JPS58136701A - Method and apparatus for treating surface of fine particle - Google Patents

Method and apparatus for treating surface of fine particle

Info

Publication number
JPS58136701A
JPS58136701A JP57017577A JP1757782A JPS58136701A JP S58136701 A JPS58136701 A JP S58136701A JP 57017577 A JP57017577 A JP 57017577A JP 1757782 A JP1757782 A JP 1757782A JP S58136701 A JPS58136701 A JP S58136701A
Authority
JP
Japan
Prior art keywords
fine particles
plasma
container
particles
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57017577A
Other languages
Japanese (ja)
Other versions
JPH024642B2 (en
Inventor
Kenji Yanagihara
健児 柳原
Mitsuo Kimura
光夫 木村
Kozo Arai
新井 洸三
Teizo Kotani
小谷 悌三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP57017577A priority Critical patent/JPS58136701A/en
Publication of JPS58136701A publication Critical patent/JPS58136701A/en
Publication of JPH024642B2 publication Critical patent/JPH024642B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder

Abstract

PURPOSE:To easily etch, coat or reform the surfaces of fine particles by rolling and dropping the particles in a space filled with generated plasma to treat the surfaces of the particles with the plasma. CONSTITUTION:Fine particles are put in a container 4, a vacuum vessel 8 is highly evacuated, and a gas for forming plasma is introduced into the container 4. Voltage is applied to electrode plates 1A, 1B to form plasma in the container 4, and while rolling and dropping the particles by rotating the container 4, the plasma is allowed to act on the surfaces of the particles. Thus, the surfaces of the particles are etched, coated or reformed.

Description

【発明の詳細な説明】 本発明は微粒子の表面処理方法及びその装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for surface treatment of fine particles and an apparatus therefor.

一般に微粒子は種々の用途に用いられており、例えば鉄
の微粒子は記録用磁気テープの磁性材料として広く用い
られているが、この鉄の微粒子は通常空気雰囲下にて保
存されており、このため表面が酸化されてかなり厚い酸
化膜が形成されている。従って鉄の微粒子による記録用
磁気テープの製造においては酸化膜のない鉄の微粒子を
グラスチック等より成るベースチーブに塗布することが
必要とされることから、この微粒子をベースチーブに塗
布する前に当該微粒子に表面の酸化膜を除去するための
表面処理を施すことが必要とされる。
Generally, fine particles are used for various purposes. For example, fine iron particles are widely used as magnetic materials for recording magnetic tapes, but these fine particles are usually stored in an air atmosphere. Therefore, the surface is oxidized and a fairly thick oxide film is formed. Therefore, in the production of recording magnetic tapes using fine iron particles, it is necessary to apply fine iron particles without an oxide film to a base plate made of glass or the like, so before applying these fine particles to the base plate, It is necessary to perform surface treatment to remove the oxide film on the surface.

そして表面処理後の、酸化膜が除去された鉄の微(3) 粒子は酸素にふれないようにしてベーステープに塗布さ
れた上やはり酸素にふれないようにして樹脂等により被
覆して記録用磁気1−グが形成される。筐たこの他にも
微粒子にコーティング、前面改質等の表面処理を施すこ
とが広くイ1″なわrじCいる。
After surface treatment, the iron particles (3) from which the oxide film has been removed are coated on a base tape so as not to come into contact with oxygen, and then coated with a resin or the like so as not to come into contact with oxygen for recording purposes. A magnetic 1-group is formed. In addition to coatings, surface treatments such as coating and front surface modification are widely applied to fine particles.

従来このような微粒子の表面処理方法とし、ては、液体
或いはペースト状の物質を用いる方法が広く行なわれて
いる1つこれは、例えば酸化膜をエツチングするために
は微粒子をアルカリ性水溶液中を通過せしめて酸化膜を
溶解除去する方法、微粒子をコーディングするためには
、微粒子を有機溶液中を通過せしめて表向に樹脂被膜を
形成する方法等である。
Conventionally, one of the widely used methods for surface treatment of such fine particles is to use a liquid or paste-like substance.For example, in order to etch an oxide film, fine particles are passed through an alkaline aqueous solution. At least the oxide film is dissolved and removed, and in order to coat the fine particles, the fine particles are passed through an organic solution to form a resin coating on the surface.

しかしながらこのように液体或いはペースト状の物質を
用いる方法においては、通常装置が複雑となり、又2種
類以上の液体を用いて段階的に表冒1 面処理を行なう必要がある場合には、一つの油体から次
の液体へ順次微粒子を入れなければならないか、その際
酸素にふれさせずに微粒子を移動させるのは極めて困難
であり、酸化防止の必要かめる場合には極めて不利であ
る。捷たこの場合には各液体が混入するおそれがあり、
溶液の使用寿命或いは作用が低下することともなる。ま
た使用済の不要になった液体を廃棄する場合、公害防止
上の観点から相当に安全性の高い処理を施した上廃棄す
ることが要請きれコスト高になる。
However, in methods using liquid or paste-like substances, the equipment is usually complicated, and when it is necessary to perform surface treatment in stages using two or more types of liquids, one It is extremely difficult to transfer the fine particles from one oil body to the next liquid without exposing them to oxygen, which is extremely disadvantageous in cases where oxidation prevention is required. In this case, there is a risk that various liquids may be mixed in.
The service life or effectiveness of the solution may also be reduced. Furthermore, when disposing of used liquid that is no longer needed, it is required to perform extremely safe treatment from the viewpoint of pollution prevention before disposal, which increases costs.

本発明者らは、以−ヒのような事情に基き鋭意研究を重
ねた結果、高真空中で微粒子をプラズマ処理することに
よりエツチング、コーティング、表面改質等の各種の表
面処理を容易に達成でき、液体を用いる方法における上
述の欠点を解消することができることを見い出し本発明
を完成するに至った。
As a result of intensive research based on the above circumstances, the present inventors have found that various surface treatments such as etching, coating, and surface modification can be easily achieved by plasma treating fine particles in a high vacuum. The present invention has been completed based on the discovery that the above-mentioned drawbacks of the method using a liquid can be overcome.

本発明の目的は、プラズマの作用により微粒子の表面処
理を均一に行なうことができる微粒子の表面処理方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for surface treatment of fine particles, which enables uniform surface treatment of fine particles by the action of plasma.

本発明の他の1的は、プラズマの作用により微粒子の表
面処理を均一に行なうことができる微粒子の表面処理装
置を提供することにある。
Another object of the present invention is to provide a surface treatment device for fine particles that can uniformly treat the surface of fine particles by the action of plasma.

(5) 本発明方法の特徴とするところは、プラズマが発生して
いる空間内において、微粒子を転動させ、更に空間を落
下せしめることにより当該微粒子の表面をプラズマ処理
する点にある。
(5) The method of the present invention is characterized in that the surfaces of the particles are treated with plasma by rolling the particles in a space where plasma is generated and then causing them to fall through the space.

本発明装置の特徴とするところは、微粒子が収納される
回動自在な容器と、この容器内にプラズマを形成するプ
ラズマ発生機構とを有する点にある。
The device of the present invention is characterized by having a rotatable container in which fine particles are stored, and a plasma generation mechanism that forms plasma within the container.

以下本発明を具体的に説明する。The present invention will be specifically explained below.

本発明方法においては、プラズマが発生している空間内
において、処理すべき微粒子を転動させながら上昇落下
せしめ、これに前記プラズマを作用せしめて当該微粒子
の表面をプラズマ処理する。
In the method of the present invention, fine particles to be treated are made to rise and fall while rolling in a space where plasma is generated, and the plasma is applied to the fine particles to plasma-treat the surfaces of the fine particles.

斯かる方法によれば、表面処理にプラズマを用いるため
、前述の液体を用いる方法における欠点を除去すること
ができる上、処理すべき微粒子をプラズマ中を転動させ
ながら上昇落下せしめるため、微粒子の表面処理を表面
全体に亘って均一に行なうことができる。
According to this method, since plasma is used for surface treatment, the drawbacks of the above-mentioned method using a liquid can be eliminated, and the fine particles to be treated are caused to rise and fall while rolling in the plasma, so that the fine particles can be treated easily. Surface treatment can be performed uniformly over the entire surface.

本発明装置においては、例えば第1図に示すよ(6) うに、例えばガラス等より成る絶縁性の両端開口の円筒
3の当該両端開口をそれぞれ塞ぐよう電極板IA 、I
Bを兼ねる一対の金属製の側板2A 。
In the device of the present invention, as shown in FIG. 1 (6), for example, electrode plates IA and I are used to close the openings at both ends of an insulating cylinder 3 made of glass or the like and having openings at both ends.
A pair of metal side plates 2A that also serve as B.

2Bを配設して容器4を形成し、前記円筒3の例えば中
心軸X上に沿って前記側板2A 、2Bをそれぞれ貫通
してこれより外方に伸びるガラス等より成る絶縁性の回
動軸5を当該側板2A 、2Bに固定して設け、この回
動軸5の両端をこれが水平に位置するよう、真空槽8内
に設けた支持枠7A。
2B to form a container 4, and an insulating pivot shaft made of glass or the like that extends outward from the side plates 2A and 2B by passing through the side plates 2A and 2B, for example, along the central axis X of the cylinder 3. 5 is fixed to the side plates 2A and 2B, and the support frame 7A is provided in the vacuum chamber 8 so that both ends of the rotation shaft 5 are positioned horizontally.

7Bにより回動自在に支持せしめて前記容器4を真空槽
8内に配設し、前記回動軸5の一端にはギア等を介して
モーター6を接続し、側板2A、2Bには複数の透孔9
を設けて、例えばその一方の側板2Aの透孔9に接近対
向し得るようその供給口10を近接して位置せし2めた
、プラズマ形成用ガスを供給するガス供給管11を設け
ると共に、真空槽8の例えば下底壁81に排気管12を
接続して設け、そして側板2A 、2B  を兼ねる電
極板IA 、IBを含み、この電極板IA 、 lfl
の各々にブラシ先端が接触するよう真空槽8に対して固
(7) 定して設けた電極ブラシ14A 、 14Bと、この電
極ブラシ14A 、 14Bに接続した電源13とによ
りプラズマ発生機構15を構成する。
The container 4 is rotatably supported by 7B and placed in a vacuum chamber 8. A motor 6 is connected to one end of the rotation shaft 5 via a gear or the like, and a plurality of Through hole 9
and a gas supply pipe 11 for supplying plasma forming gas, the supply port 10 of which is located close to the through hole 9 of one of the side plates 2A, for example, is provided, An exhaust pipe 12 is connected to, for example, a lower bottom wall 81 of the vacuum chamber 8, and includes electrode plates IA and IB that also serve as side plates 2A and 2B, and these electrode plates IA and lfl.
A plasma generation mechanism 15 is constituted by electrode brushes 14A, 14B fixedly fixed (7) to the vacuum chamber 8 so that the tips of the brushes are in contact with each of the electrode brushes 14A, 14B, and a power source 13 connected to the electrode brushes 14A, 14B. do.

本発明方法においては、以上のような構成の装置を用い
例えば次のようにして微粒子の表面処理を行なう。即ち
、直径数+A〜数十数十機粒子から成る集合体を容器4
内に収納し、真空槽8内を例えば真空ポンプ(図示せず
)等により排気して高真空状態とした上でガス供給管1
1よりプラズマ形成用ガスを供給して容器4内に導入す
ると共に、電源13より電極ブラシ14A 、 14B
を介し7て電極板IA 、 lf3に電力を供給して容
器4内にプラズマ形成用ガスのプラズマを形成し、更に
モーター6を駆動せしめて容器4を例えば5Q r、 
p、 m。
In the method of the present invention, the surface treatment of fine particles is performed, for example, in the following manner using the apparatus configured as described above. That is, an aggregate consisting of particles with a diameter of several + A to several dozen particles is placed in a container 4.
After evacuating the inside of the vacuum chamber 8 using a vacuum pump (not shown) or the like to create a high vacuum state, the gas supply pipe 1 is
1 supplies a plasma forming gas and introduces it into the container 4, and a power source 13 supplies electrode brushes 14A and 14B.
Electric power is supplied to the electrode plates IA and lf3 via 7 to form a plasma of plasma forming gas in the container 4, and the motor 6 is further driven to move the container 4 to, for example, 5Qr,
p, m.

以上好ましくは20Or、 p、 m、以上の回転速度
で回転させながら、容器4内の微粒子に前記プラズマ形
成用ガスのプラズマを作用せしめ、以って微粒子の表面
処理を行なう。
The plasma of the plasma forming gas is applied to the particles in the container 4 while rotating at a rotational speed of preferably 20 Or, p, m or more, thereby surface-treating the particles.

プラズマ形成用ガスとしては、微粒子の表面をコーディ
ングする場合には例えばハイドロカーボン、フルオロカ
ーボン、シラン、オルガノシラン、オルガノメタル等の
微粒子の表面にプラズマ重合膜を形成するものであれば
よく、微粒子の表面を改質する場合例えば水に対する濡
れを良くする場合には酸素、窒素、−酸化炭素、或いは
これらの混合ガスを用いることができ、微粒子の表面を
エンチングする場合、例えば微粒子が金属或いは酸化物
である場合にはパーフルオロメタン、パーフルオロエタ
ン、フッ索ガス等ハロゲンヲ含tr化合物ガスを用いる
ことができ、微粒子が有機物である場合には酸素を用い
ることができる。
When coating the surface of fine particles, the plasma forming gas may be any gas that forms a plasma polymerized film on the surface of the fine particles, such as hydrocarbon, fluorocarbon, silane, organosilane, organometal, etc. For example, to improve wettability with water, oxygen, nitrogen, carbon oxide, or a mixture of these gases can be used, and to etch the surface of fine particles, for example, if the fine particles are made of metal or oxide. In some cases, a halogen-containing compound gas such as perfluoromethane, perfluoroethane, or fluorine gas can be used, and if the fine particles are organic, oxygen can be used.

このような方法によれば、容器4を回転せしめるため、
容器4内の微粒子は当該容器4の回転に応じてプラズマ
形成用ガスの7−ラズマ中において転動しながら上昇し
、そして更に自重で落下するようになり、しかもこの上
昇・落下が繰り返さ沃このだめ当該微粒子がその表面全
体に亘り均一にプラズマの作用を受けるようになり、こ
の結果当該微粒子の表面が均一にプラズマ処理される。
According to such a method, in order to rotate the container 4,
As the container 4 rotates, the fine particles in the container 4 rise while rolling in the plasma forming gas plasma, and then fall down due to their own weight, and this rising and falling is repeated. Instead, the entire surface of the fine particles is uniformly affected by the plasma, and as a result, the surface of the fine particles is uniformly plasma-treated.

また第1図に示した装置によれば、大量の微粒子を(9
) 同時に均一な表面処理をすることができ工業上極めて有
利である上、プラズマ形成用ガスを適宜取り替えてプラ
ズマ条件を変えることにより同一の装置で、エツチング
処理、コーティング処理、表面改質処理等の種々の表面
処理を容易に行なうことができ極めて便利である。
Furthermore, according to the apparatus shown in Fig. 1, a large amount of fine particles (9
) It is possible to perform uniform surface treatment at the same time, which is extremely advantageous industrially, and by changing the plasma conditions by appropriately replacing the plasma forming gas, it is possible to perform etching treatment, coating treatment, surface modification treatment, etc. with the same equipment. It is extremely convenient as various surface treatments can be easily performed.

以上において第2図 (イ)及び(ロ)に不すように容
器4を構成する円筒30内壁31に当該円筒3の軸と平
行に伸びる複数(図示の例では8個)の細長い板状の攪
拌部材32を当該円筒3の内方に突出するよう設けてお
けば、容器4が回転したときに微粒子をこの攪拌部材3
2により確実に上昇・落下せしめることができ微粒子の
表面処理を均一に行なうことがさらに一層確実なものと
なる。
In the above, as shown in FIGS. 2(A) and 2(B), on the inner wall 31 of the cylinder 30 constituting the container 4, there are a plurality of (eight in the illustrated example) elongated plate-shaped plates extending parallel to the axis of the cylinder 3. If the stirring member 32 is provided so as to protrude inward from the cylinder 3, when the container 4 rotates, the fine particles will be transferred to the stirring member 3.
2, it is possible to raise and fall the particles reliably, thereby further ensuring uniform surface treatment of the particles.

ここで攪拌部材32の伸びる方向は円筒3の軸に対して
若干斜めであってもよい。なお攪拌部材32は円筒3と
一体に形成してもよい1−1円筒3とは別な部材で形成
してもよい。
Here, the direction in which the stirring member 32 extends may be slightly oblique to the axis of the cylinder 3. Note that the stirring member 32 may be formed integrally with the cylinder 3 or may be formed of a separate member from the 1-1 cylinder 3.

第1図に示した装置においては容器4を回転せしめる構
成としたが、微粒子をプラズマ中で転勤(10) せしめる手段としては、斯かる例に限らず例えば容器4
を全回転運動させるのではなく回動軸5を中心に振子の
ような揺動運動せしめるようギア等を構成してもよい。
Although the apparatus shown in FIG. 1 has a configuration in which the container 4 is rotated, the means for causing the fine particles to be transferred (10) in the plasma is not limited to this example.
A gear or the like may be configured so as to cause the rotation axis 5 to oscillate like a pendulum around the rotation axis 5 instead of making a full rotational movement.

また容器4の形状は角筒型でもよい。Further, the shape of the container 4 may be a rectangular tube type.

前記プラズマ発生機構15における電源13としては、
直流電源、オーディオ周波数電源、高周波電源等を用い
ることができる。
The power source 13 in the plasma generation mechanism 15 includes:
A DC power source, an audio frequency power source, a high frequency power source, etc. can be used.

前記プラズマ発生機構15は既述の例に限らず、例えば
第3図に示すように長尺な円筒型容器42の外周にコイ
ル18を巻回せしめてこのコイル18に高周波電源13
1を接続した構成、或いは円筒型容器42の外周に設け
たはしご状のマイクロ波導波路材を介してマイクロ波電
源によりマイクロ波エネルギーを加えるようにした構成
等、微粒子が収納される容器内にプラズマが形成される
構成であればよい。
The plasma generation mechanism 15 is not limited to the example described above, but for example, as shown in FIG.
1 is connected, or a configuration in which microwave energy is applied by a microwave power source via a ladder-shaped microwave waveguide material provided on the outer periphery of the cylindrical container 42. Any configuration is sufficient as long as it forms.

以下本発明の実施例について説明する。Examples of the present invention will be described below.

実施例1 第1図に7トシた構成の装置を用い、平均粒径(11) loooX−のニッケル微粒子を容器4内に収納L、真
空槽8内を排気して50ミリTorr  の真空状態と
なるようガス供給管11よりプラズマ形成用ガスとして
エチレンガスを流量50 TIt/分の割合で供給して
これを容器4内に導入すると共に電源13より電極板I
A 、IBに20 Wの電力を供給して容器4内にエチ
レンガスのプラズマを形成しながら、モーター6を駆動
せしめて容器4を例えば150 r、p、m、の回転速
度で回転させ、約2時間に亘りプラズマを作用させてニ
ッケル微粒子の表面処理を行ない、以−ってニッケル微
粒子の表面がエチレンガスのプラズマによる重合膜で被
覆された被覆微粒子を得た。
Example 1 Using an apparatus having the same configuration as shown in FIG. 1, fine nickel particles with an average particle size (11) loooX- were stored in a container 4, and the vacuum chamber 8 was evacuated to create a vacuum of 50 mmTorr. Ethylene gas is supplied from the gas supply pipe 11 as a plasma forming gas at a flow rate of 50 TIt/min, and is introduced into the container 4, and the electrode plate I is supplied from the power supply 13.
A, while supplying 20 W of power to the IB to form an ethylene gas plasma in the container 4, drive the motor 6 to rotate the container 4 at a rotational speed of, for example, 150 r, p, m. The surface of the nickel fine particles was treated by applying plasma for two hours, thereby obtaining coated fine particles in which the surface of the nickel fine particles was coated with a polymer film formed by ethylene gas plasma.

得られた被覆微粒子をESCA(電子分光法)により調
べたところニッケルの2P丁 ピークが現われず当該被
覆微粒子の表面に浮さ数十N以上のエチレンガスのプラ
ズマによる重合膜が形成されていることが確認された。
When the obtained coated fine particles were examined by ESCA (electron spectroscopy), no 2P peak of nickel appeared, indicating that a polymer film was formed by plasma of ethylene gas floating on the surface of the coated fine particles at tens of N or more. was confirmed.

次に得られた被覆微粒子を水中に分散させ、この中から
一滴とりだしこれを銅メツシーに厚さ500にのコロジ
オン膜を張った基板上に滴下した後乾燥させ、透過型電
子顕微鏡で観察したところ被覆微粒子表面の1鎚の厚さ
は表面全体に亘って40士5大の範囲内であり極めて均
一性の高いものであった。
Next, the obtained coated fine particles were dispersed in water, one drop was taken out, and this was dropped onto a substrate made of copper mesh coated with a 500 mm thick collodion film, dried, and observed with a transmission electron microscope. The thickness of the surface of the coated fine particles was within the range of 40 to 5 over the entire surface, and was highly uniform.

実施例2 第1図に示した構成の装置を用い、平均粒径1000^
の表面が酸化されたニッケル微粒子を容器4内に収納し
、真空槽8内を排気して30ミリTorr の真空状態
となるようガス供給管llよりプラズマ形成用ガスとし
てアルゴンガスを流量50ゴ/分の割合で供給してこれ
を容器4内に導入すると共に電源13より電極板IA 
、 lflに150 Wの電力を供給して容器4内にア
ルゴンガスのプラズマを形成しながら、モーター6を駆
動せしめて容器4を例えば150 r、 p、 m、 
の回転速度で回転させ、約30分間に亘りプラズマを作
用させてニッケル微粒子の表面処理を行ない、以ってニ
ッケル微粒子の表面がエツチングされて酸化膜が除去さ
れた純ニツケル微粒子を得た。
Example 2 Using a device with the configuration shown in Figure 1, an average particle size of 1000^
Fine nickel particles with oxidized surfaces are stored in a container 4, and argon gas is supplied as a plasma forming gas from a gas supply pipe 11 at a flow rate of 50 mTorr to create a vacuum state of 30 mTorr by evacuating the inside of the vacuum chamber 8. The electrode plate IA is supplied from the power source 13 at the same time as it is introduced into the container 4.
, while supplying 150 W of power to lfl to form an argon gas plasma in the container 4, drive the motor 6 to move the container 4 to, for example, 150 r, p, m,
The surface of the nickel fine particles was treated by rotating the plate at a rotational speed of 100 mL and applying plasma for about 30 minutes, thereby etching the surface of the nickel fine particles and removing the oxide film to obtain pure nickel fine particles.

(13) そして得られた純ニツケル微粒子に実施例1と同様にし
て表面処理を行ない、以って純ニッケル微粒子の表面が
エチレンガスのプラズマによる重合膜で被覆された被覆
微粒子を得た。
(13) The obtained pure nickel fine particles were then subjected to surface treatment in the same manner as in Example 1, thereby obtaining coated fine particles in which the surfaces of the pure nickel fine particles were coated with a polymer film formed by ethylene gas plasma.

この被&微粒千をESCA  (電子分光法)により調
べたところ、ニッケルの2P2  ピークは現われなか
った。次いでこの被覆微粒子をアルゴンイオンビームで
約6秒間エツチングした後再びESC:A(電子分光法
)により調べたところ、酸化ニッケルの2P2ビークは
現われなかった。さらに6秒間同様のエツチングを行な
った後調べたところ酸化ニッケルの2P2  ピークは
現われなかった。
When the 2P2 peak of nickel was examined by ESCA (electron spectroscopy), no 2P2 peak of nickel appeared. Next, the coated fine particles were etched with an argon ion beam for about 6 seconds and then examined again by ESC:A (electron spectroscopy), and no 2P2 peak of nickel oxide appeared. After performing similar etching for another 6 seconds, the 2P2 peak of nickel oxide did not appear.

次に同様のエツチングを6秒間に亘り行なった後H8C
A(電子分光法)によりii&liべたところ金属ニッ
ケルの2P2  ピークが現われ、酸化ニッケルの2P
(ピークは現われなかった。これよりこの実施例で得ら
れた被覆微粒子は酸化膜がアルゴンガスのプラズマの作
用により確実にエツチングされ、純ニツケル微粒子の表
面がエチレンガスのプラズマによる重合膜で被覆されて
いることがわかった。
Next, after performing similar etching for 6 seconds, H8C
A (electron spectroscopy) shows that the 2P2 peak of metallic nickel appears in the ii&li area, and the 2P2 peak of nickel oxide appears.
(No peak appeared. From this, it can be seen that the oxide film of the coated fine particles obtained in this example was reliably etched by the action of argon gas plasma, and the surface of the pure nickel fine particles was coated with a polymer film caused by ethylene gas plasma.) I found out that

(14)(14)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不発明徴粒子の表面処理装置の一例を示す説明
用断面図、第2図(イ)及び(ロ)はそれぞれ本発明装
置における容器の一例を示す説明用縦断正面図及び説明
用縦断側面図、第3図は本発明に係る装置におけるプラ
ズマ発生機構の他の例を示す説明図である。 IA、1B・・・電極板  2A、2B・・・側板3・
・・円筒      4・・・容器5・・・回動軸  
  6・・・モーター7A 、 7B・・・支持枠  
8・・・真空槽81・・・下底壁    9・・・透孔
ll・・ガス供給管  12・・・排気管13・・・電
源     14A、14B ・・・電極ブラシ15・
・・プラズマ発生機構 18・・・コイル    32・・・攪拌部材42・・
・容器 131  ・・・高周波電源 代理人 弁理士  大 井 正 彦 第30 131 5−
FIG. 1 is an explanatory sectional view showing an example of a surface treatment device for non-inventive particles, and FIGS. 2 (a) and (b) are an explanatory longitudinal sectional front view and an explanatory front view showing an example of a container in the inventive device, respectively. A longitudinal side view and FIG. 3 are explanatory diagrams showing another example of the plasma generation mechanism in the apparatus according to the present invention. IA, 1B... Electrode plate 2A, 2B... Side plate 3.
...Cylinder 4...Container 5...Rotation axis
6...Motor 7A, 7B...Support frame
8... Vacuum chamber 81... Lower bottom wall 9... Through hole 11... Gas supply pipe 12... Exhaust pipe 13... Power supply 14A, 14B... Electrode brush 15...
...Plasma generation mechanism 18...Coil 32...Stirring member 42...
・Container 131 ... High frequency power supply agent Patent attorney Masahiko Oi No. 30 131 5-

Claims (1)

【特許請求の範囲】 1)プラズマが発生している空間内において、微粒子を
転動させ、更に空間を落下せしめることにより当該微粒
子の表面をプラズマ処理することを%徴とする微粒子の
表面処理方法。 2)前記プラズマ処理がエツチング処理である特許請求
の範囲第1項記載の微粒子の表面処理方法。 3)前記プラズマ処理がコーティング処理である特許請
求の範囲第1項記載の微粒子の表面処理方法。 4)前記プラズマ処理が表面改質処理である特許請求の
範囲第1項記載の微粒子の表面処理方法。 5)微粒子が収納される回動自在な容器と、この容器内
にプラズマを形成するプラズマ発生機構とを有すること
を特徴°とする微粒子の表(2) 面処理装置。 6)前記容器の内壁に、容器の回動軸に沿って伸びる攪
拌部材を設けたことを特徴とする特許請求の範囲第5項
記載の微粒子の表面処理装置。
[Scope of Claims] 1) A method for surface treatment of fine particles, which includes plasma-treating the surface of fine particles by rolling the fine particles in a space where plasma is generated and then causing the particles to fall through the space. . 2) The method for surface treatment of fine particles according to claim 1, wherein the plasma treatment is an etching treatment. 3) The method for surface treatment of fine particles according to claim 1, wherein the plasma treatment is a coating treatment. 4) The method for surface treatment of fine particles according to claim 1, wherein the plasma treatment is a surface modification treatment. 5) A surface treatment device for fine particles, characterized by comprising a rotatable container in which fine particles are stored, and a plasma generation mechanism for forming plasma in the container. 6) The particle surface treatment apparatus according to claim 5, further comprising a stirring member provided on the inner wall of the container and extending along the rotational axis of the container.
JP57017577A 1982-02-08 1982-02-08 Method and apparatus for treating surface of fine particle Granted JPS58136701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57017577A JPS58136701A (en) 1982-02-08 1982-02-08 Method and apparatus for treating surface of fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57017577A JPS58136701A (en) 1982-02-08 1982-02-08 Method and apparatus for treating surface of fine particle

Publications (2)

Publication Number Publication Date
JPS58136701A true JPS58136701A (en) 1983-08-13
JPH024642B2 JPH024642B2 (en) 1990-01-30

Family

ID=11947760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57017577A Granted JPS58136701A (en) 1982-02-08 1982-02-08 Method and apparatus for treating surface of fine particle

Country Status (1)

Country Link
JP (1) JPS58136701A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192373A (en) * 1987-09-30 1989-04-11 Ishikawajima Harima Heavy Ind Co Ltd Formation of thin carbon film on raw material having large specific surface by cvd
JP2002060943A (en) * 2000-08-22 2002-02-28 Tohoku Electric Power Co Inc Method and device for coating high purity silicon
JP2008169421A (en) * 2007-01-10 2008-07-24 Tsubaki Emerson Co Dlc film deposition system
JP2009256804A (en) * 2009-08-03 2009-11-05 Utec:Kk Fine particle
JP2017075391A (en) * 2015-08-31 2017-04-20 ウルトラテック インク Plasma-promoted atomic layer deposition system having rotation reaction tube
EP3484810A4 (en) * 2016-07-15 2020-03-25 Oned Material LLC Manufacturing apparatus and method for making silicon nanowires on carbon based powders for use in batteries
JP2020084222A (en) * 2018-11-16 2020-06-04 日本化学工業株式会社 Method for manufacturing coated particle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918751A (en) * 1972-05-31 1974-02-19
JPS4944868A (en) * 1972-09-04 1974-04-27
JPS5236759A (en) * 1975-09-18 1977-03-22 Oki Electric Ind Co Ltd Method of fixing parts on printed circuit board
JPS5641375A (en) * 1979-09-13 1981-04-18 Matsushita Electric Ind Co Ltd Sputtering apparatus
JPS5645962A (en) * 1979-09-25 1981-04-25 Nippon Tokushu Toryo Kk Asphaltic coating-type vibration-damping material
JPS57166373A (en) * 1981-04-02 1982-10-13 Sumitomo Electric Industries Manufacture of non-oxide ceramics
JPS5822302A (en) * 1981-07-30 1983-02-09 Nippon Steel Corp Method of activating treatment of hydrogen-occluded metal
JPS5881971A (en) * 1981-11-11 1983-05-17 Matsushita Electric Ind Co Ltd Apparatus for depositing film
JPS58100601A (en) * 1981-12-09 1983-06-15 Japan Synthetic Rubber Co Ltd Coated ultrafine particle or its film and method and device for forming said particle or film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918751A (en) * 1972-05-31 1974-02-19
JPS4944868A (en) * 1972-09-04 1974-04-27
JPS5236759A (en) * 1975-09-18 1977-03-22 Oki Electric Ind Co Ltd Method of fixing parts on printed circuit board
JPS5641375A (en) * 1979-09-13 1981-04-18 Matsushita Electric Ind Co Ltd Sputtering apparatus
JPS5645962A (en) * 1979-09-25 1981-04-25 Nippon Tokushu Toryo Kk Asphaltic coating-type vibration-damping material
JPS57166373A (en) * 1981-04-02 1982-10-13 Sumitomo Electric Industries Manufacture of non-oxide ceramics
JPS5822302A (en) * 1981-07-30 1983-02-09 Nippon Steel Corp Method of activating treatment of hydrogen-occluded metal
JPS5881971A (en) * 1981-11-11 1983-05-17 Matsushita Electric Ind Co Ltd Apparatus for depositing film
JPS58100601A (en) * 1981-12-09 1983-06-15 Japan Synthetic Rubber Co Ltd Coated ultrafine particle or its film and method and device for forming said particle or film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192373A (en) * 1987-09-30 1989-04-11 Ishikawajima Harima Heavy Ind Co Ltd Formation of thin carbon film on raw material having large specific surface by cvd
JP2002060943A (en) * 2000-08-22 2002-02-28 Tohoku Electric Power Co Inc Method and device for coating high purity silicon
JP2008169421A (en) * 2007-01-10 2008-07-24 Tsubaki Emerson Co Dlc film deposition system
JP2009256804A (en) * 2009-08-03 2009-11-05 Utec:Kk Fine particle
JP2017075391A (en) * 2015-08-31 2017-04-20 ウルトラテック インク Plasma-promoted atomic layer deposition system having rotation reaction tube
EP3484810A4 (en) * 2016-07-15 2020-03-25 Oned Material LLC Manufacturing apparatus and method for making silicon nanowires on carbon based powders for use in batteries
US10862114B2 (en) 2016-07-15 2020-12-08 Oned Material Llc Manufacturing apparatus and method for making silicon nanowires on carbon based powders for use in batteries
EP3778471A1 (en) * 2016-07-15 2021-02-17 OneD Material, Inc. Manufacturing method for making silicon nanowires on carbon based powders for use in batteries
US11728477B2 (en) 2016-07-15 2023-08-15 Oned Material, Inc. Manufacturing apparatus and method for making silicon nanowires on carbon based powders for use in batteries
EP4273296A1 (en) * 2016-07-15 2023-11-08 OneD Material, Inc. Manufacturing apparatus and method for making silicon nanowires on carbon based powders for use in batteries
EP4292702A3 (en) * 2016-07-15 2024-04-17 OneD Material, Inc. Manufacturing apparatus and method for making silicon nanowires on carbon based powders for use in batteries
JP2020084222A (en) * 2018-11-16 2020-06-04 日本化学工業株式会社 Method for manufacturing coated particle

Also Published As

Publication number Publication date
JPH024642B2 (en) 1990-01-30

Similar Documents

Publication Publication Date Title
US10934623B2 (en) Nano-coating protection method for electrical connectors
US4810524A (en) Inorganic powders with improved dispersibility
US4891095A (en) Method and apparatus for plasma treatment
US11332829B2 (en) Plasma polymerization coating with uniformity control
JP5795390B2 (en) Method for producing fine particles
JPS58136701A (en) Method and apparatus for treating surface of fine particle
JPS6155767B2 (en)
JPH04323375A (en) Method and device for forming coating layer on surface of working material
JP2002118085A (en) Substrate-treating method and apparatus therefor
JPS6196732A (en) Manufacture of device
JP2017137550A (en) Method of oxide thin film formation and apparatus of oxide thin film formation
US7202175B2 (en) Method and apparatus for treating a substrate surface by bubbling
CN110189975B (en) Ion beam etching cavity cleaning device
JPH061233Y2 (en) Plasma powder processing equipment
JP2001274131A (en) Batch processing device and method thereof
JP2000164222A (en) Copper material for lithium ion battery anode current collecting member and manufacture of anode current collecting member for lithium ion battery
JP5189856B2 (en) Wet cleaning method of vacuum processing apparatus and member of vacuum processing apparatus
JP3285764B2 (en) Surface treatment method using discharge plasma
JPH04269720A (en) Polymer bead having modified surface and its production
JP3634609B2 (en) Thin film forming apparatus using rotating electrode
JPH06144994A (en) Diamond film forming device
JP3421457B2 (en) Method and apparatus for dry treatment of metal surfaces
JPH08259902A (en) Method of bonding metallic material
JP2003068721A (en) Discharge plasma processing apparatus
JPH0857225A (en) Manufacture of filter