WO2006115242A1 - Surface-treated fine particle, surface-treating apparatus, and method for surface-treating fine particle - Google Patents

Surface-treated fine particle, surface-treating apparatus, and method for surface-treating fine particle Download PDF

Info

Publication number
WO2006115242A1
WO2006115242A1 PCT/JP2006/308555 JP2006308555W WO2006115242A1 WO 2006115242 A1 WO2006115242 A1 WO 2006115242A1 JP 2006308555 W JP2006308555 W JP 2006308555W WO 2006115242 A1 WO2006115242 A1 WO 2006115242A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
fine particles
surface treatment
gas
rotating
Prior art date
Application number
PCT/JP2006/308555
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Abe
Yuuji Honda
Original Assignee
Youtec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youtec Co., Ltd. filed Critical Youtec Co., Ltd.
Priority to JP2007514712A priority Critical patent/JP5721923B2/en
Publication of WO2006115242A1 publication Critical patent/WO2006115242A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/34Arrangements of heating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to surface-treated fine particles, a surface treatment apparatus, and a surface treatment method.
  • the present invention relates to a surface treatment fine particle, a surface treatment apparatus, and a fine particle surface treatment method in which surface treatment is performed with a simple process and the degree of the surface treatment is accurately controlled.
  • Powder is a very attractive sample both fundamentally and in application, and is currently used in various fields.
  • the fineness of the powder is used for cosmetic foundations, and the fine ferrite particles are used as a magnetic material applied to magnetic tape to form a single magnetic domain.
  • powder surface treatment has been performed by wet chemical etching!
  • a metal or oxide powder is subjected to a surface treatment by etching with an acid solution, a surface treatment by oxidation with an alkaline solution, and a surface treatment by fluorination with a fluoride solution.
  • the polymer powder is subjected to surface treatment by etching with an organic solvent.
  • the above-described surface treatment method enables uniform surface treatment, but requires a plurality of steps such as filtration, washing, and drying, and thus the steps are complicated.
  • steps such as filtration, washing, and drying, and thus the steps are complicated.
  • wet surface treatment it is difficult to treat the treatment solution.
  • it is extremely difficult to accurately control the degree of surface treatment for example, the depth of surface treatment.
  • the present invention has been made in consideration of the above-mentioned circumstances, and its purpose is to carry out surface treatment with a simple process and to accurately control the degree of the surface treatment,
  • An object of the present invention is to provide a processing apparatus and a surface treatment method for fine particles.
  • the surface-treated fine particles according to the present invention are characterized in that the fine particles are surface-treated by heating or a plasma atmosphere.
  • the plasma atmosphere includes a plasma atmosphere by sputtering.
  • the surface-treated fine particles according to the present invention rotate or stir the fine particles in the container by rotating a container having a substantially circular internal cross-sectional shape about the direction perpendicular to the cross-section.
  • the fine particles are surface-treated while being rotated.
  • the surface-treated fine particles according to the present invention are obtained by stirring a fine particle in the container by rotating a container having a polygonal cross-sectional shape around a rotation axis that is substantially perpendicular to the cross-section.
  • the fine particles are surface-treated while being rotated.
  • the surface treatment may be a treatment of oxidizing, nitriding, fluorinating or carbonizing the surface of the fine particles.
  • the surface treatment is a treatment for cleaning the surface of the fine particles with plasma, or a treatment for plasma-etching the surface of the fine particles to form irregularities on the surface of the fine particles. It is also possible.
  • an inert gas such as Ar may be used as the gas.
  • an anchoring effect can be expected by performing a treatment for forming irregularities on the surface of the fine particles.
  • the surface treatment method for fine particles according to the present invention contains fine particles in a container
  • the fine particles are surface-treated by heating or a plasma atmosphere.
  • the plasma atmosphere includes a plasma atmosphere by snottering.
  • the fine particles are contained in a container having a substantially circular internal shape in a cross section substantially parallel to the direction of gravity.
  • the fine particles in the container are surface-treated while the fine particles in the container are agitated or rotated by rotating the container about a direction substantially perpendicular to the cross section.
  • the fine particle surface treatment method according to the present invention has a cross section substantially parallel to the direction of gravity.
  • the fine particles are stored in a polygonal container,
  • the fine particles in the container are surface-treated while the fine particles in the container are agitated or rotated by rotating the container about a direction substantially perpendicular to the cross section.
  • a surface treatment apparatus includes a container on which fine particles are placed;
  • the fine particles are surface-treated.
  • a surface treatment apparatus is a container that contains fine particles, the container having a substantially circular internal shape in a cross section substantially parallel to the direction of gravity;
  • a rotation mechanism that rotates the container about a direction substantially perpendicular to the cross section, and a heating mechanism that heats the fine particles contained in the container;
  • a gas introduction mechanism for introducing gas into the container
  • the fine particles in the container are surface-treated while stirring or rotating the fine particles in the container.
  • a surface treatment apparatus is a container that contains fine particles, the container having a polygonal internal shape in a cross section substantially parallel to the direction of gravity;
  • a rotation mechanism that rotates the container about a direction substantially perpendicular to the cross section, and a heating mechanism that heats the fine particles contained in the container;
  • a gas introduction mechanism for introducing gas into the container
  • the fine particles in the container are surface-treated while stirring or rotating the fine particles in the container.
  • a surface treatment apparatus comprises a container for placing fine particles
  • a chamber containing the container A gas introduction mechanism for introducing gas into the chamber;
  • An electrode disposed in the chamber and disposed to face the container;
  • the fine particles are surface-treated using plasma.
  • a surface treatment apparatus is a container that contains fine particles, the container having a substantially circular inner shape in a cross section substantially parallel to the direction of gravity;
  • a rotation mechanism for rotating the container about a direction substantially perpendicular to the cross section, an electrode disposed in the container,
  • a gas introduction mechanism for introducing gas into the container
  • the fine particles in the container are surface-treated by using plasma while stirring or rotating the fine particles in the container by rotating the container using the rotating mechanism.
  • a surface treatment apparatus is a container that contains fine particles, the container having a polygonal internal shape in a cross section substantially parallel to the direction of gravity;
  • a rotation mechanism for rotating the container about a direction substantially perpendicular to the cross section, an electrode disposed in the container,
  • a gas introduction mechanism for introducing gas into the container
  • the fine particles in the container are surface-treated by using plasma while stirring or rotating the fine particles in the container by rotating the container using the rotating mechanism.
  • the gas introduction mechanism may be a mechanism for introducing at least one of oxygen gas, nitrogen gas, fluorine gas, and hydrocarbon gas. is there.
  • oxygen gas nitrogen gas, fluorine gas, and hydrocarbon gas.
  • hydrocarbon gas can be used as the hydrocarbon gas.
  • the surface treatment may be a treatment for cleaning the surface of the fine particles with plasma or a surface of the fine particles for plasma etching. It is also possible to perform a process of forming irregularities on the surface of the fine particles by performing the chucking.
  • the gas introduction mechanism may include a mechanism for introducing a shower-like gas from the electrode into the container.
  • a chamber 1 that houses the container, and a vacuum exhaust mechanism that evacuates the chamber.
  • a surface-treated fine particle As described above, according to the present invention, there are provided a surface-treated fine particle, a surface treatment apparatus, and a fine particle surface treatment method in which the surface treatment is performed with a simple process and the degree of the surface treatment is accurately controlled. Can do.
  • FIG. 1 is a configuration diagram showing an outline of a thermal surface treatment apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of surface-treated fine particles obtained by surface-treating fine particles with the thermal surface treatment apparatus shown in FIG.
  • FIG. 3 (A) is a cross-sectional view schematically showing a thermal surface treatment apparatus according to Embodiment 2 of the present invention, and (B) is a cross section taken along line 3B-3B shown in (A).
  • FIG. 3 (A) is a cross-sectional view schematically showing a thermal surface treatment apparatus according to Embodiment 2 of the present invention, and (B) is a cross section taken along line 3B-3B shown in (A).
  • FIG. 4 (A) is a cross-sectional view schematically showing a thermal surface treatment apparatus according to Embodiment 3 of the present invention, and (B) is a cross section taken along line 4B-4B shown in (A).
  • FIG. 4 (A) is a cross-sectional view schematically showing a thermal surface treatment apparatus according to Embodiment 3 of the present invention, and (B) is a cross section taken along line 4B-4B shown in (A).
  • FIG. 5 is a cross-sectional view showing an example of surface-treated fine particles obtained by surface-treating fine particles with the thermal surface treatment apparatus shown in FIG.
  • FIG. 6 is a configuration diagram showing an outline of a plasma surface treatment apparatus according to a fourth embodiment of the present invention.
  • FIG. 7 (A) is a cross-sectional view schematically showing a plasma surface treatment apparatus according to Embodiment 5 of the present invention, and (B) is a cross-sectional view taken along line 7B-7B shown in (A). It is.
  • FIG. 8 (A) is a cross-sectional view schematically showing a plasma surface treatment apparatus according to Embodiment 6 of the present invention, and (B) is a cross-sectional view taken along line 8B-8B shown in (A). It is.
  • FIG. 1 is a configuration diagram showing an outline of a thermal surface treatment apparatus according to Embodiment 1 of the present invention.
  • This thermal surface treatment apparatus is an apparatus for surface-treating fine particles (or powder).
  • the thermal surface treatment apparatus has a container 2 on which powder (fine particles) 1, for example, metal powder is placed or accommodated.
  • a heater 4 as a heating mechanism for heating the powder 1 is disposed at the bottom of the container 2.
  • the container 2 and the heater 4 are disposed in the chamber 1.
  • the thermal surface treatment apparatus includes a gas introduction mechanism for introducing gas into the chamber 13.
  • the gas introduction mechanism has a gas introduction mechanism for introducing O gas.
  • the gas introduction mechanism consists of piping 5-7, valve 12, mass flow controller (MFC) 14 and O gas.
  • the tip of the pipe 5 is connected to the chamber 1, and O gas is channeled from the tip of the pipe 5.
  • the base end of the pipe 5 is connected to one side of the valve 12, and the other side of the valve 12 is connected to one end of the pipe 6.
  • the other end of the pipe 6 is connected to one end of the mass flow controller 14, and the other end of the mass flow controller 14 is connected to one end of the pipe 7.
  • the other end of the pipe 7 is connected to an O gas supply source.
  • the thermal surface treatment apparatus includes a vacuum pump 16 that evacuates the inside of the chamber 13. This vacuum pump 16 is connected to the chamber 1 by a pipe 11
  • a powder 1 in which many fine particles are collected is contained in a container 2.
  • the amount of the powder 1 accommodated in the container 2 is preferably such that two to three layers having fine particle force are laminated.
  • oxygen (O) gas hardly reaches the fine particles in the lower layer.
  • the surface treatment state of the lower layer fine particles is deteriorated.
  • Si powder or Ti powder is used in the present embodiment as the base material constituting the fine particles 1.
  • the fine particles 1 do not necessarily need to be a single type of fine particles, and a plurality of types of fine particles can be used.
  • Various shapes can be used as the shape of the fine particles 1, and for example, a sphere or a shape close to a sphere is preferable.
  • the powder 1 is heated to a predetermined temperature (for example, about 400 to 800 ° C) with the heater 4 through the container 2, the inside of the chamber 13 is maintained at a predetermined pressure (for example, the vacuum pump 16). Exhaust to 10 1-2 ⁇ 10_4 Torr). Then, the valve 12 is opened, and oxygen gas whose flow rate is controlled by the mass flow controller 14 is introduced into the chamber 13 through the pipes 5-7. As a result, the surface treatment for oxidizing each fine particle surface of the powder 1 can be performed, and fine particles having a surface that can also be used for the acidity of the metal used can be produced. Further, in the present embodiment, oxygen gas is used, and therefore, the ability to form oxides. If hydrocarbon gas is used, carbide is formed, and if nitrogen gas is used, nitride is formed, and HS gas is formed.
  • a predetermined temperature for example, about 400 to 800 ° C
  • a predetermined pressure for example, the vacuum pump 16. Exhaust to 10 1-2 ⁇ 10_4
  • FIG. 2 is a cross-sectional view showing an example of surface-treated fine particles obtained by surface-treating fine particles with the thermal surface treatment apparatus shown in FIG.
  • the surface-treated fine particles 18 are obtained by subjecting the fine particles 1 to surface treatment with relatively uniform uniformity, and forming an oxide film 17 on the surface of the fine particles 1.
  • the surface treatment of the bottom of the fine particles 1 (the portion on the side in contact with the container 2) is performed by performing the thermal surface treatment with the fine particles 1 contained in the container 2 stationary. As a result, the thickness of the oxide film formed by is reduced.
  • the fine particles or the powder can be surface-treated in a simple process, and the degree of the surface treatment can be controlled with high accuracy.
  • the surface treatment is performed by applying heat while suppressing the aggregation of the powder. Therefore, it is possible to control the degree of surface treatment with high accuracy with a simple process.
  • the surface of the fine particles when a surface treatment is performed to oxidize the surface of the fine particles that are also s, the surface of the fine particles can be insulated.
  • FIG. 3 (A) is a cross-sectional view schematically showing the thermal surface treatment apparatus according to Embodiment 2 of the present invention, and FIG. 3 (B) is taken along the line 3B-3B shown in FIG. 3 (A).
  • This thermal surface treatment apparatus is an apparatus for surface-treating fine particles (or powder).
  • This thermal surface treatment apparatus has a cylindrical chamber 13. Both ends of the chamber 13 are closed by a chamber lid 20.
  • a container 19 is disposed inside the chamber 13.
  • the container 19 has a cylindrical portion (round barrel), and the powder (fine particles) 1 is accommodated inside the round barrel.
  • the cross section shown in Fig. 3 (B) is a cross section substantially parallel to the direction of gravity.
  • a force using a container 19 having a substantially circular cross-sectional shape is not limited to this, and a container having a substantially elliptical cross-sectional shape may be used.
  • the container 19 is provided with a rotating mechanism (not shown). By rotating the container 19 as indicated by the arrow by this rotating mechanism, the powder (fine particles) 1 in the container 19 is stirred or rotated. In addition, surface treatment is performed.
  • a rotation axis when the container 19 is rotated by the rotation mechanism is an axis parallel to a substantially horizontal direction (a direction perpendicular to the gravity direction).
  • a heater 21 is disposed on the outer surface of the container 19 as a heating mechanism for heating the powder 1.
  • the thermal surface treatment apparatus is provided with a gas introduction mechanism that introduces gas into the container 19.
  • the gas introduction mechanism has a gas introduction mechanism for introducing O gas.
  • the structure of the insertion mechanism is substantially the same as in the first embodiment.
  • the thermal surface treatment apparatus also includes a vacuum pump (not shown) that evacuates the inside of the chamber 3.
  • a powder 1 in which many fine particles are collected is stored in a container 19. It should be noted that force capable of using various materials as the powder 1 In this embodiment, for example, Si powder or Ti powder is used as in the first embodiment.
  • a predetermined temperature for example, about 400 to 800 ° C
  • a predetermined pressure for example, about 400 to 800 ° C
  • exhaust 10 to about 2 to 10 _4 Torr for example, exhaust 10 to about 2 to 10 _4 Torr.
  • oxygen gas whose flow rate is controlled by the gas introduction mechanism is introduced into the container 19, and the container 19 is rotated by the rotation mechanism at a predetermined rotation speed (for example, 15 rpm) for a predetermined time (for example, 120 minutes).
  • a predetermined rotation speed for example, 15 rpm
  • a predetermined time for example, 120 minutes.
  • the powder 1 inside is rotated and stirred.
  • a surface treatment is performed to uniformly oxidize the surface of each fine particle of the powder 1, and fine particles having a surface having an acidity of the metal used can be produced.
  • the powder itself can be rotated and stirred by rotating the container 19 itself of the round barrel, the agglomeration of the powder due to moisture or electrostatic force, which is often a problem when handling the powder. Can be prevented. Therefore, fine particles having a very small particle diameter can be surface-treated in a simple process, and the degree of the surface treatment can be accurately controlled.
  • FIG. 4 (A) is a cross-sectional view schematically showing the thermal surface treatment apparatus according to Embodiment 3 of the present invention
  • FIG. 4 (B) is along the line 4B-4B shown in FIG. 4 (A).
  • FIG. 4 the same parts as those of FIG. 4
  • a container 22 is disposed inside the chamber 13.
  • the container 22 has a hexagonal barrel shape (hexagonal barrel shape) as shown in FIG. 4B. Then, powder (fine particles) 1 is accommodated in the container 22.
  • the cross section shown in Fig. 4 (B) is a cross section substantially parallel to the direction of gravity.
  • the hexagonal barrel-shaped container 22 is used, but a polygonal barrel-shaped container other than the hexagonal shape is not limited to this.
  • the container 22 is provided with a rotation mechanism (not shown) as in the second embodiment. By rotating the container 22 as indicated by the arrows by this rotating mechanism, the surface treatment is performed while stirring or rotating the powder (fine particles) 1 in the container 22.
  • the rotation axis when the container 22 is rotated by the rotation mechanism is substantially parallel to the horizontal direction (perpendicular to the direction of gravity). Is the axis.
  • the thermal surface treatment apparatus includes a gas introduction mechanism and a vacuum pump as in the second embodiment.
  • a powder 1 in which many fine particles are collected is stored in a container 19. It should be noted that various materials can be used as the powder 1. In the present embodiment, for example, Ti powder or Si powder is used as in the first embodiment.
  • the chamber 13 is evacuated to a predetermined pressure using a vacuum pump while the powder 1 is heated to a predetermined temperature via the container 22 by the heater 4. Then, oxygen gas whose flow rate is controlled by the gas introduction mechanism is introduced into the container 22, and the container 1 is rotated at a predetermined rotation speed for a predetermined time by the rotation mechanism, whereby the powder 1 in the container 22 is rotated. Stir.
  • a surface treatment can be performed in which the surface of each fine particle of the powder 1 is oxidized with good uniformity, and fine particles having a surface that can also be used for the acidity of the metal used can be produced.
  • FIG. 5 is a cross-sectional view showing an example of surface-treated fine particles obtained by surface-treating fine particles with the thermal surface treatment apparatus shown in FIG.
  • the surface-treated fine particles 23 are obtained by finely treating the fine particles 1 with good uniformity and forming the oxide film 17 on the fine particles 1 with good uniformity.
  • the thermal surface treatment apparatus since the surface treatment is performed while rotating and stirring the fine particles 1 by rotating the container 22, the entire surface of the fine particles 1 can be surface treated with good uniformity.
  • the oxide film can be formed with good uniformity. Even if the surface of the fine particles 1 has irregularities or depressions, the irregularities or depressions can be surface treated with good uniformity.
  • the powder itself can be rotated and stirred by rotating the hexagonal barrel-shaped container 22 itself, and further, the powder can be periodically removed by gravity by making the barrel hexagonal. Can be dropped.
  • the stirring efficiency can be dramatically improved as compared with the second embodiment, and moisture and static electricity often cause problems when handling powder. Aggregation of powder due to force can be prevented. That is, stirring by rotation and pulverization of the agglomerated powder can be performed simultaneously and effectively. Therefore, fine particles having a very small particle diameter can be surface-treated by a simple process, and the degree of the surface treatment can be controlled with high accuracy. Specifically, it is possible to surface-treat fine particles having a particle size of 50 m or less.
  • the present invention is not limited to Embodiments 1 to 3 above, and can be carried out by being modified as follows.
  • other surface treatments can be performed after plasma cleaning or plasma etching. That is, after performing plasma cleaning with Ar gas, surface treatment is performed with a gas other than Ar (for example, O gas).
  • oxygen gas is introduced by the gas introduction mechanism.
  • the gas is not limited to oxygen gas, for example, nitrogen gas, fluorine gas, hydrocarbon gas, nitrogen.
  • a gas containing fluorine or the like can be introduced by a gas introduction mechanism.
  • nitrogen gas or a gas containing nitrogen is introduced by a gas introduction mechanism and the surface of the fine particles of Si is nitrided, the surface of the fine particles is Si N
  • a nitride film of 3 4 is formed, and the surface of the fine particles can be cured by this nitride film. Further, for example, when a surface treatment is performed in which fluorine gas or a gas containing fluorine is introduced by a gas introduction mechanism and the surface of the fine particles is fluorinated, a CF film is formed on the surface of the fine particles.
  • FIG. 6 is a configuration diagram showing an outline of the plasma surface treatment apparatus according to the fourth embodiment of the present invention.
  • This plasma surface treatment apparatus is an apparatus for surface-treating fine particles (or powder).
  • the plasma surface treatment apparatus has a chamber 13.
  • a container 2 for storing powder (fine particles) 1 to be coated is disposed in the chamber 13.
  • the container 2 is connected to a plasma power source 31 or a ground potential, and both can be switched by a switch 32.
  • the plasma surface treatment apparatus has a gas introduction mechanism for introducing gas into the chamber 13.
  • This gas introduction mechanism has a cylindrical gas shower electrode 24, and this gas shower electrode 24 is arranged in the chamber 13.
  • the gas outlet is arranged so as to face the powder 1 contained in the container.
  • the other side of the gas shower electrode 24 is connected to one side of a mass flow controller (MFC) 27 via a vacuum valve 26.
  • MFC mass flow controller
  • the other side of the mass flow controller 27 is connected to a gas introduction source 28 via a vacuum valve and a filter (not shown).
  • This gas introduction source 28 is different in the type of gas to be introduced depending on the surface treatment of the powder.
  • the surface treatment by nitriding Is a source of introduction of nitrogen gas or a gas containing nitrogen, a source of introduction of fluorine gas or a gas containing fluorine when performing a surface treatment by fluorination, and methane, etc. when a surface treatment by carbonization is conducted.
  • This is a hydrocarbon gas introduction source, and an inert gas introduction source such as argon when surface treatment is performed by plasma cleaning.
  • the plasma surface treatment apparatus includes a plasma power supply mechanism, and the plasma power supply mechanism includes a plasma power source 25 connected to the gas shower electrode 24 via a switch 33.
  • the plasma power supplies 25 and 31 are a high-frequency power supply that supplies high-frequency power (RF output), a microwave power supply, a DC discharge power supply, and a pulse-modulated high-frequency power supply, microwave power supply, and DC discharge power supply, respectively. Either one is acceptable.
  • the plasma power supply supplies high-frequency power
  • a plasma power supply may be connected to one of the gas shower electrode 24 and the container 2 and a ground potential may be connected to the other, or a plasma power supply may be connected to both the gas shower electrode 24 and the container 2. It ’s okay!
  • the plasma surface treatment apparatus includes an evacuation mechanism for evacuating the inside of the chamber 13.
  • the gas shower electrode 12 has an exhaust port (shown in the figure) for exhausting the inside of the chamber 13. And a plurality of exhaust ports are connected to a vacuum pump (not shown).
  • powder 1 composed of a plurality of fine particles is stored in a container 2.
  • the amount of powder 1 accommodated in the container 2 and the material of the powder are the same as in the first embodiment.
  • the inside of the chamber 13 is evacuated to a predetermined pressure (for example, about 10 2 to 10 _4 Torr) by operating a vacuum pump.
  • the vacuum nozzle 26 is opened, and a gas (for example, oxygen gas) is introduced into the mass flow controller 27 at the gas introduction source 28, and the flow rate is controlled by the mass flow controller 27.
  • a gas for example, oxygen gas
  • the introduced gas is introduced inside the gas shower electrode 24.
  • a gas blower gas from the gas shower electrode is blown out.
  • an RF output of 13.56 MHz, for example, is supplied to the gas shower electrode 24 from a high frequency power source (RF power source) which is an example of the plasma power source 25 via, for example, a matching box.
  • RF power source radio frequency power source
  • the container 2 is connected to the ground potential.
  • plasma is ignited between the gas shower electrode 24 and the container 2.
  • the matching box matches the impedance of the container 2 and the gas shear electrode 24 by the inductance and the capacitance C.
  • plasma is generated in the chamber 13 and surface treatment is performed to oxidize the surface of the fine particles 1 with uniformity, and fine particles having a surface made of an oxide of the metal used can be produced. .
  • the fine particles or the powder can be surface-treated in a simple process, and the degree of the surface treatment can be controlled with high accuracy.
  • Can do For example, when oxygen gas or a gas containing oxygen is introduced by a gas introduction mechanism and a surface treatment is performed to oxidize the surface of fine particles such as S, an oxide film is formed on the surface of the fine particles.
  • the surface of the fine particles can be insulated by the film.
  • a surface treatment is performed in which nitrogen gas or a gas containing nitrogen is introduced by a gas introduction mechanism to nitride the surface of fine particles made of Si, Si N force is not applied to the surface of the fine particles.
  • a nitride film is formed, and the surface of the fine particles can be cured by this nitride film.
  • the gas introduction mechanism introduces fluorine gas or fluorine-containing gas, and fine particles with C force When a surface treatment is performed to fluorinate the surface of the film, a CF film is formed on the surface of the fine particles.
  • a surface treatment for carbonizing the surface of the fine particles by introducing a hydrocarbon gas such as methane by the gas introduction mechanism carbides are formed on the surfaces of the fine particles.
  • argon gas is introduced by a gas introduction mechanism and the surface of the fine particles is plasma-cleaned
  • the surface of the fine particles can be plasma-cleaned.
  • the oxide film on the surface of the fine particles can be removed, and fine particles having an active surface can be formed.
  • minute irregularities can be formed on the surface, and an anchoring effect can be obtained in surface modification and the like.
  • the fine particles can be surface-treated with good uniformity even at a low temperature of 100 ° C or lower. Therefore, it is easy to decompose at high temperature of 100 ° C or more! / Vaginal particles and phase changes!
  • FIG. 7 (A) is a cross-sectional view schematically showing a plasma surface treatment apparatus according to Embodiment 5 of the present invention, and FIG. 7 (B) is taken along line 7B-7B shown in FIG. 7 (A). It is sectional drawing.
  • This plasma surface treatment apparatus is an apparatus for surface-treating fine particles (or powder).
  • the plasma surface treatment apparatus has a cylindrical chamber 13. Both ends of the chamber 1 3 are closed by a chamber lid 20.
  • a container 29 is disposed inside the chamber 13.
  • the container 29 has a cylindrical portion (round barrel), and the powder (fine particles) 1 as an object to be coated is accommodated inside the round barrel.
  • the container 29 also functions as an electrode and is connected to a plasma power source 31 or a ground potential, and both can be switched by a switch 32.
  • the cross section shown in FIG. 7B is a cross section substantially parallel to the direction of gravity. In the present embodiment, the container 29 having a substantially circular cross section is used. However, the present invention is not limited to this, and a container having a substantially elliptical cross section may be used.
  • the container 29 is provided with a rotation mechanism (not shown), and the rotation mechanism rotates the container 29 as indicated by an arrow around the gas shear electrode 24 as a rotation center.
  • the surface treatment is performed while stirring or rotating the powder (fine particles) 1.
  • the rotation axis when the container 29 is rotated by the rotation mechanism is an axis parallel to a substantially horizontal direction (a direction perpendicular to the direction of gravity). Further, the airtightness in the chamber 13 is maintained even when the container 29 is rotated.
  • the plasma surface treatment apparatus includes a gas introduction mechanism that introduces gas into the chamber 13.
  • This gas introduction mechanism has a cylindrical gas shower electrode 24, and this gas shower electrode 24 is arranged in a container 29. That is, an opening is formed on one side of the container 29, and the gas shower electrode 24 is inserted into this opening force.
  • the gas shutter electrode 24 is formed with a plurality of gas outlets for blowing out one or more gases in a shower shape.
  • the gas outlet is arranged so as to face the powder 1 contained in the container. As shown in FIG. 7B, the gas outlet is arranged in the direction of about 1 ° to 90 ° in the rotation direction of the container 29 with respect to the direction of gravity 15.
  • the gas shower electrode 24 is a vacuum valve and a mass flow controller.
  • the plasma surface treatment apparatus includes a plasma power supply mechanism, and this plasma power supply mechanism has a structure similar to that of the fourth embodiment.
  • the plasma surface processing apparatus includes a vacuum exhaust mechanism that exhausts the inside of the chamber 13 and the structure of the vacuum exhaust mechanism is substantially the same as that of the fourth embodiment.
  • powder 1 composed of a plurality of fine particles is stored in a container 2. It is to be noted that various materials can be used as the powder 1. In the present embodiment, for example, Ti powder or Si powder is used as in the first embodiment. Thereafter, evacuate the chamber one 3 to a predetermined pressure (e.g., 10 one 2 ⁇ 10_ approximately 4) by actuating the vacuum pump. At the same time, the container 29 is rotated by the rotating mechanism, so that the powder (fine particles) 1 contained in the container 29 moves while rolling between the gravitational direction 30 and 90 ° in the rotational direction on the inner surface of the container.
  • a predetermined pressure e.g. 10 one 2 ⁇ 10_ approximately 4
  • gas for example, oxygen gas
  • the flow rate is controlled by the mass flow controller, and the gas whose flow rate is controlled is introduced into the gas shower electrode 24.
  • the gas blowout force of the gas shower electrode also blows out the gas.
  • gas is blown to the fine particles 1 moving while rolling in the container 29, and the pressure suitable for the surface treatment is maintained by the balance between the controlled gas flow rate and the exhaust capacity.
  • an RF output of 13.56 MHz, for example, is supplied to the gas shower electrode 24 from a high frequency power source (RF power source) which is an example of the plasma power source 25 via, for example, a matching box.
  • RF power source radio frequency power source
  • the container 29 is connected to the ground potential.
  • plasma is ignited between the gas shower electrode 24 and the container 29.
  • the matching box is matched with the impedance of the container 2 and the gas shutter electrode 24 by the inductance and the capacitance C.
  • plasma is generated in the container 29, and a surface treatment is performed to uniformly oxidize the surface of the fine particles 1 to produce fine particles having a surface made of SiO or TiO.
  • the powder itself can be rotated and stirred by rotating the container 29 itself of the round barrel, the agglomeration of the powder due to moisture or electrostatic force, which is often a problem when handling the powder. Can be prevented. Therefore, fine particles having a very small particle diameter can be surface-treated in a simple process, and the degree of the surface treatment can be accurately controlled.
  • FIG. 8 (A) is a cross-sectional view schematically showing a plasma surface treatment apparatus according to Embodiment 6 of the present invention
  • FIG. 8 (B) is taken along line 8B-8B shown in FIG. 8 (A). It is sectional drawing.
  • the same parts as those of FIG. 7 are denoted by the same reference numerals, and the description of the same parts is omitted.
  • a container 30 is disposed inside the chamber 13.
  • This container 30 has a hexagonal barrel shape (hexagonal barrel shape) as shown in FIG. 8B.
  • the container 30 accommodates powder (fine particles) 1 that is an object to be coated.
  • the container 30 also functions as an electrode and is connected to the plasma power source 31 or the ground potential. Both can be switched by switch 32.
  • the cross section shown in Fig. 8 (B) is a cross section substantially parallel to the direction of gravity.
  • the force using the hexagonal barrel-shaped container 30 is not limited to this, and a polygonal barrel-shaped container other than the hexagon can also be used.
  • the container 30 is provided with a rotation mechanism (not shown) as in the fifth embodiment.
  • a rotation mechanism By rotating the container 30 as indicated by an arrow by this rotating mechanism, the surface treatment is performed while stirring or rotating the powder (fine particles) 1 in the container 30.
  • a rotation axis when the container 30 is rotated by the rotation mechanism is an axis parallel to a substantially horizontal direction (a direction perpendicular to the direction of gravity).
  • the plasma surface treatment apparatus includes a gas introduction mechanism and a vacuum exhaust mechanism as in the fifth embodiment.
  • This gas introduction mechanism has a cylindrical gas shower electrode 24 as in the fifth embodiment.
  • the plasma surface treatment apparatus includes a plasma power supply mechanism as in the fifth embodiment.
  • the powder 1 having a plurality of fine particle forces is accommodated in the container 30.
  • various materials can be used as the powder 1.
  • Ti powder or Si powder is used as in the first embodiment.
  • the inside of the chamber 3 is evacuated to a predetermined pressure (for example, about 10_2 to 10_4 Torr) by operating the vacuum pump.
  • the container 30 is rotated by the rotating mechanism, whereby the powder (fine particles) 1 contained therein is stirred or rotated on the inner surface of the container.
  • a gas for example, oxygen gas
  • the mass flow controller at the gas introduction source
  • the flow rate is controlled by the mass flow controller
  • the gas whose flow rate is controlled is introduced into the gas shower electrode 24.
  • gas is blown out from the gas outlet of the gas shower electrode.
  • gas is blown onto the fine particles 1 that are moving while stirring or rotating in the container 30, and the pressure suitable for the surface treatment is maintained by the balance between the controlled gas flow rate and the exhaust capacity.
  • the plasma power source 25 is connected to the gas shower electrode 24 via, for example, a matching box.
  • An RF output of 13.56 MHz, for example, is supplied from a high-frequency power source (RF power source) that is an example.
  • the container 30 is connected to the ground potential.
  • plasma is ignited between the gas shower electrode 24 and the container 30.
  • the matching box is matched with the impedance of the container 2 and the gas shutter electrode 24 by the inductance and the capacitance C.
  • plasma is generated in the container 30, and the surface treatment of oxidizing the surface of the fine particles 1 with good uniformity is performed to produce fine particles having a surface made of SiO or TiO.
  • Embodiment 6 described above the same effects as in Embodiment 4 can be obtained.
  • the powder itself can be rotated and stirred by rotating the hexagonal barrel-shaped container 30 itself. Further, by making the barrel hexagonal, the powder is periodically removed by gravity. Can be dropped. For this reason, the stirring efficiency can be drastically improved as compared with Embodiment 5, and aggregation of the powder due to moisture and electrostatic force, which is often a problem when handling the powder, can be prevented. That is, stirring by rotation and pulverization of the agglomerated powder can be performed simultaneously and effectively. Therefore, it is possible to surface-treat fine particles having a very small particle diameter by a simple process. Specifically, it is possible to surface-treat fine particles having a particle size of 50 m or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Cosmetics (AREA)

Abstract

Disclosed is a surface-treated fine particle which is surface-treated by a simple process while being precisely controlled in the degree of the surface treatment. Also disclosed are a surface-treating apparatus and a method for surface-treating fine particles. Specifically disclosed is a surface-treating apparatus for treating the surface of a fine particle (1), and this apparatus comprises a container (2) for holding the fine particle (1), a chamber (3) for housing the container (2), a heating mechanism (4) for heating the fine particle (1) held in the container (2), and a gas-introducing mechanism for introducing a gas into the chamber (3).

Description

表面処理微粒子、表面処理装置及び微粒子の表面処理方法 技術分野  Surface treatment fine particles, surface treatment apparatus, and surface treatment method for fine particles
[0001] 本発明は、表面処理微粒子、表面処理装置及び表面処理方法に関する。特には、 簡易な工程で表面処理し、その表面処理の程度を精度良く制御した表面処理微粒 子、表面処理装置及び微粒子の表面処理方法に関する。  The present invention relates to surface-treated fine particles, a surface treatment apparatus, and a surface treatment method. In particular, the present invention relates to a surface treatment fine particle, a surface treatment apparatus, and a fine particle surface treatment method in which surface treatment is performed with a simple process and the degree of the surface treatment is accurately controlled.
背景技術  Background art
[0002] 粉体は基礎的にも応用としても非常に魅力的な試料であり、現在様々な分野で利 用されている。例えば粉体のきめの細かさを利用して、化粧品のファンデーションに 使われたり、フェライトの微粒子は単一磁区を形成する為に磁気テープに塗布する 磁性体として利用されている。また粉体の特性にその表面積の大きさがある力 それ を利用した微粒子触媒が作られても ヽる。このように非常に可能性の大き ヽ材料であ る為、粉体を表面処理して、高機能、新機能を発現させる新材料開発技術が求めら れている。  [0002] Powder is a very attractive sample both fundamentally and in application, and is currently used in various fields. For example, the fineness of the powder is used for cosmetic foundations, and the fine ferrite particles are used as a magnetic material applied to magnetic tape to form a single magnetic domain. It is also possible to produce a fine particle catalyst using the power of the surface area of the powder characteristics. As such, it is a material that has great potential, so new material development technology is required for surface treatment of powder to develop high-performance and new functions.
[0003] 従来は、湿式の化学エッチングによって粉体の表面処理が行われて!/、る。例えば、 金属や酸ィ匕物の粉体では、酸溶液でエッチングによる表面処理が行われ、アルカリ 溶液で酸化による表面処理が行われ、フッ化物溶液でフッ素化による表面処理が行 われる。また、ポリマー粉体では、有機溶媒でエッチングによる表面処理が行われる 発明の開示  [0003] Conventionally, powder surface treatment has been performed by wet chemical etching! For example, a metal or oxide powder is subjected to a surface treatment by etching with an acid solution, a surface treatment by oxidation with an alkaline solution, and a surface treatment by fluorination with a fluoride solution. In addition, the polymer powder is subjected to surface treatment by etching with an organic solvent.
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、上記の表面処理方法では、均一な表面処理は可能であるが、ろ過、 洗浄、乾燥等の複数の工程を必要とするため、工程が煩雑である。また、湿式の表 面処理の場合は、処理溶液の処理が難しい。また、表面処理の程度 (例えば表面処 理の深さ等)を精度良く制御することは極めて困難である。 [0004] However, the above-described surface treatment method enables uniform surface treatment, but requires a plurality of steps such as filtration, washing, and drying, and thus the steps are complicated. In the case of wet surface treatment, it is difficult to treat the treatment solution. Also, it is extremely difficult to accurately control the degree of surface treatment (for example, the depth of surface treatment).
[0005] 本発明は上記のような事情を考慮してなされたものであり、その目的は、簡易なェ 程で表面処理し、その表面処理の程度を精度良く制御した表面処理微粒子、表面 処理装置及び微粒子の表面処理方法を提供することにある。 [0005] The present invention has been made in consideration of the above-mentioned circumstances, and its purpose is to carry out surface treatment with a simple process and to accurately control the degree of the surface treatment, An object of the present invention is to provide a processing apparatus and a surface treatment method for fine particles.
課題を解決するための手段  Means for solving the problem
[0006] 上記課題を解決するため、本発明に係る表面処理微粒子は、加熱又はプラズマ雰 囲気によって微粒子を表面処理したことを特徴とする。尚、前記プラズマ雰囲気には スパッタリングによるプラズマ雰囲気も含むものとする。  In order to solve the above problems, the surface-treated fine particles according to the present invention are characterized in that the fine particles are surface-treated by heating or a plasma atmosphere. The plasma atmosphere includes a plasma atmosphere by sputtering.
[0007] 本発明に係る表面処理微粒子は、内部の断面形状が略円形を有する容器を、前 記断面に対して略垂直方向を回転軸として回転させることにより、該容器内の微粒子 を攪拌あるいは回転させながら該微粒子を表面処理したことを特徴とする。  [0007] The surface-treated fine particles according to the present invention rotate or stir the fine particles in the container by rotating a container having a substantially circular internal cross-sectional shape about the direction perpendicular to the cross-section. The fine particles are surface-treated while being rotated.
[0008] 本発明に係る表面処理微粒子は、内部の断面形状が多角形を有する容器を、前 記断面に対して略垂直方向を回転軸として回転させることにより、該容器内の微粒子 を攪拌あるいは回転させながら該微粒子を表面処理したことを特徴とする。  [0008] The surface-treated fine particles according to the present invention are obtained by stirring a fine particle in the container by rotating a container having a polygonal cross-sectional shape around a rotation axis that is substantially perpendicular to the cross-section. The fine particles are surface-treated while being rotated.
[0009] また、本発明に係る表面処理微粒子にお!、て、前記表面処理は、前記微粒子の表 面を酸化、窒化、フッ化又は炭化する処理であることも可能である。  [0009] Further, in the surface-treated fine particles according to the present invention, the surface treatment may be a treatment of oxidizing, nitriding, fluorinating or carbonizing the surface of the fine particles.
また、本発明に係る表面処理微粒子において、前記表面処理は、前記微粒子の表 面をプラズマによってクリーニングする処理、又は、前記微粒子の表面をプラズマェ ツチングして該微粒子の表面に凹凸を形成する処理であることも可能である。前記ク リー-ングする処理の場合は、ガスとして Arなどの不活性ガスを使用しても良い。ま た、前記微粒子の表面に凹凸を形成する処理を行うことによりアンカリング効果が期 待できる。  Further, in the surface-treated fine particles according to the present invention, the surface treatment is a treatment for cleaning the surface of the fine particles with plasma, or a treatment for plasma-etching the surface of the fine particles to form irregularities on the surface of the fine particles. It is also possible. In the case of the cleaning process, an inert gas such as Ar may be used as the gas. In addition, an anchoring effect can be expected by performing a treatment for forming irregularities on the surface of the fine particles.
本発明に係る微粒子の表面処理方法は、容器内に微粒子を収容し、  The surface treatment method for fine particles according to the present invention contains fine particles in a container,
加熱又はプラズマ雰囲気によって該微粒子を表面処理することを特徴とする。尚、 前記プラズマ雰囲気にはスノッタリングによるプラズマ雰囲気も含むものとする。  The fine particles are surface-treated by heating or a plasma atmosphere. In addition, the plasma atmosphere includes a plasma atmosphere by snottering.
[0010] 本発明に係る微粒子の表面処理方法は、重力方向に対して略平行な断面の内部 形状が略円形である容器内に微粒子を収容し、 [0010] In the fine particle surface treatment method according to the present invention, the fine particles are contained in a container having a substantially circular internal shape in a cross section substantially parallel to the direction of gravity.
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌あるいは回転させながら該微粒子を表面処理することを特徴と する。  The fine particles in the container are surface-treated while the fine particles in the container are agitated or rotated by rotating the container about a direction substantially perpendicular to the cross section.
[0011] 本発明に係る微粒子の表面処理方法は、重力方向に対して略平行な断面の内部 形状が多角形である容器内に微粒子を収容し、 [0011] The fine particle surface treatment method according to the present invention has a cross section substantially parallel to the direction of gravity. The fine particles are stored in a polygonal container,
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌あるいは回転させながら該微粒子を表面処理することを特徴と する。  The fine particles in the container are surface-treated while the fine particles in the container are agitated or rotated by rotating the container about a direction substantially perpendicular to the cross section.
[0012] 本発明に係る表面処理装置は、微粒子を載置する容器と、  [0012] A surface treatment apparatus according to the present invention includes a container on which fine particles are placed;
前記容器を収容するチャンバ一と、  A chamber containing the container;
前記容器に載置された微粒子を加熱する加熱機構と、  A heating mechanism for heating the fine particles placed on the container;
前記チャンバ一内にガスを導入するガス導入機構と、  A gas introduction mechanism for introducing gas into the chamber;
を具備し、  Comprising
前記微粒子を表面処理することを特徴とする。  The fine particles are surface-treated.
[0013] 本発明に係る表面処理装置は、微粒子を収容する容器であって、重力方向に対し て略平行な断面の内部形状が略円形である容器と、 [0013] A surface treatment apparatus according to the present invention is a container that contains fine particles, the container having a substantially circular internal shape in a cross section substantially parallel to the direction of gravity;
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に収容された微粒子を加熱する加熱機構と、  A rotation mechanism that rotates the container about a direction substantially perpendicular to the cross section, and a heating mechanism that heats the fine particles contained in the container;
前記容器内にガスを導入するガス導入機構と、  A gas introduction mechanism for introducing gas into the container;
を具備し、  Comprising
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながら該微粒子を表面処理することを特徴とする。  By rotating the container using the rotating mechanism, the fine particles in the container are surface-treated while stirring or rotating the fine particles in the container.
[0014] 本発明に係る表面処理装置は、微粒子を収容する容器であって、重力方向に対し て略平行な断面の内部形状が多角形である容器と、 [0014] A surface treatment apparatus according to the present invention is a container that contains fine particles, the container having a polygonal internal shape in a cross section substantially parallel to the direction of gravity;
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に収容された微粒子を加熱する加熱機構と、  A rotation mechanism that rotates the container about a direction substantially perpendicular to the cross section, and a heating mechanism that heats the fine particles contained in the container;
前記容器内にガスを導入するガス導入機構と、  A gas introduction mechanism for introducing gas into the container;
を具備し、  Comprising
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながら該微粒子を表面処理することを特徴とする。  By rotating the container using the rotating mechanism, the fine particles in the container are surface-treated while stirring or rotating the fine particles in the container.
[0015] 本発明に係る表面処理装置は、微粒子を載置する容器と、 [0015] A surface treatment apparatus according to the present invention comprises a container for placing fine particles;
前記容器を収容するチャンバ一と、 前記チャンバ一内にガスを導入するガス導入機構と、 A chamber containing the container; A gas introduction mechanism for introducing gas into the chamber;
前記チャンバ一内に配置され、前記容器に対向するように配置された電極と、 を具備し、  An electrode disposed in the chamber and disposed to face the container;
プラズマを用いて前記微粒子を表面処理することを特徴とする。  The fine particles are surface-treated using plasma.
[0016] 本発明に係る表面処理装置は、微粒子を収容する容器であって、重力方向に対し て略平行な断面の内部形状が略円形である容器と、  [0016] A surface treatment apparatus according to the present invention is a container that contains fine particles, the container having a substantially circular inner shape in a cross section substantially parallel to the direction of gravity;
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に配置された電極と、  A rotation mechanism for rotating the container about a direction substantially perpendicular to the cross section, an electrode disposed in the container,
前記容器内にガスを導入するガス導入機構と、  A gas introduction mechanism for introducing gas into the container;
を具備し、  Comprising
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながらプラズマを用いることで、該微粒子を表面処理することを特 徴とする。  It is characterized in that the fine particles in the container are surface-treated by using plasma while stirring or rotating the fine particles in the container by rotating the container using the rotating mechanism.
[0017] 本発明に係る表面処理装置は、微粒子を収容する容器であって、重力方向に対し て略平行な断面の内部形状が多角形である容器と、  [0017] A surface treatment apparatus according to the present invention is a container that contains fine particles, the container having a polygonal internal shape in a cross section substantially parallel to the direction of gravity;
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に配置された電極と、  A rotation mechanism for rotating the container about a direction substantially perpendicular to the cross section, an electrode disposed in the container,
前記容器内にガスを導入するガス導入機構と、  A gas introduction mechanism for introducing gas into the container;
を具備し、  Comprising
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながらプラズマを用いることで、該微粒子を表面処理することを特 徴とする。  It is characterized in that the fine particles in the container are surface-treated by using plasma while stirring or rotating the fine particles in the container by rotating the container using the rotating mechanism.
[0018] また、本発明に係る表面処理装置において、前記ガス導入機構は、酸素ガス、窒 素ガス、フッ素ガス及び炭化水素ガスのうちの少なくとも一つのガスを導入する機構 であることも可能である。前記炭化水素ガスとしては例えばメタンガスを用いることが できる。  [0018] In the surface treatment apparatus according to the present invention, the gas introduction mechanism may be a mechanism for introducing at least one of oxygen gas, nitrogen gas, fluorine gas, and hydrocarbon gas. is there. For example, methane gas can be used as the hydrocarbon gas.
また、本発明に係る表面処理装置において、前記表面処理は、前記微粒子の表面 をプラズマによってクリーニングする処理、又は、前記微粒子の表面をプラズマエツ チングして該微粒子の表面に凹凸を形成する処理であることも可能である。 In the surface treatment apparatus according to the present invention, the surface treatment may be a treatment for cleaning the surface of the fine particles with plasma or a surface of the fine particles for plasma etching. It is also possible to perform a process of forming irregularities on the surface of the fine particles by performing the chucking.
また、本発明に係る表面処理装置において、前記ガス導入機構は、前記電極から シャワー状のガスを前記容器内に導入する機構を有することも可能である。  In the surface treatment apparatus according to the present invention, the gas introduction mechanism may include a mechanism for introducing a shower-like gas from the electrode into the container.
また、本発明に係る表面処理装置においては、前記容器を収容するチャンバ一と、 該チャンバ一内を真空排気する真空排気機構と、をさらに具備することも可能である 発明の効果  In the surface treatment apparatus according to the present invention, it is also possible to further include a chamber 1 that houses the container, and a vacuum exhaust mechanism that evacuates the chamber.
[0019] 以上説明したように本発明によれば、簡易な工程で表面処理し、その表面処理の 程度を精度良く制御した表面処理微粒子、表面処理装置及び微粒子の表面処理方 法を提供することができる。  [0019] As described above, according to the present invention, there are provided a surface-treated fine particle, a surface treatment apparatus, and a fine particle surface treatment method in which the surface treatment is performed with a simple process and the degree of the surface treatment is accurately controlled. Can do.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明に係る実施の形態 1によるサーマル表面処理装置の概略を示す構成図 である。  FIG. 1 is a configuration diagram showing an outline of a thermal surface treatment apparatus according to a first embodiment of the present invention.
[図 2]図 1に示すサーマル表面処理装置によって微粒子を表面処理した表面処理微 粒子の一例を示す断面図である。  2 is a cross-sectional view showing an example of surface-treated fine particles obtained by surface-treating fine particles with the thermal surface treatment apparatus shown in FIG.
[図 3] (A)は、本発明に係る実施の形態 2によるサーマル表面処理装置の概略を示 す断面図であり、(B)は、(A)に示す 3B— 3B線に沿った断面図である。  [FIG. 3] (A) is a cross-sectional view schematically showing a thermal surface treatment apparatus according to Embodiment 2 of the present invention, and (B) is a cross section taken along line 3B-3B shown in (A). FIG.
[図 4] (A)は、本発明に係る実施の形態 3によるサーマル表面処理装置の概略を示 す断面図であり、(B)は、(A)に示す 4B— 4B線に沿った断面図である。  [FIG. 4] (A) is a cross-sectional view schematically showing a thermal surface treatment apparatus according to Embodiment 3 of the present invention, and (B) is a cross section taken along line 4B-4B shown in (A). FIG.
[図 5]図 4に示すサーマル表面処理装置によって微粒子を表面処理した表面処理微 粒子の一例を示す断面図である。  5 is a cross-sectional view showing an example of surface-treated fine particles obtained by surface-treating fine particles with the thermal surface treatment apparatus shown in FIG.
[図 6]本発明に係る実施の形態 4によるプラズマ表面処理装置の概略を示す構成図 である。  FIG. 6 is a configuration diagram showing an outline of a plasma surface treatment apparatus according to a fourth embodiment of the present invention.
[図 7] (A)は、本発明に係る実施の形態 5によるプラズマ表面処理装置の概略を示す 断面図であり、(B)は、(A)に示す 7B— 7B線に沿った断面図である。  [FIG. 7] (A) is a cross-sectional view schematically showing a plasma surface treatment apparatus according to Embodiment 5 of the present invention, and (B) is a cross-sectional view taken along line 7B-7B shown in (A). It is.
[図 8] (A)は、本発明に係る実施の形態 6によるプラズマ表面処理装置の概略を示す 断面図であり、(B)は、(A)に示す 8B— 8B線に沿った断面図である。  [FIG. 8] (A) is a cross-sectional view schematically showing a plasma surface treatment apparatus according to Embodiment 6 of the present invention, and (B) is a cross-sectional view taken along line 8B-8B shown in (A). It is.
符号の説明 [0021] 1· ··粉体(微粒子)、 2· ··容器、 3· ··チャンバ一、 4· ··ヒーター、 5〜7, 11· ··配管、 12 …バルブ、 14…マスフローコントローラ(MFC)、 15· ··重力方向、 16…真空ポンプ、 17· ··酸ィ匕膜、 18· ··表面処理微粒子、 19· ··容器、 20…チャンバ一蓋、 21· ··ヒーター 、 22· ··容器、 23· ··表面処理微粒子、 24· ··ガスシャワー電極、 25· ··プラズマ電源、 2 6· ··真空ノ レブ、 27· ··マスフローコントローラ(MFC)、 28· ··ガス導入源、 29, 30· ·· 容器、 31· ··プラズマ電源、 32, 33…スィッチ Explanation of symbols [0021] 1 ··· Powder (fine particles), 2 ··· Container, 3 ··· Chamber 1, 4 ··· Heater, 5 to 7, 11 ··· Piping, 12 ... Valve, 14 ... Mass flow controller (MFC), 15 ··· Gravity direction, 16 ··· Vacuum pump, 17 ··· Acid film, 18 ··· Surface-treated particles, 19 ··· Vessel, 20 ··· Chamber cover, 21 ··· Heater , 22 ··· Container, 23 ··· Surface treated fine particle, 24 ··· Gas shower electrode, 25 ··· Plasma power supply, 2 ··· Vacuum vacuum, 27 ··· Mass flow controller (MFC), 28 ··· Gas introduction source, 29, 30 ··· Container, 31 ··· Plasma power source, 32, 33… switch
発明を実施するための形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、図面を参照して本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施の形態 1)  (Embodiment 1)
図 1は、本発明に係る実施の形態 1によるサーマル表面処理装置の概略を示す構 成図である。このサーマル表面処理装置は、微粒子 (又は粉体)を表面処理するため の装置である。  FIG. 1 is a configuration diagram showing an outline of a thermal surface treatment apparatus according to Embodiment 1 of the present invention. This thermal surface treatment apparatus is an apparatus for surface-treating fine particles (or powder).
[0023] サーマル表面処理装置は、粉体 (微粒子) 1、例えば金属粉体を載置又は収容する 容器 2を有している。この容器 2の下部には、粉体 1を加熱する加熱機構としてのヒー ター 4が配置されている。容器 2及びヒーター 4はチャンバ一 3内に配置されている。  [0023] The thermal surface treatment apparatus has a container 2 on which powder (fine particles) 1, for example, metal powder is placed or accommodated. A heater 4 as a heating mechanism for heating the powder 1 is disposed at the bottom of the container 2. The container 2 and the heater 4 are disposed in the chamber 1.
[0024] また、サーマル表面処理装置は、チャンバ一 3の内部にガスを導入するガス導入機 構を備えている。ガス導入機構は、 Oガスを導入するガス導入機構を有している。ガ  [0024] Further, the thermal surface treatment apparatus includes a gas introduction mechanism for introducing gas into the chamber 13. The gas introduction mechanism has a gas introduction mechanism for introducing O gas. Ga
2  2
ス導入機構は、配管 5〜7、バルブ 12、マスフローコントローラ(MFC) 14及び Oガ  The gas introduction mechanism consists of piping 5-7, valve 12, mass flow controller (MFC) 14 and O gas.
2 ス供給源を有している。  There are 2 sources.
[0025] 配管 5の先端はチャンバ一 3に接続されており、配管 5の先端から Oガスをチャン [0025] The tip of the pipe 5 is connected to the chamber 1, and O gas is channeled from the tip of the pipe 5.
2  2
バー 3内に噴き出すようになつている。配管 5の基端はバルブ 12の一方側に接続さ れており、バルブ 12の他方側は配管 6の一端に接続されている。配管 6の他端はマ スフローコントローラ 14の一端に接続されており、マスフローコントローラ 14の他端は 配管 7の一端に接続されている。配管 7の他端は Oガス供給源に接続されている。  It seems to erupt into bar 3. The base end of the pipe 5 is connected to one side of the valve 12, and the other side of the valve 12 is connected to one end of the pipe 6. The other end of the pipe 6 is connected to one end of the mass flow controller 14, and the other end of the mass flow controller 14 is connected to one end of the pipe 7. The other end of the pipe 7 is connected to an O gas supply source.
2  2
[0026] また、サーマル表面処理装置は、チャンバ一 3の内部を真空引きする真空ポンプ 1 6を備えて 、る。この真空ポンプ 16は配管 11によってチャンバ一 3に接続されて 、る  The thermal surface treatment apparatus includes a vacuum pump 16 that evacuates the inside of the chamber 13. This vacuum pump 16 is connected to the chamber 1 by a pipe 11
[0027] 次に、上記サーマル表面処理装置を用いて粉体 (微粒子) 1を表面処理する表面 処理方法にっ 、て説明する。 Next, the surface on which the powder (fine particles) 1 is surface-treated using the thermal surface treatment apparatus. The processing method will be described.
まず、容器 2内に多くの微粒子が集まった粉体 1を収容する。容器 2内に収容する 粉体 1の量は、微粒子力もなる層を 2〜3層積層させる程度が好ましい。微粒子から なる層の積層数を多くすると、下層の方の微粒子には酸素(O )ガスが到達しにくい  First, a powder 1 in which many fine particles are collected is contained in a container 2. The amount of the powder 1 accommodated in the container 2 is preferably such that two to three layers having fine particle force are laminated. When the number of layers of fine particles is increased, oxygen (O) gas hardly reaches the fine particles in the lower layer.
2  2
ため、下層の微粒子の表面処理状態が悪くなるからである。尚、微粒子 1を構成する 母材は、種々の材質を用いることが可能である力 本実施の形態では例えば Si粉体 又は Ti粉体を用いる。また、微粒子 1は、単一種類の微粒子である必要は必ずしも無 ぐ複数種類の微粒子を用いることも可能である。また、微粒子 1の形状は、種々の形 状を用いることが可能であり、例えば球又は球に近い形状とすることが好ましい。  Therefore, the surface treatment state of the lower layer fine particles is deteriorated. In addition, for example, Si powder or Ti powder is used in the present embodiment as the base material constituting the fine particles 1. The fine particles 1 do not necessarily need to be a single type of fine particles, and a plurality of types of fine particles can be used. Various shapes can be used as the shape of the fine particles 1, and for example, a sphere or a shape close to a sphere is preferable.
[0028] 次いで、ヒーター 4で容器 2を介して粉体 1を所定の温度(例えば 400〜800°C程度 )まで加熱しながら、真空ポンプ 16を用いてチャンバ一 3内を所定の圧力(例えば 10 一2〜 10_4Torr程度)まで排気する。そして、バルブ 12を開けてマスフローコントロー ラ 14によって流量制御された酸素ガスを、配管 5〜7を通してチャンバ一 3の内部に 導入する。これにより、粉体 1の各々の微粒子表面を酸ィ匕する表面処理を行い、用い た金属の酸ィ匕物力もなる表面を有する微粒子を作製することができる。また、本実施 の形態では、酸素ガスを用いているので酸ィ匕物が形成される力 炭化水素ガスを用 いれば炭化物が形成され、窒素ガスを用いれば窒化物が形成され、 H Sガス [0028] Next, while the powder 1 is heated to a predetermined temperature (for example, about 400 to 800 ° C) with the heater 4 through the container 2, the inside of the chamber 13 is maintained at a predetermined pressure (for example, the vacuum pump 16). Exhaust to 10 1-2 ~ 10_4 Torr). Then, the valve 12 is opened, and oxygen gas whose flow rate is controlled by the mass flow controller 14 is introduced into the chamber 13 through the pipes 5-7. As a result, the surface treatment for oxidizing each fine particle surface of the powder 1 can be performed, and fine particles having a surface that can also be used for the acidity of the metal used can be produced. Further, in the present embodiment, oxygen gas is used, and therefore, the ability to form oxides. If hydrocarbon gas is used, carbide is formed, and if nitrogen gas is used, nitride is formed, and HS gas is formed.
2 を用い れば硫化物が形成される。  If 2 is used, sulfide is formed.
[0029] 図 2は、図 1に示すサーマル表面処理装置によって微粒子を表面処理した表面処 理微粒子の一例を示す断面図である。 FIG. 2 is a cross-sectional view showing an example of surface-treated fine particles obtained by surface-treating fine particles with the thermal surface treatment apparatus shown in FIG.
表面処理微粒子 18は、微粒子 1が比較的に均一性よく表面処理され、該微粒子 1 の表面に酸ィ匕膜 17が形成されたものである。ただし、前記サーマル表面処理装置で は、容器 2に収容された微粒子 1を静止させた状態でサーマル表面処理して 、るた め、微粒子 1の底部 (容器 2と接する側の部分)の表面処理によって形成された酸ィ匕 膜の厚さは薄くなる。  The surface-treated fine particles 18 are obtained by subjecting the fine particles 1 to surface treatment with relatively uniform uniformity, and forming an oxide film 17 on the surface of the fine particles 1. However, in the thermal surface treatment apparatus, the surface treatment of the bottom of the fine particles 1 (the portion on the side in contact with the container 2) is performed by performing the thermal surface treatment with the fine particles 1 contained in the container 2 stationary. As a result, the thickness of the oxide film formed by is reduced.
[0030] 上記実施の形態 1によれば、サーマル表面処理装置を用いることにより、微粒子又 は粉体に簡易な工程で表面処理することができ、その表面処理の程度を精度良く制 御することができる。つまり、粉体の凝集を抑えた状態で熱を加えて表面処理を行う ため、簡易な工程で且つ表面処理の程度を精度良く制御できる。 [0030] According to the first embodiment, by using the thermal surface treatment apparatus, the fine particles or the powder can be surface-treated in a simple process, and the degree of the surface treatment can be controlled with high accuracy. Can do. In other words, the surface treatment is performed by applying heat while suppressing the aggregation of the powder. Therefore, it is possible to control the degree of surface treatment with high accuracy with a simple process.
尚、本実施の形態において、 s もなる微粒子の表面を酸ィ匕する表面処理を行つ た場合、前記微粒子の表面を絶縁ィ匕することができる。  In the present embodiment, when a surface treatment is performed to oxidize the surface of the fine particles that are also s, the surface of the fine particles can be insulated.
[0031] (実施の形態 2)  [0031] (Embodiment 2)
図 3 (A)は、本発明に係る実施の形態 2によるサーマル表面処理装置の概略を示 す断面図であり、図 3 (B)は、図 3 (A)に示す 3B— 3B線に沿った断面図である。この サーマル表面処理装置は、微粒子 (又は粉体)を表面処理するための装置である。  FIG. 3 (A) is a cross-sectional view schematically showing the thermal surface treatment apparatus according to Embodiment 2 of the present invention, and FIG. 3 (B) is taken along the line 3B-3B shown in FIG. 3 (A). FIG. This thermal surface treatment apparatus is an apparatus for surface-treating fine particles (or powder).
[0032] このサーマル表面処理装置は円筒形状のチャンバ一 3を有している。このチャンバ 一 3の両端はチャンバ一蓋 20によって閉じられている。チャンバ一 3の内部には容器 19が配置されている。この容器 19は円筒形状の部分 (丸型バレル)を有しており、こ の丸型バレルの内部に粉体 (微粒子) 1が収容されるようになっている。図 3 (B)で示 す断面は、重力方向に対して略平行な断面である。なお、本実施の形態では、断面 形状が略円形の容器 19を用いている力 これに限定されるものではなぐ断面形状 が略楕円形の容器を用いることも可能である。  This thermal surface treatment apparatus has a cylindrical chamber 13. Both ends of the chamber 13 are closed by a chamber lid 20. A container 19 is disposed inside the chamber 13. The container 19 has a cylindrical portion (round barrel), and the powder (fine particles) 1 is accommodated inside the round barrel. The cross section shown in Fig. 3 (B) is a cross section substantially parallel to the direction of gravity. In the present embodiment, a force using a container 19 having a substantially circular cross-sectional shape is not limited to this, and a container having a substantially elliptical cross-sectional shape may be used.
[0033] 容器 19には回転機構(図示せず)が設けられており、この回転機構により容器 19を 矢印のように回転させることで該容器 19内の粉体 (微粒子) 1を攪拌あるいは回転さ せながら表面処理を行うものである。前記回転機構により容器 19を回転させる際の 回転軸は、略水平方向(重力方向に対して垂直方向)に平行な軸である。また、容器 19の外面には、粉体 1を加熱する加熱機構としてのヒーター 21が配置されている。  [0033] The container 19 is provided with a rotating mechanism (not shown). By rotating the container 19 as indicated by the arrow by this rotating mechanism, the powder (fine particles) 1 in the container 19 is stirred or rotated. In addition, surface treatment is performed. A rotation axis when the container 19 is rotated by the rotation mechanism is an axis parallel to a substantially horizontal direction (a direction perpendicular to the gravity direction). A heater 21 is disposed on the outer surface of the container 19 as a heating mechanism for heating the powder 1.
[0034] また、サーマル表面処理装置は、容器 19の内部にガスを導入するガス導入機構を 備えている。ガス導入機構は、 Oガスを導入するガス導入機構を有している。ガス導  The thermal surface treatment apparatus is provided with a gas introduction mechanism that introduces gas into the container 19. The gas introduction mechanism has a gas introduction mechanism for introducing O gas. Gas guide
2  2
入機構の構造は実施の形態 1と略同様である。また、サーマル表面処理装置は、チ ヤンバー 3の内部を真空引きする真空ポンプ(図示せず)を備えている。  The structure of the insertion mechanism is substantially the same as in the first embodiment. The thermal surface treatment apparatus also includes a vacuum pump (not shown) that evacuates the inside of the chamber 3.
[0035] 次に、上記サーマル表面処理装置を用いて粉体 (微粒子) 1、例えば Tiや Siなどの 金属粉体を表面処理する方法にっ 、て説明する。 [0035] Next, a method for surface-treating powder (fine particles) 1, for example, metal powder such as Ti or Si, using the thermal surface treatment apparatus will be described.
まず、容器 19内に多くの微粒子が集まった粉体 1を収容する。尚、粉体 1としては 種々の材質を用いることが可能である力 本実施の形態では実施の形態 1と同様に 例えば Si粉体又は Ti粉体を用いる。 [0036] 次いで、ヒーター 4で容器 19を介して粉体 1を所定の温度(例えば 400〜800°C程 度)まで加熱しながら、真空ポンプ 16を用いてチャンバ一 3内を所定の圧力(例えば 10一2〜 10_4Torr程度)まで排気する。そして、ガス導入機構によって流量制御され た酸素ガスを容器 19の内部に導入し、回転機構により容器 19を所定の回転速度( 例えば 15rpm)で所定時間(例えば 120分)回転させることで、容器 19内の粉体 1を 回転させ、攪拌させる。これにより、粉体 1の各々の微粒子表面を均一性よく酸ィ匕す る表面処理を行 、、用いた金属の酸ィ匕物力 なる表面を有する微粒子を作製するこ とがでさる。 First, a powder 1 in which many fine particles are collected is stored in a container 19. It should be noted that force capable of using various materials as the powder 1 In this embodiment, for example, Si powder or Ti powder is used as in the first embodiment. [0036] Next, while the powder 1 is heated to a predetermined temperature (for example, about 400 to 800 ° C) by the heater 4 through the container 19, the inside of the chamber 13 is heated to a predetermined pressure (for example, about 400 to 800 ° C) ( For example, exhaust 10 to about 2 to 10 _4 Torr). Then, oxygen gas whose flow rate is controlled by the gas introduction mechanism is introduced into the container 19, and the container 19 is rotated by the rotation mechanism at a predetermined rotation speed (for example, 15 rpm) for a predetermined time (for example, 120 minutes). The powder 1 inside is rotated and stirred. As a result, a surface treatment is performed to uniformly oxidize the surface of each fine particle of the powder 1, and fine particles having a surface having an acidity of the metal used can be produced.
[0037] 上記実施の形態 2においても実施の形態 1と同様の効果を得ることができる。  [0037] In the second embodiment, the same effect as in the first embodiment can be obtained.
また、本実施の形態によれば、丸型バレルの容器 19自体を回転させることで粉体 自体を回転させ攪拌できるため、粉体を扱う時にしばしば問題となる水分や静電気 力による粉体の凝集を防ぐことができる。したがって、粒径の非常に小さい微粒子を 簡易な工程で表面処理することができ、その表面処理の程度を精度良く制御するこ とがでさる。  Further, according to the present embodiment, since the powder itself can be rotated and stirred by rotating the container 19 itself of the round barrel, the agglomeration of the powder due to moisture or electrostatic force, which is often a problem when handling the powder. Can be prevented. Therefore, fine particles having a very small particle diameter can be surface-treated in a simple process, and the degree of the surface treatment can be accurately controlled.
[0038] (実施の形態 3)  [0038] (Embodiment 3)
図 4 (A)は、本発明に係る実施の形態 3によるサーマル表面処理装置の概略を示 す断面図であり、図 4 (B)は、図 4 (A)に示す 4B—4B線に沿った断面図である。図 4 において図 3と同一部分には同一符号を付し、同一部分の説明は省略する。  FIG. 4 (A) is a cross-sectional view schematically showing the thermal surface treatment apparatus according to Embodiment 3 of the present invention, and FIG. 4 (B) is along the line 4B-4B shown in FIG. 4 (A). FIG. In FIG. 4, the same parts as those of FIG.
[0039] チャンバ一 3の内部には容器 22が配置されている。この容器 22は、図 4 (B)に示す ようにその断面が六角形のバレル形状 (六角型バレル形状)を有している。そして、容 器 22の内部に粉体 (微粒子) 1が収容されるようになっている。図 4 (B)で示す断面は 、重力方向に対して略平行な断面である。なお、本実施の形態では、六角型バレル 形状の容器 22を用いているが、これに限定されるものではなぐ六角形以外の多角 形のバレル形状の容器を用いることも可能である。  [0039] A container 22 is disposed inside the chamber 13. The container 22 has a hexagonal barrel shape (hexagonal barrel shape) as shown in FIG. 4B. Then, powder (fine particles) 1 is accommodated in the container 22. The cross section shown in Fig. 4 (B) is a cross section substantially parallel to the direction of gravity. In this embodiment, the hexagonal barrel-shaped container 22 is used, but a polygonal barrel-shaped container other than the hexagonal shape is not limited to this.
[0040] 容器 22には実施の形態 2と同様に回転機構(図示せず)が設けられている。この回 転機構により容器 22を矢印のように回転させることで該容器 22内の粉体 (微粒子) 1 を攪拌あるいは回転させながら表面処理を行うものである。前記回転機構により容器 22を回転させる際の回転軸は、略水平方向(重力方向に対して垂直方向)に平行な 軸である。 The container 22 is provided with a rotation mechanism (not shown) as in the second embodiment. By rotating the container 22 as indicated by the arrows by this rotating mechanism, the surface treatment is performed while stirring or rotating the powder (fine particles) 1 in the container 22. The rotation axis when the container 22 is rotated by the rotation mechanism is substantially parallel to the horizontal direction (perpendicular to the direction of gravity). Is the axis.
[0041] また、容器 22の外面には実施の形態 2と同様に加熱機構が配置されている。また、 本サーマル表面処理装置は実施の形態 2と同様にガス導入機構及び真空ポンプを 備えている。  In addition, a heating mechanism is arranged on the outer surface of the container 22 as in the second embodiment. The thermal surface treatment apparatus includes a gas introduction mechanism and a vacuum pump as in the second embodiment.
[0042] 次に、上記サーマル表面処理装置を用いて粉体 (微粒子) 1を表面処理する方法 について説明する。  [0042] Next, a method for surface-treating powder (fine particles) 1 using the thermal surface treatment apparatus will be described.
まず、容器 19内に多くの微粒子が集まった粉体 1を収容する。尚、粉体 1としては 種々の材質を用いることが可能である力 本実施の形態では実施の形態 1と同様に 例えば Ti粉体又は Si粉体を用いる。  First, a powder 1 in which many fine particles are collected is stored in a container 19. It should be noted that various materials can be used as the powder 1. In the present embodiment, for example, Ti powder or Si powder is used as in the first embodiment.
[0043] 次 、で、ヒーター 4で容器 22を介して粉体 1を所定の温度まで加熱しながら、真空 ポンプを用いてチャンバ一 3内を所定の圧力まで排気する。そして、ガス導入機構に よって流量制御された酸素ガスを容器 22の内部に導入し、回転機構により容器を所 定の回転速度で所定時間回転させることで、容器 22内の粉体 1を回転させ、攪拌さ せる。これにより、粉体 1の各々の微粒子表面を均一性よく酸ィ匕する表面処理を行い 、用いた金属の酸ィ匕物力もなる表面を有する微粒子を作製することができる。  Next, the chamber 13 is evacuated to a predetermined pressure using a vacuum pump while the powder 1 is heated to a predetermined temperature via the container 22 by the heater 4. Then, oxygen gas whose flow rate is controlled by the gas introduction mechanism is introduced into the container 22, and the container 1 is rotated at a predetermined rotation speed for a predetermined time by the rotation mechanism, whereby the powder 1 in the container 22 is rotated. Stir. As a result, a surface treatment can be performed in which the surface of each fine particle of the powder 1 is oxidized with good uniformity, and fine particles having a surface that can also be used for the acidity of the metal used can be produced.
[0044] 図 5は、図 4に示すサーマル表面処理装置によって微粒子を表面処理した表面処 理微粒子の一例を示す断面図である。  FIG. 5 is a cross-sectional view showing an example of surface-treated fine particles obtained by surface-treating fine particles with the thermal surface treatment apparatus shown in FIG.
表面処理微粒子 23は、微粒子 1が均一性よく表面処理され、該微粒子 1の表面に 酸ィ匕膜 17が均一性よく形成されたものである。前記サーマル表面処理装置では、容 器 22を回転させることで微粒子 1を回転させ攪拌しながら表面処理を行っているため 、微粒子 1の表面全体に均一性よく表面処理することができ、微粒子の表面に酸ィ匕 膜を均一性よく形成することができる。また、微粒子 1の表面に凹凸又は窪みがある 場合でも、凹凸又は窪みに均一性よく表面処理することができる。  The surface-treated fine particles 23 are obtained by finely treating the fine particles 1 with good uniformity and forming the oxide film 17 on the fine particles 1 with good uniformity. In the thermal surface treatment apparatus, since the surface treatment is performed while rotating and stirring the fine particles 1 by rotating the container 22, the entire surface of the fine particles 1 can be surface treated with good uniformity. In addition, the oxide film can be formed with good uniformity. Even if the surface of the fine particles 1 has irregularities or depressions, the irregularities or depressions can be surface treated with good uniformity.
[0045] 上記実施の形態 3においても実施の形態 1と同様の効果を得ることができる。  [0045] In the third embodiment, the same effect as in the first embodiment can be obtained.
また、本実施の形態によれば、六角型バレル形状の容器 22自体を回転させること で粉体自体を回転させ攪拌でき、更にバレルを六角型とすることにより、粉体を重力 により定期的に落下させることができる。このため、実施の形態 2に比べて攪拌効率 を飛躍的に向上させることができ、粉体を扱う時にしばしば問題となる水分や静電気 力による粉体の凝集を防ぐことができる。つまり回転により攪拌と、凝集した粉体の粉 砕を同時かつ効果的に行うことができる。したがって、粒径の非常に小さい微粒子を 簡易な工程で表面処理することができ、その表面処理の程度を精度良く制御するこ とができる。具体的には、粒径が 50 m以下の微粒子を表面処理することが可能と なる。 Further, according to the present embodiment, the powder itself can be rotated and stirred by rotating the hexagonal barrel-shaped container 22 itself, and further, the powder can be periodically removed by gravity by making the barrel hexagonal. Can be dropped. For this reason, the stirring efficiency can be dramatically improved as compared with the second embodiment, and moisture and static electricity often cause problems when handling powder. Aggregation of powder due to force can be prevented. That is, stirring by rotation and pulverization of the agglomerated powder can be performed simultaneously and effectively. Therefore, fine particles having a very small particle diameter can be surface-treated by a simple process, and the degree of the surface treatment can be controlled with high accuracy. Specifically, it is possible to surface-treat fine particles having a particle size of 50 m or less.
[0046] 尚、本発明は、上記実施の形態 1〜3に限定されるものではなぐ次のように変形し て実施することも可能である。例えば、プラズマクリーニング又はプラズマエッチング を行った後に、他の表面処理を行うことも可能である。すなわち、 Arガスによってプラ ズマクリーユングを行った後、 Ar以外のガス(例えば Oガス)によって表面処理を行う  It should be noted that the present invention is not limited to Embodiments 1 to 3 above, and can be carried out by being modified as follows. For example, other surface treatments can be performed after plasma cleaning or plasma etching. That is, after performing plasma cleaning with Ar gas, surface treatment is performed with a gas other than Ar (for example, O gas).
2  2
ことも可能である。  It is also possible.
また、上記実施の形態 1〜3では、ガス導入機構により酸素ガスを導入しているが、 酸素ガスに限定されるものではなぐ他のガス、例えば窒素ガス、フッ素ガス、炭化水 素ガス、窒素又はフッ素を含むガス等をガス導入機構により導入することも可能であ る。例えば、ガス導入機構により窒素ガス又は窒素を含むガスを導入し、 Siからなる 微粒子の表面を窒化する表面処理を行った場合、前記微粒子の表面には Si N  In Embodiments 1 to 3, oxygen gas is introduced by the gas introduction mechanism. However, the gas is not limited to oxygen gas, for example, nitrogen gas, fluorine gas, hydrocarbon gas, nitrogen. Alternatively, a gas containing fluorine or the like can be introduced by a gas introduction mechanism. For example, when surface treatment is performed in which nitrogen gas or a gas containing nitrogen is introduced by a gas introduction mechanism and the surface of the fine particles of Si is nitrided, the surface of the fine particles is Si N
3 4 らなる窒化膜が形成され、この窒化膜によって微粒子の表面を硬化することができる 。また、例えば、ガス導入機構によりフッ素ガス又はフッ素を含むガスを導入し、じか らなる微粒子の表面をフッ化する表面処理を行った場合、前記微粒子の表面には C F膜が形成される。  A nitride film of 3 4 is formed, and the surface of the fine particles can be cured by this nitride film. Further, for example, when a surface treatment is performed in which fluorine gas or a gas containing fluorine is introduced by a gas introduction mechanism and the surface of the fine particles is fluorinated, a CF film is formed on the surface of the fine particles.
4  Four
[0047] (実施の形態 4)  [0047] (Embodiment 4)
図 6は、本発明に係る実施の形態 4によるプラズマ表面処理装置の概略を示す構 成図である。このプラズマ表面処理装置は、微粒子 (又は粉体)を表面処理するため の装置である。  FIG. 6 is a configuration diagram showing an outline of the plasma surface treatment apparatus according to the fourth embodiment of the present invention. This plasma surface treatment apparatus is an apparatus for surface-treating fine particles (or powder).
[0048] プラズマ表面処理装置はチャンバ一 3を有している。チャンバ一 3内には、コーティ ング対象の粉体 (微粒子) 1を収容する容器 2が配置されている。この容器 2はプラズ マ電源 31又は接地電位に接続されるようになっており、両者はスィッチ 32により切り 替え可能に構成されている。  The plasma surface treatment apparatus has a chamber 13. In the chamber 13, a container 2 for storing powder (fine particles) 1 to be coated is disposed. The container 2 is connected to a plasma power source 31 or a ground potential, and both can be switched by a switch 32.
[0049] また、プラズマ表面処理装置は、チャンバ一 3内にガスを導入するガス導入機構を 備えている。このガス導入機構は筒状のガスシャワー電極 24を有しており、このガス シャワー電極 24はチャンバ一 3内に配置されている。ガスシャワー電極 24の一方側 には、単数又は複数のガスをシャワー状に吹き出すガス吹き出し口が複数形成され て 、る。このガス吹き出し口は容器に収容された粉体 1と対向するように配置されて!ヽ る。ガスシャワー電極 24の他方側は真空バルブ 26を介してマスフローコントローラ( MFC) 27の一方側に接続されている。マスフローコントローラ 27の他方側は図示せ ぬ真空バルブ及びフィルターなどを介してガス導入源 28に接続されて 、る。このガス 導入源 28は、粉体の表面処理によって導入するガスの種類が異なるが、酸ィ匕による 表面処理を行う場合は酸素ガス又は酸素を含むガスの導入源であり、窒化による表 面処理を行う場合は窒素ガス又は窒素を含むガスの導入源であり、フッ化による表面 処理を行う場合はフッ素ガス又はフッ素を含むガスの導入源であり、炭化による表面 処理を行う場合はメタン等の炭化水素ガスの導入源であり、プラズマクリーニングによ る表面処理を行う場合はアルゴン等の不活性ガスの導入源である。 [0049] The plasma surface treatment apparatus has a gas introduction mechanism for introducing gas into the chamber 13. I have. This gas introduction mechanism has a cylindrical gas shower electrode 24, and this gas shower electrode 24 is arranged in the chamber 13. On one side of the gas shower electrode 24, a plurality of gas outlets for blowing out one or more gases in a shower shape are formed. The gas outlet is arranged so as to face the powder 1 contained in the container. The other side of the gas shower electrode 24 is connected to one side of a mass flow controller (MFC) 27 via a vacuum valve 26. The other side of the mass flow controller 27 is connected to a gas introduction source 28 via a vacuum valve and a filter (not shown). This gas introduction source 28 is different in the type of gas to be introduced depending on the surface treatment of the powder. However, in the case of performing the surface treatment with oxygen, it is an introduction source of oxygen gas or a gas containing oxygen, and the surface treatment by nitriding Is a source of introduction of nitrogen gas or a gas containing nitrogen, a source of introduction of fluorine gas or a gas containing fluorine when performing a surface treatment by fluorination, and methane, etc. when a surface treatment by carbonization is conducted. This is a hydrocarbon gas introduction source, and an inert gas introduction source such as argon when surface treatment is performed by plasma cleaning.
[0050] また、プラズマ表面処理装置はプラズマパワー供給機構を備えており、このプラズ マパワー供給機構はガスシャワー電極 24にスィッチ 33を介して接続されたプラズマ 電源 25を有している。プラズマ電源 25, 31は、高周波電力(RF出力)を供給する高 周波電源、マイクロ波用電源、 DC放電用電源、及びそれぞれパルス変調された高 周波電源、マイクロ波用電源、 DC放電用電源のいずれかであればよい。例えばプラ ズマ電源が高周波電力を供給するものである場合、図示せぬインピーダンス整合器 (マッチングボックス)を高周波電源とガスシャワー電極 24との間に配置することが好 ましい。つまり、この場合、ガスシャワー電極 24はマッチングボックスに接続されてお り、マッチングボックスは同軸ケーブルを介して高周波電源 (RF電源)に接続されて いる。 In addition, the plasma surface treatment apparatus includes a plasma power supply mechanism, and the plasma power supply mechanism includes a plasma power source 25 connected to the gas shower electrode 24 via a switch 33. The plasma power supplies 25 and 31 are a high-frequency power supply that supplies high-frequency power (RF output), a microwave power supply, a DC discharge power supply, and a pulse-modulated high-frequency power supply, microwave power supply, and DC discharge power supply, respectively. Either one is acceptable. For example, when the plasma power supply supplies high-frequency power, it is preferable to place an impedance matching device (matching box) (not shown) between the high-frequency power supply and the gas shower electrode 24. That is, in this case, the gas shower electrode 24 is connected to a matching box, and the matching box is connected to a high frequency power source (RF power source) via a coaxial cable.
尚、ガスシャワー電極 24及び容器 2の 、ずれか一方にプラズマ電源が接続され、 他方に接地電位が接続されていても良いし、ガスシャワー電極 24及び容器 2の両方 にプラズマ電源が接続されて ヽても良!、。  A plasma power supply may be connected to one of the gas shower electrode 24 and the container 2 and a ground potential may be connected to the other, or a plasma power supply may be connected to both the gas shower electrode 24 and the container 2. It ’s okay!
[0051] また、プラズマ表面処理装置は、チャンバ一 3内を真空排気する真空排気機構を備 えている。例えば、ガスシャワー電極 12にはチャンバ一 3内を排気する排気口(図示 せず)が複数設けられており、排気口は真空ポンプ(図示せず)に接続されている。 [0051] Further, the plasma surface treatment apparatus includes an evacuation mechanism for evacuating the inside of the chamber 13. For example, the gas shower electrode 12 has an exhaust port (shown in the figure) for exhausting the inside of the chamber 13. And a plurality of exhaust ports are connected to a vacuum pump (not shown).
[0052] 次に、上記プラズマ表面処理装置を用いて粉体 1を表面処理する方法について説 明する。  [0052] Next, a method for surface-treating the powder 1 using the plasma surface treatment apparatus will be described.
まず、複数の微粒子からなる粉体 1を容器 2内に収容する。容器 2内に収容する粉 体 1の量及び粉体の材質は実施の形態 1と同様である。この後、真空ポンプを作動さ せることによりチャンバ一 3内を所定の圧力(例えば 10一2〜 10_4Torr程度)まで排気 する。 First, powder 1 composed of a plurality of fine particles is stored in a container 2. The amount of powder 1 accommodated in the container 2 and the material of the powder are the same as in the first embodiment. Thereafter, the inside of the chamber 13 is evacuated to a predetermined pressure (for example, about 10 2 to 10 _4 Torr) by operating a vacuum pump.
[0053] 次 、で、真空ノ レブ 26を開き、ガス導入源 28にお 、てガス(例えば酸素ガス)をマ スフローコントローラ 27に導入させ、このマスフローコントローラ 27によって流量制御 し、この流量制御されたガスをガスシャワー電極 24の内側に導入する。そして、ガス シャワー電極のガス吹き出しロカ ガスを吹き出させる。  [0053] Next, the vacuum nozzle 26 is opened, and a gas (for example, oxygen gas) is introduced into the mass flow controller 27 at the gas introduction source 28, and the flow rate is controlled by the mass flow controller 27. The introduced gas is introduced inside the gas shower electrode 24. Then, a gas blower gas from the gas shower electrode is blown out.
[0054] この後、ガスシャワー電極 24に例えばマッチングボックスを介してプラズマ電源 25 の一例である高周波電源 (RF電源)から例えば 13. 56MHzの RF出力が供給される 。この際、容器 2は接地電位に接続されている。これにより、ガスシャワー電極 24と容 器 2との間にプラズマを着火する。このとき、マッチングボックスは、容器 2とガスシャヮ 一電極 24のインピーダンスに、インダクタンス 、キャパシタンス Cによって合わせて いる。これによつて、チャンバ一 3内にプラズマが発生し、微粒子 1の表面を均一性よ く酸化する表面処理を行い、用いた金属の酸化物からなる表面を有する微粒子を作 製することができる。  Thereafter, an RF output of 13.56 MHz, for example, is supplied to the gas shower electrode 24 from a high frequency power source (RF power source) which is an example of the plasma power source 25 via, for example, a matching box. At this time, the container 2 is connected to the ground potential. As a result, plasma is ignited between the gas shower electrode 24 and the container 2. At this time, the matching box matches the impedance of the container 2 and the gas shear electrode 24 by the inductance and the capacitance C. As a result, plasma is generated in the chamber 13 and surface treatment is performed to oxidize the surface of the fine particles 1 with uniformity, and fine particles having a surface made of an oxide of the metal used can be produced. .
[0055] 上記実施の形態 4によれば、プラズマ表面処理装置を用いることにより、微粒子又 は粉体を簡易な工程で表面処理することができ、その表面処理の程度を精度良く制 御することができる。例えば、ガス導入機構により酸素ガス又は酸素を含むガスを導 入し、 S ゝらなる微粒子の表面を酸化する表面処理を行った場合、前記微粒子の表 面には酸化膜が形成され、この酸ィ匕膜によって微粒子の表面を絶縁ィ匕することがで きる。また、ガス導入機構により窒素ガス又は窒素を含むガスを導入し、 Siからなる微 粒子の表面を窒化する表面処理を行った場合、前記微粒子の表面には Si N力 な  [0055] According to the fourth embodiment, by using the plasma surface treatment apparatus, the fine particles or the powder can be surface-treated in a simple process, and the degree of the surface treatment can be controlled with high accuracy. Can do. For example, when oxygen gas or a gas containing oxygen is introduced by a gas introduction mechanism and a surface treatment is performed to oxidize the surface of fine particles such as S, an oxide film is formed on the surface of the fine particles. The surface of the fine particles can be insulated by the film. In addition, when a surface treatment is performed in which nitrogen gas or a gas containing nitrogen is introduced by a gas introduction mechanism to nitride the surface of fine particles made of Si, Si N force is not applied to the surface of the fine particles.
3 4 る窒化膜が形成され、この窒化膜によって微粒子の表面を硬化することができる。ま た、ガス導入機構によりフッ素ガス又はフッ素を含むガスを導入し、 C力もなる微粒子 の表面をフッ化する表面処理を行った場合、前記微粒子の表面には CF膜が形成さ A nitride film is formed, and the surface of the fine particles can be cured by this nitride film. In addition, the gas introduction mechanism introduces fluorine gas or fluorine-containing gas, and fine particles with C force When a surface treatment is performed to fluorinate the surface of the film, a CF film is formed on the surface of the fine particles.
4 れる。また、ガス導入機構によりメタン等の炭化水素ガスを導入し、微粒子の表面を 炭化する表面処理を行った場合、前記微粒子の表面に炭化物が形成される。また、 ガス導入機構によりアルゴンガスを導入し、微粒子の表面をプラズマクリーニングする 表面処理を行った場合、前記微粒子の表面をプラズマクリーニングすることができる 。例えば、表面に酸ィ匕膜が形成された微粒子をプラズマクリーニングした場合、微粒 子における表面の酸ィ匕膜を除去することができ、活性な表面を有する微粒子を形成 することができる。また、エッチングによる表面処理では、表面に微小な凹凸を形成で き、表面修飾等においてアンカリング効果が得られる。  4 Further, when a surface treatment for carbonizing the surface of the fine particles by introducing a hydrocarbon gas such as methane by the gas introduction mechanism, carbides are formed on the surfaces of the fine particles. Further, when surface treatment is performed in which argon gas is introduced by a gas introduction mechanism and the surface of the fine particles is plasma-cleaned, the surface of the fine particles can be plasma-cleaned. For example, when fine particles having an oxide film formed on the surface are subjected to plasma cleaning, the oxide film on the surface of the fine particles can be removed, and fine particles having an active surface can be formed. In addition, in the surface treatment by etching, minute irregularities can be formed on the surface, and an anchoring effect can be obtained in surface modification and the like.
[0056] また、本実施の形態では、プラズマを用いて表面処理を行うため、 100°C以下の低 温でも微粒子を均一性よく表面処理することが可能である。従って、 100°C以上の高 温で分解しやす!/ヽ微粒子や相変化を起こしやす!ヽ微粒子、或いは表面変質しやす V、微粒子を表面処理することが可能となる。  [0056] In the present embodiment, since the surface treatment is performed using plasma, the fine particles can be surface-treated with good uniformity even at a low temperature of 100 ° C or lower. Therefore, it is easy to decompose at high temperature of 100 ° C or more! / Vaginal particles and phase changes!
[0057] (実施の形態 5)  [0057] (Embodiment 5)
図 7 (A)は、本発明に係る実施の形態 5によるプラズマ表面処理装置の概略を示す 断面図であり、図 7 (B)は、図 7 (A)に示す 7B— 7B線に沿った断面図である。このプ ラズマ表面処理装置は、微粒子 (又は粉体)を表面処理するための装置である。  FIG. 7 (A) is a cross-sectional view schematically showing a plasma surface treatment apparatus according to Embodiment 5 of the present invention, and FIG. 7 (B) is taken along line 7B-7B shown in FIG. 7 (A). It is sectional drawing. This plasma surface treatment apparatus is an apparatus for surface-treating fine particles (or powder).
[0058] プラズマ表面処理装置は円筒形状のチャンバ一 3を有している。このチャンバ一 3 の両端はチャンバ一蓋 20によって閉じられている。チャンバ一 3の内部には容器 29 が配置されている。この容器 29は円筒形状の部分 (丸型バレル)を有しており、この 丸型バレルの内部にコーティング対象物としての粉体 (微粒子) 1が収容されるように なっている。また、容器 29は、電極としても機能し、プラズマ電源 31又は接地電位に 接続されるようになっており、両者はスィッチ 32により切り替え可能に構成されている 。図 7 (B)で示す断面は、重力方向に対して略平行な断面である。なお、本実施の形 態では、断面形状が略円形の容器 29を用いているが、これに限定されるものではな ぐ断面形状が略楕円形の容器を用いることも可能である。  [0058] The plasma surface treatment apparatus has a cylindrical chamber 13. Both ends of the chamber 1 3 are closed by a chamber lid 20. A container 29 is disposed inside the chamber 13. The container 29 has a cylindrical portion (round barrel), and the powder (fine particles) 1 as an object to be coated is accommodated inside the round barrel. The container 29 also functions as an electrode and is connected to a plasma power source 31 or a ground potential, and both can be switched by a switch 32. The cross section shown in FIG. 7B is a cross section substantially parallel to the direction of gravity. In the present embodiment, the container 29 having a substantially circular cross section is used. However, the present invention is not limited to this, and a container having a substantially elliptical cross section may be used.
[0059] 容器 29には回転機構(図示せず)が設けられており、この回転機構によりガスシャヮ 一電極 24を回転中心として容器 29を矢印のように回転させることで該容器 29内の 粉体 (微粒子) 1を攪拌あるいは回転させながら表面処理を行うものである。前記回転 機構により容器 29を回転させる際の回転軸は、略水平方向(重力方向に対して垂直 方向)に平行な軸である。また、チャンバ一 3内の気密性は、容器 29の回転時におい ても保持されている。 [0059] The container 29 is provided with a rotation mechanism (not shown), and the rotation mechanism rotates the container 29 as indicated by an arrow around the gas shear electrode 24 as a rotation center. The surface treatment is performed while stirring or rotating the powder (fine particles) 1. The rotation axis when the container 29 is rotated by the rotation mechanism is an axis parallel to a substantially horizontal direction (a direction perpendicular to the direction of gravity). Further, the airtightness in the chamber 13 is maintained even when the container 29 is rotated.
[0060] また、プラズマ表面処理装置は、チャンバ一 3内にガスを導入するガス導入機構を 備えている。このガス導入機構は筒状のガスシャワー電極 24を有しており、このガス シャワー電極 24は容器 29内に配置されている。即ち、容器 29の一方側には開口部 が形成されており、この開口部力もガスシャワー電極 24が挿入されている。ガスシャ ヮー電極 24には、単数又は複数のガスをシャワー状に吹き出すガス吹き出し口が複 数形成されている。このガス吹き出し口は容器に収容された粉体 1と対向するよう〖こ 配置されている。ガス吹き出し口は、図 7 (B)に示すように重力方向 15に対して容器 29の回転方向に 1° 〜90° 程度の方向に配置されている。  In addition, the plasma surface treatment apparatus includes a gas introduction mechanism that introduces gas into the chamber 13. This gas introduction mechanism has a cylindrical gas shower electrode 24, and this gas shower electrode 24 is arranged in a container 29. That is, an opening is formed on one side of the container 29, and the gas shower electrode 24 is inserted into this opening force. The gas shutter electrode 24 is formed with a plurality of gas outlets for blowing out one or more gases in a shower shape. The gas outlet is arranged so as to face the powder 1 contained in the container. As shown in FIG. 7B, the gas outlet is arranged in the direction of about 1 ° to 90 ° in the rotation direction of the container 29 with respect to the direction of gravity 15.
[0061] ガスシャワー電極 24は、実施の形態 4と同様に真空バルブ、マスフローコントローラ  [0061] As with the fourth embodiment, the gas shower electrode 24 is a vacuum valve and a mass flow controller.
(MFC)、真空バルブ、フィルター、ガス導入源に接続されている(図示せず)。この ガス導入源は、実施の形態 4の場合と同様であるので説明を省略する。  (MFC), a vacuum valve, a filter, and a gas introduction source (not shown). Since this gas introduction source is the same as that in the fourth embodiment, description thereof is omitted.
[0062] また、プラズマ表面処理装置はプラズマパワー供給機構を備えており、このプラズ マパワー供給機構は実施の形態 4と同様の構造を有している。また、プラズマ表面処 理装置は、チャンバ一 3内を真空排気する真空排気機構を備えており、真空排気機 構の構造は実施の形態 4と略同様である。  In addition, the plasma surface treatment apparatus includes a plasma power supply mechanism, and this plasma power supply mechanism has a structure similar to that of the fourth embodiment. In addition, the plasma surface processing apparatus includes a vacuum exhaust mechanism that exhausts the inside of the chamber 13 and the structure of the vacuum exhaust mechanism is substantially the same as that of the fourth embodiment.
[0063] 次に、上記プラズマ表面処理装置を用いて粉体 1を表面処理する方法について説 明する。 [0063] Next, a method for surface-treating the powder 1 using the plasma surface treatment apparatus will be described.
まず、複数の微粒子からなる粉体 1を容器 2内に収容する。尚、粉体 1としては種々 の材質を用いることが可能である力 本実施の形態では実施の形態 1と同様に例え ば Ti粉体又は Si粉体を用いる。この後、真空ポンプを作動させることによりチャンバ 一 3内を所定の圧力(例えば 10一2〜 10_4程度)まで排気する。これと共に、回転機 構により容器 29を回転させることで、その内部に収容された粉末 (微粒子) 1が容器 内面において重力方向 30とそれに対して回転方向に 90° の間を転がりながら動く。 First, powder 1 composed of a plurality of fine particles is stored in a container 2. It is to be noted that various materials can be used as the powder 1. In the present embodiment, for example, Ti powder or Si powder is used as in the first embodiment. Thereafter, evacuate the chamber one 3 to a predetermined pressure (e.g., 10 one 2 ~ 10_ approximately 4) by actuating the vacuum pump. At the same time, the container 29 is rotated by the rotating mechanism, so that the powder (fine particles) 1 contained in the container 29 moves while rolling between the gravitational direction 30 and 90 ° in the rotational direction on the inner surface of the container.
[0064] 次 、で、ガス導入源にお 、てガス(例えば酸素ガス)をマスフローコントローラに導 入させ、このマスフローコントローラによって流量制御し、この流量制御されたガスを ガスシャワー電極 24の内側に導入する。そして、ガスシャワー電極のガス吹き出し口 力もガスを吹き出させる。これにより、容器 29内を転がりながら動いている微粒子 1に ガスが吹き付けられ、制御されたガス流量と排気能力のバランスによって、表面処理 に適した圧力に保たれる。 [0064] Next, in the gas introduction source, gas (for example, oxygen gas) is introduced to the mass flow controller. The flow rate is controlled by the mass flow controller, and the gas whose flow rate is controlled is introduced into the gas shower electrode 24. The gas blowout force of the gas shower electrode also blows out the gas. As a result, gas is blown to the fine particles 1 moving while rolling in the container 29, and the pressure suitable for the surface treatment is maintained by the balance between the controlled gas flow rate and the exhaust capacity.
[0065] この後、ガスシャワー電極 24に、例えばマッチングボックスを介してプラズマ電源 25 の一例である高周波電源 (RF電源)から例えば 13. 56MHzの RF出力が供給される 。この際、容器 29は接地電位に接続されている。これにより、ガスシャワー電極 24と 容器 29との間にプラズマを着火する。このとき、マッチングボックスは、容器 2とガスシ ャヮー電極 24のインピーダンスに、インダクタンス 、キヤノ シタンス Cによって合わせ ている。これによつて、容器 29内にプラズマが発生し、微粒子 1の表面を均一性よく 酸化する表面処理を行い、 SiO又は TiOからなる表面を有する微粒子を作製するこ Thereafter, an RF output of 13.56 MHz, for example, is supplied to the gas shower electrode 24 from a high frequency power source (RF power source) which is an example of the plasma power source 25 via, for example, a matching box. At this time, the container 29 is connected to the ground potential. As a result, plasma is ignited between the gas shower electrode 24 and the container 29. At this time, the matching box is matched with the impedance of the container 2 and the gas shutter electrode 24 by the inductance and the capacitance C. As a result, plasma is generated in the container 29, and a surface treatment is performed to uniformly oxidize the surface of the fine particles 1 to produce fine particles having a surface made of SiO or TiO.
2  2
とができる。つまり、容器 29を回転させることによって微粒子 1を転がしているため、微 粒子 1の表面全体に均一性よく表面処理を行うことが容易にできる。  You can. That is, since the fine particles 1 are rolled by rotating the container 29, it is possible to easily perform the surface treatment on the entire surface of the fine particles 1 with good uniformity.
[0066] 上記実施の形態 5においても実施の形態 4と同様の効果を得ることができる。  [0066] In the fifth embodiment, the same effect as in the fourth embodiment can be obtained.
また、本実施の形態によれば、丸型バレルの容器 29自体を回転させることで粉体 自体を回転させ攪拌できるため、粉体を扱う時にしばしば問題となる水分や静電気 力による粉体の凝集を防ぐことができる。したがって、粒径の非常に小さい微粒子を 簡易な工程で表面処理することができ、その表面処理の程度を精度良く制御するこ とがでさる。  Further, according to the present embodiment, since the powder itself can be rotated and stirred by rotating the container 29 itself of the round barrel, the agglomeration of the powder due to moisture or electrostatic force, which is often a problem when handling the powder. Can be prevented. Therefore, fine particles having a very small particle diameter can be surface-treated in a simple process, and the degree of the surface treatment can be accurately controlled.
[0067] (実施の形態 6)  [Embodiment 6]
図 8 (A)は、本発明に係る実施の形態 6によるプラズマ表面処理装置の概略を示す 断面図であり、図 8 (B)は、図 8 (A)に示す 8B— 8B線に沿った断面図である。図 8に おいて図 7と同一部分には同一符号を付し、同一部分の説明は省略する。  FIG. 8 (A) is a cross-sectional view schematically showing a plasma surface treatment apparatus according to Embodiment 6 of the present invention, and FIG. 8 (B) is taken along line 8B-8B shown in FIG. 8 (A). It is sectional drawing. In FIG. 8, the same parts as those of FIG. 7 are denoted by the same reference numerals, and the description of the same parts is omitted.
[0068] チャンバ一 3の内部には容器 30が配置されている。この容器 30は、図 8 (B)に示す ようにその断面が六角形のバレル形状 (六角型バレル形状)を有している。そして、容 器 30の内部にはコーティング対象物である粉体 (微粒子) 1が収容されるようになって いる。また、容器 30は、電極としても機能し、プラズマ電源 31又は接地電位に接続さ れるようになっており、両者はスィッチ 32により切り替え可能に構成されている。図 8 ( B)で示す断面は、重力方向に対して略平行な断面である。なお、本実施の形態で は、六角型バレル形状の容器 30を用いている力 これに限定されるものではなぐ六 角形以外の多角形のバレル形状の容器を用いることも可能である。 A container 30 is disposed inside the chamber 13. This container 30 has a hexagonal barrel shape (hexagonal barrel shape) as shown in FIG. 8B. The container 30 accommodates powder (fine particles) 1 that is an object to be coated. The container 30 also functions as an electrode and is connected to the plasma power source 31 or the ground potential. Both can be switched by switch 32. The cross section shown in Fig. 8 (B) is a cross section substantially parallel to the direction of gravity. In the present embodiment, the force using the hexagonal barrel-shaped container 30 is not limited to this, and a polygonal barrel-shaped container other than the hexagon can also be used.
[0069] 容器 30には実施の形態 5と同様に回転機構(図示せず)が設けられている。この回 転機構により容器 30を矢印のように回転させることで該容器 30内の粉体 (微粒子) 1 を攪拌あるいは回転させながら表面処理を行うものである。前記回転機構により容器 30を回転させる際の回転軸は、略水平方向(重力方向に対して垂直方向)に平行な 軸である。 The container 30 is provided with a rotation mechanism (not shown) as in the fifth embodiment. By rotating the container 30 as indicated by an arrow by this rotating mechanism, the surface treatment is performed while stirring or rotating the powder (fine particles) 1 in the container 30. A rotation axis when the container 30 is rotated by the rotation mechanism is an axis parallel to a substantially horizontal direction (a direction perpendicular to the direction of gravity).
[0070] また、プラズマ表面処理装置は実施の形態 5と同様にガス導入機構及び真空排気 機構を備えている。このガス導入機構は実施の形態 5と同様に筒状のガスシャワー電 極 24を有している。また、プラズマ表面処理装置は実施の形態 5と同様にプラズマパ ヮー供給機構を備えている。  In addition, the plasma surface treatment apparatus includes a gas introduction mechanism and a vacuum exhaust mechanism as in the fifth embodiment. This gas introduction mechanism has a cylindrical gas shower electrode 24 as in the fifth embodiment. In addition, the plasma surface treatment apparatus includes a plasma power supply mechanism as in the fifth embodiment.
[0071] 次に、上記プラズマ表面処理装置を用いて粉体 (微粒子) 1を表面処理する方法に ついて説明する。  Next, a method for surface-treating powder (fine particles) 1 using the plasma surface treatment apparatus will be described.
まず、複数の微粒子力もなる粉体 1を容器 30内に収容する。尚、粉体 1としては種 々の材質を用いることが可能である力 本実施の形態では実施の形態 1と同様に例 えば Ti粉体又は Si粉体を用いる。この後、真空ポンプを作動させることによりチャン バー 3内を所定の圧力(例えば 10_2〜10_4Torr程度)まで排気する。これと共に、 回転機構により容器 30を回転させることで、その内部に収容された粉末 (微粒子) 1 が容器内面において攪拌又は回転される。 First, the powder 1 having a plurality of fine particle forces is accommodated in the container 30. It should be noted that various materials can be used as the powder 1. In the present embodiment, for example, Ti powder or Si powder is used as in the first embodiment. Thereafter, the inside of the chamber 3 is evacuated to a predetermined pressure (for example, about 10_2 to 10_4 Torr) by operating the vacuum pump. At the same time, the container 30 is rotated by the rotating mechanism, whereby the powder (fine particles) 1 contained therein is stirred or rotated on the inner surface of the container.
[0072] 次いで、ガス導入源においてガス(例えば酸素ガス)をマスフローコントローラに導 入し、このマスフローコントローラによって流量制御し、この流量制御されたガスをガス シャワー電極 24の内側に導入する。そして、ガスシャワー電極のガス吹き出し口から ガスを吹き出させる。これにより、容器 30内を攪拌又は回転しながら動いている微粒 子 1にガスが吹き付けられ、制御されたガス流量と排気能力のバランスによって、表 面処理に適した圧力に保たれる。  Next, a gas (for example, oxygen gas) is introduced into the mass flow controller at the gas introduction source, the flow rate is controlled by the mass flow controller, and the gas whose flow rate is controlled is introduced into the gas shower electrode 24. Then, gas is blown out from the gas outlet of the gas shower electrode. As a result, gas is blown onto the fine particles 1 that are moving while stirring or rotating in the container 30, and the pressure suitable for the surface treatment is maintained by the balance between the controlled gas flow rate and the exhaust capacity.
[0073] この後、ガスシャワー電極 24に、例えばマッチングボックスを介してプラズマ電源 25 の一例である高周波電源 (RF電源)から例えば 13. 56MHzの RF出力が供給される 。この際、容器 30は接地電位に接続されている。これにより、ガスシャワー電極 24と 容器 30との間にプラズマを着火する。このとき、マッチングボックスは、容器 2とガスシ ャヮー電極 24のインピーダンスに、インダクタンス 、キヤノシタンス Cによって合わせ ている。これによつて、容器 30内にプラズマが発生し、微粒子 1の表面を均一性よく 酸化する表面処理を行い、 SiO又は TiOからなる表面を有する微粒子を作製するこ Thereafter, the plasma power source 25 is connected to the gas shower electrode 24 via, for example, a matching box. An RF output of 13.56 MHz, for example, is supplied from a high-frequency power source (RF power source) that is an example. At this time, the container 30 is connected to the ground potential. Thereby, plasma is ignited between the gas shower electrode 24 and the container 30. At this time, the matching box is matched with the impedance of the container 2 and the gas shutter electrode 24 by the inductance and the capacitance C. As a result, plasma is generated in the container 30, and the surface treatment of oxidizing the surface of the fine particles 1 with good uniformity is performed to produce fine particles having a surface made of SiO or TiO.
2  2
とができる。つまり、容器 30を回転させることによって微粒子 1を攪拌し、回転させて いるため、微粒子 1の表面全体を均一性よく表面処理することが容易にできる。  You can. That is, since the fine particles 1 are agitated and rotated by rotating the container 30, it is possible to easily treat the entire surface of the fine particles 1 with good uniformity.
[0074] 上記実施の形態 6においても実施の形態 4と同様の効果を得ることができる。  [0074] In Embodiment 6 described above, the same effects as in Embodiment 4 can be obtained.
また、本実施の形態によれば、六角型バレル形状の容器 30自体を回転させること で粉体自体を回転させ攪拌でき、更にバレルを六角型とすることにより、粉体を重力 により定期的に落下させることができる。このため、実施の形態 5に比べて攪拌効率 を飛躍的に向上させることができ、粉体を扱う時にしばしば問題となる水分や静電気 力による粉体の凝集を防ぐことができる。つまり回転により攪拌と、凝集した粉体の粉 砕を同時かつ効果的に行うことができる。したがって、粒径の非常に小さい微粒子を 簡易な工程で表面処理することが可能となる。具体的には、粒径が 50 m以下の微 粒子を表面処理することが可能となる。  According to the present embodiment, the powder itself can be rotated and stirred by rotating the hexagonal barrel-shaped container 30 itself. Further, by making the barrel hexagonal, the powder is periodically removed by gravity. Can be dropped. For this reason, the stirring efficiency can be drastically improved as compared with Embodiment 5, and aggregation of the powder due to moisture and electrostatic force, which is often a problem when handling the powder, can be prevented. That is, stirring by rotation and pulverization of the agglomerated powder can be performed simultaneously and effectively. Therefore, it is possible to surface-treat fine particles having a very small particle diameter by a simple process. Specifically, it is possible to surface-treat fine particles having a particle size of 50 m or less.
[0075] 尚、本発明は上記実施の形態に限定されず、本発明の主旨を逸脱しない範囲内 で種々変更して実施することが可能である。例えば、微粒子を表面処理する条件を 適宜変更することも可能である。  Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, the conditions for surface treatment of the fine particles can be appropriately changed.

Claims

請求の範囲 The scope of the claims
[1] 加熱又はプラズマ雰囲気によって微粒子を表面処理したことを特徴とする表面処理 微粒子。  [1] Surface-treated fine particles, wherein the fine particles are surface-treated by heating or a plasma atmosphere.
[2] 内部の断面形状が略円形を有する容器を、前記断面に対して略垂直方向を回転軸 として回転させることにより、該容器内の微粒子を攪拌あるいは回転させながら該微 粒子を表面処理したことを特徴とする表面処理微粒子。  [2] By rotating a container having a substantially circular internal cross-sectional shape about a direction perpendicular to the cross section as a rotation axis, the fine particles were surface-treated while stirring or rotating the fine particles in the container. Surface-treated fine particles characterized by the above.
[3] 内部の断面形状が多角形を有する容器を、前記断面に対して略垂直方向を回転軸 として回転させることにより、該容器内の微粒子を攪拌あるいは回転させながら該微 粒子を表面処理したことを特徴とする表面処理微粒子。 [3] By rotating a container having an internal cross-sectional shape of a polygon about a direction substantially perpendicular to the cross section as a rotation axis, the fine particles were surface-treated while stirring or rotating the fine particles in the container. Surface-treated fine particles characterized by the above.
[4] 前記表面処理は、前記微粒子の表面を酸化、窒化、フッ化又は炭化する処理である ことを特徴とする請求項 1乃至 3のいずれか一項に記載の表面処理微粒子。 [4] The surface-treated fine particles according to any one of claims 1 to 3, wherein the surface treatment is a treatment of oxidizing, nitriding, fluorinating, or carbonizing the surface of the fine particles.
[5] 前記表面処理は、前記微粒子の表面をプラズマによってクリーニングする処理、又は[5] The surface treatment is a treatment for cleaning the surface of the fine particles with plasma, or
、前記微粒子の表面をプラズマエッチングして該微粒子の表面に凹凸を形成する処 理であることを特徴とする請求項 1乃至 3のいずれか一項に記載の表面処理微粒子 4. The surface-treated fine particles according to claim 1, wherein the surface-treated fine particles are plasma-etched to form irregularities on the surface of the fine particles.
[6] 容器内に微粒子を収容し、 [6] containing fine particles in a container;
加熱又はプラズマ雰囲気によって該微粒子を表面処理することを特徴とする微粒 子の表面処理方法。  A fine particle surface treatment method, wherein the fine particles are surface-treated by heating or a plasma atmosphere.
[7] 重力方向に対して略平行な断面の内部形状が略円形である容器内に微粒子を収容 し、  [7] The fine particles are housed in a container having a substantially circular internal shape with a cross section substantially parallel to the direction of gravity.
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌あるいは回転させながら該微粒子を表面処理することを特徴と する微粒子の表面処理方法。  A fine particle surface treatment method characterized in that the fine particles in the container are surface-treated while the fine particles in the container are agitated or rotated by rotating the container about a direction substantially perpendicular to the cross section.
[8] 重力方向に対して略平行な断面の内部形状が多角形である容器内に微粒子を収容 し、 [8] The fine particles are contained in a container having a polygonal internal shape with a cross section substantially parallel to the direction of gravity.
前記断面に対して略垂直方向を回転軸として前記容器を回転させることにより該容 器内の微粒子を攪拌あるいは回転させながら該微粒子を表面処理することを特徴と する微粒子の表面処理方法。 A fine particle surface treatment method characterized in that the fine particles in the container are surface-treated while the fine particles in the container are agitated or rotated by rotating the container about a direction substantially perpendicular to the cross section.
[9] 微粒子を載置する容器と、 [9] a container for placing fine particles;
前記容器を収容するチャンバ一と、  A chamber containing the container;
前記容器に載置された微粒子を加熱する加熱機構と、  A heating mechanism for heating the fine particles placed on the container;
前記チャンバ一内にガスを導入するガス導入機構と、  A gas introduction mechanism for introducing gas into the chamber;
を具備し、  Comprising
前記微粒子を表面処理することを特徴とする表面処理装置。  A surface treatment apparatus characterized by surface-treating the fine particles.
[10] 微粒子を収容する容器であって、重力方向に対して略平行な断面の内部形状が略 円形である容器と、 [10] A container for storing fine particles, wherein the inner shape of a cross section substantially parallel to the direction of gravity is substantially circular;
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に収容された微粒子を加熱する加熱機構と、  A rotation mechanism that rotates the container about a direction substantially perpendicular to the cross section, and a heating mechanism that heats the fine particles contained in the container;
前記容器内にガスを導入するガス導入機構と、  A gas introduction mechanism for introducing gas into the container;
を具備し、  Comprising
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながら該微粒子を表面処理することを特徴とする表面処理装置。  A surface treatment apparatus characterized in that the fine particles in the container are surface-treated while stirring or rotating the fine particles in the container by rotating the container using the rotating mechanism.
[11] 微粒子を収容する容器であって、重力方向に対して略平行な断面の内部形状が多 角形である容器と、 [11] A container for storing fine particles, the container having a polygonal internal shape in a cross section substantially parallel to the direction of gravity;
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に収容された微粒子を加熱する加熱機構と、  A rotation mechanism that rotates the container about a direction substantially perpendicular to the cross section, and a heating mechanism that heats the fine particles contained in the container;
前記容器内にガスを導入するガス導入機構と、  A gas introduction mechanism for introducing gas into the container;
を具備し、  Comprising
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながら該微粒子を表面処理することを特徴とする表面処理装置。  A surface treatment apparatus characterized in that the fine particles in the container are surface-treated while stirring or rotating the fine particles in the container by rotating the container using the rotating mechanism.
[12] 微粒子を載置する容器と、 [12] a container for placing the fine particles;
前記容器を収容するチャンバ一と、  A chamber containing the container;
前記チャンバ一内にガスを導入するガス導入機構と、  A gas introduction mechanism for introducing gas into the chamber;
前記チャンバ一内に配置され、前記容器に対向するように配置された電極と、 を具備し、  An electrode disposed in the chamber and disposed to face the container;
プラズマを用いて前記微粒子を表面処理することを特徴とする表面処理装置。 A surface treatment apparatus characterized by surface-treating the fine particles using plasma.
[13] 微粒子を収容する容器であって、重力方向に対して略平行な断面の内部形状が略 円形である容器と、 [13] A container for storing fine particles, the container having a substantially circular internal shape in a cross section substantially parallel to the direction of gravity;
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に配置された電極と、  A rotation mechanism for rotating the container about a direction substantially perpendicular to the cross section, an electrode disposed in the container,
前記容器内にガスを導入するガス導入機構と、  A gas introduction mechanism for introducing gas into the container;
を具備し、  Comprising
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながらプラズマを用いることで、該微粒子を表面処理することを特 徴とする表面処理装置。  A surface treatment apparatus characterized in that the fine particles in the container are surface-treated by using plasma while stirring or rotating the fine particles in the container by rotating the container using the rotating mechanism.
[14] 微粒子を収容する容器であって、重力方向に対して略平行な断面の内部形状が多 角形である容器と、 [14] A container for storing fine particles, the container having a polygonal internal shape in a cross section substantially parallel to the direction of gravity;
前記断面に対して略垂直方向を回転軸として前記容器を回転させる回転機構と、 前記容器内に配置された電極と、  A rotation mechanism for rotating the container about a direction substantially perpendicular to the cross section, an electrode disposed in the container,
前記容器内にガスを導入するガス導入機構と、  A gas introduction mechanism for introducing gas into the container;
を具備し、  Comprising
前記回転機構を用いて前記容器を回転させることにより該容器内の微粒子を攪拌 あるいは回転させながらプラズマを用いることで、該微粒子を表面処理することを特 徴とする表面処理装置。  A surface treatment apparatus characterized in that the fine particles in the container are surface-treated by using plasma while stirring or rotating the fine particles in the container by rotating the container using the rotating mechanism.
[15] 前記ガス導入機構は、酸素ガス、窒素ガス、フッ素ガス及び炭化水素ガスのうちの少 なくとも一つのガスを導入する機構である請求項 9乃至 14のいずれか一項に記載の 表面処理装置。 [15] The surface according to any one of [9] to [14], wherein the gas introduction mechanism is a mechanism for introducing at least one of oxygen gas, nitrogen gas, fluorine gas, and hydrocarbon gas. Processing equipment.
[16] 前記表面処理は、前記微粒子の表面をプラズマによってクリーニングする処理、又は 、前記微粒子の表面をプラズマエッチングして該微粒子の表面に凹凸を形成する処 理であることを特徴とする請求項 12乃至 14のいずれか一項に記載の表面処理装置  [16] The surface treatment may be a process of cleaning the surface of the fine particles with plasma, or a process of plasma etching the surface of the fine particles to form irregularities on the surface of the fine particles. The surface treatment apparatus as described in any one of 12 thru | or 14
[17] 前記ガス導入機構は、前記電極カゝらシャワー状のガスを前記容器内に導入する機構 を有することを特徴とする請求項 12乃至 14のいずれか一項に記載の表面処理装置 前記容器を収容するチャンバ一と、該チャンバ一内を真空排気する真空排気機構と 、をさらに具備することを特徴とする請求項 12乃至 14のいずれか一項に記載の表面 処理装置。 [17] The surface treatment apparatus according to any one of [12] to [14], wherein the gas introduction mechanism includes a mechanism for introducing a shower-like gas from the electrode cover into the container. 15. The surface treatment apparatus according to claim 12, further comprising: a chamber that accommodates the container; and a vacuum exhaust mechanism that evacuates the chamber.
PCT/JP2006/308555 2005-04-25 2006-04-24 Surface-treated fine particle, surface-treating apparatus, and method for surface-treating fine particle WO2006115242A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007514712A JP5721923B2 (en) 2005-04-25 2006-04-24 Surface-treated fine particles, surface treatment apparatus, and fine particle surface treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-126414 2005-04-25
JP2005126414 2005-04-25

Publications (1)

Publication Number Publication Date
WO2006115242A1 true WO2006115242A1 (en) 2006-11-02

Family

ID=37214856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308555 WO2006115242A1 (en) 2005-04-25 2006-04-24 Surface-treated fine particle, surface-treating apparatus, and method for surface-treating fine particle

Country Status (2)

Country Link
JP (3) JP5721923B2 (en)
WO (1) WO2006115242A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007102A (en) * 2008-06-24 2010-01-14 Chubu Electric Power Co Inc Method for producing aluminum member, and surface nitriding device for aluminum material
JP2010515645A (en) * 2007-01-11 2010-05-13 チバ ホールディング インコーポレーテッド Pigment mixture
JP2013176770A (en) * 2005-04-25 2013-09-09 Utec:Kk Surface-fluorinated fine particle, surface fluorination apparatus, and method for producing surface-fluorinated fine particle
JP2014173105A (en) * 2013-03-07 2014-09-22 Nippon Steel & Sumikin Chemical Co Ltd Surface modification method of nickel nanoparticle
JP2016015419A (en) * 2014-07-02 2016-01-28 株式会社ユーテック Electronic component and manufacturing method of the same
JP2018058735A (en) * 2016-10-07 2018-04-12 株式会社Kri Fluoroalkyl group-modified diamond fine particle and production process thereof
CN117966082A (en) * 2024-04-02 2024-05-03 济南大学 Surface strengthening method of bearing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101529572B1 (en) * 2013-11-21 2015-06-19 재단법인 철원플라즈마 산업기술연구원 Powder separate absorption type plasma processing apparatus
KR101529565B1 (en) * 2013-11-21 2015-06-19 재단법인 철원플라즈마 산업기술연구원 Powder arrangement type plasma processing apparatus and method
JP6505523B2 (en) * 2015-06-29 2019-04-24 株式会社電子技研 Plasma powder processing apparatus and plasma powder processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005575A (en) * 2000-06-23 2002-01-09 Ishikawajima Harima Heavy Ind Co Ltd Vacuum heat-treating furnace having function of agitating granule
JP2002277166A (en) * 2001-03-23 2002-09-25 Takasago Ind Co Ltd Batch rotary kiln
JP2004261747A (en) * 2003-03-03 2004-09-24 Kawasaki Heavy Ind Ltd Powder surface modifying method and apparatus
JP2005135736A (en) * 2003-10-30 2005-05-26 Nippon Spindle Mfg Co Ltd Plasma processing device for particulates

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487774A (en) * 1987-09-30 1989-03-31 Ishikawajima Harima Heavy Ind Cvd device for raw material having high specific surface area
JPH0672308B2 (en) * 1988-07-04 1994-09-14 新技術事業団 Atmospheric pressure plasma reaction method
JP3478840B2 (en) * 1991-06-27 2003-12-15 株式会社きもと Atmospheric pressure plasma reactor
JP4388717B2 (en) * 2001-06-27 2009-12-24 株式会社ユーテック CVD film forming apparatus and CVD film forming method
JP3620842B2 (en) * 2002-12-25 2005-02-16 孝之 阿部 Polygonal barrel sputtering apparatus, polygonal barrel sputtering method, coated fine particles formed thereby, and method for producing coated fine particles
WO2006115242A1 (en) * 2005-04-25 2006-11-02 Youtec Co., Ltd. Surface-treated fine particle, surface-treating apparatus, and method for surface-treating fine particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005575A (en) * 2000-06-23 2002-01-09 Ishikawajima Harima Heavy Ind Co Ltd Vacuum heat-treating furnace having function of agitating granule
JP2002277166A (en) * 2001-03-23 2002-09-25 Takasago Ind Co Ltd Batch rotary kiln
JP2004261747A (en) * 2003-03-03 2004-09-24 Kawasaki Heavy Ind Ltd Powder surface modifying method and apparatus
JP2005135736A (en) * 2003-10-30 2005-05-26 Nippon Spindle Mfg Co Ltd Plasma processing device for particulates

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013176770A (en) * 2005-04-25 2013-09-09 Utec:Kk Surface-fluorinated fine particle, surface fluorination apparatus, and method for producing surface-fluorinated fine particle
JP2010515645A (en) * 2007-01-11 2010-05-13 チバ ホールディング インコーポレーテッド Pigment mixture
JP2010007102A (en) * 2008-06-24 2010-01-14 Chubu Electric Power Co Inc Method for producing aluminum member, and surface nitriding device for aluminum material
JP2014173105A (en) * 2013-03-07 2014-09-22 Nippon Steel & Sumikin Chemical Co Ltd Surface modification method of nickel nanoparticle
JP2016015419A (en) * 2014-07-02 2016-01-28 株式会社ユーテック Electronic component and manufacturing method of the same
JP2018058735A (en) * 2016-10-07 2018-04-12 株式会社Kri Fluoroalkyl group-modified diamond fine particle and production process thereof
CN117966082A (en) * 2024-04-02 2024-05-03 济南大学 Surface strengthening method of bearing

Also Published As

Publication number Publication date
JP5795390B2 (en) 2015-10-14
JP5721923B2 (en) 2015-05-20
JP2013176770A (en) 2013-09-09
JPWO2006115242A1 (en) 2008-12-18
JP6069098B2 (en) 2017-01-25
JP2014097502A (en) 2014-05-29

Similar Documents

Publication Publication Date Title
JP5795390B2 (en) Method for producing fine particles
US5885361A (en) Cleaning of hydrogen plasma down-stream apparatus
JP6505523B2 (en) Plasma powder processing apparatus and plasma powder processing method
JP5458445B2 (en) Plasma system
JP2528962B2 (en) Sample processing method and device
JPH09241827A (en) Device and method for plasma treatment
JPWO2007080944A1 (en) Method for forming porous film and computer-readable recording medium
KR101804211B1 (en) Manufacturing method of anode active material powder for lithium secondary battery
JP2011068513A (en) Film formation method of carbon nanotube film
TW200913071A (en) Method for pretreating inner space of chamber in plasma nitridation, plasma processing method and plasma processing apparatus
JPH0773997A (en) Plasma cvd device and cvd processing method employing the device and cleaning method for inside of the device
Inomata et al. Open air photoresist ashing by a cold plasma torch: catalytic effect of cathode material
JPH11256327A (en) Forming method of metallic compound thin film and film forming device
JPH07147273A (en) Etching treatment
CN112724710A (en) Plasma graphene powder surface modification process
JPS58136701A (en) Method and apparatus for treating surface of fine particle
JP2007308752A (en) Water-repellent thin film, and method for producing water-repellent thin film
JPH04199828A (en) Manufacture of oxide thin film of high dielectric constant
JPH10130872A (en) Plasma treatment
KR101603787B1 (en) Apparatus and method for surface treatment
KR102161704B1 (en) apparatus and method for fluorination of components
JPH08335571A (en) Plasma treatment apparatus
JP2002110555A (en) Plasma cvd apparatus and method for manufacturing thin film
JPS6070730A (en) Plasma processor
JPS6390138A (en) Method for cleaning semiconductor surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514712

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732266

Country of ref document: EP

Kind code of ref document: A1