JP2010007102A - Method for producing aluminum member, and surface nitriding device for aluminum material - Google Patents
Method for producing aluminum member, and surface nitriding device for aluminum material Download PDFInfo
- Publication number
- JP2010007102A JP2010007102A JP2008164840A JP2008164840A JP2010007102A JP 2010007102 A JP2010007102 A JP 2010007102A JP 2008164840 A JP2008164840 A JP 2008164840A JP 2008164840 A JP2008164840 A JP 2008164840A JP 2010007102 A JP2010007102 A JP 2010007102A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum
- nitride layer
- powder
- base material
- barrel container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
本発明は、アルミニウム部材の製造方法及びアルミニウム材の表面窒化装置に関し、詳しくは、表面の耐摩耗性が改善されたアルミニウム部材の製造方法及びアルミニウム材の表面窒化装置に関する。 The present invention relates to an aluminum member manufacturing method and an aluminum material surface nitriding apparatus, and more particularly to an aluminum member manufacturing method and an aluminum material surface nitriding apparatus with improved surface wear resistance.
現在、アルミニウム合金は、軽量性、リサイクル性、高耐食性等の優れた各種の特性を備えていることから、多くの製品分野で利用されている。
アルミニウム合金は、省エネルギーの観点から、エネルギーを多量に消費する自動車、鉄道車両、船舶、航空機などの輸送機器や、各種産業機器の軽量化のために、近年では、構造用材料として特に注目されつつある。
Currently, aluminum alloys are used in many product fields because they have various characteristics such as lightness, recyclability, and high corrosion resistance.
In recent years, aluminum alloys have been attracting particular attention as structural materials in order to reduce the weight of transportation equipment such as automobiles, railway vehicles, ships, and aircraft that consume large amounts of energy and various industrial equipment from the viewpoint of energy saving. is there.
ところが、そのような構造用材料としてのアルミニウム合金は、鉄鋼材料と比較した場合、耐摩耗性に劣り、特に自動車のエンジン部品等の摺動部品として使用する場合に大きな障害がある。このため、アルミニウム合金の耐摩耗性の向上が各産業界から強く求められている。 However, an aluminum alloy as such a structural material is inferior in wear resistance when compared with a steel material, and has a great obstacle especially when used as a sliding part such as an engine part of an automobile. For this reason, improvement in the wear resistance of aluminum alloys is strongly demanded by various industries.
そこで、窒化アルミニウム(AlN)の高熱伝導性、低熱膨張性、高硬度性(高耐摩耗性)に着目され、表面に窒化アルミニウム層を有するアルミニウム部材が、構造用材料として利用されつつある。 Therefore, attention is paid to the high thermal conductivity, low thermal expansion, and high hardness (high wear resistance) of aluminum nitride (AlN), and an aluminum member having an aluminum nitride layer on the surface is being used as a structural material.
アルミニウム材の表面を高硬度化、高耐摩耗化すべく、当該表面に効率的に窒化アルミニウム層を形成する方法としては、従来より、窒素イオンの拡散浸透現象を利用したイオン窒化法や、Al-Mg合金粉末を基材表面に塗布後、窒素雰囲気下で加熱する粉末塗布法が知られている。しかし、イオン窒化法では、窒化物層の成長速度が遅く、基材表面に十分な厚さの窒化アルミニウム層が得られ難い、窒化処理前にスパッタリングによって、酸化膜の除去が必要になる、窒化物層と基材との間の硬度や熱膨張率が異なるため、クラックが生じたり、表面が剥離し易いといった問題がある。また、粉末塗布法では、基材に塗布したAl-Mg合金粉末が基材表面で焼結し、部品形状が変化し易い。 In order to increase the hardness and wear resistance of the surface of an aluminum material, as a method of efficiently forming an aluminum nitride layer on the surface, conventionally, an ion nitriding method using a diffusion penetration phenomenon of nitrogen ions, Al- A powder coating method is known in which an Mg alloy powder is coated on a substrate surface and then heated in a nitrogen atmosphere. However, in the ion nitriding method, the growth rate of the nitride layer is slow, and it is difficult to obtain an aluminum nitride layer having a sufficient thickness on the surface of the substrate, and it is necessary to remove the oxide film by sputtering before the nitriding treatment. Since the hardness and the coefficient of thermal expansion between the physical layer and the substrate are different, there are problems that cracks occur and the surface is easily peeled off. In the powder coating method, the Al—Mg alloy powder applied to the base material is sintered on the surface of the base material, and the part shape is likely to change.
これに対し、アルミナ粒子とAl-Mg合金粉末とからなる充填粉末を流動床炉中に充填し、該流動床炉に窒素ガスを導入して流動化し、この流動層内にアルミニウムまたはアルミニウム合金基材を装入して該基材の融点以下で処理することにより基材表面に窒化物層を生産性良く形成するアルミニウム材の表面窒化方法が開発されている(特許文献1を参照)。 On the other hand, a packed powder composed of alumina particles and Al-Mg alloy powder is filled in a fluidized bed furnace, fluidized by introducing nitrogen gas into the fluidized bed furnace, and aluminum or an aluminum alloy base in the fluidized bed. A surface nitriding method of an aluminum material has been developed that forms a nitride layer on the surface of a base material with high productivity by charging the material and treating it at a temperature lower than the melting point of the base material (see Patent Document 1).
この表面窒化方法によれば、窒化物層の成長速度が向上し、さらに窒素ガスにアルゴンガスを所定量混入し、炉内温度を調整することでAl-Mg合金粉末の焼結が防止されるとされている。
しかしながら、前記表面窒化方法によれば、基材表面の窒化処理にあたり、流動床炉に窒素ガスを導入し、該ガスの噴流のみで充填粉末を流動化させる必要があるため、多量の窒素ガスが必要となって窒化処理が非効率的となり、アルミニウム材に耐摩耗性を付与するための窒化物層を安定して得ることが困難な場合があった。 However, according to the surface nitriding method, it is necessary to introduce nitrogen gas into a fluidized bed furnace and fluidize the filling powder only by jetting the gas when nitriding the surface of the base material. In some cases, the nitriding treatment becomes inefficient and it is difficult to stably obtain a nitride layer for imparting wear resistance to the aluminum material.
本発明は、上記問題点を解決するためになされたものであって、その目的は、耐摩耗性が良好なアルミニウム部材が安定して得られるアルミニウム部材の製造方法及びアルミニウム材の表面窒化装置を提供することにある。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an aluminum member manufacturing method and an aluminum material surface nitriding apparatus in which an aluminum member having good wear resistance can be stably obtained. It is to provide.
上記問題点を解決するために、本発明のアルミニウム部材の製造方法は、アルミニウム材の表面に窒化物層を形成し、耐摩耗性が改善されたアルミニウム部材を製造する方法であって、窒素ガスを含む処理ガスの存在の下、アルミナ粉末又はアルミナ粒子を含む充填粉末と、アルミニウム又はアルミニウム合金からなる基材とを回転又は揺動するバレル容器内で混合し、該基材の表面に窒化物層を形成する表面窒化工程を具備すること、を要旨とする。 In order to solve the above problems, a method for producing an aluminum member according to the present invention is a method for producing an aluminum member having an improved wear resistance by forming a nitride layer on the surface of an aluminum material. In the presence of a processing gas containing, a filler powder containing alumina powder or alumina particles and a base material made of aluminum or an aluminum alloy are mixed in a rotating or swinging barrel container, and nitride is formed on the surface of the base material The gist is to include a surface nitriding step for forming a layer.
また、本発明のアルミニウム部材の製造方法において、前記バレル容器は揺動するものであり、且つ、多角柱状に形成されていることが好ましい。
また、本発明のアルミニウム部材の製造方法において、前記充填粉末に対して、Al-Mg合金粉末が0.7質量%以上2.0質量%以下の配合比で含まれることが好ましい。
Moreover, in the manufacturing method of the aluminum member of this invention, it is preferable that the said barrel container is rocking | fluctuating and is formed in polygonal column shape.
Moreover, in the manufacturing method of the aluminum member of this invention, it is preferable that Al-Mg alloy powder is contained with the mixture ratio of 0.7 mass% or more and 2.0 mass% or less with respect to the said filling powder.
また、本発明のアルミニウム部材の製造方法において、前記表面窒化工程において、処理温度を610℃以上640℃以下として基材の表面に窒化物層を形成することが好ましい。
また、本発明のアルミニウム部材の製造方法において、前記表面窒化工程において、処理時間を3.4hr以上7hr以下として基材の表面に窒化物層を形成することが好ましい。
In the method for producing an aluminum member of the present invention, in the surface nitriding step, it is preferable to form a nitride layer on the surface of the substrate at a treatment temperature of 610 ° C. or more and 640 ° C. or less.
In the method for producing an aluminum member of the present invention, it is preferable that in the surface nitriding step, a nitride layer is formed on the surface of the substrate with a treatment time of 3.4 hours to 7 hours.
さらに、本発明のアルミニウム材の表面窒化装置は、アルミニウム材の表面に窒化物層を形成し、該アルミニウム材の表面の耐摩耗性を改善するためのアルミニウム材の表面窒化装置であって、アルミナ粉末又はアルミナ粒子を含む充填粉末とアルミニウム又はアルミニウム合金からなる基材とが収容されるバレル容器と、該バレル容器内に窒素ガスを含む処理ガスを導入する処理ガス導入手段と、前記バレル容器内に処理ガスを導入しつつ同バレル容器を所定角度で揺動させるバレル容器揺動手段とを具備すること、を要旨とする。 Furthermore, an aluminum material surface nitriding device according to the present invention is an aluminum material surface nitriding device for forming a nitride layer on the surface of the aluminum material and improving the wear resistance of the surface of the aluminum material, wherein A barrel container in which a powder or powder containing alumina particles and a base material made of aluminum or an aluminum alloy are accommodated, a processing gas introduction means for introducing a processing gas containing nitrogen gas into the barrel container, and the inside of the barrel container And a barrel container swinging means for swinging the barrel container at a predetermined angle while introducing the processing gas.
本発明によれば、耐摩耗性が良好なアルミニウム部材が安定して得られるようになる。 According to the present invention, an aluminum member having good wear resistance can be obtained stably.
本発明のアルミニウム部材の製造方法は、窒素ガスを含む処理ガスの存在の下、アルミナ粉末又はアルミナ粒子を含む充填粉末と、アルミニウム又はアルミニウム合金からなる基材とを回転又は揺動するバレル容器内で混合し、該基材の表面に窒化物層を形成する表面窒化工程を具備するものである。これにより、被窒化対象物である基材(アルミニウム材)が回転又は揺動するバレル容器内で、窒素ガスの存在の下、アルミニウムを含む充填粉末と効率的に攪拌される。そして、該基材が窒素ガスと反応し、該基材表面に窒化物層が形成される。この結果、当該基材が複雑な表面形状を呈するものであっても、硬度が高く、耐摩耗性に優れたアルミニウム部材を安定して製造することができる。 In the method for producing an aluminum member of the present invention, in the presence of a processing gas containing nitrogen gas, the inside of a barrel container that rotates or swings a filling powder containing alumina powder or alumina particles and a base material made of aluminum or an aluminum alloy is rotated. And a surface nitriding step of forming a nitride layer on the surface of the substrate. Thus, the base material (aluminum material) to be nitrided is efficiently stirred with the filling powder containing aluminum in the presence of nitrogen gas in a barrel container in which the base material (aluminum material) rotates or swings. Then, the base material reacts with nitrogen gas, and a nitride layer is formed on the surface of the base material. As a result, even if the base material exhibits a complicated surface shape, an aluminum member having high hardness and excellent wear resistance can be stably produced.
前記基材は、アルミニウム(Al)又はアルミニウム合金からなるブロック状(塊状)のものである。ここで、アルミニウム合金としては、例えば、アルミニウムに銅、マンガン、亜鉛、シリコン、マグネシウム等を含み、各種特性が付与されたものが使用でき、熱処理型合金が含まれる。 The base material is a block (lumped) made of aluminum (Al) or an aluminum alloy. Here, as the aluminum alloy, for example, aluminum containing copper, manganese, zinc, silicon, magnesium, and the like, and various properties can be used, and a heat treatment type alloy is included.
このような純粋なアルミニウム(純アルミニウム)又はアルミニウム合金は、通常、酸化膜に覆われ、防食性に優れるが、この酸化膜により、窒素との反応が阻害される。このため、当該基材表面に窒化物層を形成するには、基材表面を活性化することが必要となる。 Such pure aluminum (pure aluminum) or an aluminum alloy is usually covered with an oxide film and is excellent in anticorrosion, but the reaction with nitrogen is inhibited by this oxide film. For this reason, in order to form a nitride layer on the substrate surface, it is necessary to activate the substrate surface.
図1(a)に示すように、本発明にかかる窒化処理法では、めっきや研磨で使用されるバレル容器1(バレル槽)を用い、該バレル容器1内に充填粉末2と基材3とを収容した上で同バレル容器1を点Oを中心として回転又は揺動し、当該回転又は揺動運動によって当該バレル容器1内で充填粉末2と基材3との衝突が引き起こされる(充填粉末2の一部はその上層で崩落層2aを形成する)。そしてこの衝突により、基材表面が物理的に活性化され、同基材表面に高硬度、高耐摩耗性の窒化物層(AlN層)を形成することができる。尚、この窒化物層は、必ずしも窒化アルミニウムのみから構成されているわけではなく、通常、未反応のアルミニウム、アルミナ(Al2O3)、マグネシウム等も含まれている。 As shown in FIG. 1 (a), in the nitriding method according to the present invention, a barrel container 1 (barrel tank) used for plating and polishing is used. The barrel container 1 is rotated or swung around the point O, and the collision between the filling powder 2 and the base material 3 is caused in the barrel container 1 by the rotation or swinging motion (filling powder). A part of 2 forms a collapsing layer 2a in the upper layer). By this collision, the substrate surface is physically activated, and a high hardness and high wear resistance nitride layer (AlN layer) can be formed on the substrate surface. Note that the nitride layer is not necessarily composed of only aluminum nitride, and usually includes unreacted aluminum, alumina (Al 2 O 3 ), magnesium, and the like.
前記充填粉末2としては、アルミナ粉末又はアルミナ粒子を含むものが用いられる。具体的には、アルミナ粉末(Al2O3粉末)とアルミニウム−マグネシウム合金粉末(Al-Mg合金粉末)との混合物(Al-Mg/Al2O3充填粉末)が好ましく用いられる。 As the filling powder 2, one containing alumina powder or alumina particles is used. Specifically, a mixture (Al-Mg / Al 2 O 3 filled powder) of alumina powder (Al 2 O 3 powder) and aluminum-magnesium alloy powder (Al-Mg alloy powder) is preferably used.
このように、充填粉末2には、アルミナ粉末又はアルミナ粒子に加え、Al-Mg合金粉末がさらに含まれるので、充填粉末2と基材3との衝突により、基材表面が物理的に活性化されることに加え、さらに、Al-Mg合金粉末中のマグネシウム(Mg)の還元作用により、基材表面が化学的に活性化され、同基材表面に窒化物層が効率的に形成されるようになる。 In this way, since the filler powder 2 further includes an Al-Mg alloy powder in addition to the alumina powder or the alumina particles, the surface of the substrate is physically activated by the collision between the filler powder 2 and the substrate 3. In addition, the substrate surface is chemically activated by the reducing action of magnesium (Mg) in the Al-Mg alloy powder, and a nitride layer is efficiently formed on the substrate surface. It becomes like this.
尚、マグネシウム(Mg)とアルミニウム(Al)の酸化標準自由エネルギーGOを比較すると、GO,Mg<GO,Alであり、窒化標準自由エネルギーGNを比較すると、GN,Mg>GN,Alであることから、Al-Mg合金粉末中のマグネシウム(Mg)により、反応系に酸素が存在しても、アルミニウムの窒化反応が促進される。 When comparing the oxidation standard free energy G O of magnesium (Mg) and aluminum (Al), G O, Mg <G O, Al and comparing the nitridation standard free energy G N , G N, Mg > G Since it is N and Al , the nitriding reaction of aluminum is promoted by magnesium (Mg) in the Al-Mg alloy powder even if oxygen is present in the reaction system.
ここで、充填粉末2中に対するAl-Mg合金粉末の配合比(混合率)(以下、単にAl-Mg/Al2O3配合比という。)は、0.7質量%以上2.0質量%以下とすることが好ましい。0.7質量%未満であると、基材表面の一部のみに窒化物層が形成され、全面に形成されないことがあり、2.0質量%を超えると、窒化処理開始とともにアルミニウム(Al)と窒素(N)との反応による急激な発熱反応が起こり、アルミナ粉末又はアルミナ粒子を主成分とする充填粉末2が焼結することがある。 Here, the blending ratio (mixing ratio) of the Al-Mg alloy powder with respect to the filling powder 2 (hereinafter simply referred to as Al-Mg / Al 2 O 3 blending ratio) is 0.7 mass% or more and 2.0 mass% or less. Is preferred. If it is less than 0.7% by mass, a nitride layer may be formed only on a part of the substrate surface and may not be formed on the entire surface. If it exceeds 2.0% by mass, the nitriding treatment starts and aluminum (Al) and nitrogen (N A rapid exothermic reaction may occur due to the reaction with (a), and the filler powder 2 containing alumina powder or alumina particles as a main component may be sintered.
前記バレル容器1としては、回転又は揺動するものが用いられるが、回転では、被攪拌物の一部が上層で上滑り状態となって攪拌されないのに対し、揺動では反転動作の都度、被攪拌物が上層と下層とが入れ替わるように攪拌され、攪拌効率が向上することから、揺動するものを用いることが好ましい。また、この回転又は揺動によって、基材表面に付着する窒化反応に関与しない余分な堆積層(充填粉末2が基材表面に付着して膜状となったもの。)が基材3と充填粉末2との衝突によって除去される効果も得られる。 As the barrel container 1, one that rotates or swings is used. In rotation, a part of the object to be agitated is in an upper-slip state in the upper layer and is not agitated, whereas in the oscillation, the object is subject to reversal every time the reversing operation is performed. Since the agitated material is agitated so that the upper layer and the lower layer are interchanged and the agitation efficiency is improved, it is preferable to use a rocking one. In addition, due to this rotation or swing, an extra deposited layer that does not participate in the nitriding reaction that adheres to the surface of the base material (the powder powder 2 adheres to the surface of the base material and forms a film) fills the base material 3. The effect removed by the collision with the powder 2 is also obtained.
ここで、図1(b)に示すように、点Oを中心とした揺動動作が左右に揺れる最大角度である揺動角度θは、同揺動動作の反転時にバレル容器1の収容物が攪拌されない時間帯を極力なくす観点、及び、基材表面に付着する堆積層を減らす観点から、300°までは大きい程好ましい。通常は、バレル容器1に装着した熱電対、ガス用経路配管、冷却用水路等の補機類の取り回し位置や動作を確保する観点から、270°程度とすることが良い。 Here, as shown in FIG. 1 (b), the swing angle θ, which is the maximum angle at which the swing operation centering on the point O swings to the left and right, is determined by the amount contained in the barrel container 1 when the swing operation is reversed. From the viewpoint of minimizing the time zone during which no stirring is performed and from the viewpoint of reducing the deposited layer adhering to the surface of the base material, a larger angle up to 300 ° is preferable. In general, the angle is preferably about 270 ° from the viewpoint of securing the handling position and operation of auxiliary equipment such as a thermocouple, a gas pipe, and a cooling water channel attached to the barrel container 1.
また、揺動動作の速度である揺動速度は、充填粉末2と基材3の運動差が大きくなり、機械的(物理的)な攪拌効果が向上することから、実用上採用できる216°/secまでは高いほど好ましい。 In addition, the rocking speed, which is the speed of the rocking motion, increases the difference in motion between the filling powder 2 and the base material 3 and improves the mechanical (physical) stirring effect. The higher it is to sec, the better.
さらに、揺動動作は、脈動揺動とすることが好ましい。即ち、図1(b)に示すように、揺動動作の途中、一定角度間隔に位置する各角度位置A〜Dで当該動作を一時的に停止し、揺動動作を継続するような揺動とすることが好ましい。また、このように一定角度毎にできる限り短時間、例えば、1.2秒以下で停止した脈動揺動とすることで、同脈動揺動はその条件により、充填物の流れに絶えずストレスと振動を加え、充填粉末2の内部に処理ガスとしての窒素ガスを巻き込む効果が得られ、攪拌効率及び窒化処理効率が向上する。ここで、前記一定角度、即ち、脈動1回の回転(位相)角度(φ1〜Φ3;φ1=φ2=φ3、揺動角度θ=φ1+φ2+φ3)は、図1(b)を参照して、このように揺動角度θ=270°の場合には、当該揺動角度θを自然数2,3,4,6,10又は14で除算した135°,90°,67.5°,45°,27°又は19°とすることができる。尚、図1(b)に示すバレル容器1では、脈動1回の回転角度(φ1〜Φ3)=90°である。 Furthermore, the swinging operation is preferably pulsating swinging. That is, as shown in FIG. 1 (b), in the middle of the swinging operation, the swinging operation is temporarily stopped at each angular position A to D positioned at a certain angular interval, and the swinging operation is continued. It is preferable that In addition, by making the pulsation fluctuation stopped at a certain angle as short as possible, for example, 1.2 seconds or less in this way, the pulsation fluctuation is constantly subjected to stress and vibration depending on the conditions. And the effect of incorporating nitrogen gas as the processing gas into the filling powder 2 is obtained, and the stirring efficiency and the nitriding efficiency are improved. Here, the fixed angle, that is, the rotation (phase) angle (φ1 to φ3; φ1 = φ2 = φ3, swing angle θ = φ1 + φ2 + φ3) for one pulsation is as shown in FIG. When the swing angle θ is 270 °, 135 °, 90 °, 67.5 °, 45 °, 27 ° or 19 divided by the natural angle 2, 3, 4, 6, 10 or 14 ° can be. In the barrel container 1 shown in FIG. 1B, the rotation angle (φ1 to Φ3) for one pulsation is 90 °.
また、バレル容器1は、多角柱状のものがよく、好ましくは、図1に示すような八角柱状のものがよい。このようにバレル容器1が多角柱状、好ましくは八角柱状であると、揺動速度が大きくなっても、その際に顕著となる滑り現象、即ち、充填粉末2がバレル容器1の壁に対して生じる滑り現象を当該多角形の面が充填粉末2を一時的に保持することで効果的に抑制することができ、攪拌効率が高く維持できるようになる。 Further, the barrel container 1 is preferably in the shape of a polygonal column, and preferably in the shape of an octagonal column as shown in FIG. Thus, when the barrel container 1 has a polygonal columnar shape, preferably an octagonal columnar shape, even if the rocking speed is increased, a sliding phenomenon that becomes noticeable at that time, that is, the filled powder 2 is applied to the wall of the barrel container 1. The resulting slip phenomenon can be effectively suppressed by temporarily holding the filling powder 2 on the polygonal surface, and the stirring efficiency can be maintained high.
本発明にかかる窒化処理法では、窒化処理の処理温度(バレル容器1内の温度)は、基材表面の全体に窒化物層を形成する観点から、610℃以上640℃以下とすることが好ましい。610℃未満であると、窒化処理、即ち、前記堆積層から窒化物層への変化が不十分となることがあり、640℃を超えると、基材3が溶融することがある。 In the nitriding method according to the present invention, the nitriding treatment temperature (temperature in the barrel vessel 1) is preferably 610 ° C. or more and 640 ° C. or less from the viewpoint of forming a nitride layer on the entire surface of the substrate. . When the temperature is lower than 610 ° C., the nitriding treatment, that is, the change from the deposited layer to the nitride layer may be insufficient, and when the temperature exceeds 640 ° C., the substrate 3 may be melted.
また、本発明にかかる窒化処理法では、窒化物層を基材表面で十分に成長させ、厚さを確保する観点から、窒化処理の処理時間は、3.4hr以上7hr以下であることが好ましい。3.4hr未満であると、基材表面に窒化物層が生成しないことがあり、7hrを超えると、窒化物層における窒化アルミニウムの含有率(生成率)が低下し、硬度や耐摩耗性が不足することがある。 In the nitriding method according to the present invention, the nitriding treatment time is preferably 3.4 hr or more and 7 hr or less from the viewpoint of sufficiently growing the nitride layer on the surface of the substrate and ensuring the thickness. If the time is less than 3.4 hours, a nitride layer may not be formed on the surface of the substrate. If the time exceeds 7 hours, the aluminum nitride content (generation rate) in the nitride layer decreases, and the hardness and wear resistance are insufficient. There are things to do.
以下、実施例により、本発明をさらに具体的に説明する。
<実施例1>
本実施例1では、処理温度、及び、充填粉末2に対するAl-Mg/Al2O3配合比が基材表面における窒化物層の生成に与える影響を調べた。
Hereinafter, the present invention will be described more specifically with reference to examples.
<Example 1>
In Example 1, the influence of the treatment temperature and the Al—Mg / Al 2 O 3 blending ratio with respect to the filling powder 2 on the formation of the nitride layer on the substrate surface was examined.
ここでは、工業用純アルミニウム(記号A1050)をワイヤー放電加工により40mm×20mm×5mmの直方体状(ブロック状)に加工し、基材3とした。また、平均粒径100(mm)のアルミナ(Al2O3)粉末(昭和電工(株)製,白色アルミナ研削材,ホワイトモランダムWA)に、平均粒径200(mm)のAl-Mg合金粉末(レアメタリック(株)製,Al-50質量%Mg)を配合比0.7,0.8,0.9,1.0質量%で混合し、充填粉末2とした。 Here, industrial pure aluminum (symbol A1050) was processed into a rectangular parallelepiped shape (block shape) of 40 mm × 20 mm × 5 mm by wire electric discharge machining to obtain a substrate 3. In addition, alumina (Al 2 O 3 ) powder with an average particle size of 100 (mm) (made by Showa Denko KK, white alumina abrasive, White Morundum WA) and an Al-Mg alloy with an average particle size of 200 (mm) Powder (Rare Metallic Co., Ltd., Al-50 mass% Mg) was mixed at a blending ratio of 0.7, 0.8, 0.9, and 1.0 mass% to obtain Filled Powder 2.
図2に示すように、本実施例1のアルミニウム材の表面窒化装置は、架台4に回転(揺動)可能に支持された八角柱状のバレル容器1と、該バレル容器1をベルト5及びプーリ5a,5aを介して揺動させるべく、パルス発生器6に電気的に接続されたバレル容器揺動手段としてのサーボモータ7と、前記バレル容器1内にガス用経路配管8aを介して窒素(N2)ガスを導入する処理ガス導入手段としてのマスフローコントロ−ラ8と、前記バレル容器1の内部を加熱すべく、充填粉末2の温度を計測する熱電対9aを有する温度調節器9に制御可能に接続されたヒータ10とを具備している。 As shown in FIG. 2, the surface nitriding apparatus for aluminum material of the first embodiment is an octagonal barrel container 1 supported on a gantry 4 so as to be able to rotate (swing), and the barrel container 1 is attached to a belt 5 and a pulley. 5a, 5a, a servo motor 7 as a barrel container oscillating means electrically connected to the pulse generator 6 to oscillate through 5a, 5a, and nitrogen (in the barrel container 1 through a gas path pipe 8a). N 2 ) Controlled by a temperature controller 9 having a mass flow controller 8 as a processing gas introduction means for introducing gas, and a thermocouple 9 a for measuring the temperature of the filled powder 2 in order to heat the inside of the barrel container 1. And a heater 10 which is connected in a possible manner.
ここで、前記バレル容器1には、内径151mm,全長240mmの八角柱状のものを用いた。また、各基材3の質量は10g(大きさ:40mm×20mm×5mm)、充填粉末2の全質量は1000g(容器内充填率14.9%)とした。 Here, the barrel container 1 was an octagonal cylinder having an inner diameter of 151 mm and an overall length of 240 mm. Moreover, the mass of each base material 3 was 10 g (size: 40 mm × 20 mm × 5 mm), and the total mass of the filling powder 2 was 1000 g (the filling rate in the container was 14.9%).
そして、図2に示すように、5個の基材3,…と充填粉末2とを、ヒータ10の設定温度を温度調節器9で610℃又は630℃としたバレル容器1内に収容した。その後、該バレル容器1内にマスフローコントロ−ラ8で窒素(N2)ガスを100cm3/minで導入し、バレル容器1内の空気を置換しつつ、バレル容器1の温度上昇を待つため、そのまま30min放置した。さらに温度調節器9によって、各処理温度までの温度上昇が確認されたら、再度窒素ガスを900cm3/minでバレル容器1内に導入した。さらに、パルス発生器6及びサーボモータ7によって、揺動角度θを270°,揺動速度を72°/sec,脈動1回の回転(位相)角度(φ1〜φ3)を90°にそれぞれ設定し、本発明の窒化処理(表面窒化工程)を5hr行った。その後、窒素ガスの導入及びヒータ10による加熱を停止し、バレル容器1を自然放冷した。 Then, as shown in FIG. 2, the five base materials 3,... And the filling powder 2 were accommodated in the barrel container 1 in which the set temperature of the heater 10 was set to 610 ° C. or 630 ° C. by the temperature controller 9. After that, nitrogen (N 2 ) gas is introduced into the barrel container 1 at a rate of 100 cm 3 / min with the mass flow controller 8 to replace the air in the barrel container 1 and wait for the temperature of the barrel container 1 to rise. It was left as it was for 30 minutes. Further, when the temperature controller 9 confirmed that the temperature increased to each processing temperature, nitrogen gas was again introduced into the barrel container 1 at 900 cm 3 / min. Furthermore, the pulse generator 6 and the servo motor 7 set the swing angle θ to 270 °, the swing speed to 72 ° / sec, and the pulsation rotation (phase) angle (φ1 to φ3) to 90 °. The nitriding treatment (surface nitriding step) of the present invention was performed for 5 hours. Thereafter, the introduction of nitrogen gas and heating by the heater 10 were stopped, and the barrel container 1 was allowed to cool naturally.
その結果、処理温度610℃,630℃について、図3に示す関係が得られた。ここで図3中の直線は1次近似(最小二乗法)によって求めた。また、Al-Mg/Al2O3配合比が0.7質量%のときは、EPMA(Electron Probe Micro Analyzer)によって、基材表面の一部にのみ窒化物層の生成が確認できたので、図3では、当該0.7質量%のときの窒化物層厚さを0μmとした。また、Al-Mg/Al2O3配合比が2.0質量%を超えると、充填粉末2に焼結が生じた。 As a result, the relationship shown in FIG. 3 was obtained for the processing temperatures of 610 ° C. and 630 ° C. Here, the straight line in FIG. 3 was obtained by linear approximation (least square method). Further, when the Al—Mg / Al 2 O 3 blending ratio was 0.7% by mass, the formation of a nitride layer was confirmed only on a part of the substrate surface by EPMA (Electron Probe Micro Analyzer). Then, the nitride layer thickness at the 0.7 mass% was set to 0 μm. Further, when the Al—Mg / Al 2 O 3 blending ratio exceeded 2.0 mass%, the filled powder 2 was sintered.
図3に示すように、基材3の溶融及び充填粉末2の焼結が起こらない範囲(653℃未満、図6参照)では、Al-Mg/Al2O3配合比が増加すると窒化物層厚さ(μm)が増加し、窒化物層の成長速度の上昇が確認できた。これによってAl-Mg合金粉末による基材表面の活性化効果が確認できた。また、図4に処理温度が630℃のときに得られた基材の表層断面の光学顕微鏡写真を示す。 As shown in FIG. 3, in the range where the melting of the base material 3 and the sintering of the filling powder 2 do not occur (below 653 ° C., see FIG. 6), the nitride layer increases as the Al—Mg / Al 2 O 3 blending ratio increases. It was confirmed that the thickness (μm) increased and the growth rate of the nitride layer increased. This confirmed the activation effect of the substrate surface by the Al-Mg alloy powder. Further, FIG. 4 shows an optical micrograph of the cross section of the surface layer of the base material obtained when the processing temperature is 630 ° C.
図4に示す光学顕微鏡写真は、基材3の表層断面の状態を観察するため、以下に示す方法で基材3を処理し、得られた断面部分を光学顕微鏡で撮影することにより得たものである。即ち、基材3をアセトンによる超音波脱脂洗浄後、マイクロプレスを用いてエポキシ樹脂に埋め込む。次に、該加工部分をファインカッターにより切断し、得られた断面部分を#220〜#2000のエメリーペーパーで湿式研磨する。そして、α-Al2O3研磨材(粒度0.5μm)で当該断面部分のバフ研磨を行い、鏡面に仕上げる。 The optical micrograph shown in FIG. 4 was obtained by processing the base material 3 by the method shown below in order to observe the state of the cross section of the surface layer of the base material 3 and photographing the resulting cross-sectional portion with an optical microscope. It is. That is, the base material 3 is ultrasonically degreased and washed with acetone and then embedded in an epoxy resin using a micro press. Next, the processed portion is cut with a fine cutter, and the obtained cross-sectional portion is wet-polished with # 220 to # 2000 emery paper. Then, the cross section is buffed with an α-Al 2 O 3 abrasive (particle size 0.5 μm) to finish a mirror surface.
また、Al-Mg/Al2O3配合比が0.8質量%と1.0質量%のものについて、窒化物層のビッカース硬度Hvを調べたところ、0.8質量%のものでは、200Hv〜300Hvの結果が得られたのに対して、1.0質量%のものでは、300Hv〜600Hvの結果が得られた。これより、Al-Mg/Al2O3配合比が0.7質量%以上2.0質量%以下の範囲では、同Al-Mg/Al2O3配合比が高い程、窒化物層の硬度が向上することが確認できた。
<実施例2>
本実施例2では、充填粉末量が基材表面における窒化物層の生成に与える影響を調べた。
Moreover, when the Vickers hardness Hv of the nitride layer was examined for the Al-Mg / Al 2 O 3 blending ratios of 0.8% by mass and 1.0% by mass, the results of 200Hv to 300Hv were obtained with the 0.8% by mass. On the other hand, in the case of 1.0% by mass, results of 300 Hv to 600 Hv were obtained. From this, when the Al-Mg / Al 2 O 3 compounding ratio is in the range of 0.7% by mass or more and 2.0% by mass or less, the higher the Al-Mg / Al 2 O 3 compounding ratio, the higher the hardness of the nitride layer. Was confirmed.
<Example 2>
In Example 2, the influence of the amount of filled powder on the formation of a nitride layer on the substrate surface was examined.
ここでは、Al-Mg/Al2O3配合比を1.0質量%とし、充填粉末量を1000g(容器内充填率14.9%),2000g(容器内充填率29.8%),3000g(容器内充填率44.7%)と変化させた以外は、実施例1と同様にして本発明の窒化処理を行った。その結果、窒化物層厚さと各充填粉末量について、図5に示す関係が得られた。 Here, the mixing ratio of Al-Mg / Al 2 O 3 is 1.0 mass%, and the amount of filled powder is 1000 g (14.9% filling rate in container), 2000 g (29.8% filling rate in container), 3000 g (filling rate in container 44.7%) The nitriding treatment of the present invention was performed in the same manner as in Example 1 except that the nitriding treatment was performed. As a result, the relationship shown in FIG. 5 was obtained for the nitride layer thickness and the amount of each filled powder.
図5より、充填粉末量の変化に伴い、窒化物層の成長速度が変化することが確認できた。これは、充填粉末量が変化すると基材3の運動状態(バレル容器1内での基材3の攪拌状態)が変化し、窒化物層の成長速度が変化するためと推定できる。尚、バレル容器1の揺動により、充填粉末2の上層部が崩落層2a(流動層)(図1(a)参照)を形成する。一般的にバレル容器1内の充填粉末量が少ないと、崩落層2aの崩落時の充填粉末2の上昇力が小さく、機械的な摩擦力が小さいため、基材表面が活性化し難いと考えられる。一方、充填粉末量が多くなると、崩落層2aは薄くなるが、当該崩落層2a以外での基材3,…の滞留時間が長くなり、基材3の角が研削されるようになる。このことから、一般的には基材3及び充填粉末2のバレル容器1に対する容量比率(充填率)は50%〜60%が望ましいとされているが、本実施例2によれば、容器内充填率が14.9%のときに、窒化物層の成長速度が最も大きいことが確認できた。
<実施例3>
本実施例3では、処理温度が基材表面における窒化物層の生成に与える影響を調べた。
From FIG. 5, it was confirmed that the growth rate of the nitride layer changes with the change in the amount of the filling powder. It can be presumed that this is because the movement state of the base material 3 (the stirring state of the base material 3 in the barrel container 1) changes and the growth rate of the nitride layer changes when the amount of filled powder changes. In addition, by the rocking | fluctuation of the barrel container 1, the upper layer part of the filling powder 2 forms the collapsing layer 2a (fluidized bed) (refer Fig.1 (a)). In general, when the amount of the filling powder in the barrel container 1 is small, the ascending force of the filling powder 2 when the collapsing layer 2a collapses is small and the mechanical frictional force is small. . On the other hand, when the amount of the filled powder is increased, the collapsing layer 2a becomes thin, but the residence time of the base materials 3, ... other than the collapsing layer 2a becomes long, and the corners of the base material 3 are ground. From this, it is generally considered that the volume ratio (filling rate) of the base material 3 and the filling powder 2 to the barrel container 1 is preferably 50% to 60%. It was confirmed that the growth rate of the nitride layer was the highest when the filling rate was 14.9%.
<Example 3>
In Example 3, the influence of the treatment temperature on the formation of the nitride layer on the substrate surface was examined.
ここでは、Al-Mg/Al2O3配合比を1.0質量%とし、ヒータ10の設定温度を590,600,610,620,630,640℃に変化させた以外は、実施例1と同様にして本発明の窒化処理を行った。その結果、窒化物層厚さと処理開始温度(処理温度)について、図6に示す関係が得られた。 Here, the same as in Example 1 except that the Al—Mg / Al 2 O 3 blending ratio is 1.0 mass% and the set temperature of the heater 10 is changed to 590, 600, 610, 620, 630, 640 ° C. The nitriding treatment of the present invention was performed. As a result, the relationship shown in FIG. 6 was obtained for the nitride layer thickness and the processing start temperature (processing temperature).
図6に示すように、基材3の溶融及び充填粉末2の焼結が起こらない範囲(653℃未満)では、処理温度が高い程、窒化物層の成長速度が向上した。ここで図6中の直線は1次近似(最小二乗法)によって求めた。図6を参照して、処理開始温度が653℃では,処理開始直後にアルミニウム(Al)と窒素(N)との反応による急激な発熱が起こり、アルニミウムの融点(659℃)以上に容器内温度が上昇し、基材3が溶融した。尚、処理温度が607℃では基材表面の一部に窒化物層が生成されたが、基材表面の全体に窒化物層が生成しなかったため、図6では処理温度607℃での窒化物層厚さを0μmとしている。
<実施例4>
本実施例4では、処理時間が基材表面における窒化物層の生成に与える影響を調べた。
As shown in FIG. 6, in the range where the melting of the base material 3 and the sintering of the filling powder 2 do not occur (less than 653 ° C.), the growth rate of the nitride layer was improved as the treatment temperature was higher. Here, the straight line in FIG. 6 was obtained by linear approximation (least square method). Referring to FIG. 6, when the processing start temperature is 653 ° C., a rapid heat generation occurs due to the reaction between aluminum (Al) and nitrogen (N) immediately after the processing starts, and the temperature inside the container exceeds the melting point of aluminum (659 ° C.). Rose and the substrate 3 melted. A nitride layer was formed on a part of the substrate surface at a treatment temperature of 607 ° C., but no nitride layer was produced on the entire substrate surface. Therefore, in FIG. 6, the nitride at the treatment temperature of 607 ° C. was used. The layer thickness is 0 μm.
<Example 4>
In Example 4, the influence of the treatment time on the formation of the nitride layer on the substrate surface was examined.
ここでは、Al-Mg/Al2O3配合比を1.0質量%、及び、処理温度を630℃とし、バレル窒化の処理時間を1,3,4,5,6,7hrと変化させた以外は、実施例1と同様にして本発明の窒化処理を行った。その結果、光学顕微鏡写真による観察によれば、処理時間1hr及び3hrでは、窒化物層の生成が確認できなかったが、3.4hrで基材表面の一部に窒化物層が生成され、4hrで基材表面全体に窒化物層が形成され、以下処理時間の延長に伴い、成長していったことが確認できた。 Here, the Al—Mg / Al 2 O 3 blending ratio was 1.0 mass%, the treatment temperature was 630 ° C., and the barrel nitriding treatment time was changed to 1, 3, 4, 5, 6, 7 hr. The nitriding treatment of the present invention was performed in the same manner as in Example 1. As a result, according to the observation with an optical micrograph, the formation of the nitride layer could not be confirmed at the processing time of 1 hr and 3 hr, but the nitride layer was formed on a part of the substrate surface at 3.4 hr, and at 4 hr. It was confirmed that a nitride layer was formed on the entire surface of the substrate, and that it grew as the treatment time was extended.
その結果、処理時間4,5,6,7hrで得られた窒化物層のビッカース硬度Hvは、それぞれ533,422,385,299Hvとなり、処理時間の増大と共に減少する傾向が確認できた。これは、別途XRD(X線回折)によって計測した窒化物層における窒素とアルミニウムの重量比の結果と合致した。即ち、窒化物層において、窒化アルミニウムの含有率が低下する程、該窒化物層のビッカース硬度Hvが低下することも確認できた。 As a result, the Vickers hardness Hv of the nitride layer obtained at the treatment times of 4, 5, 6, and 7 hours was 533, 422, 385, and 299 Hv, respectively, and a tendency to decrease as the treatment time increased was confirmed. This agreed with the result of the weight ratio of nitrogen and aluminum in the nitride layer separately measured by XRD (X-ray diffraction). That is, it was also confirmed that the Vickers hardness Hv of the nitride layer decreases as the content of aluminum nitride decreases in the nitride layer.
ここでは、窒化物層表面のXRDにより得られた回折ピークの強度からAlN(窒化アルミニウム)及びAl(アルミニウム)の強度比を求めた。ここで、窒化物層(構成相X)における面指数(hkl)の強度をIX(hkl)と定義し、さらにAlN及びAlの強度比をそれぞれIR,AlN及びIR,Alと定義すると、IR,AlN及びIR,Alは下式1で表される。 Here, the intensity ratio of AlN (aluminum nitride) and Al (aluminum) was determined from the intensity of the diffraction peak obtained by XRD on the surface of the nitride layer. Here, the strength of the plane index (hkl) in the nitride layer (constituent phase X) is defined as I X (hkl), and the strength ratio of AlN and Al is defined as IR , AlN and IR , Al , respectively. , I R, AlN and I R, Al are represented by the following formula 1.
また、各サンプルについてEPMA元素マッピング分析及び線分析によれば、窒化物層中に窒素が一様に分布し、酸素が含まれていないことを確認した。
尚、EPMAによる観察によれば、処理時間3hrでは、基材表面のみが白色となり、当該基材表面にマグネシウム(Mg)の濃化が観察された。これにより当該基材表面にマグネシウムが固溶しており、処理時間4hr以上の窒化処理ではこの固溶層が窒化物層の生成に関与していることが推定できる。
Further, according to EPMA element mapping analysis and line analysis for each sample, it was confirmed that nitrogen was uniformly distributed in the nitride layer and no oxygen was contained.
According to the observation by EPMA, at the treatment time of 3 hours, only the base material surface became white, and the concentration of magnesium (Mg) was observed on the base material surface. Thereby, it can be estimated that magnesium is solid-dissolved on the surface of the base material, and this solid solution layer is involved in the formation of the nitride layer in the nitriding treatment for 4 hours or longer.
また、得られた窒化物層厚さと窒化処理の処理時間の平方根との関係を図7に示す。図7に示すように、窒化物層厚さは、潜伏期間t0以後は処理時間の平方根に比例して増加していることが判る。またこれより窒化物層の成長は、堆積層ないし窒化物層へのアルミニウム又は窒素の拡散律速によることが確認できた。 FIG. 7 shows the relationship between the obtained nitride layer thickness and the square root of the nitriding treatment time. As shown in FIG. 7, it can be seen that the nitride layer thickness increases in proportion to the square root of the processing time after the incubation period t 0 . Further, from this, it was confirmed that the growth of the nitride layer was due to the diffusion control of aluminum or nitrogen into the deposited layer or nitride layer.
さらに図7より、本発明の窒化処理によれば、窒化物層の成長速度は約180μm/hrであり、イオン窒化処理で得られる窒化物層の成長速度0.5μm/hr〜2μm/hrと比較すると、より高速に窒化物層を基材表面に形成できることが確認できた。さらにまた、図7より窒化物層の生成が起こらない潜伏期間t0はt0=3.4hrであることも確認できた。 Furthermore, from FIG. 7, according to the nitriding treatment of the present invention, the growth rate of the nitride layer is about 180 μm / hr, which is compared with the growth rate of the nitride layer obtained by ion nitriding treatment, from 0.5 μm / hr to 2 μm / hr. Then, it was confirmed that the nitride layer could be formed on the substrate surface at a higher speed. Furthermore, it can be confirmed from FIG. 7 that the latent period t 0 during which no nitride layer is generated is t 0 = 3.4 hr.
尚、本発明は、その技術的思想を逸脱しない範囲で適宜設計変更しうるものであり、上記実施形態や実施例に限定されるものではない。
例えば、上記実施形態及び実施例では、充填粉末2としてアルミナ粉末(Al2O3粉末)とアルミニウム−マグネシウム合金粉末(Al-Mg合金粉末)との混合物(Al-Mg/Al2O3充填粉末)を用いたが、純粋なアルミナ粉末を用いることもできる。
The present invention can be appropriately changed in design without departing from the technical idea thereof, and is not limited to the above-described embodiments and examples.
For example, in the above embodiments and examples, alumina powder (Al 2 O 3 powder) as the packing powder 2 and an aluminum - magnesium alloy powder (Al-Mg alloy powder) and the mixture of (Al-Mg / Al 2 O 3 filler powder ), But pure alumina powder can also be used.
1…バレル容器、2…充填粉末(Al-Mg/Al2O3充填粉末)、3…基材(アルミニウム材)。 1 ... barrel container, 2 ... filling powder (Al-Mg / Al 2 O 3 filler powder), 3 ... substrate (aluminum material).
Claims (6)
窒素ガスを含む処理ガスの存在の下、アルミナ粉末又はアルミナ粒子を含む充填粉末と、アルミニウム又はアルミニウム合金からなる基材とを回転又は揺動するバレル容器内で混合し、該基材の表面に窒化物層を形成する表面窒化工程を具備することを特徴とするアルミニウム部材の製造方法。 A method for producing an aluminum member having improved wear resistance by forming a nitride layer on the surface of an aluminum material,
In the presence of a processing gas containing nitrogen gas, alumina powder or filled powder containing alumina particles and a base material made of aluminum or an aluminum alloy are mixed in a rotating or swinging barrel container, and the surface of the base material is mixed. A method for producing an aluminum member, comprising a surface nitriding step of forming a nitride layer.
アルミナ粉末又はアルミナ粒子を含む充填粉末とアルミニウム又はアルミニウム合金からなる基材とが収容されるバレル容器と、該バレル容器内に窒素ガスを含む処理ガスを導入する処理ガス導入手段と、前記バレル容器内に処理ガスを導入しつつ同バレル容器を所定角度で揺動させるバレル容器揺動手段とを具備することを特徴とするアルミニウム材の表面窒化装置。 A surface nitriding device for an aluminum material for forming a nitride layer on the surface of the aluminum material and improving the wear resistance of the surface of the aluminum material,
A barrel container in which a filling powder containing alumina powder or alumina particles and a base material made of aluminum or an aluminum alloy are accommodated, a processing gas introduction means for introducing a processing gas containing nitrogen gas into the barrel container, and the barrel container A surface nitriding apparatus for an aluminum material, comprising barrel container swinging means for swinging the barrel container at a predetermined angle while introducing a processing gas therein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008164840A JP2010007102A (en) | 2008-06-24 | 2008-06-24 | Method for producing aluminum member, and surface nitriding device for aluminum material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008164840A JP2010007102A (en) | 2008-06-24 | 2008-06-24 | Method for producing aluminum member, and surface nitriding device for aluminum material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010007102A true JP2010007102A (en) | 2010-01-14 |
Family
ID=41587915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008164840A Pending JP2010007102A (en) | 2008-06-24 | 2008-06-24 | Method for producing aluminum member, and surface nitriding device for aluminum material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010007102A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014017118A (en) * | 2012-07-09 | 2014-01-30 | Toyota Industries Corp | Power storage device and secondary battery |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004261747A (en) * | 2003-03-03 | 2004-09-24 | Kawasaki Heavy Ind Ltd | Powder surface modifying method and apparatus |
WO2006115242A1 (en) * | 2005-04-25 | 2006-11-02 | Youtec Co., Ltd. | Surface-treated fine particle, surface-treating apparatus, and method for surface-treating fine particle |
-
2008
- 2008-06-24 JP JP2008164840A patent/JP2010007102A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004261747A (en) * | 2003-03-03 | 2004-09-24 | Kawasaki Heavy Ind Ltd | Powder surface modifying method and apparatus |
WO2006115242A1 (en) * | 2005-04-25 | 2006-11-02 | Youtec Co., Ltd. | Surface-treated fine particle, surface-treating apparatus, and method for surface-treating fine particle |
Non-Patent Citations (3)
Title |
---|
JPN6013031709; 奥宮正洋: "In-site 還元法を用いたアルミニウムの高速複合窒化による高機能皮膜の創製(課題番号17560643)平成17年 , 200706, p.47-53,63-65,71-73,80,81,117,153-157 * |
JPN6013031712; M. Okumiya, Y. Tsunekawa,H. Sugiyama, Y. Tanaka, N. Takano, M. Tomimoto: '"Surface modification of aluminum using ion nitriding and barrel nitrididing"' SURFACE&COATINGS TECHNOLOGY 200, 2005, p.35-39 * |
JPN7013002428; Masahiro Okumiya, Hiroshi Ikeda and Yoshiki Tsunekawa: '"Study on Nitriding Mechanism for Aluminum Using Barrel Nitriding"' Solid State Phenomena voL.118, 200612, p.137-141, Trans Tech Publications * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014017118A (en) * | 2012-07-09 | 2014-01-30 | Toyota Industries Corp | Power storage device and secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4201813B2 (en) | Metal electrolytic ceramic coating method, electrolytic solution for metal electrolytic ceramic coating, and metal material | |
JP2008081812A (en) | Method for coating ceramic film on metal, electrolytic solution used for the method, ceramic film and metallic material | |
CN1040811A (en) | Be used for the surface-treated method and composition | |
Fathi et al. | Effects of surface finishing procedures on corrosion behavior of DMLS-AlSi10Mg_200C alloy versus die-cast A360. 1 aluminum | |
US20140308155A1 (en) | Method for polishing alloy material and method for producing alloy material | |
Raj et al. | Comparative study of formation and corrosion performance of porous alumina and ceramic nanorods formed in different electrolytes by anodization | |
CN113061796B (en) | Iron-based ceramic composite material on surface of aluminum alloy, coating and preparation method of iron-based ceramic composite material | |
Kocjan | The hydrolysis of AlN powder–a powerful tool in advanced materials engineering | |
CN102791893B (en) | Particulate aluminium matrix nano-composites and a process for producing the same | |
Cao et al. | Scalable manufacturing of 10 nm TiC nanoparticles through molten salt reaction | |
Zhang et al. | Improvement of high-temperature oxidation resistance of titanium-based alloy by sol–gel method | |
JP2010007103A (en) | Method for producing aluminum member | |
JP2019065376A (en) | Pipe body used under high temperature atmosphere, and method for forming metal oxide layer on inner surface of pipe body | |
CN104073675A (en) | Pretreatment method for silicon carbide granules for aluminum-based composite material | |
JP2004323891A (en) | Method for surface improvement of steel | |
KR101269451B1 (en) | Oxygen atoms-dispersed metal-based composite material and method for manufacturing the same | |
JP2010007102A (en) | Method for producing aluminum member, and surface nitriding device for aluminum material | |
Fatoba et al. | The effects of Sn addition on the microstructure and surface properties of laser deposited Al-Si-Sn coatings on ASTM A29 steel | |
CN110241419B (en) | Titanium alloy material with high-temperature oxidation resistant and wear-resistant coating on surface and application | |
JP2015139863A (en) | Surface-coated cutting tool exhibiting excellent chipping resistance in high-speed intermittent cutting | |
JP5263175B2 (en) | Discharge coating method and green compact electrode used therefor | |
CN1275637A (en) | Diamond-cobalt boron compound wear-resistant composite coating of carbide tool and preparation process thereof | |
JP4537957B2 (en) | Aluminum material having AlN region on surface and method for producing the same | |
Amosov et al. | Fabrication of Al-AlN nanocomposites | |
Cui et al. | Phase transition and atomic competition mechanism of in-situ particle reinforced TixAl/Ti5Si3 composite coating prepared by laser cladding Al-xSi-2Nb alloy powder on Ti6Al4V alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110525 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130612 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130702 |
|
A02 | Decision of refusal |
Effective date: 20140204 Free format text: JAPANESE INTERMEDIATE CODE: A02 |