WO2006123580A1 - Nitride semiconductor device and method for manufacturing same - Google Patents

Nitride semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2006123580A1
WO2006123580A1 PCT/JP2006/309550 JP2006309550W WO2006123580A1 WO 2006123580 A1 WO2006123580 A1 WO 2006123580A1 JP 2006309550 W JP2006309550 W JP 2006309550W WO 2006123580 A1 WO2006123580 A1 WO 2006123580A1
Authority
WO
WIPO (PCT)
Prior art keywords
back surface
semiconductor substrate
region
nitride semiconductor
semiconductor device
Prior art date
Application number
PCT/JP2006/309550
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiaki Hasegawa
Akihiko Ishibashi
Toshiya Yokogawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/570,147 priority Critical patent/US7606276B2/en
Priority to JP2006536906A priority patent/JP4842827B2/en
Publication of WO2006123580A1 publication Critical patent/WO2006123580A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape

Definitions

  • the present invention relates to a nitride semiconductor device and a method for manufacturing the same.
  • III-V nitride semiconductor materials such as gallium nitride (GaN) (Al Ga in N (0
  • ⁇ x ⁇ l, 0 ⁇ y ⁇ l) is a key device for achieving ultra-high-density recording with optical disc devices, and is currently reaching a practical level. is there.
  • Increasing the output of a blue-violet semiconductor laser is an indispensable technology not only for enabling high-speed writing of optical discs but also for developing new technical fields such as application to laser displays.
  • GaN substrate has been considered promising as a substrate necessary for manufacturing a nitride semiconductor device.
  • the GaN substrate is superior in crystal lattice matching and heat dissipation compared to the sapphire substrate that has been used in the past.
  • Another advantage is that the GaN substrate is conductive while the sapphire substrate is insulative.
  • electrodes are also formed on the back side of the GaN substrate and current flows in the direction across the GaN substrate. If an electrode is formed on the back surface of a conductive GaN substrate, it becomes possible to reduce the size (chip area) of each semiconductor device, and if the chip area is reduced, it can be fabricated from a single wafer. Since the total number of chips increases, manufacturing costs can be reduced.
  • Patent Documents 1 to 3 A semiconductor laser in which an n-side electrode is formed on the back surface of a GaN substrate is disclosed in Patent Documents 1 to 3, for example.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-16312
  • Patent Document 2 JP 2004-71657 A
  • Patent Document 3 JP 2004-6718
  • the conventional method is insufficient in improving the contact resistance, and for the reason described in detail later, if a technology for forming irregularities on the back surface of the substrate is adopted at the mass production level, It was also found that there is a problem that it is difficult to manufacture a laser device with a high yield.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a nitride semiconductor device that can be manufactured with high yield while improving the electrical contact characteristics on the back side of the substrate, and its It is to provide a manufacturing method.
  • the nitride semiconductor device of the present invention includes a nitride-based semiconductor substrate containing an n-type impurity, a semiconductor multilayer structure formed on the main surface of the semiconductor substrate and including a p-type region and an n-type region,
  • a nitride semiconductor device comprising: a p-side electrode that contacts a part of the p-type region included in the semiconductor multilayer structure; and an n-side electrode provided on a back surface of the semiconductor substrate, the semiconductor substrate
  • the back surface includes a flat region and a rough surface region, and the n-side electrode covers at least a part of the rough surface region.
  • the flat region on the back surface of the semiconductor substrate has a band shape having a width of 20 m or more, and is located around the rough surface region. ing.
  • the contour of the contact region between the back surface of the semiconductor substrate and the n-side electrode is aligned with the boundary between the flat region and the rough surface region.
  • the rough surface region on the back surface of the semiconductor substrate is a polished surface or a clean surface.
  • the main surface of the semiconductor substrate is a + C polar surface.
  • the flat region on the back surface of the semiconductor substrate is a C polarity surface.
  • the rough surface region on the back surface of the semiconductor substrate has a plurality of concave portions or convex portions formed by etching.
  • a plurality of facets having different plane orientations are formed in the rough surface region on the back surface of the semiconductor substrate.
  • the uneven step of the rough surface region on the back surface of the semiconductor substrate is in a range of lOnm or more and the uneven step of the flat region is 10 ⁇ m or less. .
  • the n-side electrode covers the entire rough surface region on the back surface of the semiconductor substrate.
  • the flat region on the back surface of the semiconductor substrate is disposed so as to contact the cleavage position.
  • the n-side electrode is made of Ti, Al, Pt, Au, Mo, Sn, In, Ni,
  • It has a layer formed of at least one metal or alloy selected from the group consisting of Cr, Nb, Ba, Ag, Rh, Ir, Ru, and Hf.
  • the n-side electrode has a contact resistivity of 5 ⁇ 10 ′′ 4 ⁇ -cm 2 or less.
  • the method for manufacturing a nitride semiconductor device of the present invention includes a step of preparing a nitride semiconductor substrate containing an n-type impurity, and a semiconductor multilayer structure including a p-type region and an n-type region. Forming on the main surface of the substrate; forming a P-side electrode in the p-type region included in the semiconductor multilayer structure; forming an n-side electrode on the back surface of the semiconductor substrate including a nitrogen surface; A method of manufacturing a nitride semiconductor device, comprising: forming a flat region and a rough surface region on the back surface before forming an n-side electrode on the back surface of the semiconductor substrate; and forming the n-side electrode. And cleaving the semiconductor substrate so that a cleavage plane passes through the flat region.
  • a step of reducing the carbon concentration on the back surface is performed.
  • the step of reducing the carbon concentration includes a step of forming an insulating film on the back surface of the semiconductor substrate and a step of removing the insulating film.
  • the step of reducing the carbon concentration is performed in the semiconductor substrate.
  • the method includes a step of depositing an oxide silicon film on the back surface and a step of removing the acid silicon film.
  • the step of forming the rough surface region includes a mask having an opening that exposes a portion of the back surface of the semiconductor substrate where the rough surface region is to be formed. Forming a layer on the back surface of the semiconductor substrate; and performing an etching process on a portion of the back surface of the semiconductor substrate where the rough surface region is to be formed.
  • the step of forming the n-side electrode includes a step of depositing a metal electrode layer on the back surface of the semiconductor substrate so as to cover the mask layer, and a step of forming the metal electrode layer.
  • the effective area of the contact interface is increased by the rough surface area at the interface between the back surface of the nitride-based semiconductor substrate and the n-side electrode, and the carbon concentration at the contact interface is reduced. This also improves the contact characteristics of the n-side electrode. Furthermore, since the cleavage is facilitated, a semiconductor laser device can be manufactured with a high yield.
  • FIG. 1 is a perspective view schematically showing a GaN crystal structure in a GaN substrate.
  • FIG. 2 is a cross-sectional view showing a first embodiment of a nitride semiconductor device according to the present invention.
  • FIG. 3 (a) is a plan view showing a part on the upper surface side of the nitride semiconductor substrate in Embodiment 1
  • FIG. 3 (b) is a plan view showing the back surface side of the nitride semiconductor substrate.
  • FIG. 4 is a cross-sectional view showing the main part of the nitride semiconductor device before cleavage in Embodiment 1.
  • FIG. 5 (a) and (b) are perspective views schematically showing primary cleavage.
  • FIG. 6 is a cross-sectional view showing another embodiment of the nitride semiconductor device according to the present invention.
  • FIG. 7 is a cross-sectional view showing still another embodiment of a nitride semiconductor device according to the present invention. Explanation of symbols
  • the inventor of the present application has attributed the cause of the high electrical external resistance of the n-side electrode formed on the bottom surface of the nitride semiconductor substrate to carbon (C) existing on the back surface of the nitride semiconductor substrate.
  • C carbon
  • the present inventors have found out that it is effective to reduce the contact resistance by reducing the carbon concentration at the interface between the back surface of the nitride semiconductor substrate and the n-side electrode. .
  • the GaN crystal is composed of Ga atoms and N nuclear power, and has a hexagonal crystal structure.
  • the surface (top surface) of the GaN substrate on which epitaxial growth of various semiconductor layers is performed is a surface (Ga surface or + C polar surface) in which Ga atoms are arranged in layers.
  • the back side of the GaN substrate is a surface (nitrogen surface or Is —C polarity plane).
  • the nitrogen surface (hereinafter referred to as the “N surface”) has a property that always appears on the back surface of the GaN substrate even when the GaN substrate is polished from the back surface side and the substrate thickness is reduced to an arbitrary thickness. ing. Note that even in a general nitride semiconductor substrate in which Ga atoms of the GaN substrate are substituted with A1 atoms or In atoms at some sites, the back surface of the substrate is the N plane as described above.
  • the N surface of a nitride semiconductor substrate such as a GaN substrate adsorbs carbon and immediately forms an electrode on the N surface, and then the carbon stabilizes at the interface between the N surface and the electrode.
  • This carbon exists stably at the interface where it does not diffuse to the surroundings even by heat treatment after electrode formation, and functions as an electrical barrier at the contact interface. If the carbon existing on the backside of the substrate can be properly eliminated before the n-side electrode is formed, the electrical barrier existing at the contact interface can be reduced, and the contact characteristics of the n-side electrode can be significantly improved.
  • the GaN substrate has a hexagonal crystal structure
  • the process of separating the individual semiconductor chips (having a substantially rectangular parallelepiped shape! / Spinning) by “cleavage” of the GaN substrate is performed with a high yield. It is very difficult to do.
  • a plurality of “concave arrangements hereinafter referred to as“ cleavage guides ”)” are formed on the cleave line on the upper surface side of the GaN substrate, and “cleave guides” are formed from the back side of the substrate. It is effective to adopt a method of primary cleavage along
  • the GaN substrate Since the GaN substrate has translucency, the position of the “cleavage guide” formed on the upper surface side of the substrate is originally observed by the force on the back surface side of the substrate, and primary cleavage is performed along the cleavage guide. Is possible. However, if unevenness is formed on the entire back surface of the GaN substrate, irregular reflection occurs on the back surface of the substrate, making it impossible to observe the cleavage guide from the back surface of the substrate. For this reason, when unevenness is formed on the back surface of the GaN substrate according to the conventional technology, the cleavage process cannot be performed with a high yield.
  • unevenness is formed only on a specific region, so that the back surface of the substrate is roughened with a flat region (window region). It is divided into surface areas.
  • the n-side electrode is formed so as to cover at least a part of the rough surface region.
  • the “flat region” in this specification is a relatively smooth surface as compared to the “rough surface region”. More specifically, the “flat region” is a portion of the back surface of the substrate that is kept smooth by polishing, and means a region that is not intentionally uneven. However, the “flat region” may be subjected to a cleaning process (cleaning process) after polishing polishing.
  • the “rough surface region” is a portion of the back surface of the substrate where irregularities are intentionally formed by a process such as etching. If the etching for roughening is anisotropic etching with different etching rates depending on the crystal plane orientation, facets having a plurality of different plane orientations are formed in the roughened area.
  • a semiconductor multilayer structure is formed on the surface (Ga surface) of a nitride semiconductor substrate by a known semiconductor growth method using an epitaxy growth technique.
  • the semiconductor stacked structure includes a p-type region and an n-type region.
  • the semiconductor stacked structure includes a double hetero structure and a structure for confining light and current in a certain space.
  • a special process that is, a step of forming a rough surface region in a predetermined region on the back surface of the nitride semiconductor substrate is performed. This step can be performed by covering a part of the back surface of the substrate with a mask layer and then etching a region not covered with the mask layer.
  • surface treatment for reducing the carbon concentration is performed.
  • This treatment includes a step of covering the back surface of the nitride semiconductor substrate with a layer of deposit, and a step of removing this layer by etching. More preferably, after depositing a silicon dioxide (SiO 2) film on the back side of the nitride semiconductor substrate, this Si o Remove the membrane from the back. According to the experiments of the present inventor, the above treatment is performed on the back surface of the substrate.
  • the concentration of carbon existing on the back of the substrate is greatly increased.
  • the effective contact area increases at the interface between the substrate back surface and the n-side electrode, and the interface
  • the carbon concentration in can be reduced below the detection limit of the measuring device. As a result, the contact resistance is greatly reduced.
  • a plurality of recesses (cleavage guides) that define cleavage lines are formed in the upper part of the semiconductor multilayer structure provided on the substrate main surface side.
  • a recess can be easily formed by, for example, a scribe technique and an etching technique.
  • the cleaving guide is observed through the flat region existing at a position not covered by the n-side electrode, and the primary cleavage is performed from the back surface of the substrate along the cleavage guide. Is performed to divide the nitride semiconductor substrate into a plurality of bars. The individual semiconductor laser chips can then be separated from each bar by performing secondary cleavage for each bar.
  • FIG. 2 schematically shows a cross section of the nitride semiconductor device of this embodiment, that is, a GaN-based semiconductor laser.
  • the element cross section shown in the figure is a plane parallel to the resonator end face, and the resonator length direction is orthogonal to the cross section.
  • the semiconductor laser of this embodiment includes an n-type GaN substrate doped with an n-type impurity (thickness: about
  • the semiconductor multilayer structure 100 includes an n-type GaN layer 12, an n-type AlGaN cladding layer 14, a GaN light guide layer 16, an InGaN multiple quantum well layer 18, an InGaN intermediate layer 20, a p-type AlGaN cap layer 22, and a p-type GaN. Includes light guide layer 24, p-type AlGaN cladding layer 26, and p-type GaN contact layer 28 It is out.
  • the impurity concentration (dope concentration) and thickness of each semiconductor layer included in the semiconductor multilayer structure 100 in the present embodiment are as shown in Table 1 below.
  • the p-type GaN contact layer 28 and the p-type AIGaN cladding layer 26 are processed into a ridge stripe shape extending along the resonator length direction.
  • the width of the ridge stripe is, for example, about 1.5 m, and the resonator length is, for example, 600 m.
  • the chip width (element size in the direction parallel to each semiconductor layer in FIG. 5) is, for example, 200 m.
  • the portion excluding the upper surface of the ridge stripe is the SiO layer 3
  • the upper surface of the ridge stripe is exposed at the center of the SiO layer 30.
  • a stripe-shaped opening to be formed is formed.
  • the surface of the p-type GaN contact layer 28 is in contact with the p-side electrode (Pd / Pt) 32 through the opening of the two layers 30.
  • the back surface of the n-type GaN substrate 10 is divided into a rough surface region 40a where unevenness is formed and a flat region 40b where unevenness is not formed.
  • the n-side electrode (TiZPtZAu) 34 is provided so as to cover the rough surface region.
  • the uneven step in the rough surface area 40a is, for example, in the range of 10 nm or more (preferably 50 nm or more) and 1 ⁇ m or less.
  • the uneven step in the flat region 40b is in the range of, for example, not less than 1 nm and not more than 10 nm.
  • the carbon concentration at the interface between the back surface of the n-type GaN substrate 10 and the n-side electrode 34 is reduced to 5 atomic% or less, more specifically to 2 atomic% or less.
  • an n-type GaN substrate 10 prepared by a known method is prepared.
  • the n-type GaN substrate 10 has a thickness of about 400 m, for example.
  • the surface of the n-type GaN substrate 10 is planarized by a polishing cage.
  • the semiconductor multilayer structure 100 is formed on the surface of the n-type GaN substrate 10.
  • the semiconductor stacked structure 100 can be formed by a known epitaxial growth technique.
  • each semiconductor layer is grown as follows.
  • the n-type GaN substrate 10 is inserted into the chamber of a metal organic chemical vapor deposition (MOVPE) apparatus. Thereafter, the surface of the n-type GaN substrate 10 is subjected to a heat treatment (thermal cleaning) of about 500 to L 100 ° C. This heat treatment is performed, for example, at 750 ° C for 1 minute or longer, preferably 5 minutes or longer. During this heat treatment, gases containing nitrogen atoms (N) (N, NH, hydra) (N, NH, hydra) (N, NH, hydra) containing nitrogen atoms
  • the temperature of the reactor is controlled to about 1000 ° C, and trimethylgallium (TMG) and ammonia (NH3) gases as source gases and carrier gases hydrogen and nitrogen are simultaneously supplied.
  • TMG trimethylgallium
  • NH3 ammonia
  • silane (SiH) gas is supplied as an n-type dopant, and the thickness is about 1 ⁇ m.
  • An n-type GaN layer 12 having an object concentration of about 5 ⁇ 10 17 cm 3 is grown.
  • an n-type AlGaN cladding layer 14 having an Al Ga N force of about 1.5 m in thickness and Si impurity concentration of about 5 ⁇ 10 17 cm- 3 is formed.
  • a GaN optical guide layer16 of GaN with a thickness of about 120 nm
  • the temperature is lowered to about 800 ° C.
  • the carrier gas is changed to nitrogen, and trimethylindium (TMI) and TMG are supplied.
  • TMI trimethylindium
  • a multiple quantum well active layer 18 consisting of m InGaN barrier layers (two layers) is grown. That
  • InGaN intermediate layer 20 made of InGaN is grown.
  • the p-type dopant (Mg) diffusion from the p-type semiconductor layer formed on the active layer 18 to the active layer 18 is greatly suppressed, and the active layer 18 can be maintained in high quality even after crystal growth.
  • the temperature in the reactor is again raised to about 1000 ° C, hydrogen is introduced into the carrier gas, and p-type dopant biscyclopentagel magnesium (Cp Mg) Ga
  • Al Ga N with a film thickness of about 20 nm and an Mg impurity concentration of about l X 10 19 cm— 3
  • P-type AlGaN cap layer 22 with 0.20 0.80 force is grown.
  • a second GaN optical guide layer 24 having a thickness of about 20 nm and an Mg impurity concentration of about 1 ⁇ 10 19 cm ⁇ 3 and having a p-type GaN force is grown.
  • a p-type AlGaN cladding layer 26 made of AlGaN having a thickness of about 0.5 m and an impurity concentration of about 1 ⁇ 10 19 cm ⁇ 3 is grown.
  • a p-type GaN contact layer 28 having a thickness of about 0.1 ⁇ m and an Mg impurity concentration of about 1 ⁇ 10 2Q cm— 3 is grown.
  • FIG. 3 (a) is a plan view of a part of the semiconductor substrate as seen from the upper surface side.
  • the rows of cleavage guides 50 are periodically arranged on the line to be cleaved, and function so that cleavage occurs along that line.
  • Each recess functioning as the cleavage guide 50 has, for example, a depth of 1 to 20 ⁇ m, a width of 1 to 5 ⁇ m, and a length of 1 to 40 ⁇ m, and is formed by a scribe process and an etching process. obtain.
  • FIG. 1 is a plan view of a part of the semiconductor substrate as seen from the upper surface side.
  • the rows of cleavage guides 50 are periodically arranged on the line to be cleaved, and function so that cleavage occurs along that line.
  • Each recess functioning as the cleavage guide 50 has, for example, a depth of 1 to 20 ⁇ m, a width of 1 to 5 ⁇ m, and a length of 1 to 40
  • the arrangement pitch of the recesses corresponds to the arrangement pitch of the semiconductor laser element regions on the substrate, but if the cleavage can be guided in an appropriate direction, the recesses are arranged.
  • the shape and the size of the array pitch are arbitrary.
  • the recess has a rhombus shape having an acute angle in the “cleavage direction” when viewed from the upper surface side of the substrate, and a cross-sectional shape perpendicular to the substrate is a weight. This is because, when the row of concave portions having such a shape is used as a cleavage guide, the cleavage of the substrate back side force also proceeds straight along the row of concave portions, and the cleavage yield is improved immediately.
  • the n-type GaN substrate 10 is polished from the back side, and the thickness of the n-type GaN substrate 10 is reduced to about 100 ⁇ m.
  • a mask layer 42 having a lattice shape is formed on the back surface of the n-type GaN substrate 10, and the region that should be covered with the mask layer 42 is exposed to an etching solution. As a result, a large number of etch pits or protrusions are formed to roughen the surface.
  • the etch ing liquid for example, using a Mizusani ⁇ potassium (KOH) or hot phosphoric acid, 10-6 0 minutes at room temperature, by etching the above number density 5 X 10 6 number ZCM 2, the depth 10 ⁇ : LOO Onm pits can be formed.
  • the formation of the roughened region (rough surface region 40a) may be performed by dry etching instead of the above wet etching or in combination with wet etching.
  • the mask layer 42 has a plurality of openings that define the position and shape of the rough surface region 40a, and can be produced, for example, by exposing and developing a resist film.
  • the portion of the back surface of the n-type GaN substrate 10 that is covered with the mask layer 42 corresponds to a portion where primary cleavage or secondary cleavage is performed. Etch pits are not formed in the area of the back surface of the n-type GaN substrate 10 covered with the mask layer 42, and it functions as a flat area 40b.
  • the rough surface region 40a is formed in the region where the n-side electrode 34 is to be formed on the back surface of the substrate by the above method, the area ratio of the N surface at the contact interface is reduced. , The surface area increases. This has the effect of reducing the carbon concentration at the contact interface, and also increases the effective area of the contact, making it possible to reduce the contact resistance.
  • the thickness of the back surface (polished surface) of the n-type GaN substrate 10 is about 0.5 to 1. by the ECR sputtering method for the purpose of further reducing the contact resistance.
  • the SiO film is removed.
  • the SiO film has at least an n-side current on the back surface of the n-type GaN substrate 10.
  • Etchant used to remove the SiO film is hydrofluoric acid.
  • etching it is not limited to etching, and dry etching or a combination of wet etching and dry etching may be used. Even if irregularities are formed on the back surface of the substrate, a part of the N surface may remain in the rough surface region 42, and carbon may be adsorbed on such an N surface, which may deteriorate the contact characteristics. For this reason, it is preferable to perform the above-mentioned back surface treatment (carbon reduction treatment).
  • each metal layer of TiZPtZAu is continuously deposited on the back surface of the n-type GaN substrate 10 in this order from the substrate side.
  • the position on the mask layer 42 is increased.
  • the lift-off of the metal layer to be placed is performed, and the n-side electrode 34 is also formed on the metal layer force located on the rough surface region 40a.
  • sintering is performed in a nitrogen atmosphere (about 300 ° C). This sintering process has the effect of further reducing the contact resistance of the n-side electrode 34. According to this embodiment, it is possible and child contact resistivity of the n-side electrode 34 below 5 X 10- 4 ⁇ 'cm.
  • the n-side electrode 34 is patterned using the mask layer 42 used for forming the rough surface region 40a, the back surface of the n-type GaN substrate 10, the n-side electrode 34, The contour of the contact region is aligned with the boundary between the rough surface region 40a and the flat region 40b.
  • FIG. 4 is a cross-sectional view showing a part of the n-side GaN substrate 10 at the stage where the n-side electrode 34 is formed.
  • the unevenness formed by etching is formed on a part (rough surface region) of the back surface of the substrate. Such irregularities also constitute facet surface forces where crystal planes other than the (000-1) plane are exposed.
  • the rough surface region in this embodiment has a plurality of protrusions formed by etching, and each protrusion (height: 10 to: LOOOnm) is a polygonal pyramid type or a polygonal frustum type, and its surface Consists of facet faces other than the (000-1) face.
  • FIGS. 5 (a) and 5 (b) schematically show the process of forming the semiconductor substrate force bar 10a by primary cleavage.
  • the semiconductor laser shown in FIG. 2 can be obtained by performing secondary cleavage on the bar 10a obtained by primary cleavage.
  • the direction of secondary cleavage is orthogonal to the direction of primary cleavage.
  • the n-side electrode having the rough surface region 40a as the contact surface is formed, it is possible to increase the effective area of the contact surface and reduce the carbon concentration in the contact surface. Therefore, the contact resistance of the n-side electrode can be reduced. Further, as shown in FIG. 3 (b), the cleavage guide can be observed from the back side of the substrate, so that the cleavage can be performed with a high yield. In addition, the flat region 40b on the back surface of the substrate in each semiconductor laser element in which the substrate force is also divided by cleavage is disposed so as to contact the cleavage position.
  • the region 40b has a band shape having a width of 20 / zm or more, and is located around the rough surface region 40a (see FIG. 3B).
  • the layout of the flat region 40b on the back surface of the substrate is not limited to the example shown in FIG.
  • the flat region 40b may be formed at a position where the cleavage guide 50 can be observed from the back side of the substrate.
  • FIGS. 6 and 7 another embodiment of the nitride semiconductor device according to the present invention will be described.
  • the embodiment shown in FIG. 6 has the same configuration as the semiconductor laser device in Embodiment 1 except that the flat region on the back surface of the n-type GaN substrate is covered with an insulating layer 36.
  • an insulating layer 36 such as a SiO film may remain on a part of the back surface of the substrate.
  • the region force where the n-side electrode 34 should be in contact with the backside of the substrate is a force that needs to remove the insulating film. Even if a part of the insulating film remains around the n-side electrode 34 as the insulating layer 36, the contour There is no effect on the tatoo characteristics. Also, leave the insulating layer 34 with strong force such as SiO on the back of the substrate.
  • the insulating layer 34 absorbs light (stray light) leaking from the active layer 18 to the substrate 10, and an effect of reducing noise can be obtained.
  • the embodiment shown in FIG. 7 has the same configuration as the semiconductor laser device of Embodiment 1 except that the back surface of the substrate is inclined. As shown in FIG. 7, the entire back surface of the substrate may be inclined from the N surface. This can be realized by inclining and fixing the back surface of the substrate with respect to the polishing board during polishing of the back surface of the substrate.
  • the present invention since the contact resistance at the interface between the back surface of the substrate and the n-side electrode is reduced, there is a way to use various kinds of powerful metals as materials for the n-electrode. be opened. That is, metals or alloys such as Ti, Al, Pt, Au, Mo, Sn, In, Ni, Cr, Nb, Ba, Ag, Rh, Ir, Ru, or Hf should be used as the material for the n-side electrode. It becomes possible.
  • a GaN substrate is used as the nitride semiconductor substrate.
  • the nitride semiconductor substrate is not limited to GaN, and is a substrate formed of AlGaN, InGaN, or the like. May be. Further, the substrate may be an off-substrate.
  • the present invention contributes to mass production of highly reliable nitride semiconductor lasers and the like in order to improve the n-side electrode contact characteristics in nitride semiconductor devices that are expected to be used as short-wavelength light sources and high breakdown voltage devices. it can.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

A nitride semiconductor device (100) is provided with an n-GaN substrate (1); a semiconductor multilayer structure which is formed on a main plane of the n-GaN substrate (1) and includes a p-type region and an n-type region; a p-side electrode (32) in contact with a part of the p-type region included in the semiconductor multilayer structure; and an n-side electrode (34) provided on a rear plane of the substrate (1). The rear plane of the substrate (1) includes a rough surface region (40a) and a flat surface region (40b), and the n-side electrode (34) covers at least a part of the rough surface region (40a).

Description

明 細 書  Specification
窒化物半導体装置及びその製造方法  Nitride semiconductor device and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、窒化物半導体装置及びその製造方法に関する。  The present invention relates to a nitride semiconductor device and a method for manufacturing the same.
背景技術  Background art
[0002] 窒化ガリウム(GaN)をはじめとする III—V族窒化物半導体材料 (Al Ga in N (0  [0002] III-V nitride semiconductor materials such as gallium nitride (GaN) (Al Ga in N (0
x y Ι-χ-y x y Ι-χ-y
≤x≤l、 0≤y≤l) )を用いて作製される青紫色半導体レーザは、光ディスク装置に よる超高密度記録を実現するためのキーデバイスであり、現在、実用レベルに達しつ つある。青紫色半導体レーザの高出力化は、光ディスクの高速書き込みを可能にす るのみならず、レーザディスプレイへの応用など、新たな技術分野の開拓に必須の技 術である。 ≤x≤l, 0≤y≤l)) is a key device for achieving ultra-high-density recording with optical disc devices, and is currently reaching a practical level. is there. Increasing the output of a blue-violet semiconductor laser is an indispensable technology not only for enabling high-speed writing of optical discs but also for developing new technical fields such as application to laser displays.
[0003] 近年、窒化物半導体装置を製造するために必要な基板として、 GaN基板が有力視 されている。 GaN基板は、従来力も用いられてきたサファイア基板に比べ、結晶の格 子整合や放熱性という点で優れている。また、サファイア基板が絶縁性であるのに対 して、 GaN基板は導電性を有することも利点の 1つである。すなわち、 GaN基板の裏 面側にも電極を形成し、 GaN基板を横切る方向に電流が流れる構造を採用すること が可能になる。導電性を有する GaN基板の裏面に電極を形成すれば、個々の半導 体装置のサイズ (チップ面積)を縮小することが可能になり、チップ面積を縮小すると 、 1枚のウェハから作製され得るチップの総数が増加するため、製造コストを低くする ことができる。  In recent years, a GaN substrate has been considered promising as a substrate necessary for manufacturing a nitride semiconductor device. The GaN substrate is superior in crystal lattice matching and heat dissipation compared to the sapphire substrate that has been used in the past. Another advantage is that the GaN substrate is conductive while the sapphire substrate is insulative. In other words, it is possible to adopt a structure in which electrodes are also formed on the back side of the GaN substrate and current flows in the direction across the GaN substrate. If an electrode is formed on the back surface of a conductive GaN substrate, it becomes possible to reduce the size (chip area) of each semiconductor device, and if the chip area is reduced, it can be fabricated from a single wafer. Since the total number of chips increases, manufacturing costs can be reduced.
[0004] GaN基板の裏面に n側電極を形成した半導体レーザは、例えば、特許文献 1から 3 などに開示されている。  [0004] A semiconductor laser in which an n-side electrode is formed on the back surface of a GaN substrate is disclosed in Patent Documents 1 to 3, for example.
特許文献 1 :特開 2002— 16312号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-16312
特許文献 2:特開 2004— 71657号公報  Patent Document 2: JP 2004-71657 A
特許文献 3:特開 2004— 6718号公報  Patent Document 3: JP 2004-6718
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0005] GaN基板の裏面に n側電極を形成した場合、その電気的コンタクト特性が悪!、と!/、 う問題がある。上記の各特許文献に記載されている従来技術でも、基板裏面に凹凸 を形成するなどして、コンタクト特性の改善を図ろうとしている。 Problems to be solved by the invention [0005] When the n-side electrode is formed on the back surface of the GaN substrate, there is a problem that the electrical contact characteristic is bad! Even in the prior art described in the above patent documents, contact characteristics are improved by forming irregularities on the back surface of the substrate.
[0006] し力しながら、従来の方法では、コンタクト抵抗の改善は不充分であり、また、後に 詳しく説明する理由により、基板裏面に凹凸を形成する技術を量産レベルで採用す ると、半導体レーザ装置を歩留まり良く製造することが困難になるという問題があるこ ともわかった。  [0006] However, the conventional method is insufficient in improving the contact resistance, and for the reason described in detail later, if a technology for forming irregularities on the back surface of the substrate is adopted at the mass production level, It was also found that there is a problem that it is difficult to manufacture a laser device with a high yield.
[0007] 本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、基板裏 面側における電気的コンタクト特性を改善しつつ、歩留まり良く製造され得る窒化物 半導体装置及びその製造方法を提供することにある。  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a nitride semiconductor device that can be manufactured with high yield while improving the electrical contact characteristics on the back side of the substrate, and its It is to provide a manufacturing method.
課題を解決するための手段  Means for solving the problem
[0008] 本発明の窒化物半導体装置は、 n型不純物を含有する窒化物系半導体基板と、前 記半導体基板の主面に形成され、 p型領域および n型領域を含む半導体積層構造と 、前記半導体積層構造に含まれる前記 p型領域の一部に接触する p側電極と、前記 半導体基板の裏面に設けられた n側電極とを備えた窒化物半導体装置であって、前 記半導体基板の裏面は、平坦領域と粗面領域とを含んでおり、前記 n側電極は、前 記粗面領域の少なくとも一部を覆って 、る。  [0008] The nitride semiconductor device of the present invention includes a nitride-based semiconductor substrate containing an n-type impurity, a semiconductor multilayer structure formed on the main surface of the semiconductor substrate and including a p-type region and an n-type region, A nitride semiconductor device comprising: a p-side electrode that contacts a part of the p-type region included in the semiconductor multilayer structure; and an n-side electrode provided on a back surface of the semiconductor substrate, the semiconductor substrate The back surface includes a flat region and a rough surface region, and the n-side electrode covers at least a part of the rough surface region.
[0009] 好ま ヽ実施形態にお!ヽて、前記半導体基板の裏面における前記平坦領域は、 2 0 m以上の幅を有する帯形状を有しており、前記粗面領域の周隨こ位置している。  [0009] Preferably, according to the embodiment, the flat region on the back surface of the semiconductor substrate has a band shape having a width of 20 m or more, and is located around the rough surface region. ing.
[0010] 好ま 、実施形態にぉ 、て、前記半導体基板の裏面と前記 n側電極との接触領域 の輪郭は、前記平坦領域と前記粗面領域との境界と整合して 、る。  [0010] Preferably, according to the embodiment, the contour of the contact region between the back surface of the semiconductor substrate and the n-side electrode is aligned with the boundary between the flat region and the rough surface region.
[0011] 好ましい実施形態において、前記半導体基板の裏面における前記粗面領域は、研 磨加工面または清浄ィ匕処理面である。  In a preferred embodiment, the rough surface region on the back surface of the semiconductor substrate is a polished surface or a clean surface.
[0012] 好ましい実施形態において、前記半導体基板の前記主面は + C極性面である。  In a preferred embodiment, the main surface of the semiconductor substrate is a + C polar surface.
[0013] 好ましい実施形態において、前記半導体基板の裏面における前記平坦領域は C極性面である。 In a preferred embodiment, the flat region on the back surface of the semiconductor substrate is a C polarity surface.
[0014] 好ま 、実施形態にお!、て、前記半導体基板の裏面における前記粗面領域は、ェ ツチングによって形成された複数の凹部または凸部を有している。 [0015] 好ま 、実施形態にぉ 、て、前記半導体基板の裏面における前記粗面領域には、 異なる面方位を有する複数のファセットが形成されている。 Preferably, in the embodiment, the rough surface region on the back surface of the semiconductor substrate has a plurality of concave portions or convex portions formed by etching. Preferably, according to the embodiment, a plurality of facets having different plane orientations are formed in the rough surface region on the back surface of the semiconductor substrate.
[0016] 好ま 、実施形態にお!、て、前記半導体基板の裏面における前記粗面領域の凹 凸段差は、 lOnm以上 以下の範囲にあり、前記平坦領域の凹凸段差は、 10η m以下である。 [0016] Preferably, in the embodiment, the uneven step of the rough surface region on the back surface of the semiconductor substrate is in a range of lOnm or more and the uneven step of the flat region is 10ηm or less. .
[0017] 好ま ヽ実施形態にお!ヽて、前記 n側電極は、前記半導体基板の裏面における前 記粗面領域の全体を覆って 、る。  [0017] Preferably, in the embodiment, the n-side electrode covers the entire rough surface region on the back surface of the semiconductor substrate.
[0018] 好ま ヽ実施形態にお!ヽて、前記半導体基板の裏面における前記平坦領域は、へ き開位置に接するように配置されて 、る。 [0018] Preferably, according to the embodiment, the flat region on the back surface of the semiconductor substrate is disposed so as to contact the cleavage position.
[0019] 好まし!/、実施形態にぉ 、て、前記 n側電極は、 Ti、 Al、 Pt、 Au、 Mo、 Sn、 In、 Ni、[0019] Preferable! / According to the embodiment, the n-side electrode is made of Ti, Al, Pt, Au, Mo, Sn, In, Ni,
Cr、 Nb、 Ba、 Ag、 Rh、 Ir、 Ru、および Hfからなる群から選択された少なくとも 1種類 の金属または合金から形成された層を有して!/、る。 It has a layer formed of at least one metal or alloy selected from the group consisting of Cr, Nb, Ba, Ag, Rh, Ir, Ru, and Hf.
[0020] 好ましい実施形態において、前記 n側電極のコンタクト抵抗率は、 5 X 10"4 Ω -cm2 以下である。 In a preferred embodiment, the n-side electrode has a contact resistivity of 5 × 10 ″ 4 Ω-cm 2 or less.
[0021] 本発明の窒化物半導体装置の製造方法は、 n型不純物を含有する窒化物系半導 体基板を用意する工程と、 p型領域および n型領域を含む半導体積層構造を前記半 導体基板の主面に形成する工程と、前記半導体積層構造に含まれる前記 p型領域 に P側電極を形成する工程と、窒素面を含む前記半導体基板の裏面に n側電極を形 成する工程とを含む窒化物半導体装置の製造方法であって、前記半導体基板の裏 面に n側電極を形成する前に前記裏面に平坦領域と粗面領域を形成する工程と、前 記 n側電極を形成した後、へき開面が前記平坦領域を通るように前記半導体基板の へき開を行う工程とを含む。  [0021] The method for manufacturing a nitride semiconductor device of the present invention includes a step of preparing a nitride semiconductor substrate containing an n-type impurity, and a semiconductor multilayer structure including a p-type region and an n-type region. Forming on the main surface of the substrate; forming a P-side electrode in the p-type region included in the semiconductor multilayer structure; forming an n-side electrode on the back surface of the semiconductor substrate including a nitrogen surface; A method of manufacturing a nitride semiconductor device, comprising: forming a flat region and a rough surface region on the back surface before forming an n-side electrode on the back surface of the semiconductor substrate; and forming the n-side electrode. And cleaving the semiconductor substrate so that a cleavage plane passes through the flat region.
[0022] 好まし 、実施形態にぉ 、て、前記半導体基板の裏面に平坦領域と粗面領域を形 成した後、前記半導体基板の裏面に n側電極を形成する前に、前記半導体基板の 裏面における炭素濃度を低減する工程を行なう。  Preferably, according to the embodiment, after forming the flat region and the rough surface region on the back surface of the semiconductor substrate, and before forming the n-side electrode on the back surface of the semiconductor substrate, A step of reducing the carbon concentration on the back surface is performed.
[0023] 好ま ヽ実施形態にお!ヽて、前記炭素濃度を低減する工程は、前記半導体基板の 裏面に絶縁膜を形成する工程と、前記絶縁膜を除去する工程とを含む。  [0023] Preferably, according to the embodiment, the step of reducing the carbon concentration includes a step of forming an insulating film on the back surface of the semiconductor substrate and a step of removing the insulating film.
[0024] 好ま ヽ実施形態にお!ヽて、前記炭素濃度を低減する工程は、前記半導体基板の 裏面に酸ィ匕シリコン膜を堆積する工程と、前記酸ィ匕シリコン膜を除去する工程とを含 む。 [0024] Preferably, in the embodiment, the step of reducing the carbon concentration is performed in the semiconductor substrate. The method includes a step of depositing an oxide silicon film on the back surface and a step of removing the acid silicon film.
[0025] 好ま ヽ実施形態にお!ヽて、前記粗面領域を形成する工程は、前記半導体基板の 裏面のうち、前記粗面領域が形成されるべき部分を露出させる開口部を備えたマスク 層を前記半導体基板の裏面に形成する工程と、前記半導体基板の裏面のうち、前 記粗面領域が形成されるべき部分にエッチング処理を行う工程とを含む。  [0025] Preferably, in the embodiment, the step of forming the rough surface region includes a mask having an opening that exposes a portion of the back surface of the semiconductor substrate where the rough surface region is to be formed. Forming a layer on the back surface of the semiconductor substrate; and performing an etching process on a portion of the back surface of the semiconductor substrate where the rough surface region is to be formed.
[0026] 好ま ヽ実施形態にお!ヽて、前記 n側電極を形成する工程は、前記半導体基板の 裏面に前記マスク層を覆うように金属電極層を堆積する工程と、前記金属電極層のう ち前記マスク層上に位置する部分を、前記マスク層とともに除去することにより、前記 金属電極層を前記 n側電極にパターユングする工程とを含む。  [0026] Preferably, in the embodiment, the step of forming the n-side electrode includes a step of depositing a metal electrode layer on the back surface of the semiconductor substrate so as to cover the mask layer, and a step of forming the metal electrode layer. A step of patterning the metal electrode layer on the n-side electrode by removing a portion located on the mask layer together with the mask layer.
発明の効果  The invention's effect
[0027] 本発明によれば、窒化物系半導体基板の裏面と n側電極との界面における粗面領 域によってコンタクト界面の実効的な面積が増加し、また、コンタクト界面における炭 素濃度が低減する効果も得られるため、 n側電極のコンタクト特性が改善される。更 に、へき開が容易になるため、歩留まり良く半導体レーザ装置を製造することが可能 になる。  [0027] According to the present invention, the effective area of the contact interface is increased by the rough surface area at the interface between the back surface of the nitride-based semiconductor substrate and the n-side electrode, and the carbon concentration at the contact interface is reduced. This also improves the contact characteristics of the n-side electrode. Furthermore, since the cleavage is facilitated, a semiconductor laser device can be manufactured with a high yield.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 l]GaN基板における GaN結晶構造を模式的に示す斜視図である。 FIG. 1 is a perspective view schematically showing a GaN crystal structure in a GaN substrate.
[図 2]本発明による窒化物半導体装置の第 1の実施形態を示す断面図である。  FIG. 2 is a cross-sectional view showing a first embodiment of a nitride semiconductor device according to the present invention.
[図 3] (a)は、実施形態 1における窒化物半導体基板の上面側の一部を示す平面図 であり、(b)は、当該窒化物半導体基板の裏面側を示す平面図である。  FIG. 3 (a) is a plan view showing a part on the upper surface side of the nitride semiconductor substrate in Embodiment 1, and FIG. 3 (b) is a plan view showing the back surface side of the nitride semiconductor substrate.
[図 4]実施形態 1のへき開前における窒化物半導体装置の主要部を示す断面図であ る。  FIG. 4 is a cross-sectional view showing the main part of the nitride semiconductor device before cleavage in Embodiment 1.
[図 5] (a)および (b)は、一次へき開を模式的に示す斜視図である。  FIG. 5 (a) and (b) are perspective views schematically showing primary cleavage.
[図 6]本発明による窒化物半導体装置の他の実施形態を示す断面図である。  FIG. 6 is a cross-sectional view showing another embodiment of the nitride semiconductor device according to the present invention.
[図 7]本発明による窒化物半導体装置の更に他の実施形態を示す断面図である。 符号の説明  FIG. 7 is a cross-sectional view showing still another embodiment of a nitride semiconductor device according to the present invention. Explanation of symbols
[0029] 10 n型 GaN基板 10a ノ^1 ~" [0029] 10 n-type GaN substrate 10a no ^ 1 ~ "
12 n型 GaN層  12 n-type GaN layer
14 n型 AlGaNクラッド層  14 n-type AlGaN cladding layer
16 GaN光ガイド層  16 GaN light guide layer
18 InGaN多重量子井戸層  18 InGaN multiple quantum well layers
20 InGaN中間層  20 InGaN interlayer
22 p型 AlGaNキャップ層  22 p-type AlGaN cap layer
24 p型 GaN光ガイド層  24 p-type GaN optical guide layer
26 p型 AlGaNクラッド層  26 p-type AlGaN cladding layer
28 p型 GaNコンタクト層  28 p-type GaN contact layer
30 SiO層  30 SiO layer
2  2
32 P側電極 (PdZPt)  32 P side electrode (PdZPt)
34 n側電極 (TiZPtZAu)  34 n-side electrode (TiZPtZAu)
36 SiO層  36 SiO layer
2  2
40a 基板裏面における粗面領域  40a Rough surface area on the back of the substrate
40b 基板裏面における平坦領域  40b Flat area on the back of the substrate
50 へき開ガイド  50 cleavage guide
100 半導体積層構造  100 Semiconductor laminated structure
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 本願発明者は、窒化物半導体基板の裏面 (bottom surface)に形成した n側電極の 電気的コンタ外抵抗が高い原因が、窒化物半導体基板の裏面に存在する炭素 (C) に起因することを実験的に突き止め、また、窒化物半導体基板の裏面と n側電極との 界面の炭素濃度を低減することがコンタクト抵抗低減に有効であることを見出し、本 発明を想到するに ヽたった。  [0030] The inventor of the present application has attributed the cause of the high electrical external resistance of the n-side electrode formed on the bottom surface of the nitride semiconductor substrate to carbon (C) existing on the back surface of the nitride semiconductor substrate. In addition, the present inventors have found out that it is effective to reduce the contact resistance by reducing the carbon concentration at the interface between the back surface of the nitride semiconductor substrate and the n-side electrode. .
[0031] GaN結晶は、図 1に示すように Ga原子と N原子力も構成されており、六方晶構造を 有して 、る。各種半導体層のェピタキシャル成長が行なわれる側の GaN基板の表面 (top surface)は、 Ga原子が層状に配列した面(Ga面または + C極性面)である。これ に対して、 GaN基板の裏面は、窒素原子 (N原子)が層状に配列した面 (窒素面また は— C極性面)である。窒素面(以下、「N面」と称する。)は、 GaN基板を裏面側から 研磨し、基板厚さを任意の厚さに減じた場合でも、常に GaN基板の裏面に現れる性 質を有している。なお、 GaN基板の Ga原子が一部のサイトで A1原子や In原子と置換 している一般の窒化物半導体基板でも、上記と同様に基板裏面は N面である。 [0031] As shown in Fig. 1, the GaN crystal is composed of Ga atoms and N nuclear power, and has a hexagonal crystal structure. The surface (top surface) of the GaN substrate on which epitaxial growth of various semiconductor layers is performed is a surface (Ga surface or + C polar surface) in which Ga atoms are arranged in layers. On the other hand, the back side of the GaN substrate is a surface (nitrogen surface or Is —C polarity plane). The nitrogen surface (hereinafter referred to as the “N surface”) has a property that always appears on the back surface of the GaN substrate even when the GaN substrate is polished from the back surface side and the substrate thickness is reduced to an arbitrary thickness. ing. Note that even in a general nitride semiconductor substrate in which Ga atoms of the GaN substrate are substituted with A1 atoms or In atoms at some sites, the back surface of the substrate is the N plane as described above.
[0032] 本願発明者の検討によると、 GaN基板などの窒化物半導体基板の N面は、炭素を 吸着しやすぐ N面に電極を形成した後、 N面と電極との界面に炭素が安定に存在し 続ける。この炭素は、電極形成後の熱処理によっても周囲に拡散することなぐ界面 に安定に存在し、コンタクト界面における電気的障壁として機能する。基板裏面に存 在する炭素を、 n側電極形成前に適切に排除できれば、コンタクト界面に存在する電 気的障壁を小さくし、 n側電極のコンタクト特性を格段に改善できる。  According to the study of the present inventor, the N surface of a nitride semiconductor substrate such as a GaN substrate adsorbs carbon and immediately forms an electrode on the N surface, and then the carbon stabilizes at the interface between the N surface and the electrode. Continue to exist. This carbon exists stably at the interface where it does not diffuse to the surroundings even by heat treatment after electrode formation, and functions as an electrical barrier at the contact interface. If the carbon existing on the backside of the substrate can be properly eliminated before the n-side electrode is formed, the electrical barrier existing at the contact interface can be reduced, and the contact characteristics of the n-side electrode can be significantly improved.
[0033] GaN基板の裏面に凹凸を形成し、粗面化すると、基板裏面に占める N面の割合( 面積比率)を低下させることができる。しかし、従来技術によって基板裏面に凹凸を形 成すると、 GaN基板の「へき開」を歩留まり良く実行することが難しくなるという問題が ある。以下、この問題を説明する。  When irregularities are formed on the back surface of the GaN substrate and roughened, the ratio (area ratio) of the N surface occupying the back surface of the substrate can be reduced. However, if irregularities are formed on the back surface of the substrate by the conventional technology, there is a problem that it is difficult to perform “cleavage” of the GaN substrate with a high yield. Hereinafter, this problem will be described.
[0034] GaN基板は六方晶構造を有しているため、 GaN基板の「へき開」によって個々の半 導体チップ (略直方体の形状を有して!/ヽる)に分離する工程を歩留まり良く実行する ことは非常に難しい。このへき開を歩留まり良く行うには、 GaN基板の上面側のへき 開予定ライン上に複数の「凹部の配列(以下、『へキ開ガイド』と称する)」を形成し、 基板裏面から「へき開ガイド」に沿って一次へき開を行う方法を採用することが有効で ある。  [0034] Since the GaN substrate has a hexagonal crystal structure, the process of separating the individual semiconductor chips (having a substantially rectangular parallelepiped shape! / Spinning) by “cleavage” of the GaN substrate is performed with a high yield. It is very difficult to do. In order to perform this cleavage with a high yield, a plurality of “concave arrangements (hereinafter referred to as“ cleavage guides ”)” are formed on the cleave line on the upper surface side of the GaN substrate, and “cleave guides” are formed from the back side of the substrate. It is effective to adopt a method of primary cleavage along
[0035] GaN基板は透光性を有しているため、本来は、基板上面側に形成した「へき開ガイ ド」の位置を基板裏面側力 観察し、へき開ガイドに沿って一次へき開を行うことが可 能である。しかし、 GaN基板の裏面全面に凹凸を形成していると、基板裏面での乱 反射が生じるため、へき開ガイドを基板裏面から観察できなくなる。このため、従来技 術に従って GaN基板の裏面に凹凸を形成した場合、へき開工程を歩留まり良く実行 できないことになつてしまう。  [0035] Since the GaN substrate has translucency, the position of the “cleavage guide” formed on the upper surface side of the substrate is originally observed by the force on the back surface side of the substrate, and primary cleavage is performed along the cleavage guide. Is possible. However, if unevenness is formed on the entire back surface of the GaN substrate, irregular reflection occurs on the back surface of the substrate, making it impossible to observe the cleavage guide from the back surface of the substrate. For this reason, when unevenness is formed on the back surface of the GaN substrate according to the conventional technology, the cleavage process cannot be performed with a high yield.
[0036] そこで、本発明では、窒化物半導体基板の裏面全面に凹凸を形成する代わりに、 特定の領域にのみ凹凸を形成することにより、基板裏面を、平坦領域 (窓領域)と粗 面領域とに区分けしている。そして、 n側電極は、粗面領域の少なくとも一部を覆うよ うに形成する。 Therefore, in the present invention, instead of forming unevenness on the entire back surface of the nitride semiconductor substrate, unevenness is formed only on a specific region, so that the back surface of the substrate is roughened with a flat region (window region). It is divided into surface areas. The n-side electrode is formed so as to cover at least a part of the rough surface region.
[0037] なお、本明細書における「平坦領域」は、「粗面領域」に比べて相対的に平滑な面 である。より具体的には、「平坦領域」は、基板裏面のうち、研磨加工によって平滑ィ匕 された状態を保つ部分であり、意図的に凹凸が形成されていない領域を意味してい る。ただし、この「平坦領域」は、研磨カ卩ェ後に清浄ィ匕のための処理 (クリーニング処 理)を受けていてもよい。一方、「粗面領域」は、基板裏面のうち、エッチングなどの処 理によって意図的に凹凸を形成した部分である。粗面化のためのエッチングが、結 晶面方位に応じてエッチング速度の異なる異方性エッチングであれば、粗面領域に は複数の異なる面方位を有するファセットが形成される。  Note that the “flat region” in this specification is a relatively smooth surface as compared to the “rough surface region”. More specifically, the “flat region” is a portion of the back surface of the substrate that is kept smooth by polishing, and means a region that is not intentionally uneven. However, the “flat region” may be subjected to a cleaning process (cleaning process) after polishing polishing. On the other hand, the “rough surface region” is a portion of the back surface of the substrate where irregularities are intentionally formed by a process such as etching. If the etching for roughening is anisotropic etching with different etching rates depending on the crystal plane orientation, facets having a plurality of different plane orientations are formed in the roughened area.
[0038] 本発明によれば、基板裏面の平坦領域では乱反射が生じないため、基板上面側に 「へき開ガイド」を形成した場合、当該「へき開ガイド」を基板裏面側から観察し、適切 に一次へき開を実行することができる。  [0038] According to the present invention, irregular reflection does not occur in the flat region on the back surface of the substrate. Therefore, when the "cleavage guide" is formed on the upper surface side of the substrate, the "cleavage guide" is observed from the back surface side of the substrate and appropriately primary. Cleavage can be performed.
[0039] 以下、本発明による窒化物半導体装置の製造方法を説明する。  Hereinafter, a method for manufacturing a nitride semiconductor device according to the present invention will be described.
[0040] まず、本発明では、窒化物半導体基板の表面 (Ga面)上に、ェピタキシャル成長技 術を用いた公知の半導体成長法により、半導体積層構造を形成する。半導体積層 構造は、 p型領域および n型領域を含む。半導体レーザなどの発光素子を製造する 場合、半導体積層構造は、ダブルへテロ構造と、光および電流を一定空間内に閉じ 込めるための構造とを含むことになる。  First, in the present invention, a semiconductor multilayer structure is formed on the surface (Ga surface) of a nitride semiconductor substrate by a known semiconductor growth method using an epitaxy growth technique. The semiconductor stacked structure includes a p-type region and an n-type region. When a light emitting device such as a semiconductor laser is manufactured, the semiconductor stacked structure includes a double hetero structure and a structure for confining light and current in a certain space.
[0041] 窒化物基板の表面側において、半導体積層構造中の p型領域に電気的に接触す る P側電極を形成した後、窒化物半導体基板の裏面に n側電極を形成する前に、本 発明では、特別の処理、すなわち、窒化物半導体基板の裏面における所定領域に 粗面領域を形成する工程を行なう。この工程は、基板裏面の一部をマスク層で覆つ た後、マスク層で覆われていない領域をエッチングすることによって行うことができる。  [0041] After forming the P-side electrode in electrical contact with the p-type region in the semiconductor multilayer structure on the surface side of the nitride substrate, before forming the n-side electrode on the back surface of the nitride semiconductor substrate, In the present invention, a special process, that is, a step of forming a rough surface region in a predetermined region on the back surface of the nitride semiconductor substrate is performed. This step can be performed by covering a part of the back surface of the substrate with a mask layer and then etching a region not covered with the mask layer.
[0042] 好まし 、実施形態にぉ ヽて、基板裏面に粗面領域および平坦領域を形成した後、 炭素濃度低減のための表面処理を行う。この処理は、窒化物半導体基板の裏面を 堆積物の層で覆う工程と、この層をエッチングによって除去する工程とを含む。より好 ましくは、窒化物半導体基板の裏面に二酸化シリコン (SiO )膜を堆積した後、この Si o膜を裏面から取り除く。本発明者の実験によれば、基板裏面に対して、上記の処Preferably, according to the embodiment, after the rough surface region and the flat region are formed on the back surface of the substrate, surface treatment for reducing the carbon concentration is performed. This treatment includes a step of covering the back surface of the nitride semiconductor substrate with a layer of deposit, and a step of removing this layer by etching. More preferably, after depositing a silicon dioxide (SiO 2) film on the back side of the nitride semiconductor substrate, this Si o Remove the membrane from the back. According to the experiments of the present inventor, the above treatment is performed on the back surface of the substrate.
2 2
理 (SiO膜の堆積と除去)を行うことにより、基板裏面に存在する炭素の濃度を大幅 By performing the process (deposition and removal of SiO film), the concentration of carbon existing on the back of the substrate is greatly increased.
2 2
に低減し、それによつてコンタクト抵抗を低減する効果が得られることがわ力つて 、る  Therefore, the effect of reducing the contact resistance can be obtained.
[0043] 上記の各工程 (裏面処理)を行なった後、窒化物半導体基板の裏面に n側電極を 形成すると、基板裏面と n側電極と界面では実効的な接触面積が増大するとともに、 界面における炭素濃度が測定装置の検出限界以下に低減され得る。これらのことよ り、コンタクト抵抗が大きく低減されることになる。 [0043] When the n-side electrode is formed on the back surface of the nitride semiconductor substrate after performing the above steps (back surface treatment), the effective contact area increases at the interface between the substrate back surface and the n-side electrode, and the interface The carbon concentration in can be reduced below the detection limit of the measuring device. As a result, the contact resistance is greatly reduced.
[0044] 好ましい実施形態では、基板主面側に設けた半導体積層構造の上部にへき開ライ ンを規定する複数の凹部 (へき開ガイド)を形成する。このような凹部は、例えば、スク ライブ技術およびエッチング技術により、容易に形成することができる。  In a preferred embodiment, a plurality of recesses (cleavage guides) that define cleavage lines are formed in the upper part of the semiconductor multilayer structure provided on the substrate main surface side. Such a recess can be easily formed by, for example, a scribe technique and an etching technique.
[0045] 基板裏面に n側電極を形成した後、 n側電極に覆われてない位置に存在する平坦 領域を介して上記のへき開ガイドを観察しつつ、へき開ガイドに沿って基板裏面から 一次へき開を行うことにより、窒化物半導体基板を複数のバーに分割する。ついで、 各バーに対する二次へき開を行うことにより、各バーから個々の半導体レーザチップ を分離することができる。  [0045] After the n-side electrode is formed on the back surface of the substrate, the cleaving guide is observed through the flat region existing at a position not covered by the n-side electrode, and the primary cleavage is performed from the back surface of the substrate along the cleavage guide. Is performed to divide the nitride semiconductor substrate into a plurality of bars. The individual semiconductor laser chips can then be separated from each bar by performing secondary cleavage for each bar.
[0046] (実施形態 1) [Embodiment 1]
以下、図面を参照しながら、本発明による窒化物半導体装置及びその製造方法の 第 1の実施形態を説明する。  Hereinafter, a first embodiment of a nitride semiconductor device and a method for manufacturing the same according to the present invention will be described with reference to the drawings.
[0047] まず、図 2を参照する。図 2は、本実施形態の窒化物半導体装置、すなわち GaN系 半導体レーザの断面を模式的に示している。図示されている素子断面は、共振器端 面に平行な面であり、共振器長方向は、この断面に直交している。 [0047] First, reference is made to FIG. FIG. 2 schematically shows a cross section of the nitride semiconductor device of this embodiment, that is, a GaN-based semiconductor laser. The element cross section shown in the figure is a plane parallel to the resonator end face, and the resonator length direction is orthogonal to the cross section.
[0048] 本実施形態の半導体レーザは、 n型不純物がドープされた n型 GaN基板 (厚さ:約[0048] The semiconductor laser of this embodiment includes an n-type GaN substrate doped with an n-type impurity (thickness: about
100 μ m) 10と、 n型 GaN基板 10の表面(Ga面)に設けられた半導体積層構造 100 とを備えている。 100 μm) 10 and a semiconductor multilayer structure 100 provided on the surface (Ga surface) of the n-type GaN substrate 10.
[0049] 半導体積層構造 100は、 n型 GaN層 12、 n型 AlGaNクラッド層 14、 GaN光ガイド 層 16、 InGaN多重量子井戸層 18、 InGaN中間層 20、 p型 AlGaNキャップ層 22、 p 型 GaN光ガイド層 24、 p型 AlGaNクラッド層 26、及び p型 GaNコンタクト層 28を含ん でいる。 [0049] The semiconductor multilayer structure 100 includes an n-type GaN layer 12, an n-type AlGaN cladding layer 14, a GaN light guide layer 16, an InGaN multiple quantum well layer 18, an InGaN intermediate layer 20, a p-type AlGaN cap layer 22, and a p-type GaN. Includes light guide layer 24, p-type AlGaN cladding layer 26, and p-type GaN contact layer 28 It is out.
[0050] 本実施形態における半導体積層構造 100に含まれる各半導体層の不純物濃度(ド 一パント濃度)や厚さは、以下の表 1に示すとおりである。  [0050] The impurity concentration (dope concentration) and thickness of each semiconductor layer included in the semiconductor multilayer structure 100 in the present embodiment are as shown in Table 1 below.
[0051] [表 1] [0051] [Table 1]
Figure imgf000011_0001
Figure imgf000011_0001
[0052] なお、表 1に示す不純物、不純物濃度、および各半導体層の厚さは、一例に過ぎ ず、本発明を限定するものではない。 Note that the impurities, impurity concentration, and thickness of each semiconductor layer shown in Table 1 are merely examples, and do not limit the present invention.
[0053] 半導体積層構造 100のうち、 p型 GaNコンタクト層 28及び p型 AIGaNクラッド層 26 は、共振器長方向に沿って延びるリッジストライプの形状に加工されている。リッジスト ライプの幅は、例えば 1. 5 m程度であり、共振器長は例えば 600 mである。チッ プ幅(図 5において、各半導体層に平行な方向の素子サイズ)は、例えば 200 mで ある。  [0053] In the semiconductor multilayer structure 100, the p-type GaN contact layer 28 and the p-type AIGaN cladding layer 26 are processed into a ridge stripe shape extending along the resonator length direction. The width of the ridge stripe is, for example, about 1.5 m, and the resonator length is, for example, 600 m. The chip width (element size in the direction parallel to each semiconductor layer in FIG. 5) is, for example, 200 m.
[0054] 半導体積層構造 100の上面のうち、リッジストライプの上面を除く部分は、 SiO層 3  [0054] Of the upper surface of the semiconductor multilayer structure 100, the portion excluding the upper surface of the ridge stripe is the SiO layer 3
2 2
0によって被覆されており、 SiO層 30の中央部にはリッジストライプの上面を露出さ The upper surface of the ridge stripe is exposed at the center of the SiO layer 30.
2  2
せるストライプ状の開口部が形成されている。 SiO  A stripe-shaped opening to be formed is formed. SiO
2層 30の開口部を介して、 p型 GaN コンタクト層 28の表面は p側電極 (Pd/Pt) 32と接触して 、る。  The surface of the p-type GaN contact layer 28 is in contact with the p-side electrode (Pd / Pt) 32 through the opening of the two layers 30.
[0055] n型 GaN基板 10の裏面は、凹凸が形成された粗面領域 40aと、凹凸が形成されて いない平坦領域 40bとに区分されている。 n側電極 (TiZPtZAu) 34は、粗面領域 を覆うように設けられている。粗面領域 40aにおける凹凸段差は、例えば 10nm以上 (好ましくは 50nm以上) 1 μ m以下の範囲にある。平坦領域 40bにおける凹凸段差 は、例えば lnm以上 10nm以下の範囲にある。 [0056] 本実施形態では、 n型 GaN基板 10の裏面と n側電極 34との界面における炭素濃 度が 5原子%以下、より具体的には 2原子%以下に低減されている。 [0055] The back surface of the n-type GaN substrate 10 is divided into a rough surface region 40a where unevenness is formed and a flat region 40b where unevenness is not formed. The n-side electrode (TiZPtZAu) 34 is provided so as to cover the rough surface region. The uneven step in the rough surface area 40a is, for example, in the range of 10 nm or more (preferably 50 nm or more) and 1 μm or less. The uneven step in the flat region 40b is in the range of, for example, not less than 1 nm and not more than 10 nm. In the present embodiment, the carbon concentration at the interface between the back surface of the n-type GaN substrate 10 and the n-side electrode 34 is reduced to 5 atomic% or less, more specifically to 2 atomic% or less.
[0057] 以下、本実施形態に係る窒化物半導体装置を製造する方法の好ま ヽ実施形態 を説明する。  Hereinafter, a preferred embodiment of a method for manufacturing a nitride semiconductor device according to this embodiment will be described.
[0058] まず、公知の方法で作製された n型 GaN基板 10を用意する。 n型 GaN基板 10の 厚さは、例えば約 400 m程度である。 n型 GaN基板 10の表面は、研磨カ卩ェにより 平坦化されている。  [0058] First, an n-type GaN substrate 10 prepared by a known method is prepared. The n-type GaN substrate 10 has a thickness of about 400 m, for example. The surface of the n-type GaN substrate 10 is planarized by a polishing cage.
[0059] 次に、 n型 GaN基板 10の表面に半導体積層構造 100を形成する。半導体積層構 造 100の形成は、公知のェピタキシャル成長技術によって行なうことができる。例え ば、以下のようにして各半導体層を成長させる。  Next, the semiconductor multilayer structure 100 is formed on the surface of the n-type GaN substrate 10. The semiconductor stacked structure 100 can be formed by a known epitaxial growth technique. For example, each semiconductor layer is grown as follows.
[0060] まず、 n型 GaN基板 10を有機金属気相成長(MOVPE)装置のチャンバ内に挿入 する。この後、 n型 GaN基板 10の表面に対し、 500〜: L 100°C程度の熱処理(サーマ ルクリーニング)を行なう。この熱処理は、例えば 750°Cで 1分以上、望ましくは 5分以 上行なう。この熱処理を行なっている間、窒素原子 (N)を含むガス (N、 NH、ヒドラ  First, the n-type GaN substrate 10 is inserted into the chamber of a metal organic chemical vapor deposition (MOVPE) apparatus. Thereafter, the surface of the n-type GaN substrate 10 is subjected to a heat treatment (thermal cleaning) of about 500 to L 100 ° C. This heat treatment is performed, for example, at 750 ° C for 1 minute or longer, preferably 5 minutes or longer. During this heat treatment, gases containing nitrogen atoms (N) (N, NH, hydra
2 3 ジンなど)をチャンバ内に流すことが好ましい。  2 3 gin) is preferably flowed into the chamber.
[0061] その後、反応炉を約 1000°Cに温度制御し、原料ガスとしてトリメチルガリウム (TM G)およびアンモニア (NH )ガスと、キャリアガスである水素と窒素とを同時に供給す [0061] Thereafter, the temperature of the reactor is controlled to about 1000 ° C, and trimethylgallium (TMG) and ammonia (NH3) gases as source gases and carrier gases hydrogen and nitrogen are simultaneously supplied.
3  Three
るとともに、 n型ドーパントとしてシラン (SiH )ガスも供給し、厚さが約 1 μ mで Si不純  In addition, silane (SiH) gas is supplied as an n-type dopant, and the thickness is about 1 μm.
4  Four
物濃度が約 5 X 1017cm 3の n型 GaN層 12を成長させる。 An n-type GaN layer 12 having an object concentration of about 5 × 10 17 cm 3 is grown.
[0062] 次に、トリメチルアルミニウム (TMA)も供給しながら、厚さが約 1. 5 mで Si不純物 濃度が約 5 X 1017cm— 3の Al Ga N力もなる n型 AlGaNクラッド層 14を成長させる Next, while supplying trimethylaluminum (TMA), an n-type AlGaN cladding layer 14 having an Al Ga N force of about 1.5 m in thickness and Si impurity concentration of about 5 × 10 17 cm- 3 is formed. Grow
0.05 0.95  0.05 0.95
。その後、厚さが約 120nmの GaNからなる GaN光ガイド層 16を成長させた後、温度 を約 800°Cまで降温し、キャリアガスを窒素に変更して、トリメチルインジウム (TMI)と TMGを供給して、膜厚が約 3nmの In Ga N力もなる量子井戸(3層)と膜厚約 9n  . Then, after growing a GaN optical guide layer16 of GaN with a thickness of about 120 nm, the temperature is lowered to about 800 ° C., the carrier gas is changed to nitrogen, and trimethylindium (TMI) and TMG are supplied. A quantum well (3 layers) with an InGaN force of about 3 nm and a thickness of about 9 n
0.10 0.90  0.10 0.90
mの In Ga Nバリア層(2層)からなる多重量子井戸活性層 18を成長させる。その A multiple quantum well active layer 18 consisting of m InGaN barrier layers (two layers) is grown. That
0.02 0.98 0.02 0.98
後、 In Ga Nからなる InGaN中間層 20を成長させる。 InGaN中間層 20は、その Thereafter, an InGaN intermediate layer 20 made of InGaN is grown. InGaN intermediate layer 20
0.01 0.99 0.01 0.99
上に形成する p型の半導体層から活性層 18への p型ドーパント (Mg)拡散を大幅に 抑制し、結晶成長後も活性層 18を高品質に維持することができる。 [0063] 次に、再び反応炉内の温度を約 1000°Cにまで昇温し、キャリアガスを窒素に水素 も導入して、 p型ドーパントであるビスシクロペンタジェ-ルマグネシウム(Cp Mg)ガ The p-type dopant (Mg) diffusion from the p-type semiconductor layer formed on the active layer 18 to the active layer 18 is greatly suppressed, and the active layer 18 can be maintained in high quality even after crystal growth. [0063] Next, the temperature in the reactor is again raised to about 1000 ° C, hydrogen is introduced into the carrier gas, and p-type dopant biscyclopentagel magnesium (Cp Mg) Ga
2 スを供給しながら、膜厚約 20nmで Mg不純物濃度が約 l X 1019cm— 3の Al Ga N Al Ga N with a film thickness of about 20 nm and an Mg impurity concentration of about l X 10 19 cm— 3
0.20 0.80 力もなる P型 AlGaNキャップ層 22を成長させる。  P-type AlGaN cap layer 22 with 0.20 0.80 force is grown.
[0064] 次に、厚さが約 20nmで Mg不純物濃度が約 1 X 1019cm— 3の p型 GaN力 なる第 2 GaN光ガイド層 24を成長させる。その後、厚さが約 0. 5 mで不純物濃度が約 1 X 1019cm— 3の Al Ga Nからなる p型 AlGaNクラッド層 26を成長させる。最後に、厚 Next, a second GaN optical guide layer 24 having a thickness of about 20 nm and an Mg impurity concentration of about 1 × 10 19 cm −3 and having a p-type GaN force is grown. Thereafter, a p-type AlGaN cladding layer 26 made of AlGaN having a thickness of about 0.5 m and an impurity concentration of about 1 × 10 19 cm− 3 is grown. Finally, thick
0.05 0.95  0.05 0.95
さ力約 0. 1 μ mで Mg不純物濃度が約 1 X 102Qcm— 3の p型 GaNコンタクト層 28を成長 させる。 A p-type GaN contact layer 28 having a thickness of about 0.1 μm and an Mg impurity concentration of about 1 × 10 2Q cm— 3 is grown.
[0065] 次に、図 3 (a)を参照して、半導体積層構造の上面に複数の凹部 (へき開ガイド) 50 を形成する工程を説明する。図 3 (a)は、半導体基板の一部を上面側から見た平面 図である。へき開ガイド 50の列は、へき開を行うべきライン上に周期的に並んでおり、 そのラインに沿ってへき開が生じるように機能する。へき開ガイド 50として機能する各 凹部は、例えば 1〜20 μ mの深さ、 1〜5 μ mの幅、 1〜40 μ mの長さを有しており、 スクライブ工程およびエッチング工程により形成され得る。図 3 (a)に示されている例 では、凹部の配列ピッチは、基板における半導体レーザ素子領域の配列ピッチに相 当しているが、へき開を適切な方向に案内することができれば、凹部の形状や配列ピ ツチの大きさは任意である。ただし、この凹部は、基板上面側から見て「へき開方向」 に鋭角を有する菱形の形状を有し、基板に垂直な断面形状が錘状であることが好ま しい。このような形状の凹部の列をへき開ガイドとして基板裏面側力もへき開を行うと 、へき開が凹部の列に沿って真っ直ぐに進行しやすぐへき開の歩留りが向上するか らである。  Next, with reference to FIG. 3A, a process of forming a plurality of recesses (cleavage guides) 50 on the upper surface of the semiconductor multilayer structure will be described. FIG. 3 (a) is a plan view of a part of the semiconductor substrate as seen from the upper surface side. The rows of cleavage guides 50 are periodically arranged on the line to be cleaved, and function so that cleavage occurs along that line. Each recess functioning as the cleavage guide 50 has, for example, a depth of 1 to 20 μm, a width of 1 to 5 μm, and a length of 1 to 40 μm, and is formed by a scribe process and an etching process. obtain. In the example shown in FIG. 3 (a), the arrangement pitch of the recesses corresponds to the arrangement pitch of the semiconductor laser element regions on the substrate, but if the cleavage can be guided in an appropriate direction, the recesses are arranged. The shape and the size of the array pitch are arbitrary. However, it is preferable that the recess has a rhombus shape having an acute angle in the “cleavage direction” when viewed from the upper surface side of the substrate, and a cross-sectional shape perpendicular to the substrate is a weight. This is because, when the row of concave portions having such a shape is used as a cleavage guide, the cleavage of the substrate back side force also proceeds straight along the row of concave portions, and the cleavage yield is improved immediately.
[0066] この後、 n型 GaN基板 10を裏面側から研磨し、 n型 GaN基板 10の厚さを約 100 μ m程度に減少させる。次に、図 3 (b)に示すように、格子形状を有するマスク層 42を n 型 GaN基板 10の裏面に形成した後、マスク層 42で覆われて ヽな 、領域をエツチン グ液にさらすことにより、多数のエッチピットまたは突起を形成して粗面化する。エッチ ング液としては、例えば水酸ィ匕カリウム (KOH)や熱リン酸などを用い、室温で 10〜6 0分間、上記のエッチングを行うことにより、数密度 5 X 106個数 Zcm2、深さ 10〜: LOO Onmのピットを形成することができる。粗面化された領域 (粗面領域 40a)の形成は、 上記のウエットエッチングに代えて、あるいは、ウエットエッチングと併用してドライエツ チングを行うことにより行っても良い。 Thereafter, the n-type GaN substrate 10 is polished from the back side, and the thickness of the n-type GaN substrate 10 is reduced to about 100 μm. Next, as shown in FIG. 3 (b), a mask layer 42 having a lattice shape is formed on the back surface of the n-type GaN substrate 10, and the region that should be covered with the mask layer 42 is exposed to an etching solution. As a result, a large number of etch pits or protrusions are formed to roughen the surface. The etch ing liquid, for example, using a Mizusani匕potassium (KOH) or hot phosphoric acid, 10-6 0 minutes at room temperature, by etching the above number density 5 X 10 6 number ZCM 2, the depth 10 ~: LOO Onm pits can be formed. The formation of the roughened region (rough surface region 40a) may be performed by dry etching instead of the above wet etching or in combination with wet etching.
[0067] マスク層 42は、粗面領域 40aの位置および形状を規定する複数の開口部を有して おり、例えばレジスト膜を露光'現像することによって作製され得る。 n型 GaN基板 10 の裏面のうち、マスク層 42で覆われる部分は、一次へき開または二次へき開が行わ れる部分に対応している。 n型 GaN基板 10の裏面のうち、マスク層 42に覆われてい た領域にはエッチピットが形成されておらず、平坦領域 40bとして機能することになる [0067] The mask layer 42 has a plurality of openings that define the position and shape of the rough surface region 40a, and can be produced, for example, by exposing and developing a resist film. The portion of the back surface of the n-type GaN substrate 10 that is covered with the mask layer 42 corresponds to a portion where primary cleavage or secondary cleavage is performed. Etch pits are not formed in the area of the back surface of the n-type GaN substrate 10 covered with the mask layer 42, and it functions as a flat area 40b.
[0068] 本実施形態では、上記の方法により、基板裏面のうち n側電極 34が形成されるべき 領域に粗面領域 40aを形成するため、コンタクト界面における N面の面積割合が減 少するとともに、表面積が増大する。このことは、コンタクト界面の炭素濃度の低減効 果をもたらし、また、コンタクトの実効的な面積を増大させるため、コンタクト抵抗を低 減することを可能にする。 In the present embodiment, since the rough surface region 40a is formed in the region where the n-side electrode 34 is to be formed on the back surface of the substrate by the above method, the area ratio of the N surface at the contact interface is reduced. , The surface area increases. This has the effect of reducing the carbon concentration at the contact interface, and also increases the effective area of the contact, making it possible to reduce the contact resistance.
[0069] この後、本実施形態では、さらにコンタクト抵抗を低減することを目的として、 ECRス パッタ法により、 n型 GaN基板 10の裏面 (研磨面)に厚さ 0. 5〜1. 程度の SiO  [0069] After that, in this embodiment, the thickness of the back surface (polished surface) of the n-type GaN substrate 10 is about 0.5 to 1. by the ECR sputtering method for the purpose of further reducing the contact resistance. SiO
2 膜を堆積する。この SiO膜をエッチングすることにより、 n型 GaN基板 10の裏面から  2 Deposit a film. By etching this SiO film, from the back side of the n-type GaN substrate 10
2  2
SiO膜を除去する。 SiO膜は、 n型 GaN基板 10の裏面において、少なくとも n側電 The SiO film is removed. The SiO film has at least an n-side current on the back surface of the n-type GaN substrate 10.
2 2 twenty two
極が形成されるべき領域から完全に除去される必要がある。本実施形態では、 SiO  The pole needs to be completely removed from the area where it is to be formed. In this embodiment, SiO
2 膜の除去をフッ酸で行なう。 SiO膜を除去するために用いるエツチャントは、フッ酸に  2 Remove the membrane with hydrofluoric acid. Etchant used to remove the SiO film is hydrofluoric acid.
2  2
限定されず、他の種類のエツチャントであってもよい。また、 SiO膜の除去は、ウエット  It is not limited and other kinds of etchants may be used. The removal of the SiO film
2  2
エッチングに限られず、ドライエッチング、または、ウエットエッチング及びドライエッチ ングの組み合わせであっても良い。基板裏面に凹凸を形成しても、粗面領域 42に N 面が一部残存する場合があり、そのような N面には炭素が吸着し、コンタクト特性を劣 化させる可能性がある。このため、上記の裏面処理 (炭素低減処理)を行なうことが好 ましい。  It is not limited to etching, and dry etching or a combination of wet etching and dry etching may be used. Even if irregularities are formed on the back surface of the substrate, a part of the N surface may remain in the rough surface region 42, and carbon may be adsorbed on such an N surface, which may deteriorate the contact characteristics. For this reason, it is preferable to perform the above-mentioned back surface treatment (carbon reduction treatment).
[0070] 次に、 n型 GaN基板 10の裏面に、 TiZPtZAuの各金属層を基板側からこの順序 で連続的に堆積する。その後、マスク層 42を除去することにより、マスク層 42上に位 置する金属層のリフトオフが行われ、粗面領域 40a上に位置する金属層力も n側電極 34が形成される。この後、窒素雰囲気中でシンタリング処理 (約 300°C)を行う。この シンタリング処理は、 n側電極 34のコンタクト抵抗を更に低減する効果を有して 、る。 本実施形態によれば、 n側電極 34のコンタクト抵抗率を 5 X 10—4 Ω 'cm以下にするこ とが可能である。 Next, each metal layer of TiZPtZAu is continuously deposited on the back surface of the n-type GaN substrate 10 in this order from the substrate side. After that, by removing the mask layer 42, the position on the mask layer 42 is increased. The lift-off of the metal layer to be placed is performed, and the n-side electrode 34 is also formed on the metal layer force located on the rough surface region 40a. After this, sintering is performed in a nitrogen atmosphere (about 300 ° C). This sintering process has the effect of further reducing the contact resistance of the n-side electrode 34. According to this embodiment, it is possible and child contact resistivity of the n-side electrode 34 below 5 X 10- 4 Ω 'cm.
[0071] 本実施形態によれば、粗面領域 40aの形成に用いるマスク層 42を利用して n側電 極 34のパターユングを行うため、 n型 GaN基板 10の裏面と n側電極 34との接触領域 の輪郭は、粗面領域 40aと平坦領域 40bとの境界と整合して 、る。  According to the present embodiment, since the n-side electrode 34 is patterned using the mask layer 42 used for forming the rough surface region 40a, the back surface of the n-type GaN substrate 10, the n-side electrode 34, The contour of the contact region is aligned with the boundary between the rough surface region 40a and the flat region 40b.
[0072] 図 4は、 n側電極 34を形成した段階における n側 GaN基板 10の一部を示す断面図 である。図 4からわ力るように、エッチングによって形成された凹凸が基板裏面の一部 (粗面領域)に形成されている。このような凹凸は、(000— 1)面以外の結晶面が露 出したファセット面力も構成されている。本実施形態における粗面領域は、エッチング により形成された複数の突起部を有しており、各突起部(高さ: 10〜: LOOOnm)は多 角錐型または多角錐台型であり、その表面は、(000— 1)面以外のファセット面から 構成されている。  FIG. 4 is a cross-sectional view showing a part of the n-side GaN substrate 10 at the stage where the n-side electrode 34 is formed. As shown in FIG. 4, the unevenness formed by etching is formed on a part (rough surface region) of the back surface of the substrate. Such irregularities also constitute facet surface forces where crystal planes other than the (000-1) plane are exposed. The rough surface region in this embodiment has a plurality of protrusions formed by etching, and each protrusion (height: 10 to: LOOOnm) is a polygonal pyramid type or a polygonal frustum type, and its surface Consists of facet faces other than the (000-1) face.
[0073] 次に、図 3 (b)に示す破線に沿って一次へき開を行う。図 5 (a)および (b)は、一次 へき開によって半導体基板力もバー 10aが形成される工程を模式的に示している。 一次へき開によって得られたバー 10aに二次へき開を行うことにより、図 2に示す半 導体レーザを得ることができる。二次へき開の方向は、一次へき開の方向に直交する  Next, primary cleavage is performed along the broken line shown in FIG. FIGS. 5 (a) and 5 (b) schematically show the process of forming the semiconductor substrate force bar 10a by primary cleavage. The semiconductor laser shown in FIG. 2 can be obtained by performing secondary cleavage on the bar 10a obtained by primary cleavage. The direction of secondary cleavage is orthogonal to the direction of primary cleavage.
[0074] 本実施形態によれば、粗面領域 40aを接触面として有する n側電極を形成するた め、接触面の実効的な面積を増大させるとともに、接触面における炭素濃度を低減 することもできるため、 n側電極のコンタクト抵抗を低減することができる。また、図 3 (b )に示すように、へき開ガイドを基板裏面から観察できるため、へき開を歩留まり良く 実行することも可能になる。なお、へき開によって基板力も分割された各半導体レー ザ素子における基板裏面の平坦領域 40bは、へき開位置に接するように配置されて いる。 [0074] According to the present embodiment, since the n-side electrode having the rough surface region 40a as the contact surface is formed, it is possible to increase the effective area of the contact surface and reduce the carbon concentration in the contact surface. Therefore, the contact resistance of the n-side electrode can be reduced. Further, as shown in FIG. 3 (b), the cleavage guide can be observed from the back side of the substrate, so that the cleavage can be performed with a high yield. In addition, the flat region 40b on the back surface of the substrate in each semiconductor laser element in which the substrate force is also divided by cleavage is disposed so as to contact the cleavage position.
[0075] へき開によって基板から分割された各半導体レーザ素子の基板裏面における平坦 領域 40bは、 20 /z m以上の幅を有する帯形状を有しており、粗面領域 40aの周囲に 位置している(図 3 (b)参照)。 [0075] Flatness on the substrate back surface of each semiconductor laser element divided from the substrate by cleavage The region 40b has a band shape having a width of 20 / zm or more, and is located around the rough surface region 40a (see FIG. 3B).
[0076] 基板裏面の平坦領域 40bのレイアウトは、図 3 (b)に示される例に限定されない。平 坦領域 40bは、へき開ガイド 50を基板裏面側から観察できる位置に形成されて ヽれ ばよい。 [0076] The layout of the flat region 40b on the back surface of the substrate is not limited to the example shown in FIG. The flat region 40b may be formed at a position where the cleavage guide 50 can be observed from the back side of the substrate.
[0077] (実施形態 2) [0077] (Embodiment 2)
図 6および図 7を参照しながら、本発明による窒化物半導体装置の他の実施形態を 説明する。  With reference to FIGS. 6 and 7, another embodiment of the nitride semiconductor device according to the present invention will be described.
[0078] 図 6に示す実施形態は、 n型 GaN基板の裏面における平坦領域が絶縁層 36で覆 われている点を除いて、実施形態 1における半導体レーザ装置と同一の構成を備え ている。  The embodiment shown in FIG. 6 has the same configuration as the semiconductor laser device in Embodiment 1 except that the flat region on the back surface of the n-type GaN substrate is covered with an insulating layer 36.
[0079] 図 6に示すように、基板裏面の一部に SiO膜などの絶縁層 36が残存していても良  [0079] As shown in FIG. 6, an insulating layer 36 such as a SiO film may remain on a part of the back surface of the substrate.
2  2
Vヽ。 n側電極 34が基板裏面と接触するべき領域力ゝらは絶縁膜を除去しておく必要が ある力 n側電極 34の周辺に絶縁膜の一部が絶縁層 36として残存していてもコンタ タト特性に影響はない。また、基板裏面に SiOなど力もなる絶縁層 34を残存させて  V ヽ. The region force where the n-side electrode 34 should be in contact with the backside of the substrate is a force that needs to remove the insulating film. Even if a part of the insulating film remains around the n-side electrode 34 as the insulating layer 36, the contour There is no effect on the tatoo characteristics. Also, leave the insulating layer 34 with strong force such as SiO on the back of the substrate.
2  2
おくことにより、その絶縁層 34が活性層 18から基板 10へ漏出する光 (迷光)を吸収し 、ノイズを低減する効果も得られる。  In this case, the insulating layer 34 absorbs light (stray light) leaking from the active layer 18 to the substrate 10, and an effect of reducing noise can be obtained.
[0080] 図 7に示す実施形態は、基板裏面が傾斜している点を除いて、実施形態 1の半導 体レーザ装置と同一の構成を備えている。図 7に示すように、基板裏面が全体として N面から傾斜していても良い。これは基板裏面の研磨の際に、研磨盤に対して基板 裏面を傾斜固定させることで実現できる。  The embodiment shown in FIG. 7 has the same configuration as the semiconductor laser device of Embodiment 1 except that the back surface of the substrate is inclined. As shown in FIG. 7, the entire back surface of the substrate may be inclined from the N surface. This can be realized by inclining and fixing the back surface of the substrate with respect to the polishing board during polishing of the back surface of the substrate.
[0081] なお、本発明によれば、基板裏面と n側電極との界面におけるコンタクト抵抗が低減 されるため、従来は用いられて 、な力つた各種の金属を n電極の材料として用いる道 が開かれる。すなわち、 Ti、 Al、 Pt、 Au、 Mo、 Sn、 In、 Ni、 Cr、 Nb、 Ba、 Ag、 Rh、 I r、 Ru、もしくは Hfなどの金属または合金を n側電極の材料に用いることが可能にな る。  [0081] According to the present invention, since the contact resistance at the interface between the back surface of the substrate and the n-side electrode is reduced, there is a way to use various kinds of powerful metals as materials for the n-electrode. be opened. That is, metals or alloys such as Ti, Al, Pt, Au, Mo, Sn, In, Ni, Cr, Nb, Ba, Ag, Rh, Ir, Ru, or Hf should be used as the material for the n-side electrode. It becomes possible.
[0082] 上記の各実施形態では、窒化物半導体基板として GaN基板を用いて ヽるが、窒化 物半導体基板は、 GaNに限られず、 AlGaN、 InGaNなどから形成された基板であ つてもよい。また、基板はオフ基板であってもよい。 In each of the above embodiments, a GaN substrate is used as the nitride semiconductor substrate. However, the nitride semiconductor substrate is not limited to GaN, and is a substrate formed of AlGaN, InGaN, or the like. May be. Further, the substrate may be an off-substrate.
産業上の利用可能性 Industrial applicability
本発明は、短波長光源や高耐圧素子としての活用が期待されている窒化物半導体 装置における n側電極コンタクト特性を改善するため、信頼性に優れる窒化物半導体 レーザなどの量産に寄与することができる。  The present invention contributes to mass production of highly reliable nitride semiconductor lasers and the like in order to improve the n-side electrode contact characteristics in nitride semiconductor devices that are expected to be used as short-wavelength light sources and high breakdown voltage devices. it can.

Claims

請求の範囲 The scope of the claims
[1] n型不純物を含有する窒化物系半導体基板と、  [1] a nitride-based semiconductor substrate containing an n-type impurity;
前記半導体基板の主面に形成され、 p型領域および n型領域を含む半導体積層構 造と、  A semiconductor multilayer structure formed on a main surface of the semiconductor substrate and including a p-type region and an n-type region;
前記半導体積層構造に含まれる前記 p型領域の一部に接触する p側電極と、 前記半導体基板の裏面に設けられた n側電極と、  A p-side electrode in contact with a part of the p-type region included in the semiconductor multilayer structure; an n-side electrode provided on the back surface of the semiconductor substrate;
を備えた窒化物半導体装置であって、  A nitride semiconductor device comprising:
前記半導体基板の裏面は、平坦領域と粗面領域とを含んでおり、  The back surface of the semiconductor substrate includes a flat region and a rough surface region,
前記 n側電極は、前記粗面領域の少なくとも一部を覆って!/ヽる窒化物半導体装置。  The n-side electrode is a nitride semiconductor device that covers at least a part of the rough surface region.
[2] 前記半導体基板の裏面における前記平坦領域は、 20 μ m以上の幅を有する帯形 状を有しており、前記粗面領域の周隨こ位置している、請求項 1に記載の窒化物半 導体装置。 [2] The flat region on the back surface of the semiconductor substrate has a strip shape having a width of 20 μm or more, and is located around the rough surface region. Nitride semiconductor device.
[3] 前記半導体基板の裏面と前記 n側電極との接触領域の輪郭は、前記平坦領域と前 記粗面領域との境界と整合して 、る、請求項 1に記載の窒化物半導体装置。  [3] The nitride semiconductor device according to [1], wherein a contour of a contact region between the back surface of the semiconductor substrate and the n-side electrode is aligned with a boundary between the flat region and the rough surface region. .
[4] 前記半導体基板の裏面における前記粗面領域は、研磨加工面または清浄ィ匕処理 面である請求項 1に記載の窒化物半導体装置。  4. The nitride semiconductor device according to claim 1, wherein the rough surface region on the back surface of the semiconductor substrate is a polished surface or a clean surface.
[5] 前記半導体基板の前記主面は + C極性面である、請求項 1に記載の窒化物半導 体装置。  5. The nitride semiconductor device according to claim 1, wherein the main surface of the semiconductor substrate is a + C polarity surface.
[6] 前記半導体基板の裏面における前記平坦領域は C極性面である、請求項 1に記 載の窒化物半導体装置。  6. The nitride semiconductor device according to claim 1, wherein the flat region on the back surface of the semiconductor substrate is a C polarity surface.
[7] 前記半導体基板の裏面における前記粗面領域は、エッチングによって形成された 複数の凹部または凸部を有している、請求項 1に記載の窒化物半導体装置。  7. The nitride semiconductor device according to claim 1, wherein the rough surface region on the back surface of the semiconductor substrate has a plurality of concave portions or convex portions formed by etching.
[8] 前記半導体基板の裏面における前記粗面領域には、異なる面方位を有する複数 のファセットが形成されている、請求項 1に記載の窒化物半導体装置。 8. The nitride semiconductor device according to claim 1, wherein a plurality of facets having different plane orientations are formed in the rough surface region on the back surface of the semiconductor substrate.
[9] 前記半導体基板の裏面における前記粗面領域の凹凸段差は、 lOnm以上 1 μ m 以下の範囲にあり、前記平坦領域の凹凸段差は、 lOnm以下である請求項 1に記載 の窒化物半導体装置。 9. The nitride semiconductor according to claim 1, wherein the uneven step of the rough surface region on the back surface of the semiconductor substrate is in a range of 1 Onm or more and 1 μm or less, and the uneven step of the flat region is 1Onm or less. apparatus.
[10] 前記 n側電極は、前記半導体基板の裏面における前記粗面領域の全体を覆って いる、請求項 1に記載の窒化物半導体装置。 [10] The n-side electrode covers the entire rough surface region on the back surface of the semiconductor substrate. The nitride semiconductor device according to claim 1.
[11] 前記半導体基板の裏面における前記平坦領域は、へき開位置に接するように配置 されている、請求項 1に記載の窒化物半導体装置。 11. The nitride semiconductor device according to claim 1, wherein the flat region on the back surface of the semiconductor substrate is disposed so as to be in contact with a cleavage position.
[12] 前記 n側電極は、 Ti、 Al、 Ptゝ Au、 Mo、 Snゝ In、 Niゝ Crゝ Nbゝ Baゝ Ag、 Rh、 Ir、 R u、および Hfからなる群カゝら選択された少なくとも 1種類の金属または合金カゝら形成さ れた層を有して 、る請求項 1に記載の窒化物半導体装置。 [12] The n-side electrode is selected from the group consisting of Ti, Al, Pt ゝ Au, Mo, Sn ゝ In, Ni ゝ Cr ゝ Nb ゝ Ba ゝ Ag, Rh, Ir, Ru, and Hf. 2. The nitride semiconductor device according to claim 1, further comprising a layer formed of at least one kind of metal or alloy.
[13] 前記 n側電極のコンタクト抵抗率は、 5 X 10"4Ω 'cm2以下である請求項 1に記載の 窒化物半導体装置。 13. The nitride semiconductor device according to claim 1, wherein a contact resistivity of the n-side electrode is 5 × 10 ″ 4 Ω′cm 2 or less.
[14] 前記半導体基板の裏面は研磨加工面力 構成されて 、る請求項 1に記載の窒化 物半導体装置。  14. The nitride semiconductor device according to claim 1, wherein the back surface of the semiconductor substrate has a polishing surface force.
[15] n型不純物を含有する窒化物系半導体基板を用意する工程と、  [15] providing a nitride semiconductor substrate containing an n-type impurity;
P型領域および n型領域を含む半導体積層構造を前記半導体基板の主面に形成 する工程と、  Forming a semiconductor multilayer structure including a P-type region and an n-type region on the main surface of the semiconductor substrate;
前記半導体積層構造に含まれる前記 p型領域に p側電極を形成する工程と、 窒素面を含む前記半導体基板の裏面に n側電極を形成する工程と、  Forming a p-side electrode in the p-type region included in the semiconductor multilayer structure; forming an n-side electrode on the back surface of the semiconductor substrate including a nitrogen surface;
を含む窒化物半導体装置の製造方法であって、  A method of manufacturing a nitride semiconductor device comprising:
前記半導体基板の裏面に n側電極を形成する前に、前記裏面に平坦領域と粗面 領域を形成する工程と、  Forming a flat region and a rough surface region on the back surface before forming the n-side electrode on the back surface of the semiconductor substrate;
前記 n側電極を形成した後、へき開面が前記平坦領域を通るように前記半導体基 板のへき開を行う工程と、  Cleaving the semiconductor substrate so that a cleaved surface passes through the flat region after forming the n-side electrode;
を含む、窒化物半導体装置の製造方法。  A method for manufacturing a nitride semiconductor device, comprising:
[16] 前記半導体基板の裏面に平坦領域と粗面領域を形成した後、前記半導体基板の 裏面に n側電極を形成する前に、前記半導体基板の裏面における炭素濃度を低減 する工程を行なう、請求項 15に記載の窒化物半導体装置の製造方法。 [16] After the flat region and the rough surface region are formed on the back surface of the semiconductor substrate, and before the n-side electrode is formed on the back surface of the semiconductor substrate, a step of reducing the carbon concentration on the back surface of the semiconductor substrate is performed. The method for manufacturing a nitride semiconductor device according to claim 15.
[17] 前記炭素濃度を低減する工程は、 [17] The step of reducing the carbon concentration comprises:
前記半導体基板の裏面に絶縁膜を形成する工程と、  Forming an insulating film on the back surface of the semiconductor substrate;
前記絶縁膜を除去する工程と  Removing the insulating film;
を含む請求項 15に記載の窒化物半導体装置の製造方法。 The method for manufacturing a nitride semiconductor device according to claim 15, comprising:
[18] 前記炭素濃度を低減する工程は、 [18] The step of reducing the carbon concentration comprises:
前記半導体基板の裏面に酸化シリコン膜を堆積する工程と、  Depositing a silicon oxide film on the back surface of the semiconductor substrate;
前記酸ィ匕シリコン膜を除去する工程と  Removing the silicon oxide film;
を含む請求項 15に記載の窒化物半導体装置の製造方法。  The method for manufacturing a nitride semiconductor device according to claim 15, comprising:
[19] 前記粗面領域を形成する工程は、 [19] The step of forming the rough surface region includes:
前記半導体基板の裏面のうち、前記粗面領域が形成されるべき部分を露出させる 開口部を備えたマスク層を前記半導体基板の裏面に形成する工程と、  Forming a mask layer on the back surface of the semiconductor substrate, the mask layer having an opening that exposes a portion of the back surface of the semiconductor substrate where the rough surface region is to be formed;
前記半導体基板の裏面のうち、前記粗面領域が形成されるべき部分にエッチング 処理を行う工程と、  Etching the portion of the back surface of the semiconductor substrate where the rough surface region is to be formed; and
を含む請求項 15に記載の窒化物半導体装置の製造方法。  The method for manufacturing a nitride semiconductor device according to claim 15, comprising:
[20] 前記 n側電極を形成する工程は、 [20] The step of forming the n-side electrode includes:
前記半導体基板の裏面に前記マスク層を覆うように金属電極層を堆積する工程と、 前記金属電極層のうち前記マスク層上に位置する部分を、前記マスク層とともに除 去することにより、前記金属電極層を前記 n側電極にパターニングする工程と、 を含む請求項 19に記載の窒化物半導体装置の製造方法。  Depositing a metal electrode layer on the back surface of the semiconductor substrate so as to cover the mask layer; and removing the portion of the metal electrode layer located on the mask layer together with the mask layer, 20. The method for manufacturing a nitride semiconductor device according to claim 19, comprising: patterning an electrode layer on the n-side electrode.
PCT/JP2006/309550 2005-05-19 2006-05-12 Nitride semiconductor device and method for manufacturing same WO2006123580A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/570,147 US7606276B2 (en) 2005-05-19 2006-05-12 Nitride semiconductor device and method for fabricating the same
JP2006536906A JP4842827B2 (en) 2005-05-19 2006-05-12 Nitride semiconductor device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005146676 2005-05-19
JP2005-146676 2005-05-19

Publications (1)

Publication Number Publication Date
WO2006123580A1 true WO2006123580A1 (en) 2006-11-23

Family

ID=37431156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309550 WO2006123580A1 (en) 2005-05-19 2006-05-12 Nitride semiconductor device and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP4842827B2 (en)
CN (1) CN100477425C (en)
WO (1) WO2006123580A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172040A (en) * 2007-01-12 2008-07-24 Sony Corp Semiconductor light emitting element, method of manufacturing semiconductor light emitting element, backlight, display and electronic equipment
JP2009238820A (en) * 2008-03-26 2009-10-15 Sony Corp Semiconductor laser device, and manufacturing method of the same
JP2010177455A (en) * 2009-01-29 2010-08-12 Nichia Corp Nitride semiconductor device
JP2010529696A (en) * 2007-06-12 2010-08-26 セミエルイーディーズ オプトエレクトロニクス カンパニー リミテッド Method for forming low resistance contact
JP2011113997A (en) * 2009-11-24 2011-06-09 Toyota Central R&D Labs Inc Semiconductor device, and method for manufacturing the same
JP2011129769A (en) * 2009-12-18 2011-06-30 Panasonic Corp Nitride semiconductor device, and method of manufacturing the same
WO2012090252A1 (en) * 2010-12-28 2012-07-05 Dowaエレクトロニクス株式会社 Semiconductor device and process for production thereof
WO2012090254A1 (en) * 2010-12-28 2012-07-05 Dowaエレクトロニクス株式会社 Electrode for ohmic contact with n-type group iii nitride semiconductor and method for manufacturing same
JP2013128150A (en) * 2013-03-26 2013-06-27 Toyoda Gosei Co Ltd Method of manufacturing group-iii nitride semiconductor light-emitting element
JP2013157350A (en) * 2012-01-26 2013-08-15 Sumitomo Electric Ind Ltd Group-iii nitride semiconductor laser and method of manufacturing group iii nitride semiconductor laser
JP2014057012A (en) * 2012-09-13 2014-03-27 Toyoda Gosei Co Ltd Semiconductor device and manufacturing method of the same
JP2015035541A (en) * 2013-08-09 2015-02-19 ソニー株式会社 Light emitting element and manufacturing method of the same
JP2015056533A (en) * 2013-09-12 2015-03-23 株式会社東芝 Semiconductor device and manufacturing method of the same
JP2015111724A (en) * 2007-12-21 2015-06-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Laser light source
JP2015177135A (en) * 2014-03-17 2015-10-05 株式会社東芝 semiconductor light-emitting element
JP2015212733A (en) * 2014-05-01 2015-11-26 日本電信電話株式会社 Semiconductor substrate
WO2023215362A1 (en) * 2022-05-05 2023-11-09 Creeled, Inc. Light-emitting diode chip structures with electrically insulating substrates and related methods

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101103882B1 (en) * 2008-11-17 2012-01-12 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
US9553016B2 (en) * 2010-07-09 2017-01-24 Infineon Technologies Ag Contacts for semiconductor devices and methods of forming thereof
CN102347379B (en) * 2010-07-31 2015-05-20 信义光伏产业(安徽)控股有限公司 Conductive glass and preparation method and application thereof
CN102347378B (en) * 2010-07-31 2015-05-20 信义光伏产业(安徽)控股有限公司 Conducting glass and preparation method thereof
CN105745997A (en) * 2013-05-17 2016-07-06 旭硝子株式会社 Organic LED element and method for producing organic LED element
JP6160501B2 (en) 2014-02-12 2017-07-12 豊田合成株式会社 Manufacturing method of semiconductor device
DE102016110790B4 (en) * 2016-06-13 2022-01-13 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung semiconductor laser diode
JP6631425B2 (en) * 2016-07-06 2020-01-15 信越半導体株式会社 Light emitting device and method for manufacturing light emitting device
TWI761645B (en) * 2018-12-20 2022-04-21 晶元光電股份有限公司 Semiconductor devices and the manufacturing methods thereof
TWI801163B (en) * 2018-12-20 2023-05-01 晶元光電股份有限公司 Semiconductor devices
CN112542767B (en) * 2019-09-20 2021-11-02 山东华光光电子股份有限公司 GaAs-based semiconductor laser chip and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016312A (en) * 2000-06-27 2002-01-18 Sanyo Electric Co Ltd Nitride semiconductor element and its manufacturing method
JP2004071657A (en) * 2002-08-01 2004-03-04 Nec Corp Group iii nitride semiconductor element, manufacturing method thereof and group iii nitride semiconductor substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566484A (en) * 1979-06-28 1981-01-23 Sanyo Electric Co Ltd Manufacture of solid state light emitting device
JP3773282B2 (en) * 1995-03-27 2006-05-10 豊田合成株式会社 Method for forming electrode of gallium nitride compound semiconductor
JP4493127B2 (en) * 1999-09-10 2010-06-30 シャープ株式会社 Manufacturing method of nitride semiconductor chip
JP3660570B2 (en) * 2000-08-17 2005-06-15 日本電信電話株式会社 Cleavage method of crystalline substrate
JP2004221112A (en) * 2003-01-09 2004-08-05 Sharp Corp Oxide semiconductor light emitting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016312A (en) * 2000-06-27 2002-01-18 Sanyo Electric Co Ltd Nitride semiconductor element and its manufacturing method
JP2004071657A (en) * 2002-08-01 2004-03-04 Nec Corp Group iii nitride semiconductor element, manufacturing method thereof and group iii nitride semiconductor substrate

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172040A (en) * 2007-01-12 2008-07-24 Sony Corp Semiconductor light emitting element, method of manufacturing semiconductor light emitting element, backlight, display and electronic equipment
JP2010529696A (en) * 2007-06-12 2010-08-26 セミエルイーディーズ オプトエレクトロニクス カンパニー リミテッド Method for forming low resistance contact
JP2015111724A (en) * 2007-12-21 2015-06-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Laser light source
US9559496B2 (en) 2007-12-21 2017-01-31 Osram Opto Semiconductors Gmbh Laser light source
US9559497B2 (en) 2007-12-21 2017-01-31 Osram Opto Semiconductors Gmbh Laser light source
JP2017017365A (en) * 2007-12-21 2017-01-19 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Laser light source and method for manufacturing laser light source
US9531158B2 (en) 2007-12-21 2016-12-27 Osram Opto Semiconductors Gmbh Laser light source
JP2009238820A (en) * 2008-03-26 2009-10-15 Sony Corp Semiconductor laser device, and manufacturing method of the same
JP2010177455A (en) * 2009-01-29 2010-08-12 Nichia Corp Nitride semiconductor device
JP2011113997A (en) * 2009-11-24 2011-06-09 Toyota Central R&D Labs Inc Semiconductor device, and method for manufacturing the same
JP2011129769A (en) * 2009-12-18 2011-06-30 Panasonic Corp Nitride semiconductor device, and method of manufacturing the same
JP5847732B2 (en) * 2010-12-28 2016-01-27 Dowaエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
WO2012090254A1 (en) * 2010-12-28 2012-07-05 Dowaエレクトロニクス株式会社 Electrode for ohmic contact with n-type group iii nitride semiconductor and method for manufacturing same
US8963290B2 (en) 2010-12-28 2015-02-24 Dowa Electronics Materials Co., Ltd. Semiconductor device and manufacturing method therefor
WO2012090252A1 (en) * 2010-12-28 2012-07-05 Dowaエレクトロニクス株式会社 Semiconductor device and process for production thereof
US20140015105A1 (en) * 2010-12-28 2014-01-16 Wavesquare Inc. Semiconductor device and manufacturing method therefor
JP2013157350A (en) * 2012-01-26 2013-08-15 Sumitomo Electric Ind Ltd Group-iii nitride semiconductor laser and method of manufacturing group iii nitride semiconductor laser
JP2014057012A (en) * 2012-09-13 2014-03-27 Toyoda Gosei Co Ltd Semiconductor device and manufacturing method of the same
JP2013128150A (en) * 2013-03-26 2013-06-27 Toyoda Gosei Co Ltd Method of manufacturing group-iii nitride semiconductor light-emitting element
JP2015035541A (en) * 2013-08-09 2015-02-19 ソニー株式会社 Light emitting element and manufacturing method of the same
JP2015056533A (en) * 2013-09-12 2015-03-23 株式会社東芝 Semiconductor device and manufacturing method of the same
US9679976B2 (en) 2013-09-12 2017-06-13 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JP2015177135A (en) * 2014-03-17 2015-10-05 株式会社東芝 semiconductor light-emitting element
JP2015212733A (en) * 2014-05-01 2015-11-26 日本電信電話株式会社 Semiconductor substrate
WO2023215362A1 (en) * 2022-05-05 2023-11-09 Creeled, Inc. Light-emitting diode chip structures with electrically insulating substrates and related methods

Also Published As

Publication number Publication date
JP4842827B2 (en) 2011-12-21
JPWO2006123580A1 (en) 2008-12-25
CN1957510A (en) 2007-05-02
CN100477425C (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP4842827B2 (en) Nitride semiconductor device and manufacturing method thereof
US7606276B2 (en) Nitride semiconductor device and method for fabricating the same
JP5028640B2 (en) Nitride semiconductor laser device
JP3876518B2 (en) Nitride semiconductor substrate manufacturing method and nitride semiconductor substrate
JP3876649B2 (en) Nitride semiconductor laser and manufacturing method thereof
JP3791246B2 (en) Nitride semiconductor growth method, nitride semiconductor device manufacturing method using the same, and nitride semiconductor laser device manufacturing method
US7816696B2 (en) Nitride semiconductor device and method for manufacturing same
JP4901477B2 (en) Nitride compound semiconductor device and manufacturing method thereof
US7755101B2 (en) Semiconductor light emitting device
WO2000048254A1 (en) Nitride semiconductor device and its manufacturino method
KR20030070094A (en) Crystal film, crystal substrate and semiconductor device
WO2005124950A1 (en) Group iii nitride semiconductor optical element and manufacturing method thereof
JP2010272593A (en) Nitride semiconductor light emitting element and manufacturing method of the same
US8896002B2 (en) Method for producing semiconductor laser, semiconductor laser, optical pickup, and optical disk drive
JP4743989B2 (en) Semiconductor device, method for manufacturing the same, and method for manufacturing a semiconductor substrate
JP2011023453A (en) Method for manufacturing semiconductor device
US7550757B2 (en) Semiconductor laser and method for manufacturing semiconductor laser
JP4211358B2 (en) Nitride semiconductor, nitride semiconductor device and manufacturing method thereof
JP2003063895A (en) Nitride semiconductor substrate and method for producing the same
JP2009528694A (en) Group III nitride semiconductor light-emitting device and method for manufacturing the same
JP4712241B2 (en) Semiconductor laser device and manufacturing method thereof
US8445303B2 (en) Method of manufacturing semiconductor device and semiconductor device
JP4826052B2 (en) Nitride semiconductor laser device
JP5053102B2 (en) Nitride semiconductor light-emitting element, nitride semiconductor light-emitting device, and manufacturing method thereof
US20060051939A1 (en) Nitride semiconductor substrate and nitride semiconductor device using same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006536906

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680000267.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11570147

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732531

Country of ref document: EP

Kind code of ref document: A1