WO2012090254A1 - Electrode for ohmic contact with n-type group iii nitride semiconductor and method for manufacturing same - Google Patents

Electrode for ohmic contact with n-type group iii nitride semiconductor and method for manufacturing same Download PDF

Info

Publication number
WO2012090254A1
WO2012090254A1 PCT/JP2010/007613 JP2010007613W WO2012090254A1 WO 2012090254 A1 WO2012090254 A1 WO 2012090254A1 JP 2010007613 W JP2010007613 W JP 2010007613W WO 2012090254 A1 WO2012090254 A1 WO 2012090254A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
group iii
iii nitride
nitride semiconductor
type gan
Prior art date
Application number
PCT/JP2010/007613
Other languages
French (fr)
Japanese (ja)
Inventor
鳥羽隆一
門脇嘉孝
▲チョ▼明煥
李錫雨
張弼國
Original Assignee
Dowaエレクトロニクス株式会社
ウェーブスクエア,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社, ウェーブスクエア,インコーポレイテッド filed Critical Dowaエレクトロニクス株式会社
Priority to PCT/JP2010/007613 priority Critical patent/WO2012090254A1/en
Publication of WO2012090254A1 publication Critical patent/WO2012090254A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape

Definitions

  • the present invention relates to an electrode used for a group III nitride semiconductor formed by epitaxial growth and a manufacturing method thereof.
  • Group III nitride semiconductors typified by GaN are widely used as materials for light-emitting elements and power elements such as blue and green LEDs (light-emitting diodes) and LDs (laser diodes) because of their wide band gaps.
  • silicon which is a representative semiconductor material
  • a large-diameter wafer obtained by cutting out a large-diameter bulk crystal is generally used.
  • a bulk crystal having a large diameter for example, 4 inches diameter or more.
  • a wafer obtained by heteroepitaxially growing the compound semiconductor on a substrate made of a different material is generally used.
  • a pn junction and a heterojunction constituting the LED and LD can be obtained by further epitaxial growth thereon.
  • sapphire is known as a material for an epitaxial growth substrate on which a GaN single crystal can be grown.
  • sapphire it is relatively easy to obtain a large-diameter bulk single crystal, and GaN can be heteroepitaxially grown on a substrate made of the single crystal by appropriately selecting the plane orientation. Thereby, a wafer on which a large-diameter GaN single crystal is formed can be obtained.
  • a pn junction is formed by forming a p-type GaN layer and an n-type GaN layer on a sapphire substrate.
  • obtaining a good p-type GaN layer means obtaining an n-type GaN layer.
  • a thick n-type GaN layer is formed on a sapphire substrate, and a thin p-type GaN layer is sequentially formed on the n-type GaN layer by epitaxial growth.
  • the sapphire serving as the substrate is insulative, electrical contact to the p-type GaN layer and the n-type GaN layer is often taken from the upper side (the side opposite to the substrate). Since sapphire is transparent, light emission can be extracted from the lower side in the light emitting element (flip chip structure).
  • FIG. 5 shows a simplified manufacturing process of the light-emitting element having this configuration.
  • an n-type GaN layer 92 and a p-type GaN layer 93 are sequentially formed on a sapphire substrate 91 as shown in FIG.
  • a buffer layer is often formed between the n-type GaN layer 92 and the sapphire substrate 91 in order to improve the crystallinity of the n-type GaN layer 92, but the description thereof is omitted here.
  • the surface is partially etched to form a region where the n-type GaN layer 92 is exposed, and an n-side electrode 94 is formed in this region.
  • a p-side electrode 95 is formed on the surface of the GaN layer 93.
  • Patent Document 1 The material configuration of the electrode in such a configuration is described in Patent Document 1, for example.
  • a structure in which Cr or a Cr alloy is formed by sputtering as a layer in contact with the n-type GaN layer 92 in the n-side electrode 94 and an Au layer is formed thereon via Ti is formed on the n-type GaN layer 92.
  • FIG. 5 shows a simplified manufacturing method of the light emitting element having this configuration.
  • an n-type GaN layer 92 and a p-type GaN layer 93 are sequentially formed on a sapphire substrate 91 via a lift-off layer 96.
  • the lift-off layer 96 is removed by chemical treatment (chemical lift-off) or laser light irradiation (laser lift-off).
  • the sapphire substrate 91 and the n-type GaN layer 92 are separated, and the lower surface of the n-type GaN layer 92 is exposed.
  • the n-side electrode 94 can be formed on a part of the lower surface of the n-type GaN layer 92, and the p-side electrode 95 can be formed on the upper surface of the p-type GaN layer 93. .
  • the p-side electrode 95 can be formed on the upper surface of the p-type GaN layer 93. .
  • the area of the p-side electrode 95 that is not transparent to the light is increased, and the p-side electrode is formed over a wide range of the surface of the p-type GaN layer 93. 95 can also be formed.
  • the resistivity of the p-type GaN layer 93 is generally higher than that of the n-type GaN layer 92, widening the area of the p-side electrode 95 is effective in reducing the resistance of the electrode portion.
  • a material having a high reflectance with respect to the emission wavelength is used as the p-type ohmic electrode in contact with the p-type GaN layer, light from the light-emitting layer is reflected to the opposing surface side, and higher luminous efficiency can be obtained.
  • GaN which is a compound semiconductor
  • group IV semiconductors such as silicon.
  • the ⁇ 0001 ⁇ plane of GaN having a wurtzite structure is a so-called polar plane, and is a (0001) Ga polar plane composed only of Ga atoms and (000-1) N ( Nitrogen) polar surfaces are formed in different orientations.
  • the upper surface is this (0001) Ga polar surface (hereinafter also referred to as Ga polar surface or Ga-Polar)
  • the lower surface parallel to the upper surface Is necessarily a (000-1) N polar face (hereinafter also referred to as a nitrogen polar face or N-Polar). Since the constituent elements of the two types of surfaces are completely different, their properties are also greatly different. Therefore, for example, in the configuration shown in FIGS. 5 and 6, when the upper surface of the n-type GaN layer 92 is a Ga polar surface, the lower surface is a nitrogen polar surface. In this case, when the n-type electrode is formed on the upper surface of the n-type GaN layer and when it is formed on the lower surface, the chemical reactivity, electrical characteristics, and the like are different.
  • n-type GaN layer when an n-type GaN layer is heteroepitaxially grown on a sapphire substrate, a sapphire substrate having a (0001) plane orientation in the c-axis direction is often used.
  • the crystal structure of sapphire is rhombohedral, it is generally expressed in a hexagonal system.
  • the upper surface of the n-type GaN layer 92 in FIGS. 5 and 6 is a (0001) Ga polar surface
  • the lower surface is a (000-1) N polar surface.
  • the effectiveness was shown only for the surface opposite to 91: Ga polar surface).
  • the lower surface (nitrogen polar surface) of the n-type GaN layer 92 as shown in FIG. 6 was used for the n-type layer described in Patent Document 1. It was confirmed that the electrode is not ohmic.
  • the present invention has been made in view of such problems, and an object thereof is to provide an invention that solves the above problems.
  • the electrode of the present invention includes titanium (Ti), nickel (Ni), and gold (Ti) laminated sequentially on the surface of the ⁇ 10-1-1 ⁇ plane group, which is a semipolar plane of the n-type group III nitride semiconductor layer. It is an electrode for ohmic contact with an n-type group III nitride semiconductor layer made of Au).
  • the electrode of the present invention is an n-type group III nitride semiconductor composed of titanium (Ti), nickel (Ni), and gold (Au), which is sequentially stacked on a hexagonal pyramid-shaped surface composed of an n-type group III nitride semiconductor layer.
  • the electrode manufacturing method of the present invention includes a step of forming a semipolar surface by etching a nitrogen polar surface of an n-type group III nitride semiconductor layer, and titanium (Ti) and nickel (Ni) on the surface of the semipolar surface. , And a method of manufacturing an electrode for ohmic contact with an n-type group III nitride semiconductor layer including a step of sequentially laminating gold (Au).
  • the electrode manufacturing method of the present invention includes a step of forming a hexagonal pyramid shape by etching a nitrogen polar surface of an n-type group III nitride semiconductor layer, and titanium (Ti), nickel (Ni), A method for producing an electrode for ohmic contact with an n-type group III nitride semiconductor layer including a step of sequentially laminating gold (Au).
  • the electrode manufacturing method of the present invention is characterized by etching using an etchant containing KOH or NaOH.
  • the electrode of the present invention can form a good ohmic junction with the n-type group III nitride semiconductor even on the surface on the growth substrate side.
  • Dependence of current-voltage characteristics on heat treatment temperature of Cr / Ni / Au electrodes formed on Ga polar face, N polar face and semipolar face (a) As-depo state, (b) After heat treatment at 250 ° C.
  • this electrode is the semipolar plane that is in direct contact with the electrode in the n-type group III nitride semiconductor.
  • This electrode can obtain a good ohmic contact particularly in the n-type group III nitride semiconductor on the lifted-off side.
  • a polar (Polar) surface, a non-polar (None-polar) surface, and a semipolar (Semi-polar) surface will be briefly described.
  • the nitride semiconductor single crystal has a wurtzite hexagonal structure, and a group III element surface and a nitrogen element surface are alternately stacked in the c-axis direction. Since the bond has some ionicity, spontaneous polarization occurs, and when strain is applied, piezo polarization is also added. Therefore, the polarization state is different between the (0001) group III plane and the (000-1) N plane.
  • the elements exposed on the surface are in a ratio of 1: 1 for both the group III element and the nitrogen element, so that the polarization is canceled out and the so-called nonpolar plane has no apparent polarity.
  • the m-plane ⁇ 10-10 ⁇ and the a-plane ⁇ 11-20 ⁇ correspond to it.
  • a plane that forms an angle with respect to the c-axis (c-plane) is a semipolar plane, such as ⁇ 11-22 ⁇ plane, ⁇ 20-21 ⁇ plane, ⁇ 10-1-3 ⁇ plane, ⁇ 10-1
  • the -1 ⁇ plane corresponds to that.
  • the (0001) group III polar surface is expressed as a Ga polar surface for convenience, and even when expressed as a Ga polar surface, the surface is not limited to Ga, and may be a surface containing Al, In, or the like.
  • this electrode By forming this electrode on a semipolar surface, the ohmic characteristics can be improved as confirmed in Examples described later.
  • the reason is considered as follows. Contact resistance is related to bending of the semiconductor band structure at the interface between the electrode and the semiconductor layer. This bending of the band structure is greatly related to the polarity of the semiconductor surface, and this state is different between the polar and semipolar planes, so good ohmic characteristics can be obtained in a metal configuration different from the electrodes used for the conventional polar plane. May be.
  • the best ohmic characteristics can be obtained by a combination of an electrode made of titanium (Ti), nickel (Ni), and gold (A), which will be described later, and this semipolar plane.
  • a group III nitride semiconductor is generally formed by heteroepitaxial growth on a substrate, and the growth surface cannot be freely selected from the viewpoint of obtaining good characteristics.
  • the development of epitaxial technology on the nonpolar (10-10) plane (m-plane) and (20-21) semipolar plane is also progressing.
  • the (0001) c-plane is used. Therefore, in the present embodiment, as described below, the growth surface itself is a polar surface so that good characteristics can be obtained in the growing group III nitride semiconductor, but the semipolar surface is forcibly exposed. By doing so, the electrode and the semipolar surface are brought into direct contact.
  • FIG. 1 is a process cross-sectional view showing a method for manufacturing this semiconductor device.
  • the n-type GaN layer 11 is formed on the sapphire substrate (growth substrate) 20 by heteroepitaxial growth, and the n-type GaN layer on the side where the sapphire substrate 20 is removed.
  • 11 is forcibly made a semipolar surface by anisotropic etching, and an n-side electrode (electrode) 12 is formed in contact with the surface.
  • the surface on which the n-side electrode 12 is formed is a semipolar surface, but this does not mean that this surface itself is a flat surface and this flat surface is a semipolar surface. This means that this surface is not a flat surface but is composed of fine irregularities, and the micro surface constituting the irregularities is a semipolar surface.
  • metal chrome (Cr) having a thickness of, for example, about 20 nm is formed on the sapphire substrate 20 as a lift-off layer 21 by, for example, a sputtering method or a vacuum deposition method.
  • a sputtering method or a vacuum deposition method As the sapphire substrate 20, in order to obtain a single crystal GaN on the sapphire substrate 20, a single crystal having a quasi-hexagonal c-plane as a main surface is particularly preferably used.
  • the growth substrate and the lift-off layer are not limited to the above.
  • a substrate such as an AlN template may be used as the growth substrate.
  • a nitriding treatment may be performed in this state, for example, at a high temperature of 1040 ° C. or higher in an ammonia atmosphere.
  • a nitriding treatment may be performed in this state, for example, at a high temperature of 1040 ° C. or higher in an ammonia atmosphere.
  • the vicinity of the surface of the lift-off layer 21 is nitrided to become a chromium nitride layer.
  • the thickness of the chromium nitride layer can be set by adjusting the film thickness of the Cr film, the processing time, the temperature, and the like.
  • an n-type GaN layer 11 and a p-type GaN layer 13 are sequentially formed on the lift-off layer 21 (growth step).
  • layers such as a single quantum well and a multiquantum well structure are located between the n-type layer and the p-type layer.
  • the n-type GaN layer 11 is doped with an impurity serving as a donor
  • the p-type GaN layer 13 is doped with an impurity serving as an acceptor.
  • the n-type GaN layer 11 and the p-type GaN layer 13 with few crystal defects can be grown on the chromium nitride layer.
  • the surface (upper surface) of the n-type GaN layer 11 or the surface (upper surface) of the p-type GaN layer 12 grown thereon is a (0001) Ga polar surface.
  • the side in contact with the growth substrate is a (000-1) N polar plane.
  • the p-side electrode 14 is formed on the surface (upper surface) of the p-type GaN layer 13.
  • a known p-side electrode 14 can be used.
  • the p-side electrode 14 is patterned by photolithography using an etching method or the like.
  • the p-side electrode may be patterned by a lift-off method.
  • a copper block 32 is connected to the entire upper surface via a cap metal 31 as a support structure after the next lift-off process.
  • a cap metal 31 for example, Ni / Au can be used.
  • the support structure may be formed by a dry plating method, a wet plating method, or a bonding method with a bonding material between the support metal and the cap metal. Further, the material of the support structure portion may be a metal, an alloy, or a conductive semiconductor.
  • the lift-off layer 21 is removed by chemical treatment (lift-off process).
  • lift-off process By selective wet etching, only the lift-off layer 21 is selectively removed as shown in FIG. 1E without affecting the n-type GaN layer 11, the p-type layer 13, the support structure, and the like. Can do.
  • This process is the same as the process known as chemical lift-off described in JP2009-54888A.
  • the lower surface of the n-type GaN layer 11 is exposed. This surface is a nitrogen polarity surface opposite to the upper surface of the n-type GaN layer 11.
  • anisotropic wet etching is performed on the laminated structure of the n-type GaN layer 11 and the p-type GaN layer 12 where this surface is exposed (surface etching step).
  • anisotropic wet etching is different from etching for the purpose of removing the lift-off layer and cleaning the surface, which etches the surface evenly.
  • etching so that a semipolar surface appears with respect to a polar surface is called anisotropic etching.
  • a surface whose surface can be formed by etching a polar surface is a semipolar surface, for example, a ⁇ 10-1-1 ⁇ surface group.
  • an alkaline etching solution for example, a potassium hydroxide (KOH) solution, a sodium hydroxide (NaOH) solution, a mixed alkali solution containing both, or the like may be used.
  • a potassium hydroxide (KOH) solution for example, a potassium hydroxide (KOH) solution, a sodium hydroxide (NaOH) solution, a mixed alkali solution containing both, or the like
  • water (H 2 O) or glycol can be used.
  • etching occurs when OH- ions oxidize group III atoms (Ga, Al) of GaN or AlGaN.
  • GaN since three nitrogen atoms exist below the Ga atom on the Ga polar face side, the OH-ion cannot oxidize Ga.
  • the lower surface (nitrogen polar surface) is selectively etched by anisotropic wet etching performed under appropriate conditions such as heating using a strong alkaline etching solution, and the surface reflects hexagonal crystals. Many hexagonal pyramidal projections having a hexagonal bottom surface are formed. For the above reasons, such anisotropic etching occurs on the nitrogen polar surface, and the Ga polar surface is hardly etched. In this etching, a hexagonal pyramid-like pit is observed on the Ga polar face when dislocations are present.
  • FIG. 2 The electron microscope (SEM) photograph of the form after this etching is shown in FIG. 2 (a: Ga polar plane, b: N polar plane).
  • the hexagonal pyramid shape has six ⁇ 10-1-1 ⁇ planes having a hexagonal bottom surface on the (000-1) plane and an angle of 62 ° with respect to the bottom surface. A group appears. Whether it is the (10-1-1) plane can be determined by determining the angle of the side surface with respect to the bottom surface from shape observation by SEM observation.
  • the interface between the n-type GaN layer 11 and the n-side electrode (electrode) 12 is a saw having an angle of about 62 ° to the n-type GaN layer 11 side. It has a blade shape. As shown in FIG. 1 (f) and FIG. 2 (b), after the above etching, the surface shape is composed of unevenness composed of six ⁇ 10-1-1 ⁇ plane groups.
  • the effective surface area is composed of the ⁇ 10-1-1 ⁇ plane group of hexagonal pyramid-shaped semipolar planes compared to the flat (000-1) plane, it is about twice as large regardless of the size of the irregularities. Become. Thereby, the main electrode formed on the semipolar surface has an effect of reducing the contact resistance value because the effective contact area with the n-type electrode is increased even if the electrode dimensions in the planar direction are the same. Since the size of the unevenness can be controlled by the concentration, temperature, and time conditions of the etching solution, it should be a size that is suitable not only for reducing the above contact resistance value but also for improving the light extraction efficiency using Snell's law. Is preferred. For example, the height of the hexagonal pyramid shape is unevenness of 0.3 to 4.5 ⁇ m.
  • an n-side electrode (electrode) 12 is formed on the lower surface (semipolar surface after anisotropic etching) of the n-type GaN layer 11 in this state, for example, Ti / Ni. / Au (structure in which Ti, Ni, and Au are laminated in this order) is formed (electrode formation step).
  • This formation is preferably performed by, for example, a sputtering method or a vacuum evaporation method.
  • the film forming method and patterning method are the same as those for the p-side electrode 14. Since the surface of the n-type GaN layer 11 is composed of the semipolar plane as described above, the ohmic property between the n-side electrode 12 and the n-type GaN layer 11 is good, and the contact resistance can be reduced. .
  • the resistivity of the p-type GaN layer 13 is higher than the resistivity of the n-type GaN layer 11.
  • the configuration in which the area of the p-side electrode 14 and the area of the n-side electrode 11 are reduced as shown in FIG. 1 reduces the influence of the electrode resistance. preferable.
  • light emission is not taken out from the p-side electrode 14 side (reflected by the p-side electrode), and light emission is taken out from the small-area n-side electrode 12 side.
  • It can be a diode (light emitting element).
  • the above configuration that can reduce the resistance on the n-side electrode 12 side having a small area is extremely effective.
  • a semiconductor layer composed of an n-type layer and a p-type layer is sequentially grown on a growth substrate, and then the growth substrate is removed.
  • the reason for performing these steps is to take out the p-side electrode and the n-side electrode from different sides of the semiconductor layer after the stacked structure of the p-type layer and the n-type layer is formed.
  • this semiconductor device is a light emitting diode or a laser diode using this pn junction, the electrode resistance is lowered by such a configuration, and theoretically, the forward resistance is low and high luminous efficiency can be obtained.
  • Such a configuration is not limited to a light-emitting diode or a laser diode, but is clearly effective for all semiconductor devices that operate with a current flowing in a direction perpendicular to the main surface of the semiconductor layer.
  • Another layer is formed between the n-type layer and the p-type layer.
  • a good ohmic contact cannot be formed on the (000-1) N exposed surface of the n-type layer, but the exposed surface is forcibly removed by anisotropic etching ⁇ 00-1-1.
  • the problem of ohmic contact was solved by converting it to the surface.
  • Non-Patent Document 1 Schnitzer et al., Appl. Phys. Lett. 63 (1993) 2174.30% external quantum efficiency from surface textured, thin-film light-emitting diodes.
  • the light extraction efficiency is higher when the light emitting surface is formed with unevenness.
  • the n-side electrode may be formed on a part of the uneven surface after forming the unevenness, the process is simple, and this effect can be obtained at the same time.
  • the group III nitride semiconductor As the group III nitride semiconductor has been described.
  • the crystal structure related to polarity particularly the configuration of the (000-1) N plane and the formation of the semipolar plane
  • III nitride semiconductors such as AlGaN and AlInGaN. Therefore, it is clear that the above-described electrode and manufacturing method are similarly effective for these other III nitride semiconductors.
  • the group III element which comprises the group III nitride of the surface which forms an electrode contains Ga, and Ga is contained 30% or more.
  • the surface on which the electrode is formed is uneven, and the micro surface forming the uneven surface is a semipolar surface.
  • the entire surface on which the electrode is formed is a semipolar surface. It is clear that the above-mentioned electrode is effective as an ohmic electrode even when it is constituted by a plane (for example, when a GaN crystal is physically cut by a semipolar plane).
  • an n-side electrode is formed on the three types of Ga polar face, nitrogen polar face, and hexagonal pyramid-shaped semipolar face by vacuum vapor deposition (the degree of vacuum during vapor deposition is 8 ⁇ 10 ⁇ 4 Pa or less). The results of examining the characteristics will be described.
  • n-type GaN Si-doped carrier concentration: about 5 ⁇ 10 18 cm ⁇ 3 , thickness 5 ⁇ m
  • MOCVD Metal Organic Chemical Vapor Deposition
  • a lift-off process for etching the CrN layer with a selective etching solution to separate the growth substrate and the epitaxial growth layer was performed.
  • the exposed surface after the lift-off process is a nitrogen polar surface opposite to the above.
  • etching treatment at 60 ° C. for 30 minutes using a 6 mol / L aqueous KOH solution, a surface shape as shown in FIG. 3 was obtained.
  • the irregularities had a hexagonal pyramid shape, and the triangular surface of the hexagonal pyramid shape was at an angle of 62 ° with respect to the (000-1) bottom surface. -1-1 ⁇ face group was confirmed.
  • Electrodes made of various materials are formed on the three types of Ga polar surface after growth, nitrogen polar surface before etching, and hexagonal pyramid-shaped semipolar surface formed as described above.
  • the current-voltage characteristics of the contacts were examined by the (Transmission Line Model) method.
  • TLM method electrodes having a length of 400 ⁇ m and a width of 150 ⁇ m were formed at intervals of 20, 40, 80, and 160 ⁇ m.
  • the current-voltage characteristics were measured by contacting prober needles with these electrode patterns.
  • the electrode material two types of Cr / Ni / Au and Ti / Ni / Au were used.
  • the thickness of the deposited electrode is 0.05 ⁇ m for both Cr and Ti, 0.02 ⁇ m for Ni, and 1.2 ⁇ m for Au.
  • the former has a laminated structure in which Cr is on the side in direct contact with the semiconductor layer and Cr in the latter.
  • Each sample was subjected to a heat treatment at 250 ° C. and 400 ° C. for 10 minutes in a nitrogen atmosphere after film formation (As Depo.) To evaluate the thermal stability of the ohmic characteristics.
  • FIG. 4 shows the current-voltage characteristics when the electrode spacing is 80 ⁇ m.
  • the semipolar surface exhibits linearity in the state where no heat treatment is performed after film formation, but the contact resistance is larger than that of the Ga polar surface, and the ohmic characteristics are deteriorated by heat treatment at 250 ° C. and 400 ° C. Therefore, it is difficult to use Cr / Ni / Au for an electrode for ohmic contact with the n-type group III nitride semiconductor layer on the growth substrate side after the lift-off process.
  • the resistance value is smaller on the N-polar surface than on the Ga-polar surface, the ohmic characteristics are inferior to that on the semipolar surface.
  • the n-side electrode is formed at the final stage after lift-off, there is no necessity to apply heat to the element after the n-side electrode is formed. Therefore, for example, it is practically preferable to obtain ohmic characteristics in the range from As Depo to 250 ° C.
  • the n-side electrode In a metal configuration in which ohmic characteristics cannot be obtained unless heat treatment is performed at a higher temperature, for example, 400 ° C., the n-side electrode For example, problems such as diffusion at the p-side electrode and junction formed before, separation due to the difference in thermal expansion coefficient between Cu and group III nitride semiconductor used for the support, etc. occur. It is not suitable for manufacturing vertical LEDs.
  • the unevenness constituted by the semipolar surface is formed by performing anisotropic etching on the nitrogen polar surface, and by forming the Ti / Ni / Au electrode on this, good ohmic contact is achieved. Electrode. Therefore, for example, in the semiconductor device having the structure shown in FIG. 1G, when the electrode 12 is made of Ti / Ni / Au, the contact resistance can be reduced, so that the forward drive voltage Vf is reduced. can do. Moreover, in the combination of a semipolar surface and this electrode, high heat resistance up to 250 ° C. can be obtained. In addition, since the entire surface of the nitrogen polar surface is made uneven and an electrode is formed on a part thereof, the roughening process for increasing the extraction efficiency can be simplified.
  • the structure of the Ti / Ni / Au electrode of the present application is suitable for an electrode for ohmic contact with the n-type group III nitride semiconductor layer on the growth substrate side after the lift-off process.

Abstract

In the present invention, good ohmic joining is formed with an n-type group III nitride semiconductor. As is shown in FIG. 1 (c), a p-side electrode (14) is formed on (the upper surface of) a p-type GaN layer (13). As is shown in FIG. 1 (d), a copper block (32) is joined to the entire upper surface via cap metal (31). Thereafter, a lift-off layer (21) is removed (lift-off process) by a chemical treatment. Next, anisotropic wet etching is carried out (surface etching process) on the laminated structure of an n-type GaN layer (11) and the p-type GaN layer (12) exposed by this surface. As is shown in FIG. 1 (f), the surface shape of the N polarity surface following this etching is a textured shape constituted of a group of <10-1-1> surfaces. Next, as is shown in FIG. 1 (g), Ti/Ni/Au is formed (electrode forming process) for the n-side electrode (electrode) (12) on the lower surface of the n-type GaN layer (11) in this state.

Description

n型III族窒化物半導体層とのオーミック接触用の電極とその製造方法Electrode for ohmic contact with n-type group III nitride semiconductor layer and manufacturing method thereof
 本発明は、エピタキシャル成長によって形成されたIII族窒化物半導体に用いられる電極とその製造方法に関する。 The present invention relates to an electrode used for a group III nitride semiconductor formed by epitaxial growth and a manufacturing method thereof.
 GaNに代表されるIII族窒化物半導体は、そのバンドギャップが広いために、青色、緑色等のLED(発光ダイオード)、LD(レーザーダイオード)等の発光素子やパワー素子の材料として広く用いられている。半導体材料の代表であるシリコンにおいては、大口径のバルク結晶を切り出して得られた大口径のウェハが一般的に用いられている。これに対して、こうした化合物半導体においては、大口径(例えば4インチ径以上)のバルク結晶を得ることが極めて困難である。このため、こうした化合物半導体を用いた半導体装置を製造するに際しては、これと異なる材料からなる基板上にこの化合物半導体をヘテロエピタキシャル成長させたウェハを用いるのが一般的である。また、LEDやLDを構成するpn接合やヘテロ接合も、更にこの上にエピタキシャル成長を行うことによって得られる。 Group III nitride semiconductors typified by GaN are widely used as materials for light-emitting elements and power elements such as blue and green LEDs (light-emitting diodes) and LDs (laser diodes) because of their wide band gaps. Yes. In silicon, which is a representative semiconductor material, a large-diameter wafer obtained by cutting out a large-diameter bulk crystal is generally used. On the other hand, in such a compound semiconductor, it is very difficult to obtain a bulk crystal having a large diameter (for example, 4 inches diameter or more). For this reason, when manufacturing a semiconductor device using such a compound semiconductor, a wafer obtained by heteroepitaxially growing the compound semiconductor on a substrate made of a different material is generally used. Further, a pn junction and a heterojunction constituting the LED and LD can be obtained by further epitaxial growth thereon.
 例えば、GaN単結晶を成長させることのできるエピタキシャル成長用基板の材料としては、サファイア等が知られている。サファイアは、大口径のバルク単結晶を得ることが比較的容易であり、かつその面方位を適宜選択することにより、その単結晶からなる基板上にGaNをヘテロエピタキシャル成長させることができる。これにより、大口径のGaN単結晶が形成されたウェハを得ることができる。 For example, sapphire is known as a material for an epitaxial growth substrate on which a GaN single crystal can be grown. With sapphire, it is relatively easy to obtain a large-diameter bulk single crystal, and GaN can be heteroepitaxially grown on a substrate made of the single crystal by appropriately selecting the plane orientation. Thereby, a wafer on which a large-diameter GaN single crystal is formed can be obtained.
 ここで、サファイア基板上にp型GaN層とn型GaN層が形成されることによってpn接合が形成されるが、一般に、良質なp型GaN層を得ることは、n型GaN層を得ることに比べて困難である。このため、通常この構成においては、サファイア基板上に厚いn型GaN層が形成され、n型GaN層の上に薄いp型GaN層が順次エピタキシャル成長によって形成される。この構成においては、基板となるサファイアが絶縁性であるため、p型GaN層、n型GaN層への電気的接触は、共に上側(基板と反対側)から取り出される場合が多い。サファイアは透明であるために、発光素子においては、発光は下側から取り出すことができる(フリップチップ構造)。 Here, a pn junction is formed by forming a p-type GaN layer and an n-type GaN layer on a sapphire substrate. In general, obtaining a good p-type GaN layer means obtaining an n-type GaN layer. It is difficult compared to For this reason, normally in this configuration, a thick n-type GaN layer is formed on a sapphire substrate, and a thin p-type GaN layer is sequentially formed on the n-type GaN layer by epitaxial growth. In this configuration, since the sapphire serving as the substrate is insulative, electrical contact to the p-type GaN layer and the n-type GaN layer is often taken from the upper side (the side opposite to the substrate). Since sapphire is transparent, light emission can be extracted from the lower side in the light emitting element (flip chip structure).
 この構成の発光素子の製造工程を簡略化して示したのが図5である。この製造方法においては、まず、図5(a)に示されるように、サファイア基板91上にn型GaN層92、p型GaN層93が順次形成される。なお、実際にはn型GaN層92とサファイア基板91の間には、n型GaN層92の結晶性を向上させるために緩衝層が形成される場合が多いが、ここではその記載を省略している。その後、図5(b)に示されるように、この表面が部分的にエッチングされることによってn型GaN層92が露出した領域が形成され、この部分にn側電極94が形成され、p型GaN層93の表面にp側電極95が形成される。 FIG. 5 shows a simplified manufacturing process of the light-emitting element having this configuration. In this manufacturing method, first, an n-type GaN layer 92 and a p-type GaN layer 93 are sequentially formed on a sapphire substrate 91 as shown in FIG. In practice, a buffer layer is often formed between the n-type GaN layer 92 and the sapphire substrate 91 in order to improve the crystallinity of the n-type GaN layer 92, but the description thereof is omitted here. ing. Thereafter, as shown in FIG. 5 (b), the surface is partially etched to form a region where the n-type GaN layer 92 is exposed, and an n-side electrode 94 is formed in this region. A p-side electrode 95 is formed on the surface of the GaN layer 93.
 こうした構成における電極の材料構成については、例えば特許文献1に記載されている。ここでは、n側電極94において特にn型GaN層92と接触する層としてCr又はCr合金をスパッタリングにより形成し、その上にTiを介してAu層を形成した構造が、n型GaN層92に対して良好なオーミック接触特性をもつことが記載されている。 The material configuration of the electrode in such a configuration is described in Patent Document 1, for example. Here, a structure in which Cr or a Cr alloy is formed by sputtering as a layer in contact with the n-type GaN layer 92 in the n-side electrode 94 and an Au layer is formed thereon via Ti is formed on the n-type GaN layer 92. On the other hand, it has been described that it has good ohmic contact characteristics.
 図5の構成においては、発光は下側から取り出されるが、図5(b)中の右側において上側でn型GaN層92が露出した領域は発光には全く寄与しない。このため、より高い発光効率をもつ形態として、成長用基板となったサファイア基板を除去し、n型GaN層の裏側にn側電極を形成した構成も用いられている。この構成の発光素子の製造方法を簡略化して示したのが図6である。 In the configuration of FIG. 5, light emission is extracted from the lower side, but the region where the n-type GaN layer 92 is exposed on the upper right side in FIG. 5B does not contribute to the light emission at all. For this reason, as a form having higher luminous efficiency, a configuration in which the sapphire substrate serving as the growth substrate is removed and an n-side electrode is formed on the back side of the n-type GaN layer is also used. FIG. 6 shows a simplified manufacturing method of the light emitting element having this configuration.
 この製造方法においては、まず、図6(a)に示されるように、サファイア基板91上に、リフトオフ層96を介してn型GaN層92、p型GaN層93が順次形成される。その後、図6(b)に示されるように、リフトオフ層96は、化学的処理(ケミカルリフトオフ)やレーザー光の照射(レーザーリフトオフ)により、除去される。これによって、サファイア基板91とn型GaN層92は分離され、n型GaN層92の下面が露出する。これにより、図6(c)に示されるように、n型GaN層92の下面の一部にn側電極94を、p型GaN層93の上面にp側電極95をそれぞれ形成することができる。この構成においては、図5の構成よりも実質的な発光面積を大きくとることができるため、高い発光効率が得られる。また、p型GaN層93の上面側からは光を取り出す必要がないので、光に対して透明でないp側電極95の面積を大きくし、p型GaN層93の表面の広い範囲にp側電極95を形成することもできる。一般にp型GaN層93の抵抗率はn型GaN層92と比べて高いため、p側電極95の面積を広くすることは、電極部分の抵抗低減において有効である。また、p型GaN層と接触するp型オーミック電極として、発光波長に対する反射率の高い材料を用いれば、発光層からの光を対抗面側に反射させ、更に高い発光効率が得られる。 In this manufacturing method, first, as shown in FIG. 6A, an n-type GaN layer 92 and a p-type GaN layer 93 are sequentially formed on a sapphire substrate 91 via a lift-off layer 96. Thereafter, as shown in FIG. 6B, the lift-off layer 96 is removed by chemical treatment (chemical lift-off) or laser light irradiation (laser lift-off). As a result, the sapphire substrate 91 and the n-type GaN layer 92 are separated, and the lower surface of the n-type GaN layer 92 is exposed. Thereby, as shown in FIG. 6C, the n-side electrode 94 can be formed on a part of the lower surface of the n-type GaN layer 92, and the p-side electrode 95 can be formed on the upper surface of the p-type GaN layer 93. . In this configuration, since a substantial light emitting area can be taken as compared with the configuration of FIG. 5, high luminous efficiency can be obtained. Further, since it is not necessary to extract light from the upper surface side of the p-type GaN layer 93, the area of the p-side electrode 95 that is not transparent to the light is increased, and the p-side electrode is formed over a wide range of the surface of the p-type GaN layer 93. 95 can also be formed. Since the resistivity of the p-type GaN layer 93 is generally higher than that of the n-type GaN layer 92, widening the area of the p-side electrode 95 is effective in reducing the resistance of the electrode portion. In addition, if a material having a high reflectance with respect to the emission wavelength is used as the p-type ohmic electrode in contact with the p-type GaN layer, light from the light-emitting layer is reflected to the opposing surface side, and higher luminous efficiency can be obtained.
特開2005-197670号公報JP 2005-197670 A
 しかしながら、化合物半導体であるGaNは、シリコン等のIV族半導体とは異なり、2種類の元素から構成されている。このため、その結晶構造においては方向性がある、あるいは極性をもつ結晶面が存在する。例えば、ウルツ鉱構造をもつGaNの{0001}面は、いわゆる極性面であり、Ga原子のみから構成される(0001)Ga極性面と、N原子のみから構成される(000-1)N(窒素)極性面の2種類が異なる向きで形成される。GaNの単結晶においては、仮に上側の面がこの(0001)Ga極性面(以降、Ga極性面もしくはGa-Polarとも表記する)であった場合には、上側の面と平行な下側の面は必ず(000-1)N極性面(以降、窒素極性面もしくはN-Polarとも表記する)となる。この2種類の面の構成元素は全く異なるために、その性質も大きく異なる。従って、例えば図5や図6に示された構成においては、n型GaN層92の上面がGa極性面である場合には、その下面は窒素極性面となる。この場合、n型電極がn型GaN層の上面に形成された場合と、下面に形成された場合とでは、その化学反応性や電気的特性等は異なる。 However, GaN, which is a compound semiconductor, is composed of two types of elements, unlike group IV semiconductors such as silicon. For this reason, in the crystal structure, there is a crystal plane having directionality or polarity. For example, the {0001} plane of GaN having a wurtzite structure is a so-called polar plane, and is a (0001) Ga polar plane composed only of Ga atoms and (000-1) N ( Nitrogen) polar surfaces are formed in different orientations. In a GaN single crystal, if the upper surface is this (0001) Ga polar surface (hereinafter also referred to as Ga polar surface or Ga-Polar), the lower surface parallel to the upper surface Is necessarily a (000-1) N polar face (hereinafter also referred to as a nitrogen polar face or N-Polar). Since the constituent elements of the two types of surfaces are completely different, their properties are also greatly different. Therefore, for example, in the configuration shown in FIGS. 5 and 6, when the upper surface of the n-type GaN layer 92 is a Ga polar surface, the lower surface is a nitrogen polar surface. In this case, when the n-type electrode is formed on the upper surface of the n-type GaN layer and when it is formed on the lower surface, the chemical reactivity, electrical characteristics, and the like are different.
 実際にサファイア基板上にn型GaN層をヘテロエピタキシャル成長させる場合、c軸方向の(0001)面方位のサファイア基板を用いることが多い。なお、サファイアの結晶構造は菱面体晶系であるが、通常六方晶系で近似的に表記される。この場合、一般的には、図5、6におけるn型GaN層92の上面は(0001)Ga極性面となり、下面が(000-1)N極性面となる。 Actually, when an n-type GaN layer is heteroepitaxially grown on a sapphire substrate, a sapphire substrate having a (0001) plane orientation in the c-axis direction is often used. In addition, although the crystal structure of sapphire is rhombohedral, it is generally expressed in a hexagonal system. In this case, generally, the upper surface of the n-type GaN layer 92 in FIGS. 5 and 6 is a (0001) Ga polar surface, and the lower surface is a (000-1) N polar surface.
 これに対して、特許文献1、2に記載されたn側電極については、いずれも、図5に示されたような、サファイア基板91上に形成されたn型GaN層92の上面(サファイア基板91と反対側の面:Ga極性面)に対してのみ有効性が示されていた。この点について、発明者が検討を行ったところ、図6に示されたようなn型GaN層92の下面(窒素極性面)に対しては、特許文献1に記載されたn型層用の電極は、オーミック性がないことが確認された。 On the other hand, for the n-side electrodes described in Patent Documents 1 and 2, the upper surface (sapphire substrate) of the n-type GaN layer 92 formed on the sapphire substrate 91 as shown in FIG. The effectiveness was shown only for the surface opposite to 91: Ga polar surface). When the inventor examined this point, the lower surface (nitrogen polar surface) of the n-type GaN layer 92 as shown in FIG. 6 was used for the n-type layer described in Patent Document 1. It was confirmed that the electrode is not ohmic.
 このため、エピタキシャル成長用基板上に形成されたn型III族窒化物半導体層の、エピタキシャル成長用基板側の面において良好な特性をもつ電極を得ることは困難であった。すなわち、実際の半導体装置中においては、n型III族窒化物半導体に対して良好なオーミック接合をとることができない場合があった。 For this reason, it has been difficult to obtain an electrode having good characteristics on the surface on the epitaxial growth substrate side of the n-type group III nitride semiconductor layer formed on the epitaxial growth substrate. That is, in an actual semiconductor device, there is a case where a good ohmic junction cannot be obtained with respect to the n-type group III nitride semiconductor.
 本発明は、かかる問題点に鑑みてなされたものであり、上記問題点を解決する発明を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide an invention that solves the above problems.
 本発明は、上記課題を解決すべく、以下に掲げる構成とした。
 本発明の電極は、n型III族窒化物半導体層の半極性面である{10-1-1}面群の表面上に順次積層された、チタン(Ti)、ニッケル(Ni)、金(Au)からなるn型III族窒化物半導体層とのオーミック接触用の電極であることを特徴とする。
 本発明の電極は、n型III族窒化物半導体層からなる六角錘形状の表面に順次積層された、チタン(Ti)、ニッケル(Ni)、金(Au)からなるn型III族窒化物半導体層とのオーミック接触用の電極であることを特徴とする。
 本発明の電極の製造方法は、n型III族窒化物半導体層の窒素極性面のエッチングにより半極性面を形成する工程と、前記半極性面の表面上にチタン(Ti)、ニッケル(Ni)、金(Au)を順次積層する工程を含むn型III族窒化物半導体層とのオーミック接触用の電極の製造方法であることを特徴とする。
 本発明の電極の製造方法は、n型III族窒化物半導体層の窒素極性面のエッチングにより六角錘形状を形成する工程と、前記六角錘形状の表面にチタン(Ti)、ニッケル(Ni)、金(Au)を順次積層する工程を含むn型III族窒化物半導体層とのオーミック接触用の電極の製造方法であることを特徴とする。
 本発明の電極の製造方法は、KOHもしくはNaOHを含むエッチング液を用いてエッチングすることを特徴とする。
In order to solve the above problems, the present invention has the following configurations.
The electrode of the present invention includes titanium (Ti), nickel (Ni), and gold (Ti) laminated sequentially on the surface of the {10-1-1} plane group, which is a semipolar plane of the n-type group III nitride semiconductor layer. It is an electrode for ohmic contact with an n-type group III nitride semiconductor layer made of Au).
The electrode of the present invention is an n-type group III nitride semiconductor composed of titanium (Ti), nickel (Ni), and gold (Au), which is sequentially stacked on a hexagonal pyramid-shaped surface composed of an n-type group III nitride semiconductor layer. It is an electrode for ohmic contact with a layer.
The electrode manufacturing method of the present invention includes a step of forming a semipolar surface by etching a nitrogen polar surface of an n-type group III nitride semiconductor layer, and titanium (Ti) and nickel (Ni) on the surface of the semipolar surface. , And a method of manufacturing an electrode for ohmic contact with an n-type group III nitride semiconductor layer including a step of sequentially laminating gold (Au).
The electrode manufacturing method of the present invention includes a step of forming a hexagonal pyramid shape by etching a nitrogen polar surface of an n-type group III nitride semiconductor layer, and titanium (Ti), nickel (Ni), A method for producing an electrode for ohmic contact with an n-type group III nitride semiconductor layer including a step of sequentially laminating gold (Au).
The electrode manufacturing method of the present invention is characterized by etching using an etchant containing KOH or NaOH.
 本発明の電極は、成長用基板側の面においてもn型III族窒化物半導体に対して良好なオーミック接合をとることができる。 The electrode of the present invention can form a good ohmic junction with the n-type group III nitride semiconductor even on the surface on the growth substrate side.
本発明の実施の形態に係る半導体装置の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 極性面に対して異方性エッチング後のGaN表面のSEM写真(a:Ga極性面、b:N極性面)である。It is a SEM photograph (a: Ga polar surface, b: N polar surface) of the GaN surface after anisotropic etching with respect to a polar surface. 実施例における表面の異方性エッチング後の形状のSEM写真である。It is a SEM photograph of the shape after anisotropic etching of the surface in an example. Ga極性面、N極性面ならびに半極性面上に形成したCr/Ni/Au電極の電流-電圧特性の熱処理温度依存性((a)As-depo.状態、(b)250℃での熱処理後、(c)400℃での熱処理後)、並びに電極がTi/Ni/Auの場合の電流-電圧特性の熱処理温度依存性((d)As-depo.状態、(e)250℃での熱処理後、(f)400℃での熱処理後)である。Dependence of current-voltage characteristics on heat treatment temperature of Cr / Ni / Au electrodes formed on Ga polar face, N polar face and semipolar face ((a) As-depo state, (b) After heat treatment at 250 ° C. , (C) after heat treatment at 400 ° C.), and when the electrode is Ti / Ni / Au, the current-voltage characteristics depend on the heat treatment temperature ((d) As-depo. State, (e) heat treatment at 250 ° C. (F) After heat treatment at 400 ° C. 従来の発光素子の一例の製造方法を簡略化して示す図である。It is a figure which simplifies and shows the manufacturing method of an example of the conventional light emitting element. 従来の発光素子の他の一例の製造方法を簡略化して示す図であるIt is a figure which simplifies and shows the manufacturing method of the other example of the conventional light emitting element.
 以下、本発明の実施の形態に係る電極について説明する。この電極においては、n型III族窒化物半導体において直接電極と接触がなされるのは半極性面である。この電極は、特に、リフトオフされた側のn型III族窒化物半導体において良好なオーミック接触を得ることができる。 Hereinafter, the electrode according to the embodiment of the present invention will be described. In this electrode, it is the semipolar plane that is in direct contact with the electrode in the n-type group III nitride semiconductor. This electrode can obtain a good ohmic contact particularly in the n-type group III nitride semiconductor on the lifted-off side.
ここで、極性(Polar)面と無極性(None-polar)面および半極性(Semi-polar)面について簡単に説明する。窒化物半導体単結晶はウルツ型六方晶系の構造をとり、c軸方向にはIII族元素面と窒素元素面が交互に積層された形態となる。結合は若干のイオン性を持つため、自発分極が生じるとともに歪が加わるとピエゾ分極も加わる。そのため、(0001)III族面と(000-1)N面とでは分極の状態が異なることになる。一方、c軸に平行な面では表面に露出する元素がIII族元素、窒素元素ともに1:1の比率であるため分極が打ち消され見かけ上極性をもたない所謂無極性面となる。m面{10-10}、a面{11-20}がそれに相当する。c軸(c面)に対して斜めに角度をなす面が半極性面であり、例えば{11-22}面、{20-21}面、{10-1-3}面、{10-1-1}面などがそれに相当する。なお、(0001)III族極性面を便宜的にGa極性面と表記しており、Ga極性面と表記しても表面はGaに限らず、Al、In等を含む面であって良い。 Here, a polar (Polar) surface, a non-polar (None-polar) surface, and a semipolar (Semi-polar) surface will be briefly described. The nitride semiconductor single crystal has a wurtzite hexagonal structure, and a group III element surface and a nitrogen element surface are alternately stacked in the c-axis direction. Since the bond has some ionicity, spontaneous polarization occurs, and when strain is applied, piezo polarization is also added. Therefore, the polarization state is different between the (0001) group III plane and the (000-1) N plane. On the other hand, on the plane parallel to the c-axis, the elements exposed on the surface are in a ratio of 1: 1 for both the group III element and the nitrogen element, so that the polarization is canceled out and the so-called nonpolar plane has no apparent polarity. The m-plane {10-10} and the a-plane {11-20} correspond to it. A plane that forms an angle with respect to the c-axis (c-plane) is a semipolar plane, such as {11-22} plane, {20-21} plane, {10-1-3} plane, {10-1 The -1} plane corresponds to that. Note that the (0001) group III polar surface is expressed as a Ga polar surface for convenience, and even when expressed as a Ga polar surface, the surface is not limited to Ga, and may be a surface containing Al, In, or the like.
 この電極を半極性面に形成することによって、後述する実施例で確認されるように、オーミック特性を改善することができる。この理由は、以下の通りと考えられる。コンタクト抵抗には、電極と半導体層との界面における半導体のバンド構造の曲がりが関連する。このバンド構造の曲がりには、半導体表面の極性が大きく関わり、極性面と半極性面ではこの状態が異なるため、従来の極性面に用いられた電極とは異なる金属構成において良好なオーミック特性が得られる場合がある。ここでは、後述するチタン(Ti)、ニッケル(Ni)、金(A)からなる電極とこの半極性面との組み合わせにおいて最も良好なオーミック特性が得られる。 By forming this electrode on a semipolar surface, the ohmic characteristics can be improved as confirmed in Examples described later. The reason is considered as follows. Contact resistance is related to bending of the semiconductor band structure at the interface between the electrode and the semiconductor layer. This bending of the band structure is greatly related to the polarity of the semiconductor surface, and this state is different between the polar and semipolar planes, so good ohmic characteristics can be obtained in a metal configuration different from the electrodes used for the conventional polar plane. May be. Here, the best ohmic characteristics can be obtained by a combination of an electrode made of titanium (Ti), nickel (Ni), and gold (A), which will be described later, and this semipolar plane.
一方で、一般に基板上におけるヘテロエピタキシャル成長によってIII族窒化物半導体は形成され、良好な特性を得るという観点においては、その成長面を自由に選択することはできない。現在、分極の影響を低減するために、無極性面である(10-10)面(m面)や(20-21)半極性面上などでのエピタキシャル技術の開発も進んできているものの、結晶性等で課題が有り、一般には(0001)c面が使用されている。そこで、本実施の形態においては、以下に説明するように、成長するIII族窒化物半導体において良好な特性が得られるように成長面自体は極性面とするものの、強制的に半極性面を露出させることによって電極と半極性面とを直接接触させる。 On the other hand, a group III nitride semiconductor is generally formed by heteroepitaxial growth on a substrate, and the growth surface cannot be freely selected from the viewpoint of obtaining good characteristics. Currently, in order to reduce the influence of polarization, the development of epitaxial technology on the nonpolar (10-10) plane (m-plane) and (20-21) semipolar plane is also progressing. There are problems with crystallinity and the like, and in general, the (0001) c-plane is used. Therefore, in the present embodiment, as described below, the growth surface itself is a polar surface so that good characteristics can be obtained in the growing group III nitride semiconductor, but the semipolar surface is forcibly exposed. By doing so, the electrode and the semipolar surface are brought into direct contact.
 図1は、この半導体装置の製造方法を示す工程断面図である。この半導体装置10においては、図6の例と同様に、ヘテロエピタキシャル成長によってサファイア基板(成長用基板)20上にn型GaN層11が形成され、サファイア基板20が除去された側のn型GaN層11の表面を異方性エッチングにより強制的に半極性面にし、その表面に接してn側電極(電極)12が形成される。n側電極12が形成される面は半極性面で構成されるが、これはこの面自身が平面でありこの平面が半極性面となっていることを意味するものではない。この面が平面ではなく細かな凹凸で構成され、この凹凸を構成するミクロな表面が半極性面となっていることを意味する。 FIG. 1 is a process cross-sectional view showing a method for manufacturing this semiconductor device. In the semiconductor device 10, as in the example of FIG. 6, the n-type GaN layer 11 is formed on the sapphire substrate (growth substrate) 20 by heteroepitaxial growth, and the n-type GaN layer on the side where the sapphire substrate 20 is removed. 11 is forcibly made a semipolar surface by anisotropic etching, and an n-side electrode (electrode) 12 is formed in contact with the surface. The surface on which the n-side electrode 12 is formed is a semipolar surface, but this does not mean that this surface itself is a flat surface and this flat surface is a semipolar surface. This means that this surface is not a flat surface but is composed of fine irregularities, and the micro surface constituting the irregularities is a semipolar surface.
 図1(a)において、サファイア基板20上に、リフトオフ層21として、例えば20nm程度の膜厚の金属クロム(Cr)を、例えばスパッタリング法や真空蒸着法等によって形成する。サファイア基板20としては、この上に単結晶のGaNを得るためには、擬似六方晶構造のc面を主面とする単結晶が特に好ましく用いられる。なお、成長用基板やリフトオフ層は上記に限るものではない。成長用基板としては、例えば、AlNテンプレート等の基板を用いてもよい。 In FIG. 1A, metal chrome (Cr) having a thickness of, for example, about 20 nm is formed on the sapphire substrate 20 as a lift-off layer 21 by, for example, a sputtering method or a vacuum deposition method. As the sapphire substrate 20, in order to obtain a single crystal GaN on the sapphire substrate 20, a single crystal having a quasi-hexagonal c-plane as a main surface is particularly preferably used. The growth substrate and the lift-off layer are not limited to the above. For example, a substrate such as an AlN template may be used as the growth substrate.
 この後、特開2009-54888号公報に記載されるように、この状態で窒化処理、例えばアンモニア雰囲気で1040℃以上の高温とする工程を行ってもよい。これにより、リフトオフ層21表面付近は窒化され、窒化クロム層となる。この窒化クロム層の厚さは、Crの成膜膜厚、処理時間、温度等の調整によって設定することが可能である。 Thereafter, as described in Japanese Patent Application Laid-Open No. 2009-54888, a nitriding treatment may be performed in this state, for example, at a high temperature of 1040 ° C. or higher in an ammonia atmosphere. Thereby, the vicinity of the surface of the lift-off layer 21 is nitrided to become a chromium nitride layer. The thickness of the chromium nitride layer can be set by adjusting the film thickness of the Cr film, the processing time, the temperature, and the like.
 その後、図1(b)において、特開2009-54888号公報に記載されるように、リフトオフ層21上に、n型GaN層11、p型GaN層13を順次成膜する(成長工程)。なおここでは発光層を省略しているが、単量子井戸、多量子井戸構造等の層がn型層、p型層間に位置する。また、n型、p型層はGaNに限定されるのではなく、AlInGaN(x+y+z=1)などであっても良い。この成膜は、例えばMOCVD法やMBE法で行われ、n型GaN層11にはドナーとなる不純物が、p型GaN層13にはアクセプタとなる不純物がそれぞれドーピングされる。特開2009-54888号公報等に記載されるように、窒化クロム層上においては、結晶欠陥の少ないn型GaN層11及びp型GaN層13を成長させることができる。ここで、一般的には、サファイア基板20のc面上には、[0001]Ga方位で成長する。すなわちn型GaN層11の表面(上面)、あるいはこの上に成長したp型GaN層12の表面(上面)は、(0001)Ga極性面となる。また、成長用基板に接する側は(000-1)N極性面となる。 Thereafter, in FIG. 1B, as described in JP 2009-54888 A, an n-type GaN layer 11 and a p-type GaN layer 13 are sequentially formed on the lift-off layer 21 (growth step). Here, although the light emitting layer is omitted, layers such as a single quantum well and a multiquantum well structure are located between the n-type layer and the p-type layer. Further, the n-type and p-type layers are not limited to GaN, and may be Al x In y Ga z N (x + y + z = 1) or the like. This film formation is performed by, for example, the MOCVD method or the MBE method. The n-type GaN layer 11 is doped with an impurity serving as a donor, and the p-type GaN layer 13 is doped with an impurity serving as an acceptor. As described in JP 2009-54888 A and the like, the n-type GaN layer 11 and the p-type GaN layer 13 with few crystal defects can be grown on the chromium nitride layer. Here, in general, on the c-plane of the sapphire substrate 20, it grows in the [0001] Ga orientation. That is, the surface (upper surface) of the n-type GaN layer 11 or the surface (upper surface) of the p-type GaN layer 12 grown thereon is a (0001) Ga polar surface. The side in contact with the growth substrate is a (000-1) N polar plane.
次に、図1(c)に示されるように、p型GaN層13の表面(上面)にp側電極14を形成する。p側電極14は公知のものを使用できる。その後、フォトリソグラフィを用い、エッチング法等を用いてp側電極14をパターニングする。なお、p側電極のパターニングはリフトオフ法によってもよい。 Next, as shown in FIG. 1C, the p-side electrode 14 is formed on the surface (upper surface) of the p-type GaN layer 13. A known p-side electrode 14 can be used. Thereafter, the p-side electrode 14 is patterned by photolithography using an etching method or the like. The p-side electrode may be patterned by a lift-off method.
 次に、図1(d)に示されるように、次に行うリフトオフ工程以降における支持構造部として、キャップメタル31を介して例えば銅ブロック32を上面全体に接続する。キャップメタル31としては、例えばNi/Auを使用することができる。支持構造部は乾式めっき、湿式めっき法や、キャップメタルとの間に接合材を介して接合法によって形成しても良い。また、支持構造部の材質は金属、合金、導電性を有する半導体であってもよい。 Next, as shown in FIG. 1 (d), for example, a copper block 32 is connected to the entire upper surface via a cap metal 31 as a support structure after the next lift-off process. As the cap metal 31, for example, Ni / Au can be used. The support structure may be formed by a dry plating method, a wet plating method, or a bonding method with a bonding material between the support metal and the cap metal. Further, the material of the support structure portion may be a metal, an alloy, or a conductive semiconductor.
 その後、化学的処理によってリフトオフ層21を除去する(リフトオフ工程)。選択ウエットエッチング処理によって、n型GaN層11、p型層13、支持構造部等に影響を与えずに、図1(e)に示されるように、リフトオフ層21のみを選択的に除去することができる。この工程は、特開2009-54888号公報等に記載されたケミカルリフトオフとして知られる工程と同様である。この工程により、n型GaN層11の下面が露出する。この面は、n型GaN層11の上面とは逆の窒素極性面となる。 Thereafter, the lift-off layer 21 is removed by chemical treatment (lift-off process). By selective wet etching, only the lift-off layer 21 is selectively removed as shown in FIG. 1E without affecting the n-type GaN layer 11, the p-type layer 13, the support structure, and the like. Can do. This process is the same as the process known as chemical lift-off described in JP2009-54888A. By this step, the lower surface of the n-type GaN layer 11 is exposed. This surface is a nitrogen polarity surface opposite to the upper surface of the n-type GaN layer 11.
 次に、この面が露出したn型GaN層11とp型GaN層12の積層構造に対して、異方性ウェットエッチングを行う(表面エッチング工程)。ここで、異方性ウェットエッチングとは、表面を均等にエッチングするような、リフトオフ層の除去や表面清浄化を目的とするエッチングとは異なる。本発明では、極性面に対して半極性面が出るようにエッチングすることを異方性エッチングという。ただし、本発明において、極性面をエッチングすることにより表面を構成することが可能な面が半極性面であり、例えば、{10-1―1}面群である。 Next, anisotropic wet etching is performed on the laminated structure of the n-type GaN layer 11 and the p-type GaN layer 12 where this surface is exposed (surface etching step). Here, anisotropic wet etching is different from etching for the purpose of removing the lift-off layer and cleaning the surface, which etches the surface evenly. In the present invention, etching so that a semipolar surface appears with respect to a polar surface is called anisotropic etching. However, in the present invention, a surface whose surface can be formed by etching a polar surface is a semipolar surface, for example, a {10-1-1} surface group.
この異方性ウェットエッチングには、アルカリ性のエッチング液、例えば水酸化カリウム(KOH)溶液や、水酸化ナトリウム(NaOH)溶液や、両者を含む混合アルカリ溶液等を用いてもよい。溶媒としては水(HO)やグリコールを用いることができる。この際、OH-イオンがGaNやAlGaNのIII族原子(Ga、Al)を酸化することでエッチングが起こる。特にGaNの場合、Ga極性面側ではGa原子の下に3つの窒素原子が存在するため、OH-イオンはGaを酸化できない。一方、窒素極性面側ではGa原子の下には1つの窒素原子しか存在しないので、OH-はGa原子を酸化することができる。このような、強アルカリ性のエッチング液を用いて加温など適切な条件下で行う異方性ウェットエッチング処理により、選択的に下面(窒素極性面)がエッチングされ、その表面には六方晶を反映した六角形の底面を有する六角錐状の凸部が多く形成される。なお、上記の理由から、このような異方性エッチングは窒素極性面に起こり、Ga極性面はほとんどエッチングされない。このエッチングにおいては、Ga極性面では、転位が存在する場合に六角錘状のピットとして観察される。 For this anisotropic wet etching, an alkaline etching solution, for example, a potassium hydroxide (KOH) solution, a sodium hydroxide (NaOH) solution, a mixed alkali solution containing both, or the like may be used. As the solvent, water (H 2 O) or glycol can be used. At this time, etching occurs when OH- ions oxidize group III atoms (Ga, Al) of GaN or AlGaN. In particular, in the case of GaN, since three nitrogen atoms exist below the Ga atom on the Ga polar face side, the OH-ion cannot oxidize Ga. On the other hand, since only one nitrogen atom exists below the Ga atom on the nitrogen polar face side, OH- can oxidize the Ga atom. The lower surface (nitrogen polar surface) is selectively etched by anisotropic wet etching performed under appropriate conditions such as heating using a strong alkaline etching solution, and the surface reflects hexagonal crystals. Many hexagonal pyramidal projections having a hexagonal bottom surface are formed. For the above reasons, such anisotropic etching occurs on the nitrogen polar surface, and the Ga polar surface is hardly etched. In this etching, a hexagonal pyramid-like pit is observed on the Ga polar face when dislocations are present.
このエッチング後の形態の電子顕微鏡(SEM)写真を図2(a:Ga極性面、b:N極性面)に示す。図2(a)に示されるように、六角錘形状は、(000-1)面に六角形の底面を有し、底面に対し62°の角度を有する六つの{10-1-1}面群が現れる。(10-1-1)面であるかどうかは、SEM観察による形状観察から、底面に対する側面の角度を求めることで、判断することができる。例えば、[10-10]方向に素子断面を観察した場合には、n型GaN層11とn側電極(電極)12の界面は、n型GaN層11側に約62°の角度を有する鋸刃状となる。図1(f)、図2(b)に示されるように、上記のエッチング後は、その表面形状が六つの{10-1-1}面群で構成された凹凸からなる。 The electron microscope (SEM) photograph of the form after this etching is shown in FIG. 2 (a: Ga polar plane, b: N polar plane). As shown in FIG. 2A, the hexagonal pyramid shape has six {10-1-1} planes having a hexagonal bottom surface on the (000-1) plane and an angle of 62 ° with respect to the bottom surface. A group appears. Whether it is the (10-1-1) plane can be determined by determining the angle of the side surface with respect to the bottom surface from shape observation by SEM observation. For example, when the device cross section is observed in the [10-10] direction, the interface between the n-type GaN layer 11 and the n-side electrode (electrode) 12 is a saw having an angle of about 62 ° to the n-type GaN layer 11 side. It has a blade shape. As shown in FIG. 1 (f) and FIG. 2 (b), after the above etching, the surface shape is composed of unevenness composed of six {10-1-1} plane groups.
 なお、実効表面積は平坦な(000-1)面に比べ、六角錘形状の半極性面の{10-1-1}面群で構成されるため、凹凸の大きさを問わず約二倍となる。それにより、半極性面上に形成された本電極では、平面方向の電極寸法が同じであっても、n型電極との実効接触面積が増えるので、接触抵抗値の低減にも効果がある。凹凸の大きさは、エッチング液の濃度や温度、時間の条件によって制御できるため、上記の接触抵抗値の低減だけでなく、スネルの法則を用いた光取り出し効率の向上に適した大きさとすることが好ましい。例えば、六角錘形状の高さが0.3~4.5μmの凹凸である。 Since the effective surface area is composed of the {10-1-1} plane group of hexagonal pyramid-shaped semipolar planes compared to the flat (000-1) plane, it is about twice as large regardless of the size of the irregularities. Become. Thereby, the main electrode formed on the semipolar surface has an effect of reducing the contact resistance value because the effective contact area with the n-type electrode is increased even if the electrode dimensions in the planar direction are the same. Since the size of the unevenness can be controlled by the concentration, temperature, and time conditions of the etching solution, it should be a size that is suitable not only for reducing the above contact resistance value but also for improving the light extraction efficiency using Snell's law. Is preferred. For example, the height of the hexagonal pyramid shape is unevenness of 0.3 to 4.5 μm.
 次に、図1(g)に示されるように、この状態のn型GaN層11の下面(異方性エッチング後の半極性面)に、n側電極(電極)12として、例えばTi/Ni/Au(Ti、Ni、Auの順で積層した構造)を形成する(電極形成工程)。この形成は、例えばスパッタリング法や真空蒸着法により行うことが好ましい。その成膜方法、パターニング方法は、p側電極14と同様である。n型GaN層11の表面は前記の通りの半極性面で構成されるため、n側電極12とn型GaN層11との間のオーミック性は良好であり、コンタクト抵抗を低下させることができる。 Next, as shown in FIG. 1G, an n-side electrode (electrode) 12 is formed on the lower surface (semipolar surface after anisotropic etching) of the n-type GaN layer 11 in this state, for example, Ti / Ni. / Au (structure in which Ti, Ni, and Au are laminated in this order) is formed (electrode formation step). This formation is preferably performed by, for example, a sputtering method or a vacuum evaporation method. The film forming method and patterning method are the same as those for the p-side electrode 14. Since the surface of the n-type GaN layer 11 is composed of the semipolar plane as described above, the ohmic property between the n-side electrode 12 and the n-type GaN layer 11 is good, and the contact resistance can be reduced. .
一般に、p型GaN層13の抵抗率はn型GaN層11の抵抗率よりも高い。このため、上記の半導体装置の動作において、図1に示されるような、p側電極14の面積を大きくし、n側電極11の面積を小さくした構成が、電極抵抗の影響を低下させる上では好ましい。この場合、p側電極14側からは発光を取り出さず(p側電極で反射させ)、小面積のn側電極12側から発光を取り出す構成とすることによって、電極抵抗が小さく発光効率の高い発光ダイオード(発光素子)とすることができる。こうした場合において、小面積のn側電極12側において抵抗を小さくできる上記の構成は極めて有効である。 In general, the resistivity of the p-type GaN layer 13 is higher than the resistivity of the n-type GaN layer 11. For this reason, in the operation of the semiconductor device described above, the configuration in which the area of the p-side electrode 14 and the area of the n-side electrode 11 are reduced as shown in FIG. 1 reduces the influence of the electrode resistance. preferable. In this case, light emission is not taken out from the p-side electrode 14 side (reflected by the p-side electrode), and light emission is taken out from the small-area n-side electrode 12 side. It can be a diode (light emitting element). In such a case, the above configuration that can reduce the resistance on the n-side electrode 12 side having a small area is extremely effective.
 図1に示す製造方法においては、n型層とp型層からなる半導体層を成長用基板上に順次成長してから、この成長用基板を除去している。こうした工程を行う理由は、p型層とn型層の積層構造が形成された後に、p側電極とn側電極をそれぞれこの半導体層の異なる面側から取り出すためである。この半導体装置がこのpn接合を利用した発光ダイオードあるいはレーザーダイオードである場合には、こうした構成により電極抵抗が低くなり、理論的には順方向抵抗が低く高い発光効率を得ることができる。こうした構成は、発光ダイオードやレーザーダイオードに限定されず、この半導体層の主面と垂直な方向に電流が流されて動作する半導体装置全般にとって有効であることは明らかである。また、n型層とp型層との間に他の層が形成されている場合でも同様である。しかしながら、現実にはn型層の(000-1)Nの露出面では良好なオーミックコンタクトが形成できないという課題が生じたが、強制的に異方性エッチングにより露出面を{00-1-1}面に転化させることでオーミックコンタクトの問題が解決された。 In the manufacturing method shown in FIG. 1, a semiconductor layer composed of an n-type layer and a p-type layer is sequentially grown on a growth substrate, and then the growth substrate is removed. The reason for performing these steps is to take out the p-side electrode and the n-side electrode from different sides of the semiconductor layer after the stacked structure of the p-type layer and the n-type layer is formed. When this semiconductor device is a light emitting diode or a laser diode using this pn junction, the electrode resistance is lowered by such a configuration, and theoretically, the forward resistance is low and high luminous efficiency can be obtained. Such a configuration is not limited to a light-emitting diode or a laser diode, but is clearly effective for all semiconductor devices that operate with a current flowing in a direction perpendicular to the main surface of the semiconductor layer. The same applies to the case where another layer is formed between the n-type layer and the p-type layer. In reality, however, there is a problem that a good ohmic contact cannot be formed on the (000-1) N exposed surface of the n-type layer, but the exposed surface is forcibly removed by anisotropic etching {00-1-1. } The problem of ohmic contact was solved by converting it to the surface.
 また、上記の製造方法によれば、n側電極12とn型GaN層11が接触する面において多数の凹凸が形成されるため、実質的な接触面積が大きくなる。これによってコンタクト抵抗を低減することが可能であるとともに、所謂アンカー効果によって凹凸によってこれらの間の密着性を高めることができることも明らかである。 In addition, according to the above manufacturing method, since a large number of irregularities are formed on the surface where the n-side electrode 12 and the n-type GaN layer 11 are in contact with each other, the substantial contact area is increased. As a result, it is possible to reduce the contact resistance, and it is also obvious that the adhesion between them can be increased by the so-called anchor effect due to the so-called anchor effect.
 また、例えば非特許文献1;I.Schnitzerら、Appl.Phys.Lett.63(1993)2174.30% external quantum efficiency from surface textured,thin-film light-emitting diodes.に示されているように、発光ダイオードにおいては、発光面に凹凸を形成する方が、光の取り出し効率が高くなる。上記の製造方法によれば、凹凸形成後に凹凸表面の一部にn側電極を形成すればよく、工程が簡単で、この効果も同時に得られる。 Also, for example, Non-Patent Document 1; Schnitzer et al., Appl. Phys. Lett. 63 (1993) 2174.30% external quantum efficiency from surface textured, thin-film light-emitting diodes. As shown in FIG. 4, in the light emitting diode, the light extraction efficiency is higher when the light emitting surface is formed with unevenness. According to the above manufacturing method, the n-side electrode may be formed on a part of the uneven surface after forming the unevenness, the process is simple, and this effect can be obtained at the same time.
 また、上記のリフトオフ工程においては、ケミカルリフトオフを用いていたが、同様の構造を形成できる限りにおいて、他の方法を用いることもできる。例えば、ケミカルリフトオフの代わりにレーザーリフトオフを用いることも可能である。 In the lift-off process described above, chemical lift-off is used, but other methods can be used as long as a similar structure can be formed. For example, laser lift-off can be used instead of chemical lift-off.
 また、上記の例では、III族窒化物半導体としてGaNを用いた場合について記載したが、極性に関わる結晶構造、特に(000-1)N面の構成と半極性面の形成については、他のIII窒化物半導体、例えばAlGaN、AlInGaN等についても同様である。従って、上記の電極や製造方法はこれら他のIII窒化物半導体に対しても同様に有効であることは明らかである。なお、電極を形成する表面のIII族窒化物を構成するIII族元素はGaを含み、Gaが30%以上含まれていることが好ましい。また、前記の例では、電極が構成される面に凹凸が形成され、この凹凸を構成するミクロな表面が半極性面であるとしたが、電極が構成される面全体が半極性面となる平面で構成された場合(GaN結晶を半極性面で物理的に切断した場合など)についても上記の電極がオーミック用電極として有効であることは明らかである。 In the above example, the case where GaN is used as the group III nitride semiconductor has been described. However, the crystal structure related to polarity, particularly the configuration of the (000-1) N plane and the formation of the semipolar plane, The same applies to III nitride semiconductors such as AlGaN and AlInGaN. Therefore, it is clear that the above-described electrode and manufacturing method are similarly effective for these other III nitride semiconductors. In addition, it is preferable that the group III element which comprises the group III nitride of the surface which forms an electrode contains Ga, and Ga is contained 30% or more. In the above example, the surface on which the electrode is formed is uneven, and the micro surface forming the uneven surface is a semipolar surface. However, the entire surface on which the electrode is formed is a semipolar surface. It is clear that the above-mentioned electrode is effective as an ohmic electrode even when it is constituted by a plane (for example, when a GaN crystal is physically cut by a semipolar plane).
(実施例)
 以下では、Ga極性面、窒素極性面、六角錘形状の半極性面の3種類に、真空蒸着法(蒸着時の真空度は8×10-4Pa以下)によりn側電極を形成し、その特性について調べた結果について説明する。
(Example)
In the following, an n-side electrode is formed on the three types of Ga polar face, nitrogen polar face, and hexagonal pyramid-shaped semipolar face by vacuum vapor deposition (the degree of vacuum during vapor deposition is 8 × 10 −4 Pa or less). The results of examining the characteristics will be described.
 サファイア基板(C面)上に、スパッタ法を用いてCr(厚さ20nm)を形成し、アンモニア雰囲気で1080℃により窒化処理を行った。ここで、窒化処理は、この上のn型GaN層の結晶性を向上させ、かつリフトオフを容易にするために行っている。その後、MOCVD法により、n型GaN(Siドープ キャリア濃度:約5×1018cm-3、厚さ5μm)を成長した。成長後のn型GaN層の表面に対して濃度6モル/LのKOH水溶液を用いた表面エッチング工程を行っても、その表面はほとんどエッチングされずに平坦性が維持され、この面がGa極性面であることが確認された。 Cr (thickness 20 nm) was formed on the sapphire substrate (C surface) by sputtering, and nitriding was performed at 1080 ° C. in an ammonia atmosphere. Here, the nitriding treatment is performed in order to improve the crystallinity of the upper n-type GaN layer and facilitate lift-off. Thereafter, n-type GaN (Si-doped carrier concentration: about 5 × 10 18 cm −3 , thickness 5 μm) was grown by MOCVD. Even when a surface etching step using a 6 mol / L KOH aqueous solution is performed on the surface of the grown n-type GaN layer, the surface is hardly etched and flatness is maintained. The surface was confirmed.
 その後、n型GaN層上にCu(厚さ150μm)を蒸着した後、選択エッチング液によりCrN層をエッチングして成長用基板とエピタキシャル成長層間を分離するリフトオフ工程を行った。リフトオフ工程後に露出した表面は、前記と逆の窒素極性面である。この面に対して濃度6モル/LのKOH水溶液を用いて、60℃、30分間のエッチング処理を行ったところ、図3に示されるような表面形状が得られた。この形態をSEM観察したところ、この凹凸は六角錘形状であり、その六角錘形状の三角形の面は、(000-1)底面から62°の角度であるため、これを構成する面が{10-1-1}面群であることが確認された。 Then, after depositing Cu (thickness 150 μm) on the n-type GaN layer, a lift-off process for etching the CrN layer with a selective etching solution to separate the growth substrate and the epitaxial growth layer was performed. The exposed surface after the lift-off process is a nitrogen polar surface opposite to the above. When this surface was subjected to an etching treatment at 60 ° C. for 30 minutes using a 6 mol / L aqueous KOH solution, a surface shape as shown in FIG. 3 was obtained. When this form was observed with an SEM, the irregularities had a hexagonal pyramid shape, and the triangular surface of the hexagonal pyramid shape was at an angle of 62 ° with respect to the (000-1) bottom surface. -1-1} face group was confirmed.
 成長後のGa極性面、エッチング処理を行う前の窒素極性面、そして上記のように形成された六角錘形状の半極性面の3種類に対して、各種の材料からなる電極を形成し、TLM(Transmission Line Model)法によってコンタクトにおける電流-電圧特性を調べた。TLM法においては、長さ400μm、幅150μmの電極を、間隔20、40、80、160μmで形成した。これらの電極パターンにプローバの針を当接することにより、電流-電圧特性を測定した。周知のように、TLM法においては、この場合に得られた抵抗値と電極間隔の関係から、コンタクト抵抗等を算出することが可能である。なお、プローバの針と電極との接触抵抗による誤差を回避するため、4探針法を用いた。 Electrodes made of various materials are formed on the three types of Ga polar surface after growth, nitrogen polar surface before etching, and hexagonal pyramid-shaped semipolar surface formed as described above. The current-voltage characteristics of the contacts were examined by the (Transmission Line Model) method. In the TLM method, electrodes having a length of 400 μm and a width of 150 μm were formed at intervals of 20, 40, 80, and 160 μm. The current-voltage characteristics were measured by contacting prober needles with these electrode patterns. As is well known, in the TLM method, it is possible to calculate contact resistance and the like from the relationship between the resistance value obtained in this case and the electrode spacing. In order to avoid an error due to contact resistance between the prober needle and the electrode, a four-probe method was used.
 電極材料として、Cr/Ni/Au、Ti/Ni/Auの二種類を用いた。蒸着した電極の厚さはCr、Tiが共に0.05μm、Niが0.02μm、Auが1.2μmである。ここで、前者においてはCrが、後者においてはTiが半導体層と直接接する側とされた積層構造である。各試料に対し、成膜後(As Depo.)、窒素雰囲気中250℃、400℃で10分間の熱処理を施してオーミック特性の熱安定性を評価した。図4は電極間隔が80μmの場合の電流-電圧特性を示すもので、図4(a)から図4(c)はCr/Ni/Auの場合であり、それぞれ成膜後(As Depo.)、250℃、400℃での熱処理後の試料である。Cr/Ni/Auの場合、Ga極性面に対してはAs Depo.状態から400℃間において良好な直線性を示し、接触抵抗も十分小さいことがわかる。しかしながら、窒素極性面に対しては整流性を示しかつ400℃までの熱処理ではオーミック特性が劣化している。半極性面に対しては、成膜後熱処理をしない状態では直線性を示すが接触抵抗はGa極性面に比べ大きく、250℃、400℃での熱処理ではオーミック特性が劣化することが分かる。よって、Cr/Ni/Auをリフトオフ工程後の成長用基板側のn型III族窒化物半導体層とのオーミック接触用の電極に用いることは困難である。 As the electrode material, two types of Cr / Ni / Au and Ti / Ni / Au were used. The thickness of the deposited electrode is 0.05 μm for both Cr and Ti, 0.02 μm for Ni, and 1.2 μm for Au. Here, the former has a laminated structure in which Cr is on the side in direct contact with the semiconductor layer and Cr in the latter. Each sample was subjected to a heat treatment at 250 ° C. and 400 ° C. for 10 minutes in a nitrogen atmosphere after film formation (As Depo.) To evaluate the thermal stability of the ohmic characteristics. FIG. 4 shows the current-voltage characteristics when the electrode spacing is 80 μm. FIGS. 4 (a) to 4 (c) show the cases of Cr / Ni / Au, and after film formation (As Depo.), Respectively. Sample after heat treatment at 250 ° C. and 400 ° C. In the case of Cr / Ni / Au, As Depo. It can be seen that good linearity is exhibited between 400 ° C. and the contact resistance is sufficiently small. However, it exhibits rectifying properties with respect to the nitrogen polar surface, and the ohmic characteristics are deteriorated by heat treatment up to 400 ° C. It can be seen that the semipolar surface exhibits linearity in the state where no heat treatment is performed after film formation, but the contact resistance is larger than that of the Ga polar surface, and the ohmic characteristics are deteriorated by heat treatment at 250 ° C. and 400 ° C. Therefore, it is difficult to use Cr / Ni / Au for an electrode for ohmic contact with the n-type group III nitride semiconductor layer on the growth substrate side after the lift-off process.
 一方、Ti/Ni/Auの場合、半極性面上では図4(d)に示すように成膜後熱処理をしない状態で良好な直線性が得られており良好なオーミック特性を示す。250℃での熱処理後においても図4(e)に示すようにある程度の直線性が得られている。一般に耐熱温度の高いシリコーン系の樹脂封止パッケージでの耐熱温度は150℃程度であるため、素子が150℃以上で使用されることは希であり、Ti/Ni/Auは実用性に問題無いレベルであると判断される。図4(d)から図4(f)に示すように、Ga極性面上では整流性があり良好なオーミック特性は得られない。またN極性面上の場合はGa極性面上の場合に比べると抵抗値は小さいものの、半極性面上のそれと比べるとオーミック特性は劣ることがわかる。なお、n側電極の形成はリフトオフ後の最終段階で行うため、n側電極形成後に素子に熱を加えなければならない必然性はない。そのため、例えばAs Depoから250℃までの範囲でオーミック特性が得られることが実用上好ましく、より高温な例えば400℃の熱処理をしないとオーミック特性が得られないような金属構成では、n側電極より前に形成された例えばp側電極や接合部での拡散や、支持部に用いたCuとIII族窒化物半導体との間の熱膨張係数差に起因する剥離などの問題などが発生するため、縦型LEDの製造には適さない。 On the other hand, in the case of Ti / Ni / Au, on the semipolar plane, as shown in FIG. 4 (d), good linearity is obtained without heat treatment after film formation, and good ohmic characteristics are exhibited. Even after heat treatment at 250 ° C., a certain degree of linearity is obtained as shown in FIG. In general, the heat-resistant temperature of a silicone-based resin-encapsulated package having a high heat-resistant temperature is about 150 ° C. Therefore, the element is rarely used at 150 ° C. or higher, and Ti / Ni / Au has no problem in practical use. Judged to be level. As shown in FIG. 4D to FIG. 4F, rectification is present on the Ga polar face and good ohmic characteristics cannot be obtained. In addition, although the resistance value is smaller on the N-polar surface than on the Ga-polar surface, the ohmic characteristics are inferior to that on the semipolar surface. Note that since the n-side electrode is formed at the final stage after lift-off, there is no necessity to apply heat to the element after the n-side electrode is formed. Therefore, for example, it is practically preferable to obtain ohmic characteristics in the range from As Depo to 250 ° C. In a metal configuration in which ohmic characteristics cannot be obtained unless heat treatment is performed at a higher temperature, for example, 400 ° C., the n-side electrode For example, problems such as diffusion at the p-side electrode and junction formed before, separation due to the difference in thermal expansion coefficient between Cu and group III nitride semiconductor used for the support, etc. occur. It is not suitable for manufacturing vertical LEDs.
 なお、TLM法によってAs.Depoでのコンタクト抵抗ρcを算出したところ、Cr/Ni/Auを用いた場合(図4(a))は、Ga面に対して良好なオーミック接触が得られ、コンタクト抵抗は4×10-4Ω・cmであった。一方、Ti/Ni/Au(図4(d))を用いた場合には、半極性面に対してのみ良好なオーミック接触が得られ、コンタクト抵抗は2×10-4Ω・cmであり、コンタクト抵抗も低い値を示した。 Note that the As. When the contact resistance ρc at Depo was calculated, when Cr / Ni / Au was used (FIG. 4A), good ohmic contact with the Ga surface was obtained, and the contact resistance was 4 × 10 −4. It was Ω · cm 2 . On the other hand, when Ti / Ni / Au (FIG. 4 (d)) is used, good ohmic contact is obtained only with respect to the semipolar plane, and the contact resistance is 2 × 10 −4 Ω · cm 2 . The contact resistance also showed a low value.
 このように、N極性面においては、どちらの電極材料によって良好なオーミック特性を得ることができなかった(N極性面では成膜後の状態でTi/Ni/Auにおいて直線性が得られるものの、抵抗値は半極性面上のものよりも大きく、250℃での熱処理によるオーミック特性の劣化があり実用に向かない。)。これらに対して、半極性面においては、Ti/Ni/Auを用いた場合には、これらの中で最も小さなコンタクト抵抗値が得られている。表1に、これら一連の試料についてのコンタクト抵抗ρcを示す。なお、必ずしもすべての試料で直線性が得られたわけではないため電流値が20mAの場合の抵抗値から算出している。 Thus, on the N-polar surface, it was not possible to obtain good ohmic characteristics with either electrode material (although the N-polar surface provides linearity in Ti / Ni / Au in the state after film formation, The resistance value is larger than that on the semipolar surface, and the ohmic characteristics are deteriorated by heat treatment at 250 ° C., which is not suitable for practical use.) On the other hand, on the semipolar surface, when Ti / Ni / Au is used, the smallest contact resistance value among them is obtained. Table 1 shows the contact resistance ρc for these series of samples. In addition, since linearity was not necessarily obtained by all the samples, it calculated from the resistance value in case a current value is 20 mA.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この結果より、窒素極性面に対して異方性エッチングを施すことによって半極性面で構成される凹凸を形成し、この上にTi/Ni/Au電極を構成することにより、良好なオーミック接触をとる電極となる。このため、例えば図1(g)に示される構造の半導体装置において、電極12をTi/Ni/Auを用いた場合には、コンタクト抵抗を小さくすることができるので、順方向駆動電圧Vfを低減することができる。また、半極性面とこの電極との組み合わせにおいては、250℃までの高い耐熱性も得られる。また、窒素極性面の全面を凹凸化し、その一部に電極を形成すればよいので、取り出し効率を上げるための粗化工程も簡略化できる。 From this result, the unevenness constituted by the semipolar surface is formed by performing anisotropic etching on the nitrogen polar surface, and by forming the Ti / Ni / Au electrode on this, good ohmic contact is achieved. Electrode. Therefore, for example, in the semiconductor device having the structure shown in FIG. 1G, when the electrode 12 is made of Ti / Ni / Au, the contact resistance can be reduced, so that the forward drive voltage Vf is reduced. can do. Moreover, in the combination of a semipolar surface and this electrode, high heat resistance up to 250 ° C. can be obtained. In addition, since the entire surface of the nitrogen polar surface is made uneven and an electrode is formed on a part thereof, the roughening process for increasing the extraction efficiency can be simplified.
以上より、本願のTi/Ni/Au電極の構成が、リフトオフ工程後の成長用基板側のn型III族窒化物半導体層とのオーミック接触用の電極に適していることが分かった。 From the above, it was found that the structure of the Ti / Ni / Au electrode of the present application is suitable for an electrode for ohmic contact with the n-type group III nitride semiconductor layer on the growth substrate side after the lift-off process.
 また、上記の実施例ではGaNを用いたが、SiドープのAl0.7Ga0.3NとしてもTi/Ni/Au電極を用いることで同様の結果が得られた。このように、III族としてAlを始め、BやInを含むものや、他のn型ドーパントを用いたとしても、半極性面にTi/Ni/Au電極を用いることは可能である。 In the above embodiment has been used GaN, similar results by using a Ti / Ni / Au electrode as Al 0.7 Ga 0.3 N doped with Si was obtained. Thus, even if Al is used as a group III, B, In, or other n-type dopants are used, it is possible to use a Ti / Ni / Au electrode on the semipolar plane.
11、92 n型GaN層(n型III族窒化物半導体層)
12、94 n側電極(電極)
13 p型GaN層(p型III族窒化物半導体層)
14、44、95 p側電極
20 サファイア基板(成長用基板)
21、96 リフトオフ層
31、45 キャップメタル
32、46 銅ブロック
41 溝
42 n側第1電極(電極)
43 絶縁層
47 コンタクト孔
48 n側第2電極(電極) 
11, 92 n-type GaN layer (n-type group III nitride semiconductor layer)
12, 94 n-side electrode (electrode)
13 p-type GaN layer (p-type group III nitride semiconductor layer)
14, 44, 95 p-side electrode 20 Sapphire substrate (growth substrate)
21, 96 Lift-off layers 31, 45 Cap metal 32, 46 Copper block 41 Groove 42 First n-side electrode (electrode)
43 Insulating layer 47 Contact hole 48 n-side second electrode (electrode)

Claims (5)

  1.  n型III族窒化物半導体層の半極性面である{10-1-1}面群の表面上に順次積層された、チタン(Ti)、ニッケル(Ni)、金(Au)からなるn型III族窒化物半導体層とのオーミック接触用の電極。 n-type made of titanium (Ti), nickel (Ni), and gold (Au) sequentially laminated on the surface of the {10-1-1} plane group which is a semipolar plane of the n-type group III nitride semiconductor layer An electrode for ohmic contact with a group III nitride semiconductor layer.
  2.  n型III族窒化物半導体層からなる六角錘形状の表面に順次積層された、チタン(Ti)、ニッケル(Ni)、金(Au)からなるn型III族窒化物半導体層とのオーミック接触用の電極。 For ohmic contact with an n-type group III nitride semiconductor layer made of titanium (Ti), nickel (Ni), and gold (Au) sequentially stacked on a hexagonal pyramid-shaped surface made of an n-type group III nitride semiconductor layer Electrodes.
  3.  n型III族窒化物半導体層の窒素極性面をエッチングすることにより半極性面を形成する工程と、前記半極性面の表面上にチタン(Ti)、ニッケル(Ni)、金(Au)を順次積層する工程を含むn型III族窒化物半導体層とのオーミック接触用の電極の製造方法。 A step of forming a semipolar surface by etching the nitrogen polar surface of the n-type group III nitride semiconductor layer, and titanium (Ti), nickel (Ni), and gold (Au) are sequentially formed on the surface of the semipolar surface. The manufacturing method of the electrode for ohmic contacts with the n-type group III nitride semiconductor layer including the process to laminate | stack.
  4.  n型III族窒化物半導体層の窒素極性面をエッチングすることにより六角錘形状を形成する工程と、前記六角錘形状の表面にチタン(Ti)、ニッケル(Ni)、金(Au)を順次積層する工程を含むn型III族窒化物半導体層とのオーミック接触用の電極の製造方法。 A step of forming a hexagonal pyramid shape by etching the nitrogen polar face of the n-type group III nitride semiconductor layer, and sequentially stacking titanium (Ti), nickel (Ni), and gold (Au) on the hexagonal pyramid shaped surface The manufacturing method of the electrode for ohmic contacts with the n-type group III nitride semiconductor layer including the process to carry out.
  5.  前記エッチングはKOHまたはNaOHを含むエッチング液を用いることを特徴とする請求項3または4に記載の型III族窒化物半導体層とのオーミック接触用の電極の製造方法 The method for producing an electrode for ohmic contact with a group III nitride semiconductor layer according to claim 3 or 4, wherein the etching uses an etching solution containing KOH or NaOH.
PCT/JP2010/007613 2010-12-28 2010-12-28 Electrode for ohmic contact with n-type group iii nitride semiconductor and method for manufacturing same WO2012090254A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/007613 WO2012090254A1 (en) 2010-12-28 2010-12-28 Electrode for ohmic contact with n-type group iii nitride semiconductor and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/007613 WO2012090254A1 (en) 2010-12-28 2010-12-28 Electrode for ohmic contact with n-type group iii nitride semiconductor and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2012090254A1 true WO2012090254A1 (en) 2012-07-05

Family

ID=46382407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007613 WO2012090254A1 (en) 2010-12-28 2010-12-28 Electrode for ohmic contact with n-type group iii nitride semiconductor and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2012090254A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183089A (en) * 2013-03-18 2014-09-29 Oki Electric Ind Co Ltd Nitride semiconductor textured structure, nitride semiconductor light-emitting element and textured structure formation method
JP2015076506A (en) * 2013-10-09 2015-04-20 日産自動車株式会社 Semiconductor device and manufacturing method of the same
CN105047769A (en) * 2015-06-19 2015-11-11 安徽三安光电有限公司 Light emitting diode manufacturing method capable of using wet etching to carry out substrate peeling
CN115863501A (en) * 2023-02-27 2023-03-28 江西兆驰半导体有限公司 Light emitting diode epitaxial wafer and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071657A (en) * 2002-08-01 2004-03-04 Nec Corp Group iii nitride semiconductor element, manufacturing method thereof and group iii nitride semiconductor substrate
WO2006123580A1 (en) * 2005-05-19 2006-11-23 Matsushita Electric Industrial Co., Ltd. Nitride semiconductor device and method for manufacturing same
JP2007273844A (en) * 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd Semiconductor device
JP2008047860A (en) * 2006-08-17 2008-02-28 Samsung Electro Mech Co Ltd Method of forming rugged surface and method of manufacturing gallium nitride light-emitting diode device using the same
JP2009231523A (en) * 2008-03-24 2009-10-08 Sony Corp Semiconductor light-emitting element and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071657A (en) * 2002-08-01 2004-03-04 Nec Corp Group iii nitride semiconductor element, manufacturing method thereof and group iii nitride semiconductor substrate
WO2006123580A1 (en) * 2005-05-19 2006-11-23 Matsushita Electric Industrial Co., Ltd. Nitride semiconductor device and method for manufacturing same
JP2007273844A (en) * 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd Semiconductor device
JP2008047860A (en) * 2006-08-17 2008-02-28 Samsung Electro Mech Co Ltd Method of forming rugged surface and method of manufacturing gallium nitride light-emitting diode device using the same
JP2009231523A (en) * 2008-03-24 2009-10-08 Sony Corp Semiconductor light-emitting element and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183089A (en) * 2013-03-18 2014-09-29 Oki Electric Ind Co Ltd Nitride semiconductor textured structure, nitride semiconductor light-emitting element and textured structure formation method
JP2015076506A (en) * 2013-10-09 2015-04-20 日産自動車株式会社 Semiconductor device and manufacturing method of the same
CN105047769A (en) * 2015-06-19 2015-11-11 安徽三安光电有限公司 Light emitting diode manufacturing method capable of using wet etching to carry out substrate peeling
CN115863501A (en) * 2023-02-27 2023-03-28 江西兆驰半导体有限公司 Light emitting diode epitaxial wafer and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5847732B2 (en) Semiconductor device and manufacturing method thereof
KR100706952B1 (en) VERTICALLY STRUCTURED GaN TYPE LED DEVICE AND METHOD OF MANUFACTURING THE SAME
JP4177097B2 (en) Method of manufacturing a semiconductor chip emitting radiation based on III-V nitride semiconductor and semiconductor chip emitting radiation
JP4681684B1 (en) Nitride semiconductor device and manufacturing method thereof
TWI377697B (en) Method for growing a nitride-based iii-v group compound semiconductor
KR100769727B1 (en) Forming method for surface unevenness and manufacturing method for gan type led device using thereof
TWI415287B (en) A structure of light emitting device
Dadgar et al. Bright, Crack‐Free InGaN/GaN Light Emitters on Si (111)
TW200928015A (en) III-nitride device grown on edge-dislocation template
WO2017088546A1 (en) Light emitting diode and preparation method therefor
KR20080091826A (en) Nitride semiconductor element
CN101009346A (en) Non polarity A side nitride film growing on the silicon substrate and its making method and use
TWI528589B (en) Group III nitride semiconductor element and method of manufacturing the same
KR20110048795A (en) Substrate for semiconductor device and method for manufacturing the same
WO2012090254A1 (en) Electrode for ohmic contact with n-type group iii nitride semiconductor and method for manufacturing same
KR101781505B1 (en) Gallium nitride type semiconductor light emitting device and method of fabricating the same
JP5471485B2 (en) Nitride semiconductor device and pad electrode manufacturing method for nitride semiconductor device
CN105552178A (en) Gallium nitride-based light-emitting diode epitaxial wafer and preparation method thereof
KR101072200B1 (en) Light emitting device and method for fabricating the same
CN111326611B (en) Method for etching table top of III-nitride semiconductor light-emitting device
TWI649897B (en) Method for manufacturing a light-emitting device
US10763395B2 (en) Light emitting diode element and method for manufacturing same
KR101254520B1 (en) Semi-conductor light emitting device
KR101154321B1 (en) Light emitting diode and method of fabricating the same
KR101349550B1 (en) Method of fabricating light emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10861237

Country of ref document: EP

Kind code of ref document: A1