WO2006122447A1 - Medicament pour le traitement d'abus de drogues comprenant la peroxydase et son utilisation - Google Patents

Medicament pour le traitement d'abus de drogues comprenant la peroxydase et son utilisation Download PDF

Info

Publication number
WO2006122447A1
WO2006122447A1 PCT/CN2005/000695 CN2005000695W WO2006122447A1 WO 2006122447 A1 WO2006122447 A1 WO 2006122447A1 CN 2005000695 W CN2005000695 W CN 2005000695W WO 2006122447 A1 WO2006122447 A1 WO 2006122447A1
Authority
WO
WIPO (PCT)
Prior art keywords
peroxidase
heroin
corn
detoxification
mice
Prior art date
Application number
PCT/CN2005/000695
Other languages
English (en)
French (fr)
Inventor
Chongyu Wang
Rongliang Zheng
Qiang Wang
Original Assignee
Chongyu Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongyu Wang filed Critical Chongyu Wang
Priority to PCT/CN2005/000695 priority Critical patent/WO2006122447A1/zh
Priority to CNA2005800046131A priority patent/CN1960749A/zh
Publication of WO2006122447A1 publication Critical patent/WO2006122447A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • A61K38/446Superoxide dismutase (1.15)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants

Definitions

  • the invention relates to a detoxification medicine and a use thereof, in particular to a peroxidase-containing detoxification medicine and a use thereof, which are prepared by using plant corn (cereal) or soybean (bean) as a raw material for preparing peroxidase GPS and super-oxidation.
  • the dismutase SOD and peroxidase CAT are used in the field of detoxification.
  • the opioid receptor partial agonist buprenorphine is an opioid compound that has both agonistic and antagonistic activity. Its agonistic activity can be used as an alternative treatment to relieve withdrawal symptoms.
  • Non-opioid receptor agonists are more varieties, mainly to relieve symptomatic treatment of various symptoms, such as pain analgesics, anxiety, anti-anxiety, anti-depression and other sedative drugs, anti-cholinergics for tears , antidiarrheal drugs for diarrhea, etc.
  • clonidine is a more comprehensive one.
  • the effect of lofexidine is similar to that of clonidine, and the adverse reactions are mild.
  • Scopolamine has been used in detoxification in recent years.
  • the comprehensive detoxification method based on scopolamine has been applied clinically. According to reports, it has both the dual effects of suppressing withdrawal symptoms and promoting drug excretion.
  • some grassroots detoxification units when the drug addiction is severe, have to resort to a large number of central inhibitors to deprive the patient of consciousness and enter anesthesia. Or hibernation. Chinese medicine detoxification has also made some progress in China.
  • there are currently no effective detoxification drugs in the world Even if there are individual detoxification drugs with ineffective curative effects, they are often very toxic and can even become addictive. Therefore, it is necessary to use a safe, effective, simple, inexpensive and long-lasting detoxification. Methods or products that meet the needs of human health.
  • the invention aims at the deficiencies of the prior art, and provides a peroxidase-containing drug and its use by using modern biochemical technology, obviously improves the state of oxygen stress, comprehensively alleviates the withdrawal symptoms, and becomes a new detoxification drug, which is used for Detoxification and detoxification, treatment of heroin poisoning.
  • Peroxidase containing peroxidase parts by weight: peroxidase GPS (5-40), superoxide dismutase SOD (20-50), peroxidase CAT (5-20), molecular weight 32000
  • the nanometer molecular weight is 200-50.
  • Heroin promotes the production of reactive oxygen species in the human body
  • Morphine also caused down-regulation of bcl-2 gene expression, which can directly induce T lymphocyte apoptosis by the participation of reactive oxygen species to reduce the immunity of heroin dependent patients.
  • Opioid peptides can rapidly stimulate the production of superoxide anion radicals by human polynuclear leukocytes and macrophages, and the opioid receptor antagonist naloxone can inhibit its production, so opioid-mediated immunosuppression may be involved with opioid receptors.
  • Neonatal mice with microglia When morphine is cultured alone, it does not produce tumor necrosis factor, but when microglia are first cultured with morphine
  • l ipopolysaccharide can stimulate the development of tumor necrosis factor.
  • lipopolysaccharide l ipopolysaccharide
  • morphine could not induce tumor necrosis factor production.
  • Opioids also stimulate the transcriptional activity of NF-kB.
  • Morphine enhances the action of phorbol myristate acetate to induce superoxide anion radicals in microglia, which is counteracted by anti-tumor antibody.
  • Co-culture of glomerular mesangial cells with morphine can significantly stimulate the production of superoxide anion free radicals.
  • Naloxone can antagonize the production of superoxide anion radicals stimulated by morphine.
  • morphine can reduce lipid peroxidation levels, 'have significant antioxidant properties. In the presence of oxidase, lipid peroxidation levels can be increased. Heroin attenuates the body's antioxidant capacity High doses of vitamin C prevent mice from morphine tolerance and reduce body dependence. The effects of opioids on the body's antioxidants have attracted much attention. Desole et al. during morphine dependence and withdrawal, dopamine (DA), dihydroxyphenyl- acetic acid (D0PAC), homovanillic acid (HVA) in mouse striatum and forebrain , 3-methoxybutyramine
  • DA dopamine
  • D0PAC dihydroxyphenyl- acetic acid
  • HVA homovanillic acid
  • D0PAC+HVA/DA and DHAA/AA are significantly correlated.
  • the ascorbate oxidation rate and glutamate/GABA value of the striatum were further increased; the forebrain 3-MT level was further decreased, while other indicators were not significantly different from the control.
  • Oxidation of hypoxanthine, jaundice and ascorbic acid caused by morphine tolerance is more rapid in the forebrain than in the striatum; due to the formation of reactive oxygen species, the oxidative metabolism of dopamine, hypoxanthine and xanthine is enhanced, making ascorbic acid in the striatum And the forebrain oxidative acceleration; the effect of subcutaneous administration of morphine on the concentration of the above substances in the striatum was directly measured by the method of striatum implanted cannula, and it was found that extracellular DA, D0PAC, HVA after 3 hours of morphine administration , AA and uric acid levels increased; DPAPAC, HVA, AA and uric acid levels were still elevated after 4 days of administration, but dopamine levels were no longer elevated.
  • Direct intraventricular administration is an effective treatment for difficult to control cancer pain.
  • GSH of the brain tissue is depleted.
  • GSH in the cerebrospinal fluid decreased sharply, and 4-hydroxybenzoic acid and high-fragrance acid in cerebrospinal fluid were observed to be significantly reduced.
  • Depletion of antioxidant substances such as GSH makes the central nervous system susceptible to oxidative damage.
  • Opioids not only reduce the level of antioxidants in the central nervous system, but can also cause an imbalance in the redox state of the entire body. Studies have found that heroin dependent people have reduced levels of selenium in the urine. It was found that plasma NO content, plasma and erythrocyte MDA content were significantly increased in heroin abusers; erythrocyte superoxide dismutase, catalase and glutathione peroxidase activity decreased.
  • Plasma ascorbic acid, vitamin E and beta-carotene were significantly reduced; linear regression and correlation analysis showed that with the increase in heroin smoking history and daily intake, plasma NO and MDA levels and red blood cell MDA values gradually increased, while plasma ascorbic acid, vitamins E and ⁇ -carotene gradually decreased; stepwise regression and correlation analysis showed that smoking history and daily intake were closely related to plasma ascorbic acid, vitamin oxime and NO values.
  • Heroin causes oxidative damage to the body
  • Chronic opioid dependence can cause elevated levels of lipid peroxidation in liver, heart and brain cells, and 20's 14-year-old juvenile heroin dependent (average smoking history of 1.7 years) Plasma ALT activity and cardiac LDH enzyme activity were significantly increased, showing a good correlation.
  • opioids morphine, cocaine, methadone and oxidases (prostaglandin-H-synthase, Rat liver homogenate) was incubated together to stimulate the increase of histamine and MDA content in rat serous mast cells in the presence of oxidase, but can be free radical scavengers such as GSH, vitamin E and DMP0.
  • the neurodegenerative diseases caused by opioids are closely related to the production of reactive oxygen species. Heroin and morphine can cause an increase in dopamine levels in undifferentiated PC12 cells (dopaminergic neuron), elevated levels of dihydroxyphenylacetic acid (D0PAC) and reactive oxygen species. The apoptosis characteristics of PC12 cells were observed, suggesting that apoptosis induced by heroin and morphine is associated with decreased dopamine and oxidative damage.
  • the effect of antioxidants on heroin poisoning is known from the above. Although the relationship between opioids and reactive oxygen species is small, it is closely related, and reactive oxygen is involved in both dependence and withdrawal processes. Therefore, in theory, any substance that removes active oxygen, that is, antioxidants, should interfere with the action of opioids.
  • Vitamin C is a reduced type of ascorbic acid, which is a mild reducing agent that effectively removes 0 2 —, 0H and organic freedom.
  • the base R' itself becomes a semi-dehydroascorbic acid free radical (AH.).
  • Vitamin C can inhibit the tolerance and dependence of opioids.
  • Large doses of oral vitamin C can alleviate the suffering of cancer patients and reduce the dosage of opioid analgesics.
  • a single dose of ascorbic acid (lg/kg) in morphine-dependent mice reduced the pain-induced loss of morphine with a dose effect, rapid ascorbate action (2 hours), and long duration (48 hours).
  • vitamin C can inhibit endogenous opioid degradation, increase endorphin levels, and also find that vitamin C produces neurological effects by stimulating acetylcholine release.
  • vitamin C can destroy opioid receptors in vitro, but studies have found that intraperitoneal injection of sodium ascorbate (lg / kg), lO min after injection of morphine (500mg / kg), can effectively reduce the respiratory depression Mortality, but no effect on the lethal rate of pentobarbital. It was found that ascorbate neither altered the distribution of morphine in brain tissue nor affected the binding activity of opioid receptors. The mechanism by which vitamin C affects dependence and withdrawal symptoms is unclear.
  • Melatonin is a neuroendocrine hormone secreted mainly by the pineal gland. Its chemical structure is N-acetyl-5-methoxytryptophan. There are many physiological effects such as analgesia, sedation, sleep aid, reversal of jet lag and enhancement of immune function and scavenging of reactive oxygen species. It is the most reported free radical scavenger with therapeutic effects on morphine dependence and withdrawal.
  • Morphine increases the synthesis and release of NO in ⁇ ⁇ .
  • NO acts on lymphocytes and inhibits the proliferative response of lymphocytes through the eGMP system.
  • MT may exert immune enhancement through the release of endorphins by Th cells. Therefore, it can be speculated that MT regulates the synthesis and release of NO in ⁇ ⁇ through Th, cytokines and endogenous opioids, and alleviates and improves the inhibitory effect of excess NO caused by morphine on the immune system.
  • the role of MT in regulating immune function is related to the regulation of NO levels.
  • melatonin also inhibits morphine withdrawal.
  • Melatonin can significantly prolong the latency of morphine withdrawal and jump response in mice, reduce the number of jumps, and improve weight loss.
  • MT inhibits the increase in NO content in plasma and brain tissue caused by withdrawal response.
  • Melatonin can reduce the toxicity of various opioids and improve their analgesic effect.
  • Studies have shown that melatonin-induced dependence and withdrawal of withdrawal syndrome and reversal of tolerance may be related to melatonin's ability to inhibit NOS activity.
  • morphine can rise Plasma melatonin levels, this elevated effect can be inhibited by naloxone.
  • Bis (2, 2_dimethyl-4- methane sulphonic acid sodium salt-1, 2-dihydro-quinol ine) - 6, 6, -methane (MTDQ-DA) is a non-toxic, water-soluble antioxidant that induces morphine Hepatotoxicity serves as a protective agent. Beta-carotene enhances the analgesic effect of morphine on mice.
  • Peroxidases are a class of multifunctional factors that involve a range of body metabolism and physiological regulation functions. They are intermediates of protein breakdown and provide the body for growth and development. The study found that small peptides can be directly absorbed by the body, and have unique physiological activities, play analgesic, regulate body temperature, blood pressure, pulse, promote Ca ion absorption, enhance immunity, etc.; Important functional properties; 1 under acidic conditions, the solubility is greatly improved; 2 the solution has high thermal stability, no protein denaturation; 3 high concentration is still a low viscosity solution. Among a wide variety of peptide molecules, those having a particular physiological function are called biologically active peptides. Bioactive peptides have a wide range of applications in the healthcare field.
  • a biologically active peptide refers to a peptide molecule composed of two to fifty amino acids.
  • the amino acid in the peptide bond is not an intact molecule because it forms a peptide bond, and is therefore called an amino acid residue.
  • Peroxidase has a certain fat solubility, so it can protect biofilm lipids Damaged by free radicals, it has stronger anti-lipid peroxidation. Due to its small particle size, it overcomes the antigenicity of proteins, solves the permeability of biofilm and improves the stability of avoiding protease damage.
  • Maize peptides are mainly derived from the hydrolysate of zein and are composed of short peptide molecules with small molecular weight but high activity.
  • Nanocrystallization method, micro-emulsification method, liposome method and supersonic jet method are high-tech technologies that can be adopted in the field of biology and medicine in contemporary physical and chemical technology.
  • the invention has novel ideas and reasonable design, and provides a safe, effective, simple, inexpensive and long-lasting detoxification method or product to meet the needs of human health.
  • Appropriate dose of peroxidase can significantly improve the state of oxygen stress, comprehensively relieve withdrawal symptoms, and hopefully develop into a new drug. It is characterized by oral, sublingual, intramuscular, subcutaneous, intraperitoneal, and intravenous injections in heroin withdrawal. At present, there are no truly effective detoxification drugs in the world. Even if there are individual detoxification drugs with ineffective curative effects, they are often very toxic and can even become addictive.
  • Peroxidase is a plant fermentation product, both acute and slow. Prove that it is basically non-toxic and suitable for development and popularization.
  • Figure 1 is a diagram of the structure of a peptide
  • Figure 2 is a model for the administration of heroin modeling by intraperitoneal injection
  • Figure 3 is a protective effect of the drug on total antioxidant capacity in plasma of heroin dependent mice.
  • X is compared with the heroin group: *;? ⁇ 0. 05, " o. oi and " o. ooi ; compared with the control group: ⁇ o. 05, Vo. 01, ⁇ /? ⁇ 0.
  • Figure 4 shows the effect of the drug on the level of leukocyte reactive oxygen in heroin-dependent mice
  • Figure 5 shows the drug against heroin.
  • Figure 6 shows the protective effect of the drug on lipid peroxide content in heroin-dependent mouse tissues to plasma
  • - Figure 7 shows the protective effect of the drug on lipid peroxide content in heroin-dependent mouse tissues
  • 8 The protective effect of the drug on the protein oxidative damage product (carbonyl) in heroin-dependent mouse tissues to the liver
  • Figure 9 shows the protective effect of the drug on protein oxidative damage products in heroin-dependent mouse tissues to plasma
  • Figure 11 shows the protective effect of corn active substances on GSH content in heroin-dependent mice on the liver.
  • Figure 12 shows the protective effect of the drug on GSH content in heroin-dependent mice against plasma
  • Figure 13 shows the protective effect of the drug on GSH content in heroin-dependent mice on the brain
  • Figure 14 is a drug-resistant heroin-dependent mouse.
  • Bidirectional protection of glutathione peroxidase activity in tissues to the liver
  • Figure 15 shows the bidirectional protection of glutathione peroxidase activity in heroin-dependent mouse tissues against plasma
  • Figure 16 shows heroin dependence on drugs The two-way protective effect of glutathione peroxidase activity in mouse tissues on the brain
  • Figure 17 shows the protective effect of the drug on T-SOD activity in mice in heroin-dependent mouse tissues to the liver
  • Figure 18 shows the drug dependence on heroin The protective effect of Cu-SOD activity in mice on mouse tissues in the liver
  • Figure 19 shows the protective effect of the drug on T-SOD activity in mice in heroin-dependent mouse tissues against plasma
  • Figure 20 is a drug-dependent heroin-dependent mouse.
  • FIG. 21 shows protection of T-S0D activity in mice from heroin-dependent mouse tissues
  • Figure 22 shows the protective effect of the drug on Cu-SOD activity in mice with heroin-dependent mouse tissue
  • Figure 23 shows the weight loss of heroin withdrawal symptoms in heroin mice
  • Figure 24 The drug has a mitigating effect on the withdrawal symptoms of heroin mice
  • Figure 25 shows the body's distorting effect on the withdrawal symptoms of heroin mice
  • Figure 26 shows the mitigating effect of the drug on the withdrawal symptoms of heroin mice
  • Figure 27 shows the mitigating effect of the drug on withdrawal symptoms in heroin mice.
  • mice of 30 ⁇ 2 g were used in both male and female. They were randomly divided into heroin and saline groups. The temperature of the room was controlled at 21-22 °C, free to drink, and fed. The mice in the heroin group were intraperitoneally injected twice a day, 0. 2 ml/time. From the first day of 2. 5 mg / kg body weight, until the 15th day of 45 mg / kg body weight. The detailed dose of daily injection of heroin is shown in Figure 2. The control mice were given the same volume of physiological saline as the mice in the heroin group at the same time.
  • the above-mentioned addicted mice were randomly divided into 3 groups, the first group was the heroin group, and the normal saline was intraperitoneally administered once every 7 days; the second group was the low-dose product (corn activity).
  • a low dose (10 mg/kg * w) was administered intraperitoneally in the following 7 days, once a day; the third group was a high-dose product corn active substance group, which was intraperitoneally injected in the following 7 days.
  • Heroin-dependent mice have increased reactive oxygen species, reduced total antioxidant capacity, and protective effects of corn active substances.
  • the mice were injected intraperitoneally with heroin for 15. days, and the total antioxidant capacity of heroin-dependent mice was significantly decreased, from 282.9 units of I ml plasma in the control group to 225.3.
  • High-dose corn actives improved total antioxidant capacity after 7 days of treatment, reaching 248.5 units of I ml plasma, but low-dose corn actives had no effect (Figure 3).
  • Heroin significantly increased leukocyte reactive oxygen species in mice, which was 1.12 times that of the control group.
  • the active substance of the corn reduced the level of active oxygen slightly, but it was not statistically significant (Fig. 4).
  • TBARS peroxide
  • GSH glutathione
  • GSH is an extremely important antioxidant in humans and animals. After treatment with heroin for 15 days, the GSH content in the liver, brain and plasma of the mice decreased significantly from the control group of 55.7, 20. 8 pmol/mg pr and 18.8 pmol/ml plasma to the heroin group. 3, 18. 9 and 17. 0; After 7 days of corn active treatment, both high-dose corn actives and low-dose corn actives increased the GSH content of the three tissues; low-dose corn actives in the liver The GSH content has a very significant increase, reaching 71.9 pmol/mg pr, and the low dose is better than the high dose, even making the GSH high. In the control group; the effect of high dose on the increase of plasma GSH content was also very significant, reaching 50. 3priiol / m l plasma, much higher than the control group ( Figure 11 - Figure 13).
  • GPx and superoxide dismutase and catalase constitute the three major antioxidant enzymes in humans and animals, and are the most important antioxidant enzymes in the three.
  • the GPx activity in the liver and plasma of the mice was significantly decreased from 38. 5 and 71.2 U/mg pr in the control group to 30.9 and 46.0 in the heroin group, respectively.
  • GPx activity was significantly increased to reach the level of the control group.
  • the activity of GPx in the brain of the heroin group was significantly increased from 33. 7 U/mg pr in the control group to 63. 8. High-dose corn actives reduced GPx activity but did not reach control levels.
  • T-SOD total superoxide dismutase
  • Cu-SOD copper superoxide dismutase
  • the active substance can restore the deviation of the excessive Cu-SOD caused by heroin in the liver to the control value, and can also restore the deviation of the Cu-SOD caused by heroin in the plasma to the control value, that is, the specific two-way protection.
  • the activity of T-S0D and Cu-SOD in heroin was significantly decreased in the brain of mice.
  • the high or low active substances of maize further decreased T-SOD, but had no significant effect on Cu-SOD activity. Therefore, corn active substances have no protective effect on both SODs in the brain (Fig. 17-22).
  • the drug has a mitigating effect on four typical withdrawal symptoms in heroin-dependent mice.
  • mice After treatment with heroin for 15 days, the four typical withdrawal symptoms of the mice, including weight loss, number of jumps, number of body twists, and number of ptosis mice were increased from the control group, respectively, from the control group of 0.74 g, 0, 5. 6 and 37.5 % were raised to 0. 89 ⁇ , 1. 4 times, 1 1. 4 times and 57.1 % of the heroin group.
  • the four withdrawal symptoms were significantly reduced, respectively 0. 4-0. 52g, 5. 0-5. 6 times, 0-0. 3 times and 10%-25% (Figure 23- Figure 27).
  • Example 7 Group (weight unit gram):
  • peroxidase 40 peroxidase 40, superoxide dismutase 80, peroxidase 20, xanthine 10;
  • TPF has a certain growth regulation effect on cultured PC12 cells, promotes cell growth at low concentration, inhibits cell growth at high concentration, and adds 1-100 ⁇ ⁇ / ⁇ TPF to the culture solution to inhibit PC 12 oxidative damage caused by 3 ⁇ 40 2 Has obvious protective effectiveness.
  • the peroxidase can be an animal bezoar, antler, and turtle extract.
  • Ordinary patients 9 capsules, 3 times / day, 0. 24g X 9 2 ⁇ 3g; relapse patients inhibit large doses of 12 tablets, 4 times / day; nano-nasal nasal administration, can increase the price of life, maintenance cells , to reduce smoking oxygen damage, embroidering tumor cells differentiate and apoptosis, have an emptying effect on PCR cells.
  • peroxidase mother liquor can reach 6000-10000 activity units / gram; peroxidase dry powder can reach 40,000 - 60,000 active units / gram.
  • the peroxidase is used as a carrier for soft capsules, capsules, emulsions, tablets, injections, sprays or other dosage forms.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Addiction (AREA)
  • Psychiatry (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

含过氧化物酶的戒毒药品及其用途
所属领域
本发明涉及戒毒药品及其用途,特别是一种含过氧化物酶的戒毒药品及其 ' 用途, 是以植物玉米 (谷物)或大豆(豆类) 为原料制备过氧化物酶 GPS、 超氧 化物歧化酶 S0D、 过氧化物氢酶 CAT应用于戒毒领域的技术。
背景技术
世界卫生组织统计, 全世界每年约有 10万人死于吸毒, 1000万人丧失劳动 能力。 我国每 2000人中就有一个吸毒者。 吸毒人数中, 吸食海洛因的占 71. 5%, 年龄在 35岁以下的占 79. 2%。截至 1999年底, 全国累计报告的 17316例艾滋病 病毒感染者中, 因静脉注射毒品感染的占 72. 4%。 严格地讲, 海洛因的治疗应该 包括早期脱毒和后期康复两个阶段。 但目前国内对治疗药物的研究还仅停留在 早期脱毒药物上。 由于脱毒时的戒断症状有其局限性, 例如脱毒后一个月内复 吸率高达 80%, 六个月内高达 95%以上。 因而脱毒药物事实上仅是暂时减轻戒断 症状的药物, 远非长期根治性药物。 可以说至今没有严格意义上的戒毒药。 .更 为严重的是戒毒药物往往也会成瘾, 或有极大毒副作用。 阿片受体部分激动剂 丁丙诺啡是兼具激动和拮抗活性的阿片类化合物。 它的激动活性可用来作为替 代治疗, 缓解戒断症状。 非阿片受体激动剂的品种更多, 主要是缓解各种症状 的对症处理, 如疼痛用镇痛药, 焦虑不安用抗焦虑、 抗抑郁等镇静安定药, 流 泪流涕用抗胆碱能药, 腹泻用止泻药等。 在这类药物中, 可乐定是作用较全面 的一个。 洛非西丁的作用与可乐定相似, 不良反应较轻。 东莨菪碱用于戒毒近 年来也有发展, 最近以东莨菪碱为主的综合戒毒法已在临床上应用, 据报道, 兼有抑制戒断症状和促进毒品排泄的双重作用。 此外, 有些基层戒毒单位, 当 毒瘾发作严重时不得已只好采用大量中枢抑制药将病人的意识剥夺 , 进入麻醉 或冬眠状态。 中医药戒毒在我国也取得了一定的进展。 但是, 目前国际上尚无 真正有效的戒毒药, 即使有个别疗效不确切的戒毒药, 往往毒性很大, 甚至也 能成瘾, 因此需要一种安全、 有效、 简便、 价廉和长久的戒毒方法或产品, 满 足人类健康之需求。
发明内容
本发明针对现有技术不足, 利用现代生化技术, 提供一种含过氧化物酶的 戒毒药品及其用途, 明显改善氧胁迫状态, 全面缓解戒断症状, 成为一种新的 戒毒药, 用于解毒和戒毒, 治疗海洛因中毒。
含过氧化物酶的戒毒药品, 重量份数: 过氧化物酶 GPS ( 5-40 )、 超氧化 物歧化酶 SOD ( 20-50)、 过氧化物氢酶 CAT ( 5-20), 分子量 32000以下, 纳 米级分子量 200-50。
含过氧化物酶的戒毒产品的制备: 目前可用的方法是对玉米蛋白进行酶水 解, 而获得玉米过氧化物酶、 超氧化物歧化酶、 过氧化物氢酶。
本药品缓解海洛因中毒的理论依据: 海洛因促使人体产生活性氧
海洛因一方面使小鼠体内活性氧生成增多, 三种组织的脂类和蛋白质发生 氧化性损伤, 另一方面无论总抗氧化力或各抗氧化成分 (例 GSH, GPx, T-S0D, 和 Cu- SOD) 都下降, 表明海洛因使机体处于严重氧胁迫状态。 我们研究发现, 吗啡对 Jurkat细胞和新分离的人 T淋巴细胞有凋亡作用。 发现吗啡促进这两种 细胞凋亡, 并呈剂量相关效应, 过氧化氢酶能抑制吗啡诱导的凋亡作用。 吗啡 还引起 bcl-2基因表达下调, 可通过活性氧的参与直接诱导 T淋巴细胞凋亡来 降低海洛因依赖者的免疫能力。 阿片肽能快速刺激人多核白细胞与巨噬细胞产 生超氧阴离子自由基, 阿片受体拮抗剂纳洛酮能抑制它的产生, 因此阿片类物 质介导的免疫抑制作用可能与阿片受体的参与有关。 把新生鼠的小胶质细胞与 吗啡单独培养时, 并不产生肿瘤坏死因子, 但是当将小胶质细胞先用吗啡共育
'处理 24小时, 再用脂多糖 (l ipopolysaccharide ) 处理, 能刺激产生肿瘤坏 死因子。 当将小胶质细胞预先用纳洛酮处理后, 吗啡就不能诱导肿瘤坏死因子 的产生。 阿片还能刺激 NF-kB的转录活性。 吗啡能增强佛波肉豆蔻乙酸酯 (phorbol myristate acetate )诱导小胶质细胞产生超氧阴离子自由基的作用, 这种作用可被抗肿瘤因子抗体所抵消。 把肾小球系膜细胞与吗啡共育, 能显著 刺激超氧阴离子自由基的产生, 纳洛酮能拮抗吗啡的刺激超氧阴离子自由基的 产生。 在非酶体系中, 脑细胞线粒体与吗啡作用, 吗啡能降低脂类过氧化水平, '有明显的抗氧化特性。 在氧化酶存在情况下, 能提高脂类过氧化水平。 海洛因减弱机体抗氧化力 大剂量维生素 C可阻止小鼠对吗啡的耐受和减轻躯体依赖以来, 阿片药物 对机体抗氧化物质的影响引起很大关注。 Desole等对吗啡依赖和戒断过程中, 小鼠纹状体和前脑中多巴胺(dopamine, DA),二羟基苯乙酸(dihydroxyphenyl- acetic acid, D0PAC) , 高香草酸 ( homovanill ic acid, HVA), 3 -甲氧酪胺
( 3-methoxy- tyramine , 3- MT) , 5-轻色胺 ( 5-hydroxy tryptamine , 5- HT), 5- '羟基吲哚基乙酸 ( 5-hydroxyindole acetic acid , 5-HIAA) , 抗坏血酸
( ascorbic acid, AA) , 去氢抗坏血酸 ( dehydroascorbic acid , DHAA) , 尿 酸 ( uric acid) , 黄嘌呤 (xanthine ) , 次黄嘌呤 (hypoxanthine ) , 谷氨 酸盐 ( glutamate ) 禾口 Y -氨基丁酸 ( Y -amino- butyric acid, GABA) 的含量 进行了详细的研究。结果发现,吗啡一次给药(20mg/kg)就能提高 D0PAC+HVA/DA, 5 - HIAA/5-HT , DHAA/AA的值及尿酸水平。 降低黄嘌呤、 次黄嘌呤、 谷氨酸盐和 Y -氨基丁酸的水平, 3-MT含量在纹状体降低,但在前脑升高。连续处理 7天后, 纹状体中 D0PAC+HVA/DA, 5- HIAA/5-HT , DHAA/AA的值及尿酸水平依然保持在 -高水平, 但是只有黄嘌吟的水平低于对照组, 纹状体的谷氨酸盐 /GABA升高, 其 -余指标与对照组无显著差别。 吗啡给药组的每一只小鼠, 其纹状体的
D0PAC+HVA/DA和 DHAA/AA的值显著相关。 在戒断后的 48小时内, 纹状体的抗 坏血酸氧化速率和谷氨酸盐 /GABA值进一步升高; 前脑 3- MT水平进一步降低, 而其它指标与对照无显著差异。 吗啡耐受引起的次黄嘌呤、 黄嘌呤和抗坏血酸 的氧化在前脑比纹状体更为快速; 由于活性氧的生成导致多巴胺、 次黄嘌呤和 黄嘌呤氧化代谢增强, 使抗坏血酸在纹状体和前脑的氧化加速; 采用在纹状体 埋植套管的方法, 直接测定吗啡皮下给药对紋状体上述物质浓度的影响, 发现 吗啡给药 3小时后, 胞外 DA、 D0PAC、 HVA、 AA和尿酸水平升高; 给药 4天后, •D0PAC, HVA、 AA和尿酸水平依然升高, 但多巴胺含量不再升高。
直接脑室内给药 (IntracerebrOventricular, icv)是治疗难控癌痛的有效 办法。 啮齿类动物 icv吗啡后, 脑组织的 GSH枯竭。 肿瘤病人 icv吗啡后, 脑 脊液中 GSH急剧下降, 同时观测到脑脊液中的 4-羟基安息香酸、 高香章酸明显 降低。 GSH等抗氧化物质的耗竭, 使得中枢神经系统容易受到氧化损伤。
阿片药物不但降低中枢神经系统抗氧化物质水平, 而且可以导致整个机体 的氧化还原状态失衡。 研究发现,海洛因依赖者尿中硒水平降低。 发现海洛因滥 用者血浆 NO含量、 血浆和红细胞 MDA含量明显升高; 红细胞超氧化物歧化酶、 -过氧化氢酶及谷胱甘肽过氧化物酶活性下降。 血浆抗坏血酸、 维生素 E和 β -胡 萝卜素显著降低; 直线回归和相关分析表明, 随着海洛因吸食史延长和日吸食 量增加, 血浆 NO和 MDA含量及红细胞 MDA值逐渐升高, 而血浆抗坏血酸、 维生 素 E和 β -胡萝卜素逐渐降低; 逐步回归和相关分析表明, 吸食史和日吸食量与 血浆抗坏血酸、 维生素 Ε及 NO值相关密切。 海洛因造成机体氧化性损伤 慢性阿片依赖可造成肝、 心和脑细胞的脂类过氧化水平升高, 并且发现 20 '名 14- 16岁少年海洛因依赖者 (平均吸食史为 1. 7年) 的血浆 ALT活性和心脏 LDH酶活性明显升高, 呈很好相关性。
当阿片物质(吗啡、 可卡因、美沙 与氧化酶类(前列腺素一 H—合成酶、 鼠肝匀浆) 一起温育, 发现在氧化酶存在下刺激大鼠浆膜肥大细胞组胺和 MDA 含量上升, 但可以被自由基清除剂如 GSH、 维生素 E和 DMP0
(5. 5-dimethyl-l-pyrroline-N -oxide) 等所抑制。 推测阿片类物质在体内代 谢生成自由基导致过氧化损伤。
阿片药物引起的神经退行性病变与活性氧的产生有很大关系。 海洛因和吗 啡能引起未分化的 PC12细胞 (多巴胺能神经元 dopaminergic neuron) 内多巴 胺水平降低, 二羟基苯乙酸 (D0PAC) 和活性氧水平升高。 观察到 PC12细胞出 '现凋亡特征, 认为海洛因和吗啡引起的细胞凋亡与多巴胺降低和氧化损伤有关。 抗氧化剂对海洛因中毒的影响 从上面叙述知道, 阿片物质与活性氧关系尽管研究少, 但关系密切, 依赖 和戒断过程都有活性氧参与。 因此, 从理论上讲凡是清除活性氧的物质, 即抗 氧化剂,应该可以干预阿片物质的作用。 不过国际上仅研究了抗坏血酸和褪黑激 素等少数几种抗氧化剂, 兹介绍如下: 维生素 C的还原型称抗坏血酸, 它是温和的还原剂, 能有效地清除 02—、; 0H 和有机自由基 R'; 自身成为半脱氢抗坏血酸自由基(AH。)。 维生素 C能抑制阿片 物质的耐受与依赖。.大剂量口服维生素 C能减轻癌症病人痛苦, 减少阿片类 止痛剂用量。 吗啡依赖小鼠一次性给予抗坏血酸 (lg/kg), 就能降低吗啡导致 的痛觉丧失, 并呈剂量效应, 抗坏血酸作用迅速 (2小时), 持续时间长 (48小 时)。 大剂量抗坏血酸盐 (lg/kg) 与吗啡一起处理小鼠减轻小鼠对吗啡的耐受 和身体依赖。 给海洛因依赖者服用大剂量的维生素 C ( 300mg/kg) 和维生素 E (5mg/kg) 能大大降低戒断症状。
体外研究表明, 维生素 C等一些抗氧化剂能抑制内源阿片降解, 提高内啡 肽的水平, 还发现维生素 C通过刺激乙酰胆碱释放而产生神经性效应。 有研究 认为维生素 C在体外能破坏阿片受体, 但研究发现, 给小鼠腹腔注射抗坏血酸 钠 ( lg/kg), lO min后注射吗啡 (500mg/kg), 能有效减低由于呼吸抑制而导致 的死亡率, 但对戊巴比妥的致死率无影响。 发现抗坏血酸盐既不能改变吗啡在 脑组织中的分布, 也不影响阿片受体的结合活性。 维生素 C影响依赖和戒断症 状的机理并不清楚。 褪黑激素 (melatonin)是一种主要由松果腺分泌的神经内分泌激素, 化学结 构为 N-乙酰 -5-甲氧色氨酸。 有镇痛、 镇静、 助眠、 逆转时差和增强机体免疫功 能和清除活性氧等多种生理作用。 是报道最多的对吗啡依赖和戒断有治疗效果 的自由基清除剂。
研究表明吗啡依赖小鼠免疫功能明显下降,表现在免疫器官重量的减轻和对 淋巴细胞增殖反应的抑制, 以及 Μ Φ吞噬功能的降低。褪黑素能明显反转吗啡引 发的免疫功能低下, 明显提高吗啡依赖小鼠巨噬细胞的吞噬指数; 抑制吗啡引 起的腹腔巨噬细胞过量释放 NO。褪黑素反转吗啡依赖引起的淋巴细胞增殖低下, 与其抑制 Μ Φ产生过量 NO有关, 褪黑素使 NO水平恢复接近正常, 消除过量 NO 对免疫功能的抑制作用和提高 M Φ的吞噬指数。
吗啡增加 Μ Φ中 NO的合成与释放。 NO作用于淋巴细胞, 通过 eGMP系统而 抑制淋巴细胞的增殖反应。而 MT可能是通过 Th,细胞释放 内啡肽而发挥免疫 增强作用的。 因此可以推测 MT通过 Th,细胞因子及内源性阿片类物质, 间接调 节 Μ Φ中 NO的合成和释放水平,缓解和改善因吗啡引起的过量 NO对免疫系统的 抑制作用。 MT调节免疫功能的作用与调节 NO的水平有关。
近来的研究证明褪黑素还可抑制吗啡戒断反应。 褪黑激素可明显延长小鼠 吗啡戒断跳跃反应的潜伏期、 减少跳跃次数, 对体重丢失也有所改善。 MT可抑 制由戒断反应引起的血浆和脑组织中 NO含量的升高。 褪黑素能降低多种阿片药 物的毒性并提高其镇痛效果。 研究表明, 褪黑素诱导的依赖和戒断症的减轻及 耐受的逆转可能与褪黑素能抑制 N0S的活性有关。 还有研究认为, 吗啡能升高 血浆褪黑素水平, 这种升高效应可以被纳洛酮所抑制。
Bis (2, 2_dimethyl-4- methane sulphonic acid sodium salt-1, 2- dihydro-quinol ine) - 6, 6, -methane (MTDQ- DA)是一种无毒性的水溶性抗氧化 剂, 能对吗啡诱导的肝毒性起保护作用。 β -胡萝卜素能增强吗啡对小鼠的止痛 作用。
过氧化物酶是一类多功能因子, 它们涉及了一系列身体代谢和生理调节功 能, 是蛋白质分解的中间产物, 提供机体生长, 发育所需的物质。 研究发现, 小分子肽可以直接被人体吸收, 并具有独特的生理活性, 起到镇痛, 调节体温、 血压、 脉搏, 促进 Ca离子吸收, 增强免疫力等作用; 小分子肽的混合物还有许 多重要的功能性质; ①酸性条件下, 溶解性大为改善; ②溶液的热稳定性高, 无蛋白变性的问题; ③高浓度仍是低粘度的溶液等。 在多种多样的肽类分子中, 那些具有特殊生理功能的肽被称为生物活性肽。 生物活性肽在医疗保健领域有 很广泛的应用价值。 具体体现在能促进氨基酸、 矿物质的吸收和蛋白质的代谢, 并能显著性的促进动物的釆集、 内源性激素的分泌 (尤其是胰岛素的释放) 和 改善机体的免疫功能等。 事实上, 词料或食物中的某些蛋白质隐含着一些特殊 肽质, 这些特殊肽质在消化酶作用下被释放出来。 它是一类分子量小于 6000, 在构象上较松散, 具有多种生物功能的小肽。
外源生物活性肽的生理活性作用, 表现在: 免疫活性作用; 阿片活性作用; 对内分泌的作用; 对消化活动的作用。 动物对蛋白质的利用中, 小肽吸收机制 起着很重要的作用。 这种机制使得氨基酸的吸收比降解为游离氨基酸再吸收更 快, 从而提高了动物对蛋白质的利用率。 生物活性肽, 是指由两个到五十个氨 基酸所组成的肽分子。 肽键中的氨基酸由于形成肽键己经不是完整的分子, 因 此, 称为氨基酸残基。 过氧化物酶有一定的脂溶性, 因此能保护生物膜脂质免 受自由基损伤, 具有更强的抗脂质过氧化作用; 由于粒度小, 克服了蛋白质的 抗原性问题, 解决了生物膜透过性和提高了避免蛋白酶破坏的稳定性。
玉米肽主要来自玉米蛋白的水解产物, 是由分子量很小但活性很高的短肽 分子组成。 纳米化方法、 微乳化方法、 脂质体化方法及超音速射流方法, 是当 代物理化学技术在生物学、 医药学领域中可以采纳的高新技术, 用此技术制备 的玉米肽, 生物学活性比较测定: 纳米化处理前抗氧化活性相当于 9260 SOD (超 氧化物歧化酶) 单位 /克,用超音速纳米射流技术处理后其提取物的活性提高 10 倍; 用纳米匀质技术处理后玉米胚芽提取物的活性提高 8倍; 纳米化处理后的 玉米胚芽提取物对化学发光强度提高了 3倍。
本发明创造构思新颖, 设计合理, 提供了一种安全、 有效、 简便、 价廉和 长久的戒毒方法或产品, 满足人类健康之需求。 适当剂量过氧化物酶既可明显 改善氧胁迫状态, 全面缓解戒断症状, 有希望发展成为一种新的戒毒药。 其特 征是在海洛因戒断中口服、 舌下、 肌肉注射、 皮下注射、 腹腔注射和静脉注射 的应用。 目前国际上尚无真正有效的戒毒药, 即使有个别疗效不确切的戒毒药, 往往毒性很大, 甚至也能成瘾, 而过氧化物酶是植物发酵产品, 无论急毒及慢 毒试验都证明基本无毒, 宜于开发普及推广应用。
附图说明
本发明附图 1为肽结构图; 图 2为腹腔注射海洛因建模给药过程; 图 3为 本药品对海洛因依赖小鼠血浆中总抗氧化力的保护作用。 X 士 与海洛因组 相比: *;?<0. 05, " o. oi和" o. ooi ; 与对照组相比: 〈o. 05, Vo. 01, β/?<0. 001和 " p〉0. 05 (student氏 ί检验, 本文各图标注相同, 以下各图中不 再重复); 图 4为本药品对海洛因依赖小鼠白细胞活性氧水平的影响; 图 5为本 药品对海洛因依赖小鼠组织中脂质过氧化物 (TBARS) 含量的保护作用对肝脏; 图 6为本药品对海洛因依赖小鼠组织中脂质过氧化物含量的保护作用对血浆; -图 7为本药品对海洛因依赖小鼠组织中脂质过氧化物含量的保护作用对脑;图 8 为本药品对海洛因依赖小鼠组织中蛋白质氧化性损伤产物 (羰基) 的保护作用 对肝脏; 图 9为本药品对海洛因依赖小鼠组织中蛋白质氧化性损伤产物的保护 作用对血浆; 图 10为本药品对海洛因依赖小鼠组织中蛋白质氧化性损伤产物的 保护作用对脑; 图 11为玉米活性物质对海洛因依赖小鼠体内 GSH含量的保护作 用对肝脏。 图 12为本药品对海洛因依赖小鼠体内 GSH含量的保护作用对血浆; 图 13为本药品对海洛因依赖小鼠体内 GSH含量的保护作用对脑; 图 14为本药 -品对海洛因依赖小鼠组织中谷胱甘肽过氧化酶活性的双向保护作用对肝脏; 图 15为本药品对海洛因依赖小鼠组织中谷胱甘肽过氧化酶活性的双向保护作用对 血浆; 图 16为本药品对海洛因依赖小鼠组织中谷胱甘肽过氧化酶活性的双向保 护作用对脑; 图 17为本药品对海洛因依赖小鼠组织中小鼠体内 T-S0D活性的保 护作用对肝脏; 图 18为本药品对海洛因依赖小鼠组织中小鼠体内 Cu-SOD活性 的保护作用对肝脏; 图 19为本药品对海洛因依赖小鼠组织中小鼠体内 T- SOD活 性的保护作用对血浆;图 20为本药品对海洛因依赖小鼠组织中小鼠体内 Cu-SOD •活性的保护作用对血浆;图 21为本药品对海洛因依赖小鼠组织中小鼠体内 T-S0D 活性的保护作用对脑;图 22为本药品对海洛因依赖小鼠组织中小鼠体内 Cu-SOD 活性的保护作用对脑; 图 23为本药品对海洛因小鼠戒断症状的缓解作用体重丢 失; 图 24为本药品对海洛因小鼠戒断症状的缓解作用跳跃; 图 25为本药品对 海洛因小鼠戒断症状的缓解作用身体扭曲; 图 26为本药品对海洛因小鼠戒断症 状的缓解作用上睑下垂; 图 27为本药品对海洛因小鼠戒断症状的缓解作用。 具体实施方式:
海洛因依赖小鼠模型的建立: • α)模型建立:
30 ± 2 g左右的小鼠, 雌雄兼用, 随机分为海洛因和生理盐水组, 动'物词 养室温度控制在 21-22°C, 自由饮水, 摄食。 海洛因组小鼠按剂量逐日递增的原 则每日腹腔注射 2次, 0. 2ml/次。 从第一天的 2. 5mg/kg体重起, 直到第 15天 的 45mg/kg体重。每日注射海洛因的详细剂量见图 2。对照组小鼠以同样的时间 给予和海洛因组小鼠等体积的生理盐水。
(2)小鼠分组
第 16天, 将上述已成瘾的小鼠随机分为 3组, 第一组为海洛因组, 在随后 的 7天中腹腔注射生理盐水, 每日一次; 第二组为低剂量产品 (玉米活性物质 或称复合酶) 组, 在随后的 7天中腹腔注射低剂量 (10mg/kg * w), 每日一次; 第三组为高剂量产品玉米活性物质组, 在随后的 7天中腹腔注射高剂量
( 50mg/kg - w) 玉米活性物质, 每日一次。 每组 20只小鼠。
实施例 1
海洛因依赖小鼠体内活性氧增加, 总抗氧化力降低及玉米活性物质的保护 '作用。 小鼠经过海洛因腹腔注射 15.天, 海洛因依赖小鼠血浆总抗氧化力显著下 降, 从对照组的 282. 9单位 I ml血浆降低到 225. 3。高剂量玉米活性物质治疗 7 天后能提高总抗氧化力, 达到 248. 5单位 I ml血浆, 但低剂量玉米活性物质没 有作用(图 3)。 海洛因使小鼠白细胞活性氧显著增多, 为对照组的 1. 12倍。 玉 米活性物质使活性氧水平稍有下降, 但无统计意义 (图 4 )。
实施例 2
海洛因依赖小鼠肝脏、 血浆及脑中脂质过氧化物 (TBARS ) 增加, 低剂量玉 '米活性物质的保护作用。
经过海洛因处理 15天, 小鼠肝脏、 血浆及脑脂质过氧化物明显升高, 分别 从对照组的 6. 3, 9. 1和 15. 1 nmol/mg pr升高到海洛因组的 7. 9, 13. 0和 19. 7。 但给予不同剂量的玉米活性物质治疗 7天后, 低剂量玉米活性物质降低了脂质 过氧化程度, 达到 5. 2, 10. 8和 16. 8 nmol/mg pr, 而且肝脏和脑中脂质过氧化 物恢复到了对照组水平。 但高剂量组无效 (图 5-图 7)。
实施例 3
海洛因依赖小鼠肝脏、血桨及脑中蛋白质氧化损伤产物含量增加, 玉米活性 '物质的保护作用。
经过海洛因处理 15天, 小鼠肝脏、血柴及脑中蛋白质氧化损伤产物(羰基) 明显升高, 分别从对照组的 4. 1, 2. 9和 1. 9 nmol/mg pr升高到海洛因组的 4. 7, 4. 5和 2. 6。 但给予不同剂量的玉米活性物质治疗 7天后, 高剂量玉米活性物质 只使肝脏中蛋白质的氧化性损伤极明显地降低, 甚至低于对照组, 降低到 3. 5 nmol/mg pr, 但不能降低血浆及脑中蛋白质损伤; 而低剂量玉米活性物质则对 三种组织的蛋白质氧化损伤都有明显保护作用, 分别达到 4. 0, 3. 0和 2. 2 , 而 且肝脏和血浆中恢复到了对照组水平(图 8-图 10)。
实施例 4
海洛因依赖小鼠肝脏、 血桨及脑中谷胱甘肽 (GSH)含量明显降低, 玉米活性 物质的保护作用。
GSH是人和动物体内极重要的抗氧化物质。 经过海洛因处理 15天, 小鼠肝 脏、 脑及血浆中 GSH含量明显降低, 分别从对照组的 55. 7, 20. 8 pmol/mg pr 和 18. 8 pmol/ml血浆降低到海洛因组的 25. 3, 18. 9和 17. 0; 玉米活性物质治 疗 7天后, 无论高剂量玉米活性物质还是低剂量玉米活性物质都升高了三种组 织的 GSH含量; 其中低剂量的玉米活性物质对肝脏中 GSH含量有极明显的升高 作用, 达到 71. 9pmol/mg pr, 而且低剂量比高剂量的效果更好,. 甚至使 GSH高 于对照组; 高剂量对血浆 GSH含量的升高作用也非常明显, 达到 50. 3priiol/ml 血浆, 远高于对照组 (图 11-图 13)。
海洛因依赖小鼠肝脏、 血浆及脑中谷胱甘肽过氧化酶 (GPx ) 活性的变化, 玉米活性物质的保护作用。
GPx与超氧化物歧化酶和过氧化氢酶构成人体及动物体内的三大主要抗氧 化性酶, 并且是三者中最为重要的抗氧化酶。 经过海洛因处理 15天, 小鼠肝脏 及血浆中 GPx活性明显降低, 分别从对照组的 38. 5和 71. 2 U/mg pr降低到海 洛因组的 30. 9和 46. 0,高剂量玉米活性物质治疗 7天后,可明显升高 GPx活性, 达到对照组水平。海洛因组小鼠脑中 GPx活性极显著升高,从对照组的 33. 7 U/mg pr升高到 63. 8。 高剂量玉米活性物质可降低 GPx活性, 但未达到对照组水平。 从结果来看, 尽管海洛因处理使 GPx活性在各组织中变化不同, 但高剂量玉米 活性物质处理均可使 GPx活性向对照组恢复, 即高剂量玉米活性物质有双向纠 偏作用。 脑中 GPx活性的剧烈升高也许暗示脑相对于躯体 (肝脏和血浆) 承受 着更严重的氧胁迫, GPx因此于代偿性地升高 (图 14-图 16 )。
实施例 5
海洛因依赖小鼠肝脏、 血浆及脑中总超氧化物歧化酶 (T- SOD ) 和铜超氧化 物歧化酶 (Cu- SOD) 活性改变, 玉米活性物质的保护作用。
在肝脏和血浆中,经过海洛因处理 15天,小鼠的 Cu-SOD活性变化较 T一 SOD 活性明显, 说明海洛因主要影响了这两个组织中 Cu— S0D的活性, 其中肝脏中 Cu— S0D从对照组的 135. 7 U/mg pr升高到 163. 8 。 高或低剂量玉米活性物质 均可降低 Cu— S0D活性, 达到对照组水平; 血浆中 Cu— S0D活性; 从对照组的 45. 7 U/mg pr降低到海洛因组的 13. 0, 高剂量玉米活性物质治疗 7天后, 使血 浆 Cu— S0D活性升高到对照组水平。 这个结果与 GPx活性结果类似, 说明玉米 活性物质既能使肝中由海洛因引起的 Cu— SOD过高的偏离恢复到对照值, 也能 使血浆中由海洛因引起 Cu— SOD过低的偏离也恢复到对照值, 即具体双向保护 作用。 海洛因在小鼠脑中 T-S0D和 Cu-SOD活性均明显下降, 玉米活性物质无论 高或低都进一步使 T- SOD明显下降, 而对 Cu-SOD活性没有明显作用。 所以玉米 活性物质对脑中两种 SOD都没有保护作用 (图 17-图 22)。
实施例 6
本药品对海洛因依赖小鼠四种典型戒断症状的缓解作用。
经过海洛因处理 15天, 小鼠的四种典型戒断症状, 包括体重丢失、 跳跃次 数、 身体扭曲次数和上睑下垂小鼠只数百分比均比对照组增加, 分别从对照组 的 0. 74g、 0次、 5. 6次和37. 5 %升高到海洛因组的0. 89§、 1. 4次、 1 1. 4次和 57. 1 %。 玉米活性物质治疗后, 四种戒断症状都明显减轻, 分别为 0. 4-0. 52g、 5. 0-5. 6次、 0-0. 3次和 10%-25% (图 23-图 27 )。
实施例 7 组方 (重量单位克) :
①过氧化物酶 5、 超氧化物歧化酶 50、 过氧化物氢酶 5、 葛根 5 ; · '
②过氧化物酶 40、 超氧化物歧化酶 80、 过氧化物氢酶 20、 黄芪 10 ;
③过氧化物酶 30、 超氧化物歧化酶 300、 过氧化物氢酶 40、 葛根 15。
增加保活性, 葛根 5-10倍; 黄芪多糖 5-8倍, 保质 3年以上。 60 ° C加温 2 小时, 活性自然下降 60%。研究表明植物黄酮具有良好的抗氧化功效, 可以抑制 多种化学物质的诱变作用, 并对各种因素造成的膜损伤具有防护作用, 现代研 究表明黄酮类物质还可以诱导肿瘤细胞分化及凋亡; TPF对培养的 PC12细胞具 有一定生长调控作用, 低浓度时促进细胞生长, 高浓度时抑制细胞生长, 同时 在培养液中加入 1- 100μβ/ιιι1的 TPF对 ¾02所致 PC12氧化损伤具有明显防护效能。
实施例 8 过氧化物酶可为动物牛黄、 鹿茸、 甲鱼提取物。 普通患者 9粒、 3次 /日, 0. 24g X 9=2〜3g;复吸患者抑制大剂量使用 12粒、 4次 /日; 纳米的可鼻腔给药, 能提高货价寿命, 养护细胞, 降低吸烟氧损害, 绣导肿瘤细胞分化凋亡, 对 PCR细胞有调空作用。
实施例 10
在于过氧化物酶母液可达到 6000— 10000活性单位 /克; 过氧化物酶干粉可 达到 40000— 60000活性单位 /克。
实施例 11
在于过氧化物酶中间体, 用于食品、 保健品、 药品、 化妆品、 日用化工制 品、 烟酒制品的载体。
实施例 12
在于过氧化物酶作为软胶囊、 胶囊、 乳剂、 片剂、 注射液、 喷雾剂或其它 剂型的载体。
实施例 13
在于过氧化物酶, 可根据不同目的加入各种药物, 作为多种配方的载体。

Claims

权利要求
1、 含过氧化物酶戒毒药品, 在于重量份数: 过氧化物酶 GPS ( 5-40 )、 超氧化物歧化酶 SOD ( 20-50)、 过氧化物氢酶 CAT ( 5-20 ), 分子量 32000以下。
2、 根据权利要求 1所述含过氧化物酶的戒毒药品, 在于重量份数: 过氧 化物酶 GPS (5-40)、 超氧化物歧化酶 SOD (20-50)、过氧化物氢酶 CAT ( 5-20), 分子量 200- 50。
3、 根据权利要求 1或 2所述含过氧化物酶的戒毒药品, 在于过氧化物酶 是将玉米胚芽提取物放入纳米匀'质机内进行处理, 温度 60° C, 得到流体的过氧 化物酶。
4、 根据权利要求 1或 2所述含过氧化物酶的戒毒药品, 在于过氧化物酶是 将玉米胚芽提取物放入超音速纳米射流喷雾干燥塔中进行处理, 得到固体的过 氧化物酶。
5、 根据权利要求 1所述含过氧化物酶的戒毒药品, 在于过氧化物酶 5、 超 氧化物歧化酶 50、 过氧化物氢酶 5、 葛根 5, 重量单位克。
6、 根据权利要求 1所述含过氧化物酶的戒毒药品, 在于过氧化物酶 40、 超氧化物歧化酶 80、 过氧化物氢酶 20、 黄芪 10; 重量单位克。
7、 根据权利要求 1所述含过氧化物酶的戒毒药品, 在于过氧化物酶母液可 达到 6000— 10000活性单位 /克; 过氧化物酶干粉可达到 40000— 60000活性单 位 /克。
8、 根据权利要求 1所述含过氧化物酶的戒毒药品, 在于玉米胚芽提取物的 玉米可为谷物或豆类。
9、 含过氧化物酶的戒毒药品的用途, 过氧化物酶作为中间体, 在于作为软 胶囊、 胶囊、 乳剂、 片剂、 注射液、 喷雾剂或其它剂型的载体。
10、 含过氧化物酶的戒毒药品的用途, 过氧化物酶作为中间体, 用于食 保健品、 药品、 化妆品、 日用化工制品、 烟酒制品的载体。
PCT/CN2005/000695 2005-05-20 2005-05-20 Medicament pour le traitement d'abus de drogues comprenant la peroxydase et son utilisation WO2006122447A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2005/000695 WO2006122447A1 (fr) 2005-05-20 2005-05-20 Medicament pour le traitement d'abus de drogues comprenant la peroxydase et son utilisation
CNA2005800046131A CN1960749A (zh) 2005-05-20 2005-05-20 含过氧化物酶的戒毒药品及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2005/000695 WO2006122447A1 (fr) 2005-05-20 2005-05-20 Medicament pour le traitement d'abus de drogues comprenant la peroxydase et son utilisation

Publications (1)

Publication Number Publication Date
WO2006122447A1 true WO2006122447A1 (fr) 2006-11-23

Family

ID=37430921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000695 WO2006122447A1 (fr) 2005-05-20 2005-05-20 Medicament pour le traitement d'abus de drogues comprenant la peroxydase et son utilisation

Country Status (2)

Country Link
CN (1) CN1960749A (zh)
WO (1) WO2006122447A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102309751A (zh) * 2011-08-31 2012-01-11 苏州爱斯欧蒂生物科技有限公司 一种sod复合胶囊及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2693208A1 (fr) * 1992-07-02 1994-01-07 Inocosm Laboratoires Procédé d'obtention d'une composition enzymatique d'origine végétale ainsi que composition obtenue par la mise en Óoeuvre de ce procédé.
CN1587395A (zh) * 2004-08-09 2005-03-02 陈欣 利用谷物籽粒大规模生产超氧化物歧化酶复合酶的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2693208A1 (fr) * 1992-07-02 1994-01-07 Inocosm Laboratoires Procédé d'obtention d'une composition enzymatique d'origine végétale ainsi que composition obtenue par la mise en Óoeuvre de ce procédé.
CN1587395A (zh) * 2004-08-09 2005-03-02 陈欣 利用谷物籽粒大规模生产超氧化物歧化酶复合酶的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199406, Derwent World Patents Index; AN 1994-044646, XP003004178 *
ZHOU J. ET AL.: "Primary studies on heroin abuse and injury induced by oxidation and lipoperoxidation", CHINESE MEDICAL JOURNAL, vol. 114, no. 3, 2001, pages 297 - 302 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102309751A (zh) * 2011-08-31 2012-01-11 苏州爱斯欧蒂生物科技有限公司 一种sod复合胶囊及其制备方法

Also Published As

Publication number Publication date
CN1960749A (zh) 2007-05-09

Similar Documents

Publication Publication Date Title
JP4669920B2 (ja) 血糖上昇抑制且つ血圧上昇抑制作用を有する機能性素材
Wong et al. Antioxidant activity of Ganoderma lucidum in acute ethanol‐induced heart toxicity
KR101776071B1 (ko) 붉은 작두콩 추출물을 함유하는 항노화 및 미백용 조성물
US20020071868A1 (en) Multicomponent biological vehicle
CN102697035A (zh) 虫草褔寿丹
CA2386215C (en) Method for treatment of chronic venous insufficiencies using an extract of red vine leaves
WO2020052074A1 (zh) 一种提高肝脏排毒、解酒护肝的提取物及其制备方法
WO2002091966A1 (en) Kavalactone compositions and methods of use
CN108815230A (zh) 用于治疗糖尿病的中药组合物及其制备方法和应用
CN113069493A (zh) 油茶叶提取物抑制皮脂分泌的应用
AU784780B2 (en) Health food useful for preventing liver and biliary dysfunctions containing an alkanoyl L-carnitine and Silybum marianum extract
WO2006122447A1 (fr) Medicament pour le traitement d&#39;abus de drogues comprenant la peroxydase et son utilisation
JP2003061613A (ja) 肝臓保護用健康食品組成物(Healthyfoodcompositionforprotectinghepatic)
KR100512912B1 (ko) 알코올대사 생약 촉진제
CN103710264B (zh) 一种灵芝孢子的破壁辅助添加剂
KR101456953B1 (ko) 이카리시드 ii의 남성 또는 여성 성기능장애의 예방 또는 치료제 제조에서의 용도
KR20040097813A (ko) 식욕억제, 체지방 감소 및 배변 활성화등 3가지 기능을 갖는 항비만 기능성 조성물
KR100532556B1 (ko) 솔잎, 녹차 및 홍차 추출물을 유효성분으로 함유하는 비만및 변비 치료용 조성물
CN113521195B (zh) 一种用于酒精使用障碍的药食同源组合物及应用
CN104162163A (zh) 脂酰辅酶a氧化酶作为糖尿病的治疗靶点的应用
CN101439125B (zh) 一种大果沙棘复合抗衰老粉末
KR102214624B1 (ko) 항비만용 조성물
KR20030049063A (ko) 발기부전증 예방 및 치료용 조성물
US20240123019A1 (en) Composition for treating or ameliorating liver disease and liver dysfunction comprising zizania latifolia extract
CN105833257B (zh) 含有乌司他丁的组合物在制备治疗脂肪肝药物中的用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580004613.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05752301

Country of ref document: EP

Kind code of ref document: A1