WO2006119693A1 - Systeme de focalisation automatique - Google Patents

Systeme de focalisation automatique Download PDF

Info

Publication number
WO2006119693A1
WO2006119693A1 PCT/CN2006/000890 CN2006000890W WO2006119693A1 WO 2006119693 A1 WO2006119693 A1 WO 2006119693A1 CN 2006000890 W CN2006000890 W CN 2006000890W WO 2006119693 A1 WO2006119693 A1 WO 2006119693A1
Authority
WO
WIPO (PCT)
Prior art keywords
image sensor
circuit board
optical axis
elastic
automatic focusing
Prior art date
Application number
PCT/CN2006/000890
Other languages
English (en)
French (fr)
Inventor
Chaohui Zhou
Original Assignee
Beijing Huaqi Digital Technology Lab Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Huaqi Digital Technology Lab Co., Ltd. filed Critical Beijing Huaqi Digital Technology Lab Co., Ltd.
Priority to EP06722435A priority Critical patent/EP1884828B1/en
Priority to AT06722435T priority patent/ATE541235T1/de
Publication of WO2006119693A1 publication Critical patent/WO2006119693A1/zh
Priority to US11/937,097 priority patent/US8040426B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/005Motorised alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/04Focusing arrangements of general interest for cameras, projectors or printers adjusting position of image plane without moving lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • the invention relates to an automatic focusing device, in particular to an automatic focusing device driven by an angle electromagnetic force. Background technique
  • Auto-focusing technology is widely used in imaging devices such as cameras, camcorders, mobile phones, and cameras. As people are becoming more portable with these devices, auto-focusing devices are also small in size and light in weight. The direction of development.
  • the conventional auto-focusing device uses the motor to drive the lens group to move back and forth, thereby changing the distance between the lens group and the photosensitive device (for example, CCD or CMOS') to achieve the purpose of auto-focusing, but due to the limitation of the motor volume, the whole The volume of the device is difficult to further shrink.
  • the photosensitive device for example, CCD or CMOS'
  • the prior art has developed a variety of auto-focusing solutions for driveless motors, such as the Chinese patents: 01 1 36236, 02146893, and 200410035322, both of which utilize electromagnetic forces generated by electromagnetic fields to move the lens assembly.
  • a typical example is shown in Chinese Patent No. 01 136 236, which is shown in FIG. 1.
  • the device disclosed in the patent document includes: a sensor 1 1 , a substrate 12 , a sensor housing 13 , a sensing filter 14 , an elastic member 16 , a lens 17 , The lens wing 18, the winding coil 19, and the magnet 20.
  • An electric wire is connected to the end of the outer portion of the elastic member 16, and an electric current is turned on.
  • the prior art uses the electromagnetic force to move the lens group to adjust the focus to remove the drive motor, which can reduce the volume of the device to a certain extent, but requires a fixing mechanism to combine the magnet or the coil with the lens group in some form. Together to drive the lens group to move.
  • the fixing mechanism can only be mounted on the side of the lens group, which increases the difficulty in assembling the fixing mechanism and also hinders the further reduction of the volume of the entire focusing device. Summary of the invention
  • the present invention proposes a device for realizing automatic focusing by using an electromagnetic force driving image sensor, the purpose of which is to make the entire focusing device simple and compact, and at the same time, the noise is small during the automatic focusing process.
  • the mechanical movement is simple and the focusing speed is fast.
  • the present invention is achieved by the following technical solutions: an automatic focusing device comprising a lens group and an image sensor disposed along an optical axis, and an electromagnetic driving device for generating an electromagnetic force to drive the image sensor to move along an optical axis, And a limiting device for defining movement of the image sensor along the optical axis.
  • the above electromagnetic driving device may include a magnet fixed in position relative to the lens group and a driving coil fixed to the image sensor.
  • the auto focus device of the present invention further includes a circuit substrate carrying the image sensor.
  • the limiting device is an elastic body whose one end is connected to the circuit substrate and whose other end is relatively fixed to the lens group.
  • the above elastomers include: a mylar film, a nylon film, a rubber film or a polyamine film.
  • the elastic body may further include an elastic circuit board, and one end of the flexible circuit board connected to the circuit substrate is electrically connected to the image sensor for extracting an electrical signal derived from the image sensor.
  • One end of the above flexible circuit board connected to the circuit substrate may also be electrically connected to the driving coil for supplying a driving current to the driving coil.
  • the center of gravity of the combination of the image sensor and the circuit board and the center of the coil are located on the optical axis.
  • the driving coil can be fixed to a surface of the circuit board opposite to the image sensor.
  • the magnet is cylindrical, and the driving coil is movably sleeved on the magnet.
  • the above flexible circuit board can be bent into a V-shaped, W-shaped or multi-pleated type.
  • the invention drives the image sensor to move along the optical axis by electromagnetic force, and adjusts the distance between the lens group and the image sensor, thereby realizing automatic focusing.
  • the invention is more advantageous for the installation of the electromagnetic driving device, and the image sensor is limited by the mechanical and electrical properties of the elastic circuit board.
  • the electrical signal is transmitted, making the structure of the whole device simple and compact.
  • FIG. 1 is a structural view of an automatic focusing device of the prior art.
  • Embodiment 1 is a schematic block diagram of Embodiment 1 of the auto-focusing device of the present invention.
  • Figure 3 is a cross-sectional view showing the structure of the first embodiment of the automatic focusing device of the present invention.
  • IS 4 is an exploded view of the first embodiment of the present invention.
  • FIG. 5a-5b are schematic diagrams showing different numbers of flexible circuit boards in the first embodiment of the present invention.
  • Fig. 6 is a view showing various possible shapes of an elastic circuit board according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing the structure of a second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an automatic focus adjustment algorithm according to Embodiment 2 of the present invention. detailed description
  • Embodiment 1 is a preferred embodiment of the present invention, which will be described in detail below with reference to the accompanying drawings.
  • the device is composed of the following parts: lens group 1, lens group bracket
  • Image sensor 3 circuit board 4, flexible circuit board 5, external circuit board 6, drive coil 7, permanent magnet 8 and base 9.
  • the lens group 1 is fixed in the lens assembly 2, and the lens assembly 2, the external circuit board 6 and the base 9 are relatively fixed in position, and constitute a closed cavity.
  • the light can only enter the cavity from the opening at the front end of the lens assembly 2.
  • the lens group 1 and the image sensor 3 are sequentially arranged along the optical axis 11 and aligned with the center of the opening.
  • the image sensor 3 is soldered on the circuit substrate 4, the center of which coincides with the optical axis, and the image substrate 4 is fixed with the image sensor 3
  • a drive coil 7 is fixed to the opposite surface, and the drive coil 7 is simultaneously movably sleeved on the cylindrical permanent magnet 8 fixed to the inside of the base 9.
  • Two ends of the flexible circuit board 5 are respectively soldered on the circuit board 4 and the external circuit board 6, and one end connected to the circuit board 4 is electrically connected to the image sensor 3 and the driving coil 7, respectively, for extracting electricity derived from the image sensor 3.
  • the signal and drive current is supplied to the drive coil.
  • the elastic circuit board 5 can not only function as an electrical connection but also function as a limiting device. In order to avoid the center of the image sensor 3 from deviating from the optical axis 11 during focusing, it should be ensured that the resultant force generated by the deformation of the elastic circuit board 5 is along the optical axis direction, and two or four elastic circuit boards can be arranged in a symmetrical manner, as shown in FIG. 5a. , 5b. At the same time, in order to maintain balance, the center of gravity of the combination of the image sensor 3 and the circuit substrate 4 and the center of the drive coil 7 should also be located on the optical axis.
  • the flexible circuit board (English name: flexible PCB, flexible printed circuit or flex-circuits) used in the present invention is a new type of printed circuit board which has appeared in recent years, and can perform reliable electrical and physical connection of tantalum density and can be repeated. Large elastic deformation occurs many times.
  • the Mi 1-P-50884-Typel flexible circuit board produced by American Modtronic Instruments Co., Ltd. is made of a thin copper sheet in a polyimide surface layer, and the total thickness is about 0.14 mm. The greater the amplitude of the bending deformation of the elastic circuit board, the greater the force generated, and the relationship depends on the elastic modulus of the constituent materials.
  • the flexible circuit board can be bent into a V-shaped, W-shaped or similar multi-pleated type, as shown in FIG.
  • the angle between the bends also changes, and the elastic board is straightened or bent to provide a large deformation range.
  • the working principle of the first embodiment is as follows: The positions of the lens group 1, the permanent magnet 8, and the external circuit board 6 are relatively fixed, and the image sensor 3 is driven to move along the optical axis by the electromagnetic force between the permanent magnet 8 and the driving coil 7. As shown in FIG.
  • the image light signals are concentrated on the image sensor 3 through the lens group 1, and the optical image signals are converted by the image sensor 3 into digital image signals having line-field synchronization, and the digital image signals are transmitted to the external device through the flexible circuit board 5.
  • the circuit board 6 then transmits this digital image signal to the central processing unit (the DSP of the digital camera or the CPU of the PC) through other interface circuits.
  • the central processing unit can directly display the synchronized digital image signals through the display screen of the computer or digital camera, and can determine whether the digital imaging system is in focus according to the degree of falseness of the image. If not focused, the central processing unit generates a control driving signal to generate a positive or negative DC voltage of a certain magnitude through the DC driving circuit to act on the driving coil 7.
  • the coil can generate S according to different current directions.
  • the electromagnetic field of N This electromagnetic field interacts with the magnetic field of the columnar permanent magnet 8 to generate forces of different directions and different magnitudes to push the drive coil 7 to push the image sensor 3 to move along the optical axis to adjust the distance from the lens group 1.
  • the elastic force generated by the elastic circuit board 5 as the limiting device acts as a balancing force at the mechanical angle.
  • the electromagnetic force is increased, the bending deformation of the elastic circuit board 5 is increased, thereby generating a larger elastic force and elastic force.
  • the electromagnetic force is balanced at a new position, so that the image sensor 3 can be fixed at a certain position, and the symmetrically disposed elastic circuit board avoids the center of the image sensor 3 from deviating from the optical axis when focusing. Since the current through the coil is continuously adjustable, this satisfies the accuracy requirements of the focus distance adjustment.
  • Embodiment 2 is still another embodiment of the auto-focusing device of the present invention, as shown in FIG.
  • the limiting device is an elastic film 5' whose one end is fixed on the circuit substrate 4 and the other end is fixed on the external circuit board 6, and the material thereof may be polyester, nylon, rubber or polyimide.
  • the material thereof may be polyester, nylon, rubber or polyimide.
  • the elastic film 5' is tensioned to generate a pre-stress so that the center of the image sensor 3 is positioned on the optical axis 11.
  • the elastic film in this embodiment mainly produces tensile deformation rather than bending deformation when subjected to an electromagnetic force. Since the elastic film 5' does not have the characteristics of electrical connection, a flexible flexible cable 10 is added in the embodiment for extracting an electrical signal derived from the image sensor 3.
  • a columnar permanent magnet 8 having a circular cross section is fixed to a surface of the circuit board 4 opposite to the surface on which the image sensor 3 is fixed, and the coil 7 is fixed to the base 9, and the permanent magnet 8 is movably sleeved on the surface.
  • the working principle of the second embodiment is as follows: The positions of the lens group 1, the driving coil 7, and the external circuit board 6 are relatively fixed, and the image sensor 3 is periodically vibrated along the optical axis by the electromagnetic force between the permanent magnet 8 and the driving coil 7. 'The amplitude should cover the area where the image can be clearly imaged (the lens group is between 1x and 2x focal length in the case of a single lens), and the vibration period should be much larger than the exposure time of the image sensor 3 to ensure the stability of the exposure without As for blurring the image, it is generally greater than 100 times the exposure time.
  • the image light signal is concentrated by the lens group 1 on the image sensor 3 that is vibrating, and the image sensor 3 converts the optical image signal into a digital image signal having line-field synchronization, and the digital image signal is transmitted to the external circuit through the flexible flexible cable 10.
  • the board 6 then transmits this digital image signal to the central processing unit (the DSP of the digital camera or the CPU of the PC) through other interface circuits.
  • the driving current has a fixed period of change, and the state of motion of the image sensor 3 along the optical axis is completely the same in each period.
  • the central processing unit processes the received digital image signals in cycles to find the best focus time point.
  • the autofocus algorithm used in this embodiment will be described in detail by taking the working process reflected in Fig. 8 as an example.
  • the abscissa indicates time t, and the ordinate indicates the displacement s of the image sensor 3.
  • take the digital image signals of t 0 and other three times: 1:11, 1:12, 1:13, and then judge whether the focus is at the above time according to the degree of falsehood of the image.
  • the focus point should appear in which time period from 0 to t11, t11 to t12, tl2 to t13, and tl3 to T (the time T image is the same as the time of 0).
  • the digital image signals of the three times t21, t22, and t23 are selected again in the time point (hereinafter, tll to t12) where the focus point determined in the previous cycle should appear.
  • tll to t12 the time point
  • the key of the focusing algorithm used in this embodiment is that there is a one-to-one correspondence between the moments of the image sensor 3 and the displacement of the image sensor 3 in the same period, and the one-to-one correspondence does not change in different periods, so only To find the time tv corresponding to the focus point, it is equal to the process of focusing. There is no need to adjust the current of the driving coil according to the result of the image virtual degree judgment to change the distance between the lens group 1 and the image sensor 3. However, whether the focus is determined according to the degree of image realism and the offset direction of the focus point can be determined when the focus is not in focus. Use the existing focusing algorithm.
  • the driving method of the present example is simple, but the image sensor 3 is required to be exposed during the movement. To ensure the clearness of the imaging, the vibration period is restricted by the length of the exposure time, thereby affecting the focusing time. Therefore, the present embodiment is more suitable for fields with short exposure time, such as: CCD image sensor, high-speed photography, or an application field where the focusing time is not critical.
  • other algorithms can be used to complete the focusing, such as: the sensor starts to expose near the maximum amplitude of each vibration, and the amplitude of the vibration is changed by adjusting the magnitude of the driving current.
  • This method is similar to the first embodiment.
  • the focusing mode is different, except that the first embodiment is exposed in a stationary state, and in this example, the exposure time sensor is still moving (although the moving speed of the amplitude position is the slowest).
  • the elastic force generated by the elastic film 5' as the limiting device acts as a periodic vibration restoring force at the mechanical angle.
  • the elastic film 5' tensile deformation is increased, thereby generating The greater the elastic force, the change of the combined force of the elastic force and the electromagnetic force determines the motion state of the image sensor 3 along the optical axis.
  • the elastic film 5' is symmetrically arranged to avoid the center of the image sensor 3 from deviating from the optical axis when focusing.
  • the image sensor 3 and the components connected thereto are subjected to much less gravity than the driving electromagnetic force and the elastic force generated by the deformation of the elastic circuit board 5 or the elastic film 5', so that the automatic adjustment of the present invention
  • the focusing device does not cause a focus deviation when the direction of gravity received is not parallel to the optical axis or the center of the image sensor 3 deviates from the optical axis.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

一种自动调焦装置
技术领域
本发明涉及一种自动调焦装置, 特别是涉及一种利角电磁力作驱动的 自动调焦装置。 背景技术
自动调焦技术被广泛地使用在照相机、 摄像机、 手机、 摄像头等具有 成像功能的设备上, 随着人们对这些设备便携要求越来越高, 自动调焦的 装置也在向体积小、 重量轻的方向发展。 传统的自动调焦装置利用马达驱 动透镜组前后移动, 从而改变透镜组和感光设备 (例如: CCD或 CMOS') 之 间的距离, 达到自动调焦的目的, 但由于马达体积的限制, 使得整个装置 的体积很难进一步缩小。
现有技术出现了多种无驱动马达的自动调焦的解决方案, 如中国专 利: 01 1 36236、 02146893 和 200410035322, 均是利用电磁场产生的电磁 作用力来移动透镜组。比较典型的例子如附图 1所示的中国专利 01 136236, 该专利文献所揭示的装置包括: 传感器 1 1、 基板 12、 传感器外壳 13、 传 感滤光器 14、 弹性部件 16、 镜片 17、 镜片翼 18、 绕线线圈 19、 磁铁 20。 在上述弹性部件 16 外部的末端连接电线, 并接通电流。 电流通过上述弹 性部件 16 流入缠绕于镜片翼 18 外部的卷轴式线圈 19 中。 由线圈产生感 应磁场, 与连接于上述线圈 19周围的磁铁 20或永久磁铁所固有的磁场相 互作用, 产生电磁力, 将上述镜片翼 18 沿上下方向移动。 因此, 调整了 上述镜片翼 18 中连接的镜片 17与图像传感器 1 1之间的距离。
此现有技术利用电磁力移动透镜组进行调焦的方式去掉了驱动马达, 能够.在一定程度上缩小装置的体积, 但是需要釆用固定机构来将磁铁或者 线圈以某种形式与透镜组结合在一起以带动透镜组运动。 为了保持光路的 畅通, 固定机构只能安装于透镜组的侧面, 这样就增加了固定机构装配的 难度, 同时也妨碍了整个调焦装置体积的进一步缩小。 发明内容
为解决上述技术问题, 本发明提出了一种利用电磁力驱动图像传感器 的方法来实现自动调焦的装置, 其目的在于: 使得整个调焦装置简单、 紧 凑, 同时在自动调焦过程中噪音小, 机械运动简单, 调焦速度快。 本发明通过以下技术方案实现: 一种自动调焦装置, 包括沿光轴设置 的透镜组和图像传感器, 还包括用于产生电磁作用力以驱动所述图像传感 器沿光轴运动的电磁驱动装置, 以及用于限定所述图像传感器沿光轴运动 的限位装置。
上述电磁驱动装置可包括与透镜组位置相对固定的磁铁和与图像传感 器固接的驱动线圈。
本发明的自动调焦装置还包括承载所述图像传感器的电路基板。
上述限位装置为一端与电路基板相连, 另一端与透镜组位置相对固定 的弹性体。
上述弹性体包括: 聚脂薄膜、 尼龙薄膜、 橡胶薄膜或聚胺薄膜。
上述弹性体还可包括弹性电路板, 弹性电路板与电路基板相连的一端 与图像传感器电连接, 用于引出来源于图像传感器的电信号。
上述弹性电路板与电路基板相连的一端还可与驱动线圈电连接, 用于 为驱动线圈提供驱动电流。
上述图像传感器与电路基板结合体的重心、 线圈的圆心位于光轴上。 上述驱动线圈可固接于电路基板的与图像传感器相对的面上, 上述磁 铁为圆柱形, 驱动线圈可移动地套设在磁铁上。
上述弹性电路板可弯折成 V型、 W型或多褶型。
本发明通过电磁力驱动图像传感器沿光轴运动, 调整透镜组与图像传 感器间的距离, 从而实现自动调焦。 与现有技术驱动透镜组的调焦方式相 比较, 由于光路只通过图像传感器的一面, 本发明更利于电磁驱动装置的 安装, 利用弹性电路板的力学和电学性质, 在对图像传感器进行限位的同 时传递电信号, 使得整个装置结构简单、 紧凑。 附图说明
图 1是现有技术的一种自动调焦装置的结构图。
图 2是本发明自动调焦装置实施例一的原理框图。
图 3是本发明自动调焦装置实施例一结构剖面图。
IS 4是本发明实施例一结构分解图。
图 5a— 5 b是本发明实施例一采用不同数量的弹性电路板示意图。 图 6是本发明实施例一弹性电路板各种可能的形状。
图 7是本发明实施例二结构剖面图。 图 8是本发明实施例二自动调焦算法的原理图。 具体实施方式
实施例一为本发明的最佳实施例, 下面参照附图对其进行详细说明。 如图 3及图 4所示, 该装置由以下部分构成: 透镜组 1、 透镜组支架
2、 图像传感器 3、 电路基板 4、 弹性电路板 5、 外接电路板 6、 驱动线圈 7、 永磁铁 8和底座 9。
透镜组 1 固定在透镜组支架 2 内, 透镜组支架 2、 外接电路板 6和底 座 9位置相对固定, 并构成一封闭空腔, 光线仅能从透镜组支架 2前端的 开孔进入腔内, 透镜组 1 和图像传感器 3沿光轴 11 依次排列, 并对准开 孔的中心, 图像传感器 3焊接在电路基板 4上, 其中心与光轴重合, 电路 基板 4 的与固定有图像传感器 3—面相对的面上固定有驱动线圈 7, 驱动 线圈 7同时可移动地套设于固定在底座 9 内部的圆柱型永磁铁 8上。 弹性 电路板 5的两端分别焊接在电路基板 4和外接电路板 6上, 其与电路基板 4相连的一端分别与图像传感器 3和驱动线圈 7 电连接, 用于引出来源于 图像传感器 3的电信号和为驱动线圈提供驱动电流。
这里弹性电路板 5不仅可以起到电性连接的作用, 还起到限位装置的 作用。 为避免调焦时图像传感器 3的中心偏离光轴 11, 应保证由弹性电路 板 5变形而产生的合力沿光轴方向, 可采用对称的方式设置两条或者四条 弹性电路板, 分别如图 5a、 5b所示。 同时为保持平衡, 所述图像传感器 3 与电路基板 4结合体的重心以及驱动线圈 7的圆心也应位于光轴上。
本发明采用的弹性电路板 (英文名: flexible PCB、 flexible printed circuit 或 flex-circuits) 是近年出现的一种新型的印刷电路板, 能进 行可靠的髙密度的电性和物理连接、 并可反复多次产生较大的弹性形变。 例如美国 Mod- tronic仪器有限公司生产的 Mi 1-P-50884— Typel型弹性电 路板, 采用聚酰亚胺 (polyimide) 表层中夹薄铜片的方式制成, 总厚度 在 0.14mm 左右。 弹性电路板弯曲变形的幅度越大, 所产生的作用力也就 越大, 其关系取决于组成材料的弹性系数。 为了增加弹性电路板受力时变 形的幅度, 可将弹性电路板弯折成 V型、 W型或类似的多褶型, 如图 6所 示。 弯折后的弹性电路板在受力时, 弯折处的夹角也会发生变化, 弹性电 路板随之被拉直或者压弯, 从而提供较大的变形幅度。 ' 实施例一的工作原理如下: 透镜组 1、 永磁铁 8、 外接电路板 6 的位 置相对固定, 通过永磁铁 8与驱动线圈 7之间的电磁作用力驱动图像传感 器 3沿光轴运动聚焦。 如图 2所示, 图像光信号通过透镜组 1汇聚在图像 传感器 3上, 光学图像信号通过图像传感器 3转换为具有行场同步的数字 图像信号, 该数字图像信号通过弹性电路板 5传输到外接电路板 6再通过 其他接口电路将此数字图像信号传输到中央处理器 (数字相机的 DSP 或 PC 的 CPU ) 上。 中央处理器能将这些同步的数字图像信号通过计算机或 数字相机的显示屏直接显示的同时又能根据图像的虚实程度判断该数字 成像系统是否聚焦。 如未聚焦, 中央处理器则产生控制驱动信号经直流驱 动电路产生一定大小正或负的直流电压作用在驱动线圈 7上, 根据电磁学 的右手螺旋法则该线圈能根据不同的电流方向产生 S或 N的电磁场。 这个 电磁场与柱型永久磁铁 8的磁场相互作用便会产生不同方向、 不同大小的 力推动驱动线圈 7 以至推动图像传感器 3沿光轴移动以调节与透镜组 1之 间的距离。
作为限位装置的弹性电路板 5所产生的弹力在力学角度起着平衡力的 作用, 当电磁力加大时, 弹性电路板 5弯曲的形变就会增大, 从而产生更 大的弹力, 弹力与电磁力会在新的位置得到平衡, 这样就能保证图像传感 器 3可以固定在某一位置, 同时对称设置的弹性电路板避免调焦时图像传 感器 3的中心偏离光轴。 由于通过线圈的电流是连续可调的, 这就可以满 足对焦距离调节的精度要求。
实施例二为本发明自动调焦装置的又一实施例, 如图 7所示。 本实施 例中, 限位装置为一端固定在电路基板 4上, 另一端固定在外接电路板 6 上的弹性薄膜 5 ' , 其材料可以为聚酯、 尼龙、 橡胶、 聚酰亚胺。 为避免 调焦时图像传感器 3的中心偏离光轴 1 1, 同样应保证由弹性薄膜 5 ' 变形 而产生的拉力的合力沿光轴方向, 可采用对称的方式设置两条或者四条弹 性薄膜 5 ' , 类似于实施例一中弹性电路板的安装方式。 在装配时, 弹性 薄膜 5 ' 被拉紧, 以产生预应力, 使图像传感器 3的中心位于光轴 1 1上。 与实施例一不同的是, 在受到电磁作用力时, 本实施例中的弹性薄膜主要 产生拉伸变形而不是弯曲变形。 由于弹性薄膜 5 ' 不具有电性连接的特性, 本实施例中增加了一柔性软排线 10, 用于引出来源于图像传感器 3的电信 号。 电路基板 4的与固定有图像传感器 3—面相对的面上固定有截面为圆 环的柱状永磁铁 8, 线圈 7固定在底座 9上, 永磁铁 8可移动地套接在线 实施例二的工作原理如下: 透镜组 1、 驱动线圈 7、 外接电路板 6 的 位置相对固定, 通过永磁铁 8与驱动线圈 7之间的电磁作用力驱动图像传 感器 3沿光轴周期性振动,' 其振幅应覆盖可能清晰成像的区域 (透镜组为 单个透镜的情况下在 1 倍至 2 倍焦距之间), 振动周期应远大于图像传感 器 3的曝光时间, 以保证曝光的稳定性而不至于使图像模糊, 一般大于曝 光时间的 100倍。 图像光信号通过透镜组 1汇聚在正在振动着的图像传感 器 3上, 图像传感器 3将光学图像信号转换为具有行场同步的数字图像信 号, 该数字图像信号通过柔性软排线 10 传输到外接电路板 6 再通过其他 接口电路将此数字图像信号传输到中央处理器 (数字相机的 DSP 或 PC 的 CPU) 上。
本实施例中驱动电流具有固定的变化周期, 图像传感器 3沿光轴的运 动状态在每个周期内是完全相同的。 中央处理器将接收到的数字图像信号 按周期釆样并处理, 进而找出最佳的聚焦时间点。 现以图 8反映的工作过 程为例对本实施例采用的自动调焦算法进行详细说明, 横坐标表示时间 t, 纵坐标表示图像传感器 3的位移 s。 在第一个振动周期内, 分别取 t = 0时 刻及其他 3个时刻 1:11、 1:12、 1:13的数字图像信号, 然后根据图像的虚实 程度判断在上述时刻是否聚焦,如未聚焦,则判断聚焦点应出现在 0〜tll、 tll〜tl2、 tl2〜tl3、 tl3〜T(T 时刻图像与 0 时刻相同)中的哪一时间段 内。 在接下来的一个振动周期内, 在前一周期判定的聚焦点应出现时间段 (这里假设为 tll〜tl2) 内再次选取 3个时刻 t21、 t22、 t23的数字图像 信号。 再根据图像的虚实程度判断在 t21、 t22 或 t23 时刻是否聚焦, 如 未聚焦, 则判断聚焦点应出现在 tll〜t21、 t21〜t22、 t22〜t23、 t23〜 tl2 中的哪一时间段内。 按照此过程一直进行下去, 直到选出合适的聚焦 点对应的时刻 tv。 之后, 可以在下一周期的 tv 时刻进行拍摄, 以获得清 晰的图像。
本实施例所采用的调焦算法的关键在于在同一周期内每一时刻与图 像传感器 3的位移存在一一对应的关系, 且在不同周期当中这种一一对应 的关系并不改变, 因此只需找准聚焦点对应的时刻 tv, 就等于完成了调焦 的过程。 这里不需要根据图像虚实程度判断的结果去调节驱动线圈的电流 以改变透镜组 1与图像传感器 3的距离, 但根据图像虚实程度判断是否聚 焦并在未聚焦时判断聚焦点的偏移方向都可采用现有的调焦算法。 与改变 驱动电流的调焦方式相比, 本例驱动方式简单, 但需要图像传感器 3在运 动中曝光, 为确保成像的清晰, 振动周期受到曝光时间长短的制约, 从而 影响调焦的时间。 因此, 本实施例比较适用于曝光时间短的领域, 例如: CCD图像传感器、 高速摄影, 或者对调焦时间要求不高的应用领域。 当然, 也可釆用其他算法来完成调焦, 列如: 在每次振动的振幅最大位置附近传 感器开始曝光, 并通过调节驱动电流的大小来改变振动的振幅, 这种方法 类似于实施例一的调焦方式, 不同的是实施例一在静止状态下曝光, 而本 例中曝光时刻传感器仍然在运动 (虽然振幅位置的运动速度是最慢的)。
作为限位装置的弹性薄膜 5 ' 所产生的弹力在力学角度起着周期性振 动回复力的作用, 当图像传感器 3 的位移加大时, 弹性薄膜 5 ' 拉伸形变 就会增大, 从而产生更大的弹力, 弹力与电磁力合力的变化过程决定了图 像传感器 3 沿光轴的运动状态。 同时对称设置的弹性薄膜 5 ' 可避免调焦 时图像传感器 3的中心偏离光轴。
不论是实施例一还是实施例二, 图像传感器 3和与之相连的部件所受 的重力都远小于驱动电磁力和弹性电路板 5或弹性薄膜 5 ' 变形产生的弹 力, 故本发明的自动调焦装置不会在受到的重力方向与光轴不平行时导致 对焦偏差或者图像传感器 3的中心偏离光轴。

Claims

权 利 要 求 书
1、 一种自动调焦装置, 包括沿光轴设置的透镜组和图像传感器, 其 特征在于还包括: 用于产生电磁作用力以驱动所述图像传感器沿光轴运动 的电磁驱动装置, 以及用于限定所述图像传感器沿光轴运动的限位装置。
2、 根据权利要求 1所记载的一种自动调焦装置, 其特征在于, 所述电 磁驱动装置包括与透镜组位置相对固定的磁铁和与图像传感器固接的驱 动线圈。
3、 根据权利要求 1或 2所记载的一种自动调焦装置, 其特征在于, 包 括承载所述图像传感器的电路基板。
4、 根据权利要求 3所记载的一种自动调焦装置, 其特征在于, 所述限 位装置为一端与电路基板相连、 另一端与透镜组位置相对固定的弹性体。
5、 根据权利要求 4所记载的一种自动调焦装置, 其特征在于, 所述弹 性体包括: 聚酯薄膜、 尼龙薄膜、 橡胶薄膜或聚酰亚胺薄膜。
6、 根据权利要求 4所记载的一种自动调焦装置, 其特征在于, 所述弹 性体包括弹性电路板, 弹性电路板与电路基板相连的一端与图像传感器电 连接, 用于引出来源于图像传感器的电信号。
7、 根据权利要求 6所记载的一种自动调焦装置, 其特征在于, 所述弹 性电路板与电路基板相连的一端与驱动线圈电连接, 用于为驱动线圈提供 驱动电流。
8、 根据权利要求 4所记载的一种自动调焦装置, 其特征在于, 所述图 像传感器的中心、 图像传感器与电路基板结合体的重心、 驱动线圈的圆心 位于光轴上。
9、 根据权利要求 4所记载的一种自动调焦装置, 其特征在于, 所述驱 动线圏固接于电路基板的与图像传感器相对的面上, 所述磁铁为圆柱形, 所述驱动线圈可移动地套设在磁铁上。
10、 根据权利要求 6所记载的一种自动调焦装置, 其特征在于, 所述 弹性电路板弯折成 V型、 W型或多褶型。
PCT/CN2006/000890 2005-05-11 2006-04-30 Systeme de focalisation automatique WO2006119693A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06722435A EP1884828B1 (en) 2005-05-11 2006-04-30 Automatic focusing device
AT06722435T ATE541235T1 (de) 2005-05-11 2006-04-30 Automatische fokussierungseinrichtung
US11/937,097 US8040426B2 (en) 2005-05-11 2007-11-08 Automatic focusing mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510072547.3 2005-05-11
CN2005100725473A CN1862358B (zh) 2005-05-11 2005-05-11 一种自动调焦装置

Publications (1)

Publication Number Publication Date
WO2006119693A1 true WO2006119693A1 (fr) 2006-11-16

Family

ID=37389821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/000890 WO2006119693A1 (fr) 2005-05-11 2006-04-30 Systeme de focalisation automatique

Country Status (5)

Country Link
US (1) US8040426B2 (zh)
EP (1) EP1884828B1 (zh)
CN (1) CN1862358B (zh)
AT (1) ATE541235T1 (zh)
WO (1) WO2006119693A1 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4906645B2 (ja) * 2007-09-07 2012-03-28 セイコープレシジョン株式会社 羽根駆動装置
JP4906646B2 (ja) * 2007-09-07 2012-03-28 セイコープレシジョン株式会社 羽根駆動装置
JP4906647B2 (ja) * 2007-09-07 2012-03-28 セイコープレシジョン株式会社 羽根駆動装置
CN101533145B (zh) * 2008-03-12 2011-07-27 贾怀昌 图像传感器浮动式影像追踪自动对焦系统
DE102010020243B4 (de) * 2010-05-11 2012-03-01 Jos. Schneider Optische Werke Gmbh Kamera-Modul mit umschaltbarer Brennweite
US8564896B2 (en) * 2010-08-20 2013-10-22 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Compact imaging device
US9208570B2 (en) 2012-03-28 2015-12-08 Sony Corporation System and method for performing depth estimation by utilizing an adaptive kernel
KR101975893B1 (ko) * 2012-03-21 2019-09-10 엘지이노텍 주식회사 카메라 모듈
CN103217773A (zh) * 2013-04-09 2013-07-24 上海海鸥数码照相机有限公司 手机可变焦摄像模组及可变焦手机
CN103824748A (zh) * 2014-02-20 2014-05-28 宁波大学 离子传输装置及方法
US9399430B2 (en) 2014-12-02 2016-07-26 Honda Motor Co., Ltd. System and method for vehicle control integrating health priority alerts of vehicle occupants
CN106161912B (zh) * 2015-03-24 2019-04-16 北京智谷睿拓技术服务有限公司 对焦方法和装置、拍摄设备
WO2017076060A1 (zh) 2015-11-05 2017-05-11 杭州唐光科技有限公司 一种自动聚焦装置及系统
EP3408732A4 (en) * 2016-01-29 2019-10-02 Yeyang Sun DATA COLLECTION FOR GOODS INVENTED FOR SHELVING SYSTEMS WITH LIGHT SENSORS
US11523034B2 (en) * 2016-02-10 2022-12-06 Microsoft Technology Licensing, Llc Imaging apparatus
US10447931B2 (en) * 2016-04-01 2019-10-15 Tdk Taiwan Corp. Camera module having electromagnetic driving assembly
DE102016106535B4 (de) * 2016-04-08 2019-03-07 Carl Zeiss Ag Vorrichtung und Verfahren zum Vermessen einer Flächentopografie
US20180041668A1 (en) * 2016-08-05 2018-02-08 Microsoft Technology Licensing, Llc Digital camera focus assembly
US10317779B2 (en) 2016-08-16 2019-06-11 Microsoft Technology Licensing, Llc Imaging apparatus
US10775614B1 (en) * 2017-09-27 2020-09-15 Apple Inc. Optical aberration control for camera
CN107800931A (zh) * 2017-10-09 2018-03-13 广东欧珀移动通信有限公司 摄像头模组及移动终端
CN107741624B (zh) * 2017-10-13 2020-06-23 高瞻创新科技有限公司 一种分体式低功耗小型自动对焦制动器
US20190191110A1 (en) * 2017-12-18 2019-06-20 Facebook, Inc. Apparatuses, systems, and methods for an enhanced field-of-view imaging system
CN110784625B (zh) * 2018-07-25 2022-04-15 台湾东电化股份有限公司 感光组件驱动机构
US11048147B2 (en) 2018-09-28 2021-06-29 Apple Inc. Camera focus and stabilization system
CN111212199A (zh) * 2018-11-21 2020-05-29 北京小米移动软件有限公司 驱动机构、摄像头模组及电子设备
CN111405157B (zh) * 2020-03-24 2022-03-29 Oppo广东移动通信有限公司 一种摄像模组及电子设备
CN112492185A (zh) * 2020-12-11 2021-03-12 维沃移动通信有限公司 摄像模组和电子设备
CN114666468A (zh) * 2020-12-23 2022-06-24 维沃移动通信有限公司 摄像组件和电子设备
CN112822350A (zh) * 2020-12-25 2021-05-18 维沃移动通信有限公司 电子设备及摄像模组
CN114793259A (zh) * 2021-01-25 2022-07-26 昆山丘钛微电子科技股份有限公司 一种板载式电磁驱动器及摄像头模组
CN116055835A (zh) * 2021-03-26 2023-05-02 浙江舜宇智领技术有限公司 摄像头装置
WO2022217404A1 (zh) * 2021-04-12 2022-10-20 深圳市大疆创新科技有限公司 拍摄装置和移动平台
CN113014788A (zh) * 2021-04-29 2021-06-22 维沃移动通信有限公司 摄像头模组和电子设备
CN113242381A (zh) * 2021-06-30 2021-08-10 维沃移动通信有限公司 摄像模组和电子设备
CN113411484B (zh) * 2021-07-20 2022-12-23 维沃移动通信有限公司 摄像模组及电子设备
CN115734060A (zh) * 2021-08-27 2023-03-03 庆鼎精密电子(淮安)有限公司 镜头模组以及镜头模组的制作方法
CN114390183A (zh) * 2022-02-17 2022-04-22 维沃移动通信有限公司 摄像装置及电子设备
EP4296771B1 (de) * 2022-06-24 2024-05-29 Sick Ag Optoelektronischer sensor und verfahren zur fokusverstellung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829676A (ja) 1994-07-20 1996-02-02 Olympus Optical Co Ltd 光学素子の駆動制御装置
EP0714202A1 (en) 1994-11-25 1996-05-29 SANYO ELECTRIC Co., Ltd. Autofocus video camera with compensation for load variations of a linear motor
US5612740A (en) * 1994-09-19 1997-03-18 Industrial Technology Research Institute Inner focus type zoom lens driving mechanism
JP2000295831A (ja) * 1999-03-31 2000-10-20 Minolta Co Ltd ムービングコイルユニット
CN1368658A (zh) * 2001-02-09 2002-09-11 力捷电脑股份有限公司 自动对焦机构及方法
CN1402036A (zh) 2001-08-29 2003-03-12 三星电机株式会社 图象模块
CN2672677Y (zh) * 2003-12-20 2005-01-19 鸿富锦精密工业(深圳)有限公司 镜头模组

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123277A (ja) * 1982-01-19 1983-07-22 Asahi Optical Co Ltd ビデオカメラの自動焦点整合装置
JPH0815314B2 (ja) 1986-05-19 1996-02-14 松下電器産業株式会社 自動焦点調整装置
JPH03143173A (ja) * 1989-10-30 1991-06-18 Toshiba Corp ビデオ・カメラの自動焦点調節装置
US5630142A (en) 1994-09-07 1997-05-13 International Business Machines Corporation Multifunction power switch and feedback led for suspend systems
JPH11175205A (ja) 1997-12-15 1999-07-02 Toshiba Corp コンピュータシステムおよびそのパワーダウン制御方法
US6487669B1 (en) 1999-09-30 2002-11-26 Intel Corporation Method and apparatus for a dual mode of displaying data and images
JP3966677B2 (ja) 2000-06-16 2007-08-29 株式会社東芝 パーソナルコンピュータ
JP2003110929A (ja) * 2001-10-01 2003-04-11 Minolta Co Ltd 手振れ補正撮像装置
JP2004247947A (ja) * 2003-02-13 2004-09-02 Olympus Corp 光学装置
US7005751B2 (en) * 2003-04-10 2006-02-28 Formfactor, Inc. Layered microelectronic contact and method for fabricating same
US7327952B2 (en) * 2004-07-26 2008-02-05 Pentax Corporation Stage apparatus and camera shake correction apparatus using the stage apparatus
CN100420276C (zh) * 2004-12-10 2008-09-17 鸿富锦精密工业(深圳)有限公司 手机数码相机对焦机构及手机数码相机模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829676A (ja) 1994-07-20 1996-02-02 Olympus Optical Co Ltd 光学素子の駆動制御装置
US5612740A (en) * 1994-09-19 1997-03-18 Industrial Technology Research Institute Inner focus type zoom lens driving mechanism
EP0714202A1 (en) 1994-11-25 1996-05-29 SANYO ELECTRIC Co., Ltd. Autofocus video camera with compensation for load variations of a linear motor
JP2000295831A (ja) * 1999-03-31 2000-10-20 Minolta Co Ltd ムービングコイルユニット
CN1368658A (zh) * 2001-02-09 2002-09-11 力捷电脑股份有限公司 自动对焦机构及方法
CN1402036A (zh) 2001-08-29 2003-03-12 三星电机株式会社 图象模块
CN2672677Y (zh) * 2003-12-20 2005-01-19 鸿富锦精密工业(深圳)有限公司 镜头模组

Also Published As

Publication number Publication date
CN1862358B (zh) 2012-03-21
EP1884828B1 (en) 2012-01-11
US20080062301A1 (en) 2008-03-13
ATE541235T1 (de) 2012-01-15
EP1884828A4 (en) 2009-05-27
CN1862358A (zh) 2006-11-15
EP1884828A1 (en) 2008-02-06
US8040426B2 (en) 2011-10-18

Similar Documents

Publication Publication Date Title
WO2006119693A1 (fr) Systeme de focalisation automatique
US7355802B2 (en) Driving device, lens barrel and imaging apparatus
CN100556080C (zh) 一种实现微型摄像头自动对焦的方法及其微型摄像头
US7702227B2 (en) Optical device having blur correction function
TWI414815B (zh) Camera shake vibration correction device
WO2021159967A1 (zh) 一种光圈、摄像模组及电子设备
WO2021104013A1 (zh) 摄像头模组及电子设备
CN102749697A (zh) 驱动装置和使用该驱动装置的摄影设备
JP2006317932A (ja) カメラモジュールの自動焦点調節装置
WO2021104017A1 (zh) 摄像头模组及电子设备
CN109327572A (zh) 成像模组、摄像头组件及电子装置
CN108989641A (zh) 成像模组和电子装置
WO2023273982A1 (zh) 摄像头组件和电子设备
TW201207461A (en) Imaging device
JP2006091265A (ja) レンズ駆動装置及び撮像装置並びに光学装置
CN209151242U (zh) 成像模组、摄像头组件及电子装置
TWI759835B (zh) 成像鏡頭模組、相機模組及電子裝置
KR101181645B1 (ko) 자동 포커싱 기능을 가진 카메라 모듈 및 이의 구동 방법
CN1873525A (zh) 投影仪的焦距补偿装置及方法
CN208461935U (zh) 成像模组和电子装置
JPH11344738A (ja) ブレ補正装置及びブレ補正カメラ
CN212623283U (zh) 一种镜头模组及应用其的电子设备
JP3121726U (ja) 焦点調節モジュール
KR100795210B1 (ko) 소형 줌 카메라장치
CN111708142A (zh) 一种镜头模组及应用其的电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2006722435

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006722435

Country of ref document: EP