WO2006123403A1 - 粒状結晶体製造装置 - Google Patents

粒状結晶体製造装置 Download PDF

Info

Publication number
WO2006123403A1
WO2006123403A1 PCT/JP2005/008993 JP2005008993W WO2006123403A1 WO 2006123403 A1 WO2006123403 A1 WO 2006123403A1 JP 2005008993 W JP2005008993 W JP 2005008993W WO 2006123403 A1 WO2006123403 A1 WO 2006123403A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid particles
granular crystal
granular
gas
crystal
Prior art date
Application number
PCT/JP2005/008993
Other languages
English (en)
French (fr)
Inventor
Josuke Nakata
Original Assignee
Kyosemi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosemi Corporation filed Critical Kyosemi Corporation
Priority to PCT/JP2005/008993 priority Critical patent/WO2006123403A1/ja
Priority to TW094132387A priority patent/TW200641191A/zh
Publication of WO2006123403A1 publication Critical patent/WO2006123403A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders

Definitions

  • the present invention relates to a granular material suitable for mass production of a granular single crystal by bringing a droplet of an inorganic material such as a semiconductor into contact with a solid particle in an inert gas flow for cooling during free fall in a dropping tube.
  • the present invention relates to a single crystal manufacturing apparatus.
  • a melt of inorganic material is made into a plurality of crucible nozzle force droplets and dropped into a drop tube, and solid particles as solidification triggers are brought into contact with the supercooled droplets.
  • Single crystal nuclei are generated and grown into a single crystal.
  • the single crystal is processed into a spherical shape together with solid particles by a processing means such as a rotary ball mill, and immediately after that, the single crystal is annealed together with the solid particles to remove impurities prejudice on the surface.
  • a processing means such as a rotary ball mill
  • US Pat. Nos. 3,025,335, 4,021,323, and 4,136,436 disclose solar cell modules and solar cell panels using granular or spherical solar cells.
  • the solar cell has a substantially spherical pn junction and a substantially planar electrode connected to the positive or negative electrode of the pn junction.
  • the plurality of solar cells are arranged on a common electrode sheet, the positive electrodes of the plurality of solar cells are connected in parallel to the conductive plate, and the negative electrodes of the plurality of solar cells are connected in parallel to the conductor sheet.
  • the output is increased.
  • the back side is covered with a conductor sheet, so that incident light from the back side can hardly enter the solar cell.
  • the inventor of the present application forms a substantially spherical pn junction near the surface of a true spherical single crystal silicon having a diameter of about 1.5 mm and is connected to both ends of the pn junction.
  • a solar cell in which a positive electrode and a negative electrode are provided so as to be symmetrical with the center of the single crystal sandwiched between a pair of tops of the spherical single crystal is disclosed.
  • this solar cell since a pair of positive and negative electrodes are provided at symmetrical positions with respect to the center of the sphere, almost the same light receiving sensitivity can be obtained for incident light from other than the electrode axis direction. From 3D direction Light reception is possible.
  • the plurality of solar cells are arranged in a matrix of many rows and many columns in three dimensions, and cells in each column parallel to the electrode axis direction are connected in series and cells in each row are arranged in parallel. All cells can be connected in series and parallel to create a solar cell with reduced light reception directivity.
  • This US patent also disclosed a light emitting diode that can emit light efficiently in a three-dimensional direction by forming a substantially spherical pn junction in a spherical compound semiconductor, similar to a solar battery cell.
  • US Pat. No. 4,322,379 discloses a method and apparatus for producing spherical silicon for use in a spherical solar cell.
  • This patent publication discloses a technique of dropping a silicon melt in a gas atmosphere to produce teardrop-shaped silicon particles that are nearly spherical.
  • it since there is no means to make single crystal silicon, it becomes a polycrystalline crystal.
  • the inventor of the present application has proposed a manufacturing technique (method and apparatus) for a single crystal of Japanese Patent No. 3,287,579.
  • this single crystal manufacturing technology droplets of inorganic materials such as semiconductors were dropped freely in a vacuum or reduced-pressure gas atmosphere in a drop tube to form spherical droplets that were supercooled during the fall.
  • a spherical droplet is solidified into a single crystal by making point contact with a solid surface as a solidification trigger.
  • the liquid droplets are hardly subjected to mechanical disturbances based on external factors such as resistance by atmospheric gas during the fall, they instantly solidify by stimulating one point of a supercooled spherical droplet. Advances and a granular single crystal is obtained.
  • this single crystal production device cannot produce a small number of single crystals at once, it is suitable for mass production of a large number of granular crystals by dropping a large number of droplets into contact with a solidification trigger. ⁇ ⁇ .
  • Japanese Patent Publication No. 7-12422 includes a technique (method and apparatus) for producing spherical particles from a liquid phase. ) Is disclosed.
  • this spherical particle manufacturing technology droplets are generated when a spherical crystal is produced by generating droplets from a vibrating nozzle while applying compressed gas pressure to the molten liquid phase and dropping it in a gas atmosphere. Keep the vibrating nozzle and droplets at a constant temperature 1-10 ° C higher than the melting point of the liquid phase until the sphere diameter of the droplet is stabilized.
  • Spherical particles are made by rapidly cooling with a gas cooling medium flowing in the falling direction, which is kept at a temperature lower by at least 100 ° C.
  • this technology is a technology that rapidly forcibly cools spherical droplets to obtain spherical particles such as solder, for example, it does not disclose the manufacturing technology of semiconductor single crystals. It relates to the manufacturing technology of spherical metal particles.
  • Patent Document 1 U.S. Pat.No. 3,025,335
  • Patent Document 2 US Patent No. 4,021,323
  • Patent Document 3 U.S. Pat.No. 4,136,436
  • Patent Document 4 US Patent No. 6,204,545
  • Patent Document 5 US Patent No. 4,322,379
  • Patent Document 6 Japanese Patent No. 3,287,579
  • Patent Document 7 US Patent No. 6,264,742
  • Patent Document 8 Japanese Patent Publication No. 7-12422
  • Patent Document 9 US Pat.No. 6,106,614
  • Patent Document 10 WO03Z. No. 95719
  • An object of the present invention is to provide a production method and apparatus capable of efficiently and continuously mass-producing a polycrystal composed of a spherical high-quality single crystal or a small number of crystals having different crystal orientations. That is.
  • a granular single crystal production apparatus is a granular single crystal production apparatus for producing a granular single crystal by solidifying a granular droplet of a melt of an inorganic material while freely dropping it.
  • a drop tube disposed in an orientation; a crucible that melts an inorganic material above the drop tube to form a melt; and a plurality of nozzles formed at the bottom of the crucible.
  • Droplet forming means for making droplets into the drop tube, gas flow forming means for forming a flow of an inert gas for cooling that is directed downward from the inside of the drop tube, and a drop tube
  • a solid particle discharge means for discharging a large number of solid particles made of an inorganic material into the interior so as to intersect the drop direction of the droplet, and bringing the solid particle into contact with the substantially supercooled droplet; To do.
  • the following various configurations may be selectively employed in the present invention.
  • the drop tube is formed so that its cross-sectional area decreases toward the lower side, and the gas flow forming means is configured such that the flow rate of the inert gas for cooling in the drop tube is close to the free fall speed of the droplet in vacuum. It is configured to form a flow of cooling inert gas that is at a velocity.
  • the solid particle discharge means includes a plurality of discharge nozzles that are horizontally and radially disposed above the drop tube to discharge solid particles.
  • a convex impact cushioning sheet is provided in the vicinity of the bottom of the dropping tube so as to dampen the impact by colliding the falling granular crystal.
  • the gas flow forming means includes gas circulation means for circulating the cooling inert gas recovered from the bottom force of the drop pipe to the upper end side of the drop pipe.
  • the gas circulation means includes a gas cooling means for cooling the cooling inert gas.
  • the solid particles are silica glass, spherical particles made of aluminum nitride (A1N) or boron nitride (BN).
  • the discharge ports of the plurality of nozzles formed in the crucible are formed at positions lower and closer to the center of the crucible.
  • the droplet forming means has vibration adding means for applying vibration to the melt in the crucible.
  • the recovery unit collects the granular crystal and solid particles solidified from the inside of the lower end of the drop tube, and recovers the granular crystal and solid connected to the recovery channel.
  • a processing device for processing the particles into a spherical shape is provided.
  • An impurity diffusion furnace is provided for diffusing impurities in the surface layer portion of the granular crystal annealed by the heat treatment furnace.
  • the solid particles are spherical particles having a boron nitride force, and the impurity diffusion furnace is configured to use the solid particles having a boron nitride force as an impurity diffusion source.
  • the inorganic material constituting the melt is a semiconductor material selected from Si, Ge, GeSi, GaSb, GaAs, GaP, and InP.
  • This drop tube type granular single crystal production device melts the raw material of the inorganic material in a crucible, drip a plurality of nozzle force granular melts, and force that the granular droplets do not fall freely in the drop tube.
  • This is a device that continuously produces crystals that are solidified and have a single crystal strength of an almost spherical inorganic material.
  • most of the crystal bodies are single crystal crystals, but some of the crystal bodies are polycrystalline crystals including a plurality of crystals.
  • the nearly spherical crystal is of a size that also selects a range force of about 600-1500 ⁇ m in diameter.
  • a drop tube type granular single crystal production apparatus 1 that employs a p-type or n-type silicon semiconductor as an inorganic material and produces a substantially spherical silicon single crystal will be described as an example.
  • this drop tube type granular single crystal production apparatus 1 is a droplet forming mechanism for melting a silicon semiconductor and dropping the molten liquid into granular droplets 2 in a certain amount.
  • a drop tube 30 drop tube
  • a solid particle release mechanism 40 that releases solid particles 3 and comes into contact with droplets 2
  • a cooling gas that is directed upward and downward inside the drop tube 30.
  • the droplet forming mechanism 10 includes a crucible 11 made of quartz or graphite, and a plurality of nozzles 12a, 12b formed on the bottom of the crucible 11 to discharge a silicon semiconductor melt downward.
  • Graphite heater 13 covering the outer periphery of the crucible 11
  • cylindrical heat shield case 14 covering the outer periphery of the heater 13
  • upper case of the fall tube forming the airtight chamber 15 covering the outer periphery of the heat shield case 14 31.
  • Raw material supply hopper 16 and raw material supply pipe 17 for supplying raw material 5 of polycrystalline silicon (p-type or n-type semiconductor silicon) in crucible 11 and raw material supply pipe 17, and silicon melt 6 in crucible 11 are vibrated vertically.
  • the crucible 11 has a bottom wall, a cylindrical side wall, and a lid.
  • the central bottom wall 11a of the bottom wall is formed thick so as to protrude downward from the outer peripheral side bottom wall l ib.
  • 8 to 12 nozzles 12a are provided upright on the central bottom wall 11a,
  • 12 to 18 nozzles 12b are vertically provided on the side bottom wall l ib.
  • the diameter of the holes of the nozzles 12a and 12b is, for example, 0.3 mm, but is not limited thereto.
  • the discharge ports of the plurality of nozzles 12a and 12b formed in the crucible 11 are lower than the discharge ports of the nozzle 12b so that the nozzles closer to the center of the crucible 11 are positioned lower. Set to position. This is to increase the probability of contact between the solid particles 3 discharged from the discharge nozzle 43 and the droplets 2.
  • the heater 13 is formed in a vertical cylindrical shape and extends below the crucible 11 by a predetermined length.
  • the heater 13 is disposed with a gap between the outer peripheral surface of the crucible 11 and the heat shield case 14.
  • the heater 13 is energized from the outside through the electrode terminals 13a and 13b, and heats and melts the raw material 5 charged in the crucible 11 to a melting point of silicon of 1420 ° C or higher.
  • the heat shield case 14 is made of, for example, a stainless steel plate, and includes a cylindrical main body 14a and a lower flange portion 14b.
  • the heat shield case 14 may be made of a plate made of molybdenum or tandasten.
  • the drop tube upper case 31 forms an approximately 1Z3 portion of the top of the drop tube 30, and includes a cylindrical case body 31a and a top plate 31b that closes the upper end of the case body 31a. It consists of a stainless steel plate.
  • the drop tube upper case 31 is disposed with a predetermined cylindrical gas passage 20 between the heat shield case 14 and the heat shield case 14.
  • Raw material supply hopper 16 contains raw material 5 of powdered or granular polycrystalline semiconductor silicon (for example, diameter 100-: LOOO m), and vibration is applied to hopper 16 by vibrator 21.
  • the raw material 5 is supplied from the supply pipe 17 to the crucible 11 at a predetermined speed.
  • the supply pipe 17 is provided with a gas passage (not shown) for guiding the inert gas in the chamber 15 into the hopper 16.
  • the vibration adding mechanism 18 transmits the vertical vibration of a constant frequency generated by the vibration generator 22 to the quartz glass diaphragm 24 in the crucible 11 via the quartz glass connecting rods 23a and 23b.
  • the diaphragm 24 is vibrated up and down to cause the melt 6 to vibrate.
  • the connecting rods 23a and 23b are It is fastened with quartz glass bolts 23c.
  • the vibration generator 22 generates vibration with an electrostrictive element, a magnetostrictive element, or a solenoid.
  • the melt is separated to produce droplet 2 (eg, about 1.2 mm in diameter).
  • droplet 2 eg, about 1.2 mm in diameter.
  • Tip force of nozzles 12a, 12b When vibration of a certain frequency is applied to the dripping liquid column 6a, a dense wave is generated in the liquid column 6a, and the liquid column 6a is divided at a sparse part, and a droplet of a certain size is obtained. 2 occurs continuously.
  • a zone for forming the droplet 2 is a droplet formation zone 25.
  • the vibration generator 22 is configured to be able to adjust the amplitude and frequency of the vibration to be generated.
  • the drop tube 30 is made of a stainless steel plate.
  • the drop tube 30 includes a drop tube upper case 31, a drop tube body 32, and a bottom plate 33 at the lower end of the drop tube body 32.
  • the drop distance of the droplet 2 falling in the drop tube 30 is about 5 to 8 m
  • the inner diameter of the upper end of the drop tube 30 is about 25 cm
  • the drop tube main body 32 has its inner diameter directed downwards.
  • the drop tube 30 is formed so that the flow velocity of the cooling gas flowing inside the drop tube 30 is close to the free fall velocity of the droplet 2 and becomes a flow velocity.
  • a small-diameter cylindrical body 34 rising from the upper surface of the central portion of the bottom plate 33, and an upwardly projecting partial spherical impact buffer sheet 35 that closes the upper end of the cylindrical body 34 are provided.
  • the shock absorbing sheet 35 is, for example, a carbon fiber sheet, and shocks are shocked by colliding the falling granular crystal 4.
  • the solid particle release mechanism 40 discharges a large number of solid particles 3 made of inorganic material into the drop tube 30 so as to intersect with the drop direction of the liquid droplet 2, and is almost supercooled.
  • the liquid droplet 2 is brought into contact with the solid particles 3 as a coagulation trigger.
  • spherical solid particles 3 made of quartz glass are used as the solid particles 3.
  • the solid particles 3 are preferably separated from the liquid droplets 2 by a single crystal body force sieve as the final product. 5m A quartz glass sphere of about m is adopted.
  • the solid particle releasing mechanism 40 includes an annular storage tank 41 surrounding the fall tube upper case 31, and a plurality of vibrators 42 provided on the bottom surface of the storage tank 41 at appropriate intervals in the circumferential direction.
  • a plurality of discharge nozzles 43 communicating with the lower end of the storage tank 41, a gas cylinder 44 for supplying argon gas to the storage tank 41, a gas supply pipe 45, and a control valve 46 are provided.
  • a large number of solid particles 3 filled from a supply port (not shown) are accommodated in the storage tank 41.
  • a gas supply pipe 45 extending from the gas cylinder 44 is connected to a plurality of locations of the storage tank 41.
  • a plurality of (for example, 8 to 16) discharge nozzles 43 are horizontally disposed at the lower end portion of the drop tube upper case 31 and are radially disposed toward the center portion of the drop tube 30.
  • argon gas is supplied to the storage tank 4 1 and vibration is applied by the plurality of vibrators 42, the solid particles 3 as solidification triggers for the formation of single crystal seeds are showered into the drop tube 30 from the plurality of release nozzles 43.
  • a large number of supercooled droplets 2 (supercooling temperature 1 to 100 ° C.) that are discharged at a constant speed.
  • a zone in which the solid particles 3 are brought into contact with the droplet 2 is a trigger zone 47.
  • the drop tube 30 is provided with a strobolite 36 and a CCD camera 37 for photographing the droplet 2 and the solid particle 3.
  • a radiation thermometer 38 for measuring the temperature of the droplet 2 and the crystal body 4 near the lower side of the trigger zone 47 is provided in the drop tube 30.
  • the gas flow formation mechanism 50 is used for downward cooling so that the flow velocity of the cooling gas (argon gas) in the drop tube 30 is close to the free fall velocity of the droplet 2 in vacuum. A gas flow is formed and the fluid resistance acting on the droplet 2 is reduced.
  • This gas flow forming mechanism 50 includes a gas supply source 51 that supplies argon gas at about 1 atm as a cooling gas into the chamber 20, and a cooling gas recovered from the bottom of the drop tube 30 on the upper end side of the drop tube 30. And a gas circulation mechanism 55 for circulating the gas.
  • the gas supply source 51 includes an argon gas cylinder 52, a gas supply pipe 53, and a control valve 54.
  • the gas supply pipe 53 is connected to the gas supply pipe 53 from the argon gas cylinder 52.
  • the gas circulation mechanism 55 includes a plurality of holes 56 formed in the cylindrical body 34 at the bottom of the drop tube 30, a hole 57 formed in the bottom plate 33, and a plurality of holes at the upper end of the chamber 20 through the holes 57.
  • a gas circulation pipe 58 extending to a location, a circulation pump 60 provided in the gas circulation pipe 58 and driven by a motor 59, a gas cooler 61 for cooling a gas cooling gas with cooling water, and its control valve 6 la, etc. It is equipped with.
  • the gas circulation pipe 58 branches from the branch part 58a into, for example, four branch pipes 58b and communicates with four places at the upper end of the chamber 20! /.
  • the cooling gas pressurized by the circulation pump 60 is supplied to the top of the chamber 20 after being cooled by the gas cooler 61.
  • the cooling gas flows downward through the chamber 20 and the drop pipe 30, and is supplied to the bottom of the drop pipe 30.
  • the gas is sucked into the gas circulation pipe 58 from the holes 56 and 57 and flows again to the circulation pump 60.
  • helium gas may be applied instead of argon gas as the inert gas.
  • the gas circulation pipe 58 a pipe having a larger diameter than that shown in the figure is actually applied.
  • a fan or a blower may be used as the circulation pump 60.
  • a gas discharge pipe 62 for discharging the cooling gas in the drop pipe 30 is connected to the gas circulation pipe 58, and an exhaust control valve 63 is provided in the gas discharge pipe 62.
  • the control unit 100 includes a radiation thermometer 19, a strobe light 36, a CCD camera 37, a radiation temperature, and the like. 38, heater 13, exciter 21, 42, vibration generator 22, control valve 46, 54, control valve 61 & of cooler 61, motor 59 drive unit that drives gas circulation pump 60, control valve 63, etc. Electrically connected.
  • an attachment device that collects the crystal 4 accumulated at the bottom of the drop tube 30 and performs various treatments.
  • an annular collection box 39 is arranged on the bottom plate 33 of the drop tube 30, and the bottom surface of the collection box 39 is formed in an inclined shape.
  • the recovery passage 70 having the shutter 71 is connected, and the crystal 4 in the recovery box 39 gradually flows into the recovery passage 70.
  • the collection passage 70 is inclined downward and extends to the right and is connected to a rotary ball mill 80 (processing device).
  • this rotary ball mill 80 the granular crystal 4 is processed into a true spherical shape using the solid particles 3 as an abrasive, and the impurities prejudice to the surface layer of the crystal 4 are removed by polishing.
  • This rotary ball mill 80 is controlled by a control unit 100.
  • the crystal 4A and the solid particles 3 processed by the rotary ball mill 80 are conveyed to the heat treatment furnace 84 by the recovery passage 72.
  • the crystal 4A and the solid particles 3 are placed in the middle of the recovery passage 72.
  • a dust removing device 82 for removing dust generated during polishing from the particles 3 is provided.
  • the dust removing device 82 includes a wire mesh passage 82a constituting a part of the recovery passage 72, a duct 82b, a nitrogen gas cylinder 82c, a gas passage 82d for sending nitrogen gas from the nitrogen gas cylinder 82c to the duct 82b, and the gas passage 82d. And a dust collector 82f connected to the duct 82b.
  • Nitrogen gas is supplied downwardly through the wire mesh passage 82a, and the nitrogen gas causes the crystal 4A, solid particles 3 and dust to float in the wire mesh passage 82a to separate the dust, and the dust is separated by the duct 8 2b. Send to dust collector 82f and collect to dust collector 82f.
  • the crystal 4A and the solid particles 3 from which the dust has been removed are supplied to the heat treatment furnace 84 through the recovery passage 72.
  • the heat treatment furnace 84 heats the crystal 4A and the solid particles 3 at 800 to 900 ° C for about 10 to 30 minutes in a mixed gas atmosphere of argon gas (about 96%) and hydrogen gas (about 4%).
  • argon gas about 96%)
  • hydrogen gas about 4%
  • the polycrystalline body is subjected to a passivation treatment for diffusing hydrogen into the crystal grain boundaries of the polycrystalline body.
  • the heat-treated crystal 4A and the solid particles 3 are conveyed to the diffusion furnace 86 through the recovery passage 73.
  • the diffusion furnace 86 forms an n-type or p-type diffusion layer in which impurity atoms are diffused in the surface layer portion of the crystal 4A.
  • the crystal 4A is made of a p-type semiconductor
  • the mixture of N and O is diffused in the diffusion furnace 86.
  • Crystal 4A and solid particles 3 are heated at 1000 ° C. for about 10 minutes to form an n-type diffusion layer in the surface layer of crystal 4A using P atoms as a donor.
  • BN boron nitride
  • a p-type diffusion layer is formed in the surface layer of the crystal 4A using B atoms, which also generate BN solid particle forces, as acceptors.
  • the crystal 4A and the solid particles 3 that have been subjected to the diffusion treatment in the diffusion furnace 86 are recovered into the recovery container 90 through the recovery passage 74. Thereafter, the crystal 4A and the solid particles 3 are separated through a sieve, the crystal 4A is recovered as a product, and the solid particles 3 are supplied to the solid particle releasing mechanism 40 for reuse.
  • the dust removal device 82, the heat treatment furnace 84, the diffusion furnace 86, and the like are also controlled by the control device 100.
  • the raw material polycrystalline silicon is continuously supplied from the raw material supply hopper 16 to the crucible 11, the raw material in the crucible 11 is heated and melted by the heater 13, and the drop tube 30 A cooling gas is caused to flow inside, and the cooling gas is circulated by the gas circulation mechanism 50.
  • the silicon melt 6 is continuously formed in the crucible 11, and in the droplet formation zone 25! /, The tip of the plurality of liquid columns 6a at the tip of the plurality of nozzles 12a, 12b of the crucible 11 Droplets 2 are separated from each other one after another and fall like a shower. This droplet 2 becomes spherical due to its surface tension, and is cooled by radiation cooling and a cooling gas to be in a supercooled state. In the trigger zone 47, the droplet 2 comes into contact with the solid particle 3 as a solidification trigger. When a single crystal seed 2a (see Fig. 3) is generated on a part of the surface of 2, the droplet 2 instantly solidifies and falls into a crystalline body 4 having a single crystal silicon force. It collides with the shock-absorbing sheet 35 on the bottom and the impact is relaxed and collected in the collection box 39.
  • the crystal body 4 and the solid particles 3 flow to the rotary ball mill 80 through the recovery passage 70, and are processed into a substantially spherical single crystal body 4 A by the ball mill 80.
  • the dust contained in the crystal 4A and the solid particles 3 is removed by the dust removing device 82, and then the crystal 4A and the solid particles 3 flow into the heat treatment furnace 84 and are annealed in the heat treatment furnace 84. While the stress is removed, a part of the polycrystal is subjected to passivation treatment, and then the crystal 4A and the solid particles 3 are conveyed to the diffusion furnace 86.
  • a diffusion layer is formed on the surface layer portion of the true spherical crystal 4 A, and then the crystal 4 A and the solid particles 3 are recovered in the recovery container 90. In this way, a large number of almost spherical crystals 4A are continuously produced.
  • the majority of the many crystal bodies 4A are single crystal crystals, and some of the crystal bodies are polycrystalline bodies composed of a small number of crystals having different crystal orientations. [0055] Next, a supplementary description will be given of the various functions of each unit.
  • the strobe light 36 is irradiated and the droplet 2a is photographed by the CCD camera 37, so that the size of droplet 2 is observed and the vibration generator 22 exits so that the desired size is obtained.
  • Force (amplitude) and frequency can be controlled and adjusted.
  • the temperature of the cooling gas in the drop tube 30, the melt 6 in the crucible 11, the droplet 2, etc. and the temperature from the droplet formation zone 25 to the trigger zone 4 7 are also maintained at the prescribed values, so
  • the temperature of the droplet 2 or the crystal 4 is detected by the thermometer 38, and the cooling capacity of the cooler 61 is adjusted by the control unit 100, or the cooling gas is discharged from the discharge pipe 62 and the cooling from the argon gas cylinder 52.
  • the temperature of the cooling gas is controlled by adjusting the gas supply, and the temperature of the droplet 2 is controlled.
  • the discharge direction, the initial velocity, and the discharge amount of the solid particles 3 from the discharge nozzle 43 are changed under the irradiation of the strobe light 36 so that the solid particles 3 meet the falling droplet 2. Observe through 37 and determine experimentally.
  • the diameter force of the solid particle 3 is larger than the diameter of the droplet 2, so that the droplet 2 easily contacts the solid particle 3 at one point.
  • FIG. 3 shows the motion path of the falling silicon droplet 2 and the lateral solid particle 3 released.
  • the first contact point of solid particle 3 with droplet 2 becomes the solidification trigger point, where single crystal seed 2a is generated, and droplet 2 starts rapid solidification instantaneously from seed 2a.
  • Contact with the solid particles 3 does not change the morphology of the crystal 4.
  • the droplet 2 and the solid particle 3 are in contact with each other during the fall, the droplet 2 is not excessively impacted.
  • the flow rate of the cooling gas is set to the same speed as that when the droplet 2 freely falls in a vacuum.
  • the droplet 2 falls freely without receiving the resistance of the cooling gas, and is cooled in a microgravity state during the fall.
  • the degree of supercooling is large, the temperature range in which the solidification trigger can be performed is widened, the space in which the droplet 2 and the solid particle 3 are in contact with each other is widened, and a large number of droplets 2 are dropped in a shower shape.
  • the liquid droplet 2 in the supercooled state during the drop immediately grows into a single crystal as soon as it makes point contact with the solid particle 3, and the tail-like protrusion 4a as shown in Figs. Remains.
  • the protrusion 4a is processed into a spherical shape by a rotating ball mill 80 and removed.
  • the solidified crystal body 4 falls as it is together with the solid particles 3, falls onto the impact buffer sheet 35, rolls, and is stored in the recovery box 39. Crystals 4 and solid particles 3 collected in the collection box 39 flow to the rotary ball mill 80 through the collection passage 70. In this ball mill 80, the crystal 4 is polished using the solid particles 3 cooled to about 100 ° C. as an abrasive to remove the protrusions 4 a of the crystal 4 and the surface layer portion of the crystal 4. Impurities are removed, and a nearly spherical silicon single crystal 4A of a predetermined size is finished.
  • the crystal body 4A and the solid particles 3 are annealed as described above to eliminate the stress and perform a passivation process on the polycrystal body.
  • the diffusion furnace 86 as described above, a diffusion layer is formed on the surface layer portion of the crystal 4A.
  • the silicon single crystal 4A recovered in the recovery container 90 is separated from the solid particles 3 together with the solid particles 3, and supplied to the manufacturing process of the solar cell panel.
  • the solid particles 3 made of quartz glass have high hardness and are suitable for processing when the crystal body 4 is processed into a spherical shape, and can be reused with little consumption.
  • solid particles 3 with high purity quartz strength do not cause solid-phase fusion between silicon and do not become a source of impurity contamination when heat-treated with silicon crystals 4 with high heat resistance. It is advantageous. Since the solid particles 3 made of quartz glass are transparent, they can be discriminated even if mixed with the silicon single crystal 4A, and if this solid particles 3 are mixed, there is also an advantage that the temperature distribution in the heat treatment is equalized. .
  • solid particles 3 made of quartz glass other materials having high hardness such as inexpensive aluminum oxide can be used, and as described above, if solid particles made of BN are used, In the diffusion treatment, B (boron) contained in the solid particle BN can be effectively used as a donor atom, so that the structure of the diffusion treatment furnace can be simplified. Note that solid particles made of A1N (aluminum nitride) can also be used as the solid particles.
  • A1N aluminum nitride
  • the crystal 4 can be mass-produced efficiently. Since the solid particles 3 are discharged almost horizontally from the plurality of discharge nozzles 43 of the solid particle discharge mechanism 40 toward the center of the drop tube 30, the probability of contact between the droplet 2 and the solid particles 3 is increased. It is possible to maintain a high yield for producing crystalline body 4 having crystalline silicon power. Since the trigger zone 47 is provided in the upper part of the drop tube 30, the length of the drop tube 30 can be shortened, which is advantageous in terms of equipment cost.
  • the vibration adding mechanism 18 has a diaphragm 24 that can add vibration to the wide and range of the melt 6 in the crucible 11, and is configured to be able to adjust the amplitude and period of vibration generated by the vibration generator 22. Therefore, the size of the droplet 2 can be adjusted to a desired size.
  • the single crystal body production apparatus is equipped with a rotary ball mill 80, a heat treatment furnace 84, and a diffusion furnace 86 as accessory equipment, a true spherical silicon single crystal body 4A can be continuously produced.
  • an n-type or p-type diffusion layer can be formed on the single crystal 4A, which has the advantage of facilitating cost reduction, such as shortening the manufacturing cycle time.
  • a solar cell as disclosed in US Pat. No. 6,204,545 by the present inventor can be made using a large number of substantially spherical silicon single crystals 4A produced as described above.
  • a spherical pn junction is formed on the surface of the silicon single crystal body 4A, and a solar cell is manufactured by providing a positive electrode and a negative electrode at the center of each surface of the p-type layer and the n-type layer, respectively.
  • the raw inorganic material may be a semiconductor material such as Si, Ge, GeSi, GaSb, InSb, GaAs, GaP, or InP that solidifies the melt and forms crystals.
  • the size of droplet 2 and crystal 4 in the above example is 1.2 mm in diameter, but droplet 2 and crystal
  • the diameter of the body 4 is preferably in the range of 600-1500 ⁇ m and any size selected.
  • helium gas or the like may be employed in addition to argon gas.
  • the shape of the drop tube 30 may be formed in the shape disclosed in FIG. 2 of the international application published by WO 03/095719.
  • the length of the drop tube 30 may be larger than that shown in the drawing, the shape of the crucible 11 in the above embodiment, the number and arrangement of the nozzles 12a and 12b, the number and arrangement of the discharge nozzles 43 Shows an example.
  • the crystalline body 4A manufactured by the single crystal manufacturing apparatus of the present invention includes a spherical light emitting diode and a rectifying diode as disclosed in US Pat. No. 6,204,545. It can also be applied to photocatalysts.
  • FIG. 1 is a cross-sectional view of a main part of a granular single crystal production apparatus according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a plurality of apparatuses attached to the granular single crystal production apparatus.
  • FIG. 3 is an explanatory diagram for explaining a state before and after contact between a spherical silicon droplet and quartz particles during dropping.
  • FIG. 4 is a cross-sectional view of a solidified silicon single crystal and a silicon single crystal processed by a rotary ball mill.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 粒状単結晶体製造装置(1)は、無機材料の融液の粒状の液滴を自由落下させながら凝固させて粒状の単結晶体を作る装置であり、この装置(1)は、下方ほど断面積が小さくなるように形成された落下管(30)と、落下管(30)の上方で無機材料を溶融して融液にするルツボ(11)このルツボ(11)の底部に形成された複数のノズル(12a,12b)を備えこれらノズル(12a,12b)から融液を液滴にして落下管(30)内へ落下させる液滴形成機構(10)と、落下管(30)の内部に上から下へ向かう冷却用不活性ガスの流れを形成するガス流形成機構(50)と、落下管(30)の内部へ無機材料製の多数の固体粒子(3)を液滴(2)の落下方向と交差状に放出し、ほぼ過冷却状態の液滴(2)に固体粒子(3)を接触させる固体粒子放出機構(40)と、回転式ボールミル(80)と、熱処理炉(84)と、拡散炉(86)などを有する。

Description

明 細 書
粒状結晶体製造装置
技術分野
[0001] 本発明は、半導体などの無機材料の液滴が落下管内を自由落下中に冷却用不活 性ガス流中で固体粒子に接触させて粒状単結晶体を量産するのに適した粒状単結 晶体製造装置に関する。この単結晶体製造装置においては、無機材料の融液をル ッボの複数のノズル力 液滴にして落下管内へ落下させ、過冷却状態の液滴に凝固 トリガーとしての固体粒子を接触させて単結晶の核を生成し単結晶体に成長させる。 その直後に単結晶体を固体粒子と共に回転式ボールミル等の加工処理手段により 真球状に加工処理し、その直後に単結晶体を固体粒子と共にアニーリング処理し、 表面に偏祈した不純物を除去する。
背景技術
[0002] 米国特許第 3,025,335号、第 4,021,323号、第 4,136,436号には、粒状又は球状の 太陽電池セルを利用した太陽電池モジュールや太陽電池パネルが開示されている。 太陽電池セルは、ほぼ球面状の pn接合を有する共とにその pn接合の正極又は負極 に接続されたほぼ平面状の電極を有する。複数の太陽電池セルは共通の電極シー ト上に配置され、複数の太陽電池セルの正極が導電板に並列接続される共に複数 の太陽電池セルの負極が導体シートに並列接続され、複数の太陽電池セルを並列 接続することにより、出力を高めるように構成されている。この太陽電池モジュールや 太陽電池パネルの場合、導体シートによって裏面側が覆われるため、裏側からの入 射光は太陽電池セルにほとんど入射できな 、。
[0003] 本願発明者は、米国特許第 6,204,545号において、直径 1.5mm程度の真球状の 単結晶シリコンの表面付近にほぼ球面状の pn接合を形成し、この pn接合の両端に 夫々接続されて球状単結晶体の 1対の頂部に単結晶体の中心を挟んで対称となる ように、正電極と負電極を設けた太陽電池セルを開示した。この太陽電池セルにお いては、球の中心に対して対称の位置に 1対の正負の電極が設けられるため、電極 軸方向以外からの入射光に対してほぼ同様の受光感度が得られ、 3次元方向からの 受光が可能である。
[0004] この複数の太陽電池セルを 3次元的に多数行多数列のマトリックス状に配置し、電 極軸方向と平行な各列のセルを直列接続する共に各行のセルを並列することにより 、全部のセルを直並列接続し、受光の指向性を少なくした太陽電池を作ることができ る。この米国特許において、太陽電池セルと同様に、球状の化合物半導体にほぼ球 面状の pn接合を形成し、 3次元方向に効率よく光を放射できる発光ダイオードも開示 した。
[0005] 米国特許第 4,322,379号には、球状太陽電池に用いる球状シリコンの製造方法と その装置が開示されている。この特許公報には、シリコンの融液をガス雰囲気中で滴 下し、球状に近い涙滴形のシリコン粒を作る技術が開示されている。しかし、単結晶 シリコンにする手段が設けられていないので、多結晶の結晶体になってしまう.
[0006] これに対して、本願発明者は、日本特許第 3,287,579号の単結晶体の製造技術( 方法と装置)を提案した。この単結晶体の製造技術においては、半導体などの無機 材料の液滴を落下管内の真空又は減圧したガス雰囲気中を自由落下させて球状の 液滴を形成し、その落下中に過冷却された球状液滴を、凝固トリガーとしての固体表 面と点接触させることにより単結晶体に凝固させる。
[0007] 前記の液滴には、落下中に雰囲気ガスによる抵抗など外部要因に基づく力学的な 擾乱が殆ど作用しないため、過冷却状態の球状液滴の一点を刺激することによって 瞬間的に凝固が進行し、粒状の単結晶が得られる。しかし、この単結晶体の製造装 置は、一度に少数の単結晶体し力製造できないので、多数の液滴を滴下し凝固トリ ガーに接触させて、大量の粒状結晶を量産するのに適して ヽな 、。
[0008] 米国特許第 6,264,742号においては、落下管の上端のチャンバ一力 シリコンの液 滴を落下させ、落下中に一旦凝固させた後、落下管の途中に設けたプラズマトーチ で再度加熱溶融し、次に結晶核生成物の粉体を液滴の落下経路に散布して液滴に 付着させ、この結晶核生成物を核として単結晶体に凝固させる。しかし、全部の液滴 が単結晶体に結晶化するとは力ぎらず、多結晶体も製造されて混ってしまう可能性が あり、単結晶体だけを選別して取り出すことが困難になる。
[0009] 日本の特公平 7— 12422号には、液相から球状粒子を製造する技術 (方法と装置 )が開示されている。この球状粒子の製造技術では、溶融した液相に圧縮ガスの圧 力を加えつつ、振動ノズルより液滴を発生させ、ガス雰囲気中を落下させて球状結晶 体を製造するに当たり、液滴を発生させる振動ノズルおよび液滴を、液滴の球径が 安定するまでの間は液相の融点より 1〜10°C高い一定温度に保ち、安定ィ匕後の凝 固を前記の液相の融点より少なくとも 100°C低い温度に保った落下方向に流すガス 冷却媒体にて急速に冷却して球状粒子を作る。この技術は、例えばハンダなどの球 状粒子を得るために、球状の液滴を急速に強制冷却する技術であるから、半導体の 単結晶体の製造技術を開示するものではなぐ微細な結晶粒力 なる球状金属粒子 製造技術に関するものである.
[0010] 米国特許第 6,106,614号において、半導体シリコンの融液をルツボに設けたオリフ イス力 振動をカ卩えて滴下させ、その液滴を過冷却した後、核生成ゾーンにおいてプ ローブの先端に設けたシリコン種に接触させるか或いは種としてのシリコン粉末をシ ャワーリング又は噴霧することで単結晶の結晶核を形成し、単結晶体を製造する。
[0011] 落下速度を調節するため雰囲気ガスを下力 上に流し、落下速度を遅くし 1分間に 直径 lmm程度の単結晶体に成長させる技術が開示されている.この技術では、結晶 核形成においてガス流速と液滴の落下速度および温度の精密なコントロールが必要 であり、結晶成長に時間が力かるという問題がある。この米国特許には、球状結晶成 長後に高温でアニーリング処理する装置も開示されている。
[0012] 本願発明者は、 WO 03/095719 に示す国際出願において、半導体などの無機材 料の液滴が自由落下する際、冷却用ガスを同方向に流して流体の抵抗を緩和しな がら、液滴が真空中の自由落下する速度とほぼ同じ速度で落下させ得るように、落 下管の内径断面積を落下方向に小さくした落下管型粒状結晶体製造装置を開示し た。
[0013] この装置においては、冷却用ガスによる良好な冷却作用を発揮しつつ、真空中の 自由落下で得られる微小重力状態での凝固が可能になり、落下管の長さを短くする ことができ、球状の単結晶体を製造することができる.この装置においては、ルツボ中 の融液に上下振動を与え、液滴をルツボのノズルの先端力も滴下し、落下管の下端 部分に凝固トリガーとして機能する減速機構を設けている。 [0014] 即ち、冷却用ガスの流れを急減速させるため落下管の下端部分に内径を急拡大し たゾーンを設けた。更に、冷却用ガスの消費量を少なくするための循環機構も装備し ている。し力し、この装置では、ルツボに 1つのノズルしか設けられていないので、高 品質の真球状単結晶体を量産する製造速度を高めるには限界があり、量産可能な 装置の開発が望まれていた。
特許文献 1 :米国特許第第 3,025,335号公報
特許文献 2 :米国特許第 4,021,323号公報
特許文献 3 :米国特許第 4, 136,436号公報
特許文献 4:米国特許第 6,204,545号公報
特許文献 5 :米国特許第 4,322,379号公報
特許文献 6 :日本特許第 3,287,579号公報
特許文献 7 :米国特許第 6,264,742号公報
特許文献 8 :特公平 7-12422号公報
特許文献 9 :米国特許第 6, 106,614号公報
特許文献 10 :WO03Z。95719号公報
[0015] 発明の目的は、真球状の高品質な単結晶体又は結晶方位の異なる少数の結晶か ら構成される多結晶体を能率的に連続的に量産できる製造方法とその装置を提供 することである。
発明の開示
[0016] 本発明に係る粒状単結晶体製造装置は、無機材料の融液の粒状の液滴を自由落 下させながら凝固させて粒状の単結晶体を作る粒状単結晶体製造装置において、 立向き姿勢に配設された落下管と、前記落下管の上方で無機材料を溶融して融液 にするルツボとこのルツボの底部に形成された複数のノズルを備え、これらノズルから 前記融液を液滴にして前記落下管内へ落下させる液滴形成手段と、前記落下管の 内部に上から下へ向力う冷却用不活性ガスの流れを形成するガス流形成手段と、前 記落下管の内部へ無機材料製の多数の固体粒子を前記液滴の落下方向と交差状 に放出し、ほぼ過冷却状態の前記液滴に固体粒子を接触させる固体粒子放出手段 とを備えたことを特徴とするものである。 [0017] ここで、本発明に次のような種々の構成を選択的に採用してもよい。
(I)前記落下管は下方ほど断面積が小さくなるように形成され、前記ガス流形成手段 は、前記落下管内の冷却用不活性ガスの流速が液滴の真空中の自由落下速度に 近 ヽ速度となるような冷却用不活性ガスの流れを形成するように構成されて 、る。
[0018] (2)前記固体粒子放出手段は、前記落下管の上部に水平に且つ放射状に配置され 固体粒子を放出する複数の放出ノズルを備えて 、る。
(3) .前記落下管の底部付近に、落下してくる粒状の結晶体を衝突させて衝撃を緩 衝する上方に凸状の衝撃緩衝シートを設ける。
[0019] (4)前記ガス流形成手段は、前記落下管の底部力 回収した冷却用不活性ガスを落 下管の上端側へ循環させるガス循環手段を備えて!/ヽる。
(5)前記ガス循環手段は、冷却用不活性ガスを冷却するガス冷却手段を備えて ヽる
(6)前記固体粒子は石英ガラス又は窒化アルミニウム (A1N)又は窒化ホウ素(BN) 力 なる球状の粒子である。
[0020] (7)前記ルツボに形成された複数のノズルの吐出口は、ルツボの中心に近!ゾズル ほど低 、位置に形成されて 、る。
(8)前記液滴形成手段は、ルツボ内の融液に振動を付加する振動付加手段を有す る。
(9)前記落下管の下端部の内部から前記液滴が凝固した粒状の結晶体と固体粒子 を回収する回収通路と、この回収通路に接続され回収通路力 回収される粒状の結 晶体と固体粒子を真球状に加工処理する加工処理装置を設ける。
[0021] (10)前記加工処理装置により真球状に加工処理された粒状の結晶体と固体粒子か らダストを除去するダスト除去装置と、このダスト除去装置によりダストが除去された粒 状の結晶体と固体粒子をアニーリング処理する熱処理炉とを設ける。
(I I)前記熱処理炉によりアニーリング処理された粒状の結晶体の表層部に不純物 を拡散させる不純物拡散炉を設ける。
[0022] (12)前記固体粒子は窒化ホウ素力 なる球状の粒子であり、前記不純物拡散炉は 、窒化ホウ素力もなる前記固体粒子を不純物拡散源とするように構成する。 (13)前記融液を構成する無機材料は、 Si, Ge, GeSi, GaSb, GaAs, GaP, InPの うちから選択される半導体材料である。
発明を実施するための最良の形態
[0023] 以下、本発明を実施するための最良の形態について図面に基づいて説明する。
この落下管型粒状単結晶体製造装置は、無機材料の原料をルツボ内で溶融し、複 数のノズル力 粒状の融液を滴下し、その粒状の液滴を落下管内を自由落下させな 力 凝固させてほぼ球状の無機材料の単結晶力もなる結晶体を連続的に生産する 装置である。但し、大多数の結晶体は単結晶の結晶体となるが、一部の結晶体は複 数の結晶を含む多結晶の結晶体となる。ほぼ球状の結晶体は、直径約 600〜1500 μ mの範囲力も選択される大きさのものである。
[0024] 本実施例では、無機材料として p形又は n形シリコン半導体を採用し、ほぼ真球状 のシリコンの単結晶体を製造する落下管型粒状単結晶体製造装置 1を例にして説明 する。図 1、図 2に示すように、この落下管型粒状単結晶体製造装置 1は、シリコン半 導体を溶融させ且つその融液を定量ずつ粒状の液滴 2にして滴下する液滴形成機 構 10と、落下管 30 (落下チューブ)と、固体粒子 3を放出して液滴 2に接触させる固 体粒子放出機構 40と、落下管 30の内部に上力 下へ向力う冷却用ガスの流れを形 成するガス流形成機構 50と、落下管 30の底部に溜まる結晶体 4を回収する回収通 路 70, 72, 73を介して接続された回転式ボールミル 80、ダスト処理装置 82、熱処理 炉 84及び拡散炉 86とを有する。
[0025] 最初に、液滴形成機構 10について説明する。
図 1に示すように、この液滴形成機構 10は、石英又はグラフアイト製のルツボ 11、こ のルツボ 11の底部に形成されシリコン半導体の融液を下方へ吐出する複数のノズル 12a, 12b、ルツボ 11の外周を覆うグラフアイト製ヒータ 13、ヒータ 13の外周側を覆う 円筒形の熱シールドケース 14、この熱シールドケース 14の外周側を覆って気密のチ ヤンバー 15を形成する落下管上部ケース 31、ルツボ 11内に多結晶シリコン (p形又 は n形の半導体シリコン)の原料 5を供給する原料供給ホッパー 16及び原料供給管 1 7、ルツボ 11内のシリコンの融液 6に上下振動を付加する振動付加機構 18、ルツボ 1 1内の融液 6の温度を測定する赤外線温度センサ 19などを備えて 、る。 [0026] ルツボ 11は、底壁と円筒状側壁と蓋部とを有する。底壁の中央底壁 11aは外周側 底壁 l ibよりも下方へ突出するように厚肉に形成され、中央底壁 11aには例えば 8〜 12個のノズル 12aが立向きに設けられ、外周側底壁 l ibには例えば 12〜18個のノ ズル 12bが立向きに設けられている。ノズル 12a, 12bの孔の直径は例えば 0. 3mm であるが、これに限定される訳ではない。
[0027] ルツボ 11に形成された複数のノズル 12a, 12bの吐出口は、ルツボ 11の中心に近 いノズルほど低い位置となるように、ノズル 12aの吐出口はノズル 12bの吐出口よりも 低い位置に設定されている。これは、放出ノズル 43から放出される固体粒子 3と液滴 2との接触の確率を高める為である。
[0028] ヒータ 13は、立形の円筒形に形成されルツボ 11より下方まで所定長さ延びている。
ヒータ 13は、ルツボ 11の外周面との間および熱シールドケース 14との間に隙間を空 けて配置されている。ヒータ 13は、電極端子 13a, 13bを介して外部から通電され、 ルツボ 11内に投入された原料 5をシリコンの融点 1420°C以上に加熱溶融する。熱 シールドケース 14は例えばステンレス製の板材で構成され、円筒状本体 14aと、下 端のフランジ部 14bとを有する。尚、熱シールドケース 14は、モリブデン又はタンダス テン製の板材で構成してもよ 、。
[0029] 落下管上部ケース 31は、落下管 30の上部約 1Z3部分を形成するものであり、円 筒状のケース本体 31aと、このケース本体 31aの上端を塞ぐ頂板 31bとを有し、例え ばステンレス板で構成されている。この落下管上部ケース 31は、熱シールドケース 1 4との間に所定の円筒状のガス通路 20を空けて配置されて 、る。
[0030] 原料供給ホッパー 16には粉状又は粒状の多結晶半導体シリコン (例えば、直径 10 0〜: LOOO m)の原料 5が収容され、加振器 21によりホッパー 16に振動を付カ卩して 原料 5を供給管 17からルツボ 11へ少量ずつ所定の速度で供給する。供給管 17には チャンバ一 15内の不活性ガスをホッパー 16内へ導くガス通路(図示略)が設けられ ている。
[0031] 振動付加機構 18は、振動発生器 22で発生させた一定周波数の上下振動を石英 ガラス製の連結棒 23a, 23bを介してルツボ 11内の石英ガラス製の振動板 24に伝達 し、振動板 24を上下振動させて融液 6に振動を作用させる。尚、連結棒 23a, 23bは 石英ガラス製のボルト 23cにより締結されている。振動発生器 22は、電歪素子又は 磁歪素子又はソレノイドで振動を発生させる。この振動板 24により融液 6に一定周波 数の振動を付カ卩することにより、複数のノズル 12a, 12bから垂れた融液 6の液柱 6a ( 例えば直径 1. 2mm)の先端から粒状の融液を分離させて液滴 2 (例えば直径約 1. 2mm)を発生させる。ノズル 12a, 12bの先端力 垂れた液柱 6aに一定周波数の振 動を付加すると、液柱 6aには疎密波が生じ、疎の部分で液柱 6aが分断され、一定の 大きさの液滴 2が連続的に発生する。この液滴 2を形成するゾーンが液滴形成ゾーン 25である。
[0032] ルツボ 11内の融液 6の温度を一定にし、ノズル 12a, 12bの直径が一定の場合、液 滴 2の大きさは、振動発生器 22で発生させる振動の振幅と周波数に依存するため、 振動発生器 22は発生させる振動の振幅と周波数を調節可能に構成されている。
[0033] 落下管 30はステンレス製の板材で構成されて 、る。落下管 30は、落下管上部ケー ス 31と、落下管本体 32と、落下管本体 32の下端の底板 33とを有する。落下管 30内 を落下する液滴 2の落下距離は約 5〜8mであり、落下管 30の上端の内径は約 25c mであり、落下管本体 32はその内径が下方に向力つて距離にほぼ比例して減少す るテーパ状に形成され、落下管 30はその内部を流れる冷却用ガスの流速が液滴 2の 自由落下速度に近 、流速になるように形成されて 、る。
[0034] 底板 33の中央部上面から立ち上がる小径の短 、円筒体 34と、この円筒体 34の上 端を塞ぐ上方に凸の部分球面状の衝撃緩衝シート 35が設けられて ヽる。衝撃緩衝 シート 35は例えば炭素繊維製シートであり、落下してくる粒状の結晶体 4を衝突させ て衝撃を緩衝する。
[0035] 次に、固体粒子放出機構 40について説明する。
図 1に示すように、固体粒子放出機構 40は、落下管 30の内部へ無機材料製の多 数の固体粒子 3を液滴 2の落下方向と交差するように放出し、ほぼ過冷却状態の液 滴 2に凝固トリガーとしての固体粒子 3を接触させるものである。固体粒子 3として、本 実施例では石英ガラス製の球状の固体粒子 3を採用する。但し、後述のように、最終 製品としての単結晶体力 フルイによって固体粒子 3を分離する関係上、固体粒子 3 は液滴 2より小さいもの又は大きいものが望ましぐ本実施例では例えば直径 1. 5m m程度の石英ガラス球が採用される。
[0036] 固体粒子放出機構 40は、落下管上部ケース 31の周りを囲む環状の収容タンク 41 と、この収容タンク 41の底面に周方向適当間隔おきに設けられた複数の加振器 42と 、この収容タンク 41の下端に連通している複数の放出ノズル 43と、アルゴンガスを収 容タンク 41へ供給するガスボンベ 44と、ガス供給管 45と、制御弁 46とを有する。収 容タンク 41内には、供給口(図示略)から充填される多数の固体粒子 3が収容されて いる。ガスボンベ 44から延びるガス供給管 45は収容タンク 41の複数個所に連通され ている。
[0037] 複数 (例えば、 8〜16本)の放出ノズル 43は、落下管上部ケース 31の下端部に水 平に配置され、落下管 30の中心部へ向けて放射状に配置されている。収容タンク 4 1へアルゴンガスを供給し、複数の加振器 42により振動を与えると、複数の放出ノズ ル 43から単結晶種形成の凝固トリガーとしての固体粒子 3が落下管 30内へシャワー 状に一定速度で放出され、落下してくる多数の過冷却状態の液滴 2 (過冷却温度 1 〜100°C)と接触する。
[0038] 液滴 2に固体粒子 3を接触させるゾーンがトリガーゾーン 47である。放出ノズル 43 の下側近傍において、落下管 30には液滴 2と固体粒子 3を撮影する為のストロボライ ト 36と CCDカメラ 37が設けられて 、る。トリガーゾーン 47の下方付近における液滴 2 や結晶体 4の温度を測定する放射温度計 38が、落下管 30に設けられている。
[0039] 次に、ガス流形成機構 50について説明する。
図 1に示すように、ガス流形成機構 50は、落下管 30内の冷却用ガス (アルゴンガス )の流速が液滴 2の真空中の自由落下速度に近い速度となるような下向きの冷却用 ガスの流れを形成し、液滴 2に作用する流体抵抗を小さくするものである。このガス流 形成機構 50は、約 1気圧のアルゴンガスを冷却用ガスとしてチャンバ一 20内へ供給 するガス供給源 51と、落下管 30の底部から回収した冷却用ガスを落下管 30の上端 側へ循環させるガス循環機構 55とを有する。
[0040] ガス供給源 51は、アルゴンガスボンベ 52と、ガス供給管 53と、制御弁 54とを有し、 冷却用ガスを補充する必要のある場合にはアルゴンガスボンベ 52からガス供給管 5 3を介してチャンバ一 20の頂部に自動的に供給する。 [0041] ガス循環機構 55は、落下管 30の底部の円筒体 34に形成された複数の穴 56と、底 板 33に形成された穴 57と、この穴 57からチャンバ一 20の上端の複数個所まで延び るガス循環管 58と、ガス循環管 58に設けられモータ 59で駆動される循環ポンプ 60と 、冷却水でもってガス冷却用ガスを冷却するガス冷却器 61とその制御弁 6 laなどを 備えている。ガス循環管 58は、その分岐部 58aから例えば 4本の分岐管 58bに分岐 してチャンバ一 20の上端の 4個所に連通されて!/、る。
[0042] 循環ポンプ 60で加圧された冷却用ガスはガス冷却器 61で冷却後にチャンバ一 20 の頂部に供給され、チャンバ一 20と落下管 30内を下方へ流れ、落下管 30の底部の 穴 56, 57からガス循環管 58へ吸引され、再び循環ポンプ 60へ流れる。
尚、不活性ガスとしてアルゴンガスの代わりにヘリウムガスを適用してもよぐまた、 ガス循環管 58としては実際には図示のものよりも大径の管が適用される。循環ポンプ 60としてファン又はブロアなどを適用してもよい。ガス循環管 58には、落下管 30内の 冷却用ガスを排出する為のガス排出管 62が接続され、このガス排出管 62には排気 用制御弁 63が設けられている。
[0043] ここで、図 1に示すように、この単結晶体製造装置 1を制御する制御ユニット 100が 設けられ、制御ユニット 100は、放射温度計 19、ストロボライト 36及び CCDカメラ 37、 放射温度計 38、ヒータ 13、加振器 21, 42、振動発生器 22、制御弁 46, 54、冷却器 61の制御弁61&、ガス循環ポンプ 60を駆動するモータ 59の駆動部、制御弁 63など に電気的に接続されている。
[0044] 次に、落下管 30内の底部に溜まる結晶体 4を回収して種々の処理を施す付属装 置について説明する。図 2に示すように、落下管 30の底板 33上には、環状の回収箱 39が配置され、この回収箱 39の底面は傾斜状に形成され、この回収箱 39の底面の 最も低い部位に、シャッター 71を備えた回収通路 70が接続されており、回収箱 39内 の結晶体 4が回収通路 70へ徐々に流動する。回収通路 70は下り傾斜して右方へ延 びて回転式ボールミル 80 (加工処理装置)に接続されている。この回転式ボールミル 80において、粒状の結晶体 4を固体粒子 3を研摩材として真球状に加工処理すると 共に結晶体 4の表面層に偏祈した不純物を研摩により除去する。この回転式ボール ミル 80は制御ユニット 100により制御される。 [0045] 前記回転式ボールミル 80で処理された結晶体 4Aと固体粒子 3は、回収通路 72に より熱処理炉 84へ搬送されるが、この回収通路 72の途中部には、結晶体 4Aと固体 粒子 3から研摩の際に発生したダストを除去するダスト除去装置 82が設けられている 。ダスト除去装置 82は、回収通路 72の一部を構成する金網通路 82aと、ダクト 82bと 、窒素ガスボンベ 82cと、窒素ガスボンベ 82cからダクト 82bへ窒素ガスを送るガス通 路 82dと、このガス通路 82dに設けられた流量調節弁 82eと、ダクト 82bに接続された 集塵機 82fとを有する。
[0046] 窒素ガスを金網通路 82aの下方力 供給し、その窒素ガスにより金網通路 82a内で 結晶体 4Aと固体粒子 3とダストを浮遊状態にしてダストを分離し、そのダストをダクト 8 2bにより集塵機 82fへ送って集塵機 82fに回収する。ダストを除去された結晶体 4Aと 固体粒子 3は回収通路 72により熱処理炉 84へ供給される。
[0047] この熱処理炉 84は、アルゴンガス(約 96%)と水素ガス(約 4%)の混合ガス雰囲気 中で結晶体 4Aと固体粒子 3を 800〜900°Cで約 10〜30分間加熱処理してから徐 冷することにより、トリガーゾーン 47における急速凝固によって結晶体 4Aに生じたス トレスと、ボールミル 80による研摩により生じたストレスを解消すると共に、多数の結晶 体 4Aのうちの一部の多結晶体に対しては、多結晶体の結晶粒界に水素を拡散させ るパッシベーシヨン処理が施される。次に、熱処理された結晶体 4Aと固体粒子 3は、 回収通路 73により拡散炉 86に搬送される。この拡散炉 86は、結晶体 4Aの表層部に 不純物原子を拡散させた n形又は p形の拡散層を形成するものである。
[0048] 結晶体 4Aが p形半導体で構成されて ヽる場合、拡散炉 86にお ヽて、 N と O の混
2 2 合ガスをキャリアガスにして POC1の液中をバブリングしたガス雰囲気中において結
3
晶体 4Aと固体粒子 3を 1000°Cで 10分程度加熱することにより、 P原子をドナーとし て結晶体 4Aの表層部に n形の拡散層を形成する。
[0049] 他方、結晶体 4が n形半導体で構成されて ヽる場合、前記の固体粒子 3として、石 英ガラス製の固体粒子の代わりに BN (ボロンナイトライド)製の固体粒子を採用し、拡 散炉 86において、 Nと Oの混合ガス中で、結晶体 4と BN製固体粒子を 1000°Cで
2 2
10分程度加熱することにより、 BN製固体粒子力も発生する B原子をァクセプターとし て結晶体 4Aの表層部に p形の拡散層を形成する。 [0050] 前記の拡散炉 86で拡散処理された結晶体 4Aと固体粒子 3は、回収通路 74により 回収容器 90へ回収される。その後、結晶体 4Aと固体粒子 3をフルイにかけて分離し 、結晶体 4Aは製品として回収され、固体粒子 3は、再利用するため固体粒子放出機 構 40へ供給される。尚、ダスト除去装置 82、熱処理炉 84、拡散炉 86なども、制御装 置 100により制御される。
[0051] 次に、以上説明した単結晶体製造装置 1の作用について説明する。
以上の説明からも判るように、原料供給ホッパー 16から原料の多結晶シリコンをル ッボ 11へ連続的に供給しながら、ヒータ 13によりルツボ 11内の原料を加熱して溶融 させ、落下管 30内に冷却用ガスを流し、その冷却用ガスをガス循環機構 50により循 環させる。
[0052] ルツボ 11内にシリコンの融液 6が連続的に作られ、液滴形成ゾーン 25にお!/、て、 ルツボ 11の複数のノズル 12a, 12bの先端の複数の液柱 6aの先端から液滴 2が次々 に分離されて、シャワー状に落下していく。この液滴 2は、その表面張力により球状に なり、放射冷却と冷却用ガスとで冷却されて過冷却状態になり、トリガーゾーン 47に おいて凝固トリガーとしての固体粒子 3と接触して液滴 2の表面の一部に単結晶の種 2a (図 3参照)が生成されると、液滴 2は瞬時に凝固して単結晶シリコン力 なる結晶 体 4になって落下し、落下管 30の底部の衝撃緩衝シート 35に衝突して衝撃が緩和さ れ、回収箱 39に溜まる。
[0053] その後、結晶体 4と固体粒子 3は回収通路 70により回転式ボールミル 80へ流動し ていき、このボールミル 80によりほぼ真球状の単結晶体 4Aに加工される。その後、 結晶体 4Aと固体粒子 3に含まれるダストをダスト除去装置 82により除去してから、結 晶体 4Aと固体粒子 3は熱処理炉 84へ流動していき、熱処理炉 84においてァニーリ ング処理されてストレスが除去されると共に、一部の多結晶体についてはパッシベー シヨン処理が施され、その後結晶体 4Aと固体粒子 3は拡散炉 86へ搬送される。
[0054] 拡散炉 86において真球状の結晶体 4Aの表層部に拡散層が形成され、その後結 晶体 4Aと固体粒子 3が回収容器 90に回収される。こうして、多数のほぼ真球状の結 晶体 4Aが連続的に製造される。尚、多数の結晶体 4Aのうちの大多数は単結晶の結 晶体であり、一部の結晶体は結晶方位の異なる少数の結晶からなる多結晶体である [0055] 次に、各部の諸機能について補足説明する。
液滴 2の大きさについては、ストロボライト 36を照射し CCDカメラ 37により液滴 2aを 撮影することで液滴 2の大きさを観測して所望の大きさになるよう振動発生器 22の出 力(振幅)と周波数を制御し調節することができる。落下管 30内の冷却用ガス、ルツ ボ 11内の融液 6、液滴 2などの温度およびや液滴形成ゾーン 25からトリガーゾーン 4 7に至る部分の温度も所定値に維持するため、放射温度計 38で液滴 2又は結晶体 4 の温度を検出し制御ユニット 100により冷却器 61の冷却能力を調整したり、排出管 6 2からの冷却用ガスの排出とアルゴンガスボンベ 52からの冷却用ガスの供給を調整 したりすることによって、冷却用ガスの温度を制御し、液滴 2の温度を制御する。
[0056] トリガーゾーン 47において、固体粒子 3が落下中の液滴 2に出会うように放出ノズル 43からの固体粒子 3の放出方向と初速度と放出量をストロボライト 36の照射下に CC Dカメラ 37を介して観察し実験的に決定しておく。固体粒子 3の直径力 液滴 2の直 径よりも大きいため、液滴 2は固体粒子 3に 1点で接触しやすくする。
[0057] 図 3は、落下中のシリコンの液滴 2と横力 放出された固体粒子 3の運動経路を示 す。固体粒子 3が最初に液滴 2に接触した点が凝固トリガー点となり、そこに単結晶 の種 2aが生成され、液滴 2はその種 2aから瞬時に急速凝固を開始するため、凝固後 における固体粒子 3との接触は結晶体 4の形態を変化させない。特に、液滴 2と固体 粒子 3は、両者が落下中に接触するため液滴 2に過度な衝撃が加わることはない。
[0058] この単結晶体製造装置 1では、冷却用ガスにより液滴 2を冷却するものの、冷却用 ガスの流速を、液滴 2が真空中で自由落下する場合と同等の速度にするため、液滴 2は冷却用ガスの抵抗を受けることなく自由落下し、その落下中に微小重力状態で 冷却される。
従って、冷却用ガスによる圧力や温度の分布変化が少なく力学的、熱的擾乱で引 き起こされると考えられるェンブリオ的クラスターの発生による結晶核生成がなくなり、 ガス抵抗が大きい中を落下する場合より大きな過冷却度が得られる。
[0059] 過冷却度が大きい場合、凝固トリガーが可能な温度範囲はそれだけ広くなり、液滴 2と固体粒子 3とを接触させる空間も広くなり、多数の液滴 2をシャワー状に落下させ て粒状の結晶体 4を能率的に製造することが可能になる。落下中に過冷却状態の液 滴 2は、固体粒子 3と点接触すると直ちに急速に単結晶に成長し、最後に凝固した部 分に図 3、図 4に示すような尻尾状の突起 4aが残る。この突起 4aは回転ボールミル 8 0で球状に加工処理されて除去される。
[0060] 微小重力環境下にお!/ヽて過冷却された液滴 2に固体粒子 3を一点接触させると単 結晶に凝固する現象は、本願発明者の論文「Seedless Crystallization of Levitated ue and GaSb Spherical Melts under icrogravity」
(Jpn.J.Appl.Phys.Vol.37(1998)pp丄 1396- 1399 Part2,No.l lb, 15 November 1998)に既 に開示されている。
[0061] 凝固した結晶体 4は、そのまま固体粒子 3と共に下方へ落下し、衝撃緩衝シート 35 上に落下し、転がって回収箱 39に収容される。回収箱 39に溜まった結晶体 4と固体 粒子 3は、回収通路 70を経て回転式ボールミル 80へ流動していく。このボールミル 8 0にお 、て、約 100°C位に冷却された固体粒子 3を研摩剤として結晶体 4を研摩加工 処理し、結晶体 4の突起 4aを除去すると共に結晶体 4の表層部に偏祈した不純物を 除去し、所定の大きさのほぼ真球状のシリコン単結晶体 4Aに仕上げる。
[0062] 次に、熱処理炉 84では、前記のように結晶体 4Aと固体粒子 3をアニーリング処理し 、ストレスを解消すると共に、多結晶体に対してはパッシベーシヨン処理を施す。次に 、拡散炉 86において、前記のように、結晶体 4Aの表層部に拡散層を形成する。その 後、回収容器 90に回収されたシリコン単結晶体 4Aは、固体粒子 3と共にフルイにか けて固体粒子 3から分離し、シリコン単結晶体 4Aを太陽電池パネルの製造工程へ供 給する。
[0063] 石英ガラス製の固体粒子 3は、結晶体 4を球状に加工する上で硬度が高く加工に 適すると共に消耗が少なく再利用が可能である。また、高純度石英力もなる固体粒 子 3は、耐熱性が高ぐシリコンの結晶体 4と混在させて熱処理を行う際、シリコン同士 の固相融着が発生せず、不純物の汚染源にならないので有利である。石英ガラス製 の固体粒子 3は透明であるため、シリコン単結晶体 4Aと混ぜても識別可能であり、こ の固体粒子 3が混ざっていると熱処理における温度分布が均等化されるという利点も ある。 [0064] 但し、石英ガラス製の固体粒子 3の代わりに安価な酸ィ匕アルミニウムなど硬度が高 い他の物質を採用することもできるし、前記のように、 BN製の固体粒子を採用すると 、拡散処理の際に固体粒子の BNに含まれる B (ホウ素)をドナー原子として有効活用 することできるため、拡散処理炉の構造を簡単化することができる。尚、固体粒子とし て A1N (窒化アルミニウム)製の固体粒子も採用可能である。
[0065] 以上説明した単結晶体製造装置 1によれば、次の効果が得られる。
ルツボ 11に複数のノズル 12a, 12bを形成したので、結晶体 4を能率的に量産でき る。固体粒子放出機構 40の複数の放出ノズル 43から落下管 30の中心側へ向けて 固体粒子 3をほぼ水平に放出させるため、液滴 2と固体粒子 3との接触の確率が高ま り、単結晶シリコン力 なる結晶体 4を生成する歩留りを高く維持できる。落下管 30の 上部内にトリガーゾーン 47を設けたため、落下管 30の長さを短くすることができるか ら、設備費の面で有利である。
[0066] 振動付加機構 18は、ルツボ 11内の融液 6の広 、範囲に振動を付加できる振動板 2 4を有し、振動発生器 22で発生させる振動の振幅や周期を調節可能に構成したため 、液滴 2の大きさを所望の大きさに調節することができる。
[0067] 単結晶体製造装置に、付属装置として、回転式ボールミル 80と熱処理炉 84と拡散 炉 86を装備したため、真球状のシリコン単結晶体 4Aを連続的に製造することができ 、連続的に単結晶体 4Aに n形又は p形の拡散層も形成することができ、製造のサイク ル時間短縮などコスト低減を容易にする利点がある。
[0068] 以上のようにして製造した多数のほぼ真球状のシリコン単結晶体 4Aを用いて、本 願発明者による米国特許 6, 204, 545号で開示したようなソーラセルを作ることが出 来る。この場合、シリコン単結晶体 4Aの表面部に球面状の pn接合を形成し、 p形層 、n形層の各表面の中心部にそれぞれ正電極と負電極を設けてソーラセルを製造し 、それら多数のソーラセルを直並列接続したソーラパネルを製作する。
[0069] 前記実施例を部分的に変更する例にっ 、て説明する。
1)原料の無機材料は、 Si, Ge, GeSi, GaSb, InSb, GaAs, GaP, InPなど融液 を凝固し結晶を作る半導体材料でもよ ヽ。
2)前記実施例の液滴 2と結晶体 4の大きさは直径 1. 2mmであるが、液滴 2と結晶 体 4の直径は、 600〜1500 μ mの範囲力 選択される何れかの大きさが望ましい。
3)冷却用ガスとしては、アルゴンガス以外にヘリウムガス等を採用してもよい。
[0070] 4)落下管 30の形状としては、本願発明者が WO 03/095719により公開された国際 出願の図 2に開示したような形状に形成してもよい。
5)前記落下管 30の長さは、図示のものよりも大きく形成することもあるし、前記実施 例におけるルツボ 11の形状、ノズル 12a, 12bの数や配置、放出ノズル 43の数や配 置は、一例を示すものである。
[0071] 6)本発明の単結晶体製造装置により製作される結晶体 4Aは、太陽電池以外に、 本願発明者が米国特許第 6,204,545号に開示したように、球状の発光ダイオード、整 流ダイオード、光触媒等にも適用することができる。
7)当業者であれば、本実施例を参考として本実施例の装置に種々の変更を加え た形態で実施可能であり、本発明はそれらも包含するものである。
図面の簡単な説明
[0072] [図 1]本発明の実施例に係る粒状単結晶体製造装置の要部の断面図である。
[図 2]粒状単結晶体製造装置に付属する複数の装置の構成図である。
[図 3]落下中におけるシリコンの球状液滴と石英粒子との接触前後の状態を説明する 説明図である。
[図 4]凝固したシリコン単結晶体と回転式ボールミルで加工処理後のシリコン単結晶 体の断面図である。
符号の説明
[0073] 1 粒状単結晶体製造装置
2 液滴
3 固体粒子
4, 4A 結晶体
10 液滴形成機構
11 ルツボ
12a, 12b ノズル
18 振動付加機構 落下管
衝撃緩衝シート 固体粒子放出機構 放出ノズル ガス流形成機構 ガス循環機構 ガス冷却器 回収通路 回転式ボーノレミノレ ダスト除去装置 熱処理炉 不純物拡散炉

Claims

請求の範囲
[1] 無機材料の融液の粒状の液滴を自由落下させながら凝固させて粒状の結晶体を作 る粒状結晶体製造装置において、
立向き姿勢に配設された落下管と、
前記落下管の上方で無機材料を溶融して融液にするルツボとこのルツボの底部に 形成された複数のノズルを備え、これらノズルカゝら前記融液を液滴にして前記落下管 内へ落下させる液滴形成手段と、
前記落下管の内部に上から下へ向力う冷却用不活性ガスの流れを形成するガス流 形成手段と、
前記落下管の内部へ無機材料製の多数の固体粒子を前記液滴の落下方向と交 差状に放出し、ほぼ過冷却状態の前記液滴に固体粒子を接触させる固体粒子放出 手段と、
を備えたことを特徴とする粒状結晶体製造装置。
[2] 前記落下管は下方ほど断面積が小さくなるように形成され、前記ガス流形成手段は、 前記落下管内の冷却用不活性ガスの流速が液滴の真空中の自由落下速度に近い 速度となるような冷却用不活性ガスの流れを形成するように構成されたことを特徴と する請求項 1に記載の粒状結晶体製造装置。
[3] 前記固体粒子放出手段は、前記落下管の上部に水平に且つ放射状に配置され固 体粒子を放出する複数の放出ノズルを備えたことを特徴とする請求項 2に記載の粒 状結晶体製造装置。
[4] 前記落下管の底部付近に、落下してくる粒状の結晶体を衝突させて衝撃を緩衝する 上方に凸状の衝撃緩衝シートを設けたことを特徴とする請求項 3に記載の粒状結晶 体製造装置。
[5] 前記ガス流形成手段は、前記落下管の底部力 回収した冷却用不活性ガスを落下 管の上端側へ循環させるガス循環手段を備えたことを特徴とする請求項 3に記載の 粒状結晶体製造装置。
[6] 前記ガス循環手段は、冷却用不活性ガスを冷却するガス冷却手段を備えたことを特 徴とする請求項 3に記載の粒状結晶体製造装置。
[7] 前記固体粒子は石英ガラス力 なる球状の粒子であることを特徴とする請求項 3に記 載の粒状結晶体製造装置。
[8] 前記固体粒子は窒化ホウ素力 なる球状の粒子であることを特徴とする請求項 3に 記載の粒状結晶体製造装置。
[9] 前記ルツボに形成された複数のノズルの吐出口は、ルツボの中心に近!ゾズルほど 低!ヽ位置に形成されて!ヽることを特徴とする請求項 3に記載の粒状結晶体製造装置
[10] 前記液滴形成手段は、ルツボ内の融液に振動を付加する振動付加手段を有するこ とを特徴とする請求項 3に記載の粒状結晶体製造装置。
[11] 前記落下管の下端部の内部から前記液滴が凝固した粒状の結晶体と固体粒子を回 収する回収通路と、この回収通路に接続され回収通路から回収される粒状の結晶体 と固体粒子を真球状に加工処理する加工処理装置を設けたことを特徴とする請求項
3に記載の粒状結晶体製造装置。
[12] 前記加工処理装置により真球状に加工処理された粒状の結晶体と固体粒子からダ ストを除去するダスト除去装置と、このダスト除去装置によりダストが除去された粒状 の結晶体と固体粒子をアニーリング処理する熱処理炉とを設けたことを特徴とする請 求項 11に記載の粒状結晶体製造装置。
[13] 前記熱処理炉によりアニーリング処理された粒状の結晶体の表層部に不純物を拡散 させる不純物拡散炉を設けたことを特徴とする請求項 12に記載の粒状結晶体製造 装置。
[14] 前記固体粒子は窒化ホウ素力 なる球状の粒子であり、
前記不純物拡散炉は窒化ホウ素からなる前記固体粒子を不純物拡散源とするように 構成されたことを特徴とする請求項 13に記載の粒状結晶体製造装置。
[15] 前記融液を構成する無機材料は、 Si, Ge, GeSi, GaSb, GaAs, GaP, InPのうち から選択される半導体材料であることを特徴とする請求項 3に記載の粒状結晶体製 造装置。
PCT/JP2005/008993 2005-05-17 2005-05-17 粒状結晶体製造装置 WO2006123403A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/008993 WO2006123403A1 (ja) 2005-05-17 2005-05-17 粒状結晶体製造装置
TW094132387A TW200641191A (en) 2005-05-17 2005-09-20 Manufacturing device of granular single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/008993 WO2006123403A1 (ja) 2005-05-17 2005-05-17 粒状結晶体製造装置

Publications (1)

Publication Number Publication Date
WO2006123403A1 true WO2006123403A1 (ja) 2006-11-23

Family

ID=37430987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008993 WO2006123403A1 (ja) 2005-05-17 2005-05-17 粒状結晶体製造装置

Country Status (2)

Country Link
TW (1) TW200641191A (ja)
WO (1) WO2006123403A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8900953B2 (en) 2008-09-01 2014-12-02 Hiroshima University Crystal manufacturing apparatus, semiconductor device manufactured using the same, and method of manufacturing semiconductor device using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580509B (zh) * 2015-11-13 2017-05-01 Spherical forming device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033969A (ja) * 1996-07-22 1998-02-10 Jiyousuke Nakada 無機材料製の球状体の製造方法及びその製造装置
WO1999022048A1 (fr) * 1997-10-23 1999-05-06 Josuke Nakata Procede et dispositif de fabrication d'un monocristal
JP2002531374A (ja) * 1998-12-10 2002-09-24 ボール セミコンダクター インコーポレイテッド インシツ(in−situ)種注入による単結晶処理
WO2003095719A1 (fr) * 2002-05-13 2003-11-20 Josuke Nakata Dispositif de production de cristaux granulaires de type pour tube de descente

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1033969A (ja) * 1996-07-22 1998-02-10 Jiyousuke Nakada 無機材料製の球状体の製造方法及びその製造装置
WO1999022048A1 (fr) * 1997-10-23 1999-05-06 Josuke Nakata Procede et dispositif de fabrication d'un monocristal
JP2002531374A (ja) * 1998-12-10 2002-09-24 ボール セミコンダクター インコーポレイテッド インシツ(in−situ)種注入による単結晶処理
WO2003095719A1 (fr) * 2002-05-13 2003-11-20 Josuke Nakata Dispositif de production de cristaux granulaires de type pour tube de descente

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8900953B2 (en) 2008-09-01 2014-12-02 Hiroshima University Crystal manufacturing apparatus, semiconductor device manufactured using the same, and method of manufacturing semiconductor device using the same

Also Published As

Publication number Publication date
TW200641191A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
CN100406378C (zh) 多晶硅的生产装置
US6106614A (en) Method and apparatus for fabricating near spherical semiconductor single crystal particulate and the spherical product produced
KR100916132B1 (ko) 유동성 칩과 이의 제조 및 사용 방법
JP3754451B2 (ja) 半導体粒子の形成方法及び形成装置
JP2009184922A (ja) 流動性チップ及びそれを使用する方法
WO2006123403A1 (ja) 粒状結晶体製造装置
CN107601510B (zh) 一种制备颗粒硅籽晶的装置及方法
US6074476A (en) Non-contact processing of crystal materials
US20070204791A1 (en) Drop Tube Granulated Crystal Manufacturing Device and Granulated Crystal Manufacturing Method
US6264742B1 (en) Single crystal processing by in-situ seed injection
US7198672B2 (en) Drop tube type granular crystal producing device
JP2008239438A (ja) 球状結晶の製造方法及び製造装置
JP4800095B2 (ja) 粒状シリコンの製造方法及び製造装置
JP4817329B2 (ja) 球状結晶の製造方法及び製造装置
WO2008047881A1 (fr) Procédé et appareil de production de grain de silicium cristallin
JP4074931B2 (ja) シリコン球状体の製造方法及びその製造装置
JP4231951B2 (ja) 多結晶シリコン発泡体およびその製造方法
JP3967904B2 (ja) 粒状金属結晶の製造装置と製造方法
CN1125199C (zh) 单晶制造方法及单晶制造装置
JP2006036581A (ja) 粒状結晶の製造方法
JP2014165422A (ja) 半導体薄膜の製造方法、及びその方法を用いて半導体薄膜を製造する製造装置、並びにその方法により製造された半導体薄膜を有する半導体デバイス
KR20070008523A (ko) 낙하관형 입상 결정 제조 장치 및 입상 결정 제조 방법
JP2004175594A (ja) 粒状シリコンの製造装置
JP2008239448A (ja) 結晶粒子の製造方法および製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05741545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP