WO2006121159A1 - Cd10に特異的に反応するヒト型cdr移植抗体およびその抗体断片 - Google Patents

Cd10に特異的に反応するヒト型cdr移植抗体およびその抗体断片 Download PDF

Info

Publication number
WO2006121159A1
WO2006121159A1 PCT/JP2006/309577 JP2006309577W WO2006121159A1 WO 2006121159 A1 WO2006121159 A1 WO 2006121159A1 JP 2006309577 W JP2006309577 W JP 2006309577W WO 2006121159 A1 WO2006121159 A1 WO 2006121159A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
amino acid
seq
cdr
grafted
Prior art date
Application number
PCT/JP2006/309577
Other languages
English (en)
French (fr)
Inventor
Katsuhiro Mori
Kazuyasu Nakamura
Yuka Sasaki
So Ohta
Original Assignee
Kyowa Hakko Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co., Ltd. filed Critical Kyowa Hakko Kogyo Co., Ltd.
Publication of WO2006121159A1 publication Critical patent/WO2006121159A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/72Increased effector function due to an Fc-modification

Definitions

  • the present invention relates to a human CDR-grafted antibody that specifically reacts with CD10 and an antibody fragment thereof. Furthermore, the present invention relates to a medicament using the antibody and antibody fragment thereof. Background art
  • Non-patent Document 1 In the field of hematology, analysis of blood cell-related differentiation antigens was promoted early by analysis using antisera or monoclonal antibodies, and the organization of CD (Cluster of differentiation) classification has progressed internationally. Currently, many antigens expressed in various cells, mainly leukocytes, are classified into CDs (Non-patent Document 1).
  • tumor-associated antigens genes that are specifically or selectively expressed in tumors called tumor-associated antigens, gene cloning, and functional analysis have been advanced by analysis using monoclonal antibodies.
  • analysis of the expression of tumor-associated antigens is widely used for serodiagnosis and monitoring of stage progression even in hematopoietic tumors such as leukemia and lymphoma.
  • CD10 is a molecule found in the process as described above, and its expression level is 21 g3 ⁇ 4 in the acute lymp hoblastic leukemia (ALL) mitochondrial surface.
  • ALL acute lymphoblastic leukemia antigen
  • CALLA Common acute lymphoblastic leukemia antigen
  • Non-Patent Document 2 Is a molecule of tumor-associated antigen.
  • CML chronic myelocyte leukemia
  • non-Hodgkin lymphomas such as Burkitt lymphoma. It is also known that leukocytes are also expressed on neutrophils and some B cells (Non-patent Document 3).
  • CD10 is a type 2 transmembrane glycoprotein with a molecular weight of about 100 kDa, based on biochemical analysis of force. Furthermore, by analysis using molecular biological techniques, It has been clarified that it is identical to the formerly called neutral endopeptidase (NEP, EC3.4.24.11) and enkephalinase. In addition, various peptides such as CDl ( ⁇ 3 ⁇ 4enkephalin, atrial natriuretic fac tor or atrial natriuretic peptide (ANF or ANP), substans P, etc. It has dehormonal degradation activity and regulates their activity (Non-patent Documents 3 and 4). It has also been reported that it is involved in the proliferation of B cells (Non-patent Document 4).
  • Non-Patent Documents 5, 6, 7 More recently, not only hematopoietic tumors but also solid cancers such as liver cancer, renal cancer, transitional cell carcinoma, prostate cancer, endometrial cancer, etc. have been expressed in their stromal tissues. It has been reported (Non-Patent Documents 5, 6, 7).
  • therapeutic agents for removing CD10-expressing cells from the patient's body are various cancers such as CD10-expressing lymphoma and leukemia, and CD10-expressing cells (B cells, preferred cells). It is expected to be useful as a therapeutic agent for inflammatory diseases mediated by neutrophils.
  • Non-patent document 8 antibodies against CD10 have been reported such as J5 antibody (Non-patent document 8) and NL-1 antibody (Non-patent document 9). These antibodies are all mouse antibodies. Also reported is a HgGl-type anti-CD10 chimeric antibody (Non-patent Document 10, Patent Documents 1 to 3) showing cytotoxic activity against human CD10-expressing cells using mouse myeloma cells X63Ag8.653 as host-producing cells. Has been. However, no CDR-grafted antibody specifically reactive with CD10 is known.
  • Non-patent Document 18 In order to solve these problems, attempts have been made to convert non-human animal antibodies into humanized antibodies such as human CDR-grafted antibodies using genetic recombination technology (Non-patent Document 18). ). Humanized antibodies have less side effects than non-human animal antibodies (Non-patent Document 19), and their therapeutic effects are prolonged (Non-Patent Documents 20 and 21).
  • Non-Patent Document 1 Expert Opin. Biol. Ther., 1, 375 (2001)
  • Non-Patent Document 2 J. Exp. Med., 168, 1247 (1988)
  • Non-Patent Document 3 Blood, 73, 62 (1989)
  • Non-Patent Document 4 Blood, 82, 1052 (1993)
  • Non-Patent Document 5 nticancer Res., 17, 3233 (1997)
  • Non-Patent Document 6 Am. J. Pathol, 159, 1415 (2001),
  • Non-Patent Document 7 Am. J. Clin. Pathol, 113, 374 (2000)]
  • Non-Patent Document 8 Blood, 58, 648 (1981)
  • Non-Patent Document 9 Proc. Natl. Acad. Sci. U S A., 79, 4386 (1982)
  • Non-Patent Document 10 Cancer Res., 47, 999 (1987)
  • Non-Patent Document 11 J. Clin. Oncol, 2, 881 (1984)
  • Non-Patent Document 12 Blood, 65, 1349 (1985)
  • Non-Patent Document 13 J. Natl. Cancer Inst., 80, 932 (1988)
  • Non-Patent Document 14 Proc. Natl. Acad. Sci. U.S.A., 82, 1242 (1985)
  • Non-Patent Document 15 J. Nucl. Med., 26, 1011 (1985)
  • Non-Patent Document 16 J. Immunol, 135, 1530 (1985)
  • Non-Patent Document 17 Cancer Res., 46, 6489 (1986)
  • Non-Patent Document 18 Nature, 321, 522 (1986)
  • Non-Patent Document 19 Proc. Natl. Acad. Sci. U.S.A., 86, 4220 (1989)
  • Non-Patent Document 20 Cancer Res., 56, 1118 (1996)
  • Non-Patent Document 21 Immunol., 85, 668 (1995)]
  • Patent Document 1 JP1966042
  • Patent Document 2 EP184187
  • Patent Document 3 US4935496
  • An object of the present invention is to provide a human CDR-grafted antibody that specifically reacts with CD10, and a therapeutic agent for a CD10-related disease containing the antibody as an active ingredient.
  • the present invention relates to the following (1) to (17).
  • Antibody heavy chain (H chain) variable region (V region) force Among the amino acid sequence represented by SEQ ID NO: 8 or the amino acid sequence represented by SEQ ID NO: 8, the first Glu, the 16th Arg, 18 Selected from No. Leu, No. 42 Gly, No. 80 Tyr, No. 84 Asn and No. 98 Arg
  • the antibody light chain (L chain) variable region (V region) is the amino acid sequence represented by SEQ ID NO: 10 or the 9th Asp, 10th of the amino acid sequence represented by SEQ ID NO: 10 Ser, 11th Leu, 22nd Asn, 42nd Gly, 43rd Gln, 44th Pro, 47th Leu, 48th Leu, 61st Asp, 71st Asp, 72 Specific to CD10, including an amino acid sequence in which at least one amino acid residue selected from the Pth, 73rd Thr, 79th Leu, 80th Gin and 86th Val is replaced with another amino acid residue Reactive human human CDR-grafted antibody or antibody fragment thereof.
  • Antibody heavy chain (H chain) variable region (V region) force Among the amino acid sequence represented by SEQ ID NO: 8, or the amino acid sequence represented by SEQ ID NO: 8, the first Glu, the 16th An amino acid sequence in which at least one amino acid residue selected from Arg, Leu at 18th, Gly at 42nd, Tyr at 80th, Asn at 84th and Arg at 98th is replaced with another amino acid residue And the light chain (L chain) variable region (V region) force of the antibody
  • the amino acid sequence represented by SEQ ID NO: 10 or the 9th Asp, 10th Ser among the amino acid sequences represented by SEQ ID NO: 10, 11 No. Leu, No. 22 Asn, No. 42 Gly, No. 43 Gln, No.
  • a heavy chain (H chain) variable region (V region) force of an antibody The amino acid sequence represented by SEQ ID NO: 8, 35, or 37 includes any of the amino acid sequences described in (1) or (3) Human CDR-grafted antibody or antibody fragment thereof.
  • the light chain (L chain) variable region (V region) of the antibody contains any of the amino acid sequences represented by SEQ ID NO: 10, 12, or 33.
  • Antibody heavy chain (H chain) variable region (V region) force Any of the amino acid sequences shown in SEQ ID NOs: 8, 35, or 37, and the light chain (L chain) variable of the antibody Area (V area) 1S arrangement
  • the human CDR-grafted antibody according to any one of (1) to (6), which reacts with an epitope present at positions 52 to 750 of the amino acid sequence represented by SEQ ID NO: 1. Or an antibody fragment thereof.
  • a human CDR-grafted antibody or an antibody fragment thereof characterized by reacting with an epitope recognized by a monoclonal antibody produced from FERM BP-10099.
  • Antibody fragments are Fab, Fab ', F (ab'), single chain antibody (scFv), dimerization variable region (V region)
  • the antibody according to any one of (1) to (8) which is an antibody fragment selected from a peptide comprising a region (Diabody), a disulfide-stabilized V region fragment (dsFv) and a complementarity determining region (CDR) fragment.
  • the transformant according to (13) or (14) is cultured in a medium, and the human CDR-grafted antibody according to any one of (1) to (9) or a A method for producing a human CDR-grafted antibody or an antibody fragment thereof, comprising producing and accumulating an antibody fragment and collecting the antibody or the antibody fragment from the culture.
  • a pharmaceutical comprising the human CDR-grafted antibody or antibody fragment thereof according to any one of (1) to (9) as an active ingredient.
  • a therapeutic agent for a CD10-related disease comprising the human CDR-grafted antibody according to any one of (1) to (9) or an antibody fragment thereof as an active ingredient.
  • a human CDR-grafted antibody that specifically binds to CD10 is provided.
  • the antibody of the present invention can be used as a therapeutic agent for humans.
  • FIG. 1 shows the construction of plasmid pCRHVO.
  • FIG. 2 shows the construction of plasmid pCRHV2.
  • FIG. 3 shows the construction of plasmid pCRLVO.
  • FIG. 4 shows the construction of plasmid pCRLV9.
  • FIG. 5 shows the construction of an anti-CD10 CDR-grafted antibody expression vector pKANTEX3061chimeraHLV0.
  • FIG. 6 shows the construction of an anti-CD10 CDR-grafted antibody expression vector pKANTEX3061HVOLV0.
  • FIG. 7 shows the construction of an anti-CD10 CDR-grafted antibody expression vector pKANTEX3061HVOLV9.
  • FIG. 8 shows the construction of an anti-CD10 CDR-grafted antibody expression vector pKANTEX3061HV2LV9.
  • FIG. 9 is a graph showing the ADCC activity of purified MS705 / HV0LV9 antibody and MS705 / HV2LV9 against Daudi cells or Raji cells, which are human non-Hodgkin lymphoma cell lines.
  • the horizontal axis represents antibody concentration, and the vertical axis represents ADCC activity (%) at each antibody concentration.
  • A shows the results of using Daudi cells as target cells, and B shows the results of using Raji cells as target cells.
  • FIG. 10 shows the purified MS705 / HV0LV9 antibody and the CDC activity of MS705 / HV2LV9 against Daudi cells, which are human non-Hodgkin lymphoma cell lines.
  • the horizontal axis represents antibody concentration
  • the vertical axis represents CDC activity (%) at each antibody concentration.
  • FIG. 11 is a graph in which the horizontal axis represents the number of days after transplantation and the vertical axis represents body weight.
  • X represents the control group
  • country represents the MS705 / KM3317 1 mg / kg administration group
  • represents the MS705 / HV2LV9 0.1 mg / kg administration group
  • represents the MS705 / HV2LV9 1 mg / kg administration group. Bar indicates standard deviation.
  • the horizontal axis is the number of days after transplantation
  • the vertical axis is the survival rate.
  • X represents a control group
  • represents an MS705 / KM3317 1 mg / kg administration group
  • represents an MS705 / HV2LV9 0.1 mg / kg administration group
  • represents an MS705 / HV2LV9 1 mg / kg administration group. Bars indicate standard deviation.
  • the human CDR-grafted antibody (anti-CD10 CDR-grafted antibody) that specifically reacts with CD10 in the present invention and antibody fragments thereof (hereinafter, both may be collectively referred to as the antibody of the present invention)
  • Heavy chain (H chain) variable region (V region) force Of the amino acid sequence shown by SEQ ID NO: 8, or among the amino acid sequences shown by SEQ ID NO: 8, 1st Glu, 16th Arg, 18th Leu, 42
  • a human that specifically reacts with CD10, comprising an amino acid sequence in which at least one amino acid residue selected from the Gth, 80th Tyr, 84th Asn and 98th Arg is replaced with another amino acid residue Type CDR-grafted antibody or antibody fragment thereof, and the light chain (L chain) variable region (V region) of the antibody is the ninth amino acid sequence of the amino acid sequence represented by SEQ ID NO: 10 or the amino acid sequence represented by SEQ ID NO: 10.
  • the amino acid sequence shown by SEQ ID NO: 8 or the first Glu, 16th Arg of the amino acid sequence shown by SEQ ID NO: 8 An amino acid sequence in which at least one amino acid residue selected from 18th Leu, 42th Gly, 80th Tyr, 84th Asn, and 98th g is substituted with another amino acid residue, and Antibody light chain (L chain) variable region (V region) force A shown in SEQ ID NO: 10 No acid sequence or amino acid sequence shown in SEQ ID NO: 10, 9th Asp, 10th Ser, 11th Leu, 22nd Asn, 42nd Gly, 43th Gln, 44th Pro, 47th Leu, 48th Leu, 61st Asp, 71st Asp, 72nd Phe, 73th Thr, 79th Leu, 80th Gin and 86th Val Specific for CD10, including an amino acid sequence in which one amino acid residue is replaced by another amino acid residue If it is a human CDR-grafted antibody or antibody fragment thereof that reacts, it may be
  • the heavy chain (H chain) variable region (V region) force of the antibody The amino acid represented by SEQ ID NO: 8, 35 or 37 A human CDR-grafted antibody or antibody fragment thereof that specifically reacts with CD10, including any of the sequences, the light chain (L chain) variable region (V region) of the antibody is represented by SEQ ID NO: 10, 12 or 33 A human CDR-grafted antibody or antibody fragment thereof that specifically reacts with CD10, including any of the amino acid sequences, the heavy chain (H chain) variable region (V region) of the antibody is SEQ ID NO: 8, 35, or 37.
  • the antibody specifically reacts with CD10 containing any of the amino acid sequences shown and containing any of the amino acid sequences shown in SEQ ID NOs: 10, 12 or 33. And human CDR-grafted antibody or antibody fragment thereof.
  • an antibody or antibody fragment in which one or more amino acids are deleted, added, substituted or inserted, and specifically reacts with CD10 is also encompassed in the scope of the present invention.
  • amino acid sequence of the present invention one or more amino acid residues are deleted, substituted, inserted or appended in any one or a plurality of amino acid sequences in the same sequence. This means that there is a group deletion, substitution, insertion or addition, and the amino acid residue to be substituted, inserted or added, which may occur simultaneously with deletion, substitution, insertion or addition, is naturally occurring and non-natural. Regardless of type.
  • Natural amino acid residues include L-alanine, L-asparagine, L-aspartic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine , L-methionine, L-phenylalanine, shi-proline, shi-serine, shi-threonine, L- ⁇ lipan fan, L-tyrosine, L-norine, L-cystine and the like.
  • amino acid residues that can be substituted with each other are shown below.
  • the amino acid residues contained in the same group can be substituted for each other.
  • Group A Leucine, Isoleucine, Norleucine, Norin, Norpaline, Alanine, 2-Aminobutanoic acid, Methionine, 0-Methylserine, t-Butylglycine, t-Butylalanine, Cyclohexylalanine
  • Group B aspartic acid, glutamic acid, isoaspartic acid, isoglutamic acid, 2-amino Adipic acid, 2-aminosuberic acid
  • Group D lysine, arginine, ornithine, 2,4-dianaminobutanoic acid, 2,3-dianaminopropionic acid
  • Group E proline, 3-hydroxyproline, 4-hydroxyproline
  • Group F serine, threonine, homoserine
  • the antibody of the present invention is preferably produced from FERM BP-10099, a human CDR-grafted antibody that specifically reacts with an epitope present at positions 52 to 750 of the amino acid sequence shown in SEQ ID NO: 1, and its antibody fragment. And a human CDR-grafted antibody or an antibody fragment thereof, which is characterized by reacting with an epitope recognized by the monoclonal antibody.
  • the human CDR-grafted antibody refers to an antibody obtained by grafting the VH and VL CDR amino acid sequences of non-human animal antibodies to appropriate positions of the human antibody VH and VL.
  • the human CDR-grafted antibody of the present invention comprises a V region obtained by grafting the VH and VL CDR amino acid sequences of a non-human animal antibody that specifically reacts with CD10 into the FRs of any human antibody VH and VL.
  • Construction of human-type CDR-grafted antibody expression vector by constructing cDNA encoding and inserting each into an animal cell expression vector having DNA encoding CH and H chain C region of human antibody (hereinafter referred to as CL) However, it can be expressed and produced by introduction into animal cells.
  • any method can be used as long as it is derived from a human antibody.
  • the VH and VL FR amino acid sequences of human antibodies registered in databases such as Protein Data Bank, or the common amino acid sequence of each subgroup of human antibody VH and VL FRs (Sequences of Proteins of Immunological Interest, US Dept. Health and Human services, 1991);
  • the CH of the antibody of the present invention may be any as long as it belongs to human immunoglobulin (hereinafter referred to as hlg), but is preferably of the hlgG class, and more preferably gl, g2 belonging to the hlgG class. , G3, and g4 subclasses can be used.
  • human-type CDR transfer The CL of the plant antibody can be any ⁇ class or ⁇ class as long as it belongs to hlg.
  • the antibody fragment of the present invention includes Fab, Fab ', F (ab'), scFv, Diabody, dsFv, and CDR.
  • Examples thereof include peptides.
  • Fab is a fragment obtained by treating IgG with the proteolytic enzyme papain (cleaved at the 224th amino acid residue of the H chain). About half of the N chain side of the H chain and the entire L chain are disulfide-linked ( It is an antibody fragment having an antigen binding activity of about 50,000 molecular weight bound by SS binding.
  • the Fab of the present invention can be obtained by treating a human CDR-grafted antibody that specifically reacts with the CD10 of the present invention with a proteolytic enzyme papain.
  • the DNA encoding the Fab of the antibody is inserted into a prokaryotic expression vector or eukaryotic expression vector, and the vector is introduced into prokaryotic or eukaryotic cells to be expressed and produced. it can.
  • F (ab ') is a fragment obtained by treating IgG with the protease pepsin (H chain 2
  • F (ab ') of the present invention binds to a human CDR-grafted antibody that specifically reacts with CD10 of the present invention.
  • Fab ′ can be prepared by thioter bond or S—S bond.
  • Fab ' is an antigen-binding activity with a molecular weight of about 50,000, which is obtained by cleaving the S_S bond in the hinge region of F (ab').
  • Fab 'of the present invention comprises F (ab') that specifically reacts with CD10 of the present invention as a reducing agent dithiothre.
  • the human CDR-grafted antibody Fab ′ which specifically reacts with CD10, is inserted into a prokaryotic expression vector or eukaryotic expression vector, and the vector is introduced into prokaryotic or eukaryotic organisms. By doing so, it can be expressed and manufactured.
  • scFv is a VH-P-VL or VL-P-VH polypeptide in which one VH and one VL are linked using an appropriate peptide linker (P) having 12 or more residues.
  • the scFv of the present invention obtains cDNA encoding the human CDR-grafted antibody VH and VL that specifically reacts with CD10 of the present invention, constructs a DNA encoding scFv, and expresses the DNA for prokaryotic expression It can be produced by inserting into a vector or an expression vector for eukaryotes and introducing the expression vector into a prokaryote or eukaryote.
  • Diabody is an antibody fragment in which scFv having the same or different antigen-binding specificity forms a dimer, and has a bivalent antigen-binding activity for the same antigen or a bispecific antigen-binding activity for different antigens. It is a fragment.
  • the diabody of the present invention is, for example, a divalent diabody that specifically reacts with CD10, and obtains cDNA encoding the VH and VL of the human CDR-grafted antibody that specifically reacts with CD10 of the present invention.
  • Construction of scFv-encoding DNA having a 10-residue polypeptide linker, insertion of the DNA into a prokaryotic expression vector or eukaryotic expression vector, and introduction of the expression vector into prokaryotic or eukaryotic organisms By doing so, Diabody can be expressed and produced.
  • dsFv is obtained by binding a polypeptide in which one amino acid residue in each of VH and VL is substituted with a cysteine residue via an S-S bond between the cysteine residues.
  • the amino acid residue substituted for the cysteine residue can be selected based on the three-dimensional structure prediction of the antibody according to the method shown by Reiter et al. (Protein Engineering, 7, 697 (1994)).
  • the dsFv of the present invention obtains cDNA encoding the human CDR-grafted antibody VH and VL that specifically reacts with the CD10 of the present invention, constructs a DNA encoding the dsFv, and expresses the DNA for prokaryotic expression It can be produced by inserting into a vector or an expression vector for eukaryotes and introducing the expression vector into a prokaryote or eukaryote.
  • the peptide containing CDR is constituted by including at least one region of CDR of VH or VL.
  • Peptides containing a plurality of CDRs can be produced by binding directly or via an appropriate peptide linker.
  • the peptide containing the CDR of the present invention constructs a cDNA encoding the CDR of the human CDR-grafted antibody VH and VL that specifically reacts with CD10 of the present invention, and the cDNA is used as a prokaryotic expression vector or eukaryotic organism. Inserted into an expression vector for It can be expressed and produced by introduction into a product or eukaryote.
  • a peptide containing CDR can also be produced by a chemical synthesis method such as Fmoc method (fluorylmethyloxycarbonyl method) or tBoc method (t-butyloxycarbonyl method).
  • the antibody of the present invention includes a derivative of an antibody in which a drug is chemically or genetically bound to the antibody of the present invention.
  • the derivative of the antibody of the present invention is an N-terminal side or C-terminal side of the H chain or L chain of an antibody or antibody fragment that specifically reacts with CD10 of the present invention, an appropriate substituent in the antibody or antibody fragment, or It can be produced by linking a drug to a side chain, and further to a sugar chain in an antibody or antibody fragment, by a chemical method (Introduction to Antibody Engineering, Osamu Kinmitsu, Jinjinshokan Co., Ltd. (1994)). it can.
  • DNA encoding an antibody or antibody fragment that specifically reacts with CD10 of the present invention and DNA encoding a drug such as a protein to be bound are linked and inserted into an expression vector.
  • DNA encoding a drug such as a protein to be bound are linked and inserted into an expression vector.
  • Examples of the drug include chemotherapeutic agents, antibody drugs, immunostimulants such as cyto force-in, radioactive equivalent elements, and immunoadjuvant.
  • the agent conjugated to the antibody may take the form of a prodrug.
  • the prodrug in the present invention refers to a drug that is chemically modified by a patient's own enzyme or the like present in the tumor environment and converted into a substance having an action of damaging cancer cells.
  • Chemotherapeutic agents include alkylating agents, nitrosourea agents, antimetabolites, anticancer antibiotics, plant-derived alkaloids, topoisomerase inhibitors, hormone therapy agents, hormone antagonists, aromatase inhibitors, p-glycoprotein inhibitors, Any chemotherapeutic agent is included, such as platinum complex derivatives, M phase inhibitors, kinase inhibitors and the like.
  • Chemotherapeutic agents include amifostine (Ethiol), cisplatin, dacarbazine (DTIC), dactinomycin, metalloretamine (nitrogen mustard), streptozocin, cyclophosphamide, ifosfamide, carmustine (BCNU), oral mucin (CCNU) ), Doxorubicin (adriamycin), doxorubicin lipo (doxyl), epilubicin, gemcitabine (gemzar), daunorubicin, daunorubicin lipo (daunosome), procarbazine, mitomycin, cytarabine, et Poside, methotrexate, 5-fluorouracil, fluorouracil, vinblastine, vin christine, bleomycin, daunomycin, pepromycin, estramustine, paclitaxel (taxinol), docetaxel (taxotere), aldesleukin, asparaginase,
  • the chemotherapeutic agent and antibody can be bound by binding between the chemotherapeutic agent and the amino group of the antibody via dartal aldehyde, or the amino group of the chemotherapeutic agent and the carboxyl of the antibody via water-soluble carpositimide. Examples thereof include a method for bonding groups.
  • Antibody drugs include antibodies against antigens expressed on tumor cells that directly damage cancer cells, or antibodies against antigens involved in tumor pathogenesis such as tumor cell growth and metastasis, as well as in vivo administration of antibodies. Examples thereof include an antibody that regulates immunity and an antibody that inhibits angiogenesis in a living body to which the antibody is administered.
  • Antigens expressed in tumor cells that directly damage cancer cells include CD19, CD20, CD21, CD22, CD23, CD24, CD37, CD53, CD72, CD73, CD74, CDw75, CDw76, CD77, CD77, CD79a, CD79b, CD80 (B7.1), CD81, CD82, CD83, CDw84, CD85, CD86 (B7.2), HLA-Class II and the like.
  • Antibody antigens that inhibit angiogenesis in the body to which an antibody is administered include VEGF, Angiopoietin, FGF, EGF, PDGF, IGF, EPO, TGF jS, IGF, IL-8, Ephilin, SDF-1 Etc. Power S can be increased.
  • the immunostimulant may be any site-inducing agent that enhances NK cells, macrophages, neutrophils and other cells.
  • Specific examples include interferon ⁇ , interferon 13, interferon ⁇ , interferon.
  • immunizing agents include j8 (l ⁇ 3) dulcan (lentinan, schizophyllan), ⁇ -galactosylceramide (KRN7000), and bacterial cells.
  • Radioisotopes include m I, 125 I, 9 ° Y, 64 Cu, 199 Tc, 77 Lu, 2U At, and the like.
  • the radioactive isotope can be directly bound to the antibody by the chloramine T method or the like.
  • a substance that chelates a radioisotope may be bound to the antibody.
  • chelating agents include methylbenzyldiethylene-tnaminepentaacetic acid (MX—DTPA).
  • the antibody of the present invention may also be administered in combination with one or more other drugs or radiation.
  • other drugs include the above-mentioned chemotherapeutic agents, antibody drugs, and immune activators such as site force-in.
  • Radiation irradiation includes photon (electromagnetic wave) irradiation such as X-ray and y-ray, particle irradiation such as electron beam, proton beam, and heavy particle beam.
  • the method of administration in combination may be simultaneous administration with the antibody of the present invention, or may be administered before or after administration of the antibody of the present invention.
  • a humanized antibody expression vector is an expression vector for animal cells in which DNAs encoding human antibody CH and CL are incorporated, and the DNA encoding human antibody CH and CL is added to the expression vector for animal cells. Can be constructed by crawling each
  • the C region of a human antibody can be CH and CL of any human antibody, and includes, for example, CH of the gl subclass of human antibody and CL of the kappa class.
  • DNA encoding human antibody CH and CL chromosomal DNA consisting of exons and introns can be used, and cDNA can also be used.
  • Any animal cell expression vector can be used as long as it can incorporate and express a gene encoding the C region of a human antibody. For example, pAGE107 (CytotechnoL, 3, 133 (1990), pAGE103 (J. Biochem., 101, 1307 (1987), pHSG274 (Gene, 27, 223 (1984), pKCR (Proc. Natl. Acad. Sci.
  • promoters and enhancers include SV40 early promoter (J. Biochem., ⁇ 01, 1307 (1987), Morro-1 mouse leukemia virus LTR (Biochem. Biophys. Res. Commun., 149, 960 (1987 ⁇ , Immunoglobulin heavy chain promoters (Cell, 41, 79 (1985) and Enhancer (Cell,, 717 (1983), etc.).
  • the humanized antibody expression vector can be of either the type in which the antibody H chain and L chain are on separate vectors or the type on the same vector (tandem type). Tandem-type humanized antibody expression vector in terms of ease of construction of antibody expression vector, ease of introduction into animal cells, and balance of expression levels of antibody H and L chains in animal cells Is preferred (J. Immunol. Methods, 167, 271 (1994)). Examples of tandem humanized antibody expression vectors include pKANTEX93 (W097 / 10354) and pEE18 (Hybridoma, ⁇ 7, 559 (1998)).
  • the constructed humanized antibody expression vector can be used for expression of human CDR-grafted antibody in animal cells.
  • CDNAs encoding human CDR-grafted antibody VH and VL can be constructed as follows. First, the amino acid sequences of FRs of VH and VL of a human antibody to which the VH and VL CDR amino acid sequences of the antibody of a non-human animal antibody are transplanted are selected. As the amino acid sequences of human antibody VH and VL FR, any amino acid sequences derived from human antibodies can be used.
  • VH and VL FR amino acid sequences of human antibodies registered in databases such as Protein Data Bank, and VH and VL FR sub-gnoleop common amino acids [J (Sequences of Proteins of Immunological Interest, US Dept.Health and Human Services, 1991) .
  • the target non-human animal It is desirable to select an amino acid sequence having at least 60% or more homology with the FR amino acid sequence of the antibody VH and VL.
  • VH and VL CDR amino acid sequences of the target non-human animal antibody were transplanted to the VH and VL FR amino acid sequences of the selected human antibody, and the VH and VL of the human CDR-grafted antibody were transplanted.
  • Design the amino acid sequence of VL Designed amino acid sequence to base sequence of antibody gene Considering the frequency of codon usage in the sequence (Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1991) and the base sequence of the target non-human animal antibody Design the nucleotide sequence that encodes the VH and VL amino acid sequences of the CDR-grafted antibody.
  • the amplified product is cloned into a plasmid vector such as p Bluescript II SK (-) (Stratagene), the nucleotide sequence is determined, and the VH and VL amino acid sequences of the desired human CDR-grafted antibody are encoded. A plasmid having a base sequence is obtained.
  • Human CDR-grafted antibodies can be obtained by transplanting only the VH and VL CDRs of the non-human animal antibody of interest to the VH and VL FRs of the human antibody. (BIO / TECHNOLOGY, 9, 266 (1991)). This is due to the fact that in VH and VL of the original non-human animal antibody, not only CDR but also some FR amino acid residues are directly or indirectly involved in antigen-binding activity. It is thought that these amino acid residue forces change to different amino acid residues of FRs of human antibody VH and VL with SCDR transplantation.
  • human CDR-grafted antibodies have amino acid residues that are directly involved in antigen binding and CDR amino acid residues in the VH and VL FR amino acid sequences of human antibodies. Identify amino acid residues that interact and maintain the antibody's three-dimensional structure and indirectly participate in antigen binding, and modify them to the amino acid residues found in the original non-human animal antibody.
  • BIO / TECHNOLOGY, 9, 2 66 (1991) it has been attempted to increase the decreased antigen binding activity.
  • the most important point is how to identify the amino acid residues of FRs involved in these antigen-binding activities. For that purpose, X-ray crystallography 0. Mol.
  • Modification of FR amino acid residues of VH and VL of a human antibody can be achieved by performing a PCR method using synthetic DNA for modification. Determine the nucleotide sequence of the amplified product after PCR by the method described in (1) of this section 1 and confirm that the target modification has been performed.
  • the human CDR-grafted antibody constructed in (2) and (3) of this section 1 upstream of the DNA encoding the CH and CL of the human antibody of the vector for expression of human ⁇ antibody described in (1) of this section 1 The cDNA encoding VH and VL of the above can be cloned to construct a human CDR-grafted antibody expression vector.
  • the synthetic DNAs used in constructing human CDR-grafted antibody VH and VL in (1) (2) and (3) in this section 1 restriction enzymes suitable for the 5 'end of the synthetic DNA located at both ends So that they are expressed appropriately in the upstream of the DNA encoding the human antibody CH and CL of the humanized antibody expression vector described in (1) of this section 1. Can be crawled.
  • the human-type CDR-grafted antibody expression vector described in (4) of this section 1 or an expression vector obtained by modifying them is used.
  • transient expression of human CDR-grafted antibody can be performed.
  • any cell that can express human CDR-grafted antibody can be used in any cell. Because of its high expression level, COS-7 cells (ATCC CRL1651 ) Is commonly used (Methods in Nucleic Acids Res., CRC press, 283 (1991)).
  • Methods for introducing an expression vector into COS-7 cells include the DEAE-dextran method (Methods in Nucleic Acids Res., CRC press, 283 (1991), the lipofussion method (Proc. Natl. Acad. Sci. USA, 84, 7413). (1987). [0050] After the expression vector has been introduced, the expression level and antigen-binding activity of the human CDR-grafted antibody in the culture supernatant are determined by enzyme-linked immunosorbent assay (ELISA; Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, chapter 14 ( 1988), Monoclonal Antibodies: Principles and Practice, Academic Press Limited (1996).
  • ELISA enzyme-linked immunosorbent assay
  • a transformant that stably expresses the human CDR-grafted antibody can be obtained.
  • Examples of the method for introducing an expression vector into a host cell include the electopore position method (Cytotechnol ogy, 3, 133 (1990)).
  • any cell that can express a human CDR-grafted antibody can be used.
  • mouse SP2 / 0-Agl4 cells ATCC CRL1581
  • mouse P3X63-Ag8.653 cells ATCC CRL1580
  • CHO cells lacking dihydrofolate reductase gene dhfr
  • rat YB2 / 3HL.P2.G11.16Ag.20 cells YB2 / 0 cells; ATCC CRL1662
  • the like for example, mouse SP2 / 0-Agl4 cells (ATCC CRL1581), mouse P3X63-Ag8.653 cells (ATCC CRL1580), CHO cells lacking dihydrofolate reductase gene (dhfr) (ProNatl.Acad.Sci.USA , 77, 4216 (1980), rat YB2 / 3HL.P2.G11.16Ag.20 cells (YB2 / 0 cells; ATCC CRL1662) and the like
  • a transformant that stably expresses the human CDR-grafted antibody is cultured in an animal cell culture medium containing a drug such as G4 18 sulfate (G418; manufactured by SIGMA).
  • G418 G4 18 sulfate
  • Can be selected J. Immunol. Methods, 167, 271 (1994)).
  • Animal cell culture media include RPMI1640 medium (Nissui Pharmaceutical), GIT medium (Nippon Pharmaceutical), EX-CELL302 medium (JRH), IMDM medium (GIBCO BRL), Hybridoma- An SFM medium (GIBCO BRL) or a medium obtained by adding various additives such as fetal bovine serum (FBS) to these mediums can be used.
  • the human CDR-grafted antibody By culturing the obtained transformant in a medium, the human CDR-grafted antibody can be expressed and accumulated in the culture supernatant.
  • the expression level and antigen binding activity of the humanized antibody in the culture supernatant can be measured by ELISA or the like.
  • transformation can increase the expression level of human CDR-grafted antibody using a dhfr amplification system (J. Immu nol. Methods, 167, 271 (1994)).
  • Human CDR-grafted antibody can be purified from the culture supernatant of a transformant using a protein A column. 21 (Antibodies: A Laboratory Manual, Cold bpnng Haroor Laborato ry, Chapter 8 (1988), Monoclonal Antibodies: Principles and Practice, Academic Press Limited (1996)). In addition, other purification methods usually used for protein purification can be used. For example, it can be purified by a combination of gel filtration, ion exchange chromatography and ultrafiltration.
  • the molecular weight of the purified humanized antibody H chain, L chain, or whole antibody molecule can be determined by polyacrylamide gel electrophoresis (SDS_PAGE; Nature, 227, 680 (1970) or Western blotting (Antibodies: A Laboratory Manual). , Cola Spring Harbor Laooratory, chapter 12 (1988), Monoclonal Antibodies: Pnn ciples and Practice, Academic Press Limited (1996).
  • Antibody fragments can be prepared by genetic engineering techniques or protein chemical techniques based on the humanized antibody described in this section 1.
  • Antibody fragments include Fab, F (ab '), Fab', sc
  • Examples include peptides containing Fv, Diabody, dsFv, and CDR.
  • Fab can be produced by treating IgG with the proteolytic enzyme papain. After papain treatment, if the original antibody is an IgG subclass with protein A binding ability, it can be separated from IgG molecules and Fc fragments by passing through a protein A column and recovered as a uniform Fab 21 ( (Monoclonal Antioodies: Principles and Practice, third edition ( ⁇ 995)) In the case of IgG subclass antibodies that do not have protein A binding, Fab is eluted at a low salt concentration by ion exchange chromatography. (Monoclonal Antioodies: Principles and Practice, third edition (1995)) and can also be produced by genetic engineering using Fabi or E. coli.
  • the Fab expression vector can be prepared by cloning the DNA encoding the V region of the antibody described in (2) and (3) in a Fab expression vector.
  • DNA pair Any one can be used as long as it can be expressed in an integrated manner, such as pITl 06 (Science, 240, 1041 (1988)), etc.
  • An Fab expression vector is introduced into an appropriate Escherichia coli, and the inclusion body or periplasma is introduced.
  • Fabs can be generated and accumulated in the layers, and from the inclusion bodies, they can be made into active Fabs by the refolding method usually used for proteins, and when expressed in the periplasma layer, Has activity in culture supernatant Fab leaks.
  • Uniform Fabs can be purified after refolding or from the culture supernatant by using a force ram that binds the antigen (Antibody Engineering, A Practical uuide, WH Freeman and ompany (1992)).
  • F (ab ') can be produced by treating IgG with the proteolytic enzyme pepsin.
  • Fab 'described in (3) of this section 2 can be used as o-PDM, bismaleimide hexane, etc. It can also be produced by a method of treating with a simple maleimide and thioether bonding, or a method of treating with DTNB and S—S bonding (Antibody Engineering, A Practica 1 Approach, IRL PRESS (1996).
  • Fab ′ can be produced by genetic engineering using E. coli.
  • the Fab ′ expression vector can be prepared by cloning DNA encoding the V region of the antibody described in (2) and (3) of this section 1 into a Fab ′ expression vector.
  • Any Fab ′ expression vector may be used as long as it can incorporate and express Fab ′ DNA.
  • pAK19 Bio / Technology, 10, 163 (1992), etc.
  • Fab 'expression vector can be introduced into appropriate E. coli, and Fab' can be produced and accumulated in inclusion bodies or periplasma layers.
  • Inclusion bodies can be made into active Fab 'by the refolding method usually used for proteins, and when expressed in the periplasma layer, partial digestion with lysozyme, osmotic pressure Bacteria can be disrupted and recovered outside the cells by treatment with shock, lysis, etc. After refolding or from the disrupted solution of the bacteria, a uniform Fab 'can be obtained by using a protein G column or the like. It can be purified (Antibody Engineering, A Practical Approach, IRL PRESb (1996)).
  • scFv can be prepared by genetic engineering using phage or E. coli.
  • DNA encoding the VH and VL of the antibody described in (1) of (1) above is linked via DNA encoding a polypeptide linker having an amino acid sequence of 12 or more residues. Ligate to make DNA encoding scFv.
  • the prepared DNA can be cloned into an scFv expression vector to prepare an scFv expression vector.
  • Any scFv expression vector can be used as long as it can incorporate and express scFv DNA!
  • pCANTAB5E manufactured by Pharmacia
  • Phfa Hum. Antibody Hybridoma, 5, 48 (1994)
  • the like can be mentioned.
  • scFv By introducing the scFv expression vector into appropriate Escherichia coli and infecting the helper phage, a phage expressing scFv fused to the phage surface protein can be obtained on the phage surface.
  • scFv can be generated and accumulated in an E. coli inclusion body or periplasma layer into which an scFv expression vector has been introduced. Inclusion bodies can be made into active scFv by the refolding method usually used for proteins.
  • periplasma layer partial quenching by lysozyme and osmotic pressure
  • the bacteria When expressed in the periplasma layer, partial quenching by lysozyme and osmotic pressure The bacteria can be crushed and recovered outside the cells by a treatment such as cooking or sac- tion.
  • Uniform scFv can be purified by cation exchange chromatography or the like after refolding or from the bacterial disruption solution (Ant3
  • Diabody can be prepared by making the polypeptide linker used for preparing the scFv above about 3 to 10 residues.
  • a bivalent diabody can be prepared, and when two antibodies VH and VL are used, a bispecific diabody can be prepared (FEBS). Letters, 453, 164 (1999), Int. J. Cancer, 77, 763 (1998).
  • dsFv can be produced by genetic engineering using E. coli. First, a mutation is introduced at an appropriate position in the DNA encoding the VH and VL of the antibody described in (1) (2) and (3) of this section 1 to prepare DNA in which the encoded amino acid residue is substituted with cysteine. To do. Each of the prepared DNAs can be cloned into a dsFv expression vector to prepare VH and VL expression vectors. Any dsFv expression vector can be used as long as it can incorporate and express dsFv DNA. For example, pULI9 (Protein Engineering, 7, 697 (1994)). VH and VL expression vectors in appropriate E.
  • VH and VL When introduced, VH and VL can be generated and accumulated in the inclusion body or periplasma layer. VH and VL can be obtained from the inclusion body or periplasma layer, mixed, and made into active dsFv by the refolding method usually used for proteins. After refolding, it can be further purified by ion exchange chromatography and gel filtration (Protein Engineering, 7, 697 (1994)).
  • Peptides containing CDRs can be prepared by chemical synthesis methods such as Fmoc method! / ⁇ tBoc method.
  • a DNA encoding a peptide containing CDR can be prepared, and the prepared DNA can be cloned into an appropriate expression vector to prepare a CDR peptide expression vector.
  • Any expression vector can be used as long as it can incorporate and express DNA encoding a peptide containing CDR. Examples thereof include pLEX (manufactured by Invitrogen), pAX4a + (manufactured by Invitrogen), and the like.
  • An expression vector can be introduced into an appropriate Escherichia coli, and the inclusion body can generate and accumulate a peptide containing CDR in the periplasma layer.
  • Inclusion bodies or periplasmic layer force can also be obtained by obtaining peptides containing CDRs and purifying them by ion exchange chromatography and gel filtration (Protein Enginee ring, 7, 697 (1994)).
  • the binding activity of the purified antibody of the present invention to the antigen and the binding activity to CD10-expressing cells are determined by ELISA and fluorescent antibody method (Cancer Immunol. Immunother., 36, 373 (1993), surface plasmon resonance using BIAcore TM, etc.) Cytotoxic activity against antigen-positive cultured cells includes complement-dependent cytotoxic activity (hereinafter abbreviated as CDC activity), antibody-dependent cytotoxic activity (hereinafter abbreviated as ADCC activity), etc. It can be measured and evaluated (Cancer Immunol. Immunother., 36, 373 (1993)) The change in the amount of production site force-in can be measured by the ELISA method or the fluorescent antibody method.
  • the antibody of the present invention specifically binds to CD10, it is considered useful for the treatment of diseases involving CD10.
  • it since it is derived from the amino acid sequence of human antibodies compared to antibodies from non-human animals and chimeric antibodies, it exhibits high effects in the human body and is immune. It is expected that the effect of low originality will last for a long time.
  • the N-glycoside-bonded complex sugar chain that binds to the Fc region of the antibody is a sugar chain in which fucose is bound to N-acetylcylcosamine at the reducing end of the sugar chain.
  • the ADCC activity of the antibody or antibody fragment can be enhanced by using the antibody fragment.
  • Antibodies having high ADCC activity are useful for the prevention and treatment of various diseases related to CD10-expressing cells including cancer.
  • Diseases involving CD10 include cancer diseases, inflammatory diseases, and autoimmune diseases.
  • cancer diseases include hematological cancer, lymphoma, multiple myeloma, renal cancer, prostate cancer, lung cancer, gastric cancer, liver cancer, endometrial cancer, spleen cancer, malignant melanoma and the like.
  • Hematological cancers include leukemia and the like, and in particular acute lymphocytic leukemia (ALL), chronic myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL) and the like.
  • ALL acute lymphocytic leukemia
  • CML chronic myelogenous leukemia
  • CLL chronic lymphocytic leukemia
  • lymphoma examples include non-Hodgkin lymphoma.
  • Inflammatory diseases include adult respiratory distress syndrome (ARDS), cystic fibrosis, hepatitis, chronic obstructive pulmonary disease (COPD), and ischemia reperfusion injury.
  • ARDS adult respiratory distress syndrome
  • cystic fibrosis cystic fibrosis
  • hepatitis hepatitis
  • chronic obstructive pulmonary disease (COPD) chronic obstructive pulmonary disease
  • ischemia reperfusion injury include ischemia reperfusion injury.
  • autoimmune diseases include rheumatoid arthritis, multiple sclerosis, ulcerative colitis, and Siedallen syndrome.
  • CD10-related diseases are progressed by abnormally increasing or decreasing the number of cells expressing CD10 in the patient's body. Therefore, it is possible to treat these CD10-related diseases by using a pharmaceutical comprising the antibody of the present invention as an active ingredient.
  • the antibody of the present invention can be administered alone, there is usually one that is pharmacologically acceptable, but it is mixed with a further carrier and used in the technical field of pharmaceutical formulation! It is desirable to provide it as a pharmaceutical formulation produced by any well known method.
  • the route of administration is preferably oral, for which it is desirable to use the most effective treatment, or parenteral, such as buccal, intratracheal, rectal, subcutaneous, intramuscular and intravenous.
  • parenteral such as buccal, intratracheal, rectal, subcutaneous, intramuscular and intravenous.
  • intravenous administration can be mentioned.
  • Examples of the dosage form include sprays, capsules, tablets, granules, syrups, emulsions, suppositories, injections, ointments, tapes and the like.
  • Suitable formulations for oral administration include emulsions, syrups, capsules, tablets, powders, granules and the like.
  • Liquid preparations such as emulsions and syrups include sugars such as water, sucrose, sorbitol and fructose, glycols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil and soybean oil, P-hydroxybenzoate It can be manufactured using preservatives such as acid esters, flavors such as stove leaf flavors and peppermint as additives.
  • Capsules, tablets, powders, granules, etc. are excipients such as lactose, glucose, sucrose and mannitol, disintegrants such as starch and sodium alginate, lubricants such as magnesium stearate and talc. It can be produced using additives such as binders such as polybulal alcohol, hydroxypropylcellulose and gelatin, surfactants such as fatty acid esters, plasticizers such as glycerin, and the like.
  • Suitable formulations for parenteral administration include injections, suppositories, sprays and the like.
  • the injection is prepared using a carrier such as a salt solution, a glucose solution, or a mixture of both.
  • a carrier such as a salt solution, a glucose solution, or a mixture of both.
  • Suppositories are prepared using a carrier such as cocoa butter, hydrogenated fat or carboxylic acid.
  • the propellant is prepared using the antibody of the present invention or a carrier that does not irritate the recipient's oral cavity and airway mucosa, and that facilitates absorption by dispersing the antibody or antibody fragment as fine particles.
  • the carrier include lactose and glycerin.
  • preparations such as aerosols and dry powders are possible.
  • the components exemplified as additives for oral agents can also be added.
  • the dose or frequency of administration varies depending on the desired therapeutic effect, administration method, treatment period, age, body weight, etc.
  • the normal adult dose is 0.01 mg / kg to 20 mg / kg per day.
  • Anti-CD10 antibody NL-1 producing hybridoma cells NL-l [Proc. Natl. Acad. Sci. USA, 79, 4 386 (1982)] 5 ⁇ 10 7 cells, Fast Track mRNA Isolation Kit NL-1-derived mRNA was prepared using Invitrogen according to the attached instruction manual.
  • H chain is a fragment of mouse Cy2acDNA [Nature, 283, 7 86 (1980)]
  • the L chain was a mouse C ⁇ cDNA fragment [Cell, 22, 197 (1980)]. 10 clones of H and L chains were obtained as phage clones that strongly bound to the probe.
  • each phage clone was converted into a plasmid by the in vivo excision method according to the instruction manual of ⁇ Predigested EcoRI / CIAP- Treated Vector Kit (Stratagene).
  • ⁇ Predigested EcoRI / CIAP- Treated Vector Kit (Stratagene).
  • the entire nucleotide sequence of the VH of NL-1 contained in the plasmid pNL-lH containing the H chain cDNA is shown in SEQ ID NO: 29, and the entire amino acid sequence of the VH of NL-1 that is predicted to have this sequence power is shown in SEQ ID NO: 30. Included in the plasmid pNL-lL! /, The entire nucleotide sequence of the VL of NL-1 is shown in SEQ ID NO: 31, and the entire amino acid sequence of the VL of NL-1 deduced from the sequence is shown in SEQ ID NO: 32. It was.
  • VH amino acid sequence of human CDR-grafted antibody that specifically binds to CD10 (hereinafter referred to as anti-CD10 CDR grafted antibody)
  • the amino acid sequence was designed as follows. [0080] The amino acid sequence of FR of VH of a human antibody for grafting the amino acid sequences of CDR1, 2, and 3 of VH shown in SEQ ID NOs: 2, 3, and 4 was selected. BLASTP method [Nucleic Acid Res., 2
  • the amino acid sequence of VL of the anti-CD10 CDR grafted antibody was designed as follows.
  • the amino acid sequence of FR of human antibody VL for grafting the amino acid sequences of CDR1, 2, and 3 of VL of anti-CD10 mouse antibody NL-1 shown in SEQ ID NOs: 5, 6 and 7 was selected.
  • Table 1 shows the results of a homology search between the FR amino acid sequence of the consensus sequence of each VL subgroup of human antibodies and the FR amino acid sequence of NL-1 VL. As shown in Table 1. The amino acid sequence of FR of VL of NL-1 had the highest homology with subgroup IV! /.
  • the CD Rl of VL of the anti-CD10 mouse antibody NL-1 shown in SEQ ID NOs: 5, 6 and 7 was placed at an appropriate position of the FR amino acid sequence of the consensus sequence of subgroup IV of human antibody VL
  • the amino acid sequence LV0 of the VL of the anti-CD10 CDR-grafted antibody shown in SEQ ID NO: 10 was designed.
  • SEQ ID NO: 11 shows the nucleotide sequence of cDNA encoding the amino acid sequence.
  • VH amino acid sequence HV0 and VL amino acid sequence LV0 of the anti-CD10 CDR-grafted antibody designed above were transplanted only with the CDR amino acid sequence of the anti-CD10 mouse antibody NL-1 in the FR amino acid sequence of the selected human antibody.
  • Force as a sequence human CDR-grafted antibodies often have a reduced antigen-binding activity only by grafting the amino acid CDR sequences of mouse antibodies. Therefore, in order to avoid a decrease in the binding activity to the antigen, among the amino acid residues of FR that are different between the human antibody and the mouse antibody, the amino acid residues that are thought to affect the binding activity to the antigen are identified in the CDR.
  • the three-dimensional structure of the antibody V region HV0LV0 consisting of the VH amino acid sequence HV0 and the VL amino acid sequence LV0 of the anti-CD10 CDR-grafted antibody designed above was constructed using a computer modeling technique.
  • the three-dimensional structure coordinates were prepared using software AbM (Ox ford Molecular), and the three-dimensional structure was displayed using software RasMol (Glaxo) according to the attached instruction manual.
  • Anti-CD10 mouse antibody A computer model of the three-dimensional structure of the V region of NL-1 was constructed in the same manner.
  • a cDNA encoding the VH amino acid sequence HV0 of the anti-CD10 CDR-grafted antibody designed in Example 1 (1) of Example 1 was constructed by PCR as follows. The construction process is shown in Figure 1. In the following description, synthetic oligonucleotides and PCR primers manufactured by Fasmac were used as synthetic oligonucleotides and PCR primers.
  • the designed amino acid sequence was converted into a gene codon.
  • the frequency of use found in the nucleotide sequence of the antibody gene L3 ⁇ 4equence of Proteins of Immunological Interest, Ub Dept. Health ana Human Services (1991)]
  • the corresponding gene codon was determined.
  • the amino acid sequence of the complete antibody V region is encoded by linking the base sequence encoding the H chain, untranslated region and secretory signal sequence described in SEQ ID NO: 43 to the converted gene codon 5 and terminal side.
  • the nucleotide sequence of the cDNA was designed, and restriction enzyme recognition sequences for cloning into a humanized antibody expression vector were added to the 5 ′ and 3 ′ ends.
  • the synthetic oligonucleotide is added to a reaction solution containing 0.2 mM dNTPs and ImM magnesium chloride so that the final concentration becomes 0.02 ⁇ , and further 1 ⁇ M HVO-FW primer (SEQ ID NO: 18), 1 ⁇ m PCR reaction was performed using MHVO-RV primer (SEQ ID NO: 19) and 2.5 units of KOD polymerase (manufactured by Toyobo Co., Ltd.) to a total volume of 50 L.
  • the reaction conditions were 94 ° C, 55 ° C for 30 seconds, 74 ° C for 30 seconds, 30 cycles, and then 74 ° C for 10 minutes in 1 cycle.
  • the reaction solution was subjected to 2% agarose gel electrophoresis, and a PCR product of about 0.47 Kbp was collected using QIAEXII Gel extraction kit (Qiagen).
  • the recovered PCR product was inserted into the plasmid pCR-Blunt using Zero Blunt PCR Cloning Kit (Invitrogen) according to the attached instruction manual.
  • the resulting recombinant plasmid DNA solution is used to transform E. coli DH5 strain (manufactured by Toyobo Co., Ltd.), each plasmid is prepared from the transformed clone, and the base sequence of the PCR fragment inserted into the plasmid is determined.
  • the base sequence is analyzed by ABI PRISM 377, and the target base is analyzed by BigDye Terminator Cycle sequencing FS Ready Reaction Kit Applied Biosystems). It was confirmed that the plasmid pCRHVO having the sequence could be obtained.
  • a cDNA encoding the VH amino acid sequence HV2 of the anti-CD10 CDR-grafted antibody designed in item 1 (4) of this example was constructed in the same manner as described above.
  • the construction process is shown in Figure 2.
  • four synthetic oligonucleotides having the base sequences shown in SEQ ID NOs: 14, 39, 40 and 41 were used as the synthetic oligonucleotides.
  • base configuration The sequence was analyzed and it was confirmed that the plasmid PCRHV2 having the target nucleotide sequence could be obtained.
  • a cDNA encoding the VL amino acid sequence LV0 of the anti-CD10 CDR-grafted antibody designed in item 1 (2) of this example was constructed as follows. The construction process is shown in Figure 3. For the 5 ′ untranslated region and the secretory signal sequence, the base sequence described in SEQ ID NO: 42 was used. First, four synthetic oligonucleotides having the base sequences shown in SEQ ID NOs: 20, 21, 22, and 23 were designed and synthesized in the same manner as in the above item 2.
  • the reaction solution was subjected to 2% agarose gel electrophoresis, and a PCR product of about 0.44 Kbp was recovered using a QIAEXII Gel extraction kit (Qiagen).
  • the recovered PCR product was inserted into the plasmid pCR-Blunt using Zero Blunt PCR Cloning Kit (Invitrogen) according to the attached instruction manual.
  • the resulting recombinant plasmid DNA solution was E.
  • coli DH5 a strain (manufactured by Toyobo) was transformed using, preparing each plasmid from clone transformants flame, the base sequence of the inserted PCR fragments bra plasmid After reaction using the BigDye Terminator Cycle Sequencing FS Ready Reaction Kit (Applied Biosystems) according to the attached instruction manual, the base sequence is analyzed by ABI PRISM 377, the company's base sequence automatic analyzer, and the target base It was confirmed that the plasmid pCRLVO having the sequence could be obtained.
  • a cDNA encoding LV9 designed in item 1 (3) of this example was constructed in the same manner as described above.
  • the construction process is shown in Figure 4.
  • synthetic oligonucleotides include four synthetic oligonucleotides having the nucleotide sequences shown in SEQ ID NOs: 20, 26, 27, and 28, LVO-FW primer (SEQ ID NO: 24), and 1 ⁇ M LV0-RV primer ( SEQ ID NO: 5 5) was used.
  • the base sequence was analyzed, and it was confirmed that the plasmid pCR LV9 having the target base sequence could be obtained.
  • the anti-CD10C DR graft antibody expression vector pKANTEX3061chimeraHLV0 And pKANTEX3061HV0L V0 was constructed as follows. The construction process is shown in Fig. 5 and Fig. 6, respectively.
  • Plasmid pCRLVO was digested with restriction enzymes BsiWI (New England Biolabs) and restriction enzyme EcoRI (Takara Shuzo), and then subjected to agarose gel electrophoresis to recover an approximately 0.44 kb BsiWI-E coRI fragment.
  • the anti-CD10 chimeric antibody expression vector was digested with restriction enzymes BsiWI (New England Biolabs) and restriction enzyme EcoRI (Takara Shuzo) and then subjected to agarose gel electrophoresis to recover an approximately 13.2 kb BsiWI-EcoRI fragment.
  • the recovered plasmid pCRLVO-derived BsiWI-EcoRI fragment and the anti-CD10 chimeric antibody expression vector-derived BsiWI-EcoRI fragment were ligated using Ligation High (Toyobo) according to the attached instructions.
  • the resulting recombinant plasmid DNA solution is used to transform Escherichia coli DH5a strain (manufactured by Toyobo Co., Ltd.), and each plasmid is prepared from a difficult-to-transform clone.
  • the plasmid item 1 J is stored in BigDyeTerminator Cycle sequencing FS Ready.
  • the base sequence is analyzed by ABI PRISM 377, the company's base sequence autoanalyzer, and the anti-CD10 CDR-grafted antibody having the target base sequence 0 expression vector pKANTEX3061chimeraHLV0 was sure that can be acquired
  • the plasmid pCRHVO was digested with the restriction enzymes Apal (Takara Shuzo) and the restriction enzyme Notl (Takara Shuzo) and then subjected to agarose gel electrophoresis to recover an Apd-Notl fragment of about 0.47 kb.
  • the plasmid pKANTEX3061chimeraHLV0 obtained above was digested with restriction enzymes Apal (Takara Shuzo) and restriction enzyme Notl (Takara Shuzo), and then subjected to agarose gel electrophoresis to recover an approximately 13.2 kb Apal-Notl fragment.
  • the anti-CD10 CDR-grafted antibody expression vector pKANTEX3061HV0LV0 was digested with restriction enzymes EcoRI (Takara Shuzo) and restriction enzyme BsiWI (Takara Shuzo) and then subjected to agarose gel electrophoresis to recover an EcoRI-BsiWI fragment of about 13.2 kb.
  • plasmid pCRLV9 was digested with restriction enzymes EcoRI (Takara Shuzo) and restriction enzyme BsiWI (Takara Shuzo) and then subjected to agarose gel electrophoresis to recover about 0.47 kb EcoR to BsiWI fragment.
  • the collected anti-CD10 CDR-grafted antibody expression vector pKANTEX3061HV0LV0-derived Apal-Notl fragment and plasmid pCRHV9-derived Apd-Notl fragment were ligated using Ligation High (manufactured by Toyobo) according to the attached instructions.
  • the resulting recombinant DNA solution is used to transform Escherichia coli DH5 strain (manufactured by Toyobo Co., Ltd.).
  • Each plasmid is prepared from the transformed clone, and the nucleotide sequence of the plasmid is determined as BigDye Terminator Cycle Sequencing FS.
  • the base sequence is analyzed with the company's automated base sequence analyzer ABI PRISM 377, and the anti-CD 10 CDR-grafted antibody with the desired base sequence It was confirmed that the vector pKANTEX3061 HV0LV9 was obtained.
  • an anti-CD10 CDR-grafted antibody expression vector pKANTEX3 061HV2LV9 was constructed using the anti-CD10 CDR-grafted antibody expression vector pKANTEX3061HV0LV9 and the plasmid PCRHV2 obtained above.
  • the construction process is shown in Figure 8.
  • plasmid pCRHV2 was digested with restriction enzyme Notl (Takara Shuzo) and restriction enzyme Apal (Takara Shuzo) and then subjected to agarose gel electrophoresis to recover a Notl-Apal fragment of about 0.47 kb.
  • the base sequence is analyzed with the company's automated base sequence analyzer ABI PRISM 377, and the anti-CD 10 CDR-grafted antibody with the desired base sequence It was confirmed that the vector pKANTEX3061 HV2LV9 was obtained.
  • the FUT8 gene double knockout CHO cells were used as host cells, and the anti-CD10 CDR-grafted antibody was stabilized. An expression strain was obtained.
  • the FUT8 gene double knockout CHO cell was produced according to the method described in WO03 / 85107.
  • the transformants obtained using FUT8 gene double knockout CHO cells as hosts are the transformants obtained by introducing the anti-CD10 CDR grafted antibody expression plasmid pKANTEX3061HV0LV0, the HV0LV0MS705 strain, and the anti-CD10 CDR grafted antibody expression plasmid.
  • the transformed strains obtained by introducing pKANTE X3061HV0LV9 are referred to as HV0LV9MS705 strain, respectively.
  • the transformed strain obtained by introducing the anti-CD10 CDR grafted antibody expression plasmid pKANTEX3061HV2LV9 is referred to as HV2LV9MS705 strain.
  • Each of the above transformants was prepared by using a basic medium containing 10% G418 at a concentration of 500 ⁇ g / mL (10% urine fetal dialyzed serum [Invitrogen]]) and 50 ⁇ g / mL Gentamycin (Nacalai Tester). And 1 X HT supplement (Invitrogen) supplemented with Iscove's Modified Dulbecco's Medium (Invitrogen) and 30 mL in a 182 cm 2 flask (Grainer) The cells were cultured for several days at 37 ° C in a 5% CO incubator. Cell density is confluent
  • the culture solution was removed, the cells were washed with 25 mL of PBS, and then 30 mL of EXCELL301 medium (manufactured by JRH Biosciences) was injected. 7 days at 37 ° C in a 5% CO incubator
  • the cell suspension was collected, 3000 rpm, 4 after recovering the supernatant culture Youe by centrifugation for 5 minutes at a ° C, the culture supernatant 0.22 i um pore size Mille X GV filter (Miripoa The solution was sterilized by filtration.
  • Each anti-CD10 CDR transfer antibody was purified from the culture supernatant obtained by the above method using a Mab Select (Amersham Biosciences) column according to the attached instructions.
  • the anti-CD10 CDR-grafted antibody obtained from HV0LV0MS705 strain was MS 705 / HV0LV0 antibody
  • the anti-CD10 CDR-grafted antibody obtained from HV0LV9MS705 was MS705 / HV0LV9 antibody
  • the anti-CD10 CDR-grafted antibody obtained from HV2LV9MS705 was MS705 / HV2L V9
  • the HV 0LV9MS705 strain which is a transformant producing anti-CD10 CDR-grafted antibody, was obtained from the National Institute of Advanced Industrial Science and Technology, National Institute of Advanced Industrial Science and Technology (AIST Tsukuba 1-chome, Ibaraki, Japan) on August 17, 2004. Deposited as FERM B P-10099 at address 1 center 6)!
  • Example 2 Various anti-CD10 CDR-grafted antibodies obtained in Example 2 were measured by the method described below.
  • the antigen was a human lung small cell carcinoma cell line SBC-3 cell (JCRB0818) with high CD10 expression.
  • the membrane fraction was suspended in 20 mM HEPES (pH 7.4) buffer containing ImM EDTA and 250 mM Sucrose, disrupted with a homogenizer, and centrifuged at 8000 X g at low speed to remove intracellular granules and The disrupted cells were precipitated and removed, and the target cell membrane was separated by centrifugation at a high speed of 80000 X g.
  • the separated membrane fraction was dissolved in PBS containing Trit on-X100 at a concentration of 0.1%, and after quantifying the protein, it was adjusted to 10 / zg / mL and added to a 96-well ELISA plate (manufactured by Grainer). It was dispensed with 50 ⁇ L / well and left to stand at 4 ° C for adsorption. After washing with PBS, 1% BSA-PBS was covered with 100 / z L / well and reacted at room temperature for 1 hour to block remaining active groups.
  • the ADCC activity of the purified anti-CD10 CDR grafted antibody obtained in Example 2 was measured by the method described below. However, Raji cells (JCRB9012) and Daudi cells (JCRB 9071) were used as target cells, and Polymorphprep (manufactured by NYCOMED) was used to prepare effector cell solutions.
  • RPMI1640- FCS (IO) medium RPI1640 medium (GIBCO BRL) containing 10% FCS
  • Raji cells JCRB9012
  • Daudi cells JCRB9071
  • the effector cell solution prepared in (2) is 50 L (2.5 X 10 5 cells / well, the ratio of effector cells to target cells is 35: 1. Added).
  • various anti-CD10 chimeric antibodies were diluted with ADCC activity measurement medium, and adjusted to a final concentration of 0.001 to 1 ⁇ g / mL to a total volume of 150 L and reacted at 37 ° C for 4 hours. .
  • ADCC activity (%) ⁇ (absorbance at each sample concentration-absorbance of effector cells and target cells spontaneous release) I (absorbance of total release of target cells-absorbance of spontaneous release of target cells) ⁇ X 100
  • ADCC activity antibody-dependent cytotoxic activity
  • Burkitt's lymphoma cell line Daudi (JCRB9071) cultured in MI1640- FCS (10) medium (RPMI1640 medium (GIBCO BRL) containing 10% FCS) was centrifuged and suspended to measure CDC activity measurement medium (1.4% After washing with urushi serum albumin (RPB1640 medium containing GIBCO BRL), it was adjusted to 1 ⁇ 10 6 cells / mL with a medium for measuring CDC activity, and used as a target cell solution.
  • 50 ⁇ L (5 ⁇ 10 4 cells / well) of the target cell solution prepared in a) above was dispensed to each wall of a 96-well flat-bottom plate (SUMILON).
  • various antibody solutions were diluted with a medium for measuring CDC activity, and 50 L was prepared so that each final concentration was 0.001 to 10 g / mL.
  • 50 ⁇ L of the complement solution prepared in b) was added to make the total volume 150 L, and the reaction was carried out at 37 ° C for 2 hours.
  • a well containing 50 L of a complement solution 50 liter CDC activity measurement medium (Blank), and a target cell solution, complement solution, and CDC activity measurement medium 50 ⁇ L each (Tot al ) was produced.
  • Cytotoxic activity (%) [1 1 (Sample absorbance 1 Blank absorbance) / (Total absorbance 1 Blank absorbance)] X 100
  • FIG. 10 shows the activity of MS705 / HV0LV9 anti-CD10 CDR-grafted antibody, MS705 / HV2LV9 anti-CD10 CDR-grafted antibody and MS705 / KM3317 anti-CD10 human chimeric antibody against Daudi cells.
  • the MS705 / HV0LV9 anti-CD10 CDR-grafted antibody and the MS705 / HV2LV9 anti-CD10CD R-grafted antibody showed CDC activity equivalent to that of the MS705 / KM3317 anti-CD10 human chimeric antibody.
  • B-ALL cells B-cell acute lymphoblastic leukemia
  • CDR-grafted humanized antibody MS705 / HV2LV9 were conducted in a mouse xenograf survival model system. Measure the body weight of SCID mice (CLEA, female, 7 weeks old) the day before transplantation, control group, antibody administration group MS705 / KM3317-1 mg / kg, MS 705 / HV2LV9-0.1 mg / kg, 1 mg / kg The total was divided into 4 groups (7 per group).
  • the present invention can provide a human CDR-grafted antibody that specifically binds to CD10.
  • the antibody of the present invention can be used as a therapeutic agent for humans.
  • SEQ ID NO: 8 Description of artificial sequence: amino acid sequence of antibody heavy chain variable region
  • SEQ ID NO: 10 Description of artificial sequence: amino acid sequence of antibody light chain variable region
  • SEQ ID NO: 12 Description of artificial sequence: amino acid sequence of antibody light chain variable region
  • SEQ ID NO: 15 Description of artificial sequence: synthetic DNA
  • SEQ ID NO: 17 Description of artificial sequence: synthetic DNA
  • SEQ ID NO: 18 Description of artificial sequence: synthetic DNA
  • SEQ ID NO: 21 Description of artificial sequence: synthetic DNA
  • SEQ ID NO: 22--Description of artificial sequence synthetic DNA

Abstract

 本発明は、CD10に特異的に反応するヒト型CDR移植抗体または該抗体断片、ヒト型CDR移植抗体または該抗体断片をコードするDNA、該DNAを含有する組換え体ベクター、該組換え体ベクターを宿主細胞に導入して得られる形質転換株を提供する。また、本発明は、CD10に特異的に反応するヒト型CDR移植抗体または該抗体断片を有効成分として含有する医薬およびCD10関連疾患の治療薬を提供する。

Description

CD10に特異的に反応するヒト型 CDR移植抗体およびその抗体断片 技術分野
[0001] 本発明は、 CD10に対して特異的に反応するヒト型 CDR移植抗体およびその抗体断 片に関する。さらに、本発明は、該抗体およびその抗体断片を用いる医薬に関する。 背景技術
[0002] 血液学の分野では抗血清あるいはモノクローナル抗体を用いた解析により、早くか ら血球関連の分化抗原の研究が進められ、 CD (Cluster of differentiation)分類として 国際的に整理が進んできた。現在白血球を中心として様々な細胞に発現する数多く の抗原が CD分類されて 、る (非特許文献 1)。
また、モノクローナル抗体を用いた解析により、腫瘍関連抗原と呼ばれる腫瘍に特 異的あるいは選択的に発現している抗原の生化学的解析や遺伝子のクローユング、 機能解析が進められてきた。現在では、白血病、リンパ腫を中心とした造血器腫瘍に おいても腫瘍関連抗原の発現解析は血清診断及び病期進展のモニタリングに広く 使用されている。
[0003] CD10は前述のような過程で見出された分子で、急性リンパ球性白血病(acute lymp hoblastic leukemia; ALL)糸田胞表 に発現力 21 g¾めりれ、 common acute lymphoblastic leukemia antigen (CALLA)と呼ばれて!/、た腫瘍関連抗原の一つの分子である(非特 許文献 2)。その後の研究により、 ALLのほ力、慢性骨髄性白血病(chronic myelocyt e leukemia; CML)やバーキットリンパ腫等の非ホジキンリンパ腫等の造血器腫瘍にも 発現していることが明らかになった。また、白血球では好中球、一部の B細胞にも発 現が認められることが知られている(非特許文献 3)。
[0004] 以前力 の生化学的な解析により、 CD10は分子量約 100kDaの 2型膜貫通型糖蛋 白質であることがわ力つていた力 さらに、分子生物学的手法を用いた解析により、こ れまで neutral endopeptidase (NEP、 EC3.4.24.11)、 enkephalinaseと呼ばれていた分 子と同一であることが明らかになった。また、 CDl(^¾enkephalin、 atrial natriuretic fac torもしくは atrial natriuretic peptide (ANFまたは ANP)、 substans P等、種々のぺプチ ドホルモンの分解活性を持ち、それらの活性を調節している(非特許文献 3、 4)。また 、B細胞の増殖'分ィ匕等に関与していることも報告された (非特許文献 4)。
[0005] さらに最近、造血器腫瘍のみならず、肝癌、腎癌、移行上皮癌、前立腺癌、子宮内 膜癌等の固形癌ある!/、はその間質組織にも発現して 、ることが報告されて 、る(非特 許文献 5、 6、 7)。
以上のことから、 CD10を発現する細胞を患者体内から除去するための治療剤は、 CD10が発現しているリンパ腫、白血病等の種々の癌、および CD10が発現している 細胞 (B細胞、好中球)が介在する炎症性疾患の治療剤として有用であることが期待 される。
[0006] これまでに、 CD10に対する抗体は、 J5抗体 (非特許文献 8)および NL-1抗体 (非特 許文献 9)などが報告されている力 これらの抗体はいずれもマウス抗体である。また 、マウスミエローマ細胞 X63Ag8.653を宿主産生細胞に用いたヒト CD10発現細胞に対 して細胞傷害活性を示すヒ HgGl型の抗 CD10キメラ抗体 (非特許文献 10、特許文献 1〜3)も報告されている。し力しながら、 CD10に特異的に反応性を有する CDR移植 抗体は知られていない。
[0007] 一般にヒト以外の動物の抗体をヒトに投与すると、異物として認識され、副作用を惹 起することや (非特許文献 11〜: L4)、抗体の体内力もの消失を速めることにより(非特 許文献 12、 14、 15)、抗体の治療効果を減じてしまうことが知られている(非特許文 献 16、 17)。
これらの問題点を解決するために遺伝子組換え技術を利用して、ヒト以外の動物の 抗体をヒト型 CDR移植抗体などのヒト化抗体にすることが試みられて 、る(非特許文 献 18)。ヒト化抗体は、ヒト以外の動物の抗体に比べ、副作用が軽減され (非特許文 献 19)、治療効果が延長される (非特許文献 20、 21)。
非特許文献 1 : Expert Opin. Biol. Ther., 1, 375 (2001)
非特許文献 2 : J. Exp. Med., 168, 1247 (1988)
非特許文献 3 : Blood, 73, 62 (1989)
非特許文献 4: Blood, 82, 1052 (1993)
非特許文献 5 nticancer Res., 17, 3233 (1997) 非特許文献 6: Am. J. Pathol, 159, 1415 (2001)、
非特許文献 7:Am. J. Clin. Pathol, 113, 374 (2000)]
非特許文献 8: Blood, 58, 648 (1981)
非特許文献 9:Proc. Natl. Acad. Sci. U S A., 79, 4386(1982)
非特許文献 10: Cancer Res., 47, 999 (1987)
非特許文献 11 :J. Clin. Oncol, 2, 881 (1984)
非特許文献 12: Blood, 65, 1349 (1985)
非特許文献 13: J. Natl. Cancer Inst., 80, 932 (1988)
非特許文献 14:Proc. Natl. Acad. Sci. U.S.A., 82, 1242 (1985)
非特許文献 15: J. Nucl. Med., 26, 1011 (1985)
非特許文献 16: J. Immunol, 135, 1530 (1985)
非特許文献 17: Cancer Res., 46, 6489 (1986)
非特許文献 18: Nature, 321, 522 (1986)
非特許文献 19:Proc. Natl. Acad. Sci. U.S.A., 86, 4220 (1989)
非特許文献 20: Cancer Res., 56, 1118 (1996)
非特許文献 21: Immunol., 85, 668 (1995)]
特許文献 1:JP1966042
特許文献 2:EP184187
特許文献 3:US4935496
発明の開示
発明が解決しょうとする課題
[0008] 本発明の目的は、 CD10に特異的に反応するヒト型 CDR移植抗体、該抗体を有効 成分として含有する CD10関連疾患の治療薬を提供することにある。
課題を解決するための手段
[0009] 本発明は、以下の(1)〜(17)に関する。
(1) 抗体の重鎖(H鎖)可変領域(V領域)力 配列番号 8で示されるアミノ酸配列 、または配列番号 8で示されるアミノ酸配列のうち、 1番目の Glu、 16番目の Arg、 18番 目の Leu、 42番目の Gly、 80番目の Tyr、 84番目の Asnおよび 98番目の Argから選ばれ る少なくとも 1つのアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列を含む、 CD10に特異的に反応するヒト型 CDR移植抗体またはその抗体断片。
[0010] (2) 抗体の軽鎖(L鎖)可変領域 (V領域)が、配列番号 10で示されるアミノ酸配列 、または配列番号 10で示されるアミノ酸配列のうち、 9番目の Asp、 10番目の Ser、 11番 目の Leu、 22番目の Asn、 42番目の Gly、 43番目の Gln、 44番目の Pro、 47番目の Leu、 48番目の Leu、 61番目の Asp、 71番目の Asp、 72番目の Phe、 73番目の Thr、 79番目の Leu、 80番目の Ginおよび 86番目の Valから選ばれる少なくとも 1つのアミノ酸残基が他 のアミノ酸残基に置換されたアミノ酸配列を含む、 CD10に特異的に反応するヒト型 C DR移植抗体またはその抗体断片。
[0011] (3) 抗体の重鎖(H鎖)可変領域(V領域)力 配列番号 8で示されるアミノ酸配列 、または配列番号 8で示されるアミノ酸配列のうち、 1番目の Glu、 16番目の Arg、 18番 目の Leu、 42番目の Gly、 80番目の Tyr、 84番目の Asnおよび 98番目の Argから選ばれ る少なくとも 1つのアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列を含み、 かつ抗体の軽鎖(L鎖)可変領域(V領域)力 配列番号 10で示されるアミノ酸配列、 または配列番号 10で示されるアミノ酸配列のうち、 9番目の Asp、 10番目の Ser、 11番 目の Leu、 22番目の Asn、 42番目の Gly、 43番目の Gln、 44番目の Pro、 47番目の Leu、 48番目の Leu、 61番目の Asp、 71番目の Asp、 72番目の Phe、 73番目の Thr、 79番目の Leu、 80番目の Ginおよび 86番目の Valから選ばれる少なくとも 1つのアミノ酸残基が他 のアミノ酸残基に置換されたアミノ酸配列を含む、(1)または(2)記載のヒト型 CDR移 植抗体またはその抗体断片。
[0012] (4) 抗体の重鎖(H鎖)可変領域(V領域)力 配列番号 8、 35または 37で示され るアミノ酸配列の 、ずれかを含む、 (1)または(3)に記載のヒト型 CDR移植抗体また はその抗体断片。
(5) 抗体の軽鎖(L鎖)可変領域 (V領域)が、配列番号 10、 12または 33で示され るアミノ酸配列の 、ずれかを含む、 (2)〜(4)の!、ずれ力 1項に記載のヒト型 CDR移 植抗体またはその抗体断片。
[0013] (6) 抗体の重鎖(H鎖)可変領域(V領域)力 配列番号 8、 35または 37で示され るアミノ酸配列のいずれかを含み、かつ抗体の軽鎖(L鎖)可変領域(V領域) 1S 配 列番号 10、 12または 33で示されるアミノ酸配列の!/、ずれかを含む(3)〜(5)の!、ず れカ 1項に記載のヒト型 CDR移植抗体またはその抗体断片。
(7) 配列番号 1で示されるアミノ酸配列の 52〜750番目に存在するェピトープに 反応することを特徴とする、 (1)〜(6)のいずれか 1項に記載のヒト型 CDR移植抗体ま たはその抗体断片。
[0014] (8) FERM BP-10099から生産されるモノクローナル抗体が認識するェピトープに 反応することを特徴とする、ヒト型 CDR移植抗体またはその抗体断片。
(9) 抗体断片が、 Fab, Fab'、 F(ab')、 1本鎖抗体(scFv)、 2量体化可変領域(V領
2
域)断片 (Diabody),ジスルフイド安定化 V領域断片 (dsFv)および相補性決定領域( CDR)を含むペプチドから選ばれる抗体断片である(1)〜(8)のいずれか 1項に記載 の抗体断片。
[0015] (10) (1)〜(9)のいずれか 1項に記載されたヒト型 CDR移植抗体またはその抗体 断片が、放射性同位元素、蛋白質または薬剤と結合しているヒト型 CDR移植抗体ま たはその抗体断片。
(11) (1)〜(10)のいずれか 1項に記載のヒト型 CDR移植抗体またはその抗体断 片をコードする DNA。
[0016] (12) (11)記載の DNAを含有する組換え体ベクター。
(13) (12)記載の組換え体ベクターを宿主細胞に導入して得られる形質転換株。
(14) 形質転換株が、 HV0LV9MS705(FERM BP-10099)である(13)記載の形質 転^ tt。
[0017] (15) (13)または(14)記載の形質転換株を培地に培養し、培養物中に(1)〜(9) のいずれか 1項に記載のヒト型 CDR移植抗体またはその抗体断片を生成蓄積させ、 該培養物から該抗体または該抗体断片を採取することを特徴とするヒト型 CDR移植 抗体またはその抗体断片の製造方法。
(16) (1)〜(9)のいずれか 1項に記載のヒト型 CDR移植抗体またはその抗体断片 を有効成分として含有する医薬。
[0018] (17) (1)〜(9)のいずれか 1項に記載のヒト型 CDR移植抗体またはその抗体断 片を有効成分として含有する CD10関連疾患の治療薬。 発明の効果
[0019] 本発明によれば、 CD10に特異的に結合するヒト型 CDR移植抗体が提供される。本 発明の抗体は、ヒトに対する治療薬として用いることができる。
図面の簡単な説明
[0020] [図 1]は、プラスミド pCRHVOの構築を示した図である。
[図 2]は、プラスミド pCRHV2の構築を示した図である。
[図 3]は、プラスミド pCRLVOの構築を示した図である。
[図 4]は、プラスミド pCRLV9の構築を示した図である。
[図 5]は、抗 CD10CDR移植抗体発現ベクター pKANTEX3061chimeraHLV0の構築を 示した図である。
[図 6]は、抗 CD10CDR移植抗体発現ベクター pKANTEX3061HVOLV0の構築を示し た図である。
[図 7]は、抗 CD10CDR移植抗体発現ベクター pKANTEX3061HVOLV9の構築を示し た図である。
[図 8]は、抗 CD10CDR移植抗体発現ベクター pKANTEX3061HV2LV9の構築を示し た図である。
[図 9]は、精製した MS705/HV0LV9抗体および、 MS705/HV2LV9のヒト非ホジキンリ ンパ腫細胞株である Daudi細胞または Raji細胞に対する ADCC活性を示した図である 。横軸に抗体濃度を、縦軸に各抗体濃度における ADCC活性 (%)をそれぞれ示す。 Aは標的細胞に Daudi細胞を、 Bは標的細胞に Raji細胞を用いた結果をそれぞれ示 す。
[図 10]は、精製した MS705/HV0LV9抗体および、 MS705/HV2LV9のヒト非ホジキンリ ンパ腫細胞株である Daudi細胞に対する CDC活性を示した図である。横軸に抗体濃 度を、縦軸に各抗体濃度における CDC活性(%)をそれぞれ示す。
[図 11]は、横軸は移植後の日数、縦軸は体重をそれぞれ表したグラフである。 Xはコ ントロール群、國は MS705/KM3317 1 mg/kg投与群、〇は MS705/HV2LV9 0.1 mg/ kg投与群、△は MS705/HV2LV9 1 mg/kg投与群をそれぞれ示す。バーは標準偏差 を示す。 [図 12]は、横軸は移植後の日数、縦軸は生存率をそれぞれ表したグラフである。 X はコントロール群、■は MS705/KM3317 1 mg/kg投与群、〇は MS705/HV2LV9 0.1 mg/kg投与群、△は MS705/HV2LV9 1 mg/kg投与群をそれぞれ示す。バーは標準 偏差を示す。
発明を実施するための最良の形態
本発明における CD10に特異的に反応するヒト型 CDR移植抗体 (抗 CD10CDR移植 抗体)およびその抗体断片(以下、両者を総称して本発明の抗体と表記することもあ る)としては、抗体の重鎖 (H鎖)可変領域(V領域)力 配列番号 8で示されるアミノ酸 配列、または配列番号 8で示されるアミノ酸配列のうち、 1番目の Glu、 16番目の Arg、 18番目の Leu、 42番目の Gly、 80番目の Tyr、 84番目の Asnおよび 98番目の Argから選 ばれる少なくとも 1つのアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列を 含む、 CD10に特異的に反応するヒト型 CDR移植抗体またはその抗体断片、抗体の 軽鎖(L鎖)可変領域 (V領域)が、配列番号 10で示されるアミノ酸配列、または配列番 号 10で示されるアミノ酸配列のうち、 9番目の Asp、 10番目の Ser、 11番目の Leu、 22番 目の Asn、 42番目の Gly、 43番目の Gln、 44番目の Pro、 47番目の Leu、 48番目の Leu、 61番目の Asp、 71番目の Asp、 72番目の Phe、 73番目の Thr、 79番目の Leu、 80番目の Ginおよび 86番目の Val力 選ばれる少なくとも 1つのアミノ酸残基が他のアミノ酸残基 に置換されたアミノ酸配列を含む、 CD10に特異的に反応するヒト型 CDR移植抗体ま たはその抗体断片、抗体の重鎖(H鎖)可変領域(V領域)力 配列番号 8で示される アミノ酸配列、または配列番号 8で示されるアミノ酸配列のうち、 1番目の Glu、 16番目 の Arg、 18番目の Leu、 42番目の Gly、 80番目の Tyr、 84番目の Asnおよび 98番目の gから選ばれる少なくとも 1つのアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸 配列を含み、かつ抗体の軽鎖(L鎖)可変領域(V領域)力 配列番号 10で示される アミノ酸配列、または配列番号 10で示されるアミノ酸配列のうち、 9番目の Asp、 10番 目の Ser、 11番目の Leu、 22番目の Asn、 42番目の Gly、 43番目の Gln、 44番目の Pro、 47番目の Leu、 48番目の Leu、 61番目の Asp、 71番目の Asp、 72番目の Phe、 73番目の Thr、 79番目の Leu、 80番目の Ginおよび 86番目の Valから選ばれる少なくとも 1つのァ ミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列を含む、 CD10に特異的に 反応するヒト型 CDR移植抗体またはその抗体断片であれば 、ずれでもよぐ好ましく は、抗体の重鎖(H鎖)可変領域(V領域)力 配列番号 8、 35または 37で示されるァ ミノ酸配列のいずれかを含む、 CD10に特異的に反応するヒト型 CDR移植抗体または その抗体断片、抗体の軽鎖(L鎖)可変領域 (V領域)が、配列番号 10、 12または 33 で示されるアミノ酸配列のいずれかを含む、 CD10に特異的に反応するヒト型 CDR移 植抗体またはその抗体断片、抗体の重鎖(H鎖)可変領域 (V領域)が、配列番号 8、 35または 37で示されるアミノ酸配列のいずれかを含み、かつ抗体の軽鎖(L鎖)可変 領域(V領域)力 配列番号 10、 12または 33で示されるアミノ酸配列のいずれかを含 む CD10に特異的に反応するヒト型 CDR移植抗体またはその抗体断片などがあげら れる。
[0022] これらのアミノ酸配列において、 1以上のアミノ酸が欠失、付加、置換または挿入さ れ、かつ CD10と特異的に反応する抗体または抗体断片も本発明の範囲に包含され る。
本発明のアミノ酸配列において 1以上のアミノ酸残基が欠失、置換、挿入または付 カロされたとは、同一配列中の任意かつ 1もしくは複数のアミノ酸配列中の位置におい て、 1または複数のアミノ酸残基の欠失、置換、挿入または付加があることを意味し、 欠失、置換、挿入または付加が同時に生じてもよぐ置換、挿入または付加されるアミ ノ酸残基は天然型と非天然型とを問わない。天然型アミノ酸残基としては、 L-ァラ- ン、 L-ァスパラギン、 L-ァスパラギン酸、 L-グルタミン、 L-グルタミン酸、グリシン、 L-ヒ スチジン、 L-イソロイシン、 L-ロイシン、 L-リジン、 L-メチォニン、 L-フエ二ルァラニン、 し-プロリン、し-セリン、し-スレオニン、 L-卜リプ卜ファン、 L-チロシン、 L-ノ リン、 L-シス ティンなどがあげられる。
[0023] 以下に、相互に置換可能なアミノ酸残基の好ましい例を示す。同一群に含まれるァ ミノ酸残基は相互に置換可能である。
A群:ロイシン、イソロイシン、ノルロイシン、ノ リン、ノルパリン、ァラニン、 2-アミノブ タン酸、メチォニン、 0-メチルセリン、 t-ブチルグリシン、 t-ブチルァラニン、 シクロへキシルァラニン
B群:ァスパラギン酸、グルタミン酸、イソァスパラギン酸、イソグルタミン酸、 2-ァミノ アジピン酸、 2-アミノスべリン酸
C群:ァスパラギン、グルタミン
D群:リジン、アルギニン、オル二チン、 2,4-ジァミノブタン酸、 2,3-ジァミノプロピオ ン酸
E群:プロリン、 3-ヒドロキシプロリン、 4-ヒドロキシプロリン
F群:セリン、スレオニン、ホモセリン
G群:フエ-ルァラニン、チロシン
また、本発明の抗体は、好ましくは、配列番号 1に示されるアミノ酸配列の 52〜750 番目に存在するェピトープに特異的に反応するヒト型 CDR移植抗体およびその抗体 断片、 FERM BP-10099から生産されるモノクローナル抗体が認識するェピトープに 反応することを特徴とする、ヒト型 CDR移植抗体またはその抗体断片があげられる。
[0024] ヒト型 CDR移植抗体は、ヒト以外の動物の抗体の VHおよび VLの CDRのアミノ酸配 列をヒト抗体の VHおよび VLの適切な位置に移植した抗体をいう。
本発明のヒト型 CDR移植抗体は、 CD10に特異的に反応するヒト以外の動物の抗体 の VHおよび VLの CDRのアミノ酸配列を任意のヒト抗体の VHおよび VLの FRに移植し た V領域をコードする cDNAを構築し、ヒト抗体の CHおよび H鎖 C領域(以下、 CLと表 記する)をコードする DNAを有する動物細胞用発現ベクターにそれぞれ挿入してヒト 型 CDR移植抗体発現ベクターを構築し、動物細胞へ導入することにより発現させ、製 造することができる。
[0025] ヒト抗体の VHおよび VLの FRのアミノ酸配列を選択方法としては、ヒト抗体由来のも のであれば、いかなるものでも用いることができる。例えば、 Protein Data Bankなどの データベースに登録されて 、るヒト抗体の VHおよび VLの FRのアミノ酸配列、またはヒ ト抗体の VHおよび VLの FRの各サブグループの共通アミノ酸配列(Sequences of Prot eins of Immunological Interest, US Dept. Health and Human services, 1991)など;^ あげられる。
[0026] 本発明の抗体の CHとしては、ヒトイムノグロブリン(以下、 hlgと表記する)に属すれ ばいかなるものでもよいが、 hlgGクラスのものが好適であり、さらに hlgGクラスに属する gl、 g2、 g3、 g4といったサブクラスのいずれも用いることができる。また、ヒト型 CDR移 植抗体の CLとしては、 hlgに属すればいずれのものでもよぐ κクラスあるいは λクラ スのものを用いることができる。
[0027] 本発明の抗体断片としては、 Fab、 Fab'、 F(ab')、 scFv、 Diabody, dsFv、 CDRを含む
2
ペプチドなどがあげられる。
Fabは、 IgGを蛋白質分解酵素パパインで処理して得られる断片のうち(H鎖の 224 番目のアミノ酸残基で切断される)、 H鎖の N末端側約半分と L鎖全体がジスルフイド 結合(S-S結合)で結合した分子量約 5万の抗原結合活性を有する抗体断片である。
[0028] 本発明の Fabは、本発明の CD10に特異的に反応するヒト型 CDR移植抗体を蛋白質 分解酵素パパインで処理して得ることができる。または、該抗体の Fabをコードする DN Aを原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該ベクタ 一を原核生物あるいは真核生物へ導入することにより発現させ、製造することができ る。
F(ab')は、 IgGを蛋白質分解酵素ペプシンで処理して得られる断片のうち(H鎖の 2
2
34番目のアミノ酸残基で切断される)、 Fabがヒンジ領域の S-S結合を介して結合され たものよりやや大きい、分子量約 10万の抗原結合活性を有する抗体断片である。
[0029] 本発明の F(ab')は、本発明の CD10に特異的に反応するヒト型 CDR移植抗体を蛋
2
白質分解酵素ペプシンで処理して得ることができる。または、下記の Fab'をチォエー テル結合あるいは S-S結合させ、作製することができる。
Fab'は、上記 F(ab')のヒンジ領域の S_S結合を切断した分子量約 5万の抗原結合活
2
性を有する抗体断片である。
[0030] 本発明の Fab'は、本発明の CD10に特異的に反応する F(ab')を還元剤ジチオスレ
2
ィトール処理して得ることができる。または、 CD10に特異的に反応するヒト型 CDR移 植抗体の Fab'をコードする DNAを原核生物用発現ベクターあるいは真核生物用発現 ベクターに挿入し、該ベクターを原核生物あるいは真核生物へ導入することにより発 現させ、製造することができる。
[0031] scFvは、 1本の VHと 1本の VLとを 12残基以上の適当なペプチドリンカ一(P)を用い て連結した、 VH- P-VLないしは VL-P-VHポリペプチドで、抗原結合活性を有する抗 体断片である。 本発明の scFvは、本発明の CD10に特異的に反応するヒト型 CDR移植抗体の VHお よび VLをコードする cDNAを取得し、 scFvをコードする DNAを構築し、該 DNAを原核 生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該発現ベクターを 原核生物あるいは真核生物へ導入することにより発現させ、製造することができる。
[0032] Diabodyは、抗原結合特異性の同じまたは異なる scFvが 2量体を形成した抗体断片 で、同じ抗原に対する 2価の抗原結合活性または異なる抗原に対する 2特異的な抗 原結合活性を有する抗体断片である。
本発明の Diabodyは、例えば、 CD10に特異的に反応する 2価の Diabodyは、本発明 の CD10に特異的に反応するヒト型 CDR移植抗体の VHおよび VLをコードする cDNA を取得し、 3〜10残基のポリペプチドリンカ一を有する scFvをコードする DNAを構築し 、該 DNAを原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該 発現ベクターを原核生物あるいは真核生物へ導入することにより Diabodyを発現させ 、製造することがでさる。
[0033] dsFvは、 VHおよび VL中のそれぞれ 1アミノ酸残基をシスティン残基に置換したポリ ペプチドを該システィン残基間の S-S結合を介して結合させたものを ヽぅ。システィン 残基に置換するアミノ酸残基は Reiterらにより示された方法(Protein Engineering, 7, 697 (1994))に従って、抗体の立体構造予測に基づいて選択することができる。 本発明の dsFvは、本発明の CD10に特異的に反応するヒト型 CDR移植抗体の VHお よび VLをコードする cDNAを取得し、 dsFvをコードする DNAを構築し、該 DNAを原核 生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該発現ベクターを 原核生物あるいは真核生物へ導入することにより発現させ、製造することができる。
[0034] CDRを含むペプチドは、 VHまたは VLの CDRの少なくとも 1領域以上を含んで構成 される。
複数の CDRを含むペプチドは、直接または適当なペプチドリンカ一を介して結合さ せること〖こより製造することができる。
本発明の CDRを含むペプチドは、本発明の CD10に特異的に反応するヒト型 CDR 移植抗体の VHおよび VLの CDRをコードする cDNAを構築し、該 cDNAを原核生物用 発現ベクターあるいは真核生物用発現ベクターに挿入し、該発現ベクターを原核生 物あるいは真核生物へ導入することにより発現させ、製造することができる。また、 CD Rを含むペプチドは、 Fmoc法(フルォレ-ルメチルォキシカルボ-ル法)、 tBoc法(t- ブチルォキシカルボニル法)などの化学合成法によって製造することもできる。
[0035] 本発明の抗体は、本発明の抗体に薬剤を化学的にあるいは遺伝子工学的に結合 させた抗体の誘導体を包含する。
本発明の抗体の誘導体は、本発明の CD10に特異的に反応する抗体または抗体断 片の H鎖或いは L鎖の N末端側或いは C末端側、抗体または抗体断片中の適当な置 換基あるいは側鎖、さらには抗体または抗体断片中の糖鎖に薬剤をィ匕学的手法(抗 体工学入門、金光修著、(株)地人書館 (1994))により結合させることにより製造する ことができる。
[0036] または、本発明の CD10に特異的に反応する抗体または抗体断片をコードする DNA と、結合させたい蛋白質などの薬剤をコードする DNAを連結させて発現ベクターに挿 入し、該発現ベクターを宿主細胞へ導入すると!、う遺伝子工学的手法によっても製 造することができる。
薬剤としては、化学療法剤、抗体医薬、サイト力インなどの免疫附活剤、放射性同 位元素、ィムノアジュバンドなどがあげられる。
[0037] さらに、抗体に結合させる薬剤は、プロドラッグの形態を取ってもよい。本発明にお けるプロドラッグとは、腫瘍環境に存在する患者自身の酵素などによって化学的な修 飾を受け、癌細胞を障害する作用を有する物質に変換される薬剤をいう。
化学療法剤としては、アルキル化剤、ニトロソゥレア剤、代謝拮抗剤、抗癌性抗生 物質、植物由来アルカロイド、トポイソメラーゼ阻害剤、ホルモン療法剤、ホルモン拮 抗剤、ァロマターゼ阻害剤、 p糖蛋白阻害剤、白金錯体誘導体、 M期阻害剤、キナー ゼ阻害剤などのいかなる化学療法剤も包含される。化学療法剤としては、アミフォス チン(ェチオール)、シスプラチン、ダカルバジン(DTIC)、ダクチノマイシン、メタロレ タミン(ナイトロジェンマスタード)、ストレプトゾシン、シクロフォスフアミド、ィホスフアミド 、カルムスチン(BCNU)、口ムスチン(CCNU)、ドキソルビシン(アドリアマイシン)、ドキ ソルビシンリポ(ドキシル)、ェピルビシン、ゲムシタビン(ゲムザール)、ダウノルビシン 、ダウノルビシンリポ(ダウノゾーム)、プロカルバジン、マイトマイシン、シタラビン、エト ポシド、メトトレキセート、 5-フルォロウラシル、フルォロウラシル、ビンブラスチン、ビン クリスチン、ブレオマイシン、ダウノマイシン、ぺプロマイシン、エストラムスチン、パクリ タキセル(タキノール)、ドセタキセル(タキソテア)、アルデスロイキン、ァスパラギナー ゼ、ブスルファン、カルボプラチン、ォキサリブラチン、ネダプラチン、クラドリビン、力 ンプトテシン、 CPT-11、 10-ヒドロキシ- 7-ェチル -カンプトテシン(SN38)、フロクスゥリ ジン、フノレダラビン、ヒドロキシゥレア、ィホスフアミド、イダノレビシン、メスナ、イリノテカ ン、ノギテカン、ミトキサントロン、トポテカン、ロイプロリド、メゲストロール、メルファラン 、メルカプトプリン、ヒドロキシカルバミド、プリカマイシン、ミトタン、ぺガスパラガーゼ、 ペントスタチン、ピポブロマン、ストレプトゾシン、タモキシフェン、ゴセレリン、リュープ ロレニン、フノレタミド、テ-ポシド、テストラクトン、チォグァニン、チォテパ、ゥラシルマ スタード、ビノレノレビン、クロラムブシル、ハイド口コーチゾン、プレドニゾロン、メチノレプ レドニゾロン、ビンデシン、二ムスチン、セムスチン、力ぺシタビン、トムデッタス、ァザ シチジン、 UFT、ォキザロプラチン、ゲフイチ-ブ(ィレッサ)、ィマチ-ブ(STI571)、ェ ルロチ -ブ、 Flt3阻害剤、 VEGFR阻害剤、 FGFR阻害剤、ラデイシコール、 17-ァリ ルァミノ- 17-デメトキシゲルダナマイシン、ラパマイシン、アムサクリン、オールートラン スレチノイン酸、サリドマイド、アナストロゾール、フアドロゾール、レトロゾール、ェキセ メスタン、金チォマレート、 D—ぺ-シラミン、ブシラミン、ァザチォプリン、ミゾリビン、 シクロスポリン、ラパマイシン、ヒドロコノレチゾン、ベキサロテン(ターグレチン)、タモキ シフェン、デキサメタゾン、プロゲスチン類、エストロゲン類、アナストロゾール(アリミデ ッタス)、ロイプリン、アスピリン、インドメタシン、セレコキシブ、ァザチォプリン、ぺ-シ ラミン、金チォマレート、マレイン酸クロルフエ二ラミン、クロ口フエ二ラミン、クレマシチ ン、トレチノイン、ベキサロテン、砒素、ボルテゾミブ、ァロプリノール、ゲムッズマブ、ィ ブリツモマブチウキセタン、 131トシッテマブ、タルグレチン、 ONTAK、ォゾガミン、ク ラリスロマシン、ロイコボリン、ィファスフアミド、ケトコナゾール、アミノグルテチミド、スラ ミンおよびメトトレキセート、などがあげられる。
化学療法剤と抗体とを結合させる方法としては、ダルタールアルデヒドを介して化学 療法剤と抗体のアミノ基間を結合させる方法、水溶性カルポジイミドを介して化学療 法剤のアミノ基と抗体のカルボキシル基を結合させる方法等があげられる。 抗体医薬としては、癌細胞を直接障害する腫瘍細胞に発現する抗原に対する抗体 、あるいは腫瘍細胞の増殖や転移など、腫瘍の病態形成に関わる抗原に対する抗 体のほかに、抗体を投与する生体内の免疫を調節する抗体、抗体を投与する生体 内の血管新生を阻害する抗体などがあげられる。
[0039] 癌細胞を直接障害する腫瘍細胞に発現する抗原としては、 CD19、 CD20、 CD21、 C D22、 CD23、 CD24、 CD37、 CD53、 CD72、 CD73、 CD74、 CDw75、 CDw76、 CD77、 C Dw78、 CD79a、 CD79b、 CD80 (B7.1), CD81、 CD82、 CD83、 CDw84、 CD85、 CD86 ( B7.2)、 HLA- Class IIなどがあげられる。
抗体を投与する生体内の免疫を調節する抗体の抗原としては、 CD4、 CD40、 CD40 リガンド、 B7ファミリー分子 (CD80、 CD86、 CD274, B7- DC、 B7- H2、 B7- H3、 B7-H4) 、 B7ファミリー分子のリガンド(CD28、 CTLA- 4、 ICOS、 PD- 1、 BTLA)、 OX- 40、 OX- 4 0リガンド、 CD137、 TNF受容体ファミリー分子 (DR4、 DR5、 TNFR1、 TNFR2)、 TRAILフ アミリー分子、 TRAILファミリー分子の受容体ファミリー (TRAIL- Rl、 TRAIL- R2、 TRAI L- R3、 TRAIL- R4)、 RANK, RANKリガンド、 CD25、葉酸受容体 4、サイト力イン(IL- 1 a、 IL-1 β、 IL— 4、 IL— 5、 IL— 6、 IL— 10、 IL— 13、 TGF β、 TNF a等)、これらのサイト力 インの受容体、ケモカイン(SLC、 ELC、 1-309、 TARC、 MDC、 CTACK等)、これらの ケモカインの受容体が好まし 、。
[0040] 抗体を投与する生体内の血管新生を阻害する抗体の抗原としては、 VEGF、 Angio poietin、 FGF、 EGF、 PDGF、 IGF, EPO、 TGF jS、 IGF, IL— 8、 Ephilin、 SDF— 1など力 Sあ げられる。
免疫附活剤としては、 NK細胞、マクロファージ、好中球などの細胞を亢進するサイト 力インであればいかなるものでもよいが、具体例としては、インターフェロン α、インタ 一フエロン 13、インターフェロン γ、インターロイキン- 2、インターロイキン- 12、インタ 一ロイキン- 15、インターロイキン- 18、インターロイキン- 23、顆粒球刺激因子 (G- CSF) 、顆粒球.マクロファージ刺激因子 (GM- CSF)、マクロファージ刺激因子 (M- CSF)など 力 Sあげられる。また、免疫附活剤として知られている天然物でもよぐ具体例としては 、免疫を亢進する薬剤が、 j8 (l→3)ダルカン (レンチナン、シゾフィラン)、 αガラクトシ ルセラミド (KRN7000)、菌体粉末(ピシバニール、 BCG)、菌体抽出物(クレスチン)が あげられる。 放射性同位元素としては、 mI、 125I、 9°Y、 64Cu、 199Tc、 77Lu、 2UAt等があ げられる。放射性同位元素は、クロラミン T法等によって抗体に直接結合させることが できる。また、放射性同位元素をキレートする物質を抗体に結合させてもよい。キレー ト剤とし飞 、 methylbenzyldiethylene- tnaminepentaacetic acid (MX— DTPA)など あげられる。
[0041] また本発明の抗体は、 1つ以上の他の薬剤または放射線照射と組み合わせて投与 してもよい。他の薬剤としては、上述の化学療法剤、抗体医薬、サイト力インなどの免 疫附活剤等が含まれる。 放射線照射としては、 X線、 y線などの光子 (電磁波)照 射、電子線、陽子線、重粒子線などの粒子線照射などが含まれる。
組み合わせて投与する方法としては、本発明の抗体との同時投与でもよいし、また 、本発明の抗体の投与と前後して投与しても構わない。
[0042] 以下に、本発明の CD10に特異的に反応するヒト型 CDR移植抗体およびその抗体 断片の作製方法、活性評価方法およびそれらの使用方法について説明する。
1.ヒト型 CDR移植抗体の作製
(1)ヒト化抗体発現用ベクターの構築
ヒト化抗体発現用ベクターとは、ヒト抗体の CHおよび CLをコードする DNAが組み込 まれた動物細胞用発現ベクターであり、動物細胞用発現ベクターにヒト抗体の CHお よび CLをコードする DNAをそれぞれクローユングすることにより構築することができる
[0043] ヒト抗体の C領域は任意のヒト抗体の CHおよび CLであることができ、例えば、ヒト抗 体の glサブクラスの CHおよび κクラスの CLなどがあげられる。ヒト抗体の CHおよび C Lをコードする DNAとしてはェキソンとイントロンからなる染色体 DNAを用いることがで き、また、 cDNAを用いることもできる。動物細胞用発現ベクターとしては、ヒト抗体の C 領域をコードする遺伝子を組込み発現できるものであれば 、かなるものでも用いるこ とができる。例えば、 pAGE107 (CytotechnoL, 3, 133 (1990》、 pAGE103 (J. Biochem. , 101, 1307 (1987》、 pHSG274 (Gene, 27, 223 (1984》、 pKCR (Proc. Natl. Acad. Sci . U.S.A., 78, 1527 (1981》、 pSGlbd2- 4 (CytotechnoL, 4, 173 (1990》、 pSElUKlSed 1-3 (CytotechnoL, 13, 79 (1993》などがあげられる。動物細胞用発現ベクターに用 いるプロモーターとェンハンサ一としては、 SV40の初期プロモーター(J. Biochem.,丄 01, 1307 (1987)、モロ-一マウス白血病ウィルスの LTR (Biochem. Biophys. Res. Co mmun., 149, 960 (1987》、免疫グロブリン H鎖のプロモーター(Cell, 41, 79 (1985》 とェンハンサー(Cell, , 717 (1983》などがあげられる。
[0044] ヒト化抗体発現用ベクターは、抗体 H鎖および L鎖が別々のベクター上に存在する タイプあるいは同一のベクター上に存在するタイプ(タンデム型)のどちらでも用いる ことができるが、ヒト化抗体発現ベクターの構築の容易さ、動物細胞への導入の容易 さ、動物細胞内での抗体 H鎖および L鎖の発現量のバランスが均衡するなどの点から タンデム型のヒト化抗体発現用ベクターの方が好ましい(J. Immunol. Methods, 167, 271 (1994))。タンデム型のヒト化抗体発現用ベクターとしては、 pKANTEX93 (W097/ 10354)、 pEE18 (Hybridoma, Γ7, 559 (1998))などがあげられる。
[0045] 構築したヒト化抗体発現用ベクターは、ヒト型 CDR移植抗体の動物細胞での発現に 使用できる。
(2)ヒト型 CDR移植抗体の V領域をコードする cDNAの構築
ヒト型 CDR移植抗体の VHおよび VLをコードする cDNAは、以下の様にして構築する ことができる。まず、 目的のヒト以外の動物の抗体の VHおよび VLの CDRのアミノ酸配 列を移植するヒト抗体の VHおよび VLの FRのアミノ酸配列を選択する。ヒト抗体の VH および VLの FRのアミノ酸配列としては、ヒト抗体由来のものであれば、いかなるもので も用いることができる。例えば、 Protein Data Bankなどのデータベースに登録されて Vヽるヒト抗体の VHおよび VLの FRのアミノ酸配列、ヒト抗体の VHおよび VLの FRの各 サブグノレープの共通アミノ酸酉己歹 [J (Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1991)などがあげられるが、それらの中でも、 十分な活性を有するヒト型 CDR移植抗体を作製するためには、 目的のヒト以外の動 物の抗体の VHおよび VLの FRのアミノ酸配列と少なくとも 60%以上とできるだけ高い相 同性を有するアミノ酸配列を選択することが望ましい。
[0046] 次に、選択したヒト抗体の VHおよび VLの FRのアミノ酸配列に目的のヒト以外の動物 の抗体の VHおよび VLの CDRのアミノ酸配列を移植し、ヒト型 CDR移植抗体の VHお よび VLのアミノ酸配列を設計する。設計したアミノ酸配列を抗体の遺伝子の塩基配 列に見られるコドンの使用頻度(Sequences of Proteins of Immunological Interest, U S Dept. Health and Human Services, 1991)や目的のヒト以外の動物の抗体の塩基 配列を考慮して塩基配列に変換し、ヒト型 CDR移植抗体の VHおよび VLのアミノ酸配 列をコードする塩基配列を設計する。設計した塩基配列に基づき、 100〜200塩基前 後の長さからなる数本の合成 DNAを合成し、それらを用いて PCR法を行う。この場合 、 PCRでの反応効率および合成可能な DNAの長さから、 VH、 VLとも 4本もしくは 6本 程度の合成 DNAを設計することが好ましい。また、両端に位置する合成 DNAの 5'末 端に適当な制限酵素の認識配列を導入することで、本項 1の(1)で構築したヒト化抗 体発現用ベクターに容易にクローユングすることができる。 PCR反応後、増幅産物を p Bluescript II SK (-) (Stratagene社製)などのプラスミドベクターにクローユングし、塩基 配列を決定し、所望のヒト型 CDR移植抗体の VHおよび VLのアミノ酸配列をコードす る塩基配列を有するプラスミドを取得する。
(3)ヒト型 CDR移植抗体の V領域のアミノ酸配列の改変
ヒト型 CDR移植抗体は、 目的のヒト以外の動物の抗体の VHおよび VLの CDRのみを ヒト抗体の VHおよび VLの FRに移植しただけでは、その抗原結合活性は元のヒト以外 の動物の抗体に比べて低下してしまうことが知られている(BIO/TECHNOLOGY, 9, 266 (1991))。この原因としては、元のヒト以外の動物の抗体の VHおよび VLでは、 CD Rのみならず、 FRのいくつかのアミノ酸残基が直接的あるいは間接的に抗原結合活 性に関与しており、それらアミノ酸残基力 SCDR移植に伴い、ヒト抗体の VHおよび VLの FRの異なるアミノ酸残基へと変化してしまうからと考えられている。この問題を解決す るため、ヒト型 CDR移植抗体では、ヒト抗体の VHおよび VLの FRのアミノ酸配列の中で 、直接抗原との結合に関与しているアミノ酸残基や CDRのアミノ酸残基と相互作用し たり、抗体の立体構造を維持し、間接的に抗原との結合に関与しているアミノ酸残基 を同定し、それらを元のヒト以外の動物の抗体に見出されるアミノ酸残基に改変し、 低下した抗原結合活性を上昇させることが行われている(BIO/TECHNOLOGY, 9, 2 66 (1991))。ヒト型 CDR移植抗体の作製においては、それら抗原結合活性に関わる F Rのアミノ酸残基を如何に効率よく同定するか力 最も重要な点であり、そのために X 線結晶解析 0. Mol. Biol, 112, 535 (1977))あるいはコンピューターモデリング(Prot ein Engineering, 7, 1501 (1994))などによる抗体の立体構造の構築および解析が行 われている。これら抗体の立体構造の情報は、ヒト型 CDR移植抗体の作製に多くの 有益な情報をもたらして来た力 その一方、あらゆる抗体に適応可能なヒト型 CDR移 植抗体の作製法は未だ確立されておらず、現状ではそれぞれの抗体につ!、て数種 の改変体を作製し、それぞれの抗原結合活性との相関を検討するなどの種々の試 行錯誤が必要である。
[0048] ヒト抗体の VHおよび VLの FRのアミノ酸残基の改変は、改変用合成 DNAを用いて P CR法を行うことにより、達成できる。 PCR後の増幅産物について本項 1の (2)に記載の 方法により、塩基配列を決定し、 目的の改変が施されたことを確認する。
(4)ヒト型 CDR移植抗体発現ベクターの構築
本項 1の(1)に記載のヒトイ匕抗体発現用ベクターのヒト抗体の CHおよび CLをコード する DNAの上流に、本項 1の(2)および(3)で構築したヒト型 CDR移植抗体の VHお よび VLをコードする cDNAをクローユングし、ヒト型 CDR移植抗体発現ベクターを構築 することができる。例えば、本項 1の(2)および(3)でヒト型 CDR移植抗体の VHおよび VLを構築する際に用いる合成 DNAのうち、両端に位置する合成 DNAの 5'末端に適 当な制限酵素の認識配列を導入することで、本項 1の(1)に記載のヒト化抗体発現用 ベクターのヒト抗体の CHおよび CLをコードする DNAの上流にそれらが適切な形で発 現する様にクローユングすることができる。
[0049] (5)ヒト型 CDR移植抗体の一過性発現
作製した多種類のヒト型 CDR移植抗体の抗原結合活性を効率的に評価するために 、本項 1の (4)に記載のヒト型 CDR移植抗体発現ベクター、あるいはそれらを改変した 発現ベクターを用いてヒト型 CDR移植抗体の一過性発現を行うことができる。発現べ クタ一を導入する宿主細胞としては、ヒト型 CDR移植抗体を発現できる宿主細胞であ れば、いかなる細胞でも用いることができる力 その発現量の高さから、 COS-7細胞( ATCC CRL1651)が一般に用いられる(Methods in Nucleic Acids Res., CRC press, 283 (1991))。 COS-7細胞への発現ベクターの導入法としては、 DEAE-デキストラン法 (Methods in Nucleic Acids Res., CRC press, 283 (1991》、リポフエクシヨン法(Proc. Natl. Acad. Sci. U.S.A., 84,7413 (1987》などがあげられる。 [0050] 発現ベクターの導入後、培養上清中のヒト型 CDR移植抗体の発現量および抗原結 合活性は酵素免疫抗体法(ELISA; Antibodies: A Laboratory Manual, Cold Spring H arbor Laboratory, chapter 14 (1988)、 Monoclonal Antibodies: Principles and Practic e, Academic Press Limited (1996》などにより測定できる。
(6)ヒト型 CDR移植抗体の安定発現
本項 1の(4)に記載のヒト型 CDR移植抗体発現ベクターを適当な宿主細胞に導入 することによりヒト型 CDR移植抗体を安定に発現する形質転 ·を得ることができる。 宿主細胞への発現ベクターの導入法としては、エレクト口ポレーシヨン法 (Cytotechnol ogy, 3 ,133 (1990》などがあげられる。
[0051] ヒト型 CDR移植抗体発現ベクターを導入する宿主細胞としては、ヒト型 CDR移植抗 体を発現させることができる宿主細胞であれば、 、かなる細胞でも用いることができる 。例えば、マウス SP2/0- Agl4細胞(ATCC CRL1581)、マウス P3X63- Ag8.653細胞(A TCC CRL1580)、ジヒドロ葉酸還元酵素遺伝子(dhfr)が欠損した CHO細胞(Pro Na tl.Acad.Sci.U.S.A., 77, 4216 (1980》、ラット YB2/3HL.P2.G11.16Ag.20細胞(YB2/0 細胞; ATCC CRL1662)などがあげられる。
[0052] 発現ベクターの導入後、ヒト型 CDR移植抗体を安定に発現する形質転換株は、 G4 18 sulfate (G418 ;SIGMA社製)などの薬剤を含む動物細胞培養用培地で培養するこ とにより選択できる(J. Immunol. Methods, 167, 271 (1994))。動物細胞培養用培地と しては、 RPMI1640培地(日水製薬社製)、 GIT培地(日本製薬社製)、 EX- CELL302 培地(JRH社製)、 IMDM培地(GIBCO BRL社製)、 Hybridoma- SFM培地(GIBCO BR L社製)、またはこれら培地に牛胎児血清(FBS)などの各種添加物を添加した培地等 を用いることができる。得られた形質転 ·を培地中で培養することで培養上清中に ヒト型 CDR移植抗体を発現蓄積させることができる。培養上清中のヒト化抗体の発現 量および抗原結合活性は ELISAなどにより測定できる。また、形質転赚は、 dhfr増 幅系などを利用してヒト型 CDR移植抗体の発現量を上昇させることができる(J. Immu nol. Methods, 167, 271 (1994))。
[0053] ヒト型 CDR移植抗体は、形質転換株の培養上清よりプロテイン Aカラムを用いて精 すること力 21 (?さる (Antibodies: A Laboratory Manual, Cold bpnng Haroor Laborato ry, Chapter 8 (1988)、 Monoclonal Antibodies: Principles and Practice, Academic Pre ss Limited (1996))。また、その他に通常、蛋白質の精製で用いられる精製方法を使 用することができる。例えば、ゲル濾過、イオン交換クロマトグラフィーおよび限外濾 過等を組み合わせて行い、精製することができる。精製したヒト化抗体の H鎖、 L鎖あ るいは抗体分子全体の分子量は、ポリアクリルアミドゲル電気泳動(SDS_PAGE ;Nat ure, 227, 680 (1970》やウェスタンブロッテイング法(Antibodies: A Laboratory Manu al, Cola Spring Harbor Laooratory, chapter 12 (1988)、 Monoclonal Antibodies: Pnn ciples and Practice, Academic Press Limited (1996》などで測定することができる。
2.抗体断片の作製
抗体断片は、本項 1に記載のヒト化抗体を元に遺伝子工学的手法あるいは蛋白質 化学的手法により、作製することができる。抗体断片としては、 Fab、 F(ab')、 Fab'、 sc
2
Fv、 Diabody, dsFv、 CDRを含むペプチドなどがあげられる。
(1) Fabの作製
Fabは、 IgGを蛋白質分解酵素パパインで処理することにより、作製することができる 。パパインの処理後は、元の抗体がプロテイン A結合性を有する IgGサブクラスであれ ば、プロテイン Aカラムに通すことで、 IgG分子や Fc断片と分離し、均一な Fabとして回 収すること力 21 (?さる (Monoclonal Antioodies: Principles and Practice, third edition (丄 995))。プロテイン A結合性を持たない IgGサブクラスの抗体の場合は、イオン交換クロ マトグラフィ一により、 Fabは低塩濃度で溶出される画分中に回収することができる(M onoclonal Antioodies: Principles and Practice, third edition (1995))。また、 Fabiま、大 腸菌を用いて遺伝子工学的に作製することもできる。例えば、本項 1の(2)および(3) に記載の抗体の V領域をコードする DNAを、 Fab発現用ベクターにクローユングし、 F ab発現ベクターを作製することができる。 Fab発現用ベクターとしては、 Fab用の DNA を組み込み発現できるものであればいかなるものも用いることができる。例えば、 pITl 06 (Science, 240, 1041 (1988))などがあげられる。 Fab発現ベクターを適当な大腸菌 に導入し、封入体あるいはペリプラズマ層に Fabを生成蓄積させることができる。封入 体からは、通常蛋白質で用いられるリフォールデイング法により、活性のある Fabとす ることができ、また、ペリプラズマ層に発現させた場合は、培養上清中に活性を持った Fabが漏出する。リフォールデイング後あるいは培養上清からは、抗原を結合させた力 ラムを用いることにより、均一な Fabを精製することができる(Antibody Engineering, A Practical uuide, W. H. Freeman andし ompany (1992))。
[0055] (2) F(ab')の作製
2
F(ab')は、 IgGを蛋白質分解酵素ペプシンで処理することにより、作製することがで
2
きる。ペプシンの処理後は、 Fabと同様の精製操作により、均一な F(ab')として回収す
2
ること; 0できる (Monoclonal Antioodies: Principles and Practice, third edition, Acade mic Press (1995》。また、本項 2の(3)に記載の Fab'を o-PDMやビスマレイミドへキサ ン等のようなマレイミドで処理し、チォエーテル結合させる方法や、 DTNBで処理し、 S -S結合させる方法によっても作製することができる(Antibody Engineering, A Practica 1 Approach, IRL PRESS (1996》。
[0056] (3) Fab'の作製
Fab'は、大腸菌を用いて遺伝子工学的に作製することができる。例えば、本項 1の( 2)および(3)に記載の抗体の V領域をコードする DNAを、 Fab'発現用ベクターにクロ 一ユングし、 Fab'発現ベクターを作製することができる。 Fab'発現用ベクターとしては 、 Fab'用の DNAを組み込み発現できるものであればいかなるものも用いることができ る。例えば、 pAK19 (Bio/Technology, 10, 163 (1992》などがあげられる。 Fab'発現べ クタ一を適当な大腸菌に導入し、封入体あるいはペリプラズマ層に Fab'を生成蓄積さ せることができる。封入体からは、通常蛋白質で用いられるリフォールデイング法によ り、活性のある Fab'とすることができ、また、ペリプラズマ層に発現させた場合は、リゾ チームによる部分消化、浸透圧ショック、ソ-ケーシヨン等の処理により菌を破砕し、 菌体外へ回収させることができる。リフォールデイング後あるいは菌の破砕液からは、 プロテイン Gカラム等を用いることにより、均一な Fab'を精製することができる(Antibod y Engineering, A Practical Approach, IRL PRESb (1996))。
[0057] (4) scFvの作製
scFvは遺伝子工学的には、ファージまたは大腸菌を用いて作製することができる。 例えば、本項 1の(2)および(3)に記載の抗体の VHおよび VLをコードする DNAを、 1 2残基以上のアミノ酸配列力 なるポリペプチドリンカ一をコードする DNAを介して連 結し、 scFvをコードする DNAを作製する。作製した DNAを scFv発現用ベクターにクロ 一ユングし、 scFv発現ベクターを作製することができる。 scFv発現用ベクターとしては 、 scFvの DNAを組み込み発現できるものであれば!/、かなるものも用いることができる。 例えば、 pCANTAB5E (Pharmacia社製)、 Phfa (Hum. Antibody Hybridoma, 5, 48 (19 94))などがあげられる。 scFv発現ベクターを適当な大腸菌に導入し、ヘルパーファー ジを感染させることで、ファージ表面に scFvがファージ表面蛋白質と融合した形で発 現するファージを得ることができる。また、 scFv発現ベクターを導入した大腸菌の封入 体あるいはペリプラズマ層に scFvを生成蓄積させることができる。封入体からは、通 常蛋白質で用いられるリフォールデイング法により、活性のある scFvとすることができ 、また、ペリプラズマ層に発現させた場合は、リゾチームによる部分消ィ匕、浸透圧ショ ック、ソ-ケーシヨン等の処理により菌を破砕し、菌体外へ回収することができる。リフ オールデイング後あるいは菌の破砕液からは、陽イオン交換クロマトグラフィー等を用 いることにより、均一な scFvを精製することができる(Ant¾ody Engineering, A Practic al Approach, IRL PRESS (1996》。
[0058] (5) Diabodyの作製
Diabodyは、上記の scFvを作製する際のポリペプチドリンカ一を 3〜10残基程度にす ることで、作製することができる。 1種類の抗体の VHおよび VLを用いた場合には、 2価 の Diabodyを、 2種類の抗体の VHおよび VLを用いた場合は、 2特異性を有する Diabo dyを作製することができる(FEBS Letters, 453, 164 (1999)、 Int. J. Cancer, 77, 763 ( 1998》。
[0059] (6) dsFvの作製
dsFvは、大腸菌を用いて遺伝子工学的に作製することができる。まず、本項 1の(2) および(3)に記載の抗体の VHおよび VLをコードする DNAの適当な位置に変異を導 入し、コードするアミノ酸残基がシスティンに置換された DNAを作製する。作製した各 DNAを dsFv発現用ベクターにクローユングし、 VHおよび VLの発現ベクターを作製す ることができる。 dsFv発現用ベクターとしては、 dsFv用の DNAを組み込み発現できる ものであればいかなるものも用いることができる。例えば、 pULI9 (Protein Engineering , 7, 697 (1994))などがあげられる。 VHおよび VLの発現ベクターを適当な大腸菌に 導入し、封入体あるいはペリプラズマ層に VHおよび VLを生成蓄積させることができる 。封入体あるいはペリプラズマ層から VHおよび VLを得、混合し、通常蛋白質で用い られるリフォールデイング法により、活性のある dsFvとすることができる。リフォールディ ング後は、イオン交換クロマトグラフィーおよびゲル濾過等により、さらに精製すること ができる(Protein Engineering, 7, 697 (1994》。
[0060] (7) CDRペプチドの作製
CDRを含むペプチドは、 Fmoc法ある!/ヽは tBoc法等の化学合成法によって作製する ことができる。また、 CDRを含むペプチドをコードする DNAを作製し、作製した DNAを 適当な発現用ベクターにクローニングし、 CDRペプチド発現ベクターを作製すること ができる。発現用ベクターとしては、 CDRを含むペプチドをコードする DNAを組み込 み発現できるものであればいかなるものも用いることができる。例えば、 pLEX (Invitro gen社製)、 pAX4a+ (Invitrogen社製)などがあげられる。発現ベクターを適当な大腸 菌に導入し、封入体ある ヽはペリプラズマ層に CDRを含むペプチドを生成蓄積させる ことができる。封入体あるいはペリプラズマ層力も CDRを含むペプチドを得、イオン交 換クロマトグラフィーおよびゲル濾過等により、精製することができる(Protein Enginee ring, 7, 697 (1994》。
[0061] 3.本発明の抗体の活性評価
精製した本発明の抗体の抗原との結合性、 CD10発現細胞に対する結合活性は EL ISA法及び蛍光抗体法 (Cancer Immunol. Immunother., 36, 373 (1993》、 BIAcore™ 等を用いた表面プラズモン共鳴等により測定できる。抗原陽性培養細胞に対する細 胞障害活性は、補体依存性細胞障害活性 (以下、 CDC活性と略記する)、抗体依存 性細胞障害活性 (以下、 ADCC活性と略記する)等を測定し、評価する事が出来る( Cancer Immunol. Immunother., 36, 373 (1993))。産生サイト力イン量の変化は ELISA 法及び蛍光抗体法等により測定できる。
[0062] 4.ヒト型 CDR移植抗体または抗体断片の使用方法
本発明の抗体は、 CD10と特異的に結合するため、 CD10が関与する疾患の治療に おいて有用であると考えられる。また、ヒト以外の動物の抗体やキメラ抗体に比べ、ヒ ト抗体のアミノ酸配列に由来するため、ヒト体内において高い効果を示し、かつ、免疫 原性が低ぐその効果が長期間に渡り持続することが期待される。
[0063] また、抗体の Fc領域に結合する N-グリコシド結合複合型糖鎖が、該糖鎖の還元末 端の N-ァセチルダルコサミンにフコースが結合して ヽな 、糖鎖である抗体またはそ の抗体断片とすることにより、抗体または抗体断片の ADCC活性を増強させることが できる。高い ADCC活性を有する抗体は、癌をはじめとする各種 CD10発現細胞関連 疾患の予防および治療にぉ 、て有用である。
[0064] CD10が関与する疾患としては、癌疾患、炎症性疾患、または自己免疫疾患などが あげられる。癌疾患としては、血液癌、リンパ腫、多発性骨髄腫、腎癌、前立腺癌、肺 癌、胃癌、肝癌、子宮内膜癌、脾癌、悪性黒色腫などがあげられる。
血液癌としては、白血病などがあげられ、特に急性リンパ性白血病 (ALL)、慢性骨 髄性白血病(CML)、慢性リンパ性白血病(CLL)などがあげられる。
[0065] リンパ腫としては、非ホジキンリンパ腫などがあげられる。
炎症性疾患としては、成人呼吸促進症候群 (ARDS)、嚢胞性線維症、肝炎、慢性 閉塞性肺疾患 (COPD)、虚血再還流傷害などがあげられる。
自己免疫疾患としては、リウマチ性関節炎、多発性硬化症、潰瘍性大腸炎、シエー ダレン症候群等などがあげられる。
[0066] 上述の CD10が関連する疾患は、患者の体内において CD10が発現している細胞が 異常に増加または減少することにより病態が進行している。したがって、本発明の抗 体を有効成分とする医薬を用いることにより、これらの CD10が関与する疾患を治療す ることがでさる。
本発明の抗体は、単独で投与することも可能ではあるが、通常は薬理学的に許容 される一つある 、はそれ以上の担体と一緒に混合し、製剤学の技術分野にお!、てよ く知られる任意の方法により製造した医薬製剤として提供するのが望ましい。
[0067] 投与経路は、治療に際して最も効果的なものを使用するのが望ましぐ経口投与、 または口腔内、気道内、直腸内、皮下、筋肉内および静脈内などの非経口投与をあ げることができ、望ましくは静脈内投与をあげることができる。
投与形態としては、噴霧剤、カプセル剤、錠剤、顆粒剤、シロップ剤、乳剤、座剤、 注射剤、軟膏、テープ剤などがあげられる。 [0068] 経口投与に適当な製剤としては、乳剤、シロップ剤、カプセル剤、錠剤、散剤、顆粒 剤などがあげられる。
乳剤およびシロップ剤のような液体調製物は、水、ショ糖、ソルビトール、果糖など の糖類、ポリエチレングリコール、プロピレングリコールなどのグリコール類、ごま油、 ォリーブ油、大豆油などの油類、 P-ヒドロキシ安息香酸エステル類などの防腐剤、スト 口べリーフレーバー、ペパーミントなどのフレーバー類等を添加剤として用いて製造 できる。
[0069] カプセル剤、錠剤、散剤、顆粒剤等は、乳糖、ブドウ糖、ショ糖、マン-トールなどの 賦形剤、デンプン、アルギン酸ナトリウムなどの崩壊剤、ステアリン酸マグネシウム、タ ルクなどの滑沢剤、ポリビュルアルコール、ヒドロキシプロピルセルロース、ゼラチンな どの結合剤、脂肪酸エステルなどの界面活性剤、グリセリンなどの可塑剤等を添加剤 として用いて製造できる。
[0070] 非経口投与に適当な製剤としては、注射剤、座剤、噴霧剤などがあげられる。
注射剤は、塩溶液、ブドウ糖溶液、あるいは両者の混合物カゝらなる担体等を用いて 調製される。
座剤はカカオ脂、水素化脂肪またはカルボン酸などの担体を用いて調製される。 また、噴霧剤は本発明の抗体そのもの、ないしは受容者の口腔および気道粘膜を 刺激せず、かつ該抗体または抗体断片を微細な粒子として分散させ吸収を容易にさ せる担体等を用いて調製される。
[0071] 担体として具体的には乳糖、グリセリンなどが例示される。本発明の抗体および用 いる担体の性質により、エアロゾル、ドライパウダーなどの製剤が可能である。また、こ れらの非経口剤にぉ 、ても経口剤で添加剤として例示した成分を添加することもでき る。
投与量または投与回数は、 目的とする治療効果、投与方法、治療期間、年齢、体 重等により異なる力 通常成人 1日当たり 0.01mg/kg〜20mg/kgである。
[0072] 以下に、本発明の実施例を示すが、これにより本発明の範囲が限定されるものでは ない。
実施例 1 [0073] マウス抗 CD10抗体 NL-1の可変領域遺伝子のクロー-ング
1.抗 CD10抗体 NL-1の V領域をコードする cDNAの単離、解析
(a)抗 CD10抗体 NL-1産生ハイブリドーマからの mRNAの調製
抗 CD10抗体 NL- 1産生ハイブリドーマ細胞 NL- l [Proc. Natl. Acad. Sci. USA, 79, 4 386(1982)]の 5 X 107個より、 mRNAの調製キットである Fast Track mRNA Isolation Kit (Invitrogen社製)を用いて、添付の使用説明書に従い、 NL-1由来の mRNAを調製し た。
[0074] (b)抗 CD10抗体 NL- 1の H鎖および L鎖 cDNAライブラリーの作製
上記(a)項で取得した NL-1の mRNAの 5 μ g力ら、 TimeSaver cDNA Synthesis Kit (A mersham- Pharmacia社製)を用いて、添付の使用説明書に従い、両端に EcoRト Notl アダプター配列を有する cDNAを合成した。合成した cDNAの全量を 20 Lの滅菌水 に溶解後、ァガロースゲル電気泳動に供し、 IgGクラス抗体の H鎖に対応する約 1.5kb の cDNA断片と κクラスの L鎖に対応する約 lkbの cDNA断片を QIAquick Gel Extracti on Kit (QIAGEN社製)を用いて回収した。
[0075] 次に、 λ ΖΑΡΙΙ Predigested EcoRI/CIAP— Treated Vector Kit (Stratagene社製)を用 いて、各 cDNA断片 0.1 μ gと、キットに添付されている λ ΖΑΡΠベクターの 1 μ gを、添 付の使用説明書に従って連結した。それぞれの該反応液の Lを Gigapack III G old Packaging Extracts (Stratagene社製)を用いて、添付の使用説明書に従って、 λ ファージにパッケージングし、 NL-1の Η鎖 cDNAライブラリ一として 5 X 104個、 L鎖 cDN Aライブラリ一として 4 X 104個のファージクローンを取得した。次に、各々のファージを '吊'法 [Molecularし loning:A Laboratory Manual, し old Spring Harbor Lab. Press New York, (1989) ]に従い、ナイロンメンブレンフイノレター HybondN+ (Amersham Pharmacia 社製)上に固定した。
[0076] (c)抗 CD10抗体 NL- 1の H鎖および L鎖の cDNAのクロー-ング
上記 (b)項で作製した NL-1の H鎖 cDNAライブラリー、 L鎖 cDNAライブリーのナイ口 ンメンブレンフイノレターを、 ECL Direct Nucleic Acid Labelling and Detection Systems (Amersham Pharmacia社製)を用いて、添付の使用説明書に従い、マウス抗体の C領 域の cDNAをプローブとして用いた。 H鎖はマウス C y 2acDNAの断片 [Nature, 283, 7 86 (1980)]、 L鎖はマウス C κ cDNAの断片 [Cell, 22, 197 (1980)]をそれぞれ用いた。 プローブに強く結合したファージクローンを H鎖、 L鎖各 10クローン取得した。次に、 λ ΖΑΡΙΙ Predigested EcoRI/CIAP- Treated Vector Kit (Stratagene社製)の使用説明 書に従って、 in vivo excision法により各ファージクローンをプラスミドに変換した。この ようにして得られた各プラスミドに含まれる cDNAの塩基配列を BigDye Terminator Cy cle sequencing FS Ready Reaction Kit Applied Biosystems社製) 用 ヽて、添 1、丄の 使用説明書に従って反応後、同社の塩基配列自動分析装置 ABI PRISM 377により 塩基配列を解析し、 cDNAの 5'末端に開始コドンと推定される ATG配列が存在する完 全長の機能的な H鎖 cDNAを含むプラスミドおよび L鎖 cDNAを含むプラスミドが得ら れたことを確認した。
[0077] (d)抗 CD10抗体 NL-1の V領域のアミノ酸配列の解析
H鎖 cDNAを含むプラスミド pNL-lHに含まれていた NL-1の VHの全塩基配列を配列 番号 29に、該配列力 推定される NL-1の VHの全アミノ酸配列を配列番号 30に、プラ スミド pNL-lLに含まれて!/、た NL-1の VLの全塩基配列を配列番号 31に、該配列から 推定される NL-1の VLの全アミノ酸配列を配列番号 32にそれぞれ示した。
[0078] 配列番号 30および 32に表される NL-1の VHおよび VLアミノ酸配列を既知の抗体の 目歹1 Jァ ~~タ [sequences of Proteins of Immunological Interest, Ub Dept. Health and Human Services (1991)]と比較し、さらに精製した抗 CD10抗体 NL-1の VHおよび VL の N末端アミノ酸配列をプロテインシーケンサー PPSQ-10 (Shimadzu社製)を用いて 解析した結果と比較した。その結果、単離した各々の cDNAは分泌シグナル配列を含 む抗 CD10抗体 NL-1の H鎖および L鎖をコードする完全長 cDNAであった。
実施例 2
[0079] CD10に特異的に結合するヒト型 CDR移植抗体の作製
1. CD10に特異的に結合するヒト型 CDR移植抗体の VHおよび VLをコードする cDN Aの設計
(1) CD10に特異的に結合するヒト型 CDR移植抗体の VHのアミノ酸配列の設計 まず、 CD10に特異的に結合するヒト型 CDR移植抗体(以下、抗 CD10CDR移植抗 体と称す)の VHのアミノ酸配列を以下のようにして設計した。 [0080] 配列番号 2、 3および 4に示した VHの CDR1、 2および 3のアミノ酸配列を移植するた めのヒト抗体の VHの FRのアミノ酸配列を選択した。 BLASTP法 [Nucleic Acid Res., 2
5, 3389 (1997)] 〖こより、 NL-1と相同性の高いヒト抗体を既存の蛋白質のアミノ酸配列 データベース中より検索した。相同性スコアと実際のアミノ酸配列の相同性を比較し たところ、 SWISSPROTデータベースァクセッションナンバー AAA69734に記載の Ig He avy chain [Proc. Natl. Acad. Sci. USA, 1691, 6146 (1990)]が 87.4%を示し、最も相 同性の高いヒト抗体であったため、この抗体の VHの FRのアミノ酸配列を選択した。た だしデータベース上のクローン AAA69734の N末端 1番目のアミノ酸はヒト抗体の配列 では出現頻度の低いグルタミン; Ginであった。そこで、 1番目のアミノ酸については、 任, g:のヒト抗体の酉 C列 [sequence of Proteins of Immunological Interest, Ub Dept. He alth and Human Services (1991)]においても高頻度に認められるグルタミン酸; Gluに 置換した。
[0081] 以上のようにして決定したヒト抗体の FRのアミノ酸配列の適切な位置に配列番号 2、 3および 4に示した抗 CD10マウス抗体 NL-1の VHの CDR1、 2および 3のアミノ酸配列 を移植し、配列番号 8に示される抗 CD10 CDR移植抗体の VHのアミノ酸配列 HV0を 設計した。該アミノ酸配列をコードする cDNAの塩基配列を配列番号 9に示した。
(2)抗 CD10CDR移植抗体の VLのアミノ酸の設計
次に、抗 CD10CDR移植抗体の VLのアミノ酸配列を以下の様にして設計した。配列 番号 5、 6および 7に示した抗 CD10マウス抗体 NL-1の VLの CDR1、 2および 3のァミノ 酸配列を移植するためのヒト抗体の VLの FRのアミノ酸配列を選択した。力バットらは 、既知の様々なヒト抗体の VLをそのアミノ酸配列の相同性力 4種類のサブグループ (HSG I〜IV)に分類し、更に、それら各サブグループ毎に共通配列を報告している [ sequence of Proteins of Immunological interest, U¾ Dept. Health and Human ¾ervic es (1991)]。そこで、ヒト抗体の VLの 4種類のサブグループの共通配列の FRのァミノ 酸配列のうち、 NL-1の VLの FRのアミノ酸配列と最も高い相同性を有する FRのァミノ 酸配列を選択した。
[0082] 第 1表には、ヒト抗体の VLの各サブグループの共通配列の FRのアミノ酸配列と NL- 1の VLの FRのアミノ酸配列との間の相同性の検索結果を示した。第 1表に示した様に 、 NL-1の VLの FRのアミノ酸配列はサブグループ IVと最も高!、相同性を有して!/、た。
第 1
ヒト抗体の VLのサブグループの共通配列の FRのアミノ酸配列と抗 CD10マウス抗体 N L-1の VLの FRのアミノ酸配列との間の相同性
HSGI HSGII HSGIII HSGIV
66.25% 61.25% 65.00% 67.50%
以上の結果から、ヒト抗体の VLのサブグループ IVの共通配列の FRのアミノ酸配列 の適切な位置に配列番号 5、 6および 7に示した抗 CD10マウス抗体 NL-1の VLの CD Rl、 2および 3のアミノ酸配列を移植し、配列番号 10に示される抗 CD10CDR移植抗 体の VLのアミノ酸配列 LV0を設計した。該アミノ酸配列をコードする cDNAの塩基配 列を配列番号 11に示した。
[0083] (3)抗 CD10CDR移植抗体の VLの改変
上記で設計した抗 CD10CDR移植抗体の VHのアミノ酸配列 HV0および VLのァミノ 酸配列 LV0は、選択したヒト抗体の FRのアミノ酸配列に抗 CD10マウス抗体 NL-1の C DRのアミノ酸配列のみを移植した配列である力 一般にヒト型 CDR移植抗体では、マ ウス抗体の CDRのアミノ酸配列の移植のみでは抗原との結合活性が低下してしまうこ とが多い。そこで、抗原との結合活性の低下を回避するため、ヒト抗体とマウス抗体で 異なっている FRのアミノ酸残基のうち、抗原との結合活性に影響を与えると考えられ るアミノ酸残基を CDRのアミノ酸配列とともに移植するために、抗原との結合活性に影 響を与えると考えられる FRのアミノ酸残基を同定することを検討した。
[0084] 抗 CD10マウス抗体 NL-1のアミノ酸配列と該マウス抗体の CDRの移植先として選択 したヒト抗体とのアミノ酸配列の相同性が低い VLから、以下のように改変を行った。 まず、上記で設計した抗 CD10CDR移植抗体の VHのアミノ酸配列 HV0および VLの アミノ酸配列 LV0よりなる抗体 V領域 HV0LV0の三次元構造をコンピューターモデリ ングの手法を用いて構築した。三次元構造座標作製に関してはソフトウェア AbM (Ox ford Molecular社製)を、三次元構造の表示についてはソフトウェア RasMol (Glaxo社 製)を用いてそれぞれ添付の使用説明書に従い、行った。また、抗 CD10マウス抗体 NL-1の V領域の三次元構造のコンピューターモデルも同様にして構築した。
[0085] その結果 HV0LV0の FRのアミノ酸残基の中で抗原結合部位の三次元構造を変化さ せ、抗体の抗原との結合活性に影響を与えると考えられる残基として、 LV0の 22番目 の Asn、 44番目の Pro、 47番目の Leu、 48番目の Leu、 61番目の Asp、 71番目の Asp、 72 番目の Phe、 73番目の Thrおよび 86番目の Valを選択した。これらの選択したアミノ酸 残基のすべてをマウス抗体 NL-1に見られるァミノ残基へ改変した配列番号 12に示さ れるヒト型 CDR移植抗体の VLのアミノ酸配列 LV9を設計した。該アミノ酸配列をコード する cDNAの塩基配列を配列番号 13に示した。
[0086] (4)抗 CD10CDR移植抗体の VHの改変
次に VHにおける抗原との結合活性に影響を与えると考えられる FRのアミノ酸残基 を同定した。
まず、前記(3)記載の方法を用いて、三次元構造を表示させ、抗 CD10マウス抗体 NL-1の V領域の三次元構造のコンピューターモデルも同様にして構築した。
[0087] その結果 HV0LV0の FRのアミノ酸残基の中で抗原結合部位の三次元構造を変化さ せ、抗体の抗原との結合活性に影響を与えると考えられる残基として、 HV0の 1番目 の Glu、 16番目の Arg、 18番目の Leu、 42番目の Gly、 80番目の Tyr、 84番目の Asnおよ び 98番目の Argを選択した。これらの選択したアミノ酸残基のうち 42番目の Gly、 98番 目の Argをマウス抗体 NL-1に見られるァミノ残基へ改変した配列番号 37に示されるヒ ト型 CDR移植抗体の VHのアミノ酸配列 HV2を設計した。該アミノ酸配列をコードする c DNAの塩基配列を配列番号 38に示した。
[0088] 2.抗 CD10CDR移植抗体の VHをコードする cDNAの構築
本実施例 1第 1項(1)で設計した抗 CD10CDR移植抗体の VHのアミノ酸配列 HV0を コードする cDNAを、 PCR法を用いて以下のようにして構築した。構築の過程は図 1に 示した。以下の記載において、合成オリゴヌクレオチドおよび PCR用プライマーは、フ ァスマック社製の合成オリゴヌクレオチドおよび PCR用プライマーを使用した。
[0089] まず、設計したアミノ酸配列を遺伝子コドンに変換した。 1つのアミノ酸残基に対して 複数の遺伝子コドンが存在する場合は、抗体の遺伝子の塩基配列に見られる使用 頻度 L¾equence of Proteins of Immunological Interest, Ub Dept. Health ana Human Services(1991)]を考慮し、対応する遺伝子コドンを決定した。
変換した遺伝子コドンの 5,末端側に、配列番号 43記載の H鎖の 5,非翻訳領域およ び分泌シグナル配列をコードする塩基配列を繋げて完全な抗体 V領域のアミノ酸配 列をコードする cDNAの塩基配列を設計し、更に 5'末端と 3'末端にヒト化抗体発現用 ベクターへクロー-ングするための制限酵素認識配列を付加した。設計した塩基配 列を 5'末端側から 120から 150塩基ずつの計 4本の塩基配列に分け(隣り合う塩基配 列は、その末端に約 20塩基の重複配列を有する)、それらをセンス鎖、アンチセンス 鎖の交互の順にして、配列番号 14、 15、 16および 17にそれぞれ示される塩基配列 を有する 4本の合成オリゴヌクレオチドを合成した。
[0090] 該合成オリゴヌクレオチドをそれぞれ最終濃度が 0.02 μ Μとなるように 0.2mM dNTPs 、 ImM塩化マグネシウムを含む反応液に加え、さらに 1 μ M HVO-FW primer (配列番 号 18)、 1 μ M HVO-RV primer (配列番号 19)および 2.5単位の KOD polymerase (東 洋紡績社製)を用いて、合計 50 Lとし、 PCR反応を行った。反応条件は 94°C間、 55 °Cで 30秒間、 74°Cで 30秒間のサイクルを 30サイクル、その後 74°Cで 10分間を 1サイク ルで行った。 PCR後、該反応液を 2%ァガロースゲル電気泳動に供し、 QIAEXII Gel e xtraction kit (キアゲン社製)を用いて約 0.47Kbpの PCR産物を回収した。回収した PC R産物を Zero Blunt PCR Cloning Kit (Invitrogen社製)を用いて添付の使用説明書に 従って、プラスミド pCR- Bluntに挿入した。得られた組換えプラスミド DNA溶液を用い て大腸菌 DH5ひ株(東洋紡績社製)を形質転換し、形質転 ·のクローンより各ブラ スミドを調製し、プラスミドに挿入された PCR断片の塩基配列を BigDye Terminator Cy cle sequencing FS Ready Reaction Kit Applied Biosystems社製) 用 ヽて、添 1、丄の 使用説明書に従って反応後、同社の塩基配列自動分析装置 ABI PRISM 377により 塩基配列を解析し、 目的の塩基配列を有するプラスミド pCRHVOが取得できたことを 確認した。
[0091] 次に本実施例の第 1項(4)で設計した抗 CD10CDR移植抗体の VHのアミノ酸配列 HV2をコードする cDNAを上記と同様にして構築した。構築の過程は図 2に示した。た だし、合成オリゴヌクレオチドとしては、配列番号 14、 39、 40および 41にそれぞれ示 される塩基配列を有する 4本の合成オリゴヌクレオチドを使用した。最終的に塩基配 列を解析し、 目的の塩基配列を有するプラスミド PCRHV2が取得できたことを確認し た。
[0092] 3.抗 CD10CDR移植抗体の VLをコードする cDNAの構築
本実施例の第 1項(2)で設計した抗 CD10CDR移植抗体の VLのアミノ酸配列 LV0を コードする cDNAを以下のようにして構築した。構築の過程は図 3に示した。 5 '非翻訳 領域および分泌シグナル配列には、配列番号 42に記載の塩基配列を用いた。 まず、配列番号 20、 21、 22および 23にそれぞれ示される塩基配列を有する 4本の 合成オリゴヌクレオチドを上記第 2項と同様にして設計後、合成した。該合成オリゴヌ クレオチドをそれぞれ最終濃度が 0.02 μ Μとなる様に 0.2mM dNTPs、 ImM塩化マグ ネシゥムを含む反応液に加え、さら〖こ 1 μ M LVO-FW primer (配列番号 24)、 1 M L VO-RV primer (配列番号 25)および 2.5単位の KOD polymerase (東洋紡績社製)を 用いて、合計 50 Lとし、 PCRを行った。反応条件は 94°Cで 30秒間、 55°Cで 30秒間、 74°Cで 30秒間のサイクルを 30サイクル、その後 74°Cで 10分間を 1サイクルで行つた。 該反応液を 2%ァガロースゲル電気泳動に供し、 QIAEXII Gel extraction kit (キアゲン 社製)を用いて約 0.44Kbpの PCR産物を回収した。回収した PCR産物を Zero Blunt P CR Cloning Kit (Invitrogen社製)を用いて添付の使用説明書に従って、プラスミド pC R-Bluntに挿入した。得られた組換えプラスミド DNA溶液を用いて大腸菌 DH5 a株( 東洋紡績社製)を形質転換し、形質転難のクローンより各プラスミドを調製し、ブラ スミドに挿入された PCR断片の塩基配列を BigDye Terminator Cycle Sequencing FS Ready Reaction Kit (Applied Biosystems社製)を用いて、添付の使用説明書に従つ て反応後、同社の塩基配列自動分析装置 ABI PRISM 377により塩基配列を解析し、 目的の塩基配列を有するプラスミド pCRLVOが取得できたことを確認した。
[0093] 次に、本実施例の第 1項(3)で設計した LV9をコードする cDNAを上記と同様にして 構築した。構築の過程は図 4に示した。ただし、合成オリゴヌクレオチドとしては、配列 番号 20、 26、 27および 28にそれぞれ示される塩基配列を有する 4本の合成オリゴヌ クレオチド、 LVO-FW primer (配列番号 24)および 1 μ M LV0-RV primer (配列番号 2 5)を使用した。最終的に塩基配列を解析し、 目的の塩基配列を有するプラスミド pCR LV9が取得できたことを確認した。 [0094] 4.抗 CD10CDR移植抗体発現ベクターの構築
実施例 1の第 2項記載の抗 CD10キメラ抗体発現ベクター、上記第 2項で得られたプ ラスミド pCRHVOおよび上記第 3項で得られたプラスミド pCRLVOを用いて、抗 CD10C DR移植抗体発現ベクター pKANTEX3061chimeraHLV0および pKANTEX3061HV0L V0を以下のようにして構築した。構築の過程はそれぞれ図 5および図 6に示した。
[0095] プラスミド pCRLVOを制限酵素 BsiWI (New England Biolabs社製)および制限酵素 E coRI (宝酒造社製)で消化後、ァガロースゲル電気泳動に供し、約 0.44kbの BsiWI-E coRI断片を回収した。
一方、抗 CD10キメラ抗体発現ベクターを制限酵素 BsiWI (New England Biolabs社 製)および制限酵素 EcoRI (宝酒造社製)で消化後、ァガロースゲル電気泳動に供し 、約 13.2kbの BsiWI- EcoRI断片を回収した。
[0096] 回収したプラスミド pCRLVO由来 BsiWI- EcoRI断片と抗 CD10キメラ抗体発現べクタ 一由来の BsiWI-EcoRI断片を Ligation High (東洋紡社製)を用いて添付の説明書に 従って連結した。得られた組換えプラスミド DNA溶液を用いて大腸菌 DH5 a株(東洋 紡績社製)を形質転換し、形質転難のクローンより各プラスミドを調製し、プラスミド の 目歹1 Jを BigDyeTerminator Cycle sequencing FS Ready Reaction Kit (Applied Biosystems社製)を用いて、添付の使用説明書に従って反応後、同社の塩基配列自 動分析装置 ABI PRISM 377により塩基配列を解析し、 目的の塩基配列を有する抗 C D10CDR移植抗体発現ベクター pKANTEX3061chimeraHLV0が取得できたことを確 した 0
[0097] 次に、プラスミド pCRHVOを制限酵素 Apal (宝酒造社製)および制限酵素 Notl (宝 酒造社製)で消化後、ァガロースゲル電気泳動に供し、約 0.47kbの Apd-Notl断片を 回収した。
一方、上記で得られたプラスミド pKANTEX3061chimeraHLV0を制限酵素 Apal (宝 酒造社製)および制限酵素 Notl (宝酒造社製)で消化後、ァガロースゲル電気泳動 に供し、約 13.2kbの Apal- Notl断片を回収した。
[0098] 回収したプラスミド pCRHVO由来の Apal- Notl断片とプラスミド pKANTEX3061chimer aHLVO由来の Apal- Notl断片を Ligation High (東洋紡社製)を用いて添付の説明書 に従って連結した。得られた組換えプラスミド DNA溶液を用いて大腸菌 DH5 a株(東 洋紡績社製)を形質転換し、形質転難のクローンより各プラスミドを調製し、プラスミ トの;^ 酉己列を BigDye Terminator Cycle sequencing FS Ready Reaction Kit (.Applie d Biosystems社製)を用いて、添付の使用説明書に従って反応後、同社の塩基配列 自動分析装置 ABI PRISM 377により塩基配列を解析し、目的の塩基配列を有する抗 CD10CDR移植抗体発現ベクター pKANTEX3061HV0LV0が取得できたことを確認し た。
[0099] 次に、上記で得られた抗 CD10CDR移植抗体発現ベクター pKANTEX3061HV0LV0 およびプラスミド PCRLV9を用いて、抗 CD10CDR移植抗体発現ベクター pKANTEX30
61HV0LV9を構築した。構築の過程は図 7に示した。
抗 CD10CDR移植抗体発現ベクター pKANTEX3061HV0LV0を制限酵素 EcoRI (宝 酒造社製)および制限酵素 BsiWI (宝酒造社製)で消化後、ァガロースゲル電気泳 動に供し、約 13.2kbの EcoRI-BsiWI断片を回収した。
[0100] 一方、プラスミド pCRLV9を制限酵素 EcoRI (宝酒造社製)および制限酵素 BsiWI ( 宝酒造社製)で消化後、ァガロースゲル電気泳動に供し、約 0.47kbの EcoRト BsiWI 断片を回収した。
回収した抗 CD10CDR移植抗体発現ベクター pKANTEX3061HV0LV0由来の Apal- Notl断片およびプラスミド pCRHV9由来の Apd-Notl断片を Ligation High (東洋紡社 製)を用いて添付の説明書に従って連結した。得られた組換え DNA溶液を用いて大 腸菌 DH5ひ株(東洋紡績社製)を形質転換し、形質転 ·のクローンより各プラスミ ドを調製し、プラスミドの塩基配列を BigDye Terminator Cycle Sequencing FS Ready Reaction Kit (Applied Biosystems社製)を用いて、添付の使用説明書に従って反応 後、同社の塩基配列自動分析装置 ABI PRISM 377により塩基配列を解析し、目的の 塩基配列を有する抗 CD 10CDR移植抗体ベクター pKANTEX3061 HV0LV9が取得で さたことを確認した。
[0101] 次に、上記で得られた抗 CD10CDR移植抗体発現ベクター pKANTEX3061HV0LV9 およびプラスミド PCRHV2を用いて、抗 CD10CDR移植抗体発現ベクター pKANTEX3 061HV2LV9を構築した。構築の過程は図 8に示した。 一方、プラスミド pCRHV2を制限酵素 Notl (宝酒造社製)および制限酵素 Apal (宝 酒造社製)で消化後、ァガロースゲル電気泳動に供し、約 0.47kbの Notl-Apal断片を 回収した。
[0102] 回収した抗 CD10CDR移植抗体発現ベクター pKANTEX3061HV0LV9由来の Apal- Notl断片およびプラスミド pCRHV9由来の Apd- Notl断片を Ligation High (東洋紡社 製)を用いて添付の説明書に従って連結した。得られた組換え DNA溶液を用いて大 腸菌 DH5ひ株(東洋紡績社製)を形質転換し、形質転 ·のクローンより各プラスミ ドを調製し、プラスミドの塩基配列を BigDye Terminator Cycle Sequencing FS Ready Reaction Kit (Applied Biosystems社製)を用いて、添付の使用説明書に従って反応 後、同社の塩基配列自動分析装置 ABI PRISM 377により塩基配列を解析し、目的の 塩基配列を有する抗 CD 10CDR移植抗体ベクター pKANTEX3061 HV2LV9が取得で さたことを確認した。
[0103] 5.動物細胞を用いた抗 CD10CDR移植抗体の安定発現および抗体の精製
本実施例の第 4項で作製した 3種の抗 CD10CDR移植抗体発現ベクター pKANTEX 3061HV0LV0、 pKANTEX3061HV0LV9、および pKANTEX3061HV2LV9を使用し、 F UT8遺伝子ダブルノックアウト CHO細胞を宿主細胞として、それぞれ抗 CD10CDR移 植抗体の安定発現株を取得した。 FUT8遺伝子ダブルノックアウト CHO細胞の製造は 、 WO03/85107記載の方法に従った。
[0104] 以下、 FUT8遺伝子ダブルノックアウト CHO細胞を宿主として取得した形質転^ ¾ は、抗 CD10CDR移植抗体発現プラスミド pKANTEX3061HV0LV0を導入して得られ た形質転換株を HV0LV0MS705株と、抗 CD10CDR移植抗体発現プラスミド pKANTE X3061HV0LV9を導入して得られた形質転換株を HV0LV9MS705株と、それぞれ称 する。抗 CD10CDR移植抗体発現プラスミド pKANTEX3061HV2LV9を導入して得ら れた形質転換株を HV2LV9MS705株と称する。
[0105] 上記の各形質転換株を、 G418を 500 μ g/mLの濃度で含む基本培地(10% ゥシ胎 児透析血清 [Invitrogen社製] ] )および 50 μ g/mL Gentamycin (ナカライテスタ社製) および 1 X HT supplement (Invitrogen社製)を添カ卩した Iscove' s Modified Dulbecco' s Medium(Invitrogen社製)に懸濁し、 30mLを 182cm2フラスコ(グライナ一製)に播種し て 5% COインキュベーター内で 37°C、数日間培養した。細胞密度がコンフルェントに
2
達した時点で培養液を除去し、 25mLの PBSで細胞を洗浄後、 EXCELL301培地 (JRH バイオサイエンス社製) 30mLを注入した。 5% COインキュベーター内で 37°C、 7日間
2
培養後、細胞懸濁液を回収し、 3000rpm、 4°Cの条件で 5分間の遠心分離を行って培 養上清を回収した後、培養上清は0.22 iu m孔径MilleXGVフィルター(ミリポァ社製)を 用いて濾過滅菌した。上述の方法により取得した培養上清より Mab Select (アマシャ ム 'バイオサイエンス社製)カラムを用いて添付の説明書に従 ヽ、各抗 CD10CDR移 植抗体を精製した。以下、 HV0LV0MS705株より得られた抗 CD10CDR移植抗体を MS 705/HV0LV0抗体、 HV0LV9MS705株より得られた抗 CD10CDR移植抗体を MS705/ HV0LV9抗体、 HV2LV9MS705株より得られた抗 CD10CDR移植抗体を MS705/HV2L V9抗体、とそれぞれ称する。抗 CD10CDR移植抗体を生産する形質転 ·である HV 0LV9MS705株は、平成 16年 8月 17日付けで独立行政法人産業技術総合研究所 特 許生物寄託センター (日本国茨城県つくば巿東 1丁目 1番地 1 中央第 6)に FERM B P-10099として寄託されて!ヽる。
実施例 3
抗 CD10CDR移植抗体の生物活性の測定
1.抗 CD10CDR移植抗体の CD10に対する結合活性の測定(ELISA法)
実施例 2で取得された各種抗 CD10CDR移植抗体を以下に記載の方法で測定した 抗原は、 CD10高発現であるヒト肺小細胞癌細胞株 SBC-3細胞 (JCRB0818)力 調 製した膜画分を用いた。膜画分は ImM EDTAと 250mM Sucroseを含む 20mM HEPES (pH7.4)緩衝液に懸濁した状態でホモゲナイザーにより細胞を破砕し、 8000 X gの低 速で遠心分離することで細胞内顆粒や未破砕の細胞を沈殿させて取り除き、 80000 X gの高速で遠心分離することで目的の細胞膜を分離した。分離した膜画分は、 Trit on-X100を 0.1%の濃度で含む PBSに溶解して、蛋白を定量した後、 10 /z g/mLとし、 96 穴の ELISA用プレート(グライナ一社製)に 50 μ L/ゥエルで分注し、 4°Cでー晚放置し て吸着させた。 PBSで洗浄後、 1%BSA- PBSを 100 /z L/ゥエルでカ卩え、室温で 1時間反 応させて残存する活性基をブロックした。 1%BSA-PBSを捨て、各ゥヱルを Tween-PB Sで洗浄後、実施例 2の第 3項で調製した DG44/CD10抗体または MS705/CD10抗体 の各種希釈溶液を 50 L/ゥエルで加え、室温で 2時間反応させた。反応後、各ゥェ ルを Tween-PBSで洗浄後、 1%BSA-PBSで 2000倍に希釈したペルォキシダーゼ標識 ャギ抗ヒ HgG(H&L)抗体溶液を二次抗体溶液として、それぞれ 50 L/ゥエルでカロえ 、室温で 1時間反応させた。反応後、 Tween-PBSで洗浄後、 ABTS基質液を 50 L/ゥ エルでカ卩えて発色させ、 OD415を測定した。
[0107] その結果、いずれの抗 CD 10CDR移植抗体においても抗体濃度依存的な抗原に対 する結合活性が認められた。
2. 抗 CD10CDR移植抗体の ADCC活性
実施例 2で取得した精製抗 CD10CDR移植抗体の ADCC活性を、以下に記載の方 法で測定した。ただし、標的細胞には、 Raji細胞 (JCRB9012)および Daudi細胞 (JCRB 9071)を用い、エフェクター細胞溶液の調製には Polymorphprep (NYCOMED社製)を 用いた。
[0108] (1)標的細胞溶液の調製
RPMI1640- FCS(IO)培地 (FCSを 10%含む RPMI1640培地 (GIBCO BRL社製》で培 養した Raji細胞 (JCRB9012)および Daudi細胞 (JCRB9071)を遠心分離操作及び懸濁 により ADCC活性測定用培地 [10%透析血清を含む RPMI1640培地 (GIBCO BRL社 製) ]で洗浄した後、 ADCC活性測定用培地によって、 2 X 105細胞/ mLに調製し、標 的細胞溶液とした。
[0109] (2)エフェクター細胞溶液の調製
健常人静脈血 50mLを採取し、へノ《リンナトリウム(清水製薬社製) 0.5mLを加え穏 やかに混ぜた。これを Polymorphprep (NYCOMED社製)を用いて使用説明書に従 い、単核球層を分離した。 ADCC活性測定用培地で 3回遠心分離して洗浄後、同培 地を用いて 7 X 106細胞/ mLの濃度で懸濁し、エフェクター細胞溶液とした。
[0110] (3) ADCC活性の測定
96ゥエル U字底プレート(Falcon社製)の各ゥエルに上記(1)で調製した標的細胞 溶液の 50 L (1 X 104細胞/ゥエル)を分注した。次いで(2)で調製したエフェクター 細胞溶液を 50 L (2.5 X 105細胞/ゥエル、エフェクター細胞と標的細胞の比は 35:1と なる)添加した。更に、各種抗 CD10キメラ抗体を ADCC活性測定用培地で希釈し、 各最終濃度 0.001〜1 μ g/mLとなるようにカ卩えて全量を 150 Lとし、 37°Cで 4時間反 応させた。反応後、プレートを遠心分離し、上清中の乳酸デヒドロゲナーゼ (LDH)活 '性を、 CytoTox96 Non-Radioactive Cytotoxicity Assay (Promega社製)を用 ヽて、添 付の説明書にしたがって吸光度データを取得することで測定した。標的細胞自然遊 離の吸光度データは、エフェクター細胞溶液、抗体溶液の代わりに培地のみを用い て、また、エフェクター細胞と標的細胞混合自然遊離の吸光度は、抗体溶液の代わり に培地のみを用いて、上記と同様の操作を行うことで取得した。標的細胞全遊離の 吸光度データは、抗体溶液、エフェクター細胞溶液の代わりに培地を用い、反応終 了 45分前に 15 Lの 9% Triton X-100溶液を添カ卩し、上記と同様の操作を行うことで 取得した。 ADCC活性は次式により求めた。
(式)
ADCC活性 (%) ={ (各サンプル濃度での吸光度-エフェクター細胞と標的細胞混合 自然遊離の吸光度) I (標的細胞全遊離の吸光度-標的細胞自然遊離の吸光度) } X 100
さらに、上記数式で得られた値から、更に抗体非添加時のノ ックグランドを差し引い た値を算出し、抗体依存性細胞傷害活性 (ADCC活性)とした。
[0111] 結果を図 9に示す。抗 CD10CDR移植抗体 MS705/HV0LV9抗体および MS705/HV2 LV9抗体は標的細胞に対して ADCC活性が認められた。
(4) CDC活性の測定
a)標的細胞溶液の調製
MI1640- FCS(10)培地 (FCSを 10%含む RPMI1640培地 (GIBCO BRL社製))で培養 したバーキットリンパ腫細胞株 Daudi(JCRB9071)を遠心分離操作及び懸濁により CDC 活性測定用培地(1.4%ゥシ血清アルブミン(GIBCO BRL社製)を含む RPMI1640培地 )で洗浄した後、 CDC活性測定用培地によって、 1 X 106細胞/ mLに調製し、標的細 胞溶液とした。
[0112] b)ヒト補体溶液の調製
ヒト血清凍結乾燥品 SERA, COMPLEMENT (SIGMA社製)に、脱イオン水を 1 mL添 加して溶解した後、等量の CDC活性測定用培地を加えて 2倍希釈し、ヒト補体溶液と した。
c) CDC活性の測定
96ゥヱル平底プレート(SUMILON社製)の各ゥヱルに、上記 a)で調製した標的細胞 溶液 50 μ L(5 X 104細胞/ゥエル)を分注した。次 ヽで各種抗体溶液を CDC活性測定 用培地で希釈し、各最終濃度 0.001〜10 g/mLとなるように 50 Lカ卩えた。更に b)で 調製した補体溶液を 50 μ L添加して全量を 150 Lとし、 37°Cで 2時間反応させた。ま た、補体溶液 50 レ CDC活性測定用培地 100 Lをカ卩えたゥエル (Blank)、および 標的細胞溶液、補体溶液、 CDC活性測定用培地を各 50 μ Lずつ加えたゥエル (Tot al)を作製した。反応後、各ゥエルに細胞増殖試薬 WST-1 (Roche社製)を 15 μ Lずつ 添加して攪拌し、 37°Cで 4時間反応させ、吸光度 450nmを測定した。 CDC活性は次式 により求めた。
(式)
細胞傷害活性 (%) =〔1一 (Sample吸光度一 Blank吸光度) / (Total吸光度一 Blank吸 光度)〕 X 100
図 10に、 MS705/HV0LV9抗 CD10CDR移植抗体、 MS705/HV2LV9抗 CD10CDR移 植抗体および MS705/KM3317抗 CD 10ヒト型キメラ抗体の Daudi細胞に対する活性を 示した。 MS705/HV0LV9抗 CD10CDR移植抗体および MS705/HV2LV9抗 CD10CD R移植抗体は、 MS705/KM3317抗 CD10ヒト型キメラ抗体と同等の CDC活性を示した。 実施例 4
抗 CD10キメラ抗体 KM3317およびヒト化抗体 KM8317の in vivo薬効試験
B細胞急性リンパ性白血病(B-ALL細胞)をターゲットとして、抗 CD10キメラ抗体 MS 705/KM3317および CDR移植ヒト化抗体 MS705/HV2LV9の in vivo薬効試験を、マウ スゼノグラフト延命モデルの系で実施した。移植前日に SCIDマウス(日本クレア、雌、 7週齢)の体重を測定し、コントロール群、抗体投与群 MS705/KM3317-1 mg/kg、 MS 705/HV2LV9-0.1 mg/kg、 1 mg/kgの計 4群(1群 7匹)に群分けした。
In vitroで培養した CD 10陽性 B-ALL細胞 NALM-6 (東北大学加齢研)を 5 X 107個/ mLで PBS (Gibco BRL)に懸濁し、マウスの尾静脈内に 100 μ Lずつ移植した(5 X 106 個/ mouse)。その同日から、抗体投与群は PBS (G¾co BRL)で希釈調製した各抗体 溶液を、コントロール群は PBSのみを 100 Lずつ尾静脈内投与した。投与は 1週間 に 2回、計 8回行い、移植日を 0日目としてその後の体重と生存日数を測定した。 各群の体重と生存率の経日的推移を図 11および図 12に示す。コントロール群のみ 、移植後 20日目力 体重減少が認められ、 40日前後には生存率力0%となった。一 方、抗体投与群はいずれも、試験終了日の 121日目まで体重および生存率に変化は 認められなかった。延命評価の指標とされる Increased Life Span (ILS)%を算出した結 果、抗体投与群は 221%となり、 B-ALLに対する CD10抗体の顕著な延命効果が示さ れた。また、キメラ抗体とヒト化抗体は同等の抗腫瘍効果を有することが明らかとなつ た。
産業上の利用可能性
本発明は、 CD10に特異的に結合するヒト型 CDR移植抗体が提供することができる。 本発明の抗体は、ヒトに対する治療薬として用いることができる。
配列表フリ、一テキスト
配列番号 8—人工配列の説明:抗体重鎖可変領域のアミノ酸配列
配列番号 9 人工配列の説明:合成 DNA
配列番号 10 人工配列の説明 :抗体軽鎖可変領域のアミノ酸配列
配列番号 11 人工配列の説明 :合成 DNA
配列番号 12 人工配列の説明 :抗体軽鎖可変領域のアミノ酸配列
配列番号 13 人工配列の説明 :合成 DNA
配列番号 14 人工配列の説明 :合成 DNA
配列番号 15 人工配列の説明 :合成 DNA
配列番号 16 人工配列の説明 :合成 DNA
配列番号 17 人工配列の説明 :合成 DNA
配列番号 18 人工配列の説明 :合成 DNA
配列番号 19 人工配列の説明 :合成 DNA
配列番号 20 人工配列の説明 :合成 DNA
配列番号 21 人工配列の説明 :合成 DNA 配列番号 22- -人工配列の説明:合成 DNA
配列番号 23- -人工配列の説明 :合成 DNA
配列番号 24- -人工配列の説明 :合成 DNA
配列番号 25- -人工配列の説明 :合成 DNA
配列番号 26- -人工配列の説明 :合成 DNA
配列番号 27- -人工配列の説明 :合成 DNA
配列番号 28- -人工配列の説明 :合成 DNA
配列番号 33- -人工配列の説明 :抗体軽鎖可変領域のアミノ酸配列 配列番号 34- -人工配列の説明 :合成 DNA
配列番号 35- -人工配列の説明 :抗体重鎖可変領域のアミノ酸配列 配列番号 36- -人工配列の説明 :合成 DNA
配列番号 37- -人工配列の説明 :抗体重鎖可変領域のアミノ酸配列 配列番号 38- -人工配列の説明 :合成 DNA
配列番号 39- -人工配列の説明 :合成 DNA
配列番号 40- -人工配列の説明 :合成 DNA
配列番号 41- -人工配列の説明 :合成 DNA
配列番号 42- -人工配列の説明 :合成 DNA
配列番号 43- -人工配列の説明 :合成 DNA

Claims

請求の範囲
[1] 抗体の重鎖(H鎖)可変領域 (V領域)が、配列番号 8で示されるアミノ酸配列、また は配列番号 8で示されるアミノ酸配列のうち、 1番目の Glu、 16番目の Arg、 18番目の L eu、 42番目の Gly、 80番目の Tyr、 84番目の Asnおよび 98番目の Argから選ばれる少な くとも 1つのアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列を含む、 CD10 に特異的に反応するヒト型 CDR移植抗体またはその抗体断片。
[2] 抗体の軽鎖(L鎖)可変領域(V領域)力 配列番号 10で示されるアミノ酸配列、また は配列番号 10で示されるアミノ酸配列のうち、 9番目の Asp、 10番目の Ser、 11番目の L eu、 22番目の Asn、 42番目の Gly、 43番目の Gln、 44番目の Pro、 47番目の Leu、 48番 目の Leu、 61番目の Asp、 71番目の Asp、 72番目の Phe、 73番目の Thr、 79番目の Leu 、 80番目の Ginおよび 86番目の Valから選ばれる少なくとも 1つのアミノ酸残基が他の アミノ酸残基に置換されたアミノ酸配列を含む、 CD10に特異的に反応するヒト型 CDR 移植抗体またはその抗体断片。
[3] 抗体の重鎖(H鎖)可変領域 (V領域)が、配列番号 8で示されるアミノ酸配列、また は配列番号 8で示されるアミノ酸配列のうち、 1番目の Glu、 16番目の Arg、 18番目の L eu、 42番目の Gly、 80番目の Tyr、 84番目の Asnおよび 98番目の Argから選ばれる少 なくとも 1つのアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列を含み、力 つ抗体の軽鎖(L鎖)可変領域 (V領域)が、配列番号 10で示されるアミノ酸配列、ま たは配列番号 10で示されるアミノ酸配列のうち、 9番目の Asp、 10番目の Ser、 11番目 の Leu、 22番目の Asn、 42番目の Gly、 43番目の Gln、 44番目の Pro、 47番目の Leu、 48 番目の Leu、 61番目の Asp、 71番目の Asp、 72番目の Phe、 73番目の Thr、 79番目の Le u、 80番目の Ginおよび 86番目の Valから選ばれる少なくとも 1つのアミノ酸残基が他の アミノ酸残基に置換されたアミノ酸配列を含む、請求項 1または 2記載のヒト型 CDR移 植抗体またはその抗体断片。
[4] 抗体の重鎖(H鎖)可変領域(V領域)力 配列番号 8、 35または 37で示されるァミノ 酸配列の 、ずれかを含む、請求項 1または 3に記載のヒト型 CDR移植抗体またはそ の抗体断片。
[5] 抗体の軽鎖(L鎖)可変領域(V領域) 1S 配列番号 10、 12または 33で示されるアミ ノ酸配列のいずれかを含む、請求項 2〜4のいずれか 1項に記載のヒト型 CDR移植抗 体またはその抗体断片。
[6] 抗体の重鎖(H鎖)可変領域(V領域)力 配列番号 8、 35または 37で示されるァミノ 酸配列のいずれかを含み、かつ抗体の軽鎖(L鎖)可変領域(V領域)力 配列番号
10、 12または 33で示されるアミノ酸配列のいずれかを含む請求項 3〜5のいずれか
1項に記載のヒト型 CDR移植抗体またはその抗体断片。
[7] 配列番号 1で示されるアミノ酸配列の 52〜750番目に存在するェピトープに反応す ることを特徴とする、請求項 1〜6のいずれか 1項に記載のヒト型 CDR移植抗体または その抗体断片。
[8] FERM BP-10099から生産されるモノクローナル抗体が認識するェピトープに反応す ることを特徴とする、ヒト型 CDR移植抗体またはその抗体断片。
[9] 抗体断片が、 Fab, Fab'、 F(ab')、 1本鎖抗体(scFv)、 2量体化可変領域(V領域)断
2
片(Diabody)、ジスルフイド安定化 V領域断片 (dsFv)および相補性決定領域(CDR) を含むペプチドから選ばれる抗体断片である請求項 1〜8のいずれか 1項に記載の抗 体断片。
[10] 請求項 1〜9のいずれか 1項に記載されたヒト型 CDR移植抗体またはその抗体断片が 、放射性同位元素、蛋白質または薬剤と結合しているヒト型 CDR移植抗体またはその 抗体断片。
[11] 請求項 1〜9のいずれか 1項に記載のヒト型 CDR移植抗体またはその抗体断片をコー ドする DNA。
[12] 請求項 11記載の DNAを含有する組換え体ベクター。
[13] 請求項 12記載の組換え体ベクターを宿主細胞に導入して得られる形質転換株。
[14] 形質転^ ¾が、 HV0LV9MS705(FERM BP-10099)である請求項 13記載の形質転換 株。
[15] 請求項 13または 14記載の形質転換株を培地に培養し、培養物中に請求項 1〜9の V、ずれか 1項に記載のヒト型 CDR移植抗体またはその抗体断片を生成蓄積させ、該 培養物から該抗体または該抗体断片を採取することを特徴とするヒト型 CDR移植抗 体またはその抗体断片の製造方法。
[16] 請求項 1〜9のいずれか 1項に記載のヒト型 CDR移植抗体またはその抗体断片を有 効成分として含有する医薬。
[17] 請求項 1〜9のいずれか 1項に記載のヒト型 CDR移植抗体またはその抗体断片を有 効成分として含有する CD10関連疾患の治療薬。
PCT/JP2006/309577 2005-05-12 2006-05-12 Cd10に特異的に反応するヒト型cdr移植抗体およびその抗体断片 WO2006121159A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-139396 2005-05-12
JP2005139396 2005-05-12

Publications (1)

Publication Number Publication Date
WO2006121159A1 true WO2006121159A1 (ja) 2006-11-16

Family

ID=37396665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309577 WO2006121159A1 (ja) 2005-05-12 2006-05-12 Cd10に特異的に反応するヒト型cdr移植抗体およびその抗体断片

Country Status (1)

Country Link
WO (1) WO2006121159A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026603A1 (fr) * 2006-08-28 2008-03-06 Kyowa Hakko Kirin Co., Ltd. Agent anti-tumoral
WO2008081942A1 (ja) * 2007-01-05 2008-07-10 The University Of Tokyo 抗prg-3抗体を用いる癌の診断および治療
CN103880960A (zh) * 2014-04-02 2014-06-25 福州迈新生物技术开发有限公司 一种分泌抗cd10分子的单克隆抗体及其应用
CN107058238A (zh) * 2016-12-27 2017-08-18 无锡傲锐东源生物科技有限公司 抗cd10蛋白单克隆抗体及其用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336796A (ja) * 1986-08-01 1988-02-17 Teijin Ltd マウス−ヒトキメラ抗体、それをコ−ドする発現型キメラdna配列、プラスミド及び細胞
JPH04506458A (ja) * 1989-12-21 1992-11-12 セルテック リミテッド Cd3特異的組換え抗体
WO2003002608A1 (en) * 2001-06-28 2003-01-09 Kyowa Hakko Kogyo Co., Ltd. Humanized antibody against fibroblast growth factor-8 and fragment of the antibody

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336796A (ja) * 1986-08-01 1988-02-17 Teijin Ltd マウス−ヒトキメラ抗体、それをコ−ドする発現型キメラdna配列、プラスミド及び細胞
JPH04506458A (ja) * 1989-12-21 1992-11-12 セルテック リミテッド Cd3特異的組換え抗体
WO2003002608A1 (en) * 2001-06-28 2003-01-09 Kyowa Hakko Kogyo Co., Ltd. Humanized antibody against fibroblast growth factor-8 and fragment of the antibody

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KUDO A. ET AL.: "The antibody molecule to common acute lymphocytic leukemia (cALL) antigen used the identical or closely related VH gene segment as that of MOPC-21 immunoglobulin heavy chain", J. IMMUNOL., vol. 135, 1985, pages 642 - 645, XP003002153 *
QUEEN C. ET AL.: "A humanized antibody that binds to the interleukin 2 receptor", PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 10029 - 10033, XP000310534 *
TEMPEST P.R. ET AL.: "Efficient generation of a reshaped human mAb specific for the alpha toxin of Clostridium perfringens", PROTEIN ENG., vol. 7, 1994, pages 1501 - 1507, XP001070130 *
UEDA R. ET AL.: "Serological analysis of cell surface antigens of null cell acute lymphocytic leukemia by mouse monoclonal antibodies", PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 4386 - 4390, XP002983154 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026603A1 (fr) * 2006-08-28 2008-03-06 Kyowa Hakko Kirin Co., Ltd. Agent anti-tumoral
EP2062596A1 (en) * 2006-08-28 2009-05-27 Kyowa Hakko Kirin Co., Ltd. Anti-tumor agent
EP2062596A4 (en) * 2006-08-28 2010-01-20 Kyowa Hakko Kirin Co Ltd ANTI-TUMOR AGENT
WO2008081942A1 (ja) * 2007-01-05 2008-07-10 The University Of Tokyo 抗prg-3抗体を用いる癌の診断および治療
JP5618172B2 (ja) * 2007-01-05 2014-11-05 国立大学法人東京大学 抗prg−3抗体を用いる癌の診断および治療
CN103880960A (zh) * 2014-04-02 2014-06-25 福州迈新生物技术开发有限公司 一种分泌抗cd10分子的单克隆抗体及其应用
CN103880960B (zh) * 2014-04-02 2016-01-06 福州迈新生物技术开发有限公司 一种抗cd10分子的单克隆抗体及其应用
CN107058238A (zh) * 2016-12-27 2017-08-18 无锡傲锐东源生物科技有限公司 抗cd10蛋白单克隆抗体及其用途

Similar Documents

Publication Publication Date Title
JP7082620B2 (ja) 抗pd1モノクローナル抗体、その医薬組成物およびその使用
EP3130606B1 (en) Immunoactivating bispecific antibodies
EP2062596A1 (en) Anti-tumor agent
US8076458B2 (en) Anti-claudin-4 antibody
US8652470B2 (en) Monoclonal antibodies directed to CD52
WO2001023432A1 (fr) Anticorps humain de transplantation d'une region de determination de la complementarite agissant contre le ganglioside gd3, et derives dudit anticorps
JP2022545585A (ja) 新規の抗cd39抗体
JP5532401B2 (ja) ヘパリン結合上皮細胞増殖因子様増殖因子に結合するモノクローナル抗体
KR20090029227A (ko) 헤파린 결합 상피세포 증식 인자 유사 증식 인자에 결합하는 모노클로날 항체
WO2020011970A1 (en) Anti-mesothelin antibodies
WO2012074097A1 (ja) 抗cd33抗体
JP7410115B2 (ja) CD137抗原結合部位を含むFc結合断片
KR20220007584A (ko) 항-clec2d 항체 및 이의 사용 방법
TW202304997A (zh) 新型抗cd4抗體
WO2006121159A1 (ja) Cd10に特異的に反応するヒト型cdr移植抗体およびその抗体断片
CN115484981A (zh) 用于调节免疫应答的材料和方法
KR102312222B1 (ko) Cd43의 독특한 시알로글리코실화된 암-연관 에피토프를 표적으로 하는 모노클로날 항체
WO2002078739A1 (fr) Medicaments contenant un anticorps genetiquement modifie dirige contre un ganglioside gd3
WO2001023573A1 (fr) Anticorps transplantes a domaine de determination de complementation de type humain, dresse contre le ganglioside gd2, et derive de cet anticorps
EP4105330A1 (en) Bispecific antibody that binds to cd3
AU2022330106A1 (en) Anti-flt3 antibodies, cars, car t cells and methods of use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP