WO2006112253A1 - 新規なβ-ガラクトシド-α2,3-シアル酸転移酵素、それをコードする遺伝子およびその製造方法 - Google Patents

新規なβ-ガラクトシド-α2,3-シアル酸転移酵素、それをコードする遺伝子およびその製造方法 Download PDF

Info

Publication number
WO2006112253A1
WO2006112253A1 PCT/JP2006/306896 JP2006306896W WO2006112253A1 WO 2006112253 A1 WO2006112253 A1 WO 2006112253A1 JP 2006306896 W JP2006306896 W JP 2006306896W WO 2006112253 A1 WO2006112253 A1 WO 2006112253A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amino acid
sialyltransferase
protein
galactoside
Prior art date
Application number
PCT/JP2006/306896
Other languages
English (en)
French (fr)
Inventor
Takeshi Yamamoto
Hiroshi Tsukamoto
Yoshimitsu Takakura
Original Assignee
Japan Tobacco Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2005/007340 external-priority patent/WO2006112025A1/ja
Application filed by Japan Tobacco Inc. filed Critical Japan Tobacco Inc.
Priority to AU2006238137A priority Critical patent/AU2006238137B2/en
Priority to JP2007521161A priority patent/JP4856636B2/ja
Priority to US11/918,328 priority patent/US8030043B2/en
Priority to CN2006800125443A priority patent/CN101203606B/zh
Priority to CA002608410A priority patent/CA2608410A1/en
Priority to EP06730844.5A priority patent/EP1876234B1/en
Publication of WO2006112253A1 publication Critical patent/WO2006112253A1/ja
Priority to US13/218,267 priority patent/US20120070863A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1081Glycosyltransferases (2.4) transferring other glycosyl groups (2.4.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates

Definitions

  • Novel 0-galatatoside x 2,3_sialyltransferase gene encoding the same, and production method thereof
  • the present invention relates to a novel ⁇ -galatatoside-a 2,3-sialyltransferase, a gene encoding the enzyme, a microorganism producing the enzyme, and a method for producing the enzyme.
  • Glycosyltransferases are enzymes involved in biosynthesis of sugar chains such as glycoproteins and glycolipids in vivo.
  • the reaction products such as glycoproteins and glycolipids (hereinafter referred to as complex carbohydrate sugar chains), have very important functions in vivo.
  • sugar chains are important molecules that function as tags for signal transduction and glycoconjugates between cells in the differentiation and development and between the extracellular matrix in mammalian cells.
  • erythropoietin As described above, a sugar chain has a very important function, and erythropoietin can be mentioned as a specific example of application thereof. Erythropoietin is originally a glycoprotein, but a recombinant erythropoietin protein with an increased number of sugar chains and an improved life span has been produced and is now commercially available.
  • glycosyltransferase genes have been isolated from eukaryotic organisms such as humans, mice, rats, and yeast, and sugars are produced in production systems using CHO cells, E. coli, etc. as host cells. A protein having transferase activity is expressed.
  • glycosyltransferase genes have also been isolated from prokaryotic bacteria, and proteins with glycosyltransferase activity are expressed in recombinant production systems using E. coli. Chemical properties have been revealed.
  • sialic acid is a sugar that is extremely important from the viewpoint of sugar chain function because it is often present at a non-reducing end. It is one of the most highly demanding glycosyltransferases that increase their properties!
  • microorganisms derived from microorganisms belonging to the genus Neisseria, Campylobacter, Hemophilus and Pascellella include a 2,3-sialyltransferase and genes thereof.
  • Have been reported for example, see WO97Z047749, WO 99/0 49051, WO01 / 077314, WO03 / 027297.
  • WO97Z047749 WO 99/0 49051, WO01 / 077314, WO03 / 027297.
  • Patent Document 1 International Publication No. WO97Z047749A Pamphlet
  • Patent Document 2 International Publication No. WO99Z049051A Pamphlet
  • Patent Document 3 International Publication No. WO01Z077314A Pamphlet
  • Patent Document 4 International Publication No. WO03Z027297A Pamphlet
  • Non-patent document 1 Harduin- Lepers, A. et al., Biochem. J., 15; 352 Pt 1: 37-48 (2000)
  • Non-patent document 2 Young- Choon Lee et al., J. Biol. Chem ., 23; 274 (17): 11958-67 (1999)
  • Non-Patent Document 3 Lee, Y-C. Et al "J. Biochem., 216, 377-385 (1993)
  • Non-Patent Document 4 Chang, M-shi et al., Glycobiology, 5, 319-325 (1995)
  • Non-Patent Document 5 Gillespie, W. et al "J. Biol. Chem., 267, 21004-21010 (1992) Disclosure of the Invention
  • the present invention provides a method for producing this enzyme at a high level by gene recombination technology.
  • the present inventors have found that microorganisms belonging to the Vibrionaceae family have converted sialic acid into galactose residues, glucose residues, mannose residues, fucose residues, N-acetylyl in sugar chains.
  • the present invention was completed by finding a novel enzyme that can be transferred to a darcosamine residue or N-acetylyllatatosamine residue (transferred by an X2,3 bond.
  • the present invention is novel) 8— A galactoside ⁇ 2, 3 sialyltransferase and a nucleic acid encoding the same, and a method for producing the sialyltransferase are provided.
  • the present invention provides a novel ⁇ -galatatoside-oc 2,3 sialyltransferase.
  • —galactoside ⁇ 2, 3 sialyltransferase refers to cytidine monophosphate (CMP) —sialic acid such as gallic acid in complex carbohydrate sugar chains or free sugar chains.
  • CMP cytidine monophosphate
  • sialic acid refers to a neuroamic acid derivative belonging to the sialic acid family.
  • acetylacetylneuraminic acid (Neu5Ac), ⁇ -glycolylneuraminic acid (Neu5Gc), 5-damino-5-hydroxyneuraminic acid (KDN), and disialic acid.
  • the / 3 galactoside a 2, 3 sialyltransferase of the present invention is a protein comprising the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 29, or SEQ ID NO: 31.
  • the ⁇ -galactoside ⁇ 2,3 sialyltransferase of the present invention is a protein encoded by a nucleic acid comprising the nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 28 or SEQ ID NO: 30.
  • amino acids 1-21 of SEQ ID NO: 2 are signal sequences.
  • the j8-galatatoside-a 2,3-sialyltransferase of the present invention may be a protein comprising the amino acid sequence of amino acids 22-409 of SEQ ID NO: 2.
  • the ⁇ -galactoside ⁇ 2,3 sialyltransferase of the present invention may be a protein encoded by a nucleic acid comprising the base sequence of bases 64-1230 of SEQ ID NO: 1.
  • the j8-galatatoside-a 2,3-sialyltransferase of the present invention may be a protein comprising the amino acid sequence of amino acids 25-409 of SEQ ID NO: 29.
  • the j8-galactoside a 2,3 sialyltransferase of the present invention may be a protein encoded by a nucleic acid comprising the nucleotide sequence of nucleotides 73-1230 of SEQ ID NO: 28.
  • the j8-galatatoside-a 2,3-sialyltransferase of the present invention may be a protein comprising the amino acid sequence of amino acids 23-402 of SEQ ID NO: 31.
  • the j8-galactoside a 2,3 sialyltransferase of the present invention may be a protein encoded by a nucleic acid comprising the base sequence of bases 67 to 1209 of SEQ ID NO: 30.
  • the present invention also includes a mutant of the above-described ⁇ -galactoside-a 2,3 sialyltransferase of the present invention, which has a galactoside- ⁇ 2,3-sialyltransferase activity. To do. Such a mutant protein is also included in the ⁇ -galatatoside- ⁇ 2,3 sialyltransferase of the present invention.
  • the mutant protein of the present invention includes amino acids 22-409 of SEQ ID NO: 2, SEQ ID NO: 2, amino acids 25-409 of SEQ ID NO: 29, SEQ ID NO: 29, SEQ ID NO: 31, and amino acids of SEQ ID NO: 31.
  • a protein comprising an amino acid sequence comprising a deletion, substitution, insertion and / or addition of one or more amino acids in an amino acid sequence selected from the group consisting of 23-402 And a protein having j8-galactoside-2,3-sialyltransferase activity.
  • the substitution may be a conservative substitution, which is the replacement of a particular amino acid residue with a residue having similar physical and physical characteristics.
  • Non-limiting examples of conservative substitutions include substitutions between aliphatic group-containing amino acid residues such as Ile, Val, Leu or Ala mutual substitutions, Lys and Arg, Glu and Asp, Gin and Asn mutual exchanges. Substitution between polar residues such as substitution is included.
  • Mutations with amino acid deletions, substitutions, insertions, and Z or ligation can be performed on, for example, site-directed mutagenesis (eg, Nucleic Acid Research, Vol. 10, No. 20, p. 6487-6500, 1982, the entirety of which is incorporated herein by reference).
  • site-directed mutagenesis eg, Nucleic Acid Research, Vol. 10, No. 20, p. 6487-6500, 1982, the entirety of which is incorporated herein by reference.
  • “one or more amino acids” means amino acids that can be deleted, substituted, inserted and Z or added by site-directed mutagenesis.
  • the site-directed mutagenesis method is carried out as follows using, for example, a synthetic oligonucleotide primer complementary to the single-stranded phage DNA to be mutated, in addition to the specific mismatch that is the desired mutation. be able to. That is, the synthetic oligonucleotide is used as a primer to synthesize a complementary strand to the phage, and the resulting double-stranded DNA transforms the host cell. Transformed bacterial cultures are plated on agar and single-cell forces containing phage also form plaques. Theoretically, 50% of the new clones contain the phage with mutations as single strands and the remaining 50% have the original sequence.
  • the above site-specific mutation is used.
  • induction there are methods of treating a gene with a mutagen and methods of selectively cleaving the gene, then removing, substituting, inserting or adding selected nucleotides, and then ligating with the next.
  • the mutant protein of the present invention also includes nucleotides 64-1230 of SEQ ID NO: 1, SEQ ID NO: 1, SEQ ID NO: 28, nucleotides 73-1230 of SEQ ID NO: 28, SEQ ID NO: 30, and nucleotides of SEQ ID NO: 30.
  • 67 a protein encoded by a nucleic acid containing a base sequence that hybridizes under stringent conditions or highly stringent conditions to a complementary strand of a base sequence selected from the group consisting of 1209, comprising: j8-galactoside It may be a protein having ⁇ 2,3-sialyltransferase activity.
  • stringent hybridization conditions are as follows: Hybridization at 55 ° C in 0.5% sodium phosphate ⁇ 7.2, ImM EDTA, 7% SDS, 1% BSA After, 55 in 40 mM sodium phosphate buffer ⁇ ⁇ 7.2, ImM EDTA, 5% SDS, 0.5% BSA. C, 2 times 15 minutes, 40 mM sodium phosphate pH 7.2, ImM EDTA, 1% SDS, 55 ° C, 2 times 15 minutes, or Molecular Cloning: A 30% deionized as described in the Laboratory Manual, 2nd edition, Volume 1, pages 1.101-104, Cold Spring Harbor Laboratory Press (1989) (incorporated herein by reference in its entirety).
  • Formamide 0.6 M NaCl, 40 mM sodium phosphate ⁇ 7.4, 2.5 mM EDTA, 1% SDS at 42 ° C, hybridized, then 2 XSSC, 0.1% SDS, 10 minutes at room temperature
  • the condition is that the washing operation is performed twice in the same buffer at 55 ° C for 1 hour, but is not limited thereto.
  • hybridization under highly stringent conditions for example, 0.5M sodium phosphate pH 7.2, ImM EDTA, 7% SDS, 1 After hybridization at 65 ° C in% BSA, 65 in 40 mM sodium phosphate buffer pH 7.2, ImM EDTA, 5% SDS, 0.5% BSA.
  • C 40 mM sodium phosphate, pH 7.2, ImM EDTA, 1% SDS, 65 ° C, washing condition.
  • the mutant protein of the present invention further includes amino acids 22-409 of SEQ ID NO: 2, SEQ ID NO: 2, amino acid 25-409 of SEQ ID NO: 29, SEQ ID NO: 29, SEQ ID NO: 31, and amino acid 23 of SEQ ID NO: 31.
  • a protein comprising an amino acid sequence that has j8-galactoside ⁇ 2,3-sialyltransferase activity.
  • the mutant protein of the present invention comprises SEQ ID NO: 1, nucleotides 64-1230 of SEQ ID NO: 1, SEQ ID NO: 28, nucleotides 73-1230 of SEQ ID NO: 28, SEQ ID NO: 30, and nucleotides of SEQ ID NO: 30.
  • 67 A base sequence selected from the group consisting of 1209 and at least 60% or more, preferably 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more
  • the homology% of amino acid sequences or nucleobase sequences can be determined by visual inspection and mathematical calculation. For example, the% homology between two amino acid sequences is determined by comparing the sequence information using a program such as the genetic information processing software GENETYX Ver. 7 (Genetics) or the FASTA algorithm or BLAST algorithm. can do.
  • Sialyltransferase activity is measured by a known method, for example, the method described in J. Biochem., 120, 104-110 (1996) (incorporated herein by reference in its entirety). You can do it. For example, an enzyme reaction is performed using CMP-NeAc (N-acetylneuraminic acid) as a sugar donor substrate and latatoose as a sugar acceptor substrate, and the amount of silyl lactose as a reaction product is evaluated. Thus, the enzyme activity can be evaluated.
  • CMP-NeAc N-acetylneuraminic acid
  • the method for determining the binding mode of sialic acid transferred to the sugar acceptor substrate is not limited, but includes a method using a pyridylaminated sugar chain, and analysis of the reaction product by nuclear magnetic resonance spectroscopy (NMR). Or any other method known to those skilled in the art.
  • a technique using a pyridyl aminated sugar chain includes performing an enzyme reaction using the pyridyl aminated sugar chain as a sugar acceptor substrate.
  • an enzyme reaction is performed using pyridylated ratatose (Gal
  • the enzyme of the present invention is preferably derived from a microorganism belonging to the family Vibrioaceae. Or from a microorganism belonging to the genus Vibrio spp., Or preferably from a microorganism belonging to the genus Photobacterium spp., More preferably from a microorganism belonging to the species Photobacterium phosphoreum (Photobacterium phosphoreum) It is an enzyme.
  • the enzymatic and physicochemical properties of ⁇ -galactoside-a 2,3 sialyltransferase of the present invention have the above-defined 8-galactoside- ⁇ 2,3-sialyltransferase activity.
  • the optimum ⁇ is in the range of ⁇ 5 to 11, ⁇ ⁇ 5 to 10, ⁇ 5 to 9, or ⁇ ⁇ 5 to 7, and the optimum temperature is 5 to 35 ° C. 10-35. C, 20-35. C, or 20-30.
  • C and molecular weight force DS-PAGE analysis is about 42,000 ⁇ 3, OOODa.
  • the present invention provides a nucleic acid encoding
  • the nucleic acid of the present invention includes amino acids 22-409 of SEQ ID NO: 2, SEQ ID NO: 2, amino acids 25-409 of SEQ ID NO: 29, SEQ ID NO: 29, amino acids 23-4 of SEQ ID NO: 31, and SEQ ID NO: 31.
  • the nucleic acid of the present invention also comprises SEQ ID NO: 1, bases 64-1230 of SEQ ID NO: 1, SEQ ID NO: 28, bases 73-1230 of SEQ ID NO: 28, SEQ ID NO: 30, and bases 67-1209 of SEQ ID NO: 30
  • a nucleic acid comprising a base sequence selected from the group.
  • the nucleic acid of the present invention may be a nucleic acid variant of the above-described nucleic acid and encoding a protein having ⁇ -galactoside- ⁇ 2,3-sialyltransferase activity. Such nucleic acids are also included in the nuclear acid encoding the ⁇ -galactoside-oc 2,3 sialyltransferase of the present invention.
  • nucleic acid variants include amino acids 22-409 of SEQ ID NO: 2, SEQ ID NO: 2, amino acids 25-409 of SEQ ID NO: 29, SEQ ID NO: 29, SEQ ID NO: 31, and amino acids of SEQ ID NO: 31.
  • a protein comprising an amino acid sequence comprising one or more amino acid deletions, substitutions, insertions and / or additions in an amino acid sequence selected from the group consisting of acids 23-402, wherein j8-galactoside- ⁇ 2 , 3-protein with sialyltransferase activity, Is a nucleic acid that encodes
  • Such nucleic acid variants also include SEQ ID NO: 1, bases 64-1230 of SEQ ID NO: 1, SEQ ID NO: 28, bases 73-1230 of SEQ ID NO: 28, SEQ ID NO: 30, and salts of SEQ ID NO: 30.
  • a nucleic acid comprising a base sequence that hybridizes under a stringent condition or a highly stringent condition to a complementary strand of a base sequence selected from the group consisting of groups 67-1209, wherein the nucleic acid is a j8-galactoside 2.
  • stringent conditions or highly stringent conditions are as defined above.
  • Such nucleic acid variants also include SEQ ID NO: 1, bases 64-1230 of SEQ ID NO: 1, SEQ ID NO: 28, bases 73-1230 of SEQ ID NO: 28, SEQ ID NO: 30, and salts of SEQ ID NO: 30
  • the homology of the nucleobase sequence can be determined by the method described above.
  • nucleic acid variants further include amino acids 22-409 of SEQ ID NO: 2, SEQ ID NO: 2, amino acids 25-409 of SEQ ID NO: 29, SEQ ID NO: 29, SEQ ID NO: 31, and SEQ ID NO: 31.
  • a protein comprising an amino acid sequence having a homology of 98% or more or 99% or more, more preferably 99.5% or more, and has j8-galactoside ⁇ 2,3-sialic acid transferase activity It is a nucleic acid that encodes a protein.
  • the homology of amino acid sequences can be determined by the method described above.
  • the present inventors have found that microorganisms belonging to the Vibrio family express a novel 8) -galactoside ⁇ 2,3 sialyltransferase. Therefore, the present invention provides a microorganism that expresses a galatatoside (X 2,3 sialyltransferase.
  • the above-mentioned microorganisms of the Vibrio family are marine bacteria and are separated from seafood or seafood.
  • the photobatterium 'Phosphorum JT-ISH- 467 strain of the present invention is from squid from Ishikawa Prefecture
  • the photobatterium genus JT-ISH-224 strain is from power trout from Ishikawa Prefecture
  • the microorganism of the present invention can be isolated using, for example, a screening method as described below.
  • Seawater, sea sand, sea mud or marine fish and shellfish are used as microbial sources.
  • Seawater, sea sand, and sea mud should be used as inoculum as they are or diluted with sterile seawater.
  • the mucus on the surface is scraped off with a loop, and the inoculation source is obtained by grinding the internal organs in sterile seawater.
  • flat plate media such as Marine Broswager 2216 medium (Betaton's Dickinson) and sodium salt-additive sodium gluten medium (Betaton's Dickinson) and grown under various temperature conditions.
  • liquid culture media such as Marine Broth 2216 medium (Betaton's Dickinson) and sodium salt-added sodium broth medium (Betaton's Dickinson) are used.
  • the culture fluid is also collected by centrifugation. To the collected cells, add 20 mM cacodylate buffer (pH 6.0) containing 0.2% Triton X-100 (manufactured by Kanto Chemical Co., Ltd.), and suspend the cells. This cell suspension is sonicated under ice cooling to disrupt cells.
  • sialic acid transfer activity can be measured according to a conventional method to obtain a strain having sialic acid transfer activity.
  • the photobatterium 'phosphophore JT-ISH-467 strain, the photobacterium genus JT-ISH-224 strain, and the Vibrio genus JT-FAJ-16 strain of the present invention also use the above screening method.
  • Example 1 details the bacteriological and physiological biochemical properties of the strains obtained above and the identification of the species by base sequence analysis of the 16S rRNA gene.
  • the Photobacterium phosphoreum JT—ISH— 467 strain was designated as NITE BP- 88 on March 14, 2005 as Photobacterium sp.
  • JT— ISH— 224 shares became NITE BP-87 as of March 11, 2005 and Vibrio sp.
  • JT—FAJ—16 shares became independent as NITE BP-98 as of May 23, 2005. It is deposited with the National Institute of Tecnnology and Evaluation, Patent Microorganisms Dep ositary (KPM) 2-5-8 Kisarazu Kazusa, Chiba, Chiba, Japan.
  • the j8-galactoside 2,3 sialyltransferase of the present invention is derived from a microorganism belonging to the family Vibrioaceae, and has the ability to produce j8-galactoside ⁇ 2,3-sialyltransferase. It is obtained by culturing microorganisms in the medium to produce
  • any strain can be used as long as it belongs to the Vibrio family and has the ability to produce ⁇ -galatatoside 1a2,3 sialyltransferase.
  • microorganisms belonging to the family Vibrio those belonging to the genus Vibrio are preferred, those belonging to the genus Photobacterium are preferred, and those belonging to the photobacterium phosphorous are more preferred.
  • Examples of microorganisms used in the method of the present invention include Photobatarum. Phosphorum JT-ISH-467 strain (Deposit No. NITE BP-88), Photobacterium sp. JT-ISH-224 strain (Deposit No.
  • a medium used for culturing the microorganism a medium containing a carbon source, a nitrogen source, an inorganic substance and the like that can be used by the microorganism is used.
  • the carbon source include peptone, tryptone, casein degradation product, meat extract, glucose and the like, and preferably peptone is used.
  • yeast extract is preferably used as the nitrogen source.
  • Salts include sodium chloride, iron citrate, magnesium chloride, sodium sulfate, calcium salt, potassium salt, potassium carbonate, sodium carbonate, sodium bicarbonate, potassium bromide, strontium chloride, sodium borate, sodium silicate.
  • Sodium fluoride, ammonium nitrate, disodium hydrogen phosphate and the like are preferably used in appropriate combinations.
  • Marine broth 2216 medium (Betaton Dickinson) containing the above components may also be used. Furthermore, it is also possible to use artificial seawater that contains the above-mentioned salts in a moderate amount and a medium to which peptone, yeast extract, etc. are added.
  • the culture conditions vary slightly depending on the composition of the culture medium. For example, when cultivating the Photobatterium 'Phosphorum JT-ISH-467 strain, the culture temperature is 10 to 28 ° C, preferably 20 to 25 ° C. The culture time is 8 to 48 hours, preferably 16 to 24 hours.
  • the target enzyme is present in the microbial cells, any known method of disrupting cells such as ultrasonic disruption, French press disruption, glass bead disruption, dynomill disruption, etc. may be used.
  • the target enzyme is separated and purified from the crushed microbial cells.
  • a preferable cell disruption method in the method of the present invention is an ultrasonic disruption method.
  • the obtained cell lysate supernatant is transferred to a commercially available anion exchange column, cation exchange column, gel filtration column, hydroxyapatite column, CD P Purify electrophoretically to a single band by appropriately combining column chromatography such as xanolamine agarose column, CMP hexanolamine agarose column, hydrophobic column, and native PAGE. Can do.
  • the present invention includes a nucleic acid encoding j8-galactoside-2,3-sialyltransferase
  • An expression vector and a host cell containing the expression vector are provided.
  • the present invention also provides a recombinant
  • ⁇ -galatatoside-a 2,3 sialyltransferase protein of the present invention a mammalian, microorganism, virus, or insect gene is added to an expression vector selected according to the host to be used.
  • Isotropy Inserts a nucleic acid sequence that encodes a j8-galactoside ⁇ 2,3 sialyltransferase operably linked to an appropriate induced transcriptional or translational regulatory nucleotide sequence.
  • regulatory sequences include a transcriptional promoter, an operator or enzyme, an mRNA ribosome binding site, and appropriate sequences that control the initiation and termination of transcription and translation.
  • the nucleic acid sequence encoding ⁇ -galatatoside-a 2,3 sialyltransferase inserted into the vector of the present invention is nucleotide 163 of SEQ ID NO: 1, nucleotide 172 of SEQ ID NO: 28, or SEQ ID NO:
  • a leader sequence corresponding to 30 bases 166 may or may not be included, and may be replaced with a leader sequence derived from another biological source. By replacing the leader sequence, the expression system can be designed to secrete the expressed protein out of the host cell.
  • the recombinant / 3-galatatoside a 2, 3 sialyltransferase protein of the present invention encodes a nucleic acid encoding the enzyme, followed by a His tag, a FLAG TM tag, a dartathione S-transferase, and the like. It is also possible to express as a fusion protein by inserting a nucleic acid linked to the nucleic acid to be inserted into a vector. By expressing the enzyme of the present invention as such a fusion protein, purification and detection of the enzyme can be facilitated.
  • Suitable host cells for expression of ⁇ -galactoside-a 2,3 sialyltransferase protein include prokaryotic cells, yeast or higher eukaryotic cells. Suitable cloning and expression vectors for use in bacterial, fungal, yeast, and mammalian cell hosts are described, for example, in Pou Stamm et al., Cloning Vectors: A Laboratory Manual, Elsevier, New York, (1985) (cited in its entirety. (Incorporated in the specification). [0052] Prokaryotes include gram negative or gram positive bacteria such as E. coli or Bacillus subtilis. When a prokaryotic cell such as E.
  • ⁇ -galactoside ⁇ 2,3-sialyltransferase protein is used to facilitate the expression of recombinant polypeptides in prokaryotic cells. You may include it. This ⁇ -terminal methionine can be removed from the recombinant j8-galactoside ⁇ 2,3 sialyltransferase protein after expression.
  • Expression vectors used in prokaryotic host cells generally contain one or more phenotypically selectable marker genes.
  • a phenotypically selectable marker gene is, for example, a gene that confers antibiotic resistance or confers autotrophic requirements.
  • Examples of expression vectors suitable for prokaryotic host cells include commercially available plasmids such as pBR322 (ATCC37017) or those derived therefrom. Since pBR322 contains genes for ampicillin and tetracycline resistance, it is easy to identify transformed cells. DNA sequence of nucleic acid encoding appropriate promoter and j8-galactoside ⁇ 2,3 sialyltransferase. This DNA is inserted into this pBR322 vector.
  • Other commercially available vectors include, for example, ⁇ 223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and pGEMl (Promega Biotech., Madison, Wisconsin, USA).
  • Promoter sequences commonly used in expression vectors for prokaryotic host cells include ta c promoter, ⁇ -lactamase (besilinase) promoter, ratatopromoter (Chang et al., Nature 275: 615, 1978; and Goeddel et al., Nature 281: 544, 1979, which is incorporated herein by reference in its entirety.
  • Recombinant / 3 galactoside a 2, 3 sialyltransferase protein may also be expressed in a yeast host.
  • the genus Saccharomyces eg, S. cere visiae
  • other yeast genera such as Pichia or Kluyveromyces may be used.
  • a yeast vector contains two sequences of origin of replication from a yeast plasmid, an autonomously replicating sequence (ARS), a promoter region, a sequence for polyadelphia, a sequence for transcription termination, and a selectable marker gene. There are many cases.
  • Recombinant ⁇ -galactoside-2,3 sialic acid transfer using a yeast factor leader sequence Secretion of the transfer enzyme protein can also be performed.
  • leader sequences are also known that are suitable for promoting the secretion of recombinant polypeptides from yeast hosts! Methods for transforming yeast are described, for example, in Hinnen et al., Proc. Natl. Acad. Sci. USA, 75: 1929-1933, 1978 (incorporated herein by reference in its entirety).
  • Recombinant ⁇ -galactoside ⁇ 2,3-sialyltransferase protein can also be expressed using mammalian or insect host cell culture systems. Mammalian origin cell lines can also be used. Transcriptional and translational control sequences for mammalian host cell expression vectors can also obtain viral genomic power. Commonly used promoter sequences and enhancer sequences can induce poliovirus, adenovirus 2 and other forces. SV40 viral genome, eg, SV40 origin, early and late promoters, enhancers, splice sites, and polyadenylation sites for the expression of structural gene sequences in mammalian host cells using induced DNA sequences Other genetic elements may be given. Vectors for use in mammalian host cells can be constructed, for example, by the method of Okayama and Berg (Mol. Cell. Biol, 3: 280, 1983, which is incorporated herein by reference in its entirety). .
  • One method of producing the / 3 galactoside a 2,3 sialyltransferase protein of the present invention comprises a nucleic acid sequence encoding a j8-galactoside ⁇ 2,3-sialyltransferase protein. Culturing host cells transformed with the expression vector under conditions under which the protein is expressed. The 8-galactoside ex 2,3 sialyltransferase protein is then recovered from the culture medium or cell extract, depending on the expression system used.
  • the procedure for purifying the recombinant ⁇ -galactoside-oc 2,3 sialyltransferase protein is appropriately selected according to the type of host used and whether or not the protein of the present invention is secreted into the culture medium.
  • the procedure for purifying thread-replaceable j8-galactoside ⁇ 2,3 sialyltransferase protein includes anion exchange column, cation exchange capacity ram, gel filtration column, hydroxyapatite column, CDP hexanolamine. Column chromatography such as agarose column, CMP hexanolamine agarose column, hydrophobic column, and native PAGE, etc., or a combination thereof are included.
  • Recombinant j8-galactoside- 2,3 sialyltransferase also facilitates purification
  • a purification method by affinity chromatography may be used. For example, when a histidine tag, FLAG TM tag, or dartathon-S transferase (GST) is fused, a Ni-NT A (bitrimethylacetic acid) column, a column linked with an anti-FLAG antibody, Alternatively, it can be purified by affinity chromatography using a column coupled with dartathione.
  • Recombinant / 3 galactoside-a 2,3 sialyltransferase may be purified by electrophoresis until it becomes a single band. However, since a partially purified product has sufficient activity, Galactoside-2,3 sialyltransferase may be a purified product or a partially purified product.
  • the present invention provides an antibody against the ⁇ -galatatoside- (X 2,3 sialyltransferase protein of the present invention.
  • the antibody of the present invention comprises ⁇ galactoside (X 2,3 sialyltransferase of the present invention).
  • a protein, or a fragment thereof, where the j8-galactoside ⁇ 2,3 sialyltransferase fragment of the present invention is at least in the mino acid IJ of the enzyme. 6 Fragments having a sequence comprising at least 30 amino acids, at least 10 amino acids, at least 20 amino acids, or at least 30 amino acids.
  • the antibody may be the j8-galactoside-a 2,3 sialyltransferase of the present invention or a fragment thereof used in the art for the production of antibodies, for example, but not limited to, It may be prepared by immunizing mice, rats, rabbits, guinea pigs, goats and the like.
  • the antibody may be a polyclonal antibody or a monoclonal antibody.
  • An antibody can be produced based on antibody production methods well known to those skilled in the art.
  • the antibody of the present invention can be used to recover the ⁇ -galatatoside-a 2,3 sialyltransferase protein of the present invention by affinity purification.
  • the antibody of the present invention can also be used to detect the j8-galatatoside-a 2,3 sialyltransferase protein of the present invention in an assay such as Western blotting or ELISA.
  • the present invention relates to a sialylic sugar chain utilizing the sialyltransferase of the present invention.
  • a manufacturing method is provided.
  • the method of the present invention is a method for producing a sialyl sugar chain,
  • sialylic sugar chain refers to a sugar chain having sialic acid.
  • the sialic acid of the sugar donor substrate is transferred to the sugar acceptor substrate by the sialic acid transfer reaction by the enzyme of the present invention, and a sialyl sugar chain is obtained.
  • the sugar donor substrate that can be used in the method of the present invention is not particularly limited as long as it is a substrate that can be a sugar donor in the sialyltransferase reaction by the sialyltransferase of the present invention.
  • a preferred sugar donor substrate that can be used in the method of the present invention is CMP sialic acid, more preferably CMP-NeAc.
  • the sugar acceptor substrate that can be used in the method of the present invention is not particularly limited, but includes a galactose residue, a glucose residue, a mannose residue, a fucose residue, an N-acetylylcolacamine residue, or an N-acetyl. It is a complex carbohydrate sugar chain or oligosaccharide having a galatatosamine residue or the like, or a monosaccharide such as galactose, glucose, mannose, fucose, N-acetylyldarcosamine or N-acetylethylgalatatosamine.
  • the complex carbohydrate is a general term for biomolecules including carbohydrates, and includes glycoproteins, proteodalycans, and glycolipids.
  • the complex carbohydrate sugar chain may mean a complex carbohydrate itself such as glycoprotein, proteodalycan, glycolipid, or the sugar chain part.
  • the oligosaccharide means a saccharide in which two or more monosaccharides are linked by a glycosidic bond. There is no particular limitation on the number of monosaccharides constituting the oligosaccharide.
  • the reducing end of monosaccharide or oligosaccharide may be modified with alkyl group, pyridylamino group, benzoyl group, benzyl group, para-trifluoro group, 4-methyl umbelliferyl group, etc. .
  • the solution containing the enzyme of the present invention, a sugar donor substrate, and a sugar acceptor substrate is a buffer solution, such as, but not limited to, an acetate buffer, a force codylate buffer, Phosphate buffer, TAPS buffer, Bis—Tris buffer, Tris buffer, C Includes HES buffer, CAPS buffer, MOPS buffer, MES buffer, ADA buffer, PIPES buffer, ACES buffer, MOPSO buffer, HEPES buffer, and so on.
  • a buffer solution such as, but not limited to, an acetate buffer, a force codylate buffer, Phosphate buffer, TAPS buffer, Bis—Tris buffer, Tris buffer, C Includes HES buffer, CAPS buffer, MOPS buffer, MES buffer, ADA buffer, PIPES buffer, ACES buffer, MOPSO buffer, HEPES buffer, and so on.
  • the pH of the solution containing the enzyme of the present invention, the sugar donor substrate, and the sugar acceptor substrate is not particularly limited as long as the pH of the enzyme of the present invention has enzyme activity, but preferably pH 5 to ll, pH 5 to 10, pH 5 to 9, pH 5 to 7
  • the temperature at which the sialic acid transfer reaction is performed is not particularly limited as long as the enzyme of the present invention has enzyme activity, but preferably 5 to 35 ° C, 10 to 35 °. C, 20 to 35 ° C, and 20 to 30 ° C.
  • the step of obtaining a sialyl sugar chain generated from a reaction solution can be performed using a technique for purifying complex carbohydrate sugar chains and oligosaccharides known to those skilled in the art.
  • chromatograms include reverse phase chromatography, gel filtration chromatography, ion exchange chromatography, hydroxyapatite chromatography, affinity take-matography, lectin chromatography, activated carbon chromatography, silica gel chromatography, etc.
  • examples of other methods include, but are not limited to, sugar chain fractionation / concentration by ultrafiltration, sugar chain crystallization, and combinations thereof.
  • the enzyme of the present invention can transfer sialic acid to many types of sugar receptor substrates through ⁇ 2,3 bonds, as shown in Examples 4, 11, 12, and 13 described later. is there.
  • the method for producing a sialyl sugar chain of the present invention makes it possible to easily produce a powerful sugar chain that cannot be produced by a known sialyltransferase having generally high substrate specificity.
  • there are no known enzymes that have an activity to transfer sialic acid efficiently to sugars such as ⁇ -galactoviranoside, ⁇ -gnorecopyranoside, ⁇ -mannobilanoside, ⁇ -fucosinobylanoside, ⁇ -fucosinopyranoside, etc. Therefore, the method of the present invention provides an easy method for producing a sialyl sugar chain in which sialic acid is added to these sugars.
  • the present invention has an important function in vivo by providing a novel ⁇ -galactoside-a 2,3 sialyltransferase and a nucleic acid encoding the same.
  • sialic acid is often present at the non-reducing end of complex carbohydrate chains in vivo and is an extremely important sugar from the viewpoint of sugar chain function.
  • One of the enzymes with the highest demand, and the provision of the novel sialyltransferase of the present invention meets such a high demand.
  • FIG. 1-1 shows the sample (inactivated crude enzyme) in the experiment for confirming the enzymatic activity of recombinant j8 galactoside ⁇ 2,3 sialyltransferase derived from JT-ISH-467.
  • FIG. 3 is a diagram showing the results of HPLC analysis of a liquid, pyridylaminolated ratatose and pyridylamino-a 2,3 sialyllatatose (mixture of pyridylaminated 3′-sialyllatatose).
  • Fig. 1-2 shows the HPLC analysis results of the confirmation experiment of the enzyme activity of recombinant j8 galactoside ⁇ 2,3 sialyltransferase derived from JT-ISH-467 strain.
  • FIG. 3 is a diagram showing the results of HPLC analysis of a reaction using a non-sialic acid-containing reaction solution.
  • Fig. 2 shows photobacterium 'phosphorum JT-ISH-467 strain-derived, Photobataterium JT-ISH-224 strain-derived, and Vibrio genus 71-? -0 derived from 16 strains; 2
  • FIG. 3 is a diagram showing an alignment between amino acid sequences of protein PM0188 (AAK02272) of.
  • the underline for the ⁇ 2,3 sialyltransferase from JT-ISH-467 strain shows the amino acid sequence determined for purified protein.
  • Fig. 3-1 is a graph showing the effect of reaction pH on the enzyme activity of j8 galactoside ⁇ 2,3 sialyltransferase produced by JT-ISH-467 strain.
  • the black square, black circle, black triangle, black rhombus, white square, and white circle plots in the graph are in the acetate buffer, force codylate buffer, phosphate buffer, TAPS buffer, CHES buffer, and CAPS buffer, respectively. The result measured by is shown.
  • Fig. 3-2 shows the activity of recombinant
  • Fig. 3-2 Recombination from T-ISH-467 strain, Fig. 3-2 Recombination from T-ISH-224 strain, and Fig. 3-2d from T-FAJ-16 strain j8-Galactoside ⁇ 2, 3 is a graph showing the results for sialyltransferases.
  • the black square, black circle, black triangle, black diamond, white square, and white circle plots in the graph are acetate buffer, force codylate buffer, phosphate buffer, TAPS knocker, CHES buffer, and CAPS, respectively. The result measured in the buffer is shown.
  • Fig. 4-1 is a graph showing the effect of reaction temperature on the enzyme activity of j8-galatatoside ⁇ 2,3 sialyltransferase produced by JT-ISH-467.
  • Fig. 4-2 is a graph showing the effect of reaction temperature on the enzyme activity of recombinant
  • Figure 4 Recombinant from 2ai T—ISH—467, FIG. 4—2bi from T—ISH—224, and FIG. 4—2d from T—FAJ—16 strain j8—Galactoside ⁇ 2, 3— 2 is a graph showing the results for sialyltransferase.
  • Example 1 ⁇ -galactoside ⁇ 2.3 Screening of microorganisms expressing sialyltransferase and identification of strains
  • Seawater, sea sand, sea mud or seafood was used as the inoculum.
  • This inoculum was applied on a plate medium composed of Marine Brossagger 2216 medium (Betaton Dickinson) to obtain microorganisms that grew at 15 ° C, 25 ° C or 30 ° C.
  • the obtained microorganisms were purely cultured, and then each microorganism was cultured using a liquid medium composed of Marine Broth 2216 medium (Betaton Dickinson). After the microorganisms grew sufficiently, the cells were collected from the culture solution by centrifugation.
  • the collected cells were supplemented with 20 mM cacodylate buffer (pH 6.0) containing 0.2% Triton X-100 (manufactured by Kanto Chemical Co., Ltd.) to suspend the cells.
  • the cell suspension was sonicated under ice cooling to disrupt the cells.
  • this cell lysate as an enzyme solution, the sialic acid transfer activity was measured to obtain bacterial strains having sialic acid transfer activity [Dic-ISH-467, JT-I SH-224, and JT-FAJ-16. It was. JT-ISH-467 shares From the force skin, JT-ISH-224 strain was obtained from the visceral viscera and JT-FAJ-16 strain from the visceral viscera.
  • Sialic acid transfer activity was measured by the method described in J. Biochem., 120, 104-110 (1996) (incorporated herein by reference in its entirety). Specifically, the sugar donor substrate CMP-NeuAc (70 nmol, was labeled NeuAc at 14 C CMP-containing NeuAc 25000cpm, 356cpmZnmol. NeuAc represents N ⁇ cetyl neuraminic acid), lacto one as the sugar acceptor substrate (1 .25 mol), NaCl was added to a concentration of 0.5 M, and the enzyme reaction was performed using the reaction solution (30 IX 1) containing the enzyme prepared by the method described above. . The enzyme reaction was performed at 25 ° C for 10 to 30 minutes. After completion of the reaction, 1.97 ml of 5 mM phosphate buffer (pH 6.8) is added to the reaction solution, and this solution is added to Dowexl X 8 (PO 3 -Four
  • the morphology of the cells is Neisseria gonorrhoeae, and the size is 0.7 to 0.8 / z m X l.
  • the identification analysis of the 16S rRNA gene based on the nucleotide sequence has a very large error with respect to the distance between closely related organisms at the species level. It is. Therefore, the species was determined using the DNA-DNA hybridization test method, which is generally used for quantitative evaluation of the affinity of strains within a genus. JT
  • JT-ISH-467 strain was identified as Photobacterium phosphoreum.
  • the DNA-DNA hybridization test was conducted using the “Microbial Classification. Identification Experiment Method” (Kenichiro Suzuki, Akira Hiraishi, Akira Yokota, Springer, Tokyo, Tokyo, September 2001). The whole was incorporated herein by reference) and was performed by a photopiotin labeling method using a microplate.
  • the morphology of the cells is Neisseria gonorrhoeae, and the size is 0.7 to 0.8 / z m X l. 0 to 1.5 m.
  • JT-ISH-224 strain belongs to Vibrioaceae as a result of morphological observation and physiological 'biochemical property test such as growth on marine agar, Neisseria gonorrhoeae, Gram staining, glucose fermentative degradability, OZ129 sensitivity It was shown that. Furthermore, the DNA base sequence of the 16S rRNA gene of JT-ISH-224 strain is the most homologous to the 16S rRNA gene sequence of the Photobacterium phosphoreum reference strain ATCC11040.
  • the homology rate is 99.1%, which is highly homologous to the 16S rRNA gene sequence of the reference strain ATCC 51760 of Photobacterium 'Pholiobacterium iliopiscarium'. It became power. From these results, it became clear that the JT-ISH-224 strain is a microorganism belonging to the genus Photobacterium sp.
  • the morphology of the cells is Neisseria gonorrhoeae, and the size is 0.7 to 0.8 / z m X l. 2 to 1.5 m.
  • JT-FAJ-16 strain is vibrio as a result of morphological observation and physiological 'biochemical property test such as growth on malinagager, Neisseria gonorrhoeae, Gram staining, glucose fermentative degradation, OZ129 sensitivity. It was shown to belong to the family. Furthermore, the DNA base sequence of the 16S rRNA gene of JT-FAJ-16 strain is the most homologous to the sequence of the 16S rRNA gene of Vibrio rumoiensis reference strain, and its homology rate is 99.5% This became clear. From these results, it became clear that the JT-FAJ-16 strain is a microorganism belonging to the genus Vibrio sp.
  • Example 2 Extraction and purification of ⁇ -galactoside, 2.3 sialyltransferase from Photobacterium phosphoreum TT—TSH-467 Photobacteria subcultured on Maringar 2216 plate medium Cells were collected from a colony of Mufosphorum JT-ISH-467 strain in a loop, inoculated into 10 ml of Marine Broth 2216 liquid medium, and cultured with shaking at 25 ° C and 180 rpm for 8 hours.
  • the main culture was performed according to the following procedure. Marine broth 2216 medium containing 20 gZL of Bacto Peptone and 4 gZL of Bacto Yeast Extract was placed in a 1000 ml flask with a bump, and sterilized in an autoclave (121 ° C., 15 minutes). 36 of these were prepared (10.8 L in total). Each flask was inoculated with 10 ml of the preculture and cultured with shaking at 25 ° C and 180 rpm for 24 hours. The culture solution was centrifuged, and the cells were collected. Approximately 60 g was obtained by wet weight.
  • the cells were suspended in 990 ml of 20 mM cacodylate buffer (pH 6.0) containing 0.2% Triton X-100 and 3M sodium chloride, and sonicated under ice cooling.
  • the cell disruption solution Centrifugation was performed at 4 ° C and 100,000 8 for 1 hour to obtain a supernatant.
  • the obtained supernatant was placed in a dialysis membrane tube and dialyzed in 20 mM cacodylate buffer (pH 6.0) containing 0.2% Triton X-100 until the salt sodium chloride concentration reached about 20 mM at 4 ° C. .
  • a precipitate formed in the solution, so the precipitate was removed by centrifugation at 100,000 X g for 1 hour at 4 ° C.
  • This crude enzyme solution is called HiPrep 16/10 DEAE FF (manufactured by Amersham Biosciences) equilibrated with 20 mM cacodylate buffer ( ⁇ 6.0) containing 0.2% Triton X-100 surfactant.
  • the sample was adsorbed on an anion exchange column and eluted from a 20 mM cacodylate buffer (pH 6.0) containing 0.2% Triton X-100 into the same buffer containing 1 M sodium chloride by a linear gradient method. As a result, a fraction having enzyme activity eluted at a sodium chloride concentration of about 0.25 M was recovered.
  • the collected fraction was diluted with 20 mM phosphate buffer (pH 6.0), and was previously equilibrated with 20 mM phosphate buffer (pH 6.0) containing 0.2% Triton X-100. (Bio-Rad) and 20 mM phosphate buffer (pH 6.0) containing 0.2% Triton X-100 to 500 mM phosphate buffer (pH 6. containing 0.2% Triton X-100). Elute to 0) by the linear gradient method. As a result, a fraction having an enzyme activity eluted at a phosphate buffer concentration of around 125 mM was collected.
  • This fraction was adsorbed on MonoQ 5/50 GL (Amersham Biosciences) anion exchange ram, and 1M salt solution from 20 mM cacodylate buffer (pH 6.0) containing 0.2% Triton X-100. The elution was carried out by the linear concentration gradient method in the same buffer containing sodium salt. As a result, a fraction having enzyme activity eluted at a sodium chloride concentration of about 300 mM was collected.
  • This fraction was diluted 10-fold with 20 mM cacodylate buffer (pH 7.0) containing 0.2% Triton X-100 and adsorbed onto a MonoQ 5/50 GL (Falmacia) anion exchange column. It was.
  • the 20 mM cacodylate buffer solution (pH 7.0) containing 0.2% Triton X-100 was eluted from the same buffer solution containing 1M sodium chloride by the linear concentration gradient method.
  • a fraction having an enzyme activity eluted at a sodium chloride concentration of about 300 mM was collected.
  • This fraction was added to 20 mM Kakoji containing 0.2% Triton X-100 and 0.2M sodium chloride.
  • the solution was diluted 2-fold with a Rayleigh buffer ( ⁇ 7.0) and fractionated on a HiLoad 16/60 Superdex 200 prep grade (Amersham Biosciences) gel filtration column. Dissolved in 20 mM cacodylate buffer (pH 7.0) containing 0.2% Triton X-100 and 0.2 M sodium chloride.
  • Example 3 Determination of Sialic Acid Binding Mode Using Pyridylaminated Sugar Chain Using the enzyme obtained in Example 2, an enzymatic reaction was performed using the pyridylaminated sugar chain as a sugar acceptor substrate.
  • pyridylaminated sugar chain pyridylaminated latatose (Gal
  • Elution solution A (lOOmM acetic acid-triethylamine, pH 5.0) and elution solution B (0.5%, lOOmM acetic acid-triethylamine, pH 5.0 containing n-butanol) were used for elution of pyridylaminoglycan.
  • the pyridylamino sugar chain was sequentially eluted by the linear concentration gradient method of 30-100% eluate B (0-35 min) and 100% eluent B (35-50 min).
  • the analysis was performed under the following conditions (flow rate: lmlZmin, column temperature: 40 ° C., detection: fluorescence (Ex: 320 nm, Em: 400 nm)).
  • pyridylaminolated latatoska is also synthesized with pyridylamino ⁇ (X 2,3 sialyl latatos (pyridylaminated 3, mono-sialyl latatos). became.
  • Example 4 Transfer of sialic acid to monosaccharide disaccharide using ⁇ -galactoside ⁇ 2.3 sialic acid transferase produced by TT-ISH-467 strain (production of sialic acid-containing sugar chains)
  • the sugar donor substrate CMP— “C NeuAc (400 nmol (15600 cpm), final concentration in the reaction solution: 16.6 mM), various sugar acceptor substrates (10; ⁇ ⁇ ⁇ 1, reaction) Prepare a reaction solution consisting of final concentration in solution: 200 mM), sialyltransferase (0.13 mU), and NaCl (final concentration in reaction solution: 500 mM), and react at 25 ° C for 4 hours.
  • the monosaccharide disaccharide used as the sugar acceptor substrate is methyl-oc-D-galataviranoside (Gal-a-OMe), methyl-j8-D galactopyranoside (Gal- ⁇ - OMe;), N-acetylyl latatosamine (GalNAc), ratatose (Gal- ⁇ 1,4-Glc), acetylacetyllactosamine (Gal- ⁇ 1,4-GlcNAc), methyl 13-D-galatatopyrano
  • syl ⁇ 1, 3 — ⁇ acetyl darcosaminide (Gal— ⁇ 1, 3-GlcNAc- ⁇ -OMe) were used
  • sialic acid was transferred to the 6 types of monosaccharides and disaccharides used as sugar receptor substrates this time (see Table 2). Among the saccharides used as sugar acceptor substrates this time, it is clear that the most sialic acid has been transferred to N-acetyllactosamine. It was.
  • Example 5 Produced by Photobacterium 'phosphorum TT-ISH-467 strain—Galactosi — ⁇ 2.3-sialyltransferase-encoding gene Shionogi R sequence analysis and analysis of the gene Shape change
  • Genomic DNA was recovered by ethanol precipitation and dissolved in TE 400 ⁇ 1.
  • a centrifuge tube (Hitachi 40mm), using a gradient preparation device, from 40% sucrose buffer (20mM Tris pH8.0, 5mM EDTA pH8.0, 1M NaCl) and 10% sucrose buffer, A 40-10% gradient was prepared, and the partially degraded DNA solution was layered thereon. 26,000 rpm, 20 using an ultracentrifuge (SCP70H, rotor: SRP28SA manufactured by Hitachi, Ltd.). C, centrifuged for 15 hours. After centrifugation, a hole was made with a 25 G needle at the bottom of the tube, and lm 1 was collected from the liquid at the bottom.
  • the culture solution was cultured until it reached 5, and 1 200 ml of this culture solution was added, and an appropriate amount of the phage solution was added, followed by incubation at 37 ° C for 15 minutes.
  • 4 ml of NZY top agarose kept at 48 ° C was added, mixed, and plated on a NZ Y agar plate (plastic petri dish with a diameter of 9 cm). The plate was incubated overnight at 37 ° C, the number of plaques was counted, and titer was calculated.
  • the library size was calculated to be about 300,000 pfu (plaque forming unit).
  • SDS-polyacrylamide gel electrophoresis was performed on a 20% gradient gel (made by Sumi). After electrophoresis, the enzyme was adsorbed on a PVDF membrane, and the amino acid sequence analyzer determined the amino acid sequence of the 10 amino acids on the amino terminal side. As a result, the terminal amino acid sequence of the enzyme was XNSDSKHNNS (SEQ ID NO: 4).
  • the internal amino acid sequence was determined as follows. SDS-polyacrylamide gel electrophoresis of the sialyltransferase using 5-20% gradient gel went. After staining the gel, the band of interest was excised, added with Tris buffer (pH 8.5) containing lysyl endobeptidase, and treated at 35 ° C for 20 hours. Thereafter, the entire amount of the solution was subjected to reverse phase HPLC (column: Symmetry C18 3.5 m) to separate fragment peptides.
  • the amino acid sequence analyzer revealed that the internal amino acid sequence of the enzyme had SLDSMI LTNEIK (SEQ ID NO: 5), FYNFTGFNPE (SEQ ID NO: 6) and GHPSATYNQQII DAHNMIEIY (SEQ ID NO: 7).
  • Y is thymine or cytosine
  • w is thymine or adenine
  • S is cytosine or guanine
  • R is adenine or guanine
  • N is adenine , Guanine, cytosine or thymine
  • I represents inosine
  • H is thymine, cytosine or adenine
  • Y is thymine or cytosine
  • R represents adenine or guanine
  • D represents adenine, guanine or thymine
  • represents adenine, guanine, cytosine or thymine
  • N represents adenine, guanine, cytosine or thymine, respectively.
  • JT ISH— which is extracted and purified in (1) above, is used as a probe for screening the library by performing PCR using the genomic DNA of the JT-ISH-467 strain in a vertical form. Partial length DNA of the a 2, 3 sialyltransferase gene derived from 467 strains was amplified.
  • Primer combination consists of 3 primers derived from N-terminal sequence, 9 combinations of 467inlFW (SEQ ID NO: 12), 467inlFW2 (SEQ ID NO: 14) or 467in2FW (SEQ ID NO: 16), 467inlRV (SEQ ID NO: 11) Or two combinations of 467inlRV2 (SEQ ID NO: 13) and 467in2FW (SEQ ID NO: 16), and two combinations of 467in2RV (SEQ ID NO: 15) and 467inlFW (SEQ ID NO: 12) or 467inlFW2 (SEQ ID NO: 14), for a total of 13 combinations is there.
  • PCR reaction was performed as follows.
  • the PCR product derived from a specific combination with high amplification efficiency (467N—RV3 (SEQ ID NO: 10) and 467inlFW (SEQ ID NO: 12) was transferred to the vector pCR2.1 TOPO (Invitrogen). I was crawling. The ligation reaction followed the instructions attached to the vector kit. Introducing DN A with elect port Poresho down method E. TBI, a conventional method (Sambrook et al.
  • the translated amino acid sequences are the internal amino acid sequences determined directly from the above purified enzymes: FYNFTGFNPE (SEQ ID NO: 6) and SLDSMILTNAI Including the entire K (SEQ ID NO: 5), it contained a terminal amino acid sequence: XNSDSKHNNS (SEQ ID NO: 4) and an internal amino acid sequence: GHPSATYNQQIIDAHNMIEIY (SEQ ID NO: 7).
  • the cloned DNA is part of the ⁇ 2, 3-sialyltransferase gene derived from the photobacterium phosphophore JT-ISH-467 strain, and the photobatterium of the present invention.
  • the DNA fragment which is also part of the 2,3-sialyltransferase gene derived from the photobatterium 'phosphophore JT-ISH-467 strain cloned in (2) above, is used as a restriction enzyme for pCR2. 1 T OPO vector. It was cut out with EcoRI, and using this as a probe, the genomic DNA library derived from the photobacterium 'phosphorum JT-ISH-467 strain prepared in (1) above was screened. About 300-500 pfu of phage was plated with the host fungus XL 1 -blue MRA (P2) on a 9 cm diameter round petri dish according to the instructions of the ⁇ DASH Il / BamHI vector kit (Stratagene).
  • Hybridization is 0.5M in sodium phosphate buffer pH 7.2, 7% SDS, 65% in ImM EDTA (in C, wash conditions are 40 mM sodium phosphate buffer pH 7.2, ImM EDTA, 5 65% in% SDS, C, 15 minutes twice, 40 mM sodium phosphate buffer pH 7.2, 1% SDS, ImM EDTA 65 (C, 15 minutes twice.
  • OOOpfu phages yielded 24 positive clones, of which 18 clones were subjected to secondary screening that doubled plaque purification, resulting in 6 types of 'purified plaques' Was made.
  • plaques were collected and plated on NZY plates with E. coli XL 1-blue MRA (P2) so that the total number was 10,000 pfu, and kept at 37 ° C. Pour 4 ml of SM buffer onto 6 plates with plaque on the surface, and chill at 4 ° C. I put it. Phage plate lysate was collected with a Pasteur pipette, and ⁇ DNA was extracted and purified with QIAGEN Lambd a Mini Kit (Qiagen).
  • ⁇ DNA was again digested with Hindlll and subjected to agarose gel electrophoresis to recover a 4.6 kb Hindlll fragment, which was cloned into the Hindlll site of the plasmid vector pBluescript SK (—) according to a conventional method.
  • ABI PRISM fluorescence sequencer (Model 310 Genetic Analyzer, manufactured by Perkin Elmer) was used to analyze the internal nucleotide sequence of the 4.6 kb Hindlll fragment, The base sequence in and around the ex 2,3-sialyltransferase gene derived from Photobaterium 'phosphoreum JT-ISH-467 strain was analyzed. As a result, the sequence number in the sequence listing The sequence of No. 1 was obtained.
  • This sequence is the entire nucleotide sequence of the open reading frame (ORF) of the ⁇ 2,3-sialyltransferase gene derived from the photobatterium 'phosphophore JT-ISH-467 strain. Since the translation stop codon appears in the same reading frame upstream of the first ATG, this is considered to be the translation start codon for this gene.
  • the ORF of the ⁇ 2,3-sialyltransferase gene derived from Photobacterium 'phosphorum JT-ISH-467 was 1230 bases and encoded 409 amino acids.
  • This amino acid sequence is shown in SEQ ID NO: 2 in the sequence listing.
  • This amino acid sequence completely includes all four amino acid sequences determined from the purified enzyme. The first character of the amino acid sequence at the end was deciphered, and this part of the amino acid deduced from the powerful gene was Cys.
  • the N-terminus of the mature protein is the 22nd Cys of the sequence number 2 in the sequence listing, the first 21-amino acid sequence is processed in the photobatterium 'phospho forum. Received and thought to be removed.
  • the gene of the type from which the full length of the gene and the signal peptide part on the N-terminal side were removed was incorporated into the expression vector, and the protein in E. coli And the activity of the expressed protein was measured.
  • restriction enzymes Pcil (467-23ST-NO-Pci), Ncol (467-23ST-N2-Nco), and BamHI (467-23ST-CO-Bm) sites previously incorporated into the primers for crawling are underlined.
  • the translation start codon ATG and the complementary sequence TAA corresponding to the translation stop codon are boxed.
  • sequence of the primer sequence that is 3 ′ from the restriction enzyme site and annealed to the truncated DNA is shown in bold.
  • PCR reaction conditions were set as follows. In a 50 i ul reaction solution, 100 ng of vertical DNA, 10 X
  • Protein expression induction experiments were conducted on 2 clones of 467-N0C0 and 3 clones of 467-N2C0 obtained in (4) above. Inoculate a single colony of E. coli TBI with the expression vector P Trc9 9A into which each clone has been incorporated into LB medium (5 ml) containing the antibiotic ampicillin (final concentration 100 (gZ mL). Pre-culture bacteria at 30 ° C until
  • IPTG isopropyl 1 ⁇ -D (-)-thiogalatatopyranoside, manufactured by Wako Pure Chemical Industries, Ltd.
  • IPTG isopropyl 1 ⁇ -D (-)-thiogalatatopyranoside, manufactured by Wako Pure Chemical Industries, Ltd.
  • the cells in 2 ml of the culture solution were collected by centrifugation.
  • This fungus body, 200 1 0.336% Triton The suspension was suspended in 20 mM Vistris buffer (pH 7.0) containing X-100 and 0.5 M sodium chloride, and sonicated under ice cooling.
  • the obtained crushed liquid was used as a crude enzyme solution and used for activity measurement.
  • the reaction was repeated twice, and the reaction composition was the same as in Example 1. However, the reaction time was 15 hours.
  • ISH467-N2C0 second clone crude enzyme solution and the reaction solution without the crude enzyme solution did not contain sialyltransferase activity. From the above results, it was revealed that sialyltransferase was expressed in E. coli into which ISH467-N0C0 first or second clone, or ISH467-N2C0 first or third clone was introduced.
  • Table 8 From ⁇ 1811-467 strain) Sialyltransferase activity in large intestine ®3 ⁇ 4fe fluid recombined with 3,3-galactoside-like 2,3-sialyltransferase gene
  • sialyltransferase expressed in Escherichia coli into which the ISH467-N2C0 first clone was introduced had a 1,3-sialyltransferase activity.
  • an enzyme reaction was performed using pyridylaminolated ratatose (Gal 3-4Glc PA, Takara Bio PA-Sugar Chain 026) as a sugar acceptor. After completion of the reaction, the enzyme was inactivated by heat-treating the reaction solution at 95 ° C for 5 minutes, and analyzed by HPLC.
  • reaction 2 the enzyme reaction was dissolved in 20 mM cacodylate buffer (pH 6.0) 25 1 so that the pyridylaluminated latatose was 2.0 M and CMP-sialic acid was 5.7 M. Performed for 6 hours under C (reaction 1). On the other hand, a control experiment (reaction 2) was performed in which a reaction solution containing no CMP-sialic acid was used. In addition, in order to clarify the retention time of the sample, the crude enzyme solution deactivated by heat treatment (95 ° C, 5 minutes) is collected and pyridylaluminated.
  • Ratatoses and pyridylamino oc 2, 3 sialyl latatos (pyridylamino s 3, sialyl latatos) (Neu5Ac a 2—3Gal j8 1—4Glc—PA, Takara Bio PA—Sug ar Chain 029) The test was performed.
  • SEQ ID NO: 28 in the sequence listing was obtained.
  • This sequence is the entire nucleotide sequence of the open reading frame (ORF) of the ⁇ 2,3 sialyltransferase gene derived from JT ISH-224. Since a translation stop codon appears in the same reading frame upstream of the first ATG, this is considered to be the translation start codon for this gene.
  • Photopacterium JT—1311-224 derived 0; 2,3 sialyltransferase ORF is the same as that of ex 2,3 sialyltransferase gene derived from Photobacterium phosphorum JT—ISH-467 It consisted of 1230 bases and encoded 409 amino acids.
  • This amino acid sequence is shown in SEQ ID NO: 29 in the sequence listing.
  • the gene had a Hindlll site.
  • Analysis of nucleic acid and amino acid sequences using GENE TYX Ver. 7 revealed that the ⁇ 2,3 sialyltransferase gene derived from JT-ISH-224 strain is the ⁇ 2,3-sial derived from JTISH-467 strain. It had 92% homology with the acid transferase gene.
  • the amino acid sequence also showed 92% homology with ⁇ 2,3 sialyltransferase from JT-ISH-467.
  • the amino acid sequence of 2,3 sialyltransferase derived from JT-ISH-224 strain is photobattery 33% homology with um.
  • the DNA sequences were 54% and 50% homologous, respectively.
  • the gene of the type from which the full length of the same gene and the signal peptide portion on the N-terminal side have been removed is incorporated into an expression vector, and the protein is incorporated in And the activity of the expressed protein was measured.
  • primers 224-23ST-NO-Pci SEQ ID NO: 35
  • 224-23ST-COnew- Bm SEQ ID NO: 37
  • 224-23ST-NO-Pci SEQ ID NO: 37
  • primers 224-23ST N1—Nco SEQ ID NO: 36
  • 224 for cloning a gene encoding a protein of the type from which the amino acid in the signal peptide portion has been removed referred to as 224—N1CO in this example.
  • 224—N1CO a gene encoding a protein of the type from which the amino acid in the signal peptide portion has been removed
  • PCR is performed and ⁇ 2, derived from JT-ISH-224 strain for incorporation into an expression vector.
  • the 3-sialyltransferase gene was amplified.
  • the above-mentioned DNA containing the oc 2,3-sialyltransferase gene derived from the JT-ISH-224 strain was used as the vertical DNA.
  • PCR reaction conditions were set as follows. 50 1 reaction solution contains 100 ng of vertical DNA, 10 X Ex taq buffer 5 1, 2.5 mM each dNTP 4 ⁇ , primer 50 pmole, Ex taq (Takara Bio) 0.5 1 96 using control system PC-700 (A STEK). C 3 minutes once, 96. C 1 minute, 50. C 1 min, 72. C 2 minutes 15 times, 72 ° C 6 minutes once.
  • a PCR product of about 1.2 kb was amplified with 224-NOCO and about 1. lkb with 224-N1 CO.
  • These PCR products were subjected to gel purification after double digestion with restriction enzymes Pcil (New England Biolab) and BamHI (224-NOCO) or restriction enzymes Ncol and BamHI (224-N1C0).
  • PTrc99A was used as the vector for E. coli expression. This vector was double-digested with the same restriction enzymes Pcil and BamHI (when introducing 224—NO CO) or restriction enzymes Ncol and BamHI (when introducing 224—N1C0) and purified by gel.
  • ISH22 ISH224—NOCO first clone
  • 224—N 1C0 ISH224—N1C0 first clone
  • Table 11 JTHISH-224 strain-derived JTHSH-467 J9-galactoside ⁇ 2,3-sialyltransferase gene Sialyltransferase activity in the lysate of fungus that has been homozygously modified
  • Example 5 the ISH224-N0C0 first clone and ISH224-N1C0 first clone were introduced into Escherichia coli to express the enzyme, and a reaction using pyridylaluminated ratatose as a sugar acceptor was used. , 3-sialyltransferase activity was investigated. As a result of evaluating the reaction product of sialyltransferase expressed in Escherichia coli by HPLC, it was found that any of the clones was subjected to pyridylamino ⁇ ⁇ 2,3 sialyl lactose (pyridylaminated 3, -sialyl rata). Toose peak was detected. From this result, it became clear that sialic acid transferase derived from JT-ISH-224 strain has ⁇ -2,3 sialyltransferase activity.
  • Example 7 Bib 'Jo bacterium ⁇ FAT-16 strain ⁇ -galactoside' ⁇ 2.3 Cloning of sialyltransferase gene ⁇ R sequence analysis and expression of the gene in Escherichia coli
  • Vibrio sp. JT—FAJ-16 strain which was found to have sialyltransferase activity in Example 1, it was derived from Photobataterum 'phosphophorum JT-ISH-467 strain ⁇
  • Genomic DNA was prepared from the cell pellet of JT-FAJ-16 strain by the method described in Example 5 (1).
  • digestion with restriction enzymes EcoRI and Hindlll, fractionation with 0.7% agarose gel electrophoresis, and gel blotting by alkaline blotting with 0.4M NaOH were performed.
  • Southern hybridization was performed by the method described in Example 3 (3) using the above-mentioned 929 bp probe (SEQ ID NO: 17). However, the hybridization temperature and the cleaning temperature were 55 ° C.
  • EcoRI digestion the digestion with EcoRI digestion,
  • the hybridization was performed at 37 ° C for 4 hours by adding 5% (wZv) blocking reagent and 0.5M NaCl to the hybridization buffer in the kit. Washing in 0.4% SDS, 0.5X SSC, 50. C for 20 minutes twice, 2X SSC at room temperature for 5 minutes once. The signal was detected according to the instructions attached to the kit.
  • SEQ ID NO: 30 in the sequence listing was obtained.
  • This sequence is the entire nucleotide sequence of the open reading frame (ORF) of the ⁇ 2,3-sialyltransferase gene derived from JT-FAJ-16. Since a translation stop codon appears in the same reading frame upstream of the first ATG, this is considered to be the translation start codon for this gene.
  • the ORF of the ⁇ 2, 3-sialyltransferase gene derived from JT-FAJ-16 strain had a base of 1209 and encoded 402 amino acids. This amino acid sequence is shown in SEQ ID NO: 31 of the sequence listing. Analysis of nucleic acid and amino acid sequences using GENETYX Ver.
  • JT-FAJ-16 strain derived from alpha 2, 3- amino acid sequence of sialyltransferase, alpha 2 of the full Otobatateriumu 'Damusera, 6 Shianore acid transferase (JC5898) and 30.5% homologous with, Pasurrera It showed 27.3% homology with the hypothetical protein PM0188 (AAK02272) of the Multocida subspecies Multocida strain Pm70, and the gene DNA sequence showed 51.2% and 48.3% homology, respectively.
  • the gene of the type from which the full length of the gene and the signal peptide portion on the N-terminal side were removed was incorporated into an expression vector, and the protein was then transferred in And the activity of the expressed protein was measured.
  • the restriction enzyme BspHI (FAJ23STNO-BspHI, FAJ23STN1-BspHI) and BamHI (FAJ23STCO-BamHI) sites are underlined.
  • the translation start codon ATG and the complementary sequence TAA corresponding to the translation stop codon are boxed.
  • PCR was performed to amplify the ⁇ 2,3-sialyltransferase gene from JT-FAJ-16 strain to be incorporated into the expression vector.
  • the above-mentioned 3.6 kb DNA fragment containing the same gene was used as the vertical DNA.
  • the PCR reaction conditions were set as follows.
  • PCR products were cloned into the TA cloning vector pCR2.1TOPO (Invitrogen) according to the instructions attached to the TA cloning kit (Invitrogen).
  • TBI TA cloning kit
  • the plasmid is purified from the obtained colony by a conventional method, and the restriction product EcoRI converts the PCR product into a vector. Confirmed the introduction.
  • the plasmid sample confirmed to be introduced was double-digested with restriction enzymes BspHI and BamHI, and then a 1.2 kb (FAJ—NOCO) or 1. lkb (FAJ—N1CO) fragment was gel purified.
  • the desired base sequence without any base sequence variation that is, the first basic force included even the 1209th base in SEQ ID NO: 30 in the sequence listing.
  • the first clone has no desired base sequence, that is, the 67th base strength of sequence number 30 in the sequence listing includes up to the 1209th base. It was out.
  • the 631st adenine (A) was changed to guanine (G). This changed the codon from ACA to GCA and the amino acid from threonine (Thr) to alanine (Ala). Other than this, there was no base substitution.
  • Example 5 protein expression induction experiments were performed on 3 clones of FAJ-N0C0 first clone, FAJ-N1C0 first clone and second clone, and enzyme activity was measured. As a result, as shown in Table 15 below, it was shown that sialic acid transferase activity was present in the crude enzyme solutions of FAJ-N0C0 first clone and FAJ-N1C0 first clone and second clone.
  • Table 15 JT-FAJ-16 strain derived JT-ISH-467 j3—Galactoside 1 ⁇ 2,3—Sial separation ⁇ ⁇ 3 ⁇ 43 ⁇ 41 Gene homologs were assembled; ⁇ ;&!Living
  • Multi-alignment analysis was performed using genetic information processing software GENETYX Ver. 7 (manufactured by General Tetas).
  • GENETYX Ver. 7 manufactured by General Tetas.
  • JT—ISH-467 strain is produced using the prepared purified enzyme
  • the optimum pH and temperature of the thread-replaceable j8-galactoside ⁇ 2,3-sialyltransferase produced by the N1C0 first clone were examined.
  • Acetate buffer ( ⁇ 4.0, ⁇ 4.5, and ⁇ 5.0), force codylate buffer ( ⁇ 5.0, ⁇ 5.5, ⁇ 6.0, ⁇ 6.5, and pH7.0), zinc acid buffer (pH7 0, pH 7.5, and pH 8.0), TAPS knocker (pH 8.0, pH 8.5, and pH 9.0), CHES knocker (pH 9.0, pH 9.5, and pH 10.0), GAPS Knofers (pH 10.0, pH 10.5, and pHl 1.0) were prepared and used to measure enzyme activity at each pH at 25 ° C.
  • the JT-ISH-467 strain produces
  • the enzyme activity was highest at ⁇ 5.5 for the third CO clone, ⁇ 5.0 for the first ISH224-N1C0 clone, and ⁇ 5.5 for the first FAJ-N1C0 clone. Both enzymes were highly active from ⁇ 5.0 to ⁇ 7.0 or ⁇ 9.0.
  • the enzyme activity at each pH was shown as a relative activity with the enzyme activity at pH showing 100 as the maximum activity.
  • MALDI-T OFMS AXIMA laser ionization time-of-flight mass spectrometer
  • the molecular weight estimated from the results of mass spectrometry and the amino acid sequence coincided.
  • the results of mass spectrometry and amino acid sequence Force The estimated molecular weights did not match.
  • ISH467 N2C0 third clone recombinant Escherichia coli
  • ISH224 N1C0 first clone set J8-galactoside was obtained by electrophoretically purifying the cell disruption solution prepared from the recombinant Escherichia coli and FAJ-N1CO first clone recombinant Escherichia coli using ion-exchange chromatography and hydroxyapatite chromatography.
  • sialic acid transfer activity to various monosaccharides, disaccharides and trisaccharides using ⁇ 2,3-sialyltransferase
  • Monosaccharides used as sugar acceptor substrates are methyl-a-D galactopyranoside (Gal-a-OMe), methyl-1-13-D galactopyranoside (Gal- ⁇ -OMe), methyl-a- D-Dalcoviranoside (Glc—a-OMe), Methyl-j8—D-Dalcoviranoside (Glc— ⁇ -OMe), Methylolone a-D Mannopyranoside (Man—a-OMe), Metinorelic ⁇ -D Mannopyranoside (Man - ⁇ -OMe), methyl- ⁇ -D fucosinopyranoside (Fuc-a-OMe), methyl- ⁇ -D fucosinopyranoside (Fuc- ⁇ -OMe), ⁇ -acetylyllatatosamine (GalNAc), Ten types of N-acetyltilcosamine (GalNAc) were used.
  • Disaccharides include ratatose (Gal- ⁇ 1,4—Glc), ⁇ -acetyllactosamine (Gal— ⁇ 1,4—GlcNAc), methyl-j8-D galatatopyranosyl ⁇ 1,3— ⁇ Acetyldarcosaminide (Gal— ⁇ 1, 3—GlcNAc- ⁇ -OMe), methyl oi—D galatatopyranosyl a 1, 3 galactopyranoside (Gal a 1,3—Gal—a—OMe ), Methyl- ⁇ D galactobilanosyl ⁇ 1, 3 galatato vilanoside (Gal—j8 1, 3—Gal—j8—OMe) were used.
  • sialic acid was transferred with high efficiency to any of the 16 monosaccharides, disaccharides, and trisaccharides used as sugar receptor substrates (Tables 16, 17, and 18). ).
  • the relative activity with respect to each receptor substrate is a value with the sialic acid transfer activity with respect to latato as 100.
  • Reaction time 0.5 minutes or 2 minutes
  • Enzyme amount 2, 3 mU for ISH4fi7-N2C0 per reaction, 1. for ISH224-NIC0
  • Enzyme amount 2.3mU per reaction for ISH467-N2C0, and 1.5 for ISH224-N1C0
  • j8-galactoside ⁇ 2,3 sialyltransferase which was electrophoretically purified to a single band
  • a sugar receptor substrate cashmere fetuin was used as a sugar receptor substrate. 2 mg of cashmere fetuin was dissolved in 1 ml of 20 mM Bis-tris buffer (pH 6.0) to obtain a sugar receptor substrate solution. CMP-NeAc containing CMP- 14C NeuAc was used as the sugar donor substrate. Mix sugar acceptor substrate solution 40 1, sugar donor substrate 5 1 (22.8 nmol (about 19, OOOcpm)), enzyme solution 5 1 (both 10mU), and incubate at 25 ° C for 2 hours. A sialic acid transfer reaction was performed. After completion of the reaction, the reaction solution was subjected to gel filtration using Sephadex G-50 Superfine (0.8 ⁇ 18.
  • ISH467- N2C0 3rd clone recombinant E. coli, ISH224- N1CO 1st clone recombinant E. coli and FAJ-N1C0 1st clone recombinant E. coli force Prepared cell disruption solution using ion exchange chromatography and hydroxyapatite chromatography In order to investigate the presence or absence of sialic acid transfer activity to the sucrose chain using j8-galactoside ⁇ 2,3-sialyltransferase, which was electrophoretically purified to a single band, the following experiment was conducted. It was.
  • pyridylaminolated latatos (Gal
  • 3 ⁇ 4 ⁇ time 3 hours for ISH467-N2C0, 16 hours for ISH224-N1C0, 24 hours for FAJ-N1C0 Industrial applicability
  • the present invention provides a novel ⁇ -galactoside a 2, 3 sialyltransferase and By providing the nucleic acid to be stored, it provides a means for synthesizing and producing sugar chains that have been clarified to have important functions in vivo.
  • sialic acid is a sugar that is extremely important from the viewpoint of the function of the sugar chain, which is often present at the non-reducing end in complex carbohydrate chains in vivo. It is one of the most highly demanded transferases.
  • the novel sialyltransferase of the present invention can be used for the development of pharmaceuticals, functional foods and the like using sugar chains.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、新規なβ-ガラクトシド-α2,3-シアル酸転移酵素および当該シアル酸転移酵素をコードする核酸を提供する。本発明はまた、当該シアル酸転移酵素を生産する微生物を提供すると共に、そのような微生物を用いた当該シアル酸転移酵素の製造方法を提供する。本発明はさらに、当該シアル酸転移酵素をコードする核酸を含むベクター、および当該ベクターで形質転換した宿主細胞を提供すると共に、組換えβ-ガラクトシド-α2,3-シアル酸転移酵素を製造する方法を提供する。本発明はさらに、本発明のシアル酸転移酵素を利用したシアリル糖鎖を製造する方法を提供する。                                                                               

Description

明 細 書
新規な 0—ガラタトシドー x 2, 3_シアル酸転移酵素、それをコードする 遺伝子およびその製造方法
技術分野
[0001] 本発明は、新規な β -ガラタトシド- a 2, 3-シアル酸転移酵素、当該酵素をコード する遺伝子、当該酵素を生産する微生物および当該酵素の製造方法に関する。 背景技術
[0002] 糖転移酵素は、生体内において糖タンパク質や糖脂質等の糖鎖の生合成に関与 する酵素である。そしてその反応生成物である糖タンパク質や糖脂質等の糖鎖 (以 下、複合糖質糖鎖)は、生体内において非常に重要な機能を有している。例えば、糖 鎖は、主に哺乳類細胞において、分化や発生における細胞間および細胞 細胞外 マトリックス間のシグナル伝達や複合糖質のタグとして機能する重要な分子であること などが明らかにされている。
[0003] 上記のとおり、糖鎖は非常に重要な機能を有しているが、これを応用した具体例と して、エリスロポエチンが挙げられる。エリスロポエチンは本来糖タンパク質であるが、 糖鎖の数を増カロさせ、その寿命を向上させた組換えエリスロポエチンタンパク質が作 製され、現在市販されている。
[0004] 今後もこのように糖鎖を応用した医薬品、機能性食品等の開発が想定される。その ため、糖鎖を合成 ·生産する手段としての糖転移酵素の重要性が増大して ヽる。
[0005] これまでに約 150種類以上の糖転移酵素遺伝子がヒト、マウス、ラットおよび酵母等 の真核生物力 単離されており、さらに CHO細胞や大腸菌等を宿主細胞とする生産 系で糖転移酵素活性を有するタンパク質が発現されている。一方、原核生物である 細菌からも、いくつかの糖転移酵素遺伝子が単離されており、さらに大腸菌を用いる 組換え生産系で糖転移酵素活性を有するタンパク質が発現され、それらの基質特性 や酵素化学的な諸性質が明らかにされている。
[0006] 糖鎖を構成する糖の中でも、非還元末端に存在することの多!、シアル酸は、糖鎖 機能という観点力も極めて重要な糖であり、従って、シアル酸転移酵素は、現在重要 性が増して!/ヽる糖転移酵素の中で最も需要が高!ヽ酵素の一つである。
[0007] a 2, 3—シアル酸転移酵素およびその遺伝子に関しては、動物、特に哺乳類由来 のものが多く報告されている(例えば、 Harduin- Lepers, A. et al., Biochem J., 15;352 Pt 1:37-48 (2000) ; Young- Choon Lee et al., J. Biol. Chem., 23;274(17):11958-67 ( 1999) ; Lee, Y— C. et al., J. Biochem., 216, 377—385 (1993) ; Chang, M— L. et al., Glyc obiology, 5, 319—325 (1995) ; Gillespie, W. et al., J. Biol. Chem., 267, 21004—21010 (1992)を参照)。しかし、これらの動物由来の酵素は精製が困難で大量に得られない ため非常に高価であり、さらに酵素としての安定性が悪 、と 、う問題を有して 、る。
[0008] これに対し、微生物由来の a 2, 3—シアル酸転移酵素およびその遺伝子としては 、ナイセリア属、キャンピロパクター属、へモフイラス属およびパスッレラ属に属する微 生物から取得されたものが報告されている(例えば、 WO97Z047749、 WO 99/0 49051、 WO01/077314, WO03/027297を参照)。し力し、ビブリ才科に属す る微生物力 取得されたという報告はなぐまた、ビブリオ科に属する微生物に《2, 3 -シアル酸転移酵素活性を有するタンパク質が存在すると!/ヽぅ報告もな!/ヽ。
特許文献 1:国際公開第 WO97Z047749A号パンフレット
特許文献 2:国際公開第 WO99Z049051A号パンフレット
特許文献 3:国際公開第 WO01Z077314A号パンフレット
特許文献 4 :国際公開第 WO03Z027297A号パンフレット
非特許文献 1 : Harduin- Lepers, A. et al., Biochem. J., 15;352 Pt 1:37-48 (2000) 非特許文献 2 : Young- Choon Lee et al., J. Biol. Chem., 23;274(17):11958-67 (1999) 非特許文献 3 : Lee, Y- C. et al" J. Biochem., 216, 377-385 (1993)
非特許文献 4 : Chang, M-し et al., Glycobiology, 5, 319-325 (1995)
非特許文献 5 : Gillespie, W. et al" J. Biol. Chem., 267, 21004-21010 (1992) 発明の開示
発明が解決しょうとする課題
[0009] 本発明の課題は、ビブリオ科の微生物に由来する新規な β -ガラタトシド- a 2, 3- シアル酸転移酵素、およびそれをコードする遺伝子を提供することである。また、本 発明の課題は、本発明の j8—ガラクトシドーひ 2, 3—シアル酸転移酵素をコードす る遺伝子を利用して遺伝子組換え技術により本酵素を高生産する方法を提供するこ とである。
課題を解決するための手段
[0010] 本発明者らは鋭意研究に努めた結果、ビブリオ科 (Vibrionaceae)に属する微生物 がシアル酸を糖鎖中のガラクトース残基、グルコース残基、マンノース残基、フコース 残基、 N ァセチルダルコサミン残基もしくは N ァセチルガラタトサミン残基に (X 2, 3結合で転移させる新規な酵素を生産することを見出し、本発明を完成させた。本発 明は、新規な )8—ガラクトシドー《2, 3 シアル酸転移酵素およびそれをコードする 核酸、ならびに、当該シアル酸転移酵素を製造する方法を提供する。
[0011] 以下、本発明を詳細に説明する。
[0012] β ガラクトシドー 2. 3 シアル酸転移酵素
本発明は、新規な β—ガラタトシド— oc 2, 3 シアル酸転移酵素を提供する。本明 細書において、「 —ガラクトシド 《2, 3 シアル酸転移酵素」とは、シチジン 1リン 酸 (CMP)—シアル酸力ゝらシアル酸を、複合糖質糖鎖もしくは遊離の糖鎖中のガラク トース残基の 3位、ラタトースもしくは Ν ァセチルラクトサミンなどのオリゴ糖に存在す るガラクトースの 3位、またはガラクトース、グルコース、マンノース、フコース、 Ν—ァ セチルダルコサミン、 Ν ァセチルガラタトサミンなどの複合糖質を構成しうる単糖で あって 3位の炭素に水酸基を有する単糖の 3位、に転移させる活性を有するタンパク 質を意味する。本明細書において、「j8—ガラクトシドー《2, 3 シアル酸転移酵素 活性」とは、 j8—ガラクトシドー α 2, 3—シアル酸転移酵素について上述した活性を 意味する。また、ここでいぅシアル酸とは、シアル酸ファミリーに属するノィラミン酸誘 導体を示す。具体的には、 Ν ァセチルノイラミン酸 (Neu5Ac)、 Ν—グリコリルノィ ラミン酸(Neu5Gc)、 5 -デァミノ 5—ヒドロキシノイラミン酸 (KDN)、ジシアル酸な どを示す。
[0013] 本発明の /3 ガラクトシドー a 2, 3 シアル酸転移酵素は、配列番号 2、配列番号 29または配列番号 31のアミノ酸配列を含んでなるタンパク質である。また、本発明の β ガラクトシドー α 2, 3 シアル酸転移酵素は、配列番号 1、配列番号 28または 配列番号 30の塩基配列を含んでなる核酸によってコードされるタンパク質である。 [0014] 本発明の配列番号 2のアミノ酸配列を含んでなる、 13 ガラクトシドー α 2, 3 シァ ル酸転移酵素において、配列番号 2のアミノ酸 1— 21はシグナル配列である。したが つて、本発明の j8—ガラタトシドー a 2, 3—シアル酸転移酵素は、配列番号 2のアミ ノ酸 22— 409のアミノ酸配列を含んでなるタンパク質であってもよい。また、本発明の β ガラクトシドー α 2, 3 シアル酸転移酵素は、配列番号 1の塩基 64— 1230の 塩基配列を含んでなる核酸によってコードされるタンパク質であってもよい。
[0015] 本発明の配列番号 29のアミノ酸配列を含んでなる、 13 ガラクトシドー a 2, 3 シ アル酸転移酵素にぉ 、て、配列番号 29のアミノ酸 1― 24はシグナル配列であると想 定される。したがって、本発明の j8—ガラタトシドー a 2, 3—シアル酸転移酵素は、 配列番号 29のアミノ酸 25— 409のアミノ酸配列を含んでなるタンパク質であってもよ い。また、本発明の j8—ガラクトシドー a 2, 3 シアル酸転移酵素は、配列番号 28 の塩基 73— 1230の塩基配列を含んでなる核酸によってコードされるタンパク質であ つてもよい。
[0016] 本発明の配列番号 31のアミノ酸配列を含んでなる、 13 ガラクトシドー a 2, 3 シ アル酸転移酵素にぉ 、て、配列番号 31のアミノ酸 1― 22はシグナル配列であると想 定される。したがって、本発明の j8—ガラタトシドー a 2, 3—シアル酸転移酵素は、 配列番号 31のアミノ酸 23— 402のアミノ酸配列を含んでなるタンパク質であってもよ い。また、本発明の j8—ガラクトシドー a 2, 3 シアル酸転移酵素は、配列番号 30 の塩基 67— 1209の塩基配列を含んでなる核酸によってコードされるタンパク質であ つてもよい。
[0017] 本発明はまた、上記の本発明の β ガラクトシドー a 2, 3 シアル酸転移酵素の 変異体であって、 ガラクトシドー α 2, 3—シアル酸転移酵素活性を有する変異 タンパク質をも包含する。このような変異タンパク質もまた、本発明の β—ガラタトシド - α 2, 3 シアル酸転移酵素に含まれる。
[0018] 本発明の変異体タンパク質は、配列番号 2、配列番号 2のアミノ酸 22— 409、配列 番号 29、配列番号 29のアミノ酸 25— 409、配列番号 31、および、配列番号 31のァ ミノ酸 23— 402からなる群より選択されるアミノ酸配列において、 1または複数のァミノ 酸の欠失、置換、挿入および/または付加を含むアミノ酸配列を含んでなるタンパク 質であって、 j8—ガラクトシドーひ 2, 3—シアル酸転移酵素活性を有するタンパク質 であってもよい。置換は、保存的置換であってもよぐこれは、特定のアミノ酸残基を 類似の物理ィ匕学的特徴を有する残基で置き換えることである。保存的置換の非限定 的な例には、 Ile、 Val、 Leuまたは Ala相互の置換のような脂肪族基含有アミノ酸残 基の間の置換、 Lysおよび Arg、 Gluおよび Asp、 Ginおよび Asn相互の置換のよう な極性残基の間での置換などが含まれる。
[0019] アミノ酸の欠失、置換、挿入および Zまたは付カ卩による変異体は、野生型タンパク 質をコードする DNAに、例えば周知技術である部位特異的変異誘発 (例えば、 Nucl eic Acid Research, Vol.10, No. 20, p.6487- 6500, 1982参照、引用によりその全体を 本明細書に援用する)を施すことにより作成することができる。本明細書において、「1 または複数のアミノ酸」とは、部位特異的変異誘発法により欠失、置換、挿入および Zまたは付加できる程度のアミノ酸を意味する。
[0020] 部位特異的変異誘発法は、例えば、所望の変異である特定の不一致の他は、変異 を受けるべき一本鎖ファージ DNAに相補的な合成オリゴヌクレオチドプライマーを用 いて次のように行うことができる。即ち、プライマーとして上記合成オリゴヌクレオチド を用いてファージに相補的な鎖を合成させ、得られた二重鎖 DNAで宿主細胞を形 質転換する。形質転換された細菌の培養物を寒天にプレーティングし、ファージを含 有する単一細胞力もプラークを形成させる。そうすると、理論的には 50%の新コ口- 一が一本鎖として変異を有するファージを含有し、残りの 50%が元の配列を有する。 上記所望の変異を有する DNAと完全に一致するものとはハイブリダィズする力 元 の鎖を有するものとはハイブリダィズしな 、温度にぉ 、て、得られたプラークをキナー ゼ処理により標識した合成プローブとハイブリダィズさせる。次に該プローブとハイブ リダィズするプラークを拾 ヽ、培養して DNAを回収する。
[0021] なお、酵素などの生物活性ペプチドのアミノ酸配列にその活性を保持しつつ 1また は複数のアミノ酸の欠失、置換、挿入および Zまたは付加を施す方法としては、上記 の部位特異的変異誘発の他にも、遺伝子を変異源で処理する方法、および遺伝子 を選択的に開裂し、次に選択されたヌクレオチドを除去、置換、挿入または付加し、 次 ヽで連結する方法もある。 [0022] 本発明の変異体タンパク質はまた、配列番号 1、配列番号 1の塩基 64— 1230、配 列番号 28、配列番号 28の塩基 73— 1230、配列番号 30、および、配列番号 30の 塩基 67— 1209からなる群より選択される塩基配列の相補鎖にストリンジヱントな条件 または高度にストリンジェントな条件下でハイブリダィズする塩基配列を含む核酸によ つてコードされるタンパク質であって、 j8—ガラクトシドー α 2, 3—シアル酸転移酵素 活性を有するタンパク質であってもよ 、。
ここで、ストリンジェントなハイブリダィゼーシヨンの条件としては、 0. 5Μ リン酸ナトリ ゥム ρΗ7. 2、 ImM EDTA、 7%SDS、 1%BSA中で 55°Cでハイブリダィゼーシ ヨンさせた後、 40mM リン酸ナトリウムバッファー ρΗ7. 2、 ImM EDTA、 5%SD S、 0. 5%BSA中で 55。C、 15分を 2回、 40mM リン酸ナトリウムノ ッファー pH7. 2、 ImM EDTA、 1%SDS中で 55°C、 15分を 2回、洗浄操作を行うという条件、あ るいは Molecular Cloning: A Laboratory Manual,第 2版、第 1卷、 1.101- 104頁、 Cold Spring Harbor Laboratory Press (1989) (引用によりその全体を本明細書に援用する )等に記載されているように、 30% 脱イオン化ホルムアミド、 0. 6M NaCl、 40mM リン酸ナトリウム ρΗ7. 4、 2. 5mM EDTA、 1%SDS中で 42°Cで、ハイブリダィ ゼーシヨンさせた後、 2XSSC、 0. 1%SDS、中で室温で 10分を 2回、さらに同じバッ ファー中で 55°Cで 1時間洗浄操作を行うという条件が挙げられるが、これらに限定さ れるものではない。また、高度にストリンジェントな条件におけるハイブリダィゼーショ ンとして、例えば、 Molecular Cloning (同上)等に記載されている、 0. 5M リン酸ナト リウム pH7. 2、 ImM EDTA、 7%SDS、 1%BSA中で 65°Cでハイブリダィゼー シヨンさせた後、 40mM リン酸ナトリウムバッファー pH7. 2、 ImM EDTA、 5%S DS、 0. 5%BSA中で 65。C、 40mM リン酸ナトリウムノ ッファー pH7. 2、 ImM EDTA、 1%SDS中で 65°C、洗浄操作を行うという条件が挙げられる。
[0023] 本発明の変異体タンパク質はさらに、配列番号 2、配列番号 2のアミノ酸 22— 409、 配列番号 29、配列番号 29のアミノ酸 25— 409、配列番号 31、および、配列番号 31 のアミノ酸 23— 402からなる群より選択されるアミノ酸配列と少なくとも 60%以上、好 ましくは 65%以上、 70%以上、 75%以上、 80%以上、 85%以上、 90%以上、 95% 以上、 98%以上または 99%以上、より好ましくは 99. 5%以上のアミノ酸相同性を有 するアミノ酸配列を含んでなるタンパク質であって、 j8—ガラクトシドー α 2, 3—シァ ル酸転移酵素活性を有するタンパク質であってもよ 、。
[0024] または、本発明の変異体タンパク質は、配列番号 1、配列番号 1の塩基 64— 1230 、配列番号 28、配列番号 28の塩基 73— 1230、配列番号 30、および、配列番号 30 の塩基 67— 1209からなる群より選択される塩基配列と、少なくとも 60%以上、好まし くは 65%以上、 70%以上、 75%以上、 80%以上、 85%以上、 90%以上、 95%以 上、 98%以上または 99%以上、より好ましくは 99. 5%以上の相同性を有する核酸 によってコードされるタンパク質であって、 j8—ガラクトシドー α 2, 3—シアル酸転移 酵素活性を有するタンパク質であってもよ 、。
[0025] ここで、アミノ酸配列または核酸塩基配列の相同性%は、視覚的検査および数学 的計算によって決定可能である。例えば、 2つのアミノ酸配列の相同性%は、遺伝情 報処理ソフトウェア GENETYX Ver. 7 (ゼネテイツタス製)などのプログラム、または 、 FASTAアルゴリズムや BLASTアルゴリズムなどを用いて、配列情報を比較するこ とによって決定することができる。
[0026] シアル酸転移酵素活性は、公知の手法、例えば、 J. Biochem., 120, 104-110 (1996 ) (引用によりその全体を本明細書に援用する)に記載されている方法で測定してもよ い。例えば、糖供与体基質として CMP— NeuAc (N—ァセチルノイラミン酸)を、そし て糖受容体基質としてラタトースを用いて酵素反応を行い、反応生成物であるシァリ ルラクトースの量を評価することで酵素活性を評価することができる。
[0027] 糖受容体基質に転移したシアル酸の結合様式の決定方法としては、限定するわけ ではないが、ピリジルァミノ化糖鎖を用いる手法、反応生成物の核磁気共鳴分光法( NMR)による分析など、当業者に公知の手法のいずれかを用いて行うことができる。 ピリジルァミノ化糖鎖を用いる手法は、ピリジルァミノ化糖鎖を糖受容体基質として酵 素反応を行うことを含む。具体的には、ピリジルァミノ化ラタトース (Gal |8 1— 4Glc— PA、タカラバィォ製)を糖受容体基質、 CMP— NeuAcを糖供与体基質として用い て酵素反応を行 ヽ、反応生成物を高速液体クロマトグラフィー (HPLC)分析にかけ、 反応生成物の保持時間からシアル酸が転移された位置を特定する。
[0028] 本発明の一態様において本発明の酵素は、ビブリオ科に属する微生物由来、好ま しくはビブリオ属 (Vibrio spp.)に属する微生物由来、または、好ましくはフォトバタテリ ゥム属(Photobacterium spp.)に属する微生物由来、さらに好ましくは、フォトバタテリ ゥム ·フォスフォレゥム種(Photobacterium phosphoreum)に属する微生物由来の酵素 である。
[0029] 本発明の β ガラクトシドー a 2, 3 シアル酸転移酵素の酵素学的性質および理 化学的性質は、上記に定義した |8—ガラクトシドー《2, 3 シアル酸転移酵素活性 を有することを特徴とするほか、限定するわけではないが、至適 ρΗが、 ρΗ5〜11、 ρ Η5〜10、 ρΗ5〜9、または ρΗ5〜7の範囲であり、至適温度が、 5〜35°C、 10〜35 。C、 20〜35。C、または 20〜30。Cであり、分子量力 DS— PAGE分析で 42, 000 ± 3, OOODa程度である。
[0030] R ガラクトシ a 2. 3 シアル酸転移酵素 コードする核酸
本発明は、 |8—ガラクトシドーひ 2, 3—シアル酸転移酵素をコードする核酸を提供 する。
[0031] 本発明の核酸は、配列番号 2、配列番号 2のアミノ酸 22— 409、配列番号 29、配 列番号 29のアミノ酸 25— 409、配列番号 31、および、配列番号 31のアミノ酸 23— 4 02からなる群より選択されるアミノ酸配列を含んでなるタンパク質をコードする核酸で ある。本発明の核酸はまた、配列番号 1、配列番号 1の塩基 64— 1230、配列番号 2 8、配列番号 28の塩基 73— 1230、配列番号 30、および、配列番号 30の塩基 67— 1209からなる群より選択される塩基配列を含んでなる核酸である。
[0032] 本発明の核酸は、上記の核酸の変異体であって、 β ガラクトシドー α 2, 3 シァ ル酸転移酵素活性を有するタンパク質をコードする核酸であってもよ 、。そのような 核酸もまた、本発明の β ガラクトシドー oc 2, 3 シアル酸転移酵素をコードする核 酸に含まれる。
[0033] そのような核酸の変異体は、配列番号 2、配列番号 2のアミノ酸 22— 409、配列番 号 29、配列番号 29のアミノ酸 25— 409、配列番号 31、および、配列番号 31のァミノ 酸 23— 402からなる群より選択されるアミノ酸配列において、 1または複数のアミノ酸 の欠失、置換、挿入および/または付加を含むアミノ酸配列を含んでなるタンパク質 であって、 j8—ガラクトシド— α 2, 3—シアル酸転移酵素活性を有するタンパク質、 をコードする核酸である。
[0034] そのような核酸の変異体はまた、配列番号 1、配列番号 1の塩基 64— 1230、配列 番号 28、配列番号 28の塩基 73— 1230、配列番号 30、および、配列番号 30の塩 基 67— 1209からなる群より選択される塩基配列の相補鎖にストリンジェントな条件、 または高度にストリンジェントな条件下でハイブリダィズする塩基配列を含む核酸であ つて、該核酸は j8—ガラクトシドーひ 2, 3—シアル酸転移酵素活性を有するタンパク 質をコードする、前記核酸である。ここで、ストリンジェントな条件または高度にストリン ジェントな条件とは、上記で定義したとおりである。
[0035] そのような核酸の変異体はまた、配列番号 1、配列番号 1の塩基 64— 1230、配列 番号 28、配列番号 28の塩基 73— 1230、配列番号 30、および、配列番号 30の塩 基 67— 1209からなる群より選択される塩基配列と、少なくとも 60%以上、好ましくは 65%以上、 70%以上、 75%以上、 80%以上、 85%以上、 90%以上、 95%以上、 98%以上または 99%以上、より好ましくは 99. 5%以上の相同性を有する核酸であ つて、該核酸は j8—ガラクトシドーひ 2, 3—シアル酸転移酵素活性を有するタンパク 質をコードする、前記核酸である。ここで、核酸塩基配列の相同性は、上記に示した 方法で決定することができる。
[0036] そのような核酸の変異体はさらに、配列番号 2、配列番号 2のアミノ酸 22— 409、配 列番号 29、配列番号 29のアミノ酸 25— 409、配列番号 31、および、配列番号 31の アミノ酸 23— 402からなる群より選択されるアミノ酸配列と少なくとも 60%以上、好ま しくは 65%以上、 70%以上、 75%以上、 80%以上、 85%以上、 90%以上、 95% 以上、 98%以上または 99%以上、より好ましくは 99. 5%以上の相同性を有するアミ ノ酸配列を含んでなるタンパク質であって、 j8—ガラクトシド α 2, 3—シアル酸転 移酵素活性を有するタンパク質、をコードする核酸である。ここで、アミノ酸配列の相 同性は、上記に示した方法で決定することができる。
[0037] β ガラクトシドー α 2. 3 シアル酸転移酵素を発現する微生物
本発明者らは、ビブリオ科に属する微生物が新規な )8—ガラクトシドー《2, 3 シ アル酸転移酵素を発現することを見いだした。よって本発明は、 —ガラタトシドー (X 2, 3 シアル酸転移酵素を発現する微生物を提供する。本発明の微生物は、ビブリ ォ科に属し、 —ガラクトシドー《2, 3—シアル酸転移酵素生産能を有する微生物 であり、好ましくはビブリオ属 (Vibrio spp.)に属するもの、または、好ましくはフォトバタ テリゥム属(Photobacterium spp.)に属するもの、さらに好ましくは、フォトバクテリウム- フォスフォレゥム(Photobacterium phosphoreum)に属するものである。 β—ガラタトシ ドー《2, 3—シアル酸転移酵素生産能を有するビブリオ科に属する微生物の例とし ては、フォトバタテリゥム 'フォスフォレゥム JT— ISH— 467株(寄託番号 NITE BP — 88)、フォトバタテリゥム属 11ー1311— 224株(寄託番号^0¾ BP— 87)、およ び、ビブリオ属 JT— FAJ— 16株(寄託番号 NITE BP— 98)が挙げられる。なお、 上記のビブリオ科の微生物は海洋性細菌であり、海水中または海産の魚介類力 分 離される。たとえば、本発明のフォトバタテリゥム 'フォスフォレゥム JT— ISH— 467 株は石川県産のイカから、フォトバタテリゥム属 JT— ISH— 224株は石川県産の力 マスから、そして、ビブリオ属 JT— FAJ— 16株は福岡県産のアジから、それぞれ分 離されたものである。
本発明の微生物は、例えば以下に説明するようなスクリーニング法を用いて分離す ることができる。海水、海砂、海泥あるいは海産魚介類を微生物源とする。海水、海 砂、海泥はそのままもしくは滅菌海水で希釈し、接種源とする。海産魚介類は表面の 粘液等をループで擦り採って接種源としたり、内臓器を滅菌海水中で磨砕した液を 接種源とする。これらをマリンブロスァガー 2216培地(ベタトン'ディッキンソン製)や 塩ィ匕ナトリウム添加-ユートリエントァガー培地 (ベタトン'ディッキンソン製)などの平 板培地上に塗布し、様々な温度条件下で生育する海洋性微生物を取得する。常法 に従い、得られた微生物を純粋培養した後、マリンブロス 2216培地 (ベタトン'ディッ キンソン製)や塩ィ匕ナトリウム添加-ユートリエントブロス培地(ベタトン'ディッキンソン 製)などの液体培地を用い、それぞれの微生物を培養する。微生物が十分生育した 後に、培養液力も菌体を遠心分離によって集める。集めた菌体に界面活性剤である 0. 2%トリトン X— 100 (関東化学製)を含む 20mMカコジレート緩衝液 (pH6. 0)を 添加し、菌体を懸濁する。この菌体懸濁液を氷冷下、超音波処理し細胞を破砕する 。この細胞破砕液を酵素溶液として、常法にしたがってシアル酸転移活性を測定し、 シアル酸転移活性を有する菌株を得ることができる。 [0039] 本発明のフォトバタテリゥム 'フォスフォレゥム JT— ISH— 467株、フォトバクテリウ ム属 JT—ISH— 224株、および、ビブリオ属 JT—FAJ—16株も上記のスクリー- ング法を用いることで得られた。得られた上記の菌株の菌学的性質および生理学生 化学的性質、ならびに 16S rRNA遺伝子の塩基配列解析による種の同定について は、実施例 1に詳述する。
[0040] フォトバタテリゥムフォスフォレゥム(Photobacterium phosphoreum)JT— ISH— 467 株は 2005年 3月 14日付で NITE BP— 88として、フォトバタテリゥム属(Photobacter ium sp.)JT— ISH— 224株は 2005年 3月 11日付で NITE BP— 87として、そして、 ビブリオ属(Vibrio sp.)JT— FAJ— 16株は 2005年 5月 23日付で NITE BP— 98と して、いずれも独立行政法人 製品評価技術基盤機構特許微生物寄託センター (N PMD: National Institute of Tecnnology and Evaluation, Patent Microorganisms Dep ositary ;日本国千葉県木更津巿かずさ鎌足 2— 5— 8)に寄託されている。
[0041] β ガラクトシドー 2. 3—シアル酴転移酵素 ¾告する方法
( D f! ガラクトシ 2. 3—シアル酸転移酵素 発現する微牛物 谘着するこ Wこよる P まの ¾告
本発明の一態様において、本発明の j8—ガラクトシドーひ 2, 3 シアル酸転移酵 素はビブリオ科に属する微生物由来であり、 j8—ガラクトシドー《2, 3—シアル酸転 移酵素生産能を有する微生物を培地に培養し、 |8—ガラクトシドー《2, 3—シアル 酸転移酵素を生産させ、これを採取することによって得られる。
[0042] ここで用いる微生物としては、ビブリオ科に属し、 β—ガラタトシド一 a 2, 3 シアル 酸転移酵素生産能を有する微生物であれば、いずれの菌株でも用いることができる 。ビブリオ科の微生物の中でも、ビブリオ属に属するものが好ましぐまたは、フォトバ クテリウム属に属するものが好ましぐそしてフォトバタテリゥム 'フォスフォレゥムに属 するものがさらに好ましい。本発明の方法において用いる微生物の例としては、フォト バタテリゥム.フォスフォレゥム JT—ISH— 467株(寄託番号 NITE BP— 88)、フォト バタテリゥム属(Photobacterium sp.)JT—ISH— 224株(寄託番号 NITE BP— 87) 、および、ビブリオ属(Vibrio sp.)JT— FAJ— 16株(寄託番号 NITE BP— 98)が挙 げられる。 [0043] 上記微生物の培養に用いる培地としては、それらの微生物が利用し得る炭素源、 窒素源、無機物等を含むものを用いる。炭素源としては、ペプトン、トリプトン、カゼィ ン分解物、肉エキス、ブドウ糖等が挙げられ、好ましくはペプトンを用いる。窒素源と しては、酵母エキスを用いるのが好ましい。塩類としては、塩ィ匕ナトリウム、クェン酸鉄 、塩化マグネシウム、硫酸ナトリウム、塩ィ匕カルシウム、塩ィ匕カリウム、炭酸ナトリウム、 重炭酸ナトリウム、臭化カリウム、塩化ストロンチウム、ほう酸ナトリウム、ケィ酸ナトリウ ム、フッ化ナトリウム、硝酸アンモ-ゥム、リン酸水素ニナトリウム等を適宜組み合わせ て用いるのが好ましい。
[0044] また、上記成分を含んだマリンブロス 2216培地 (ベタトン'ディッキンソン製)を用い てもよい。さらには、上記塩類を適度に含む人工海水を用い、これにペプトン、酵母 エキス等を添加した培地を用いてもょ ヽ。培養条件は培地の組成ゃ菌株によって多 少異なるが、例えば、フォトバタテリゥム 'フォスフォレゥム JT—ISH— 467株を培養す る場合、培養温度は 10〜28°C、好ましくは 20〜25°C、培養時間は 8〜48時間、好 ましくは 16〜24時間である。
[0045] 目的とする酵素は菌体内に存在するため、公知の菌体破砕法、例えば超音波破砕 法、フレンチプレス破砕法、ガラスビーズ破砕法、ダイノミル破砕法などのいずれかの 方法を行えばよぐその菌体破砕物から目的とする酵素を分離精製する。本発明の 方法における好ましい菌体破砕法は超音波破砕法である。例えば、菌体破砕物から 遠心分離により固形物を除去した後に、得られた菌体破砕液上清を市販の陰イオン 交換カラム、陽イオン交換カラム、ゲル濾過カラム、ハイドロキシアパタイトカラム、 CD P へキサノールアミンァガロースカラム、 CMP へキサノールアミンァガロースカラ ム、疎水性カラム等のカラムクロマトグラフィーおよびネイティブ一 PAGE等を適宜組 み合わせて電気泳動的に単一バンドになるまで精製することができる。
[0046] なお、 /3—ガラタトシドー a 2, 3 シアル酸転移酵素は完全に精製してもよいが、 部分精製品でも十分な活性を有するため、本発明の β—ガラタトシドー oc 2, 3 シ アル酸転移酵素は精製品であってもよぐまたは部分精製品であってもよい。
[0047] (2)組椽ぇ β ガラクトシドー a 2. 3 シアル酸転移酵素を製诰する方法
本発明は、 j8—ガラクトシドーひ 2, 3—シアル酸転移酵素をコードする核酸を含む 発現ベクター、および当該発現ベクターを含有する宿主細胞を提供する。そして、本 発明は、当該発現ベクターを含有する宿主細胞を、組換えタンパク質の発現に適す る条件下で培養して、発現された組換えタンパク質を回収することにより組換え |8— ガラクトシドー《2, 3 シアル酸転移酵素タンパク質を製造する方法も提供する。
[0048] 本発明の組換え β—ガラタトシドー a 2, 3 シアル酸転移酵素タンパク質を製造 するためには、使用する宿主に応じて選ばれた発現ベクターに、哺乳動物、微生物 、ウィルス、または昆虫遺伝子等力 誘導された適当な転写または翻訳調節ヌクレオ チド配列に機能可能に連結した j8—ガラクトシドー α 2, 3 シアル酸転移酵素をコ ードする核酸配列を挿入する。調節配列の例として、転写プロモーター、オペレータ 一、またはェンノヽンサ一、 mRNAリボソーム結合部位、ならびに、転写および翻訳の 開始および終結を制御する適切な配列が挙げられる。
[0049] 本発明のベクターに挿入される β—ガラタトシドー a 2, 3 シアル酸転移酵素をコ ードする核酸配列は、配列番号 1の塩基 1 63、配列番号 28の塩基 1 72、または 配列番号 30の塩基 1 66に相当するリーダー配列を含んでいても、含んでいなくて もよぐまた、他の生物源由来のリーダー配列に置き換えてもよい。リーダー配列を置 き換えることによって、発現したタンパク質を宿主細胞の外に分泌させるように発現シ ステムを設計することも可能である。
[0050] また、本発明の組換え /3—ガラタトシドー a 2, 3 シアル酸転移酵素タンパク質は 、当該酵素をコードする核酸に続いて、 Hisタグ、 FLAG™タグ、ダルタチオン— S— トランスフェラーゼなどをコードする核酸を連結した核酸をベクターに挿入することに より、融合タンパク質として発現することも可能である。本発明の酵素をこのような融合 タンパク質として発現させることにより、当該酵素の精製および検出を容易にすること ができる。
[0051] β ガラクトシドー a 2, 3 シアル酸転移酵素タンパク質の発現に適する宿主細 胞には、原核細胞、酵母または高等真核細胞が含まれる。細菌、真菌、酵母、および 哺乳動物細胞宿主で用いる適切なクローユングおよび発現ベクターは、例えば、 Pou weisら、 Cloning Vectors: A Laboratory Manual, Elsevier, New York, (1985) (引用に よりその全体を本明細書に援用する)に記載されている。 [0052] 原核生物には、グラム陰性またはグラム陽性菌、例えば、大腸菌または枯草菌が含 まれる。大腸菌のような原核細胞を宿主として使用する場合、 β ガラクトシドー《2 , 3—シアル酸転移酵素タンパク質は、原核細胞内での組換えポリペプチドの発現を 容易にするために Ν末端メチォニン残基を含むようにしてもよ 、。この Ν末端メチォ二 ンは、発現後に組換え j8—ガラクトシドー α 2, 3 シアル酸転移酵素タンパク質から 切り離すことちでさる。
[0053] 原核宿主細胞内で用いる発現ベクターは、一般に 1または 2以上の表現型選択可 能マーカー遺伝子を含む。表現型選択可能マーカー遺伝子は、例えば、抗生物質 耐性を付与するか、または独立栄養要求性を付与する遺伝子である。原核宿主細胞 に適する発現ベクターの例には、 pBR322 (ATCC37017)のような巿販のプラスミド またはそれらカゝら誘導されるものが含まれる。 pBR322は、アンピシリンおよびテトラ サイクリン耐性のための遺伝子を含有するので、形質転換細胞を同定するのが容易 である。適切なプロモーターならびに j8—ガラクトシドー α 2, 3 シアル酸転移酵素 をコードする核酸の DNA配列力 この pBR322ベクター内に挿入される。他の巿販 のベクターには、例えば、 ρΚΚ223 - 3 (Pharmacia Fine Chemicals,スウェーデン、ゥ プサラ)および pGEMl (Promega Biotech.、米国、ウィスコンシン州、マディソン)など が含まれる。
[0054] 原核宿主細胞用の発現ベクターにおいて通常用いられるプロモーター配列には、 t acプロモーター、 βーラクタマーゼ(ベ-シリナーゼ)プロモーター、ラタトースプロモ 一ター(Changら、 Nature 275:615, 1978;および Goeddelら、 Nature 281 :544, 1979、 引用によりその全体を本明細書に援用する。)などが含まれる。
[0055] また、組換え /3 ガラクトシドー a 2, 3 シアル酸転移酵素タンパク質を酵母宿主 内で発現させてもよい。好ましくは、サッカロミセス属(Saccharomyces、例えば、 S.cere visiae )を用いるが、ピキア属(Pichia)またはクルイべ口ミセス属(Kluyveromyces)のよ うな他の酵母の属を用いてもよい。酵母ベクターは、 2 酵母プラスミドからの複製起 点の配列、自立複製配列 (ARS)、プロモーター領域、ポリアデ-ルイ匕のための配列 、転写終結のための配列、および選択可能なマーカー遺伝子を含有することが多い 。酵母 因子リーダー配列を用いて、組換え β ガラクトシドー 2, 3 シアル酸転 移酵素タンパク質の分泌を行わせることもできる。酵母宿主力もの組換えポリべプチ ドの分泌を促進するのに適する他のリーダー配列も知られて!/、る。酵母を形質転換 する方法は、例えば、 Hinnenら、 Proc. Natl. Acad. Sci. USA, 75: 1929-1933, 1978 ( 引用によりその全体を本明細書に援用する)に記載されている。
[0056] 哺乳動物または昆虫宿主細胞培養系を用いて、組換え β ガラクトシドー α 2, 3— シアル酸転移酵素タンパク質を発現することもできる。哺乳動物起源の株化細胞系も 用いることができる。哺乳動物宿主細胞発現ベクターのための転写および翻訳制御 配列は、ウィルスゲノム力も得ることができる。通常用いられるプロモーター配列およ びェンハンサー配列は、ポリオ一マウィルス、アデノウイルス 2など力も誘導される。 S V40ウィルスゲノム、例えば、 SV40起点、初期および後期プロモーター、ェンハンサ 一、スプライス部位、およびポリアデニルイ匕部位力 誘導される DNA配列を用いて、 哺乳動物宿主細胞内での構造遺伝子配列の発現のための他の遺伝子要素を与え てもよい。哺乳動物宿主細胞内で用いるためのベクターは、例えば、 Okayamaおよび Berg (Mol. Cell. Biol, 3: 280, 1983、引用によりその全体を本明細書に援用する)の 方法で構築することができる。
[0057] 本発明の /3 ガラクトシドー a 2, 3 シアル酸転移酵素タンパク質を産生する 1つ の方法は、 j8—ガラクトシドー α 2, 3—シアル酸転移酵素タンパク質をコードする核 酸配列を含む発現ベクターで形質転換した宿主細胞を、当該タンパク質が発現する 条件下で培養することを含む。次いで、用いた発現系に応じて )8—ガラクトシドー ex 2, 3 シアル酸転移酵素タンパク質を培養培地または細胞抽出液から回収する。
[0058] 組換え β ガラクトシドー oc 2, 3 シアル酸転移酵素タンパク質を精製する操作は 、用いた宿主の型および本発明のタンパク質を培養培地中に分泌させるかどうかと ヽ つた要因に従って適宜選択される。例えば、糸且換え j8—ガラクトシドー α 2, 3 シァ ル酸転移酵素タンパク質を精製する操作には、陰イオン交換カラム、陽イオン交換力 ラム、ゲル濾過カラム、ハイドロキシアパタイトカラム、 CDP へキサノールアミンァガ ロースカラム、 CMP へキサノールアミンァガロースカラム、疎水性カラム等のカラム クロマトグラフィーおよびネイティブ PAGE等、またはそれらの組み合わせが含まれ る。また、組換え j8—ガラクトシド—ひ 2, 3 シアル酸転移酵素に精製を容易にする タグなどを融合させて発現させた場合には、ァフィユティークロマトグラフィーによる精 製方法を利用してもよい。例えば、ヒスチジンタグ、 FLAG™タグ、またはダルタチォ ン— S トランスフェラーゼ (GST)などを融合させた場合には、それぞれ、 Ni-NT A (二トリ口トリ酢酸)カラム、抗 FLAG抗体を連結したカラム、またはダルタチオンを連 結したカラム、などを用いてァフィユティークロマトグラフィーにより精製することができ る。
[0059] 組換え /3 ガラクトシドー a 2, 3 シアル酸転移酵素は電気泳動的に単一バンド になるまで精製してもよいが、部分精製品でも十分な活性を有するため、本発明の β ガラクトシドー 2, 3 シアル酸転移酵素は精製品であってもよぐまたは部分精製 品であってもよい。
[0060]
本発明は、本発明の β—ガラタトシド— (X 2, 3 シアル酸転移酵素タンパク質に対 する抗体を提供する。本発明の抗体は、本発明の β ガラクトシドー (X 2, 3 シアル 酸転移酵素タンパク質、またはそのフラグメント、に対して作製してもよい。ここで、本 発明の j8—ガラクトシドー α 2, 3 シアル酸転移酵素のフラグメントは、当該酵素の ミノ酸酉己歹 IJ中、少なくとち 6 ミノ酸、少なくとち 10 ミノ酸、少なくとち 20 ミノ酸、ま たは少なくとも 30アミノ酸を含む配列を有するフラグメントである。
[0061] 抗体は、本発明の j8—ガラクトシドー a 2, 3 シアル酸転移酵素またはそのフラグ メントを、当該技術分野において抗体作製のために用いられる動物、例えば、限定さ れるわけではないが、マウス、ラット、ゥサギ、モルモット、ャギなどに免疫して作製し てもよい。抗体はポリクローナル抗体であっても、またはモノクローナル抗体であって もよい。抗体は、当業者に周知の抗体作製方法に基づいて作製することができる。
[0062] 本発明の抗体は、本発明の β—ガラタトシドー a 2, 3 シアル酸転移酵素タンパク 質をァフィユティー精製により回収するのに用いることができる。本発明の抗体は、本 発明の j8—ガラタトシド— a 2, 3 シアル酸転移酵素タンパク質を、ウェスタンブロッ ティングや ELISAなどのアツセィにおいて検出するのに用いることもできる。
[0063] シァリル糖鎖の製造方法
一態様において、本発明は本発明のシアル酸転移酵素を利用したシァリル糖鎖の 製造方法を提供する。本発明の方法は、シァリル糖鎖の製造方法であって、
(i)本発明の β ガラクトシドー oc 2, 3 シアル酸転移酵素、糖供与体基質、および 糖受容体基質を含む溶液を調製し;
(ii)当該溶液にぉ 、てシアル酸転移反応を行 ヽ;そして
(iii)反応溶液から生成したシァリル糖鎖を得る;
ことを含んでなる、前記方法である。
[0064] 本明細書にぉ 、てシァリル糖鎖とは、シアル酸を有する糖鎖を 、う。本発明の方法 においては、本発明の酵素によるシアル酸転移反応より、糖供与体基質のシアル酸 が糖受容体基質に転移し、シァリル糖鎖が得られる。
[0065] 本発明の方法に使用可能な糖供与体基質は、本発明のシアル酸転移酵素による シアル酸転移反応にお!、て糖供与体となりうる基質であれば特に限定されな 、。好 ましい本発明の方法に使用可能な糖供与体基質は CMP シアル酸であり、より好ま しくは CMP— NeuAcである。
[0066] 本発明の方法に使用可能な糖受容体基質は、特に限定されないが、ガラクトース 残基、グルコース残基、マンノース残基、フコース残基、 N ァセチルダルコサミン残 基、もしくは N ァセチルガラタトサミン残基などを有する複合糖質糖鎖もしくはオリゴ 糖、または、ガラクトース、グルコース、マンノース、フコース、 N ァセチルダルコサミ ンもしくは N ァセチルガラタトサミンなどの単糖である。ここで、複合糖質とは、糖質 を含む生体分子の総称で、糖タンパク質、プロテオダリカン、糖脂質が含まれる。本 明細書において複合糖質糖鎖とは、糖タンパク質、プロテオダリカン、糖脂質などの 複合糖質そのものを意味することもあるし、また、その糖鎖部分を意味することもある 。また、オリゴ糖とは、 2以上の単糖がグリコシド結合で連結された糖を意味する。オリ ゴ糖を構成する単糖の数には特に制限はない。また、単糖またはオリゴ糖の還元末 端は、アルキル基、ピリジルァミノ基、ベンゾィル基、ベンジル基、パラ-トロフエ-ル 基、 4ーメチルゥンベリフェリル基などで修飾されて 、てもよ 、。
[0067] 本発明の方法において、本発明の酵素、糖供与体基質、および糖受容体基質を 含む溶液は緩衝液であり、例えば、非限定的に、酢酸バッファー、力コジル酸バッフ ァー、リン酸バッファー、 TAPSバッファー、 Bis— Trisバッファー、 Trisバッファー、 C HESバッファー、 CAPSバッファー、 MOPSバッファー、 MESバッファー、 ADAノ ッ ファー、 PIPESバッファー、 ACESバッファー、 MOPSOバッファー、 HEPESバッフ ァー、などが含まれる。本発明の方法における、本発明の酵素、糖供与体基質、およ び糖受容体基質を含む溶液の pHは、本発明の酵素が酵素活性を有する pHであれ ば特に限定されないが、好ましくは pH5〜l l、 pH5〜10、 pH5〜9、 pH5〜7である
[0068] 本発明の方法において、シアル酸転移反応を行う温度は、本発明の酵素が酵素活 性を有する温度であれば特に限定されないが、好ましくは、 5〜35°C、 10〜35°C、 2 0〜35°C、 20〜30°Cの範囲で行うことができる。
[0069] 本発明の方法における、反応溶液から生成したシァリル糖鎖を得る工程は、当業 者に公知の複合糖質糖鎖、オリゴ糖を精製する手法を用いて行うことができる。例え ば、クロマトグラムとしては、逆相クロマトグラフィー、ゲルろ過クロマトグラフィー、ィォ ン交換クロマトグラフィー、ハイドロキシアパタイトクロマトグラフィー、ァフィ-テイク口 マトグラフィー、レクチンクロマトグラフィー、活性炭クロマトグラフィー、シリカゲルクロ マトグラフィーなど、またその他の手法としては、限外ろ過による糖鎖の分画'濃縮、 糖鎖の結晶化など、もしくはそれらの組み合わせ、などが挙げられるがこれらに限定 されない。
[0070] 本発明の酵素は、後述の実施例 4、 1 1、 12および 13に示すように、多くの種類の 糖受容体基質にシアル酸を α 2, 3結合で転移することが可能である。本発明のシァ リル糖鎖の製造方法により、一般的には基質特異性が高い公知のシアル酸転移酵 素では製造できな力つた糖鎖を容易に製造することが可能になる。特に α -ガラクトビ ラノシド、 α—グノレコピラノシド、 α—マンノビラノシド、 α—フコシノビラノシド、 β -フコシ ノピラノシドなどといった糖に効率よくシアル酸を転移する活性を有する酵素は知られ ていないので、本発明の方法は、これらの糖にシアル酸が付加されたシァリル糖鎖の 容易な製造方法を提供する。
発明の効果
[0071] 本発明は、新規な β ガラクトシドー a 2, 3 シアル酸転移酵素およびそれをコー ドする核酸を提供することにより、生体内において重要な機能を有することが明らか にされてきて!/ヽる糖鎖の合成 ·生産手段を提供すると ヽぅ観点にお ヽて貢献する。特 に、シアル酸は、生体内の複合糖質糖鎖において非還元末端に存在することが多く 、糖鎖機能という観点から極めて重要な糖であるため、シアル酸転移酵素は糖転移 酵素の中でも最も需要が高い酵素の一つであり、本発明の新規なシアル酸転移酵 素の提供は、そのような高い需要に応えるものである。
図面の簡単な説明
[図 1- 1]図 1— 1は、 JT— ISH— 467株由来の組換え j8 ガラクトシド α 2, 3 シ アル酸転移酵素の酵素活性の確認実験における、標品(失活させた粗酵素液、ピリ ジルァミノ化ラタトースおよびピリジルアミノィ匕 a 2, 3 シァリルラタトース(ピリジルアミ ノ化 3 '—シァリルラタトース)の混合物)の HPLC分析結果を示す図である。
[図 1- 2]図 1— 2は、 JT— ISH— 467株由来の組換え j8 ガラクトシド α 2, 3 シ アル酸転移酵素の酵素活性の確認実験の HPLC分析結果を示す図である。
[図 1- 3]図 1— 3は、 JT— ISH— 467株由来の組換え j8 ガラクトシド α 2, 3 シ アル酸転移酵素の酵素活性の確認実験における、対照実験 (糖供与体である CMP ーシアル酸を含まな ヽ反応液を使用した反応)の HPLC分析結果を示す図である。
[図 2]図 2は、フォトバクテリウム'フォスフォレゥム JT— ISH— 467株由来、フォトバタ テリゥム属 JT—ISH— 224株由来、およびビブリオ属 71—? ー16株由来の0;2
, 3 シアル酸転移酵素(それぞれ配列番号 2、 29、 31)、フォトバタテリゥム 'ダムセ ラの α 2, 6 シアル酸転移酵素 (JC5898)、ならびにパスッレラ 'ムルトシダ亜種ム ルトシダ株 Pm70の仮定上のタンパク質 PM0188 (AAK02272)のアミノ酸配列間 のアラインメントを示す図である。 JT— ISH— 467株由来 α 2, 3 シアル酸転移酵 素についての下線は精製タンパク力 決定されたアミノ酸配列を示す。
[図 3- 1]図 3—1は、 JT—ISH—467株が生産した j8 ガラクトシドー α 2, 3 シアル 酸転移酵素の酵素活性における反応 pHの影響を示すグラフである。グラフ中の、黒 四角、黒丸、黒三角、黒ひし形、白抜き四角、および白抜き丸のプロットはそれぞれ、 酢酸バッファー、力コジル酸バッファー、リン酸バッファー、 TAPSバッファー、 CHES バッファーおよび CAPSバッファ一中で測定した結果を示す。
[図 3-2]図 3— 2は、組換え |8—ガラクトシドーひ 2, 3 シアル酸転移酵素の酵素活 性における反応 pHの影響を示すグラフである。図 3— 2aiお T— ISH— 467株由来、 図 3— 2biお T— ISH— 224株由来、および図 3— 2dお T—FAJ— 16株由来の組換 え j8—ガラクトシドー α 2, 3 シアル酸転移酵素についての結果を示すグラフである 。グラフ中の、黒四角、黒丸、黒三角、黒ひし形、白抜き四角、および白抜き丸のプロ ットはそれぞれ、酢酸バッファー、力コジル酸バッファー、リン酸バッファー、 TAPSノ ッファー、 CHESバッファーおよび CAPSバッファ一中で測定した結果を示す。
[図 4- 1]図 4— 1は、 JT— ISH— 467株が生産した j8—ガラタトシドー α 2, 3 シアル 酸転移酵素の酵素活性における反応温度の影響を示すグラフである。
[図 4-2]図 4— 2は、組換え |8 ガラクトシドーひ 2, 3 シアル酸転移酵素の酵素活 性における反応温度の影響を示すグラフである。図 4— 2ai T— ISH— 467株由来 、図 4— 2biお T— ISH— 224株由来、そして図 4— 2dお T—FAJ— 16株由来の組 換え j8—ガラクトシドー α 2, 3—シアル酸転移酵素についての結果を示すグラフで ある。
[0073] 以下、実施例により本発明をさらに具体的に説明するが、本発明の技術的範囲はこ れらの実施例に限定されるものではない。
実施例
[0074] 実施例 1: β -ガラクトシド α 2. 3 シアル酸転移酵素を発現する微生物のスク リーユングと菌株の同定
海水、海砂、海泥あるいは海産魚介類を接種源とした。この接種源をマリンブロスァ ガー 2216培地(ベタトン'ディッキンソン製)からなる平板培地上に塗布し、 15°C、 25 °Cもしくは 30°Cで生育する微生物を取得した。常法に従い、得られた微生物を純粋 培養した後、マリンブロス 2216培地 (ベタトン'ディッキンソン製)からなる液体培地を 用いてそれぞれの微生物を培養した。微生物が十分成育した後に、培養液から菌体 を遠心分離によって集めた。集めた菌体に、 0. 2%トリトン X— 100 (関東ィ匕学製)を 含む 20mMカコジレート緩衝液 (pH6. 0)を添カ卩し、菌体を懸濁した。この菌体懸濁 液を氷冷下、超音波処理し細胞を破砕した。この細胞破砕液を酵素溶液としてシァ ル酸転移活性を測定し、シアル酸転移活性を有する菌¾[丁— ISH— 467株、 JT-I SH— 224株、および JT— FAJ— 16株を得た。なお、 JT— ISH— 467株は、スルメイ 力の表皮から、 JT—ISH— 224株は力マスの内臓から、および JT— FAJ— 16株はァ ジの内臓から、それぞれ得られた。
[0075] シアル酸転移活性は、 J. Biochem., 120, 104-110 (1996) (引用によりその全体を本 明細書に援用する)に記載されている方法で測定した。具体的には、糖供与体基質 CMP— NeuAc (70nmol、 14Cで NeuAcをラベルした CMP— NeuAc 25000cpm を含む、 356cpmZnmol。 NeuAcは N ァセチルノイラミン酸を表す)、糖受容体 基質としてラクト一ス(1. 25 mol)、 NaClを 0. 5M濃度になるように添カ卩し、および 上記に記した方法で調製した酵素を含む反応溶液 (30 IX 1)を用いて酵素反応を行 つた。酵素反応は 25°Cで 10分間から 30分間行った。反応終了後、反応溶液に 1. 9 7mlの 5mMリン酸緩衝液(pH6. 8)を加え、この溶液を Dowexl X 8 (PO 3-フォー
4 ム、 0. 2 X 2cm、 BIO— RAD製)カラムに供した。このカラムの溶出液(0〜2ml)に 含まれる反応生成物、すなわち、シァリルラタトースに含まれる放射活性を測定するこ とで、酵素活性を算出した。
(i) TT ISH— 467株
得られ^ JT ISH— 467株の性質は以下の通りであった:
(1)細胞の形態は桿菌で、大きさは 0. 7〜0. 8 /z m X l. 5〜2. 0 m。
[0076] (2)運動性
(3)グラム染色性
(4)胞子の有無
(生理学生化学的性質)
(1)生育温度 4°Cでは +、 25°Cでは +、 30°Cでは
(2)集落の色調 特徴的集落色素を産生せず
(3) OZFテスト +Z—
(4)カタラーゼテスト
(5)ォキシダーゼテスト +
(6)グルコースからの酸産生
(7)グノレコースからのガス産生 (8)発光性 +
(9)硝酸塩還元 +
(10)インドール産生 +
(11)ブドウ糖酸性ィ匕
( 12)アルギニンジヒドロラーゼ +
(13)ゥレアーゼ
(14)エスクリン加水分解
(15)ゼラチン加水分解性
(16) β -ガラタトシダーゼ +
(17)ブドウ糖資化性
( 18) L ァラビノース資化性
(19) D マンノース資化性
(20) D マンニトール資化性
(21) Ν ァセチルー D—ダルコサミン資化性
(22)マルトース資化性
(23)ダルコン酸カリウム資化性
(24) η—力プリン酸資化性
(25)アジピン酸資化性
(26) dl リンゴ酸資化性
(27)クェン酸ナトリウム資化性 ―
(28)酢酸フエ二ル資化性
(29)チトクロームォキシダーゼ +
(30)菌体内 DNA の GC含量(モル%) 39. 7%
(16S rRNA遣伝子の塩某配列解析および DNA— DNAノ、イブリダィゼーシヨン による種の同定)
JT— ISH— 467株から、常法により抽出したゲノム DNAを铸型として、 PCRにより 1 6S rRNA遺伝子の全塩基配列を増幅し、塩基配列を決定した。塩基配列を配列 番号 3に示した。この塩基配列はフォトバタテリゥム 'フォスフォレゥム(Photobacterium phosphoreum)基準株である ATCC11040株の 16S rRNA遺伝子の塩基配列に 対し、相同率 100%の高い相同性を示した。この結果から、 JT—ISH— 467株はフォ トバクテリゥム属に属することが明ら力となった。しかしながら、 16S rRNA遺伝子は 細菌の全ゲノムの一部でしかないので、 16S rRNA遺伝子の塩基配列による同定 解析は種レベルの極めて近縁な生物間の距離に対しては誤差が非常に大きいとさ れている。そこで、属内における菌株の類縁関係の定量的な評価に一般的に用いら れて 、る DNA— DNAノヽイブリダィゼーシヨン試験法を用い、種の決定を行った。 JT
— ISH— 467株およびフォトバクテリウム'フォスフォレゥム基準株である NCIMB128
2株 (ATCC11040株と同一株)の全 DNAを抽出し、供試した。その結果、 84. 7% の高い相同値(DNA- DNA relatedness)が得られた。一般に、同一種間の DNA—D
NA相同値は 60%以上を示すことから、 JT—ISH—467株はフォトバタテリゥム ·フォ スフォレゥム(Photobacterium phosphoreum)と同定された。なお、 DNA— DNAハイ ブリダィゼーシヨン試験は「微生物の分類.同定実験法」(鈴木健一郎'平石 明.横 田 明 編、シュプリンガー'フエアラーク東京株式会社、 2001年 9月、参照によりそ の全体を本明細書に援用する)に従い、マイクロプレートを用いたフォトピオチン標識 法によって行った。
(ii) TT ISH— 224株
得られ^ JT ISH— 224株の性質は以下の通りであった:
(1)細胞の形態は桿菌で、大きさは 0. 7〜0. 8 /z m X l. 0〜1. 5 m。
(2)運動性 +
(3)グラム染色性
(4)胞子の有無
(生理学生化学的性質)
(1)生育温度 4°Cでは一、 25°Cでは +、 30°Cでは +、 37°Cでは
(2)集落の色調 特徴的集落色素を産生せず
(3) OZFテスト +Z—
(4)カタラーゼテスト + (5)ォキシダーゼテスト +
(6)グルコースからの酸産生 +
(7)グノレコースからのガス産生 +
(8)発光性
(9)硝酸塩還元 +
(10)インドール産生 +
(11)ブドウ糖酸性ィ匕
( 12)アルギニンジヒドロラーゼ +
(13)ゥレアーゼ
(14)エスクリン加水分解
(15)ゼラチン加水分解性
(16) β -ガラタトシダーゼ +
(17)ブドウ糖資化性
( 18) L ァラビノース資化性
(19) D マンノース資化性
(20) D マンニトール資化性
(21) Ν ァセチルー D—ダルコサミン資化性
(22)マルトース資化性
(23)ダルコン酸カリウム資化性
(24) η—力プリン酸資化性
(25)アジピン酸資化性
(26) dl リンゴ酸資化性
(27)クェン酸ナトリウム資化性
(28)酢酸フエ二ル資化性
(29)チトクロームォキシダーゼ +
(30) 0/129感受' 14、 10 g 一 +
(31)菌体内 DNA の GC含量(モル%) 39. 4% (16S rRNA遣伝子の塩某配列解析) JT— ISH— 224株から、常法により抽出したゲノム DNAを铸型として、 PCRにより 1 6S rRNA遺伝子の全塩基配列を増幅し、塩基配列を決定した。塩基配列を配列 番号 32に示した。
[0078] JT—ISH— 224株はマリンァガー上での生育性、桿菌、グラム染色性、グルコース 発酵的分解性、 OZ129感受性などの形態観察および生理'生化学的性状試験の 結果力もビブリオ科に属することが示された。さらに、 JT— ISH— 224株の 16S rR NA遺伝子の DNA塩基配列はフォトバタテリゥム ·フォスフォレゥム(Photobacterium phosphoreum)基準株 ATCC11040の 16S rRNA遺伝子の配列に最も相同性が 高ぐその相同率は 99. 2%であること、次にフォトバタテリゥム 'イリオピスカリウム(Ph otobacterium iliopiscarium)基準株 ATCC51760の 16S rRNA遺伝子の配列に相 同性が高ぐその相同率は 99. 1%であることが明ら力となった。これらの結果から、 J T— ISH— 224株はフォトバタテリゥム属(Photobacterium sp.)に属する微生物である ことが明ら力となった。
(iii) TT_FAT_ 16株
得られ^ JT—FAJ— 16株の性質は以下の通りであった:
(1)細胞の形態は桿菌で、大きさは 0. 7〜0. 8 /z m X l. 2〜1. 5 m。
[0079] (2)運動性
(3)グラム染色性
(4)胞子の有無
(生理学生化学的性質)
(1)生育温度 4°Cでは +w、 25°Cでは +、 30°Cでは +、 37°Cでは +
(2)集落の色調 淡黄色〜クリーム色
(3) OZFテスト +Z +
(4)カタラーゼテスト +
(5)ォキシダーゼテスト +
(6)グルコースからの酸産生 +
(7)グノレコースからのガス産生 (8)硝酸塩還元 +
(9)インドール産生
(10)ブドウ糖酸性ィ匕 +
(11)アルギニンジヒドロラーゼ
(12)ゥレアーゼ
(13)エスクリン加水分解 +
(14)ゼラチン加水分解性
(15) β -ガラタトシダーゼ +
(16)ブドウ糖資化性
( 17) L ァラビノース資化性
(18) D マンノース資化性
(19) D マンニトール資化性
(20) Ν ァセチルー D ダルコサミン資化性
(21)マルトース資化性
(22)ダルコン酸カリウム資化性
(23) η—力プリン酸資化性
(24)アジピン酸資化性
(25) dl リンゴ酸資化性
(26)クェン酸ナトリウム資化性
(27)酢酸フエ二ル資化性
(28)チトクロームォキシダーゼ +
(29) OZl29感受性、
(30)マンィトール発酵性、 +
(31)イノシトール発酵性、 +
(32)ァラビノース発酵性、 +
(33)ラムノース発酵性、
(34)サッカロース発酵性、
(35)生育性(NaCl)、 3%NaCl+、 4%NaCl +、 6%NaCl +、 (36)デンプン加水分解、
(37) Tween80分解、 -
(38) H S産生、
2
(39)ァセトイン産生 (VPテスト)、
( 16S rRNA遣伝子の塩某配列解析)
JT— FAJ— 16株から、常法により抽出したゲノム DNAを铸型として、 PCRにより 16 S rRNA遺伝子の全塩基配列を増幅し、塩基配列を決定した。塩基配列を配列番 号 33に示した。
[0080] JT—FAJ— 16株はマリンァガー上での生育性、桿菌、グラム染色性、グルコース発 酵的分解性、 OZ129感受性などの形態観察および生理'生化学的性状試験の結 果カもビブリオ科に属することが示された。さらに、 JT— FAJ— 16株の 16S rRNA 遺伝子の DNA塩基配列はビブリオ ·ルモイエンシス (Vibrio rumoiensis)基準株の 16 S rRNA遺伝子の配列に最も相同性が高ぐその相同率は 99. 5%であることが明 らカとなった。これらの結果から、 JT—FAJ— 16株はビブリオ属(Vibrio sp.)に属する 微生物であることが明らかとなつた。
実施例 2: フォトパクテリゥムフォスフォレゥム(Photobacterium phosphoreum) TT— TSH— 467からの β ガラクトシド、 2. 3 シアル酸転移酵素の抽出および精製 マリンァガー 2216平板培地上で継代培養したフォトバクテリゥムフォスフォレゥム J T—ISH— 467株のコロニーから菌体をループで採取し、マリンブロス 2216液体培 地 10mlに接種し、 25°C、毎分 180回転で 8時間振とう培養した。
[0081] 本培養は、以下の手順で実施した。 20gZLの Bacto Peptoneおよび 4 gZLの Bacto Yeast Extractをカ卩えたマリンブロス 2216培地を 1000ml容のコブ付フラ スコに 300ml張り込み、オートクレーブ(121°C、 15分間)で滅菌した。これを 36本( 合計 10. 8L)用意した。各々のフラスコに前培養液 10mlを接種し、 25°C、毎分 180 回転で 24時間振とう培養した。培養液を遠心分離し、菌体を回収した。湿重量で約 6 0gを得た。
[0082] この菌体を、 990mlの 0. 2%トリトン X— 100および 3M塩化ナトリウムを含む 20m Mカコジレート緩衝液 (pH6. 0)に懸濁し、氷冷下で超音波破砕した。菌体破砕液を 4°C、 100, 000 8で1時間、遠心分離を行い、上清を得た。得られた上清を、透析 膜チューブに入れ、 0. 2%トリトン X— 100を含む 20mMカコジレート緩衝液(pH6. 0)中で 4°C、塩ィ匕ナトリウムが 20mM程度になるまで透析した。透析後、溶液中に沈 澱が生じたため、 4°Cで、 100, 000 X gで 1時間遠心分離を行い、沈殿を取り除いた
[0083] この粗酵素液を、 0. 2%トリトン X— 100なる界面活性剤を含む 20mMカコジレート 緩衝液(ρΗ6. 0)で平衡化した HiPrep 16/10 DEAE FF (アマシャムバイオサ ィエンス製)という陰イオン交換カラムに吸着させ、 0. 2%トリトン X— 100を含む 20m Mカコジレート緩衝液 (pH6. 0)から 1M塩ィ匕ナトリウムを含む同緩衝液へ直線濃度 勾配法で溶出させた。その結果、塩ィ匕ナトリウム濃度が 0. 25M付近で溶出された酵 素活性を有する画分を回収した。
[0084] 回収した画分を 20mMリン酸緩衝液 (pH6. 0)で希釈し、予め 0. 2%トリトン X— 1 00を含む 20mMリン酸緩衝液 (pH6. 0)で平衡化したハイドロキシアパタイト(Bio— Rad製)に吸着させ、 0. 2%トリトン X— 100を含む 20mMリン酸緩衝液(pH6. 0)か ら 0. 2%トリトン X— 100を含む 500mMリン酸緩衝液 (pH6. 0)へ直線濃度勾配法 で溶出させ。その結果、リン酸緩衝液濃度が 125mM付近に溶出された酵素活性を 有する画分を回収した。
[0085] この画分を MonoQ 5/50 GL (アマシャムバイオサイエンス製)陰イオン交換力 ラムに吸着させ、 0. 2%トリトン X— 100を含む 20mM カコジレート緩衝液(pH6. 0 )から 1M 塩ィ匕ナトリウムを含む同緩衝液へ直線濃度勾配法で溶出させた。その結 果、塩ィ匕ナトリウム濃度が 300mM付近で溶出される酵素活性を有する画分を回収し た。
[0086] この画分を、 0. 2%トリトン X—100を含む 20mM カコジレート緩衝液(pH7. 0)で 10倍希釈し、 MonoQ 5/50 GL (フアルマシア製)陰イオン交換カラムに吸着さ せた。 0. 2%トリトン X— 100を含む 20mMカコジレート緩衝液(pH7. 0)から 1M 塩ィ匕ナトリウムを含む同緩衝液へ、直線濃度勾配法で溶出させた。塩ィ匕ナトリウム濃 度が 300mM付近で溶出される酵素活性を有する画分を回収した。
[0087] この画分を 0. 2%トリトン X— 100および 0. 2M塩化ナトリウムを含む 20mMカコジ レー卜緩衝液(ρΗ7. 0)で 2倍希釈し、 HiLoad 16/60 Superdex 200 prep grade (アマシャムバイオサイエンス製)ゲルろ過カラムで分画した。 0. 2%トリトン X— 100および 0. 2M塩化ナトリウムを含む 20mM カコジレート緩衝液(pH7. 0)で溶 出させた。
[0088] 活性のあった画分を SDS—ポリアクリルアミドゲル電気泳動(アクリルアミドゲルの 濃度は 12. 5%)した結果、 目的酵素は単一のバンドを示し、約 39, 000の分子量を 示した。この画分の比活性は、菌体破砕時の比活性に比べて約 350倍に上昇した( 表 1)。
[0089] 粗酵素液力ゝらの JT— ISH— 467株由来の《2, 3—シアル酸転移酵素の精製につ いて、上述したそれぞれの精製工程を経た試料の酵素活性を表 1に示す。酵素活性 は、実施例 1に記載したのと同様に J. Biochem. 120, 104-110(1996)に記載されてい る方法で測定した。また、タンパク質の定量は Coomassie Protein Assay Reagent (PIE RCE製)を用いて、添付されたマ-ユアルにしたがってタンパク質の定量を行った。酵 素 1単位(1U)は、 1分間に 1マイクロモルのシアル酸を転移する酵素量とした。
[0090] [表 1]
表 i . 粗酵素液からの JT SH-467株由来の α 2,3—シアル酸転移酵素の精製表
Figure imgf000031_0001
[0091] 実施例 3 : ピリジルァミノ化糖鎖を用いたシアル酸結合様式の決定 実施例 2で得られた酵素を用い、ピリジルァミノ化糖鎖を糖受容体基質として酵素 反応を行った。ピリジルァミノ化糖鎖としては、ピリジルァミノ化ラタトース (Gal |8 1—4 Glc— PA、タカラバィォ製)を用い分析した。糖受容体基質が 2. 0 /z M、 CMP-Ne uAcが 5. および酵素が 20mUZmlとなるように、それぞれを 20mM カコジ レート緩衝液 (PH6. 0) 25 冲に溶解し、 25°C下で 3時間反応させた。反応終了後 、 100°Cで 2分間反応溶液を処理することにより酵素を失活させた。その後、 HPLC で反応生成物の分析を行った。
[0092] HPLCシステムとして Shimadzu LCI OA (島津製作所製)を用い、分析カラムに は Takara PALPAK Type R (タカラバイオ製)を用いた。 0. 15% N ブタノー ルを含む lOOmM 酢酸—トリェチルァミン (pH5. 0)で平衡化したカラムに溶出液 A (lOOmM 酢酸—トリェチルァミン、 pH5. 0)で希釈した反応液を注入した。ピリジ ルァミノ化糖鎖の溶出には溶出液 A (lOOmM 酢酸—トリェチルァミン、 pH5. 0)お よび溶出液 B (0. 5%、 n—ブタノールを含む lOOmM 酢酸—トリェチルァミン、 pH 5. 0)を用い、 30〜100%溶出液 Bの直線濃度勾配法 (0〜35分)および 100%溶 出液 B (35〜50分)により、順次ピリジルァミノ化糖鎖を溶出した。なお、分析は以下 の条件で行った(流速: lmlZmin、カラム温度: 40°C、検出:蛍光(Ex: 320nm、 E m:400nm) )。
[0093] その結果、本酵素を用いることにより、ピリジルァミノ化ラタトースカもピリジルァミノ ィ匕 (X 2, 3 シァリルラタトース(ピリジルァミノ化 3,一シァリルラタトース)が合成される ことが明ら力となった。
実施例 4 : TT—ISH—467菌株が生産する β ガラクトシドー α 2. 3 シアル酸 転移酵素を用いた単糖'二糖街へのシアル酸の転移 (シアル酸含有糖鎖の製诰)
JT— ISH— 467菌株カも調整した菌体破砕液を、イオン交換クロマトグラフィー、ハ イドロキシアパタイトクロマトグラフィー、ゲルろ過クロマトグラフィーを用いて部分精製 した α 2, 3 シアル酸転移酵素を用いて、各種の単糖 '二糖類へのシアル酸の転移 を確認するために、以下の実験を行った。 [0094] 各糠の糖 容体某皙を用いたシアル酸転移反
反応溶液 24 1中に、糖供与体基質 CMP— "C NeuAc (400nmol ( 15600cp m)、反応溶液中での最終濃度:16. 6mM)、各種糖受容体基質(10 ;ζ ΐηΟ1、反応 溶液中での最終濃度: 200mM)、シアル酸転移酵素(0. 13mU)、 NaCl (反応溶液 中での最終濃度: 500mM)からなる反応溶液を調製して、 25°Cで 4時間、酵素反応 を行った。なお、糖受容体基質として用いた単糖'二糖類は、メチル— oc— D—ガラ タトビラノシド(Gal— a— OMe)、メチル一 j8—D ガラクトピラノシド(Gal— β— OMe ;)、 N—ァセチルガラタトサミン(GalNAc)、ラタトース(Gal— β 1 ,4— Glc)、 Ν ァセチ ルラクトサミン(Gal— β 1 ,4— GlcNAc)、メチル一 13—D—ガラタトピラノシル一 β 1 , 3 —Ν ァセチルダルコサミニド(Gal— β 1 ,3 - GlcNAc- β—OMe)の 6種類を用いた
[0095] 酵素反応終了後、反応溶液に 1. 98mlの 5mMリン酸バッファー(pH6. 8)を添カロ して酵素反応を停止した。その後、 5mMリン酸バッファー (pH6. 8)で希釈した酵素 反応溶液(2ml)を、 AGl - X 2Resin (PO 3-フォーム、 0. 2 X 2cm)カラムに供した
4
。このカラムは、 AG1— X 2Resin (OH- form、 BIO- RAD社製)を 1Mリン酸バッファ 一 (pH6. 8)に懸濁し、 30分後レジンを蒸留水で洗浄した後、蒸留水に懸濁して作 成した。このカラムの溶出液 (0〜2ml)の放射活性を測定した。このカラムの溶出液 には、反応で生じた14 C— NeuAc (N ァセチルノイラミン酸)が結合した反応生成物 および未反応の糖受容体基質が含まれるが、未反応の CMP— 14 C NeuAcはカラ ムに保持されたままである。従って、酵素反応の結果生じた各種シアル酸含有糖鎖 由来の14 Cの放射活性は、全て反応生成物由来であり、この画分の放射活性カも酵 素活性を算出することができる。
[0096] 上記の方法を用いて、それぞれの糖受容体基質に転移された NeuAcの放射活性 を測定して転移されたシアル酸を算出した。
(腿)
今回糖受容体基質として用いた 6種類の単糖、ニ糖 、ずれにもシアル酸が転移し て!、ることが明らかとなつた (表 2参照)。今回糖受容体基質として用いた糖類の中で は、 N ァセチルラクトサミンに最も多くのシアル酸が転移していることが明ら力となつ た。
[0097] [表 2] 表 2 : 1815-467株由来 α2,3-シァル酸転移酵素による
種々の糖受容体基質へのシァル酸転移酵素 ¾1生
Figure imgf000034_0001
[0098] 実施例 5 : フォトバクテリウム'フォスフォレゥム TT— ISH— 467株が生産する — ガラクトシ — α 2. 3—シアル酸転移酵素をコードする遺伝子の塩某西 R列解析およ び当該遺伝子の形皙転椽
( 1)ゲノム DNAの精製とゲノムライブラリーの作成
JT— ISH— 467株の菌体ペレット約 0. 5g力ら、 Qiagen Genomic- tip 100/G (Qiage n社製)を用いて、キット添付の説明書きに従って、約 100 gのゲノム DNAを調製し た。 1 2 gの DNAに対して、 0. 1〜0. 2ユニットの四塩基認識の制限酵素 Sau3 AIを反応させ、部分分解を行った。反応バッファ一は酵素に添付のものを用い、反 応条件は 37°C、 30分とした。反応終了後、反応液に最終濃度 25mMの EDTA p H8. 0を加え、フエノール'クロ口ホルム処理を行った。ゲノム DNAをエタノール沈殿 で回収し、 TE 400 μ 1に溶解した。遠心チューブ(日立製作所製 40ΡΑ)に、グラジ ェント作製装置を用いて、 40%シユークロースバッファー(20mM Tris pH8. 0, 5 mM EDTA pH8. 0, 1M NaCl)と 10%シユークロースバッファーから、 40— 10 %のグラジェントを作製し、そこへ上記の部分分解 DNA溶液を重層した。超遠心機 (日立製作所製 SCP70H、ローター: SRP28SA)を用いて、 26, 000rpm、 20。C、 15時間遠心した。遠心後チューブの底部に 25Gの針で穴を空け、底部の液から lm 1ずつ回収した。回収したゲノム DNAを含むサンプルの一部を、サブマリン電気泳動 糟を用い、 0. 5 - 0. 6%ァガロースゲル ZTAEバッファ一中で、 26V、 20時間電気 泳動を行い、 9— 16kbのサイズの DNAを含む画分を把握した。マーカーとして λ Ζ Hindlllを用いた。 9— 16kbのサイズの DNA断片を含む画分に TEを 2. 5ml加えシ ユークロース濃度を下げた後,エタノール沈殿、リンスを行い、少量の TEに溶解した
[0099] JT—ISH— 467株のゲノムライブラリー作成のためのベクターとして、 DASH II
(Stratagene製)を用いた。 λ DASH IlZBamHIベクターとゲノム DNA断片のライ ゲーシヨン反応は Stratagene製のライゲーシヨンキットを用いて、 12°Cでー晚行った。 反応後、反応液を GigaPack III Gold Packaging extractと反応させ、ゲノム DNAが組 み込まれた λベクターをファージ粒子に取り込ませた。ファージ液は 500 μ 1の SMバ ッファーと 20 ΐのクロ口ホルム中で 4°C保管した。大腸菌 XLl— Blue MRA (P2) ( Stratagene製)を LBMM (LB + 0. 2%マルトース + 10mM MgSO )中で A = 0.
4 600
5になるまで培養し、この培養液 200 1〖こ、適量のファージ溶液をカ卩え、 37°Cで 15 分間培養した。ここへ 48°Cで保温した NZYトップァガロースを 4mlカ卩え、混合し、 NZ Yァガープレート(直径 9cmのプラスチックシャーレ)にプレーティングした。プレート を 37°Cで一晩培養し、プラーク数を数え、 titerを計算したところ、ライブラリーサイズ は約 30万 pfu (plaque forming unit)と算出された。
(2)プライマー設 t ^プローブ作成
Precise 494 cLし Protein sequencing System (Applied Biosystems製)を用 ヽ飞、 JT — ISH— 467株由来の |8—ガラクトシド一 《 2, 3—シアル酸転移酵素のァミノ末端( Ν末端)アミノ酸配列、および内部アミノ酸配列を決定した。
[0100] Ν末端アミノ酸配列の決定は、次のようにして行った。当該シアル酸転移酵素を 5Ζ
20%グラジェントゲル(ΑΤΤΟ製)にて SDS—ポリアクリルアミドゲル電気泳動を行つ た。泳動後、当該酵素を PVDF膜に吸着させ、アミノ酸配列分析装置により、アミノ末 端側 10個のアミノ酸の配列を決定した。その結果、当該酵素の Ν末端アミノ酸配列 は XNSDSKHNNS (配列番号 4)であった。
[0101] また、内部アミノ酸配列の決定は、次のようにして行った。当該シアル酸転移酵素を 5Ζ20%グラジェントゲル (ΑΤΤΟ製)にて SDS—ポリアクリルアミドゲル電気泳動を 行った。ゲルを染色した後、 目的のバンドを切り出し、リジルエンドべプチダーゼを含 むトリスバッファー(pH8. 5)を加え、 35°C、 20時間の処理を行った。その後、溶液の 全量を逆相 HPLC (カラム: Symmetry C18 3. 5 m)に供して、断片ペプチドを 分離した。アミノ酸配列分析装置により、当該酵素の内部アミノ酸配列は、 SLDSMI LTNEIK (配列番号 5)、 FYNFTGFNPE (配列番号 6)および GHPSATYNQQII DAHNMIEIY (配列番号 7)を有することが明らかとなつた。
[0102] 上記のように決定されたフォトバクテリウム'フォスフォレゥム JT—ISH— 467由来 α 2, 3—シアル酸転移酵素の部分アミノ酸配列、即ち Ν末アミノ酸配列: XNSDSKH NNS (配列番号 4)と、三箇所の内部アミノ酸配列のうち、二箇所の内部アミノ酸配列 : FYNFTGFNPE (配列番号 6)および GHPSATYNQQIIDAHNMIEIY (配列番 号 7)を基に以下の degenerateプライマーを設計、合成した。即ち、 N末端のァミノ 酸配列: XNSDSKHNNS (配列番号 4)から、下記の表 3に示す 3本のプライマー(I はイノシン)を合成した。
[0103] [表 3] 表 3
名称 配列 5' -3' mi x度 長さ
467N-RV AAY WS I GAY WS I AAR CAY AAY AA (配列番号 8 ) 256 Z3mer
4B7N-RV2 GAY WS I AAR CAY AAY AAY WS (配列番号 9 ) 512 20mer
467N - RV3 AAY WSN GAY WS I AAR CAY AAY AA (配列番号 1 0 ) 1024 23mer 表中、 Yはチミンまたはシトシン; wはチミンまたはアデニン; Sはシトシンまたはグァニン; Rはアデニンまたはグァニン; Nはアデニン、 グァニン、 シトシンまたはチミン;
Iはイノシン;をそれぞ;表す。
[0104] また、内部アミノ酸配列: GHPSATYNQQIIDAHNMIEIY (配列番号 7)力 下記 の表 4に示す 4本のプライマーを合成した。
[0105] [表 4] 表 4
名称 配列 5' 3 mi) (度 長 5
467inlRV ATH ATH GAY GCN CAY AAY ATG (配列番号 1 1 ) 288 21mer 467in1FW CAT TT RTG NGC RTC DAT DAT (配列番号 1 2) 2 B 21ner
467in1RV2 TAY AAY CAR CAR ATH ATH GAY GC (配列番号 1 3) 288 23mer
467in1F 2 _GCR TCD ATD ATY TGY TGR TTR TA—(配列番号 1 4) 288 23mer 表中、 Hはチミン、 シトシンまたはアデニン; Yはチミンまたはシトシン;
Rはアデニンまたはグァニン; Dはアデニン、 グァニンまたはチミン; Νはアデニン, グァニン、 シトシンまたはチミン;をそれぞれ表す。
[0106] さらに、内部アミノ酸配列: FYNFTGFNPE (配列番号 6)力 下記の表 5に示す 2本 のプライマーを合成した。
[0107] [表 5] 表 5
名称 配列 5' -3' mix度 長さ
467in2RV TAY AAY TTY ACN GGN TTY AAY CC (S己列番号 1 5) 512 23mer
467in2FW GGR TTR AAN CCN GTR MR TTR TA (配列番号 1 6) 512 23mer 表中、 Yはチミンまたはシトシン; Rはアデニンまたはグァニン;
Nはアデニン、 グァニン、 シトシンまたはチミン;をそれぞれ表す。
[0108] これらのプライマーを用いて、上記(1)で抽出'精製し^ JT—ISH—467株のゲノム DNAを铸型に PCRを行い、ライブラリーをスクリーニングするためのプローブとなる J T ISH— 467株由来 a 2, 3 シアル酸転移酵素遺伝子の部分長 DNAを増幅し た。プライマー組み合わせは、 N末端配列由来の 3本のプライマーのそれぞれと、 46 7inlFW (配列番号 12)、 467inlFW2(配列番号 14)もしくは 467in2FW (配列番 号 16)の 9つの組み合わせ、 467inlRV (配列番号 11)もしくは 467inlRV2(配列 番号 13)と 467in2FW (配列番号 16)の 2つの組み合わせ、さらに 467in2RV (配列 番号 15)と 467inlFW (配列番号 12)もしくは 467inlFW2 (配列番号 14)の 2つの 組み合わせの、総計 13組み合わせである。 PCR反応は以下のように行った。 50 /xl の反応液中に、ゲノム DNA 250ng、 10( Ex taqバッファー 5 1、2.5mM 各 dNTPs 4 1,プライマーをそれぞれの配列について 5pmole, Ex taq (タカラバイ ォ製) 0. 5 /z l、をそれぞれ含み、プログラムテンプコントロールシステム PC— 700 (A STEK社)を用いて、 96。C 3分を 1回、 96。C 1分、 50。C 1分、 72。C 2分を 40回 、 72°C 6分を 1回行った。その結果、 9つのプライマー組み合わせ(467N—RV (配 列番号 8)と 467inlFW (配列番号 12)、 467N— RV (配列番号 8)と 467in2FW (配 列番号 16)、 467inlRV (配列番号 11)と 467in2FW (配列番号 16)、 467in2RV ( 配列番号 15)と 467inlFW (配列番号 12)の組み合わせ以外の 9つ)において、 PC R産物が増幅された。これらの PCR産物のうち、特異的かつ高い増幅効率の得られ た組み合わせ(467N— RV3 (配列番号 10)と 467inlFW (配列番号 12) )由来の P CR産物をベクター pCR2. 1TOPO (Invitrogen製)にクローユングした。ライゲーショ ン反応はベクターキット添付の説明書きに従った。大腸菌 TBIにエレクト口ポレーショ ン法を用いて DN Aを導入し、常法(Sambrook et al. 1989, Molecular Cloning, A labo ratory manual, 2nd edition (引用によりその全体を本明細書に援用する))に従いプラ スミド DNAを抽出した。このクローンに関して、 Ml 3プライマー(タカラバイオ製)を用 いて、 ABI PRISM蛍光シークェンサ一(Model 310 Genetic Analyzer, Perkin Elme r製)で、 PCR産物の塩基配列をその両端力も決定した。
決定された DNA塩基配列(929bp:配列番号 17)に関して、 National Center for B iotechnology Information (NCBI)の GeneBankデータベースに対して、 BLASTプロ グラムによる相同性検索を行った。その結果、有意な相同性を示す DNA配列は検 出されなかった。これは本発明によって明らかにされた、フォトバタテリゥム'フォスフォ レゥム JT—ISH—467株由来 a 2, 3—シアル酸転移酵素遺伝子の DNA塩基配列 が新規な配列であることを意味する。次に、この塩基配列をアミノ酸に翻訳して、再度 BLASTサーチをかけたところ、フォトバクテリウム'ダムセラ(Photobacterium damsela e)の α 2, 6—シアル酸転移酵素 (JC5898)と 30%の相同性、ノ スッレラ 'ムルトシダ 亜種ムルトシダ株 (Pasteurella multocida subsp. multocida) Pm70の仮定上のタンノ ク質 PM0188 (AAK02272)と 26%の相同性、へモフィルス 'デュクレイ(Haemoph ilus ducreyi) 35000HP株の仮定上のタンパク質 HD0053 (AAP95068)と 21% の相同性が検出された。さらに、翻訳されたアミノ酸配列は、上記の精製酵素から直 接決定された内部アミノ酸配列: FYNFTGFNPE (配列番号 6)と SLDSMILTNAI K (配列番号 5)の全体を含み、 Ν末アミノ酸配列: XNSDSKHNNS (配列番号 4)と 、内部アミノ酸配列: GHPSATYNQQIIDAHNMIEIY (配列番号 7)の一部を含ん でいた。以上の結果から、クローユングされた DNAは、フォトバタテリゥム 'フォスフォ レゥム JT—ISH—467株由来《2, 3—シアル酸転移酵素遺伝子の一部であり、か つ本発明のフォトバタテリゥム 'フォスフォレゥム JT—ISH— 467株由来 α 2, 3—シァ ル酸転移酵素のアミノ酸配列は、既報配列と 30%程度し力 4目同性を示さない新規な アミノ酸配列であることが明ら力となった。
(3)スクリーニングと遣伝子クローニング
上記(2)でクローン化されたフォトバタテリゥム 'フォスフォレゥム JT—ISH— 467株 由来ひ 2, 3—シアル酸転移酵素遺伝子の一部力もなる DNA断片を、 pCR2. 1 T OPOベクター力 制限酵素 EcoRIで切り出し、これをプローブとして、上記(1)作製 したフォトバクテリウム'フォスフォレゥム JT— ISH— 467株由来ゲノム DNAライブラリ 一をスクリーニングした。直径 9cmの丸形シャーレに λ DASH Il/BamHI ベクタ 一キット(Stratagene製)の説明書きに従って、約 300— 500pfuのファージを宿主菌 XL 1 -blue MRA(P2)とともにプレーティングした。プラークを Hybond—N +ナイ ロンメンブレンフィルター(Amersham製)に接触させ、メンブレン添付の説明書きに 従ってアルカリ処理を行い DNAを変性させ、メンブレン上に固定させた。プローブは rediprime II™ DNA labelling system (アマシャムバイオサイエンス製)を用いて32 Pラベ ルした。ハイブリダィゼーシヨンは 0. 5M リン酸ナトリウムバッファー pH7. 2、 7% SDS、 ImM EDTA中で 65(Cでー晚、洗浄の条件は 40mM リン酸ナトリウムバッ ファー pH7. 2、 ImM EDTA, 5%SDS中で 65。C、 15分を 2回、 40mM リン酸 ナトリウムバッファー pH 7. 2、 1% SDS、 ImM EDTA中で 65(C、 15分を 2回 行った。 1次スクリーニングで約 5, OOOpfuのファージから 24個のポジティブクローン が得られた。うち 18個のクローンに関して、プラークの精製を兼ねた 2次スクリーニン グを行った。その結果、 6種類の選抜'精製プラークを得ることが出来た。
これらのプラークを回収し、それぞれ大腸菌 XL 1— blue MRA(P2)とともに、一 枚数万 pfuとなるように NZYプレートにプレーティングし、ー晚 37°Cで保温した。プラ ークがー面に出ている 6枚のプレートに SMバッファーを 4mlづっ注ぎ、 4°Cでー晚静 置した。パスツールピペットで、ファージプレートライセートを回収し、 QIAGEN Lambd a Mini Kit (キアゲン製)で、 λ DNAを抽出、精製した。これら 6種類の λ DNA、およ び(1)で精製し^ JT— ISH— 467株の全ゲノム DNAを制限酵素 EcoRI、 Hindlllで 消化し、 0. 7%ァガロースゲル電気泳動で分画後、 0. 4M NaOHを用いたアル力 リブロッテイングにより、ゲルを Hybond— N +ナイロンメンブレンフィルター(アマシャ ムバイオサイエンス製)に転写した。このフィルターに関して、上記の 929bpのプロ一 ブ(配列番号 17)を用いて、上述のようにサザンノヽイブリダィゼーシヨンを行った。そ の結果、 EcoRI消化では、 9kbまたはそれ以上のバンドが検出された。一方、 Hindll I消化の場合、全ての DNA、ゲノム DNAともに 4. 6kbのバンドが検出された。そこ で、 λ DNAを再度 Hindlllで消化し、ァガロースゲル電気泳動を行い、 4. 6kb Hi ndlll断片を回収し、プラスミドベクター pBluescript SK (—)の Hindlll部位に、常 法に従 、クローニングした。
[0111] 次に、フォトバタテリゥム 'フォスフォレゥム JT—ISH— 467株由来 α 2, 3—シアル 酸転移酵素遺伝子の全塩基配列を決定するため、同遺伝子の部分 DNA配列(上 述、 929bp :配列番号 17)を基に以下の表 6に示すプライマーを合成した。
[0112] [表 6] 表 6
名称 配列 5' -3' 長さ
467-23ST i nRVl TGTTGATAGAGCAACATTACC (配列番号 1 8) 21mer
467-23ST i n V2 TGGTAATACCTTATGGGCAG (配列番号 1 9 ) 20mer
467-23ST i nRV3 GAACAGCAACGGCAGAGC (配列番号 2 0) 18mer
467-Z3ST i nRV4 CTAATTCAATTCAAGGATTGG (配列番号 2 1 ) 21mer
467-23ST i nFW1 TGGTAATGTTGCTCTATCAAC (配列番号 2 2 ) 21tner
467-23ST i nFW2 ACTGCCCATAAGGTATTACC (配列番号 2 3 ) 20mer
467-23STi nFW3 GCTCTGCCGTTGCTGTTC (配列番号 2 4 ) 18mer これらのプライマーを用いて、 ABI PRISM蛍光シークェンサ一(Model 310 Genet ic Analyzer, Perkin Elmer製)で、 4. 6kb Hindlll断片の内部塩基配列を解析し、フ オトバタテリゥム'フォスフォレゥム JT—ISH— 467株由来 ex 2, 3—シアル酸転移酵素 遺伝子の内部、およびその近傍の塩基配列を解析した。その結果、配列表の配列番 号 1の配列を得た。この配列は、フォトバタテリゥム 'フォスフォレゥム JT—ISH— 467 株由来 α 2, 3—シアル酸転移酵素遺伝子のオープンリーディングフレーム(ORF) の全塩基配列である。最初の ATGの上流には同じ読み枠で、翻訳終止コドンが現 れるのでこれ力 本遺伝子の翻訳開始コドンであると考えられる。
[0114] フォトバクテリウム'フォスフォレゥム JT— ISH— 467株由来 α 2, 3—シアル酸転移 酵素遺伝子の ORFは、 1230塩基力らなり、 409個アミノ酸をコードしていた。このァ ミノ酸配列を配列表の配列番号 2に示す。このアミノ酸配列は、精製酵素から決定さ れた 4箇所のアミノ酸配列全てを完全に含む。 Ν末のアミノ酸配列の一文字目が解読 されて 、な力つた力 遺伝子から演繹されるこの部分のアミノ酸は Cys (システィン)で あった。また成熟タンパクの N末端は、配列表の配列番号 2の配列のうちの第 22番 目の Cysであることから、初めの 21アミノ酸力もなる配列は、フォトバタテリゥム 'フォス フォレゥムにおいてはプロセッシングを受け、除去されると考えられた。遺伝情報処理 ソフトウェア GENETYX Ver. 7 (ゼネテイツタス製)を用いて、本発明のフォトバクテ リウム 'フォスフォレゥム JT— ISH— 467株由来 α 2, 3—シアル酸転移酵素タンパク 質全長、およびその遺伝子全長と、それらのホモローグの全長同士の相同性を解析 したところ、アミノ酸配列では、フォトバクテリウム'ダムセラの α 2, 6—シアル酸転移 酵素 (JC5898)と 32%の相同性、パスッレラ.ムルトシダ亜種ムルトシダ株 Pm70の 仮定上のタンパク質 PM0188 (AAK02272)と 28%の相同性を有し、そして、遺伝 子 DNA配列ではそれぞれと、 53%、 51%の相同性を有していた。
(4)発現ベクターの構築
クローン化した遺伝子が、シアル酸転移活性を有するか否かを調べるため、同遺伝 子の全長、および N末端側のシグナルペプチド部分を除去したタイプの遺伝子を発 現ベクターに組み込み、大腸菌内でタンパク質を生産させ、この発現タンパク質の活 性を測定した。
[0115] フォトバクテリウム'フォスフォレゥム JT— ISH— 467株由来 α 2, 3—シアル酸転移 酵素のアミノ酸配列について、遺伝情報処理ソフトウェア GENETYX Ver. 7で解 析を行ったところ、 N末端の 24アミノ酸が、シグナルペプチドであると予測された。そ こで、遺伝子全長 (本実施例において 467— NOCOと表記する)をクローン化するた めのプライマー 467— 23ST— NO— Pci (酉己列番号 27)および 467— 23ST— CO Bm (配列番号 26)、さらにシグナルペプチド部分のアミノ酸が除かれたタイプのタ ンパク質をコードする遺伝子 (本実施例において 467— N2C0と表記する)をクロー ン化するためのプライマー 467— 23ST— N2— Nco (配列番号 25)および 467— 2 3ST— CO— Bm (配列番号 26)を設計、合成した (表 7)。
[表 7]
Figure imgf000042_0001
名称 配列 5' -3' 長さ
467-23ST-N2-NCO GGGCTGTACdAT§GACTCTAAGCACAATAACTCAG (配列番号 2 5 )
467-23ST-C0-Bm CTTAGAATGGATCgFTACTGCAAATCACTTATCAAC (配列番号 2 6 ) 36mer 467-23ST-N0- Pc i AAGGGAATACRfaTTCGTTTTTTGTAAAAAAATA (配列番号 2 7 ) 34mer
クローユング用にプライマーに予め組み込んだ制限酵素 Pcil (467— 23ST— NO - Pci)、 Ncol (467- 23ST-N2- Nco)、 BamHI (467— 23ST— CO— Bm)部 位を下線で示した。翻訳開始コドン ATG、翻訳終止コドンに対応する相補配列 TAA を四角で囲んだ。さらに、プライマー配列のうち、制限酵素部位より 3'側で、铸型 DN Aとアニーリングする部分の配列を太字で示した。 PCR時の铸型 DNAは、フォトバタ テリゥム 'フォスフォレゥム JT—ISH— 467株由来ひ 2, 3 シアル酸転移酵素遺伝子 全長を含む上記 Hindm 4. 6kb断片が組み込まれたプラスミドを用いた。 PCRの 反応条件は以下のように設定した。 50 iu lの反応液中に、铸型DNA 100ng、 10 X
Ex taq buffer 5 1、 2. 5mM 各 dNTP 4 1、プライマー 50pmole、 Ex t aq (タカラバイオ製) 0. 5 1をそれぞれ含み、プログラムテンプコントロールシステム PC— 700 (ASTEK製)を用いて、 96。C 3分を 1回、 96。C 1分、 50。C 1分、 72。C
2分を 15回、 72°C 6分を 1回行った。その結果、 467— N0C0でおよそ 1. 2kb、 4 67— N2C0でおよそ 1. lkbの PCR産物が増幅された。これらの PCR産物のうち、 4 67— N0C0を制限酵素 PciI (New England Biolab製)と BamHI (タカラバイオ製)で 二重消化し、そして、 467— N2C0を制限酵素 Ncol (タカラバイオ製)と BamHIで二 重消化した後、ゲル精製した。大腸菌発現用ベクターは pTrc99A (Pharmacia LKB 製)を用いた。このベクターを同じ制限酵素 Pcilと BamHI、または制限酵素 Ncolと B amHIで二重消化しゲル精製したものを、制限酵素処理を行った PCR産物と Takara Ligation Kit (タカラノィォ製)を用いてライゲーシヨンし、大腸菌 TBIにトランスフエク トした。常法に従いプラスミド DNAを抽出、制限酵素分析し、インサートの組み込み を確認した。 PCR反応による塩基の変化を調べるため、 467—N0C0では二つのク ローンを、 467— N2C0では 3つのクローンの全塩基配列を決定した。その結果、 46 7—N0C0においては一つのクローン(ISH467—N0C0第一クローン)で配列番号 1の塩基配列のうち、第 569番目のアデニン (A)がグァニン (G)に変化し、これにより コドンが AACから AGCに変化し、配列番号 2のアミノ酸配列のうち第 190番目のァス パラギン酸 (Asn)がセリン(Ser)に変化していた。 Asnと Serは同じ極性アミノ酸であ る。一方、もう一つのクローン(ISH467—N0C0第二クローン)では塩基の変化は一 つも無ぐ配列番号 1の塩基配列が確認された。次に 3つの 467— N2C0クローンの 全塩基配列を決定した。その結果、第一および第二クローンの 2つにアミノ酸置換を 伴う塩基の変異が見つ力つた。即ち、 ISH467—N2C0第一クローンでは、配列番 号 1の塩基配列の 476番目のチミン (T)がシトシン (C)に変異しており、これによりコ ドンが TTTから TCTに変わり、 159番目のフエ-ルァラニン(Phe)がセリン(Ser)に 置換されていた。 ISH467— N2C0第二クローンでは、配列番号 1の塩基配列の 78 番目のチミン (T)が欠失し、これにより、フレームシフトが起き、正しいタンパク質が翻 訳されない。一方、 ISH467—N2C0第三クローンでは、変異は検出されず、配列番 号 1のうち第 73番目の塩基力も第 1230番目の塩基までの配列そのものを含んでい た。
)発頊, 活件沏 I
上記(4)で得られた 467— N0C0の 2クローン、 467— N2C0の 3クローンに関して 、タンパク質発現誘導実験を行った。各クローンが組み込まれた発現ベクター PTrc9 9Aをもつ大腸菌 TBIの単一コロニーを、抗生物質アンピシリン (最終濃度 100(gZ mL)を含む LB培地(5ml)に接種し、 A =0. 5程度になるまで 30°Cで菌を前培養
600
し、その後 IPTG (イソプロピル一 β— D (―)—チォガラタトピラノシド、和光純薬工業 製)を最終濃度で ImMとなるように加え、 30°Cでさらに 4時間振とう培養した。培養 液 2ml中の菌体を遠心分離によって集めた。この菌体を、 200 1の0. 336%トリトン X— 100および 0. 5M塩化ナトリウムを含む 20mM ビストリス緩衝液(pH7. 0)に懸 濁し、氷冷下で超音波破砕した。得られた破砕液を粗酵素液とし、活性測定に供試 した。反応は 2反復で行い、反応組成は実施例 1と同様に行った。但し、反応時間は 15時間とした。その結果、下記の表 8に示すように、 ISH467— N0C0第一クローン の粗酵素液中および ISH467— N0C0第二クローンの粗酵素液中には、糖供与体 である CMP— NeuAc中の14 Cでラベルされた NeuAcを糖受容体基質であるラタトー スに転移する因子、即ちシアル酸転移酵素活性が存在することが示された。また、 IS H467—N2C0第一クローンおよび ISH467—N2C0第三クローンの粗酵素液中に もシアル酸転移酵素活性が存在することが示された。一方、 ISH467— N2C0第二 クローンの粗酵素液中および粗酵素液なしの反応液中にはシアル酸転移酵素活性 が含まれていなかった。以上の結果から、 ISH467— N0C0第一クローンもしくは第 二クローン、または、 ISH467— N2C0第一クローンもしくは第三クローンを導入した 大腸菌にはシアル酸転移酵素が発現されていることが明らかとなった。
[表 8]
表 8 : ^1811-467株由来 )3—ガラクトシド一な 2,3—シアル酸転移酵素遺伝子を 組み換えた大腸 ®¾fe 液中のシアル酸転移酵素活性
Figure imgf000045_0001
(6) a - 2. 3シアル酸転移活件の確認
上記(5)の粗酵素液を用いて、 ISH467— N2C0第一クローンを導入した大腸菌 で発現されたシアル酸転移酵素がひ 一 2, 3シアル酸転移活性を有するかどうか調 ベた。実施例 3と同様に、糖受容体としてピリジルァミノ化ラタトース (Gal 3 l—4Glc 一 PA、タカラバイオ社製 PA— Sugar Chain 026)を用い、酵素反応を行った。反 応終了後、 95°Cで 5分間、反応溶液を熱処理することにより酵素を失活させ、 HPLC で分析した。なお、酵素反応は、ピリジルァミノ化ラタトースが 2. 0 M、 CMP—シァ ル酸が 5. 7 Mとなるように、それぞれを 20mM カコジレート緩衝液 (pH6. 0) 25 1中に溶解し、 25°C下で 6時間行った (反応 1)。一方、 CMP—シアル酸を含まない 反応液を供試した対照実験 (反応 2)を行った。また、標品の保持時間を明らかにす るため、熱処理(95°C、 5分間)によって失活させた粗酵素液をカ卩え、ピリジルァミノ化 ラタトースおよびピリジルアミノィ匕 oc 2, 3 シァリルラタトース(ピリジルアミノィ匕 3,一シ ァリルラタトース)(Neu5Ac a 2— 3Gal j8 1— 4Glc— PA、タカラバイオ製 PA— Sug ar Chain 029)を添カ卩した試験を行った。
[0120] 標品の分析結果 (図 1— 1)から、ピリジルァミノ化ラ外ースの保持時間は 4. 1分、 ピリジルアミノィ匕 α 2, 3 シァリルラタトース(ピリジルァミノ化 3, -シァリルラタトース) の保持時間は 5. 4分であることが示された。これにより反応 2 (図 1 3)では検出され ない保持時間 5. 3分のピーク(図 1— 2)がピリジルアミノィ匕《2, 3 シァリルラタトー ス (ピリジルァミノ化 3,一シァリルラタトース)であることが明ら力となった。すなわち、 I SH467—N2C0第一クローンを導入した大腸菌で発現されたシアル酸転移酵素が α - 2, 3シアル酸転移活性を有することが証明された。
[0121] また、同様に ISH467— NOCO第一クローンおよび第二クローン、ならびに ISH46 7—N2C0第三クローンについても、当該クローンを導入した大腸菌で発現されたシ アル酸転移酵素が α—2, 3シアル酸転移活性を有するかどうか調べた。その結果、 大腸菌で発現されたシアル酸転移酵素による反応において、いずれのクローンにつ いても反応生成物としてピリジルァミノ化 a 2, 3 シァリルラタトース (ピリジルァミノ化 3,一シァリルラタトース)のピークが検出された。よって、これらの酵素が (X - 2, 3シ アル酸転移活性を有することが明らかとなった。
¾施例 6 : フォトパクテリゥム通細菌 TT TSH— 224株由 —ガラクトシド、 2 . 3—シアル酸転移酵素遣伝早のクローニング 、 西 R列解析および 該遣伝早 の大腸菌での発現,
(1) TT— ISH— 224株の β—ガラクトシド一 α 2. 3 シアル酸転移酵素活性と同 酵素遺伝子の存在の確認
実施例 1でシアル酸転移酵素活性を有することが明らかとなったフォトパクテリゥム JgJT— ISH— 224株において、フォトバタテリゥム 'フォスフォレゥム JT—ISH— 467 株由来 α 2, 3 シアル酸転移酵素遺伝子のホモローグが存在するか否かを明らか にするため、ゲノミツクサザンノヽイブリダィゼーシヨンを実施した。実施例 5の(1)に記 載した方法で、 JT— ISH— 224株の菌体ペレットからゲノム DNAを調製した。次に 実施例 5の(3)に記載した方法により、 JT—ISH— 224株のゲノム DNAを制限酵素 EcoRIまたは Hindmで消化し、 0. 7%ァガロースゲル電気泳動で分画後、 0. 4M NaOHを用いたアルカリブロッテイングにより、ゲルを Hybond—N +ナイロンメンブ レンフィルター(アマシャムバイオサイエンス製)に転写した。このフィルターに関して、 上記の JT— ISH— 467株由来ひ 2, 3—シアル酸転移酵素遺伝子の部分断片(929 bp ;配列番号 17)をプローブとして用いて、実施例 5の(3)に記載した方法でサザン ハイブリダィゼーシヨンを行った。ただしハイブリダィゼーシヨン温度、および洗浄処 理の温度は、 55°Cとした。その結果、 EcoRI消化では、 16kbのバンドが検出された 。一方、 Hindm消化の場合、 5kbと 2. 7kbのバンドが検出された。この結果から、 JT — ISH— 224株に ίお T— ISH— 467株由来の α 2, 3—シアル酸転移酵素遺伝子 のホモローグが存在することが明ら力となった。
(2) TT— ISH— 224株由 « 2. 3—シアル酸転移酵素遺伝子のクローニング 次に、 JT— ISH— 224株のひ 2, 3—シアル酸転移酵素遺伝子のクローユングを行 つた。実施例 5の(1)に記載した方法により、 JT— ISH— 224株のゲノム DNAから、 1 DASH II (Stratagene製)を用いて、ゲノムライブラリーを構築した。 JT—ISH— 4 67株由来《2, 3—シアル酸転移酵素遺伝子の部分断片(929bp ;配列番号 17)を プローブに用い、 JT—ISH— 224株のゲノムライブラリーをスクリーニングした。ただ し、実施例 6の(1)と同様にハイブリダィゼーシヨン、および洗浄の温度は 55°Cとした 。その結果、プラーク精製を兼ねた二次選抜までに、 12クローンを得、うち 6つのえ D NAを、実施例 5の(3)のよう〖こ QIAGEN Lambda Mini Kit (キアゲン製)を用いて精製 した。さらにこのうち 3クローンの DNAサンプル、および JT— ISH— 224株の全ゲ ノム DNAについて、制限酵素 EcoRIまたは Hindlllで消化した。消化物をァガロー スゲル電気泳動で分画し、上述の様にナイロンメンブレンフィルターに転写した。この フィルターを用いて、 JT— ISH— 467株由来 α 2, 3—シアル酸転移酵素遺伝子の 部分断片(929bp ;配列番号 17)をプローブに用い、サザン分析を行った。ハイプリ ダイゼーシヨン、洗浄の温度は 55°Cとした。その結果、 EcoRI消化の場合、 12kbま たはそれ以上のバンドが検出されたのに対し、 Hindlll消化の場合は、 3つ全ての λ DNAサンプル ^JT— ISH— 224株の全ゲノム DNAに関して、 5kbと 2. 7kbの二本 のバンドが検出された。そこでえ DNAサンプルを再度 Hindlllで消化し、これら 5kb と 2. 7kbの二本の DNA断片をゲル精製し、プラスミドベクター pBluescript SK (— )の Hindlll部位に常法に従 、クローユングした。
[0122] 次に、これらのクローンに関して、 Ml 3プライマー(タカラバイオ製)を用いて、 ABI
PRISM蛍光シークェンサ一(Model 310 Genetic Analyzer, Perkin Elmer社製)で、 5kb Hindlll断片と 2. 7kb Hindlll断片の両端の塩基配列を決定した。その結果 、 5kb断片の片側の DNA配列、および 2. 7kbの片側の DNA配列力も推定されるァ ミノ酸配列が、データベース検索の結果ともに、シアル酸転移酵素と相同性を示した 。 JT ISH— 224株の同酵素の 1遺伝子の DNAを完全に決定するため、 Hindlll 2 . 7kb断片カゝら得られた DNA配列を基に、下記の表 9のプライマーを合成し、塩基配 列決定に用いた。
[0123] [表 9]
表 9
名称 長さ
224-23ST- i nRV1 CAGGAACTGCAACAGCAGAG (配列番号 3 4 ) 20mer
[0124] その結果、配列表の配列番号 28の配列を得た。この配列は、 JT ISH— 224株由 来 α 2, 3 シアル酸転移酵素遺伝子のオープンリーディングフレーム(ORF)の全 塩基配列である。最初の ATGの上流には同じ読み枠で翻訳終止コドンが現れるの で、これが本遺伝子の翻訳開始コドンであると考えられる。フォトパクテリゥム属 JT— 1311— 224株由来0;2, 3 シアル酸転移酵素遺伝子の ORFは、フォトバクテリウム' フォスフォレゥム JT—ISH—467株由来 ex 2, 3 シアル酸転移酵素遺伝子のそれと 同様に、 1230塩基からなり、 409個のアミノ酸をコードしていた。このアミノ酸配列を 配列表の配列番号 29に示す。遺伝子内部には Hindlll部位を有していた。 GENE TYX Ver. 7を用いて核酸、およびアミノ酸配列の解析を行ったところ、 JT— ISH— 224株由来 α 2, 3 シアル酸転移酵素遺伝子は、 JT ISH— 467株由来 α 2, 3— シアル酸転移酵素遺伝子と 92%の相同性を有して ヽた。またアミノ酸配列でも、 JT — ISH— 467株由来《2, 3 シアル酸転移酵素と 92%の相同性を示した。さらに、 JT— ISH— 224株由来《2, 3 シアル酸転移酵素のアミノ酸配列は、フォトバタテリ ゥム.ダムセラの a 2, 6 シアル酸転移酵素 (JC5898)と 33%の相同性、パスッレラ •ムルトシダ亜種ムルトシダ株 Pm70の仮定上のタンパク質 PM0188 (AAK02272) と 29%の相同性を示し、遺伝子 DNA配列ではそれぞれと、 54%、 50%という相同 性であった。
[0125] (3)発現ベクターの構築
クローンィ匕した遺伝子力、シアル酸転移酵素活性を有する力否かを調べるため、同 遺伝子の全長、および N末端側のシグナルペプチド部分を除去したタイプの遺伝子 を発現ベクターに組み込み、大腸菌内でタンパク質を生産させ、この発現タンパク質 の活性を測定した。
[0126] 11 1311— 224株由来0;2, 3 シアル酸転移酵素のアミノ酸配列について、遺伝 情報処理ソフトウェア GENETYX Ver. 7で解析を行ったところ、 N末端の 24ァミノ 酸力 シグナルペプチドであると予測された。そこで、遺伝子全長 (本実施例におい て 224— NOCOと表記する)をクローン化するためのプライマー 224— 23ST— NO— Pci (配列番号 35)、 224— 23ST— COnew— Bm (配列番号 37)、さらにシグナルぺ プチド部分のアミノ酸が除かれたタイプのタンパク質をコードする遺伝子 (本実施例 において 224— N1COと表記する)をクローン化するためのプライマー 224— 23ST N1— Nco (配列番号 36)、 224— 23ST— COnew— Bm (配列番号 37)を設計、 合成した (表 10)。
[0127] [表 10] 名称 配列 5' -3' 長さ
224-Z3ST-NQ-Pc i AAGGGAATAOAJGlTTCGTTTTTTGTAAAAAAATG (配列番号 3 5 ) 34mer
224-23ST-N1-Nco GGGATGTAC^TQGACTCTAATCACAATAACTCAG (配列番号 3 6 ) 35mer
224-23ST-C0new-Bm ATTAAAATGGATCqTTACTGCAAATCACTTATCAAC (配列番号 3 7 ) 36mer
[0128] クローユング用にプライマーに予め組み込んだ制限酵素 Pcil (224— 23ST— NO
- Pci)、 Ncol (224- 23ST-N1 - Nco)、 BamHI (224— 23 ST- COnew- Bm )部位を下線で示した。翻訳開始コドン ATG、および翻訳終止コドンに対応する相補 配列 TAAを四角で囲んだ。さらに、プライマー配列のうち、铸型 DNAとアニーリング する部分の配列を太字で示した。プライマー 224— 23ST— NO— Pciの場合、後の クロー-ング用に Pcil部位を導入したことで、翻訳開始コドン ATG直後のシトシン (C )がチミン (T)に置換される。このため、翻訳開始メチォニンの直後のアミノ酸配列が ロイシン(Leu)力らフヱ-ルァラニン(Phe)に置換される。 Leuと Pheは同じ疎水性の アミノ酸であること、この部分はシグナルペプチド領域であることから、この変異によつ て酵素活性に大きな変化をもたらす可能性は低いと判断した。
続いて PCRを行い、発現ベクターに組み込むための JT—ISH— 224株由来 α 2,
3—シアル酸転移酵素遺伝子を増幅した。铸型 DNAは、 JT— ISH— 224株由来 oc 2, 3—シアル酸転移酵素遺伝子を含む上記え DNAを用いた。 PCRの反応条件は 以下のように設定した。 50 1の反応液中に、铸型 DNA 100ng、 10 X Ex taq buffer 5 1、2. 5mM 各 dNTP 4 ΐ、プライマー 50pmole、 Ex taq (タカラバ ィォ製) 0. 5 1をそれぞれ含み、プログラムテンプコントロールシステム PC— 700(A STEK製)を用いて、 96。C 3分を 1回、 96。C 1分、 50。C 1分、 72。C 2分を 15回、 72°C 6分を 1回行った。その結果、 224— NOCOでおよそ 1. 2kb、そして 224— N1 COでおよそ 1. lkbの PCR産物が増幅された。これらの PCR産物を、制限酵素 Pcil ( New England Biolab社製)と BamHI (224— NOCOの場合)、または制限酵素 Ncolと BamHI (224— N1C0の場合)で二重消化した後、ゲル精製した。大腸菌発現用べ クタ一は pTrc99Aを用いた。このベクターを同じ制限酵素 Pcilと BamHI (224— NO COを導入する場合)、または制限酵素 Ncolと BamHI (224— N1C0を導入する場 合)で二重消化しゲル精製したものを、制限酵素処理を行った PCR産物と Takara Li gation Kit (タカラバイオ製)を用いてライゲーシヨンし、大腸菌 TBIにトランスフエタト した。常法に従いプラスミド DNAを抽出、制限酵素分析して、インサートの組み込み を確認し、そして 224— NOCO (ISH224— NOCO第一クローン)、ならびに 224— N 1C0 (ISH224— N1C0第一クローン)の全塩基配列を確認した。その結果、 ISH22
4— N0C0第一クローンにおいては、上述の Leuから Pheへの置換が確認されたが、 それ以外は塩基配列の変異はな力つた。同様に ISH224— N1C0第一クローンの場 合は、塩基配列の変異はなぐ所望の塩基配列、即ち配列表の配列番号 28のうち、 第 73番目の塩基力も第 1230番目の塩基までを含んでいた。 実施例 5 (5)と同様に、 ISH224—N0C0第一クローンおよび ISH224— N1CO第 一クローンの 2クローンに関して、タンパク質発現誘導実験を行い、酵素活性を測定 した。その結果、下記の表 11に示すように、 ISH224—N0C0第一クローンおよび IS H224—N1C0第一クローンの粗酵素液中にシアル酸転移酵素活性が存在すること が示された。
[0130] [表 11] 表 1 1 : JTISH-224株由来 JTHSH-467 J9—ガラクトシド α 2,3—シアル酸転移酵素遺伝子 ホモ口一グを組み換えた 菌の破 液中のシァル酸転移酵素活性
Figure imgf000051_0001
[0131] (5) - 2. 3シアル酸転移酵素活件の確認
実施例 5 (6)と同様に、 ISH224—N0C0第一クローンおよび ISH224— N1C0第 一クローンをそれぞれ大腸菌に導入して酵素を発現させ、ピリジルァミノ化ラタトース を糖受容体として用いる反応により、 α - 2, 3シアル酸転移酵素活性を調べた。大 腸菌で発現されたシアル酸転移酵素による反応生成物を HPLCにより評価した結果 、いずれのクローンを用いた反応についてもピリジルアミノィ匕 α 2, 3 シァリルラクト ース (ピリジルァミノ化 3,—シァリルラタトース)のピークが検出された。この結果から、 JT— ISH— 224株由来のシアル酸転移酵素が α— 2, 3シアル酸転移活性を有する ことが明ら力となった。
実施例 7 : ビブ' Jォ属細菌 ΤΤ FAT— 16株由 β ガラクトシド'一 《 2. 3 シァ ル酸転移酵素遺伝子のクローユング 塩某 §R列解析、および当該遺伝子の大腸菌 での発現
( 1) TT FAT— 16株の β ガラクトシド ' α 2. 3 シアル酸転移酵素活件 同酵 素遺伝子の存在の確認
実施例 1でシアル酸転移酵素活性を有することが明らかとなったビブリオ属 JT— F AJ— 16株において、フォトバタテリゥム 'フォスフォレゥム JT— ISH— 467株由来 α
2, 3 シアル酸転移酵素遺伝子のホモローグが存在する力否かを明らかにするため 、ゲノミツクサザンノ、イブリダィゼーシヨンを実施した。実施例 5の(1)に記載した方法 で、 JT— FAJ— 16株の菌体ペレットからゲノム DNAを調製した。次に実施例 5の(3) に記載した通り、制限酵素 EcoRI、 Hindlllで消化し、 0. 7%ァガロースゲル電気泳 動で分画後、 0. 4M NaOHを用いたアルカリブロッテイングにより、ゲルを Hybond —N +ナイロンメンブレンフィルター(アマシャムバイオサイエンス製)に転写した。こ のフィルターに関して、上記の 929bpのプローブ(配列番号 17)を用いて、実施例 5 の(3)に記載した方法でサザンハイブリダィゼーシヨンを行った。ただしハイブリダィ ゼーシヨン温度、および洗浄処理の温度は、 55°Cとした。その結果、 EcoRI消化で、
3. 6kbのバンド力 Hindlll消化で、 7kbのバンドが検出された。即ち JT— FAJ— 16 株に ίお T— ISH— 467株由来のひ 2, 3 シアル酸転移酵素遺伝子のホモローグが 存在することが明らかとなった。
[0132] (2) TT—FAT—16¾ fe a 2. 3 シアル酸転移酵素遺伝子のクローニング
次に、 JT FAJ— 16株の ex 2, 3 シアル酸転移酵素遺伝子のクローニングを行つ た。実施例 5の(1)に記載した方法で、 JT— FAJ— 16株のゲノム DNAから、 λ DAS H II (Stratagene製)を用いて、ゲノムライブラリーを構築した。 JT—ISH— 467株由 来 α 2, 3 シアル酸転移酵素遺伝子の部分断片(929bp ;配列番号 17)をプローブ に用い、 JT—FAJ— 16株のゲノムライブラリーをスクリーニングした。ただし、ハイプリ ダイゼーシヨン実験は ECL direct labelling & detection system (アマシャムバイオサイ エンス製)を使用した。キット添付の説明書きに従ってプローブを作成した。ハイプリ ダイゼーシヨンは、キット中のハイブリダィゼーシヨンバッファーにブロッキング試薬を 5 % (wZv)、 NaClを 0. 5Mになるように加え、 37°Cで 4時間行った。洗浄は、 0. 4% SDS、 0. 5X SSC中で、 50。Cで 20分を 2回、 2X SSC中で室温、 5分を 1回行つ た。シグナルの検出は、キット添付の説明書きに従った。
[0133] その結果、プラーク精製を兼ねた一次選抜で、 12クローンを得、うち 6つの λ DNA を、実施例 5の(3)のように QIAGEN Lambda Mini Kit (キアゲン製)を用いて精製した 。さらにこれらの DNAサンプル、および JT— FAJ— 16株の全ゲノム DNAに関して 、制限酵素 EcoRIで消化した。消化物をァガロースゲル電気泳動で分画し、上述の 様にナイロンメンブレンフィルターに転写した。このフィルターを用いて、 JT— ISH— 467株由来ひ 2, 3—シアル酸転移酵素遺伝子の部分断片 (929bp ;配列番号 17) をプローブに用い、 ECLシステムを用いて、上述と同じ条件でサザン分析を行った。 その結果、 6つ全ての λ DNAサンプル ^JT— FAJ— 16株の全ゲノム DNAについて 、 3. 6kbのバンドが検出された。そこでえ DNAサンプルを再度 EcoRIで消化し、こ の 3. 6kbの DNA断片をゲル精製し、プラスミドベクター pBluescript SK (—)の Ec oRI部位に常法に従 、クローユングした。
[0134] 次に、 JT— FAJ— 16株由来《2, 3—シアル酸転移酵素遺伝子を含むと考えられ た EcoRI 3. 6kb断片に関して、 Ml 3プライマー(タカラバイオ製)を用いて、 ABI PRISM蛍光シークェンサ一(Model 310 Genetic Analyzer, Perkin Elmer製)で、両 端の塩基配列を決定した。その結果、片側の端の DNA配列から推定されるアミノ酸 配列が、データベース検索でフォトバタテリゥム 'ダムセラの α 2, 6—シアル酸転移酵 素 (JC5898)と 27%の相同性を示した。 JT— FAJ— 16株の α 2, 3—シアル酸転移 酵素遺伝子の全塩基配列を完全に決定するため、 EcoRI 3. 6kb断片力 得られ た DNA配列を基に、下記の表 12に記載のプライマーを合成し、塩基配列決定に用 いた。
[0135] [表 12] 表 1 2
名称 配列 5' - 3' 長さ
FAJEC3.6RV1 TTC AAA ACT GCC TGA GTC AG (配列番号 3 8 ) 20 mer
FAJEc3. 6RV2 ATT TCA TGG TCT AGA TAC CC (配列番号 3 9 ) 20 mer
[0136] 得られた塩基配列データ力 さらに以下の表 13に記載のプライマーを設計、合成し
、全塩基配列の決定を行った。
[0137] [表 13] 表 1 3
名称 配列 5' 3' 長さ
FAJ23ST i nFW3 CTG ACT CAG GCA GTT TTG AA (配列番号 4 0 ) 20me r
FAJ23STi nFI*l4 GAA AGC AAC TCT CTC AAT GGG (配列番号 4 1 ) 21mer
FAJ23STi nRV3 ATA AAC CCA TTG AGA GAG TTG (配列番号 4 2 ) 21mer
[0138] その結果、配列表の配列番号 30の配列を得た。この配列は、 JT一 FAJ— 16株由 来 α 2, 3—シアル酸転移酵素遺伝子のオープンリーディングフレーム(ORF)の全 塩基配列である。最初の ATGの上流には同じ読み枠で翻訳終止コドンが現れるの で、これが本遺伝子の翻訳開始コドンであると考えられる。 JT一 FAJ— 16株由来 α 2 , 3—シアル酸転移酵素遺伝子の ORFは、 1209塩基力もなり、 402個アミノ酸をコ ードしていた。このアミノ酸配列を配列表の配列番号 31に示す。 GENETYX Ver. 7を用いて核酸、およびアミノ酸配列の解析を行ったところ、 JT一 FAJ— 16株由来 α 2, 3—シアル酸転移酵素遺伝子は、 JT— ISH— 467株および JT— ISH— 224株由 来《2, 3—シアル酸転移酵素遺伝子と、それぞれ 69. 7%および 68%の相同性を 有していた。またアミノ酸配列でも、それぞれ、 64. 7%および 64. 8%の相同性を示 した。さらに、 JT—FAJ—16株由来 α 2, 3—シアル酸転移酵素のアミノ酸配列は、フ オトバタテリゥム 'ダムセラの α 2, 6—シァノレ酸転移酵素 (JC5898)と 30. 5%の相同 性、パスッレラ 'ムルトシダ亜種ムルトシダ株 Pm70の仮定上のタンパク質 PM0188 (AAK02272)と 27. 3%の相同性を示し、遺伝子 DNA配列ではそれぞれと、 51. 2%, 48. 3%という相同性であった。
[0139] (3)発現ベクターの構築
クローンィ匕した遺伝子が、シアル酸転移酵素活性を有するか否かを調べるため、同 遺伝子の全長、および N末端側のシグナルペプチド部分を除去したタイプの遺伝子 を発現ベクターに組み込み、大腸菌内でタンパク質を生産させ、この発現タンパク質 の活性を測定した。
[0140] JT一 FAJ— 16株由来 α 2, 3—シアル酸転移酵素のアミノ酸配列について、遺伝 情報処理ソフトウェア GENETYX Ver. 7で解析を行ったところ、 N末端の 22ァミノ 酸が、シグナルペプチドであると予測された。そこで、遺伝子全長 (本実施例におい て FAJ— NOCOと表記する)をクローン化するためのプライマー FAJ23STNO— Bsp HI (配列番号 43)、 FAJ23STCO— BamHI (配列番号 45)、さらにシグナルぺプチ ド部分のアミノ酸が除かれたタイプのタンパク質をコードする遺伝子 (本実施例にお いて FAJ— N1COと表記する)をクローン化するためのプライマー FAJ23STN1— Bs pHI (配列番号 44)、 FAJ23STCO— BamHI (配列番号 45)を設計、合成した(表 1 4)。
[表 14] 表 1 4
名称 配列 5' -3' 長さ
FAJ23STN0-BspHI TGGATAACTC ιΑΑΑ ACATTATAACAAAAAGAATG (配列番号 4 3 ) 37mer FAJ23ST 1- BspHI TATTATCGTC ACA ATGATAACAGCACTACC (配列番号 4 4 ) 3½er FAJ23STC0-BamHl TCTTTTTAGG ATCC ^ATGTCGCTGATTAGHTTAT (配列番号 4 5 ) 38mer クロー-ング用にプライマーに予め組み込んだ制限酵素 BspHI (FAJ23STNO- BspHI、 FAJ23STN1— BspHI)、 BamHI (FAJ23STCO— BamHI)部位を下線 で示した。翻訳開始コドン ATG、翻訳終止コドンに対応する相補配列 TAAを四角で 囲んだ。さら〖こ、プライマー配列のうち、铸型 DNAとアニーリングする部分の配列を 太字で示した。これらのプライマーを用いて PCRを行い、発現ベクターに組み込むた めの JT— FAJ— 16株由来《2, 3—シアル酸転移酵素遺伝子を増幅した。铸型 DN Aは、同遺伝子を含む上記 3. 6kbの DNA断片を用いた。 PCRの反応条件は以下 のよう【こ設定した。 50 1の反応液中【こ、録型 DNA 300ng、 10 X Ex taq buff er 5 1、2. 5mM 各 dNTP 4 ΐ、プライマー 50pmole、 Ex taq (タカラバイオ 製) 0. 5 1をそれぞれ含み、プログラムテンプコントロールシステム PC— 700 (AS TEK製;)を用いて、 96。C 3分を 1回、 96。C 1分、 50。C 1分、 72。C 2分を 10回、 72°C 6分を 1回行った。その結果、 FAJ— NOCOでおよそ 1. 2kb、 FAJ— N1C0で およそ 1. lkbの PCR産物が増幅された。これらの PCR産物を、 TAクロー-ング用 ベクター pCR2. 1TOPO (Invitrogen製)に、 TAクロー-ングキット(Invitrogen製)に 添付された説明書に従って、クローユングした。大腸菌は TBIを使用した。得られた コロニーから常法でプラスミドを精製し、制限酵素 EcoRIで PCR産物のベクターへの 導入を確認した。導入の確認されたプラスミドサンプルを、制限酵素 BspHIと BamHI で二重消化した後、 1. 2kb (FAJ— NOCO)または 1. lkb (FAJ— N1CO)断片をゲ ル精製した。これらの DNAサンプルを、予め制限酵素 Ncolと BamHIで二重消化し た大腸菌発現用ベクター pTrc99Aに、 Takara Ligation Kit (タカラバイオ製)を用い てライゲーシヨンし、大腸菌 TBIに組み込んだ。常法に従いプラスミド DNAを抽出、 制限酵素分析を行いインサートの組み込みを確認し、 FAJ— N0C0の代表クローン 1 つ(FAJ— N0C0第一クローン)ならびに FAJ— N1C0の代表クローン 2つ(FAJ—N 1C0第一クローンおよび FAJ— N1C0第二クローン)の全塩基配列を確認した。その 結果、 FAJ— N0C0第一クローンの場合、塩基配列の変異はなぐ所望の塩基配列 、即ち、配列表の配列番号 30のうち、第 1番目の塩基力も第 1209番目の塩基までを 含んでいた。一方、 FAJ— N1C0の場合、その第一クローンには塩基配列の変異は なぐ所望の塩基配列、即ち、配列表の配列番号 30うち、第 67番目の塩基力も第 12 09番目の塩基までを含んでいた。第二クローンでは、配列番号 30の塩基のうち、第 631番目のアデニン (A)がグァニン(G)に変化していた。これによりコドンが ACAか ら GCAに変化し、アミノ酸がスレオニン (Thr)からァラニン (Ala)に変化していた。こ れ以外には塩基置換は存在しな力つた。
[0143] (4) mmm ^wm\^
実施例 5 (5)と同様に、 FAJ—N0C0第一クローン、 FAJ— N1C0第一クローンおよ び第二クローンの 3クローンに関して、タンパク質発現誘導実験を行い、酵素活性を 測定した。その結果、下記の表 15に示すように、 FAJ—N0C0第一クローンならびに FAJ— N1C0第一クローンおよび第二クローンの粗酵素液中にシアル酸転移酵素活 性が存在することが示された。
[0144] [表 15] 表 1 5 : JT- FAJ - 16株由来 JT-ISH - 467 j3—ガラクトシド一 α 2, 3—シァル離≤^¾¾1伝子 ホモローグを組 えた;^菌の破赚中のシァル職云移酵^ ·;&!生
Figure imgf000057_0001
(5) α - 2. 3シアル酸転移活性の確認
実施例 5 (6)と同様に、 FAJ—N0C0第一クローン、ならびに、 FAJ— N1C0第一ク ローンおよび第二クローンの 3クローンをそれぞれ大腸菌に導入して酵素を発現させ 、ピリジルァミノ化ラタトースを糖受容体として用いる反応により、 α - 2, 3シアル酸転 移酵素活性を調べた。大腸菌で発現されたシアル酸転移酵素による反応生成物を HPLCにより分析した結果、 、ずれのクローンを用いた反応にぉ ヽてもピリジルァミノ ィ匕《2, 3—シァリルラタトース(ピリジルァミノ化 3,一シァリルラタトース)のピークが検 出された。この結果から、 JT—FAJ— 16株由来のシアル酸転移酵素が α—2, 3シァ ル酸転移活性を有することが明らかとなった。
¾施例 8:各糠シアル酸転移酵素タンパク皙のアミノ酸西 R列のマルチアライメント分 近
遺伝情報処理ソフトウェア GENETYX Ver. 7 (ゼネテイツタス社製)を用いて、マ ルチアライメント分析を行った。その結果、フォトバタテリゥム'フォスフォレゥム JT— IS H— 467株由来、フォトバタテリゥム属 JT—ISH— 224株由来、およびビブリオ属 J T— FAJ— 16株由来の a 2, 3—シアル酸転移酵素(それぞれ配列番号 2、 29、 31) 、フォトバタテリゥム 'ダムセラの a 2, 6—シアル酸転移酵素 (JC5898)、ならびに、パ スッレラ 'ムルトシダ亜種ムルトシダ株 Pm70の仮定上のタンパク質 PMO 188 ( AAK 02272)は図 2のようなアラインメントを示した。なぉ、11ー1311—467株由来0;2, 3 —シアル酸転移酵素についての下線は精製タンパク質力も決定されたアミノ酸配列 を示す。
実施例 9 : β ガラクトシドー α 2. 3 シアル酸転移酵素の酵素活性の至谪 ΌΗお よび至谪温度
調製した精製酵素を用い、 JT—ISH— 467株が生産する |8—ガラクトシド— ひ 2, 3 —シアル酸転移酵素、 ISH467—N2C0第三クローン、 ISH224— N1CO第一クロ ーン、および FAJ— N1C0第一クローンが生産する糸且換え j8—ガラクトシドー α 2, 3 ーシアル酸転移酵素の至適 pHおよび至適温度を調べた。
(1)酵素活件の至谪 ΌΗ
酢酸バッファー(ρΗ4. 0、 ρΗ4. 5、および ρΗ5. 0)、力コジル酸バッファー(ρΗ5. 0、 ρΗ5. 5、 ρΗ6. 0、 ρΗ6. 5、および pH7. 0)、ジン酸ノ ッファー(pH7. 0、 pH7. 5、および pH8. 0)、 TAPSノ ッファー(pH8. 0、 pH8. 5、および pH9. 0)、 CHES ノ ッファー(pH9. 0、 pH9. 5、および pH10. 0)、 GAPSノ ッファー(pH10. 0、 pH 10. 5、および pHl l . 0)を調製し、これを用いて 25°Cで各 pHにおける酵素活性を 測定した。
[0146] その結果、図 3—1および図 3— 2に示すように、 JT—ISH—467株が生産する |8 —ガラタトシドー α 2, 3 シアル酸転移酵素では ρΗ5. 0において、 ISH467— Ν2 CO第三クローンでは ρΗ5. 5において、 ISH224— N1C0第一クローンでは ρΗ5. 0 において、 FAJ— N1C0第一クローンでは ρΗ5. 5において、酵素活性が最大であつ た。そして、いずれの酵素でも ρΗ5. 0〜ρΗ7. 0あるいは ρΗ9. 0まで高い活性であ つた。なお、各 pHにおける酵素活性は最大活性を示した pHにおける酵素活性を 10 0とする相対活性で示した。
(2)酵素活件の至;商温度
11 1311—467株が生産する|8—ガラクトシドー0;2, 3 シアル酸転移酵素では ρΗ5. 0において、 ISH467— N2C0第三クローンでは力コジル酸バッファー(ρΗ5. 5)を用いて、 ISH224— N1C0第一クローンでは力コジル酸バッファー(ρΗ5. 0)を 用いて、 FAJ— N1C0第一クローンでは力コジル酸バッファー(ρΗ5. 5)を用いて、 5 °Cから 45°Cまでの 5°C毎の反応温度にお!、て、酵素活性を測定した。
[0147] その結果、図 4—1および図 4— 2に示すように、 JT—ISH— 467株が生産する |8 ガラクトシドー α 2, 3 シアル酸転移酵素では 25°Cにおいて、 ISH467— N2C0 第三クローンでは 25°Cにおいて、 ISH224— N1 CO第一クローンでは 30°Cにおい て、 FAJ— N 1C0第一クローンでは 20°Cにおいて、酵素活性が最大であった。そし て、 、ずれの酵素でも 15°Cあるいは 20°C〜30°Cあるいは 35°Cまで高 、活性であつ た。なお、温度における酵素活性は最大活性を示した温度における酵素活性を 100 とする相対活性で示した。
実施例 10 : β ガラクトシドー α 2. 3 シアル酸転移酵素の皙量分析
フォトバタテリゥム 'フォスフォレゥム JT—ISH— 467株が生産する 13—ガラタトシド - « 2, 3 シアル酸転移酵素、ならびに、 ISH467— N0C0第二クローン、 ISH46 7— N2C0第三クローン、 ISH224— N 1C0第一クローン、および FAJ— N1 C0第一 クローンが生産する組換え ガラクトシドー α 2, 3 シアル酸転移酵素の精製酵 素を、レーザーイオン化飛行時間型質量分析装置 (株式会社島津製作所 MALDI-T OFMS AXIMA-CFR)によって質量分析した結果、分子量はそれぞれ 45, 026Da、 45 , 023Da、 44, 075Da、 43, 996Da、および 43, 921Daであった。
ISH467— N2C0第三クローン、 ISH224— N1C0第一クローン、および FAJ— N 1C0第一クローンについては、質量分析の結果とアミノ酸配列から推定された分子 量は一致した。しかしながら、フォトバクテリウム'フォスフォレゥム JT— ISH— 467株 が生産する j8—ガラクトシドー α 2, 3 シアル酸転移酵素、および ISH467— N0C 0第二クローンにつ 、ては、質量分析の結果とアミノ酸配列力 推定された分子量は 一致しなかった。これは、これらの二つの酵素のアミノ酸配列にリポボックスと呼ばれ る共通配列(Leu— Gly— Gly— Cys :配列番号 2のアミノ酸残基 19〜22)が含まれ るため、細菌内で、この共通配列の Cysのァミノ末端側で切断され、リポボックス中の Cysに脂質が付カ卩されたためとと考えられる(Madan Babu, M. and Sankaran, K. , Bioi nformatics. , 18, 641-643 (2002)) 0
実窗列 1 1:組椽ぇ β ガラクトシド' a 2. 3 シアル酸転移酵素の 容体 皙特 ¾件 (単糖'二糖街'三糖街)の比較
(材料および方法)
ISH467— N2C0第三クローン組換え大腸菌、 ISH224— N 1C0第一クローン組 換え大腸菌、および FAJ—N1CO第一クローン組換え大腸菌カゝら調製した菌体破砕 液を、イオン交換クロマトグラフィー、ハイドロキシアパタイトクロマトグラフィーを用いて 電気泳動的に単一バンドまで精製した j8—ガラクトシドー α 2, 3—シアル酸転移酵 素を用いて、各種の単糖、二糖類および三糖類へのシアル酸の転移活性の有無を 調べるために、以下の実験を行った。
各糠の糖 容体某皙を用いたシアル酸転移反
反応溶液 24 μ 1中に、糖供与体基質 CMP— 14 C— NeuAcを含む CMP— NeuAc (21. 9nmol、反応溶液中での最終濃度: 0. 874mM)、 20mM力コジル酸緩衝液( pH5. 0)で溶解した各種糖受容体基質(1 μ mol、反応溶液中での最終濃度: 42m M)、シアル酸転移酵素(酵素量は表脚注に示した)、 NaCl (反応溶液中での最終 濃度: 500mM)からなる反応溶液を調製し、表脚注の条件で反応した。なお、糖受 容体基質として用いた単糖は、メチルー a—D ガラクトピラノシド (Gal— a— OMe) 、メチル一 13—D ガラクトピラノシド(Gal— β—OMe)、メチル一 a—D—ダルコビラ ノシド(Glc— a - OMe)、メチル一 j8— D—ダルコビラノシド(Glc— β - OMe)、メチ ノレ一 a—D マンノピラノシド(Man— a—OMe)、メチノレ一 β—D マンノピラノシド (Man- β - OMe)、メチルー α— D フコシノピラノシド(Fuc— a - OMe)、メチルー β—D フコシノピラノシド(Fuc— β— OMe)、 Ν ァセチルガラタトサミン(GalNAc) 、 N ァセチルダルコサミン (GalNAc)の 10種類を用いた。二糖類として、ラタト一ス( Gal- β 1 ,4— Glc)、 Ν—ァセチルラクトサミン(Gal— β 1 ,4— GlcNAc)、メチルー j8 - D ガラタトピラノシル一 β 1 , 3— Ν ァセチルダルコサミニド(Gal— β 1 ,3— GlcNAc - β—OMe)、メチル一 oi—D ガラタトピラノシル一 a 1 , 3 ガラクトピラノシド(Gal a 1 ,3— Gal— a—OMe)、メチルー β D ガラクトビラノシルー β 1 , 3 ガラタト ビラノシド(Gal— j8 1 ,3— Gal— j8— OMe)の 5種類を用いた。三糖類として、 2'—フコ シルラタトース(Fuc- α 1 ,2- Gal j8 1 ,4- Glc )の 1種類を用いた。但し、表 18に示す糖 鎖、メチル一 (X—D ガラタトピラノシル一 a 1 , 3 ガラクトピラノシド(Gal— « 1 ,3— Gal- a—OMe)、メチル一 β—D—ガラタトピラノシル一 j8 1 , 3—ガラクトピラノシド( Gal- β 1 ,3— Gal— β—OMe)および 2'—フコシルラクトース(Fuc— α 1 ,2— Ga jS 1 ,4— Glc)については最終濃度 8. 4mMで反応させた。 [0150] 酵素反応終了後、反応溶液に 1. 98mlの 5mMリン酸バッファー(pH6. 8)を添カロ して酵素反応を停止した。その後、 5mMリン酸バッファー (pH6. 8)で希釈した酵素 反応溶液(2ml)を、 AGl - X 2Resin(PO 3-フォーム、 0. 2 X 2cm)カラムに供した
4
。このカラムは、 AG1— X 2Resin(OH- form、 BIO- RAD社製)を 1Mリン酸バッファ 一 (pH6. 8)に懸濁し、 30分後レジンを蒸留水で洗浄した後、蒸留水に懸濁して作 成した。このカラムの溶出液 (0〜2ml)の放射活性を測定した。このカラムの溶出液 には、反応で生じた14 C— NeuAc (N ァセチルノイラミン酸)が結合した反応生成物 および未反応の糖受容体基質が含まれるが、未反応の CMP— 14 C NeuAcはカラ ムに保持されたままである。従って、酵素反応の結果生じた各種シアル酸含有糖鎖 由来の14 Cの放射活性は、全て反応生成物由来であり、この画分の放射活性カも酵 素活性を算出することができる。
[0151] 上記の方法を用いて、それぞれの糖受容体基質に転移された NeuAcの放射活性 を測定して転移されたシアル酸を算出した。
(腿
今回糖受容体基質として用いた 16種類の単糖、二糖、三糖のいずれにも高効率で シアル酸が転移していることが明ら力となった (表 16、表 17および表 18)。なお、各 受容体基質に対する相対活性は、ラタトースに対するシアル酸転移活性を 100とした 値である。
[0152] [表 16]
表 16:受容体基質特異性 (その 1 )
Figure imgf000062_0001
反応条件
as*威:
1 iimo 1受容体基質 (20mM力コジル ¾ 'ッファー、 Η5.0) 11.8 μΐ
CMP」4C-NeuAcを含む CMP- NeuAc(21 i )l (約 HWOOcpm) ) 4.S μΐ 酵素液 5 μι i.
5 H NaCl 2.4 μΐ 反応纖: 2 O :
反応時間: 14時間
表 17 :受容体基質特異性 (その 2)
Figure imgf000063_0001
反応条件
反 賊:
I NITIO 1受^:基質 (20mM力コジレ酸ハ 'ッファー、 pH5.0) CMP—l4C-NeuAc "giiCMP- iAc(21.9rai)l (¾J18500cpm) ) 酵纖
5 M NaCl
m &: 3 o
反応時間: 0. 5分間または 2分間
酵素量:反応当り ISH4fi7- N2C0では 2 , 3mU、 ISH224-NIC0では 1.
表 1 8:受容体基質特異性 (その 3 )
Figure imgf000064_0001
反応条件
誠:
0. 2 πι ο 1 §¾C体基質 (20ΕΜ力コジル酸バッファ一、 pEB. O)
CMP-I4C-NeuAcを含む CMP- NeuAc (21.9mol (約 18500cpra) )
酵素液
5 NaCl
反応謎: 3 0 "€
反応時間: 2分間
酵素量:反応当り ISH467- N2C0では 2 . 3mU、 ISH224-N1C0では 1 .
[0155] ¾施例 1 2 ¾ fi —ガラクトシド、— " 2. 3—シアル酸転移酵素の糖タンパク皙に する
ISH467— N2C0第三クローン組換え大腸菌、 ISH224— N1CO第一クローン組 換え大腸菌および FAJ—N1CO第一クローン組換え大腸菌力 調製した菌体破砕 液を、イオン交換クロマトグラフィー、ハイドロキシアパタイトクロマトグラフィーを用いて 電気泳動的に単一バンドまで精製した j8—ガラクトシドー α 2, 3 シアル酸転移酵 素を用いて、糖タンパク質へのシアル酸の転移活性の有無を調べるために、以下の 実験を行った。
[0156] 糖受容体基質として、ァシァ口フェツインを用いた。 2mgのァシァ口フェツインを lml の 20mM Bis-tris緩衝液 (pH6. 0)に溶解させて、糖受容体基質溶液とした。糖供 与体基質として CMP— 14C NeuAcを含む CMP— NeuAcを用 、た。糖受容体基 質溶液 40 1、糖供与体基質 5 1 (22. 8nmol (約 19, OOOcpm) )、酵素溶液 5 1 ( いずれも 10mU)を混合して、 25°C、 2時間インキュベートしてシアル酸転移反応を 行った。反応終了後、反応溶液を 0. 1M塩ィ匕ナトリウムで平衡ィ匕したセフアデックス G —50スーパーファイン(0. 8x18. Ocm)に供して、ゲルろ過を行った。糖タンパク質 が含まれるゲルろ過の溶出液画分(2〜4mlの画分)を集め、この画分の放射活性を 液体シンチレーシヨンカウンターを用いて測定することで、糖受容体基質に転移した シアル酸の定量を行つた。
[0157] その結果、表 19に示すように、いずれの酵素もァシァ口フェツインにシアル酸を転 移することが明らかとなった。
[0158] [表 19] 表 1 9 :受容体基質特異性 (その 4)
Figure imgf000065_0001
反応条件
腿城:
ァシァ口フェツイン^ ¾ 10 μΐ 酵素液 5 μΐ
5mM CMP-シァ (20ι 力コシっ t¾iiffi¾(pH5)中) +14C- CMP-シ L 5 ul
[0159] ¾施例 fi —ガラクトシド、— " 2. 3—シアル酸転移酵素の P A糖鎖に針 する '
ISH467— N2C0第三クローン組換え大腸菌、 ISH224— N1CO第一クローン組 換え大腸菌および FAJ—N1C0第一クローン組換え大腸菌力 調製した菌体破砕 液を、イオン交換クロマトグラフィー、ハイドロキシアパタイトクロマトグラフィーを用いて 電気泳動的に単一バンドまで精製した j8—ガラクトシドー α 2, 3—シアル酸転移酵 素を用いて、 ΡΑ糖鎖へのシアル酸の転移活性の有無を調べるために、以下の実験 を行った。
[0160] 実施例 3と同様に、糖受容体としてピリジルァミノ化ラタトース(Gal |8 1— 4Glc— ΡΑ 、タカラバイオ社製 PA— Sugar Chain 026)、ピリジルァミノ化 GM1- pentasacchari de (Gal β 1- 3GalNAc β 1- 4(Neu5Ac a 2- 3)Gal β 1- 4Glc- PA、タカラバィォ社製 PA— Sugar Chain 032)およびピリジルァミノ化 GDlb- hexasaccharide (Gal j8 l-3GalNA c β l-4(Neu5Ac a 2- 8Neu5Ac a 2- 3)Gal β 1- 4Glc- PA、タカラバィォ社製 PA— Suga r Chain 034)を用い、表脚注の条件で、酵素反応を行った。反応終了後、 95°C で 5分間、反応溶液を熱処理することにより酵素を失活させ、 HPLCで分析した。
[0161] その結果、 PA— Sugar Chain 026を受容体基質にした場合、いずれの酵素に おいても、 PA— Sugar Chain 029標品と同一溶出時間のピークが検出された。 同様にして、 PA— Sugar Chain 032を受容体基質にした場合には PA— Sugar Chain 033標品と同一溶出時間のピーク力 PA— Sugar Chain 034を受容体 基質にした場合、 PA— Sugar Chain 036標品と同一溶出時間のピークが、それ ぞれ検出された。従って、 JT— ISH— 467株由来、 JT— ISH— 224株由来および JT — FAJ— 16株由来の組換え |8—ガラクトシド 《2, 3 シアル酸転移酵素は、供試 した PA糖鎖の非還元末端にあるガラクトースに、シアル酸を《2, 3結合で転移する 活性を有することが明らかとなった。
[0162] [表 20]
Figure imgf000066_0002
Figure imgf000066_0001
TO滅:
ΡΑ» (10 pmol/μΐ) 2. 5 μΐ
5mM CMP—シア ^ (2GinMカコジ JL ^¾fg(pH5)中) 5 μΐ
3 NaCl 2. 5 μ1
酵素液 5 μΐ (0. lmU) 反応髓: 2 0
¾δ時間: ISH467- N2C0では 3時間、 ISH224- N1C0では 1 6時間、 FAJ-N1C0では 2 4時間 産業上の利用可能性
[0163] 本発明は、新規な β ガラクトシドー a 2, 3 シアル酸転移酵素およびそれをコー ドする核酸を提供することにより、生体内において重要な機能を有することが明らか にされてきている糖鎖の合成 ·生産手段を提供する。特に、シアル酸は、生体内の複 合糖質糖鎖において非還元末端に存在することが多ぐ糖鎖機能という観点力ゝら極 めて重要な糖であるため、シアル酸転移酵素は糖転移酵素の中でも最も需要が高 ヽ 酵素の一つである。本発明の新規なシアル酸転移酵素は、糖鎖を応用した医薬品、 機能性食品等の開発に利用することが可能である。

Claims

請求の範囲
[1] 配列番号 2、配列番号 2のアミノ酸残基 22— 409、配列番号 29、配列番号 29のァ ミノ酸残基 25— 409、配列番号 31、および、配列番号 31のアミノ酸残基 23— 402か らなる群より選択されるアミノ酸配列を含んでなる、単離されたタンパク質。
[2] 配列番号 2、配列番号 2のアミノ酸残基 22— 409、配列番号 29、配列番号 29のァ ミノ酸残基 25— 409、配列番号 31、および、配列番号 31のアミノ酸残基 23— 402か らなる群より選択されるアミノ酸配列において、 1またはそれより多くのアミノ酸の欠失 、置換、挿入および Zまたは付加を含むアミノ酸配列を含んでなり、そして、 β—ガラ クトシド— ひ 2, 3 シアル酸転移酵素活性を有する、単離されたタンパク質。
[3] 配列番号 2、配列番号 2のアミノ酸残基 22— 409、配列番号 29、配列番号 29のァ ミノ酸残基 25— 409、配列番号 31、および、配列番号 31のアミノ酸残基 23— 402か らなる群より選択されるアミノ酸配列と少なくとも 60%以上のアミノ酸相同性を有する アミノ酸配列を含んでなり、そして、 j8—ガラクトシドー α 2, 3 シアル酸転移酵素活 性を有する、単離されたタンパク質。
[4] 配列番号 1、配列番号 1の塩基 64— 1230、配列番号 28、配列番号 28の塩基 73
1230、配列番号 30、および、配列番号 30の塩基 67— 1209からなる群より選択 される塩基配列を含んでなる核酸によってコードされ、そして、 j8—ガラクトシドー α 2 , 3—シアル酸転移酵素活性を有する、単離されたタンパク質。
[5] 配列番号 1、配列番号 1の塩基 64— 1230、配列番号 28、配列番号 28の塩基 73
1230、配列番号 30、および、配列番号 30の塩基 67— 1209からなる群より選択 される塩基配列の相補鎖にストリンジェントな条件下でハイブリダィズする塩基配列を 含む核酸によってコードされ、そして、 j8—ガラクトシドー α 2, 3 シアル酸転移酵 素活性を有する、単離されたタンパク質。
[6] ビブリオ科微生物由来である、請求項 1ないし 5のいずれか 1項に記載の単離され たタンパク質。
[7] 配列番号 2、配列番号 2のアミノ酸残基 22— 409、配列番号 29、配列番号 29のァ ミノ酸残基 25— 409、配列番号 31、および、配列番号 31のアミノ酸残基 23— 402か らなる群より選択されるアミノ酸配列を含んでなるタンパク質をコードする、単離された 核酸。
[8] 配列番号 2、配列番号 2のアミノ酸残基 22— 409、配列番号 29、配列番号 29のァ ミノ酸残基 25— 409、配列番号 31、および、配列番号 31のアミノ酸残基 23— 402か らなる群より選択されるアミノ酸配列において、 1またはそれより多くのアミノ酸の欠失 、置換、挿入および Zまたは付加を含むアミノ酸配列を含んでなるタンパク質であつ て、 j8—ガラクトシドー α 2, 3—シアル酸転移酵素活性を有するタンパク質をコード する、単離された核酸。
[9] 配列番号 2、配列番号 2のアミノ酸残基 22— 409、配列番号 29、配列番号 29のァ ミノ酸残基 25— 409、配列番号 31、および、配列番号 31のアミノ酸残基 23— 402か らなる群より選択されるアミノ酸配列と少なくとも 60%の相同性を有するアミノ酸配列 を含んでなるタンパク質であって、 j8—ガラクトシド α 2, 3 シアル酸転移酵素活 性を有するタンパク質をコードする、単離された核酸。
[10] 配列番号 1、配列番号 1の塩基 64— 1230、配列番号 28、配列番号 28の塩基 73
1230、配列番号 30、および、配列番号 30の塩基 67— 1209からなる群より選択 される塩基配列を含んでなる単離された核酸。
[11] 配列番号 1、配列番号 1の塩基 64— 1230、配列番号 28、配列番号 28の塩基 73
1230、配列番号 30、および、配列番号 30の塩基 67— 1209からなる群より選択 される塩基配列の相補鎖にストリンジェントな条件下でハイブリダィズする塩基配列を 含む単離された核酸であって、該核酸は j8—ガラクトシドー α 2, 3—シアル酸転移 酵素活性を有するタンパク質をコードする、前記単離された核酸。
[12] 請求項 7な 、し 11の 、ずれか 1項に記載の核酸を含んでなる組換えベクター。
[13] 請求項 12に記載の組換えベクターで形質転換した宿主細胞。
[14] 請求項 1な!、し 6の 、ずれか 1項に記載のタンパク質を発現するビブリオ科の単離さ れた微生物。
[15] フォトバタテリゥム 'フォスフォレゥム JT— ISH— 467株(寄託番号 NITE BP— 88 )、フォトバタテリゥム属(Photobacterium sp.) JT— ISH— 224株(寄託番号 NITE BP— 87)、または、ビブリオ属(Vibrio sp.) JT— FAJ— 16株(寄託番号 NITE BP 98)である、請求項 14に記載の微生物。 [16] β ガラクトシドー ex 2, 3 シアル酸転移酵素活性を有するタンパク質の製造方法 であって、以下の工程:
1) β ガラクトシドー《2, 3 シアル酸転移酵素を生産する微生物を培養し;
2)培養した微生物または培養上清から、 —ガラクトシド 《2, 3 シアル酸転移 酵素を単離する;
ことを含んでなる、前記製造方法。
[17] β—ガラタトシドー ex 2, 3 シアル酸転移酵素活性を有する組換えタンパク質の製 造方法であって、以下の工程:
1)請求項 7な 、し 11の 、ずれか 1項に記載の核酸を含んでなる組換えベクターで 宿主細胞を形質転換し;
2)形質転換した当該宿主細胞を培養し;そして、
3)培養した宿主細胞または培養上清から、 |8—ガラクトシドー《2, 3—シアル酸転 移酵素活性を有するタンパク質を単離する;
ことを含んでなる、前記製造方法。
[18] シァリル糖鎖の製造方法であって、
(i)請求項 1ないし 6のいずれか 1項に記載のタンパク質、糖供与体基質、および糖 受容体基質を含む溶液を調製し;
(ii)当該溶液にぉ 、てシアル酸転移反応を行 ヽ;そして
(iii)反応溶液から生成したシァリル糖鎖を得る;
ことを含んでなる、前記方法。
PCT/JP2006/306896 2005-04-15 2006-03-31 新規なβ-ガラクトシド-α2,3-シアル酸転移酵素、それをコードする遺伝子およびその製造方法 WO2006112253A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2006238137A AU2006238137B2 (en) 2005-04-15 2006-03-31 A novel beta-galactoside-alpha2,3-sialyltransferase, a gene encoding thereof and a method for producing thereof
JP2007521161A JP4856636B2 (ja) 2005-04-15 2006-03-31 新規なβ−ガラクトシド−α2,3−シアル酸転移酵素、それをコードする遺伝子およびその製造方法
US11/918,328 US8030043B2 (en) 2005-04-15 2006-03-31 β-galactoside-α2,3-sialyltransferase, a gene encoding thereof, and a method for producing thereof
CN2006800125443A CN101203606B (zh) 2005-04-15 2006-03-31 新β-半乳糖苷-α2,3-唾液酸转移酶及其编码基因和生产方法
CA002608410A CA2608410A1 (en) 2005-04-15 2006-03-31 A novel .beta.-galactoside-.alpha.2, 3-sialyltransferase, a gene encoding thereof, and a method for producing thereof
EP06730844.5A EP1876234B1 (en) 2005-04-15 2006-03-31 Beta-galactoside-alpha2,3-sialyltransferase, gene encoding the same, and process for production of the same
US13/218,267 US20120070863A1 (en) 2005-04-15 2011-08-25 Novel beta-galactoside-alpha2,3-sialyltransferase, a gene encoding thereof, and a method for producing thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPPCT/JP2005/007340 2005-04-15
PCT/JP2005/007340 WO2006112025A1 (ja) 2005-04-15 2005-04-15 新規なβ-ガラクトシド-α2,3-シアル酸転移酵素、それをコードする遺伝子およびその製造方法
JPPCT/JP2005/010814 2005-06-13
PCT/JP2005/010814 WO2006112040A1 (ja) 2005-04-15 2005-06-13 新規なβ-ガラクトシド-α2,3-シアル酸転移酵素、それをコードする遺伝子およびその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/918,328 A-371-Of-International US8030043B2 (en) 2005-04-15 2006-03-31 β-galactoside-α2,3-sialyltransferase, a gene encoding thereof, and a method for producing thereof
US13/218,267 Division US20120070863A1 (en) 2005-04-15 2011-08-25 Novel beta-galactoside-alpha2,3-sialyltransferase, a gene encoding thereof, and a method for producing thereof

Publications (1)

Publication Number Publication Date
WO2006112253A1 true WO2006112253A1 (ja) 2006-10-26

Family

ID=37114981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306896 WO2006112253A1 (ja) 2005-04-15 2006-03-31 新規なβ-ガラクトシド-α2,3-シアル酸転移酵素、それをコードする遺伝子およびその製造方法

Country Status (4)

Country Link
EP (1) EP1876234B1 (ja)
AU (1) AU2006238137B2 (ja)
CA (1) CA2608410A1 (ja)
WO (1) WO2006112253A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014980A1 (ja) 2010-07-30 2012-02-02 日本たばこ産業株式会社 新規酵素タンパク質、当該酵素タンパク質の製造方法及び当該酵素タンパク質をコードする遺伝子
US11078511B2 (en) 2014-12-22 2021-08-03 Roche Diagnostics Operations, Inc. Aqueous composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10234373A (ja) * 1997-02-28 1998-09-08 Japan Tobacco Inc β−ガラクトシド−α2,6−シアル酸転移酵素をコードする遺伝子
JP2001503961A (ja) * 1996-06-10 2001-03-27 ナショナル リサーチ カウンシル オブ カナダ 組換えα―2,3―シアリルトランスフェラーゼ及びそれらの使用
WO2001077314A1 (fr) * 2000-04-11 2001-10-18 Kyowa Hakko Kogyo Co., Ltd. Gene $g(a)2,3-sialyltransferase modifie, son procede de production et saccharide complexe contenant de l'acide sialique

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10234364A (ja) * 1997-02-28 1998-09-08 Japan Tobacco Inc β−ガラクトシド−α2,6−シアル酸転移酵素

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001503961A (ja) * 1996-06-10 2001-03-27 ナショナル リサーチ カウンシル オブ カナダ 組換えα―2,3―シアリルトランスフェラーゼ及びそれらの使用
JPH10234373A (ja) * 1997-02-28 1998-09-08 Japan Tobacco Inc β−ガラクトシド−α2,6−シアル酸転移酵素をコードする遺伝子
WO2001077314A1 (fr) * 2000-04-11 2001-10-18 Kyowa Hakko Kogyo Co., Ltd. Gene $g(a)2,3-sialyltransferase modifie, son procede de production et saccharide complexe contenant de l'acide sialique

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014980A1 (ja) 2010-07-30 2012-02-02 日本たばこ産業株式会社 新規酵素タンパク質、当該酵素タンパク質の製造方法及び当該酵素タンパク質をコードする遺伝子
US11078511B2 (en) 2014-12-22 2021-08-03 Roche Diagnostics Operations, Inc. Aqueous composition
US11788108B2 (en) 2014-12-22 2023-10-17 Roche Diagnostics Operations, Inc. CMP-dependent sialidase activity

Also Published As

Publication number Publication date
EP1876234A1 (en) 2008-01-09
EP1876234A4 (en) 2009-10-21
CA2608410A1 (en) 2006-10-26
AU2006238137B2 (en) 2011-02-10
EP1876234B1 (en) 2013-07-24
AU2006238137A1 (en) 2006-10-26

Similar Documents

Publication Publication Date Title
US20120070863A1 (en) Novel beta-galactoside-alpha2,3-sialyltransferase, a gene encoding thereof, and a method for producing thereof
US8372617B2 (en) β-galactoside-α2,6-sialyltransferase, a gene encoding thereof, and a method for enhancing enzyme activity
WO2007105321A1 (ja) 新規なβ-ガラクトシド-α2,6-シアル酸転移酵素、それをコードする遺伝子およびその製造方法
WO2010143713A1 (ja) 新規タンパク質およびそれをコードする遺伝子
WO2006043406A1 (ja) 糖転移酵素の酵素活性を向上させる方法
WO2006112253A1 (ja) 新規なβ-ガラクトシド-α2,3-シアル酸転移酵素、それをコードする遺伝子およびその製造方法
WO2012014980A1 (ja) 新規酵素タンパク質、当該酵素タンパク質の製造方法及び当該酵素タンパク質をコードする遺伝子
JP4856636B2 (ja) 新規なβ−ガラクトシド−α2,3−シアル酸転移酵素、それをコードする遺伝子およびその製造方法
JP4812625B2 (ja) 糖転移酵素の酵素活性を向上させる方法
JP4977125B2 (ja) 新規なβ−ガラクトシド−α2,6−シアル酸転移酵素、それをコードする遺伝子およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680012544.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007521161

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2608410

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 2006730844

Country of ref document: EP

Ref document number: 2006238137

Country of ref document: AU

Ref document number: 1020077026552

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006238137

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006730844

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11918328

Country of ref document: US