メトキシー 2—アミノテトラリンである請求項 20に記載の製造 方法。
[25] 一般式 (11) :
[化 11]
Figure imgf000056_0001
(式中、 jおよび kはそれぞれ 1〜3の整数を示し (但し、 k> =jである)、 Rは、水素原
5 子、炭素数 6〜14のァリール基、炭素数 4〜14のへテロアリール基、炭素数 1〜6の アルキル基、炭素数 1〜6のアルコキシ基、炭素数 2〜15のァシル基、炭素数 1〜6 のアルコキシカルボ-ル基、炭素数 7〜 15のァラルキル基、炭素数 8〜16のァラル キルォキシカルボ-ル基、又は、炭素数 1〜6のアルキル基もしくは炭素数 6〜14の ァリール基で置換されたスルホ -ル基を示す。)で表されるカルボ-ル化合物に、アミ ノ基供与体の存在下、請求項 1〜7のいずれかに記載のアミノ基転移酵素、シユード モナス ·フルォレツセンス (Pseudomonas fluorescens) KNK08— 18 (FERM BP - 10599)の培養物、又は、請求項 11又は 12のいずれかに記載の形質転換体の培 養物を作用させることを特徴とする、一般式(12):
[化 12]
Figure imgf000056_0002
(式中、 j、 k、および Rのそれぞれは、前記式(11)と同じ。)で表される光学活性アミ
5
ノ化合物の製造方法。 一般式 (13) :
[化 13]
Figure imgf000057_0001
(式中、 jおよび kはそれぞれ 1〜3の整数を示し (但し、 k> =jである)、 Rは、水素原
5 子、炭素数 6〜14のァリール基、炭素数 4〜14のへテロアリール基、炭素数 1〜6の アルキル基、炭素数 1〜6のアルコキシ基、炭素数 2〜15のァシル基、炭素数 1〜6 のアルコキシカルボ-ル基、炭素数 7〜 15のァラルキル基、炭素数 8〜16のァラル キルォキシカルボ-ル基、又は、炭素数 1〜6のアルキル基もしくは炭素数 6〜14の ァリール基で置換されたスルホ二ル基を示す。 )で表されるァミノ化合物のェナンチォ マー混合物に、アミノ基受容体の存在下、請求項 1〜7のいずれかに記載のアミノ基 転移酵素、シユードモナス .フルォレツセンス (Pseudomonas fluorescens) KNK08 — 18 (FERM BP— 10599)の培養物、又は、請求項 11又は 12に記載の形質転 換体の培養物を作用させることを特徴とする、一般式(14):
[化 14]
(14)
Figure imgf000057_0002
(式中、 j、 k、 Rは、前記式(13)と同じ。)で表される光学活性アミノ化合物の製造方
5
法。
前記式( 11 )〜( 14)にお 、て、 jが 1かつ kが 1である請求 25又は 26に記載の製造方 法。
前記式(11)〜(14)において、 Rが水素原子、フエ-ル基、ベンジル基、ベンゾィル
5
基、ベンジルォキシカルボ-ル基、 tert—ブトキシカルボ-ル基、メシル基、トシル基 からなる群より選ばれる基である請求項 25〜27のいずれかに記載の製造方法。 一般式(11)〜(14)において、 Rがべンジル基である請求項 25〜27のいずれかに
5
記載の製造方法。
アミノ基供与体が、一般式(15):
[化 15]
Figure imgf000058_0001
(式中、 Rおよび Rはそれぞれ独立して、水素原子、置換されていてもよい、カルボ
6 7
キシル基、炭素数 1〜10の直鎖あるいは分岐鎖アルキル基、炭素数 5〜7のシクロア ルキル基、炭素数 7〜15のァラルキル基又は炭素数 6〜14のァリール基を示す。) で表されるアミンィ匕合物であることを特徴とする、請求項 13、 14、 19、 25のいずれか に記載の製造方法。
[31] 前記式(15)において、 Rが炭素数 1〜6のアルキル基、炭素数 6〜10のァラルキル
6
基又はフエ-ル基であり、 Rが水素原子、メチル基、ェチル基である、請求項 13、 14
7
、 19、 25のいずれかに記載の製造方法。
[32] アミノ基供与体が、 a—フエネチルァミン、 2—ブチルァミン、 2—ペンチルァミン、 2— ヘプチルァミン、 3—へプチルァミン、 n—ェチルァミン、 n—プロピルアミン、 n—ブチ ルァミン、 n—アミルァミン、イソプロピルァミン、イソブチルァミン、ァラニン、 3—ァミノ —1—フエ-ルブタン、ベンジルァミン、 13—フエネチルァミン、シクロへキシルァミン、 およびそれらの光学活性体力もなる群より選ばれたィ匕合物である請求項 13、 14、 19 、 25のいずれかに記載の製造方法。
[33] アミノ基供与体が、(S)— aーフエネチルァミン、 2—ブチルァミン、 Lーァラニンから なる群より選ばれたィ匕合物である請求項 13、 14、 19、 25のいずれかに記載の製造 方法。
[34] アミノ基受容体が、ピルビン酸又はダリオキシル酸である請求項 15、 20、 26の ヽず れかに記載の製造方法。
PCT/JP2006/310170 2005-05-23 2006-05-22 新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの利用法 WO2006126498A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007517819A JP4922929B2 (ja) 2005-05-23 2006-05-22 新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの利用法
DE602006008934T DE602006008934D1 (de) 2005-05-23 2006-05-22 Neue aminogruppentransferase, dafür codierendes gen und verfahren zur verwendung davon
EP06746704A EP1889907B1 (en) 2005-05-23 2006-05-22 Novel amino group transferase, gene encoding the same and method of using the same
US11/920,842 US8133705B2 (en) 2005-05-23 2006-05-22 Aminotransferase, gene encoding the same, and method of using them
US13/360,196 US8431378B2 (en) 2005-05-23 2012-01-27 Aminotransferase, gene encoding the same, and methods of using them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-149900 2005-05-23
JP2005149900 2005-05-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/920,842 A-371-Of-International US8133705B2 (en) 2005-05-23 2006-05-22 Aminotransferase, gene encoding the same, and method of using them
US13/360,196 Division US8431378B2 (en) 2005-05-23 2012-01-27 Aminotransferase, gene encoding the same, and methods of using them

Publications (1)

Publication Number Publication Date
WO2006126498A1 true WO2006126498A1 (ja) 2006-11-30

Family

ID=37451924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310170 WO2006126498A1 (ja) 2005-05-23 2006-05-22 新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの利用法

Country Status (5)

Country Link
US (2) US8133705B2 (ja)
EP (1) EP1889907B1 (ja)
JP (1) JP4922929B2 (ja)
DE (1) DE602006008934D1 (ja)
WO (1) WO2006126498A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084493A1 (ja) 2007-12-27 2009-07-09 Toray Fine Chemicals Co., Ltd. 光学活性3-アミノピロリジン塩及びその製造方法並びに3-アミノピロリジンの光学分割方法
US20090325224A1 (en) * 2006-09-06 2009-12-31 Lonza Ag Process for preparation of optically active n-protected 3-aminopyrrolidine or optically active n-protected 3-aminopiperidine and the corresponding ketones by optical resolution of the racemic amine mixtures employing a bacterial omega-transaminase
WO2012043622A1 (ja) * 2010-09-28 2012-04-05 株式会社カネカ 新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの利用法
WO2012043653A1 (ja) 2010-09-28 2012-04-05 株式会社カネカ グルタミン酸に高活性を示す新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの利用法
WO2012124639A1 (ja) 2011-03-11 2012-09-20 株式会社カネカ 改変型アミノ基転移酵素、その遺伝子、およびそれらを利用した光学活性アミノ化合物の製造方法
US8293507B2 (en) 2009-02-26 2012-10-23 Codexis, Inc. Transaminase biocatalysts
US8470564B2 (en) 2009-01-08 2013-06-25 Codexis, Inc. Transaminase polypeptides
US8852900B2 (en) 2010-06-17 2014-10-07 Codexis, Inc. Biocatalysts and methods for the synthesis of (S)-3-(1-aminoethyl)-phenol
US8921079B2 (en) 2009-06-22 2014-12-30 Codexis, Inc. Transaminase reactions
US8932836B2 (en) 2010-08-16 2015-01-13 Codexis, Inc. Biocatalysts and methods for the synthesis of (1R,2R)-2-(3,4-dimethoxyphenethoxy)cyclohexanamine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1818411A1 (en) * 2006-02-13 2007-08-15 Lonza AG Process for the preparation of optically active chiral amines
CN102731326B (zh) * 2011-04-01 2014-07-23 安徽省科隆药物研究所 一种合成(s)-2-氨基-5-甲氧基-1,2,3,4-四氢萘盐酸盐的方法
CN106053657B (zh) * 2016-07-01 2018-12-04 东北制药集团股份有限公司 一种采用高效液相色谱检测手性苯乙胺含量的方法
CN105987894B (zh) * 2016-07-06 2019-03-05 天津大学 酶偶联核酸-银纳米的探针在检测d-氨基酸的应用
CN106018371B (zh) * 2016-07-06 2019-02-15 天津大学 酶偶联核酸-银纳米探针
CN114277011B (zh) * 2021-12-29 2024-02-06 凯莱英医药集团(天津)股份有限公司 转氨酶突变体及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178685A (ja) * 1992-12-15 1994-06-28 Tokuyama Soda Co Ltd ベンジルアミントランスアミナーゼ
WO1997015682A1 (fr) * 1995-10-23 1997-05-01 Kaneka Corporation Procede de production de composes amines actifs sur le plan optique
WO1998048030A1 (fr) * 1997-04-23 1998-10-29 Kaneka Corporation Procede d'elaboration de composes amino optiquement actifs
JP2846074B2 (ja) * 1989-06-22 1999-01-13 セルジーン、コーポレーション キラルアミン類のエナンチオマー豊富化及び立体選択的合成
WO2000026351A1 (fr) * 1998-10-30 2000-05-11 Kaneka Corporation (S)-α-PHENETHYLAMINE : TRANSAMINASE DE PYRUVATE
JP2002142793A (ja) * 2000-09-01 2002-05-21 Mitsubishi Chemicals Corp 光学活性アミン類の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077183A2 (en) * 2001-03-21 2002-10-03 Elitra Pharmaceuticals, Inc. Identification of essential genes in microorganisms

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2846074B2 (ja) * 1989-06-22 1999-01-13 セルジーン、コーポレーション キラルアミン類のエナンチオマー豊富化及び立体選択的合成
JPH06178685A (ja) * 1992-12-15 1994-06-28 Tokuyama Soda Co Ltd ベンジルアミントランスアミナーゼ
WO1997015682A1 (fr) * 1995-10-23 1997-05-01 Kaneka Corporation Procede de production de composes amines actifs sur le plan optique
WO1998048030A1 (fr) * 1997-04-23 1998-10-29 Kaneka Corporation Procede d'elaboration de composes amino optiquement actifs
WO2000026351A1 (fr) * 1998-10-30 2000-05-11 Kaneka Corporation (S)-α-PHENETHYLAMINE : TRANSAMINASE DE PYRUVATE
JP2002142793A (ja) * 2000-09-01 2002-05-21 Mitsubishi Chemicals Corp 光学活性アミン類の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1889907A4 *
YONAHA K. ET AL.: "gamma-Aminobutyrate: alpha-ketoglutarate aminotransferase from Pseudomonas sp. F-126: purification, crystallization, and enzymologic properties", ARCH. BIOCHEM. BIOPHYS., vol. 200, no. 1, 1980, pages 156 - 164, XP008073133 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090325224A1 (en) * 2006-09-06 2009-12-31 Lonza Ag Process for preparation of optically active n-protected 3-aminopyrrolidine or optically active n-protected 3-aminopiperidine and the corresponding ketones by optical resolution of the racemic amine mixtures employing a bacterial omega-transaminase
WO2009084493A1 (ja) 2007-12-27 2009-07-09 Toray Fine Chemicals Co., Ltd. 光学活性3-アミノピロリジン塩及びその製造方法並びに3-アミノピロリジンの光学分割方法
US7879903B2 (en) 2007-12-27 2011-02-01 Toray Fine Chemicals Co., Ltd. Optically active 3-aminopyrrolidine salt, process for production thereof, and method for optical resolution of 3-aminopyrrolidine
US10550370B2 (en) 2009-01-08 2020-02-04 Codexis, Inc. Transaminase polypeptides
US10323233B2 (en) 2009-01-08 2019-06-18 Codexis, Inc. Transaminase polypeptides
US9944909B2 (en) 2009-01-08 2018-04-17 Codexis, Inc. Polynucleotides encoding transaminase polypeptides
US9029106B2 (en) 2009-01-08 2015-05-12 Codexis, Inc. Transaminase polypeptides
US10995323B2 (en) 2009-01-08 2021-05-04 Codexis, Inc. Transaminase polypeptides
US8470564B2 (en) 2009-01-08 2013-06-25 Codexis, Inc. Transaminase polypeptides
US11939602B2 (en) 2009-01-08 2024-03-26 Codexis, Inc. Transaminase polypeptides
US9512410B2 (en) 2009-01-08 2016-12-06 Codexis, Inc. Engineered transaminase polypeptides
US10323234B2 (en) 2009-01-08 2019-06-18 Codexis, Inc. Transaminase polypeptides
US11542485B2 (en) 2009-01-08 2023-01-03 Codexis, Inc. Transaminase polypeptides
US8889380B2 (en) 2009-02-26 2014-11-18 Codexis, Inc. Transaminase biocatalysts
US10160985B2 (en) 2009-02-26 2018-12-25 Codexis, Inc. Transaminase biocatalysts
US10619176B2 (en) 2009-02-26 2020-04-14 Codexis, Inc. Transaminase biocatalysts
US8293507B2 (en) 2009-02-26 2012-10-23 Codexis, Inc. Transaminase biocatalysts
US9133445B2 (en) 2009-02-26 2015-09-15 Codexis, Inc. Transaminase biocatalysts
US9944963B2 (en) 2009-02-26 2018-04-17 Codexis, Inc. Transaminase biocatalysts
US11078505B2 (en) 2009-02-26 2021-08-03 Codexis, Inc. Transaminase biocatalysts
US9353355B2 (en) 2009-02-26 2016-05-31 Codexis, Inc. Transaminase biocatalysts
US9550982B2 (en) 2009-02-26 2017-01-24 Codexis, Inc. Transaminase biocatalysts
US10138503B2 (en) 2009-06-22 2018-11-27 Codexis, Inc. Transaminase reactions
US11371067B2 (en) 2009-06-22 2022-06-28 Codexis, Inc. Transaminase reactions
US10767202B2 (en) 2009-06-22 2020-09-08 Codexis, Inc. Transaminase reactions
US9434968B2 (en) 2009-06-22 2016-09-06 Codexis, Inc. Transaminase reactions
US8921079B2 (en) 2009-06-22 2014-12-30 Codexis, Inc. Transaminase reactions
US8932838B2 (en) 2010-06-17 2015-01-13 Codexis, Inc. Biocatalysts and methods for the synthesis of (S)-3-(1-aminoethyl)-phenol
US8852900B2 (en) 2010-06-17 2014-10-07 Codexis, Inc. Biocatalysts and methods for the synthesis of (S)-3-(1-aminoethyl)-phenol
US8932836B2 (en) 2010-08-16 2015-01-13 Codexis, Inc. Biocatalysts and methods for the synthesis of (1R,2R)-2-(3,4-dimethoxyphenethoxy)cyclohexanamine
CN103534350A (zh) * 2010-09-28 2014-01-22 株式会社钟化 对于谷氨酸显示高活性的新型氨基转移酶、编码该酶的基因和它们的利用法
JP5878871B2 (ja) * 2010-09-28 2016-03-08 株式会社カネカ 新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの利用法
CN103534350B (zh) * 2010-09-28 2016-03-09 株式会社钟化 对于谷氨酸显示高活性的氨基转移酶、编码该酶的基因和它们的利用法
JP5936545B2 (ja) * 2010-09-28 2016-06-22 株式会社カネカ グルタミン酸に高活性を示す新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの利用法
US9481870B2 (en) 2010-09-28 2016-11-01 Kaneka Corporation Nucleic acid encoding a polypeptide having aminotransferase activity, vectors and host cells comprising the nucleic acid
CN103140580A (zh) * 2010-09-28 2013-06-05 株式会社钟化 新型氨基转移酶、编码该酶的基因和它们的利用法
US9481871B2 (en) 2010-09-28 2016-11-01 Kaneka Corporation Nucleic acid encoding a polpeptide having aminotransferase activity, vectors and host cells comprising the nucleic acid
WO2012043653A1 (ja) 2010-09-28 2012-04-05 株式会社カネカ グルタミン酸に高活性を示す新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの利用法
WO2012043622A1 (ja) * 2010-09-28 2012-04-05 株式会社カネカ 新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの利用法
US9029113B2 (en) 2011-03-11 2015-05-12 Kaneka Corporation Modified aminotransferase, gene thereof, and method for producing optically active amino compound using same
JP5927178B2 (ja) * 2011-03-11 2016-06-01 株式会社カネカ 改変型アミノ基転移酵素、その遺伝子、およびそれらを利用した光学活性アミノ化合物の製造方法
WO2012124639A1 (ja) 2011-03-11 2012-09-20 株式会社カネカ 改変型アミノ基転移酵素、その遺伝子、およびそれらを利用した光学活性アミノ化合物の製造方法

Also Published As

Publication number Publication date
JP4922929B2 (ja) 2012-04-25
EP1889907A4 (en) 2008-07-02
DE602006008934D1 (de) 2009-10-15
US20100285544A1 (en) 2010-11-11
US8431378B2 (en) 2013-04-30
US8133705B2 (en) 2012-03-13
JPWO2006126498A1 (ja) 2008-12-25
EP1889907A1 (en) 2008-02-20
US20120164724A1 (en) 2012-06-28
EP1889907B1 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
WO2006126498A1 (ja) 新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの利用法
JP5102297B2 (ja) 細菌性オメガアミノ基転移酵素を利用したラセミアミン混合物の光学的分解能による光学活性n−保護3−アミノピロリジン又は光学活性n−保護3−アミノピペリジン及び対応するケトンの調製方法
US8168412B2 (en) Method for producing optically-active amine compound, recombinant vector, and transformant containing the vector
Bea et al. Kinetic resolution of α-methylbenzylamine by recombinant Pichia pastoris expressing ω-transaminase
US20050009151A1 (en) Methods for the stereospecific and enantiomeric enrichment of beta-amino acids
JP5878871B2 (ja) 新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの利用法
WO1997015682A1 (fr) Procede de production de composes amines actifs sur le plan optique
CN114657164B (zh) (s)-转氨酶及其应用
JP5936545B2 (ja) グルタミン酸に高活性を示す新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの利用法
CN100334206C (zh) 新型脱氢酶和编码该脱氢酶的基因
EP1045025B1 (en) (S)-alpha-PHENETHYLAMINE : PYRUVATE TRANSAMINASE
US7629154B2 (en) Deinococcus N-acylamino acid racemase and use of preparing L-amino acid
KR102616750B1 (ko) 유전자 조작 박테리아 및 단삼소 생산에서 이의 응용
US20100105111A1 (en) Method for production of optically active amino acid
JP4270910B2 (ja) 光学活性2−ヒドロキシ−2−トリフルオロ酢酸類の製造方法
US20170101654A1 (en) Enzymatic synthesis of optically active chiral amines
JPWO2006080409A1 (ja) 5−置換ヒダントインラセマーゼ、これをコードするdna、組換えdna、形質転換された細胞、および、光学活性n−カルバミルアミノ酸または光学活性アミノ酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007517819

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11920842

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006746704

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006746704

Country of ref document: EP