WO2006121015A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2006121015A1
WO2006121015A1 PCT/JP2006/309266 JP2006309266W WO2006121015A1 WO 2006121015 A1 WO2006121015 A1 WO 2006121015A1 JP 2006309266 W JP2006309266 W JP 2006309266W WO 2006121015 A1 WO2006121015 A1 WO 2006121015A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
light emitting
organic
layer
intermediate conductive
Prior art date
Application number
PCT/JP2006/309266
Other languages
English (en)
French (fr)
Inventor
Shigekazu Tomai
Kazuyoshi Inoue
Hitoshi Kuma
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP06746097A priority Critical patent/EP1881742A1/en
Priority to US11/913,272 priority patent/US20090066228A1/en
Publication of WO2006121015A1 publication Critical patent/WO2006121015A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic electoluminescence element. More specifically, the present invention relates to an organic electoluminescence device having a structure in which two or more organic light emitting layers are laminated via an intermediate conductive layer.
  • the cathode Z organic light emitting layer Z anode As one of the technologies for extending the lifetime and improving the efficiency of organic-electral luminescence devices (hereinafter abbreviated as EL-electric luminescence), the cathode Z organic light emitting layer Z anode There are technologies for stacking multiple layers (see, for example, Patent Documents 1 to 3). 0 With this organic EL device, the current density for obtaining the same brightness can be reduced compared to a device with a single unit. There is an advantage that the lifetime of the element can be extended.
  • EL-electric luminescence organic-electral luminescence devices
  • Patent Document 6 has made it possible to reduce the viewing angle dependence of the emission wavelength by selecting a material in which the difference in refractive index between the organic light emitting layer and the intermediate electrode is within 0.2. A method for reducing the size is disclosed.
  • Patent Document 1 Japanese Patent No. 3189438
  • Patent Document 2 Japanese Patent Laid-Open No. 11-312584
  • Patent Document 3 Japanese Patent Laid-Open No. 11 312585
  • Patent Document 4 Japanese Patent Laid-Open No. 11-329748
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-45676
  • Patent Document 6 International Publication No. 2004Z095892 Pamphlet
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide an organic EL element having excellent luminous efficiency and a long lifetime.
  • the inventors of the present invention have made extensive studies in order to solve the above-mentioned problems.
  • the difference between the refractive index of the intermediate conductive layer and the refractive index of the organic light-emitting layer is within 0.25, and It was found that by using a material containing an oxide for the intermediate conductive layer, the luminous efficiency can be improved and the lifetime can be extended, and the present invention has been completed.
  • the following organic EL device can be provided.
  • the difference from the bending ratio n is within 0.25, and the intermediate conductive layer contains one or more rare earth elements b
  • An organic electoluminescence device containing an acid salt An organic electoluminescence device containing an acid salt.
  • the intermediate conductive layer has a refractive index greater than the refractive index n of the organic light emitting layer
  • the intermediate conductive layer is a laminate of transparent conductive material and metal halide, or transparent conductive 4.
  • the transparent conductive material is composed of an oxide containing at least one element selected from Ce, Nd, Sm, or Gd and at least one element selected from In, Zn, or Sn. Organic eletroluminescence element.
  • a long-life and highly efficient organic EL device can be provided.
  • FIG. 1 is a diagram showing an embodiment of an organic EL device of the present invention.
  • FIG. 2 is a partially enlarged view of FIG.
  • FIG. 1 is a diagram showing an embodiment of the organic EL device of the present invention.
  • This organic EL device is an example in which two organic light-emitting layers are laminated to form an intermediate conductive layer.
  • the organic EL device 1 is formed on a support substrate 10 with a transparent anode (transparent Electrode) 12 is provided, and a cathode (counter electrode) 14 is provided opposite to the transparent anode 12.
  • a transparent anode transparent Electrode
  • counter electrode cathode
  • the organic light-emitting layer 20, 22, 24, 26 and the intermediate conductive layer 30, 32, 34 force so that one intermediate conductive layer is interposed between the two organic light-emitting layers Is provided.
  • Light emitted from the organic light emitting layers 20, 22, 24, and 26 is extracted from the support substrate 10 through the transparent anode 12.
  • FIG. 2 is a partially enlarged view of the organic light emitting layers 22 and 24 shown in FIG. 1 and the intermediate conductive layer 32 interposed therebetween.
  • the organic light emitting layers 22 and 24 also serve as a hole injection layer 200, a light emitting layer 202, and an electron injection layer 204, respectively.
  • the holes supplied from the hole injection layer 200 and the electrons supplied from the electron injection layer 204 are combined to emit light.
  • the intermediate conductive layer 32 has a hole injecting surface on the organic light emitting layer 22 side and an electron injecting surface on the organic light emitting layer 24 side.
  • intermediate conductive layer 32 At least one arbitrary intermediate conductive layer, for example, intermediate conductive layer 32
  • the refractive index is n and the refractive index of the organic light-emitting layers 22 and 24 sandwiching the intermediate conductive layer 32 is n, ab
  • the difference between the refractive index n of the intermediate conductive layer and the refractive index n of the organic light emitting layer sandwiching the intermediate conductive layer is 0.
  • This can suppress the refraction of the light emitted from the light emitting layer inside the device, thereby improving the light extraction efficiency (the light emission efficiency of the device).
  • the intermediate conductive layer uses a transparent conductive material containing one or more rare earth element oxides.
  • the lifetime of the device can be improved by adding rare earth oxides.
  • the four organic light emitting layers 20, 22, 24, 26, and the three intermediate conductive layers 30, 32, 34 may be different or the same.
  • the refractive indexes of the organic light emitting layers 22 and 24 may be different, but when the refractive indexes of the organic light emitting layers (first and second organic light emitting layers) 22 and 24 are respectively ⁇ and n,
  • the relationship of (iii) is satisfied, and more preferably, all the refractive indexes of the two organic light emitting layers sandwiching the intermediate conductive layer satisfy the above relationship.
  • organic light emitting layers are laminated, but two, three, or five or more organic light emitting layers may be laminated.
  • the transparent electrode may be a force cathode that is an anode.
  • each member of the organic EL element will be described.
  • the support substrate is a member for supporting the organic EL element, TFT, and the like, it is preferable that the support substrate is excellent in mechanical strength and dimensional stability.
  • a substrate a glass plate, a metal plate, a ceramic plate, or a plastic plate (polycarbonate resin, acrylic resin, vinyl chloride resin, polyethylene terephthalate resin, polyimide resin, polyester resin) Fat, epoxy resin, phenol resin, silicon resin, fluorine resin, etc.).
  • the substrate having these material strengths may be further formed with an anti-moisture treatment or hydrophobicity by forming an inorganic film or applying a fluorine resin to avoid intrusion of moisture into the organic EL display device.
  • a sex treatment is applied.
  • the support substrate side force also extracts light
  • the support substrate is preferably transparent with a transmittance of 50% or more for visible light, but the opposite side, that is, the counter electrode.
  • the substrate does not necessarily have to be transparent.
  • the transparent anode it is preferable to use a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (for example, 4. OeV or more).
  • a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function for example, 4. OeV or more.
  • ITO indium tin oxide
  • indium copper, tin, zinc oxide, gold, platinum, and radium can be used alone or in combination of two or more kinds.
  • the thickness of the anode is not particularly limited, but is preferably 10 to: a value within the range of LOOOnm, more preferably a value within the range of 10 to 200 nm.
  • the transparent cathode is substantially transparent so that the light emitted from the organic light emitting layer can be effectively extracted outside, more specifically, the light transmittance is a value of 50% or more. I like it.
  • a metal, an alloy, an electrically conductive compound or a mixture thereof having a low work function for example, less than 4. OeV.
  • a metal, an alloy, an electrically conductive compound or a mixture thereof having a low work function for example, less than 4. OeV.
  • one of magnesium, aluminum, indium, lithium, sodium, cesium, silver and the like can be used alone or in combination of two or more.
  • the thickness of the cathode is not particularly limited, but is preferably a value within the range of 10 to: LOOOnm, and more preferably within a range of 10 to 200 nm.
  • Organic light emitting layer can be defined as a medium including a light-emitting layer capable of EL emission by recombination of electrons and holes. Such an organic light emitting layer can be constituted, for example, by laminating the following layers on the anode.
  • a light emission brightness higher than that of d and an excellent durability are usually used preferably.
  • Examples of the light-emitting material forming the light-emitting layer include p-quarterphenyl derivatives, P-quintanol derivatives, benzothiazole compounds, benzimidazole compounds, benzoxazole compounds, metal chelate oxinoids Compounds, oxadiazole compounds, styrylbenzene compounds, distyrylvirazine derivatives, butadiene compounds, naphthalimide compounds, perylene derivatives, aldazine derivatives, pyrazirine derivatives, cyclopentagen derivatives, pyrrolopyrrole derivatives, styrylamines Derivatives, tamarin compounds, aromatic dimethylidin compounds, metal complexes having 8-quinolinol derivatives as ligands, polyphenyl compounds, and the like may be used alone or in combination of two or more.
  • organic light-emitting materials 4, 4'-bis (2,2-di-tert-butylphenol) biphenyl as an aromatic dimethylidin compound, 4, 4 Bis (2,2-diphenylvinyl) biphenyl (abbreviated as DPVBi) and derivatives thereof are more preferred.
  • an organic light-emitting material having a distyrylarylene skeleton or the like is used as a host material, and the host material is a fluorescent dye having a strong blue power as a dopant, such as a tamarin-based material, or a fluorescent material similar to that of the host. Also suitable for use in combination with dye-doped materials It is. More specifically, it is preferable to use the above-mentioned DPVBi or the like as the host material and N, N diphenylaminobenzene or the like as the dopant.
  • the light-emitting layer may be formed by laminating two or more light-emitting layers that have the same color or different colors.
  • the hole injection layer of the organic light-emitting layer, 1 X 10 4 ⁇ 1 X 10 6 hole mobility forces are measured when applying a voltage in the range of VZcm 1 X 10 _6 cm 2 It is preferable to use a compound having a ZV ′ second or more and an ionization energy of 5.5 eV or less. By providing such a hole injection layer, hole injection into the light emitting layer becomes good, and high emission luminance can be obtained, or low voltage driving can be performed.
  • borfilin compound aromatic tertiary amine compound, styrylamine compound, aromatic dimethylidin compound, condensed aromatic ring compound, for example, 4, 4 'bis [N— (1 naphthyl) -N-phenylamino] biphenyl and 4, 4', 4 "-tris [N— (3-methylphenol) —N phenolamino] trif
  • aromatic compounds such as enylamine are listed.
  • an inorganic compound such as p-type—Si or p-type—SiC as the constituent material of the hole injection layer.
  • An organic semiconductor layer having a conductivity of 1 ⁇ 10 _) SZcm or more is provided between the hole injection layer and the anode layer described above or between the hole injection layer and the light emitting layer described above. Is also preferable. By providing such an organic semiconductor layer, hole injection into the light emitting layer is further improved.
  • the thickness of the hole injection layer is not particularly limited, but is preferably 10 to 300 nm.
  • the electron injection layer of the organic light-emitting layer the electron mobility measured when applying a voltage in the range of 1 X 10 4 ⁇ 1 X 10 6 VZcm is, 1 X 10 _6 cm 2 ZV ' more seconds It is preferable to use a compound having an ionization energy exceeding 5.5 eV.
  • a metal complex of 8 hydroxyquinoline (A1 chelate: Alq), a derivative thereof, an oxadiazole derivative, or the like can be given.
  • the adhesion improving layer in the organic light emitting layer can be regarded as one form of the electron injection layer. That is, among the electron injecting layers, it is a layer having particularly good material strength with good adhesion to the cathode, and it is also preferable to constitute a metal complex of 8-hydroxyquinoline or a derivative thereof. Note that it is also preferable to provide an organic semiconductor layer having a conductivity of 1 ⁇ 10 — 1 SZcm or more in contact with the above-described electron injection layer. By providing such an organic semiconductor layer, the electron injection property into the light emitting layer is further improved.
  • the thickness of the electron injection layer is not particularly limited, but is preferably 10 to 300 nm.
  • the thickness of the organic light emitting layer can be preferably set within a range of 5 nm to 5 m.
  • the reason for this is that when the thickness of the organic light emitting layer is less than 5 nm, the light emission luminance and durability may decrease, whereas when the thickness of the organic light emitting layer exceeds 5 m, the value of the applied voltage increases. This is because there are cases. Therefore, it is more preferable to set the thickness of the organic light emitting layer to a value within the range of 10 ⁇ to 3 / ⁇ m, and even more preferable to set a value within the range of 20 ⁇ to 1 / ⁇ ⁇ .
  • the intermediate conductive layer is interposed between adjacent organic light-emitting layers and has various functions as long as it has a function of injecting holes from one surface and injecting other surface force electrons. It can be used.
  • Examples of the material constituting the intermediate conductive layer include In O, ITO (indium tin oxide).
  • Id indium zinc oxide
  • IZO indium zinc oxide
  • SnO zinc oxide
  • ZnO zinc oxide
  • TiN zinc oxide
  • ZrN zinc oxide
  • HfN titanium oxide
  • TiOx vanadium zinc oxide
  • a transparent conductive material to which a rare earth element oxide is added can be used.
  • the transparent conductive material is an oxide containing one or more rare earth elements selected from Ce, Nd, Sm, or Gd and one or more elements selected from In, Zn, or Sn. It is preferable that it consists of.
  • the addition amount of the rare earth element oxide in the transparent conductive material is determined within a range not impairing the conductivity, and is preferably 1 to 30% by weight.
  • the refractive index of the intermediate conductive layer and the presence of The difference from the refractive index of the organic light emitting layer should be within 0.25. Therefore, the intermediate conductive layer includes a layer having a refractive index larger than the refractive index n of the organic light emitting layer and a layer having a refractive index smaller than the refractive index n.
  • the mixture of materials exhibiting a refractive index smaller than the refractive index n is preferable that the mixture of materials exhibiting a refractive index smaller than the refractive index n.
  • the refractive index of the organic light-emitting layer and a low refractive index material such as a metal halide such as a metal fluoride represented by LiF, as long as the charge injection property of the intermediate conductive layer is not impaired.
  • a film made of a mixture of the above transparent conductive material exhibiting a higher refractive index or a multilayer film in which a metal fluoride and a transparent conductive material are laminated can be used.
  • the intermediate conductive layer in which a transparent conductive material and a low refractive index material such as a metal halide are mixed is prepared, for example, by preparing two vapor deposition sources, filling the respective vapor deposition sources, and co-depositing them.
  • the refractive index can be controlled by the rate of each deposition.
  • the low refractive index material is a metal halide such as LiF
  • an increase in the ratio is not preferable because the conductivity of the intermediate conductive layer deteriorates and tends not to mix homogeneously.
  • the ratio of metal halide in the film is preferably less than 0.6 (weight ratio).
  • the function of the intermediate conductive layer can be maintained.
  • a layered structure is possible, it is preferable to have a three-layer structure of transparent conductive material Z low refractive index material Z transparent conductive material!
  • the film thickness ratio of the low refractive index material to the film thickness of the intermediate conductive layer is preferably smaller than 0.6.
  • the absorption coefficient of the intermediate conductive layer for visible light is 2.5 [1Z m] or less. [1 / m] or less is preferable.
  • the absorption coefficient is 2.5 [lZ wm] or less, for example, when the thickness of the intermediate conductive layer is 30 nm, the transmittance of the intermediate conductive layer is 92%. This is 86% for the two layers and 80% for the three layers, but the transmittance decreases, but it can be kept high to some extent.
  • many transparent conductive materials have an extinction coefficient exceeding 0.1, but materials represented by LiF have almost zero extinction coefficient. Therefore, the absorption coefficient is reduced by mixing or laminating a transparent conductive material and a low refractive index material. There is also an effect that the luminous efficiency can be increased.
  • the absorption coefficient of all the intermediate conductive layers is 2.5 [1 / ⁇ m] or less.
  • the oxygen partial pressure during sputtering [oxygen Z (oxygen + argon)
  • the refractive index of the organic light emitting layer and the intermediate conductive layer is defined as an equivalent refractive index.
  • the definition of the refractive index of the intermediate conductive layer with respect to light of a wavelength in the case where a film made of a high refractive index material and a film made of a low refractive index material are laminated will be described.
  • the film thickness of the high refractive index material is d
  • the refractive index is n
  • the film thickness of the low refractive index material layer is d
  • the refractive index is n.
  • Equation (2) the 2 X 2 matrix ⁇ is defined as Equation (2).
  • Equation (3) the equivalent refractive index N of the laminated film is defined as in Equation (3).
  • the refractive index of the entire organic light emitting layer can be expressed by the above formulas (1) to (3) as long as the refractive index of the hole injecting material, light emitting material, electron injecting material, etc. forming the organic light emitting layer is divided. Can be defined in the same way as The refractive index of the material forming the organic light emitting layer is often about 1.7 to 1.8, and as a result, the equivalent refractive index of the organic light emitting layer is also about 1.7 to 1.8. Therefore, the refractive index of the intermediate conductive layer is preferably in the range of 1.5 to 2.0. From the viewpoint that the absorption coefficient is preferably 2.5 [1Z m] or less, the extinction coefficient is 0.1 or less. It is preferable.
  • a 25 mm x 75 mm support substrate (OA2 glass: manufactured by Nippon Electric Glass Co., Ltd.) was ultrasonically cleaned in pure water and isopropyl alcohol, dried by air blow, and then UV cleaned. Next, this substrate was moved to a sputtering apparatus, and ITO was deposited to a thickness of 150 nm.
  • this substrate is moved to the organic vapor deposition device, the substrate is fixed to the substrate holder, the vacuum chamber is decompressed to 5 X 10 _7 torr, and then the hole injection layer, the light emitting layer, and the electron injection material are sequentially formed did.
  • DPVBi 2, 2 diphenyl biphenyl
  • the dopant was 1, 4— Bis [4- (N, N diphenylaminostyrylbenzene)] (DP AVB) was co-evaporated at a deposition rate of 0.003 to 0.008 nm Z seconds to a film thickness of 40 nm.
  • ITCO lithium fluoride
  • LiF lithium fluoride
  • an organic light emitting layer, an intermediate conductive layer and an organic light emitting layer are further added in the same manner as the organic light emitting layer and the intermediate conductive layer in (1) and (2) above.
  • a film was formed.
  • aluminum was formed to a thickness of 150 nm as a cathode to obtain an organic EL element (including three organic light emitting layers and two intermediate conductive layers).
  • the hole injecting layer, the light emitting layer, and the electron injecting layer were individually formed with a thickness of 0.2 microns by the method (2) above.
  • the refractive index for light having a wavelength of 500 nm was measured with a meter.
  • the equivalent refractive index of the organic light emitting layer was determined using the film thickness values of (2) above and found to be 1.79.
  • ITCO and lithium fluoride were individually deposited on a glass substrate by the method (3) above, and the refractive index for light with a wavelength of 500 nm was measured with an ellipsometer.
  • the refractive index of ITCO was 2.1, and the refractive index of lithium fluoride was 1.4.
  • the difference between the equivalent refractive index of the organic light-emitting layer and the equivalent refractive index of the intermediate conductive layer is 0.06.
  • the absorption coefficient was measured using an absorbance meter for the intermediate conductive layer and found to be 2. 13 [lZ w m].
  • the device was illuminated with 2000 cdZm 2 and the time (half life) until the luminance became half that of lOOOcdZm 2 was measured and found to be 2400 hours.
  • the refractive index of the intermediate conductive layer was 1.95, and the absorption coefficient was 2.12 [lZwm].
  • the difference between the equivalent refractive index of the organic light emitting layer and the equivalent refractive index of the intermediate conductive layer was 0.16.
  • the brightness of the organic EL element in the front direction was 355 nits, and the half-life was 2250 hours.
  • An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the thickness was changed to 30 nm.
  • the refractive index of the intermediate conductive layer was 2.04, and the absorption coefficient was 2.58 [lZwm].
  • the difference between the equivalent refractive index of the organic light emitting layer and the equivalent refractive index of the intermediate conductive layer was 0.25.
  • the brightness of the organic EL element in the front direction was 280 nits, and the half-life was 1800 hours.
  • An organic EL device was fabricated and evaluated in the same manner as in Example 3 except that the light emitting layer was a laminated type of a blue light emitting layer and an orange light emitting layer as described below.
  • An orange light emitting layer was first laminated on the hole injection layer, and then a blue light emitting layer was laminated.
  • the orange light-emitting medium was formed so that the material represented by the following formula (1) and the material represented by the following formula (2) had a weight ratio of 5: 0.01 and a film thickness of 5 nm.
  • the blue light-emitting medium was formed so that the material represented by the following formula (1) and the material represented by the following formula (3) had a weight ratio of 35: 0.8 and a film thickness of 35 nm.
  • the refractive index of the organic light emitting layer was 1.79 as in the other examples.
  • the refractive index of the intermediate conductive layer was 1.95, and the absorption coefficient was 2.52 [lZ w m].
  • the difference between the equivalent refractive index of the organic light emitting layer and the equivalent refractive index of the intermediate conductive layer was 0.16.
  • the brightness of the organic EL element in the front direction was 338 nits, and the half-life was 2900 hours.
  • the intermediate conductive layer is a single layer film of V 2 O (thickness 30 nm).
  • An organic EL device was fabricated by the method and evaluated.
  • the refractive index of the intermediate conductive layer was 2.20, and the absorption coefficient was 3.02 [lZ wm].
  • the difference between the equivalent refractive index of the organic light emitting layer and the equivalent refractive index of the intermediate conductive layer was 0.41.
  • the brightness of the organic EL element in the front direction was 320 nits, and the half-life was 1200 hours.
  • the refractive index of the intermediate conductive layer was 1.90, and the absorption coefficient was 1.95 [lZ w m].
  • the difference between the equivalent refractive index of the organic light emitting layer and the equivalent refractive index of the intermediate conductive layer was 0.16.
  • the brightness of the organic EL element in the front direction was 160 nits, and the half-life was 800 hours.
  • the organic EL device of the present invention can be suitably used as a light source for various display devices such as consumer TVs, large display displays, mobile phone display screens, and various lighting devices in combination with known configurations.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 透明電極(12)と、透明電極(12)に対向して配置される対向電極(14)と、透明電極(12)と対向電極(14)の間に、2層の有機発光層(20),(22)が中間導電層(30)を介して積層している構造を1つ以上有し、中間導電層(30)の屈折率naと、有機発光層の少なくとも1層の屈折率nbとの差が0.25以内であり、中間導電層(30)が、1種以上の希土類元素を含有する酸化物を含む有機エレクトロルミネッセンス素子(1)。

Description

明 細 書
有機エレクト口ルミネッセンス素子
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子に関する。さらに詳しくは、中間導電 層を介して 2以上の有機発光層を積層した構造を有する有機エレクト口ルミネッセン ス素子に関する。
背景技術
[0002] 有機エレクト口ルミネッセンス素子(以下、エレクト口ルミネッセンスを ELと略記する) の長寿命化、高効率ィ匕を図る技術の一つとして、陰極 Z有機発光層 Z陽極のュ-ッ トを複数積層する技術がある (例えば、特許文献 1—3参照。 ) 0この有機 EL素子で は、ユニットが単層である素子と比べ、同一の輝度を得るための電流密度を低下でき ること力 、素子の長寿命化が図れるという長所がある。
し力しながらこの技術では、隣り合う有機発光層の中間に配置される注入電極 (中 間電極)に、電圧を印加するための引出電極を形成する必要があることから、配線が 複雑になり、配線抵抗による電力ロスが無視できなくなるという問題点があった。
[0003] これを回避する技術として、中間電極として、片側の面が正孔注入性を有し、他方 の面が電子注入性を有する電極を採用したものが開示されている(例えば、特許文 献 4— 5参照。;)。この技術では、中間電極の引出電極が不要となるという長所がある し力しながら、発光素子を正面から観察したときと、斜めから観察したときで発光色 が変わる、即ち素子の視野角依存性が悪いという問題点があった。また、発光効率も 不十分と!/、う問題点もあった。
[0004] この問題に対し、本出願人は特許文献 6に、有機発光層と中間電極の屈折率の差 が 0. 2以内となる材料を選定することによって、発光波長の視野角依存性を小さくす る方法を開示している。
し力しながら、照明用途等では発光波長の視野角依存性が小さいことよりも、長寿 命であることが重視される。従って、有機発光層を複数有することによる利点に加え て、素子の長寿命化が実現できれば、極めて高輝度かつ長寿命の光源を得ることが 可能となる。
特許文献 1:特許第 3189438号
特許文献 2:特開平 11— 312584号公報
特許文献 3 :特開平 11 312585号公報
特許文献 4:特開平 11― 329748号公報
特許文献 5 :特開 2003— 45676号公報
特許文献 6:国際公開第 2004Z095892パンフレット
[0005] 本発明は上述の問題に鑑みなされたものであり、発光効率に優れ、かつ長寿命で ある有機 EL素子を提供することを目的とする。
発明の開示
[0006] 本発明者らは、上記課題を解決するために鋭意研究したところ、中間導電層の屈 折率と有機発光層の屈折率との差が 0. 25以内であり、かつ希土類元素の酸化物を 含む材料を中間導電層に使用することにより、発光効率の向上とともに、長寿命化を 実現できることを見出し、本発明を完成させた。
[0007] 本発明によれば、以下の有機 EL素子が提供できる。
1.透明電極と、前記透明電極に対向して配置される対向電極と、前記透明電極と前 記対向電極の間に、 2層の有機発光層が中間導電層を介して積層している構造を 1 つ以上有し、前記中間導電層の屈折率 nと、前記有機発光層の少なくとも 1層の屈 a
折率 nとの差が 0. 25以内であり、前記中間導電層が、 1種以上の希土類元素を含 b
有する酸ィ匕物を含む有機エレクト口ルミネッセンス素子。
2.前記中間導電層が、前記有機発光層の屈折率 nよりも大きな屈折率を示す層と、 b
屈折率 nよりも小さな屈折率を示す層の積層体からなる 1に記載の有機エレクトロル b
ミネッセンス素子。
3.前記中間導電層が、前記有機発光層の屈折率 nよりも大きな屈折率を示す材料 b
と、屈折率 nよりも小さな屈折率を示す材料の混合物からなる 1に記載の有機 EL発 b
光素子。
4.前記中間導電層が、透明導電材料と金属ハロゲン化物の積層体、又は透明導電 材料と金属ハロゲン化物との混合膜である 2又は 3記載の有機エレクト口ルミネッセン ス素子。
5.前記透明導電材料が、 Ce, Nd, Sm又は Gdから選ばれる 1つ以上の元素と、 In, Zn又は Snから選ばれる 1つ以上の元素を含む、酸ィ匕物からなる 4に記載の有機エレ タトロルミネッセンス素子。
6.前記中間導電層の吸収係数が 2. 5 [lZ w m]以下である 1〜5のいずれかに記 載の有機エレクト口ルミネッセンス素子。
[0008] 本発明によれば、長寿命で高効率な有機 EL素子を提供することができる。
図面の簡単な説明
[0009] [図 1]本発明の有機 EL素子の一実施形態を示す図である。
[図 2]図 1の部分拡大図である。
発明を実施するための最良の形態
[0010] 以下、本発明の有機 EL素子を具体的に説明する。
図 1は、本発明の有機 EL素子の一実施形態を示す図である。この有機 EL素子は 、 2層の有機発光層が中間導電層を介して積層して ヽる構造を 3つ形成した例である この有機 EL素子 1は、支持基板 10上に、透明陽極 (透明電極) 12が設けられ、こ の透明陽極 12に、陰極 (対向電極) 14が対向して設けられている。透明陽極 12と陰 極 14の間には、有機発光層 20, 22, 24, 26と、中間導電層 30, 32, 34力 1つの 中間導電層が 2つの有機発光層の間に介在するように、設けられている。有機発光 層 20, 22, 24, 26が発する光は、透明陽極 12を通して支持基板 10から取り出す。
[0011] 図 2は、図 1が示す有機発光層 22, 24とその間に介在する中間導電層 32の部分 拡大図である。
有機発光層 22, 24は、それぞれ、正孔注入層 200、発光層 202、電子注入層 204 力もなる。発光層 202において、正孔注入層 200から供給される正孔と、電子注入層 204から供給され電子が結合して発光する。中間導電層 32は、有機発光層 22側の 面が正孔注入性であり、有機発光層 24側の面が電子注入性である。
[0012] 本発明において、少なくとも 1つの任意の中間導電層、例えば、中間導電層 32の 屈折率を n、その中間導電層 32を挟む有機発光層 22, 24の屈折率を nとしたとき、 a b
中間導電層の屈折率 nと、この中間導電層を挟む有機発光層の屈折率 nとの差が 0
a b
. 25以内である。これにより、発光層で発光した光の素子内部における屈折等を抑 制できるため、光取出効率 (素子の発光効率)が向上する。
また、中間導電層は後述するように、 1種以上の希土類元素の酸化物を含有する 透明導電材料を用いる。希土類元素の酸ィ匕物を添加することにより、素子の寿命を 向上できる。
[0013] 尚、 4層の有機発光層 20, 22, 24, 26、 3層の中間導電層 30, 32, 34は、それぞ れ異なっていても、同一でもよい。
この場合、例えば、有機発光層 22, 24の屈折率が異なることがあるが、有機発光 層(第 1及び第 2の有機発光層) 22, 24の屈折率をそれぞれ η , nとしたとき、これら
b c
屈折率は以下の!、ずれかの関係を満たせばょ 、。
(i) |n -n |≤0. 25
a b
(ii) |n n |≤0. 25
a c
(iii) |n— n |≤0. 25、力つ、 |n— n |≤0. 25
a b a c
好ましくは、(iii)の関係を満たし、さらに、好ましくは、中間導電層を挟む 2つの有機 発光層の全ての屈折率が上記の関係を満たす。
[0014] 尚、この実施形態では、有機発光層は 4層積層されているが、有機発光層は、 2層 、 3層又は 5層以上積層してもよい。
また、この実施形態では透明電極は陽極である力 陰極でも構わない。 以下、有機 EL素子の各部材について説明する。
[0015] 1.支持基板
支持基板は、有機 EL素子や、 TFT等を支持するための部材であることから、機械 的強度や、寸法安定性に優れていることが好ましい。このような基板としては、具体的 には、ガラス板、金属板、セラミックス板、又はプラスチック板 (ポリカーボネート榭脂、 アクリル榭脂、塩化ビニル榭脂、ポリエチレンテレフタレート榭脂、ポリイミド榭脂、ポリ エステル榭脂、エポキシ榭脂、フエノール榭脂、シリコン榭脂、フッ素榭脂等)等を挙 げることができる。 [0016] また、これらの材料力もなる基板は、有機 EL表示装置内への水分の侵入を避ける ために、さらに無機膜を形成したり、フッ素榭脂を塗布したりして、防湿処理や疎水性 処理を施してあることが好ましい。特に、有機発光媒体への水分の侵入を避けるため に、基板における含水率及びガス透過係数を小さくすることが好ましい。具体的に、 支持基板の含水率を 0. 0001重量%以下の値及びガス透過係数を 1 X 10"13cc-c m/cm2 · sec. cmHg以下の値とすることがそれぞれ好まし!/、。
[0017] 尚、上記の実施形態では、支持基板側力も光を取出すため、支持基板は可視光に 対する透過率が 50%以上の透明であることが望ましいが、その反対側、即ち、対向 電極側から EL発光を取り出す場合には、基板は必ずしも透明性を有する必要はな い。
[0018] 2.陽極 (透明電極)
透明陽極としては仕事関数の大きい (例えば、 4. OeV以上)金属、合金、電気電導 性ィ匕合物又はこれらの混合物を使用することが好ましい。具体的には、インジウムチ ンオキサイド (ITO)、インジウム銅、スズ、酸化亜鉛、金、白金、ノ《ラジウム等の 1種を 単独で、又は 2種以上を組み合わせて使用することができる。
陽極の厚さは、特に制限されるものではないが、 10〜: LOOOnmの範囲内の値とす るのが好ましぐ 10〜200nmの範囲内の値とするのがより好ましい。さらに、透明陽 極に関しては、有機発光層から放射された光を外部に有効に取り出すことが出来る ように、実質的に透明、より具体的には、光透過率が 50%以上の値であることが好ま しい。
[0019] 3.陰極(対向電極)
陰極には、仕事関数の小さい (例えば、 4. OeV未満)金属、合金、電気電導性ィ匕 合物又はこれらの混合物を使用することが好ましい。具体的には、マグネシウム、ァ ルミ-ゥム、インジウム、リチウム、ナトリウム、セシウム、銀等の 1種を単独で、又は 2種 以上を組み合わせて使用することができる。
陰極の厚さは、特に制限されるものではないが、 10〜: LOOOnmの範囲内の値とす るのが好ましぐ 10〜 200nmの範囲内の値とするのがより好ましい。
[0020] 4.有機発光層 有機発光層は、電子と正孔とが再結合して、 EL発光が可能な発光層を含む媒体と 定義することができる。かかる有機発光層は、例えば、陽極上に、以下の各層を積層 して構成することができる。
a.発光層
b.正孔注入層 Z発光層
c発光層 Z電子注入層
d.正孔注入層 Z発光層 Z電子注入層
e.有機半導体層 Z発光層
f.有機半導体層 Z電子障壁層 Z発光層
g.正孔注入層 Z発光層 Z付着改善層
これらの中で、 dの構成力 より高い発光輝度が得られ、耐久性にも優れていること 力も通常好ましく用いられる。
[0021] 発光層を形成する発光材料としては、例えば、 p—クォーターフエニル誘導体、 P- クインタフヱ-ル誘導体、ベンゾチアゾール系化合物、ベンゾイミダゾール系化合物、 ベンゾォキサゾール系化合物、金属キレートィ匕ォキシノイド化合物、ォキサジァゾ一 ル系化合物、スチリルベンゼン系化合物、ジスチリルビラジン誘導体、ブタジエン系 化合物、ナフタルイミドィ匕合物、ペリレン誘導体、アルダジン誘導体、ピラジリン誘導 体、シクロペンタジェン誘導体、ピロロピロール誘導体、スチリルァミン誘導体、タマリ ン系化合物、芳香族ジメチリディン系化合物、 8—キノリノール誘導体を配位子とする 金属錯体、ポリフエニル系化合物等の 1種単独又は 2種以上の組み合わせが挙げら れる。
[0022] また、これらの有機発光材料のうち、芳香族ジメチリディン系化合物としての、 4, 4' —ビス(2, 2—ジ一 t—ブチルフエ-ルビ-ル)ビフエ-ルゃ、 4, 4,一ビス(2, 2—ジ フエ二ルビニル)ビフヱニル(DPVBiと略記する。 )及びこれらの誘導体がより好まし い。
さらに、ジスチリルァリーレン骨格等を有する有機発光材料をホスト材料とし、当該 ホスト材料に、ドーパントとしての青色力も赤色までの強い蛍光色素、例えば、タマリ ン系材料、ある 、はホストと同様の蛍光色素をドープした材料を併用することも好適 である。より具体的には、ホスト材料として、上述した DPVBi等を用い、ドーパントとし て、 N, N ジフエ-ルァミノベンゼン等を用いることが好ましい。
尚、発光層は単層でもよぐ同色又は異なる発色をする発光層を 2層以上積層して 形成してちょい。
[0023] また、有機発光層における正孔注入層には、 1 X 104〜1 X 106VZcmの範囲の電 圧を印加した場合に測定される正孔移動度力 1 X 10_6cm2ZV'秒以上であって、 イオン化エネルギーが 5. 5eV以下である化合物を使用することが好ましい。このよう な正孔注入層を設けることにより、発光層への正孔注入が良好となり、高い発光輝度 が得られたり、あるいは、低電圧駆動が可能となる。
[0024] このような正孔注入層の構成材料としては、具体的に、ボルフイリンィ匕合物、芳香族 第三級ァミン化合物、スチリルァミン化合物、芳香族ジメチリディン系化合物、縮合芳 香族環化合物、例えば、 4, 4' ビス [N— (1 ナフチル)—N—フエニルァミノ]ビフ ェ-ルや、 4, 4' , 4"—トリス [N— (3—メチルフエ-ル)—N フエ-ルァミノ]トリフ ェニルァミン等の有機化合物が挙げられる。
また、正孔注入層の構成材料として、 p型— Siや p型— SiC等の無機化合物を使用 することも好ましい。尚、上述した正孔注入層と、陽極層との間、あるいは、上述した 正孔注入層と、発光層との間に、導電率が 1 X 10_ )SZcm以上の有機半導体層を 設けることも好ましい。このような有機半導体層を設けることにより、さらに発光層への 正孔注入がより良好となる。
正孔注入層の厚さは、特に制限されるものではないが、 10〜300nmとするのが好 ましい。
[0025] 有機発光層における電子注入層には、 1 X 104〜1 X 106VZcmの範囲の電圧を 印加した場合に測定される電子移動度が、 1 X 10_6cm2ZV'秒以上であって、ィォ ン化エネルギーが 5. 5eVを超える化合物を使用することが好ましい。このような電子 注入層を設けることにより、発光層への電子注入が良好となり、高い発光輝度が得ら れたり、あるいは、低電圧駆動が可能となる。このような電子注入層の構成材料として は、具体的に、 8 ヒドロキシキノリンの金属錯体 (A1キレート: Alq)、又はその誘導体 、あるいは、ォキサジァゾール誘導体等が挙げられる。 [0026] 有機発光層における付着改善層は、かかる電子注入層の一形態とみなすことがで きる。即ち、電子注入層のうち、特に陰極との接着性が良好な材料力もなる層であり、 8—ヒドロキシキノリンの金属錯体又はその誘導体等力も構成することが好ましい。尚 、上述した電子注入層に接して、導電率が 1 X 10_1 SZcm以上の有機半導体層を 設けることも好ましい。このような有機半導体層を設けることにより、さらに発光層への 電子注入性が良好となる。
電子注入層の厚さは、特に制限されるものではないが、 10〜300nmとするのが好 ましい。
[0027] 有機発光層の厚さについては,好ましくは 5nm〜5 mの範囲内で設定することが できる。この理由は、有機発光層の厚さが 5nm未満となると、発光輝度や耐久性が 低下する場合があり、一方、有機発光層の厚さが 5 mを超えると、印加電圧の値が 高くなる場合があるためである。従って有機発光層の厚さを 10ηπι〜3 /ζ mの範囲内 の値とすることがより好ましぐ 20ηπι〜1 /ζ πιの範囲内の値とすることがさらに好まし い。
[0028] 5.中間導電層
中間導電層は、図 2に示すように、隣り合う有機発光層の間に介在し、一方の面か ら正孔を注入し、他方の面力 電子を注入する機能を有するものであれば各種用い ることがでさる。
[0029] 中間導電層を構成する材料としては、例えば、 In O、 ITO (インジウムチンォキサ
2 3
イド)、 IZO (インジウム亜鉛オキサイド)、 SnO、 ZnO、 TiN、 ZrN、 HfN、 TiOx、 V
2 2
Ox、 MoOx、 Cul、 InN、 GaN、 CuAlO、 CuGaO、 SrCu O、 LaB、 RuO等に
2 2 2 2 6 2
、希土類元素の酸ィ匕物を添加した透明導電材料を用いることができる。
[0030] この中でも、透明導電材料は、 Ce, Nd, Sm又は Gdから選ばれる 1つ以上の希土 類元素と、 In, Zn又は Snから選ばれる 1つ以上の元素を含む酸ィ匕物からなることが 好ましい。
透明導電材料に占める希土類元素の酸ィ匕物の添加量は、導電性を損なわない範 囲で決定され、具体的には 1〜30重量%とすることが好ましい。
[0031] 本発明では、発光素子の光取出効率を向上するため、中間導電層の屈折率と有 機発光層の屈折率との差を 0. 25以内とする。そこで、中間導電層は、有機発光層 の屈折率 nよりも大きな屈折率を示す層と、屈折率 nよりも小さな屈折率を示す層の
b b
積層体であるか、又は有機発光層の屈折率 nよりも大きな屈折率を示す材料と、屈
b
折率 nよりも小さな屈折率を示す材料の混合物カゝらなることが好ま 、。
b
具体的には、中間導電層の電荷注入性を損なわない範囲で、例えば、 LiFに代表 される金属弗化物等の金属ハロゲンィ匕物のような低屈折率材料と、有機発光層の屈 折率よりも高屈折率を示す上記の透明導電材料との混合物からなる膜や、金属弗化 物と透明導電材料とを積層した多層膜を用いることができる。
[0032] 透明導電材料と金属ハロゲンィ匕物等の低屈折率材料を混合した中間導電層は、 例えば、二つの蒸着源を用意し、各々の材料を蒸着源に充填し共蒸着することにより 成膜することができる。屈折率は各々の蒸着のレートで制御することができる。低屈 折率材料が LiFのような金属ハロゲン化物の場合、その比率が増えると、中間導電層 の導電性が悪ィ匕するとともに、均質に混合しなくなる傾向にあるため好ましくない。具 体的には、膜中の金属ハロゲンィ匕物の比率は、 0. 6 (重量比)より小さいことが好まし い。
[0033] 透明導電材料力 なる膜と低屈折率材料力 なる膜を積層する場合、電子、正孔 それぞれの電荷を注入すると ヽぅ中間導電層の機能を維持して ヽれば、どのような積 層構造も可能であるが、透明導電材料 Z低屈折率材料 Z透明導電材料という 3層構 造となって!/ヽることが好ま ヽ。中間導電層の膜厚に対する低屈折率材料の膜厚比 率は、 0. 6より小さいことが好ましい。
[0034] 有機発光層の発光を効率よく素子の外部に取出すという観点で、可視光に対する 中間導電層の吸収係数は 2. 5 [1Z m]以下であることが好ましぐ特に、 0. 5 [1/ m]以下であることが好ましい。吸収係数が 2. 5 [lZ w m]以下の場合、例えば、 中間導電層の膜厚が 30nmとすると、中間導電層一層の透過率は 92%である。これ が二層では 86%、 3層では 80%というように、透過率が減衰していくものの、ある程 度高く保つことができる。透明導電材料は一般に、消衰係数として 0. 1を越える値を 持つものが多いが、 LiFに代表される材料は消衰係数がほとんど 0である。そのため 、透明導電材料と低屈折率材料の混合あるいは積層により吸収係数を低減し、素子 の発光効率を高められるという作用も生じる。
[0035] 尚、中間導電層を複数有する場合、全ての中間導電層の吸収係数が 2. 5 [1/ ^ m]以下であることがより好まし 、。
また、中間導電層の吸収係数を 2. 5[lZ w m]以下とするためには、例えば、スパ ッタリング法で形成する場合には、スパッタ中の酸素分圧 [酸素 Z (酸素 +アルゴン)
]を調整する等の方法がある。
[0036] 有機発光層及び Z又は中間導電層が積層体の場合、有機発光層と中間導電層の 屈折率は等価屈折率として定義される。
例えば、高屈折率材料カゝらなる膜と低屈折率材料カゝらなる膜を積層した場合にお ける、波長えの光に対する中間導電層の屈折率の定義について説明する。高屈折 率材料の膜厚を d、屈折率を n、低屈折率材料層の膜厚を d、屈折率を nとし、さら
1 1 2 2 に量 δ
1 δ 2を数式(1)のように定義する。
[数 1] ολ = 2 ildl I λ ο2 ― 7 tn d2 1 λ ( 1 )
さらに、 2 X 2行列 Μを数式(2)のように定義する。
[数 2]
Figure imgf000011_0001
( 2 ) このとき、積層膜の等価屈折率 Nを数式 (3)のように定義する。
[数 3]
Figure imgf000012_0001
[0037] 有機発光層全体の屈折率は、有機発光層を形成する正孔注入材料、発光材料、 電子注入材料等の屈折率が分力 ていれば、上述した数式(1)〜(3)と同様な方法 で定義することができる。これら有機発光層を形成する材料の屈折率は、 1. 7〜1. 8 程度のものが多ぐ結果として有機発光層の等価屈折率も 1. 7〜1. 8程度の値とな る。従って、中間導電層の屈折率としては 1. 5〜2. 0の範囲のものが好ましぐ吸収 係数が 2. 5 [1Z m]以下という観点では、その消衰係数が 0. 1以下であることが好 ましい。
[実施例]
[0038] 以下、本発明を実施例によってさらに具体的に説明する。
実施例 1
(l) ITO付きガラス基板の準備
25mm X 75mmの支持基板 (OA2ガラス:日本電気硝子社製)を純水及びイソプ 口ピルアルコール中で超音波洗浄し、エアブローにて乾燥後、 UV洗浄した。次に、 この基板をスパッタ装置に移動し、 ITOを 150nmの厚みになるように成膜した。
[0039] (2)有機発光層の成膜
次に、この基板を有機蒸着装置に移動し、基板ホルダーに基板を固定し、真空槽 を 5 X 10_7torrまで減圧した後、正孔注入層、発光層、電子注入材料を順次成膜し た。
まず、正孔注入層として、 4, 4,, 4"—トリス [N— (3—メチルフエ-ル) N フエ- ルァミン(MTDATA)を蒸着し、膜厚 55nmとした。
次に、発光層としては、ホストとして 4, 4,一ビス(2, 2 ジフエ-ルビ-ル)ビフエ- ル(DPVBi)を蒸着速度 0. 1〜0. 3nmZ秒、ドーパントとして 1, 4—ビス [4— (N, N ジフエ-ルアミノスチリルベンゼン)] (DP AVB)を蒸着速度 0. 003〜0. 008nm Z秒にて共蒸着し、膜厚 40nmとした。
次に、電子注入層としてトリス(8 キノリノール)アルミニウム (Alq)を蒸着し、膜厚 2 Onmとした。
[0040] (3)中間導電層の成膜
スパッタリング源として、 ITOと酸化セリウムの混合物(In O : SnO : CeO = 90 : 5
2 3 2 2
: 5 (重量比、以下同じ)、以下この混合物を ITCOと略記する)、蒸着源として弗化リ チウム(LiF)をそれぞれ独立に準備し、 ITCOを 10nm、 LiFを 10nm、 ITCOを 10η mの順序で順次成膜した。
[0041] (4)有機発光層、中間導電層、有機発光層及び陰極の成膜
上記 (3)で成膜した中間導電層の上に、有機発光層、中間導電層及び有機発光 層を、さらに、上記(1)、 (2)の有機発光層と中間導電層と同じ要領で成膜した。 次に、陰極としてアルミニウムを 150nmの膜厚になるように成膜し、有機 EL素子( 有機発光層を 3層、中間導電層を 2層含む)を得た。
[0042] (5)有機発光層と中間導電層の屈折率測定
ガラス基板 (OA2ガラス:日本電気硝子社製)上に、上記(2)の方法により正孔注 入層、発光層、電子注入層をそれぞれ 0. 2ミクロンの厚みで単独に成膜し、エリプソ メータにて波長 500nmの光に対する屈折率を測定した。そして上記(2)のそれぞれ の膜厚値を用いて有機発光層の等価屈折率を求めたところ、 1. 79であった。
また、ガラス基板上に、上記(3)の方法により、 ITCOと弗化リチウムをそれぞれ単 独に成膜し、エリプソメータにて波長 500nmの光に対する屈折率を測定した。 ITCO の屈折率は、 2. 1であり、弗化リチウムの屈折率は、 1. 4であった。
上記 (3)のそれぞれの膜厚値を用いて中間導電層の等価屈折率を測定したところ 1. 85であった。
以上から、有機発光層の等価屈折率と中間導電層の等価屈折率の差は、 0. 06で めつに。
中間導電層の吸光度計を用い吸収係数を測定したところ 2. 13 [lZ w m]であった
[0043] (6)有機 EL素子の発光性能測定
電流密度が 1. 4mA/cm2となるように ITOとアルミニウム陰極の間に通電したとこ ろ青い発光を得た。分光放射輝度計 (ミノルタ製 CS1000)を用い、素子正面方向で の輝度を測定したところ、輝度は 387cdZm2、であった。
次に、この素子を 2000cdZm2で光らせ、輝度が半分の lOOOcdZm2になるまで の時間(半減寿命)を測定したところ、 2400時間であった。
[0044] 実施例 2
中間導電層を、 In Oと酸ィ匕セリウムの混合物(In O: CeO =95:5:屈折率 2.2)
2 3 2 3 2
と LiFの共蒸着(膜厚 30nm、 In Oと CeOの混合物: LiF=8:2、重量比)としたこと
2 3 2
以外は、実施例 1と同様の方法で有機 EL素子を作製し、評価した。
その結果、中間導電層の屈折率は 1.95、吸収係数は 2. 12[lZwm]であった。 有機発光層の等価屈折率と中間導電層の等価屈折率の差は、 0.16であった。 有機 EL素子の正面方向の輝度は 355nit、半減寿命は 2250時間であった。
[0045] 実施例 3
中間導電層を、 IZOと酸化セリウムの単層膜 (In O: ZnO:CeO =85:10:5、膜
2 3 2
厚 30nm)とした以外は、実施例 1と同様の方法で有機 EL素子を作製し、評価した。 その結果、中間導電層の屈折率は 2.04、吸収係数は 2.58[lZwm]であった。 有機発光層の等価屈折率と中間導電層の等価屈折率の差は、 0.25であった。 有機 EL素子の正面方向の輝度は 280nit、半減寿命は 1800時間であった。
[0046] 実施例 4
発光層を以下に述べるように青色発光層と橙色発光層の積層型とした以外は、実 施例 3と同様の方法で有機 EL素子を作製し、評価した。
尚、正孔注入層の上に、橙色発光層を先に積層して、その後に青色発光層を積層 した。
橙色発光媒体は、下記式(1)に示す材料と下記式 (2)に示す材料を 5:0.01の重 量比で、膜厚 5nmとなるように成膜した。
青色発光媒体は、下記式(1)に示す材料と下記式(3)に示す材料を 35:0.8の重 量比で、膜厚 35nmとなるように成膜した。
[0047] [化 1]
Figure imgf000015_0001
Figure imgf000015_0002
[0048] この有機 EL素子において、有機発光層の屈折率は他の実施例と同様に 1. 79で あった。中間導電層の屈折率は 1. 95、吸収係数は 2. 52[lZ w m]であった。有機 発光層の等価屈折率と中間導電層の等価屈折率の差は、 0. 16であった。
有機 EL素子の正面方向の輝度は 338nit、半減寿命は 2900時間であった。
[0049] 比較例 1
中間導電層を、 V Oの単層膜 (膜厚 30nm)としたこと以外は、実施例 1と同様の方
2 5
法で有機 EL素子を作製し、評価した。
その結果、中間導電層の屈折率は 2. 20、吸収係数は 3. 02[lZ w m]であった。 有機発光層の等価屈折率と中間導電層の等価屈折率の差は、 0. 41であった。 有機 EL素子の正面方向の輝度は 320nit、半減寿命は 1200時間であつた。
[0050] 比較例 2
中間導電層で使用した ITCOを ITO (In O: SnO = 90 : 10、重量比)に変更した
2 3 2
以外は、実施例 1と同様の方法で有機 EL素子を作製し、評価した。
その結果、中間導電層の屈折率は 1. 90、吸収係数は 1. 95 [lZ w m]であった。 有機発光層の等価屈折率と中間導電層の等価屈折率の差は、 0. 16であった。 有機 EL素子の正面方向の輝度は 160nit、半減寿命は 800時間であった。
産業上の利用可能性
[0051] 本発明の有機 EL素子は、公知の構成と組み合わせて、民生用 TV、大型表示ディ スプレイ、携帯電話用表示画面等の各種表示装置や、各種照明装置の光源として 好適に使用できる。

Claims

請求の範囲
[1] 透明電極と、
前記透明電極に対向して配置される対向電極と、
前記透明電極と前記対向電極の間に、
2層の有機発光層が中間導電層を介して積層して!ヽる構造を 1つ以上有し、 前記中間導電層の屈折率 nと、前記有機発光層の少なくとも 1層の屈折率 nとの
a b 差が 0. 25以内であり、
前記中間導電層が、 1種以上の希土類元素を含有する酸ィ匕物を含む有機エレクト ロノレミネッセンス素子。
[2] 前記中間導電層が、前記有機発光層の屈折率 nよりも大きな屈折率を示す層と、
b
屈折率 nよりも小さな屈折率を示す層の積層体からなる請求項 1に記載の有機エレ b
タトロルミネッセンス素子。
[3] 前記中間導電層が、前記有機発光層の屈折率 nよりも大きな屈折率を示す材料と
b
、屈折率 nよりも小さな屈折率を示す材料の混合物からなる請求項 1に記載の有機 E
b
L発光素子。
[4] 前記中間導電層が、透明導電材料と金属ハロゲン化物の積層体、又は透明導電 材料と金属ハロゲン化物との混合膜である請求項 2又は 3記載の有機エレクト口ルミ ネッセンス素子。
[5] 前記透明導電材料が、 Ce, Nd, Sm又は Gdから選ばれる 1つ以上の元素と、 In, Z n又は Snから選ばれる 1つ以上の元素を含む、酸ィ匕物からなる請求項 4に記載の有 機エレクト口ルミネッセンス素子。
[6] 前記中間導電層の吸収係数が 2. 5 [1 !11]以下でぁる請求項1〜5のぃずれか に記載の有機エレクト口ルミネッセンス素子。
PCT/JP2006/309266 2005-05-11 2006-05-08 有機エレクトロルミネッセンス素子 WO2006121015A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06746097A EP1881742A1 (en) 2005-05-11 2006-05-08 Organic electroluminescence element
US11/913,272 US20090066228A1 (en) 2005-05-11 2006-05-08 Organic electroluminescence element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005138354A JP2006318697A (ja) 2005-05-11 2005-05-11 有機エレクトロルミネッセンス素子
JP2005-138354 2005-05-11

Publications (1)

Publication Number Publication Date
WO2006121015A1 true WO2006121015A1 (ja) 2006-11-16

Family

ID=37396524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309266 WO2006121015A1 (ja) 2005-05-11 2006-05-08 有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20090066228A1 (ja)
EP (1) EP1881742A1 (ja)
JP (1) JP2006318697A (ja)
KR (1) KR20080005409A (ja)
CN (1) CN101176384A (ja)
TW (1) TW200711523A (ja)
WO (1) WO2006121015A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175952A (ja) * 2010-02-24 2011-09-08 Samsung Mobile Display Co Ltd 有機発光表示装置及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4973268B2 (ja) * 2007-03-26 2012-07-11 セイコーエプソン株式会社 電子機器、電子機器の防湿構造、および電子機器の製造方法
JP6548359B2 (ja) * 2014-05-12 2019-07-24 キヤノン株式会社 有機発光素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329748A (ja) * 1998-05-20 1999-11-30 Idemitsu Kosan Co Ltd 有機el発光素子およびそれを用いた発光装置
JP2004119272A (ja) * 2002-09-27 2004-04-15 Idemitsu Kosan Co Ltd 有機el素子及びそれに用いる基板
JP2004146136A (ja) * 2002-10-23 2004-05-20 Idemitsu Kosan Co Ltd 有機電界発光素子用電極基板およびその製造方法並びに有機el発光装置
JP2004252406A (ja) * 2002-10-03 2004-09-09 Seiko Epson Corp 表示パネル及びその表示パネルを備えた電子機器並びに表示パネルの製造方法
WO2004095892A1 (ja) * 2003-04-24 2004-11-04 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子及び表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060020538A1 (en) * 2001-06-28 2006-01-26 Pranil Ram Tabs based drag and drop graphical trading interface
CN100396813C (zh) * 2002-08-02 2008-06-25 出光兴产株式会社 溅射靶、烧结体及利用它们制造的导电膜、有机el元件及其所用的衬底
US7164228B2 (en) * 2002-12-27 2007-01-16 Seiko Epson Corporation Display panel and electronic apparatus with the same
TWI312582B (en) * 2003-07-24 2009-07-21 Epistar Corporatio Led device, flip-chip led package and light reflecting structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329748A (ja) * 1998-05-20 1999-11-30 Idemitsu Kosan Co Ltd 有機el発光素子およびそれを用いた発光装置
JP2004119272A (ja) * 2002-09-27 2004-04-15 Idemitsu Kosan Co Ltd 有機el素子及びそれに用いる基板
JP2004252406A (ja) * 2002-10-03 2004-09-09 Seiko Epson Corp 表示パネル及びその表示パネルを備えた電子機器並びに表示パネルの製造方法
JP2004146136A (ja) * 2002-10-23 2004-05-20 Idemitsu Kosan Co Ltd 有機電界発光素子用電極基板およびその製造方法並びに有機el発光装置
WO2004095892A1 (ja) * 2003-04-24 2004-11-04 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子及び表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATO Y.: "Yuki EL Zairyo Gijutsu", KABUSHIKI KAISHA CMC, SHUPPAN, 31 May 2004 (2004-05-31), pages 29 - 31, XP003006888 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175952A (ja) * 2010-02-24 2011-09-08 Samsung Mobile Display Co Ltd 有機発光表示装置及びその製造方法
US8530888B2 (en) 2010-02-24 2013-09-10 Samsung Display Co., Ltd. Organic light-emitting display device and method of manufacturing the same

Also Published As

Publication number Publication date
KR20080005409A (ko) 2008-01-11
TW200711523A (en) 2007-03-16
US20090066228A1 (en) 2009-03-12
JP2006318697A (ja) 2006-11-24
CN101176384A (zh) 2008-05-07
EP1881742A1 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
JP4895742B2 (ja) 白色有機電界発光素子
US20080164811A1 (en) Organic electroluminescent device and display
TW200423798A (en) Organic light emitting diode (OLED) display with improved light emission using a metallic anode
TW201106779A (en) Organic light emitting device, display unit including the same, and illuminating device including the same
JP2000260572A (ja) 有機エレクトロルミネッセンスパネル
WO2006121105A1 (ja) 有機エレクトロルミネッセンス素子
JP5735162B1 (ja) 有機エレクトロルミネッセント素子及び照明装置
JP2002260859A (ja) 照明装置
JPWO2006061954A1 (ja) 有機el素子
JP4513060B2 (ja) 有機el素子
JP2004079422A (ja) 有機el素子
JP2001267083A (ja) 発光素子及びその用途
JP2002334792A (ja) 有機エレクトロルミネッセンス素子
JP2881212B2 (ja) 電界発光素子
JP2003068470A (ja) 表示素子
JP2002260858A (ja) 発光素子及びその製造方法
JP2007200662A (ja) 有機led素子の製造方法
WO2006121015A1 (ja) 有機エレクトロルミネッセンス素子
JP2004079421A (ja) 有機el素子
JP3891430B2 (ja) 有機el発光素子およびその製造方法
JP2007180376A (ja) 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
JP4394639B2 (ja) 半導体薄膜の積層体、積層体の製造方法
JP2001196175A (ja) 有機el表示装置
JP4038809B2 (ja) 発光素子及びその用途
JP2013182919A (ja) 有機el素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680016354.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006746097

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11913272

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077025696

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006746097

Country of ref document: EP