WO2006043406A1 - 糖転移酵素の酵素活性を向上させる方法 - Google Patents

糖転移酵素の酵素活性を向上させる方法 Download PDF

Info

Publication number
WO2006043406A1
WO2006043406A1 PCT/JP2005/018169 JP2005018169W WO2006043406A1 WO 2006043406 A1 WO2006043406 A1 WO 2006043406A1 JP 2005018169 W JP2005018169 W JP 2005018169W WO 2006043406 A1 WO2006043406 A1 WO 2006043406A1
Authority
WO
WIPO (PCT)
Prior art keywords
sialyltransferase
reaction
gene
enzyme
nacl
Prior art date
Application number
PCT/JP2005/018169
Other languages
English (en)
French (fr)
Inventor
Hiroshi Tsukamoto
Takeshi Yamamoto
Yoshimitsu Takakura
Original Assignee
Japan Tobacco Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc. filed Critical Japan Tobacco Inc.
Priority to JP2006542306A priority Critical patent/JP4812625B2/ja
Priority to AU2005297659A priority patent/AU2005297659B2/en
Priority to US11/665,568 priority patent/US7713722B2/en
Priority to CA002590578A priority patent/CA2590578A1/en
Publication of WO2006043406A1 publication Critical patent/WO2006043406A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • C12N9/2417Alpha-amylase (3.2.1.1.) from microbiological source

Definitions

  • the present invention relates to a method for improving the activity of a glycosyltransferase.
  • Glycosyltransferases are enzymes involved in biosynthesis of sugar chains such as glycoproteins and glycolipids in vivo.
  • the reaction products such as glycoproteins and glycolipids (hereinafter referred to as complex carbohydrate chains), are used for signal transduction and complex carbohydrates between cells and between the cell and extracellular matrix during the development of glycoproteins. It has been clarified that it is an important molecule that functions as a tag.
  • glycosyltransferase genes have been isolated from eukaryotic organisms such as humans, mice, rats and yeasts, and production systems using CHO cells, E. coli, etc. as host cells. A protein having glycosyltransferase activity is expressed.
  • the specific activity of enzymes produced using these as hosts is generally very low compared to the specific activity of glycosyltransferases in the original tissues and cells. This is because glycosyltransferases produced using Escherichia coli or the like as a host have the same primary structure as that of the original glycosyltransferase produced in animal cells, but the structure added to the protein part, etc. As a result, the specific activity of the recombinant enzyme is considered to be lower than that of the original enzyme.
  • glycosyltransferase genes have also been isolated from prokaryotic bacteria, and proteins with glycosyltransferase activity are expressed in production systems using E. coli, and their substrate properties are also expressed. And various enzymatic chemistry properties have been clarified.
  • ⁇ -galatatoside-a 2,6-sialyltransferase from Photobacterium damselae JT0160 has been reported as an example of a stable glycosyltransferase derived from such a microorganism and capable of being produced in large quantities (Patent No. 1). 3062409, JP-A-10-234364).
  • the productivity of the enzyme is 550 U per liter of culture solution, and the enzyme can be cited as an example that can be produced in large quantities.
  • development of a novel enzyme reaction method that increases enzyme activity has been desired.
  • divalent ions such as MgCl and CaCl are often added to the reaction system when measuring the enzyme activity of sialyltransferases that have also obtained mammalian power.
  • Patent Document 1 JP-A-10-234364
  • Non-patent document 1 Cell engineering separate volume, July 1996 page 104-107
  • Non-Patent Document 2 J. Biochem 1997; 122, 358-364
  • the problem to be solved by the present invention is to develop an inexpensive and simple method for glycosyltransferase that can efficiently perform a glycosyltransferase reaction as compared with conventional enzyme reaction systems.
  • the present inventors have added a suitable amount of NaCl to the enzyme reaction system of a glycosyltransferase derived from a microorganism belonging to the family Vibrioaceae.
  • the enzyme activity was found to increase.
  • the effect of the present invention is peculiar to Na ions, and cannot be obtained with other monovalent ions such as K and divalent ions such as Mg2 + .
  • the increase in activity due to Na ions of the present invention is an effect peculiar to glycosyltransferases derived from microorganisms belonging to the family Vibrioaceae. Nah ...
  • the present invention relates to a method for increasing the enzyme activity of a glycosyltransferase derived from a microorganism belonging to the family Vibrioaceae by adding an appropriate amount of NaCl to the enzyme reaction system.
  • Glycosyltransferases derived from microorganisms belonging to the family Vibrioceae can be expected to increase their enzymatic activity by adding NaCl by the method of the present invention, or by adding additional calories to the reaction system. Confirming the increase in enzyme activity is easy for those skilled in the art who have seen the disclosure herein.
  • examples of microorganisms belonging to the Vibrionaceae family include the genus Vibrio, the genus Photobacterium, the genus Allomonas, and the genus Catenococcus. Force including, but not limited to, Enterovibrio, Salinivibrio, and the like.
  • Vibrioaceae Among these microorganisms, preferred are microorganisms belonging to the genus Photobatterium or microorganisms belonging to the genus Vibrio.
  • Examples of microorganisms belonging to the genus Photopacterum include Photobacterium damselae, Photobacterium phosphoreum, Photobacterium angustum, or Photobacterium.
  • Vibrio the microorganisms belonging to the genus Vibrio include Vi brio fisheri or Vibrio a.
  • Vibrio aerogenes, or Vibrio calviensis, or Vibrio rumoiensis, or Vibrio salmonicida, Vibrio cholerae, or Vibrio cholerae Forces include, but are not limited to, Vibrio alginolyticus, Vibrio vulnificus, or Vibrio sp.
  • the Vibrioaceae microorganism in the present invention is not limited, but is preferably a marine microorganism.
  • Marine microorganisms are microorganisms obtained from, for example, seawater, sea sand, marine seafood and the like.
  • a preferable glycosyltransferase derived from a Vibrioaceae microorganism is a sialyltransferase.
  • ⁇ -galatatoside-a 2,6-sialyltransferase disclosed in JP-A-10-234364. Further, it may be j8-galactoside- ⁇ 2,3-sialyltransferase derived from a microorganism belonging to the Vibrio family.
  • glycosyltransferase refers to an enzyme extracted from a microorganism belonging to the family Vibrioaceae or its culture medium as a natural material, and a host cell other than the microorganism belonging to Vibrioaceae from which the enzyme is derived by genetic engineering.
  • the enzyme was purified to the extent that it was sufficiently purified to show a single band by gel electrophoresis analysis, and the enzyme having activity in the crude product. Includes both.
  • the glycosyltransferase may consist of the same polypeptide as the natural enzyme, or it may consist of a polypeptide that has been processed to include the active site of the natural enzyme.
  • the conditions for performing the enzyme reaction are not particularly limited as long as the glycosyltransferase is reacted.
  • the enzyme reaction solution may be a buffer solution such as, but not limited to, an acetate buffer solution, a cacodylate buffer solution, a phosphate buffer solution, and a Bistris buffer solution.
  • the pH and Z of the reaction solution or the reaction temperature are the conditions under which the respective glycosyltransferases react! /, And may be shifted, and preferably the optimum pH and Z or the optimum temperature of each glycosyltransferase.
  • the conditions of the sugar donor and sugar acceptor concentrations are not particularly limited as long as the glycosyltransferases react with each other, and those skilled in the art can appropriately set these concentrations.
  • the timing of adding NaCl to the glycosyltransferase reaction system there is no particular limitation on the timing of adding NaCl to the glycosyltransferase reaction system.
  • the enzyme reaction buffer solution, the enzyme solution may be dissolved in a solution or in a sugar donor solution, or a NaCl solution having an appropriate concentration may be prepared independently and added to the reaction system.
  • NaCl solution is adjusted independently of the enzyme reaction components, NaCl can be added to the reaction system immediately before or during the reaction.
  • the amount of NaCl added is 0.1 M to 2.0 M, preferably 0.1 M to 1.5 M, more preferably 0.2 M to 1.0 M, based on the total amount of the reaction system. It is.
  • sugar receptors examples include, but are not limited to, monosaccharides, disaccharides, polysaccharides, glycopeptides, glycoproteins, glycolipids, and the like.
  • sugar donors examples include sugar nucleotides, eg CMP-NeAc, CMP-KDN, CMP-NeuGc, etc.
  • CMP-sialic acid UDP-galactose, GDP-fucose, GDP-mannose, UDP-N-acetylethyldarcosamine, UDP-N-acetylethylgalactosamine, UDP-glucose Powers that are not limited to these
  • glycosyltransferase is an enzyme that catalyzes a reaction of transferring a glycosyl group to a sugar acceptor having a glycosyl group.
  • glycosyltransferases include sialyltransferase that catalyzes the transfer reaction of sialic acid, glucose transferase that catalyzes the transfer reaction of glucose, galactose transferase that catalyzes the transfer reaction of galactose, N-acetyl galatatosamine Acetyl galatatosamine transferase that catalyzes the transfer reaction of N, acetyl dalcosamine transferase that catalyzes the transfer reaction of N-acetyl chloride, mannose transferase that catalyzes the transfer reaction of mannose, catalyses the transfer reaction of fucose Include, but are not limited to, fucosyltransferases.
  • a sialyltransferase is an enzyme that catalyzes a reaction for transferring sialic acid from a sugar donor containing sialic acid to a sugar acceptor.
  • Examples of sialyltransferase in the method of the present invention include galactoside- ⁇ 2,3-sialyltransferase, galactoside-a 2,4-sialyltransferase, galactoside-a 2,6-sialyltransferase, Examples include, but are not limited to, sialic acid-a 2,8-sialyltransferase and sialic acid-a 2,9-sialyltransferase.
  • the sialyltransferase in the method of the present invention is galactoside-a 2,6-sialyltransferase and Z or galactoside-a 2,3-sialyltransferase.
  • ⁇ -galactoside-a 2,6 sialyltransferase means cytidine monophosphate (CMP) -sialic acid such as sialic acid, a complex sugar sugar chain or a free sugar chain.
  • CMP cytidine monophosphate
  • 6-position of monosaccharide having hydroxyl group at 6-position carbon such as galactose residue constituting sugar chain, 6-position of galactose residue constituting oligosaccharide such as ratatose or N-acetyllactosamine
  • It is a monosaccharide that can form complex carbohydrates such as galactose, mannose, N-acetyl dalcosamine, N-acetyl galatatosamine, etc., with a hydroxyl group on the 6-position carbon. It means a protein that has the activity of transferring to the 6th position of the monosaccharide. Any monosaccharide may be a-coordinated or j8-coordinated. Yes.
  • “j8-galactoside ⁇ 2,6 sialyltransferase activity” means the activity described above for ⁇ -galatatoside ⁇ 2,6 sialyltransferase.
  • ⁇ -galactoside- ⁇ 2,3 sialyltransferase refers to cytidine monophosphate (CMP) -sialic acid such as sialic acid, complex carbohydrate sugar chain or free 3rd position of monosaccharide having hydroxyl group at 3rd carbon such as galactose residue constituting sugar chain, 3rd position such as ratatose residue constituting oligosaccharide such as ratatose or acetylacetyllactosamine
  • CMP cytidine monophosphate
  • sialic acid complex carbohydrate sugar chain or free 3rd position of monosaccharide having hydroxyl group at 3rd carbon
  • 3rd position such as ratatose residue constituting oligosaccharide such as ratatose or acetylacetyllactosamine
  • Is a monosaccharide that can form a complex carbohydrate such as galactose, mannose, ⁇ ace
  • a protein that has the activity of transferring to the 3rd position of a monosaccharide Any of the monosaccharides may be ⁇ -coordinated or j8-coordinated.
  • j8-galactoside- ⁇ 2,3-sialyltransferase activity means the activity described above for ⁇ -galatatoside ⁇ 2,3-sialyltransferase.
  • sialic acid refers to a neuroamic acid derivative belonging to the sialic acid family. Specifically, ⁇ -acetylneuraminic acid (Neu5Ac), ⁇ -glycolylneuraminic acid (Neu5Gc), 5-deamino-5-hydroxyneuraminic acid (KDN), disialic acid, and the like are not limited to these. .
  • the method of the present invention is a method for increasing the enzyme activity of a glycosyltransferase derived from a microorganism belonging to the family Vibrioaceae by adding NaCl to the enzyme reaction system.
  • an increase in enzyme activity means that the reaction efficiency is increased by performing the reaction in the presence of NaCl compared to the absence of NaCl.
  • the enzyme activity is increased when the reaction is carried out in the presence of NaCl, so that the relative activity of the enzyme is more than 1-fold, more preferably more than 1.1-fold compared to the absence of NaCl. Larger, more preferably 1. More than 2 times.
  • the upper limit of the increased enzyme activity is not particularly limited, and may preferably be 10 times or less, 5 times or less, 3 times or less, or 2 times or less.
  • FIG. 1 Graph showing the effect of NaCl on the enzymatic activity of glycosyltransferase (a 2,6-sialyltransferase; native) from the bacterium belonging to the genus Photobatarum (Photobacterium damselae) It is.
  • FIG. 2 is a graph showing the effect of KC1 on the enzyme activity of glycosyltransferase (ex 2,6-sialyltransferase; native) derived from a bacterium belonging to the genus Photobacterium (Photobacterium damselae).
  • FIG. 3 is a graph showing the influence of NaCl on the enzyme activity of rat-derived glycosyltransferase (oc 2,6-sialyltransferase).
  • FIG. 4 Effects of NaC 1 on glycosyltransferase (Recombinant a 2,6-sialyltransferase deletion 'mutant; N2C1) derived from a bacterium belonging to the genus Photobatterium (Photobacterium damselae) It is a graph which shows.
  • FIG. 5 is a graph showing the effect of NaCl on the enzyme activity of glycosyltransferase (a 2,3-sialyltransferase; 467 native) derived from a bacterium belonging to the genus Photobatterium (Phobacterium phosphoreum).
  • glycosyltransferase a 2,3-sialyltransferase; 467 native
  • FIG. 5 is a graph showing the effect of NaCl on the enzyme activity of glycosyltransferase (a 2,3-sialyltransferase; 467 native) derived from a bacterium belonging to the genus Photobatterium (Phobacterium phosphoreum).
  • FIG. 6 A graph showing the effect of NaCl on the enzyme activity of glycosyltransferase (recombinant a 2,3-sialyltransferase; 467 N0C0) derived from a bacterium belonging to the genus Photobatterium (Phobacterium phosphoreum). is there.
  • FIG. 7 A graph showing the effect of NaCl on the enzyme activity of glycosyltransferase (recombinant a 2,3-sialyltransferase; 467 N2C0) derived from a bacterium belonging to the genus Photobatterium (Phobacterium phosphoreum). is there.
  • FIG. 8 Graph showing the effect of NaCl on the enzyme activity of glycosyltransferase (recombinant a 2,3-sialyltransferase; 224 N1C0) derived from a bacterium belonging to the genus Photopacteria (Phobacterium sp.) It is.
  • FIG. 9 is a graph showing the effect of NaCl on enzyme activity of glycosyltransferase (recombinant a 2,3-sialyltransferase; FAJ N1C0) derived from a bacterium belonging to the genus Vibrio (Vibrio sp.).
  • Reference Example 1 1 Screening of microorganisms expressing ⁇ 2.3 sialyltransferase and identification of bacterial strains
  • Seawater, sea sand, sea mud or seafood was used as the inoculum.
  • This inoculum was applied on a plate medium composed of Marine Brossagger 2216 medium (Betaton Dickinson) to obtain microorganisms that grew at 15 ° C, 25 ° C or 30 ° C.
  • the obtained microorganisms were purely cultured, and then each microorganism was cultured using a liquid medium composed of Marine Broth 2216 medium (Betaton Dickinson). After the microorganisms grew sufficiently, the cells were collected from the culture solution by centrifugation.
  • the collected cells were supplemented with 20 mM cacodylate buffer (pH 6.0) containing 0.2% Triton X-100 (manufactured by Kanto Chemical Co., Ltd.) to suspend the cells.
  • the cell suspension was sonicated under ice cooling to disrupt the cells.
  • sialic acid transfer activity was measured, and further, the sialic acid binding mode was determined using a pyridylaminoglycan.
  • fungal strains having ⁇ 2,3-sialic acid transfer activity were obtained (Ding-ISH-467, JT-ISH-224, and JT-FAJ-16).
  • the JT-ISH-467 strain was obtained from the skin of Surumei force, the JT-ISH-224 strain from the visceral viscera, and the JT-FAJ-16 strain from the horse mackerel viscera.
  • the sialic acid transfer activity was measured according to the method described in J. Biochem., 120, 104-110 (1996) (incorporated herein in its entirety by reference). Specifically, the sugar donor substrate CMP—NeAc (70 nmol, CMP labeled with NeuAc at 14 C—containing 25000 cpm, 356 cpm / nmol), ratatose (1.25 / z mol) as the sugar acceptor substrate, The enzyme reaction was carried out using the reaction solution (30 ⁇ 1) containing the enzyme prepared by the method described above. The enzyme reaction was performed at 25 ° C for 10 to 30 minutes. After completion of the reaction, 1.97 ml of 5 mM phosphate buffer (pH 6.8) is added to the reaction solution, and this solution is added to Dowexl X 8 (PO 3 -phosphorus).
  • the determination of the sialic acid binding mode was performed using a pyridyl aminated sugar chain. Using the obtained enzyme, an enzymatic reaction was carried out using a pyridylaminated sugar chain as a sugar acceptor substrate. Pyridyl As the aminated sugar chain, analysis was performed using pyridylaminolated ratatose (Gal 1, 4Glc—PA, PA—Sugar Chain 026 manufactured by Takarabio).
  • pyridylamino ⁇ a 2,3 sialyl ratatose (NeuAc a 2,3Gal j8 1,4Glc-PA, PA-Sugar Chain 029 manufactured by Takara Bio Inc.) was used as a standard.
  • O / z M CMP- NeuAc is 5. 7 M and the enzyme is about 20MUZml, respectively 20mM cacodylate buffer solution (pH 6. 0) or Bis-Tris buffer (pH 6. 0) Dissolved in 25 1 and 2 5 .
  • the reaction was carried out under C for 3 hours to 18 hours. After the reaction, the enzyme was inactivated by treating the reaction solution at 100 ° C for 2 minutes. Thereafter, the reaction product was analyzed by HPLC.
  • Elution solution A (lOOmM acetic acid-triethylamine, pH 5.0) and elution solution B (0.5%, lOOmM acetic acid-triethylamine, pH 5.0 containing n-butanol) were used for elution of pyridylaminoglycan.
  • the pyridylamino sugar chain was sequentially eluted by the linear concentration gradient method of 30-100% eluate B (0-35 min) and 100% eluent B (35-50 min).
  • the analysis was performed under the following conditions (flow rate: lmlZmin, column temperature: 40 ° C, detection: fluorescence (Ex: 320 nm, Em: 400 nm)).
  • the morphology of the cells is Neisseria gonorrhoeae, and the size is 0.7 to 0.8 / z m Xl .5 to 2.0 m.
  • Genomic DNA extracted from the JT-ISH-467 strain by a conventional method is used as a cocoon-type and 1 by PCR.
  • the entire base sequence of 6S rRNA gene was amplified and the base sequence was determined.
  • the nucleotide sequence is shown in SEQ ID NO: 3.
  • This base sequence showed high homology with a 100% homology with the base sequence of the 16S rRNA gene of the ATCC11040 strain, which is a reference strain of Photobacterium phosphoreum. From this result, it became clear that the JT-ISH-467 strain belongs to the genus Photobacterium.
  • the identification analysis of the 16S rRNA gene based on the nucleotide sequence has a very large error with respect to the distance between closely related organisms at the species level. It is. Therefore, the species was determined using the DNA-DNA hybridization test method, which is generally used for quantitative evaluation of the affinity of strains within a genus. JT
  • JT-ISH-467 strain was identified as Photobacterium phosphoreum.
  • the DNA-DNA hybridization test was conducted using the “Microbial Classification. Identification Experiment Method” (Kenichiro Suzuki, Akira Hiraishi, Akira Yokota, Springer, Tokyo, Tokyo, September 2001). The whole was incorporated herein by reference) and was performed by a photopiotin labeling method using a microplate.
  • the morphology of the cells is Neisseria gonorrhoeae, and the size is 0.7 to 0.8 / z m X l. 0 to 1.5 m.
  • JT-ISH-224 strain belongs to Vibrioaceae as a result of morphological observation and physiological 'biochemical property test, such as growth on marine agar, Neisseria gonorrhoeae, Gram staining, glucose fermentative degradability, OZ129 sensitivity It was shown that. Furthermore, the DNA base sequence of the 16S rRNA gene of JT-ISH-224 strain is the most homologous to the 16S rRNA gene sequence of the Photobacterium phosphoreum reference strain ATCC11040.
  • the homology rate is 99.1%, which is highly homologous to the 16S rRNA gene sequence of the reference strain ATCC 51760 of Photobacterium 'Pholiobacterium iliopiscarium'. It became power. From these results, it became clear that the JT-ISH-224 strain is a microorganism belonging to the genus Photobacterium sp.
  • the morphology of the cells is Neisseria gonorrhoeae, and the size is 0.7 to 0.8 / z m X l. 2 to 1.5 m.
  • JT-FAJ-16 strain is vibrio as a result of morphological observation and physiological and biochemical property tests such as growth on marine agar, Neisseria gonorrhoeae, Gram staining, glucose fermentative degradability, and OZ129 sensitivity. It was shown to belong to the family. Furthermore, the DNA base sequence of the 16S rRNA gene of JT-FAJ-16 strain is the most homologous to the sequence of the 16S rRNA gene of Vibrio rumoiensis reference strain, and its homology rate is 99.5% This became clear. From these results, it became clear that the JT-FAJ-16 strain is a microorganism belonging to the genus Vibrio sp.
  • Reference Example 1-2 Extraction and purification of a 2.3 sialyltransferase from Photobacterium phosphoreum T T-ISH-467
  • the main culture was performed according to the following procedure. Marine broth 2216 medium containing 20 g ZL of Bacto Peptone and 4 g ZL of Bacto Yeast Extract was placed in a 1000 ml flask with a bump, and sterilized in an autoclave (121 ° C, 15 minutes). 36 of these ( A total of 10.8L) was prepared. Each flask was inoculated with 10 ml of the aforementioned culture solution and cultured with shaking at 25 ° C. and 180 rpm for 24 hours. The culture solution was centrifuged, and the cells were collected. About 60 g was obtained by wet weight.
  • the cells were suspended in 990 ml of 20 mM cacodylate buffer (pH 6.0) containing 0.2% Triton X-100 and 3M sodium chloride, and sonicated under ice cooling. The cell lysate was centrifuged at 4 ° C and 100,000 8 for 1 hour to obtain a supernatant. The obtained supernatant was placed in a dialysis membrane tube and dialyzed in 20 mM cacodylate buffer (pH 6.0) containing 0.2% Triton X-100 until the salt sodium chloride concentration reached about 20 mM at 4 ° C. . After dialysis, a precipitate formed in the solution, so the precipitate was removed by centrifugation at 100,000 X g for 1 hour at 4 ° C.
  • This crude enzyme solution is called HiPrep 16/10 DEAE FF (manufactured by Amersham Biosciences) equilibrated with 20 mM cacodylate buffer ( ⁇ 6.0) containing 0.2% Triton X-100 surfactant.
  • the sample was adsorbed on an anion exchange column and eluted from a 20 mM cacodylate buffer (pH 6.0) containing 0.2% Triton X-100 into the same buffer containing 1 M sodium chloride by a linear gradient method. As a result, a fraction having enzyme activity eluted at a sodium chloride concentration of about 0.25 M was recovered.
  • the collected fraction was diluted with 20 mM phosphate buffer (pH 6.0), and was previously equilibrated with 20 mM phosphate buffer (pH 6.0) containing 0.2% Triton X-100. (Bio-Rad) and 20 mM phosphate buffer (pH 6.0) containing 0.2% Triton X-100 to 500 mM phosphate buffer (pH 6. containing 0.2% Triton X-100). Elution to 0) was performed by the linear concentration gradient method. As a result, a fraction having an enzyme activity eluted at a phosphate buffer concentration around 125 mM was collected.
  • This fraction was adsorbed to MonoQ 5/50 GL (Amersham Biosciences) anion exchange ram, and 1M salt solution from 20mM cacodylate buffer (pH 6.0) containing 0.2% Triton X-100. The elution was carried out by the linear concentration gradient method in the same buffer containing sodium salt. As a result, a fraction having enzyme activity eluted at a sodium chloride concentration of about 300 mM was collected.
  • This fraction was diluted with 20 mM cacodylate buffer (pH 7.0) containing 0.2% Triton X-100.
  • the solution was diluted 10 times and adsorbed on a MonoQ 5/50 GL (Falmacia) anion exchange column.
  • the 20 mM cacodylate buffer solution (pH 7.0) containing 0.2% Triton X-100 was eluted from the same buffer solution containing 1M sodium chloride by the linear concentration gradient method.
  • a fraction having an enzyme activity eluted at a sodium chloride concentration of about 300 mM was collected.
  • This fraction was diluted 2-fold with 20 mM Kakojyle ⁇ buffer ( ⁇ 7.0) containing 0.2% Triton X-100 and 0.2M sodium chloride, and HiLoad 16/60 Superdex 200 prep grade (Amersham) Fractionation was performed with a gel filtration column (manufactured by Bioscience). Dissolved in 20 mM cacodylate buffer (pH 7.0) containing 0.2% Triton X-100 and 0.2 M sodium chloride.
  • the target enzyme showed a single band and a molecular weight of about 39,000. (In this specification, it is expressed as 467 native).
  • the specific activity of this fraction increased approximately 350 times compared to the specific activity when the cells were disrupted (Table 3).
  • Participant Example 1 3 Determination of sialic acid binding mode using pyridylaminated sugar chain Reference Example 1 Using the enzyme obtained in 2 as shown in Reference Example 1 1, the pyridylaminated sugar chain was used as a sugar acceptor. Enzymatic reaction was performed as a body substrate. As a result, it has been clarified that pyridylaminoylated a 2, 3 sialyllatatose is also synthesized by using this enzyme.
  • Reference Example 1-4 Photobacteria * phosphorum TT—ISH— Produced by 467 strain a 2.3 Salts of the gene encoding sialyltransferase ⁇ R sequence analysis and transformation of the gene
  • Genomic DNA was recovered by ethanol precipitation and dissolved in TE 400 ⁇ 1.
  • a centrifuge tube (Hitachi 40mm), using a gradient preparation device, from 40% sucrose buffer (20mM Tris pH8.0, 5mM EDTA pH8.0, 1M NaCl) and 10% sucrose buffer, A 40-10% gradient was prepared, and the partially degraded DNA solution was layered thereon. 26,000 rpm, 20 using an ultracentrifuge (SCP70H, rotor: SRP28SA manufactured by Hitachi, Ltd.). C, centrifuged for 15 hours. After centrifugation, a hole was made with a 25 G needle at the bottom of the tube, and lm 1 was collected from the liquid at the bottom.
  • a portion of the sample containing the recovered genomic DNA was electrophoresed in a 0.5-0.6% 6% agarose gel ZTAE buffer using Submarine Electrophoresis® for 26 hours for 20 hours. The fraction including was grasped. ⁇ ⁇ Hindlll was used as a marker. After adding 2.5 ml of TE to the fraction containing the 9-16 kb DNA fragment, the sucrose concentration was lowered, ethanol precipitation and rinsing were performed, and then dissolved in a small amount of TE
  • JASH—ISH— DASH II as a vector for creating a 467 genome library (Stratagene) was used.
  • the ligation reaction between the ⁇ DASH IlZBamHI vector and the genomic DNA fragment was performed at 12 ° C using a ligation kit manufactured by Stratagene. After the reaction, the reaction solution was reacted with GigaPack III Gold Packaging extract, and the ⁇ vector containing the genomic DNA was incorporated into the phage particles.
  • the phage solution was stored at 4 ° C in a 500 ⁇ l SM buffer and 20 kg chloroform.
  • E. coli XLl—Blue MRA (P2) (Stratagene) in LBMM (LB + 0.2% maltose + 10 mM MgSO) A 0.
  • the culture solution was cultured until it reached 5, and 1 200 ml of this culture solution was added, and an appropriate amount of the phage solution was added, followed by incubation at 37 ° C for 15 minutes.
  • 4 ml of NZY top agarose kept at 48 ° C was added, mixed, and plated on a NZ Y agar plate (plastic petri dish with a diameter of 9 cm). The plate was incubated overnight at 37 ° C, the number of plaques was counted, and titer was calculated.
  • the library size was calculated to be about 300,000 pfu (plaque forming unit).
  • the amino acid sequence of the heel terminal was determined as follows.
  • the sialyltransferase was subjected to SDS-polyacrylamide gel electrophoresis on a 5-20% gradient gel (manufactured by Saga). After electrophoresis, the enzyme was adsorbed on a PVDF membrane, and the amino acid sequence analyzer determined the amino acid sequence of the 10 amino acids on the amino terminal side. As a result, the terminal amino acid sequence of the enzyme was XNSDSKHNNS (SEQ ID NO: 4).
  • the internal amino acid sequence was determined as follows.
  • the sialyltransferase was subjected to SDS-polyacrylamide gel electrophoresis on a 5-20% gradient gel (manufactured by Saga). After staining the gel, the band of interest was excised, added with Tris buffer ( ⁇ ⁇ 8.5) containing lysyl endobeptidase, and treated at 35 ° C for 20 hours. Thereafter, the entire amount of the solution was subjected to reverse phase HPLC (column: Symmetry C18 3.5 m) to separate fragment peptides.
  • the amino acid sequence analyzer revealed that the internal amino acid sequence of the enzyme had SLDSMI LTNEIK (SEQ ID NO: 5), FYNFTGFNPE (SEQ ID NO: 6) and GHPSATYNQQII DAHNMIEIY (SEQ ID NO: 7).
  • the following degenerate primers were designed and synthesized based on two internal amino acid sequences: FYNFTGFNPE (SEQ ID NO: 6) and GHPSATYNQQIIDAHNMIEIY (SEQ ID NO: 7). That is, three primers shown in Table 2 below were synthesized from the N-terminal amino acid sequence: XNSDSKHNNS (SEQ ID NO: 4).
  • Y is thymine or cytosine
  • W is thymine or adenine
  • S is cytosine or guanine
  • R is adenine or guanine
  • N is adenine , Guanine, cytosine or thymine
  • I represents inosine
  • H represents thymine, cytosine or adenine
  • Y represents thymine or thymine
  • R represents adenine or guanine
  • D represents adenine, guanine or thymine
  • represents adenine, guanine, cytosine or thymine
  • FYNFTGFNPE SEQ ID NO: 6
  • N represents adenine, guanine, cytosine or thymine, respectively.
  • PCR was performed using the genomic DNA of JT-ISH-467 strain in a cocoon-shaped form.
  • the primer combination consists of 3 primers derived from ⁇ terminal sequence, 9 combinations of 467inlFW (SEQ ID NO: 12), 467inlFW2 (SEQ ID NO: 14) or 467in2FW (SEQ ID NO: 16), 467inlRV (SEQ ID NO: 11) Or two combinations of 467inlRV2 (SEQ ID NO: 13) and 467in2FW (SEQ ID NO: 16), and two combinations of 467in2RV (SEQ ID NO: 15) and 467inlFW (SEQ ID NO: 12) or 467inlFW2 (SEQ ID NO: 14), for a total of 13 combinations is there.
  • PCR reaction was performed as follows.
  • the ligation reaction was performed according to the instructions attached to the vector kit, and DNA was introduced into E. coli TBI using the electroporation method (Sambrook et al. 1989, Molecular Cloning, a labo ratory manual, ( by reference incorporated herein in its entirety) 2 nd edition) according Pra Sumid DNA was extracted.
  • the base sequence of the PCR product was also determined for both bases using an MBI primer (manufactured by Takara Bio) and ABI PRISM fluorescence sequencer (Model 310 Genetic Analyzer, manufactured by Perkin Elmer).
  • the translated amino acid sequence includes the entire internal amino acid sequence: FYNFTGFNPE (SEQ ID NO: 6) and SLDSMILT NAIK (SEQ ID NO: 5) determined directly from the above purified enzyme, and the N-terminal amino acid sequence: XNSDSKHNNS (sequence) No. 4) and part of the internal amino acid sequence: GHPSATYNQQIIDAHNMIEIY (SEQ ID NO: 7).
  • the cloned DNA is a part of the ex 2, 3 sialyltransferase gene derived from the photobacterium 'phosphophore JT ISH-467 strain, and the photobatterium phosphorous JT of the present invention.
  • ISH It became clear that the amino acid sequence of ⁇ 2,3 sialyltransferase derived from 467 strain was a novel amino acid sequence that was about 30% of the previously reported sequence and did not show the same homology.
  • the DNA fragment that is partly derived from the 2,3 sialyltransferase gene derived from the photobatterium 'phosphophore JT-ISH-467 strain cloned in (2) above is used as a pCR2.1 T OPO vector restriction enzyme EcoRI.
  • EcoRI vector restriction enzyme
  • the genomic DNA library derived from the photobacterium 'phosphorum JT-ISH-467 strain prepared above (1) One was screened. About 300-500 pfu of phage was plated with a host fungus XL 1 -blue MRA (P2) on a 9 cm diameter round petri dish according to the instructions of the ⁇ DASH Il / BamHI vector kit (Stratagene).
  • Hybridization is 0.5M in sodium phosphate buffer pH 7.2, 7% SDS, 65% in ImM EDTA (in C, wash conditions are 40 mM sodium phosphate buffer pH 7.2, ImM EDTA, 5 65% in% SDS, C, 15 minutes twice, 40 mM sodium phosphate buffer pH 7.2, 1% SDS, ImM EDTA 65 (C, 15 minutes twice.
  • OOOpfu phages yielded 24 positive clones, of which 18 clones were subjected to secondary screening that doubled plaque purification, resulting in 6 types of 'purified plaques' Was made.
  • plaques were collected and plated on NZY plates with E. coli XL 1-blue MRA (P2) so that the total number was 10,000 pfu, and kept at 37 ° C.
  • E. coli XL 1-blue MRA P2
  • Phage plate lysate was collected with a Pasteur pipette, and ⁇ DNA was extracted and purified with QIAGEN Lambd a Mini Kit (Qiagen).
  • ⁇ DNA was again digested with Hindlll and subjected to agarose gel electrophoresis to recover a 4.6 kb Hindlll fragment, which was cloned into the Hindlll site of the plasmid vector pBluescript SK (—) according to a conventional method.
  • ⁇ DNA was again digested with Hindlll and subjected to agarose gel electrophoresis to recover a 4.6 kb Hindlll fragment, which was cloned into the Hindlll site of the plasmid vector pBluescript SK (—) according to a conventional method.
  • 929 bp Based on SEQ ID NO: 17
  • the ORF of the ⁇ 2,3-sialyltransferase gene derived from the photobatterium 'phosphophorum JT-ISH-467 strain was 1230 bases and encoded 409 amino acids.
  • This amino acid sequence is shown in SEQ ID NO: 2 in the sequence listing.
  • This amino acid sequence completely includes all four amino acid sequences determined from the purified enzyme. The first character of the amino acid sequence at the end was deciphered, and this part of the amino acid deduced from the powerful gene was Cys.
  • the N-terminus of the mature protein is the 22nd Cys of the sequence number 2 in the sequence listing, the first 21-amino acid sequence is processed in the photobatterium 'phospho forum. Received and thought to be removed.
  • GENETYX Ver. 7 (manufactured by General Tetus), Analysis of the homology between the full length of the ⁇ 2,3 sialyltransferase protein and its homologue from the phosphatolium JT-ISH-467 strain. 'Has 32% homology with the damsera ⁇ 2,6 sialic acid transferase (JC5898), 28% homology with the hypothetical protein PM0188 (AAK02272) of Pascellella' Murtosida subsp. The gene DNA sequences had 53% and 51% homology, respectively.
  • a gene of the type from which the full length of the same gene and the signal peptide portion on the N-terminal side have been removed is incorporated into the expression vector, and the protein is expressed in E. coli. And the activity of the expressed protein was measured.
  • a PCR product of about 1.2 kb was amplified for the 467-NOCO gene and about 1. lkb for the 467-N2C0 gene.
  • the 467-NOCO gene was double digested with restriction enzymes PciI (New England Biolab) and BamHI (Takara Bio), and the 467-N2C0 gene was restricted with the restriction enzyme Ncol (Takara Bio). After double digestion with BamHI, gel purification was performed.
  • P Trc99A (Pharmacia LKB) was used as an E. coli expression vector.
  • This vector was double-digested with the same restriction enzymes Pcil and BamHI or the restriction enzymes Ncol and BamHI and gel purified, and then ligated using the PCR product treated with restriction enzymes and Takara Ligation Kit (manufactured by Takara Bio Inc.) E. coli TBI was transformed. Plasmid DNA was extracted and subjected to restriction enzyme analysis according to conventional methods to confirm insertion of the insert. Furthermore, the entire nucleotide sequences of the cloned 467-N0C0 gene and the cloned 467-N2C0 gene were determined, and it was confirmed that there was no nucleotide sequence variation due to the PCR reaction.
  • the cloned 467-N0C0 gene contained the base sequence shown in SEQ ID NO: 1, and the cloned 467-N2C0 gene contained the 73rd base force of SEQ ID NO: 1 and the sequence up to the 1230th base.
  • the cells were further cultured with shaking at 30 ° C for 4 hours.
  • the cells in 2 ml of the culture solution were collected by centrifugation.
  • This bacterial cell was suspended in 2 OmM Bistris buffer (pH 7.0) containing 0.301% Triton X-100 of 200 1 and 0.5 M sodium chloride and sonicated under ice cooling.
  • the obtained crushed liquid was used as a crude enzyme solution and was used for activity measurement.
  • the reaction was repeated twice, and the reaction composition was the same as in Example 1. However, the reaction time was 15 hours.
  • Table 7 Derived from JT-ISH- strain; 8_galactoside_ ⁇ 2,3-sialyltransferase gene
  • reaction 2 was performed using the unreacted reaction solution.
  • the crude enzyme solution deactivated by heat treatment (95 ° C, 5 minutes) is prepared, and pyridyl aminated ratatose and pyridyl aminated a 2, 3 sialyl la Tests with addition of tartose were conducted.
  • Participant example ⁇ 5 Photopakuterum Tsubasa Tsubasa TSH-224 strain "" 2.3 Cloning of sialic acid transferase early transfer, sequence analysis and communication in E. coli
  • the gel was subjected to alkaline blotting using 0.4M NaOH to remove the gel from Hvbond—N + nylon membrane filter (Amersham Bioscience). Transcribed into a product).
  • the Southern Transcript was produced by the method described in Reference Example 1-4 using the partial fragment (929 bp; SEQ ID NO: 17) of the ⁇ 2,3-sialyltransferase gene derived from the above JT-ISH-467 strain as a probe. ⁇ I performed an hybridization. However, the noise temperature and the cleaning temperature were 55 ° C. As a result, a 16 kb band was detected by EcoR I digestion.
  • SEQ ID NO: 28 in the sequence listing was obtained.
  • This sequence is the entire nucleotide sequence of the open reading frame (ORF) of the ⁇ 2,3 sialyltransferase gene derived from JT ISH-224. Since a translation stop codon appears in the same reading frame upstream of the first ATG, this is considered to be the translation start codon for this gene.
  • Photopacterium JT—1311-224 derived 0; 2,3 sialyltransferase ORF is the same as that of ex 2,3 sialyltransferase gene derived from Photobacterium phosphorum JT—ISH-467 It consisted of 1230 bases and encoded 409 amino acids.
  • This amino acid sequence is shown in SEQ ID NO: 29 in the sequence listing.
  • the gene had a Hindlll site.
  • Analysis of nucleic acid and amino acid sequences using GENE TYX Ver. 7 revealed that the ⁇ 2,3 sialyltransferase gene derived from JT-ISH-224 strain is the ⁇ 2,3-sial derived from JTISH-467 strain. It had 92% homology with the acid transferase gene.
  • the amino acid sequence also showed 92% homology with ⁇ 2,3 sialyltransferase from JT-ISH-467.
  • amino acid sequence of the 2,3 sialyltransferase derived from JT-ISH-224 strain is 33% homologous to the photo 2,5 sialyltransferase (JC5898) of Photobacterium damsela, Pasula la multosida Hypothetical protein of subspecies muruto fern strain Pm70 ⁇ 0188 ( ⁇ 0227 2) and 29% homology, and the gene DNA sequences were 54% and 50% similar, respectively.
  • the gene of the type from which the full length of the same gene and the signal peptide portion on the N-terminal side were removed was incorporated into an expression vector, and the protein was then transferred in And the activity of the expressed protein was measured.
  • PCR was performed to amplify the ⁇ 2,3 sialyltransferase gene derived from the JT-ISH-224 strain for incorporation into an expression vector.
  • the above DNA containing the oc 2,3 sialyltransferase gene derived from the JT-ISH-224 strain was used as the vertical DNA.
  • PCR reaction conditions were set as follows. 50 1 reaction solution contains 100 ng of vertical DNA, 10 X Ex taq buffer 5 1, 2.5 mM each dNTP 4 ⁇ , primer 50 pmole, Ex taq (Takara Bio) 0.5 1 96 using control system PC-700 (A STEK). C 3 minutes once, 96. C 1 minute, 50. C 1 min, 72.
  • PCR product of about 1.2 kb was amplified for the 224-NOCO gene and about 1. lkb for the 224 N1CO gene.
  • These PCR products are double digested with restriction enzymes Pcil (New England Biolab) and BamHI (224—NOCO gene) or restriction enzymes Ncol and BamHI (224—N1C0 gene), Purified.
  • PTrc99A was used as the expression vector for E. coli. This vector was double-digested with the same restriction enzymes Pcil and BamHI (when introducing the 224—N0C0 gene) or restriction enzymes Ncol and BamHI (when introducing the 224—N1C0 gene).
  • the PCR product was ligated with the Takara Ligation Kit (manufactured by Takara Bio) and transformed into E. coli TBI. Plasmid DNA was extracted and subjected to restriction enzyme analysis according to a conventional method to confirm insertion of the insert, and the cloned 224-N0C0 gene and the entire base sequence of the cloned 224-N1C0 gene were confirmed. As a result, in the 224-N0C0 gene, the above-mentioned substitution from cytosine (C) to thymine (T) was confirmed. Similarly, in the case of the 224-N1C0 gene, the 73rd basic force included even the 1230th base in the desired base sequence with no base sequence mutation, ie, SEQ ID NO: 28 in the sequence listing.
  • Table 10 JT-ISH-467 derived from JT-ISH-224 strain JT-ISH-467 —galactoside £ ⁇ 2,3-sialyltransferase gene Sialyltransferase in disrupted large intestinal fungi recombined with homologue Activity
  • a 224-NOCO gene and a 224-N1CO gene were introduced into E. coli to express the enzyme, and a reaction using a pyridylaminated ratatose as a sugar receptor was performed. Acid transferase activity was examined. As a result of evaluating the reaction product of sialyltransferase expressed in Escherichia coli by HPLC, a peak of pyridylamino-a 2,3 sialyllatatose was detected in any of the clones. From this result, it was revealed that sialic acid transferase derived from JT ISH-224 strain has ⁇ 2,3 sialyltransferase activity.
  • Reference Example 11 Vibrio genus JT — FAJ—16 strain, which was found to have sialyltransferase activity in 1 in the photobatterium 'phosphophore JT—ISH—467 strain ⁇ 2, 3 sialyltransferase
  • a genomic Southern hybridization was performed. Genomic DNA was prepared from the cell pellet of JT-FAJ-16 strain by the method described in Reference Example 1-4, digested with restriction enzymes ⁇ coRI and Hindlll, and fractionated by 0.7% agarose gel electrophoresis. The gel was washed with Hybond—N + nylon membrane membrane by alkaline blotting with 0.4M NaO H.
  • Hybridization was carried out at 37 ° C for 4 hours with 5% (wZv) blocking reagent and 0.5M NaCl in the hybridization buffer in the kit. Washing in 0.4% SDS, 0.5X SSC, 50. C for 20 minutes twice and 2X SSC at room temperature for 5 minutes once. The signal was detected according to the instructions attached to the kit.
  • SEQ ID NO: 30 in the sequence listing was obtained.
  • This sequence is the entire nucleotide sequence of the open reading frame (ORF) of the ⁇ 2,3 sialyltransferase gene derived from JT FAJ-16. Since a translation stop codon appears in the same reading frame upstream of the first ATG, this is considered to be the translation start codon for this gene.
  • the ORF of the a2,3 sialyltransferase gene derived from JT-FAJ-16 strain consists of 1209 bases and contains 402 amino acids. I was playing. This amino acid sequence is shown in SEQ ID NO: 31 of the sequence listing. Analysis of nucleic acid and amino acid sequences using GENETYX Ver.
  • the gene of the type from which the full length of the gene and the signal peptide portion on the N-terminal side were removed was incorporated into an expression vector, and the protein was then transferred in And the activity of the expressed protein was measured.
  • the translation start codon ATG and the complementary sequence TAA corresponding to the translation stop codon are boxed. Furthermore, the sequence of the portion of the primer sequence that anneals with the cocoon-shaped DNA is shown in bold.
  • PCR was performed to amplify the ⁇ 2,3-sialyltransferase gene from JT-FAJ-16 strain to be incorporated into the expression vector.
  • the above-mentioned 3.6 kb DNA fragment containing the same gene was used as the vertical DNA.
  • the PCR reaction conditions were set as follows.
  • PCR products were cloned into the TA cloning vector pCR2.1TOPO (Invitrogen) according to the instructions attached to the TA cloning kit (Invitrogen).
  • TBI TA cloning kit
  • the plasmid was purified from the obtained colony by a conventional method, and the introduction of the PCR product into the vector was confirmed with the restriction enzyme EcoRI.
  • the introduced plasmid sample was double-digested with restriction enzymes BspHI and BamHI, and then a 1.2 kb (FAJ—N0C0 gene) or 1. lkb (FAJ—N1C0 gene) fragment was gel purified.
  • the desired base sequence without any base sequence variation That is, in SEQ ID NO: 30 in the sequence listing, the first basic force included up to the 1209th base.
  • the desired base sequence without any base sequence variation ie, the 67th base strength of the SEQ ID NO: 30 in the sequence listing, included even the 1209th base.
  • Table 14 4 JT-ISH-467 derived from JT-FAJ-16 J8-galactoside- ⁇ 2,3-sialyltransferase gene Sialic acid transfer in homologous recombinant Escherichia coli lysate Enzyme activity
  • the FAJ-NOCO gene and FAJ-N1CO gene were introduced into E. coli to express the enzyme, and a reaction using a pyridylaminolated ratatose as a sugar receptor was performed. Sialyltransferase activity was examined. As a result of HPLC analysis of the reaction product of sialyltransferase expressed in Escherichia coli, a peak of pyridylaminated a 2,3 sialyllatatose was detected in the reaction using any of the clones. From this result, it was revealed that sialic acid transferase derived from JT-FAJ-16 strain has ⁇ 2,3 sialyltransferase activity.
  • reaction solution 201 sugar donor substrate CMP- 14 C- NeuAc (50.066 nmol, 25000 cpm), sugar acceptor substrate ratatose (1 mmol), sialyltransferase (0.5 mU to 1.5 mU), NaCl Were added at a concentration of 0 to 2.5 M, and an enzyme reaction was carried out (30 ° C, 1 minute). After the completion of the enzyme reaction, the radioactivity of NeuAc transferred to latose was measured under each condition to calculate the enzyme activity, and the effect of NaCl on the enzyme activity in each test section was examined.
  • SO -CoCl -CaCl -MnCl -FeSO will have final concentrations of 0 mM, 10 mM, and 20 mM, respectively.
  • the enzyme reaction was carried out (30 ° C, 1 minute). After completion of the enzyme reaction, the radioactivity of NeuAc transferred to lactose was measured under each condition to calculate the enzyme activity, and the influence of various salts on the enzyme activity in each test section was examined. Specifically, after completion of the reaction, 1.98 ml of 5 mM phosphate buffer (pH 6.8) was added to the reaction solution, and this solution was placed on an AG1-X 2 Resin (PO 3 -form, 0.2 X 2 cm) column. Provided. This column is AG1- X 2Resin (OH—fo
  • the reaction solution is applied to a Sephadex G-50 super fine (Amersham) column (0.8 x 20 cm), and the reaction product eluting to 2 to 4 ml using 0.1M NaC 1 solution as the moving bed (The high molecular fraction containing the enzyme reaction product (transferred NeuAc labeled 14 times to assiarofetuin) was collected. In this fraction, it was confirmed for each reaction that unreacted CMP- "C-NeuAc was not eluted. For each fraction, it was confirmed that NeuAc transferred to vacirofetuin. The enzyme activity was calculated by measuring the radioactivity.
  • reaction solution 201 sugar donor substrate CMP- 14 C- NeuAc (50.066 nmol, 25000cpm), sugar acceptor substrate ratatose (1 mmol), glycosyltransferase derived from various strains (lmU or less), NaCl Were added at a concentration of 0.5M, and the enzyme reaction was carried out (30 ° C, 1 minute). After completion of the enzyme reaction, the radioactivity of NeuAc transferred to latato was measured under each condition to calculate the enzyme activity, and the influence of NaCl on the enzyme activity in each test section was examined.
  • the enzyme activity was improved when 0.5 M NaCl was present in the reaction system.
  • the degree of enzyme activity increased by about 1.2 to 1.3 times, depending on the strain (Table 16).
  • Example 6? Effect of NaCl on enzyme activity of 110160-derived glycosyltransferase (recombinant 0; 2,6-sialyltransferase deletion 'mutant; N2C 1)
  • a deletion 'mutant N2C1 of ⁇ -galatatoside- ⁇ 2,6-sialyltransferase gene derived from P. damselae JT0160 was prepared, recombined into an expression plasmid, and E. coli was transformed with the expression plasmid.
  • the transformed Escherichia coli was cultured with L Broth (ampicillin: final concentration 0.2 mgZml, IPTG: final concentration ImM included) at 30 ° C. and 180 rpm for 12 hours, and then the cells were collected by centrifugation.
  • the collected bacterial cells are suspended in 20 mM sodium cacodyrate buffer (pH 5.0), and sonicated at 4 ° C to disrupt the bacterial cells and to contain crude N2C1 gene-derived sialyltransferase protein.
  • An enzyme solution was prepared.
  • the sialyltransferase protein derived from the N2C1 gene is compared to the amino acid sequence predicted from the gene sequence encoding j8-galatatoside-a 2,6-sialyltransferase derived from p. Damselae JT0160. Although 107 amino acids from the N-terminal side (Met) and 176 amino acids from the C-terminal side have been deleted, it has substantially the same enzyme activity as the natural enzyme. The following experiment was performed using this N2 C1 gene-derived sialyltransferase protein.
  • Example 7 Effect of NaCl on the enzyme activity of a glycosyltransferase (recombinant 2,3-sialyltransferase) from Vibrioaceae microorganisms
  • Te 46 7 native and 467 N0C0 ⁇ Kotsui in the reaction solution 30 mu 1, a glycosyl donor substrate CMP- 14 C- ⁇ euAc (7.041 nmol , 25400cpm), glycosyl acceptor substrate Ratatosu (2.88 ⁇ mol), sialic acid transferase (approximately 250 U), and NaCl were added to a concentration of 0 to 2.0M, and the enzyme reaction was performed (25 ° C, 5 minutes). Transferred to ratatoses under the conditions of The enzyme activity was calculated by measuring the radioactivity of the NeuAc, and the effect of NaCl on the enzyme activity in each test group was examined.
  • the radioactivity of the eluate (0-2 ml) was measured.
  • the eluate of the column, 1 4 C-NeuAc was produced in reaction (N- ⁇ cetyl neuraminic acid) linked Shiarirurakuto - scan and unreacted Lactobacillus - including but scan, unreacted CMP-" C-NeAc remains retained on the column, so the 14 C radioactivity derived from sialyllactose resulting from the enzymatic reaction is all derived from the reaction product and the radioactivity of this fraction. Enzyme activity can be calculated.
  • FIGS. 5 to 9 The results for 467 native, 467 N0C0, 467 N2C0, 224 N1C0, and FAJ N1C0 are shown in FIGS. 5 to 9, respectively.
  • the sialyltransferases or recombinant sialyltransferases derived from Photobataterum 'phosphophorum JT—ISH—467, Photobataterum JT—ISH—224, and Vibrio JT—FAJ-16 are in addition, the presence of NaCl in the enzyme reaction system was observed to increase the enzyme activity. When NaCl was present in the enzyme reaction system at a concentration of 0.2 M to 1.5 M, the enzyme activity was improved approximately 1.5 to 2.6 times compared to the case where NaCl was not added.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明は、ビブリオ科の微生物に由来する糖転移酵素について、従来の酵素反応系と比較して効率的に糖転移反応を行うことができる安価で簡便な方法を提供する。  本発明の方法によれば、ビブリオ科の微生物由来の糖転移酵素、例えばフォトバクテリウム・ダムセーラ(Photobacterium damselae)由来のβ-ガラクトシド-α2,6-シアル酸転移酵素、フォトバクテリウム・フォスフォレウム(Photobacterium phosphoreum)由来のβ-ガラクトシド-α2,3-シアル酸転移酵素、ビブリオ属菌(Vibrio sp.)由来のβ-ガラクトシド-α2,3-シアル酸転移酵素について、その酵素反応系に適量のNaClを添加することにより、その酵素活性が増加する。                                                                               

Description

明 細 書
糖転移酵素の酵素活性を向上させる方法
技術分野
[0001] 本発明は、糖転移酵素の活性を向上させる方法に関する。
背景技術
[0002] 糖転移酵素は、生体内において糖タンパク質、糖脂質等の糖鎖の生合成に関与 する酵素である。その反応生成物である糖タンパク質や糖脂質等の糖鎖 (以下、複 合糖質糖鎖)は、分ィ匕ゃ発生における細胞間および細胞-細胞外マトリックス間のシ グナル伝達や複合糖質のタグとして機能する重要な分子であることなどが明らかにさ れている。
[0003] 糖鎖を応用して産業ィ匕されている例として、エリスロポエチンの糖鎖付加が挙げら れる。エリスロポエチンは本来糖鎖が付加されている力 その糖鎖の数を増カロさせる ことにより、生体におけるエリスロポエチンの寿命を伸ばした製品が開発され、巿販さ れている。今後、このような糖鎖を付加した製品の上巿が増加することが想定される。 そのため、糖転移酵素の生産も重要となる。また、複合糖質糖鎖の機能解明を行う 上で様々な糖鎖の合成が必要とされ、大量生産が必須となる。
[0004] 一般に、複合糖質糖鎖の合成方法は、大きく 2種類に分けられる。一つは、化学合 成法であり、他方は糖転移酵素を用いる酵素法である。なお、化学合成法と酵素法 を使用する化学 Z酵素的合成法と ヽぅ中間的な合成方法も存在する。
[0005] 化学合成法と酵素法を比較した場合、どちらも長所、短所を有する。
[0006] 化学合成法の長所として、糖鎖合成に関する数多くの知見があり、様々な糖鎖の 合成に柔軟に対応できる可能性があることが挙げられる。し力しながら、化学合成法 では一般に保護 ·脱保護という工程を経なければならず、必然的に合成経路が長く 操作自体も煩雑であるので、高い収率で目的物を得られない短所がある。さらに、前 述のように、今後タンパク質や脂質等の糖鎖修飾が重要になると考えられているが、 化学合成法では、その合成条件から、タンパク質や脂質等の機能を損なうことなく糖 を付加することは極めて難し 、。 [0007] 一方、酵素法には化学合成法と比較した場合、以下の長所がある。酵素法では、 反応工程が極めて簡便であり、高い反応収率で目的物を得ることが可能である。さら に、温和な条件で反応できるため、タンパク質や脂質を変性させることがなぐそれら の糖鎖修飾に応用可能である。
[0008] これまでに、約 150種類以上の糖転移酵素遺伝子がヒト、マウス、ラット及び酵母等 の真核生物力 単離されており、さらに CHO細胞や大腸菌等を宿主細胞とする生産 系で糖転移酵素活性を有するタンパク質が発現されている。しかし、これらを宿主とし て生産された酵素が示す比活性は、本来の組織や細胞内での糖転移酵素の比活性 と比較すると、一般に非常に低い値を示す。これは、大腸菌などを宿主として生産し た糖転移酵素は、動物細胞内で生産されている本来の糖転移酵素とタンパク質の一 次構造は同じであっても、タンパク質部分に付加される構造等が異なり、その結果、 本来の酵素と比較して組換え体酵素の比活性が低下すると考えられるからである。
[0009] 一方、原核生物である細菌からもいくつかの糖転移酵素遺伝子が単離されており、 さらに大腸菌を用いる生産系で糖転移酵素活性を有するタンパク質が発現され、そ れらの基質特性や酵素化学的な諸性質が明らかにされている。そのような微生物に 由来し、大量に生産可能な安定な糖転移酵素の例として、 Photobacterium damselae JT0160株由来の β -ガラタトシド- a 2,6-シアル酸転移酵素が報告されて ヽる(特許 第 3062409号、特開平 10-234364)。同酵素の生産性は培養液 1Lあたり 550Uであり、 同酵素は大量に生産できる例として挙げることができる。しかし、より効率的な糖鎖合 成を可能にするため、酵素活性を増加させる新規な酵素反応方法の開発が望まれ ていた。
[0010] また、哺乳類力も得られたシアル酸転移酵素について、酵素活性を測定する際に は、多くの場合その反応系に MgCl、 CaClなどの 2価イオンを添加することが示され
2 2
ている(グライコバイオロジー実験プロトコール、細胞工学別冊、 1996年 7月 page 104 〜107、秀潤社)。また、特殊な好熱性細菌力も抽出されたプロテアーゼの中には、 1 -5Mという極めて高い NaClの濃度で、活性が促進されることは知られていた( Inouye et al. J. Biochem 1997; 122, 358-364)。
[0011] しかし、糖転移酵素の活性に及ぼす NaClの効果については、その由来に関わら ず、何も明らかにされてはいな力つた。
特許文献 1:特開平 10-234364
非特許文献 1 :細胞工学別冊、 1996年 7月 page 104〜107
非特許文献 2 : . J. Biochem 1997; 122, 358-364
発明の開示
発明が解決しょうとする課題
[0012] 本発明が解決しょうとする課題は、糖転移酵素について、従来の酵素反応系と比 較して効率的に糖転移反応を行うことができる安価で簡便な方法を開発することにあ る。
課題を解決するための手段
[0013] 本発明者らは、上記問題解決のため鋭意研究に努めた結果、ビブリオ科に属する 微生物由来の糖転移酵素につ 、て、その酵素反応系に適量の NaClを添加すること により、その酵素活性が増加することを見いだした。
[0014] 本発明の効果は、 Naイオンに特有であり、 K等の他の 1価イオン、 Mg2+等の 2価ィ オンでは得ることができない。また、本発明の Naイオンによる活性増加は、ビブリオ科 に属する微生物由来の糖転移酵素に特有の効果であり、本発明の時点では、他の 生物例えば哺乳類由来の糖転移酵素では認められて 、な 、。
[0015] 従って、本発明は、ビブリオ科に属する微生物由来の糖転移酵素について、その 酵素反応系に適量の NaClを添加することにより、酵素活性を増加させる方法に関す る。
[0016] ビブリオ科に属する微生物由来の糖転移酵素は、本発明の方法で NaClを添加す ることにより、その酵素活性が増加すると期待でき、あるいは、 NaClを反応系に追カロ することによりその酵素活性の増加を確認することは、本明細書の開示を見た当業者 にとつて容易である。
[0017] 本発明の方法において、ビブリオ科 (Vibrionaceae)に属する微生物の例としては、 ビブリオ属(Vibrio)、フォトバタテリゥム属(Photobacterium)、ァロモナス属(Allomonas )、カテノッコッカス属(Catenococcus)、ェンテロビブリオ属(Enterovibrio)、あるいは サリニビブリオ属(Salinivibrio)などが含まれる力 これらに限定されない。ビブリオ科 に属する微生物の中で好ましいものはフォトバタテリゥム属に属する微生物、あるい はビブリオ属に属する微生物である。フォトパクテリゥム属に属する微生物の例として は、フォトバクテリウム'ダムセーラ(Photobacterium damselae)、あるいはフォトバタテリ ゥム 'フォスフォレゥム(Photobacterium phosphoreum)、あるいはフォトバクテリウム'ァ ンガスタム(Photobacterium angustum)、あるいはフォトバタテリゥム 'インディカム(Pho tobacterium indicum)、あるいはフォトバクテリウム'イリオピスカリウム(Photobacterium iliopiscarium ゝある!/、はフォトノ クテリゥム 'プロファングム (Photobacterium profundu m)、あるいはフォトバタテリゥム 'レイォグナシィ(Photobacterium leiognathi)、あるい はフォトバクテリウム属菌(Photobacterium sp.)などが挙げられる力 これらに限定さ れるものではない。また、ビブリオ属に属する微生物としては、ビブリオ'フイシリ一 (Vi brio fisheri)、あるいはビブリオ 'ァエロゲネス(Vibrio aerogenes)、あるいはビブリオ' カルビェンシス(Vibrio calviensis)、あるいはビブリオ'ルモイエンシス(Vibrio rumoien sis)、あるいはビブリオ 'サルモ-シーダ(V¾rio salmonicida)、あるいはビブリオ'コレ ラ(Vibrio cholerae)、あるいはビブリオ ·ァルギノリティカス(Vibrio alginolyticus)、ある いはビブリオ'バル-フィカス(Vibrio vulnificus)、あるいはビブリオ属菌(Vibrio sp.) などが挙げられる力 これらに限定されるものではない。
[0018] 本発明におけるビブリオ科微生物は、限定されるものではな 、が、海洋性微生物で あることが好ましい。海洋性微生物とは、例えば、海水、海砂、海産魚介類等から得 られる微生物である。
[0019] ビブリオ科微生物由来の糖転移酵素の好ましいものは、シアル酸転移酵素である。
その一例は、特開平 10- 234364に開示されている β -ガラタトシド- a 2,6-シアル酸転 移酵素である。また、ビブリオ科に属する微生物由来の j8 -ガラクトシド - α 2,3-シアル 酸転移酵素であっても構わな 、。
[0020] ビブリオ科に属する微生物由来の β -ガラタトシド- a 2,3-シアル酸転移酵素は、本 発明者らによって同定された。これら酵素については、 PCT/JP2005/007340 (2005年 4月 15日出願)および PCT/JP2005/010814 (2005年 6月 13日出願)にて国際特許出 願されており、これら出願は本明細書に引用により援用される。また、これら酵素の同 定と調製についての具体的な方法および結果は、後に示す参考例にも記載した。 [0021] 本明細書において、糖転移酵素とは、天然材料としてビブリオ科に属する微生物中 もしくはその培養培地力 抽出した酵素、および遺伝子工学により当該酵素が由来 するビブリオ科に属する微生物以外の宿主細胞で製造された酵素のいずれも含むも のであり、また酵素の精製程度は、ゲル電気泳動による分析で単一バンドを示す程 度まで十分に精製したもの、および粗精製品で活性を有する酵素の両方を含むもの とする。さらに、糖転移酵素は天然の酵素と同じポリペプチドからなっていてもよぐあ るいは天然酵素の活性部位を含むよう加工されたポリペプチドからなるものでもよ 、。
[0022] 本発明の方法において、酵素反応を行う条件は、該糖転移酵素が反応する条件で あれば、特に制限はない。酵素反応溶液には、限定するわけではないが、酢酸緩衝 液、カコジレート緩衝液、リン酸緩衝液、ビストリス緩衝液、などの緩衝液を用いてもよ い。反応溶液の pHおよび Zまたは反応温度は、それぞれの糖転移酵素が反応する 条件であれば!/、ずれでもよぐ好ましくはそれぞれの糖転移酵素の至適 pHおよび Z または至適温度である。糖供与体および糖受容体濃度の条件は、糖転移酵素が反 応する条件であれば特に制限はなぐ当業者であれば、これらの濃度を適宜設定す ることがでさる。
[0023] 本発明の方法において、糖転移酵素の反応系に NaClを添加する時期に特に制限 はないが、例えば、酵素反応前に、酵素反応用緩衝液に、酵素溶液に、糖受容体基 質溶液に、または糖供与体溶液に溶解させておいてもよぐあるいはこれらと独立に 適当濃度の NaCl溶液を調整し、これを反応系に添加してもよい。 NaCl溶液を酵素 反応成分と独立に調整する態様では、反応の直前または反応の途中で NaClを反応 系に添加することも可能である。
[0024] いずれにせよ、本発明の方法において、添加する NaClの量は、反応系の全量を 基準として、 0.1M〜2.0M、好ましくは 0.1M〜1.5M、更に好ましくは 0.2M〜1.0Mであ る。
[0025] 本発明の方法において、使用できる糖受容体の例として、単糖類、二糖類、多糖類 、糖ペプチド、糖タンパク質、糖脂質等が挙げられるが、これらに限定されるものでは ない。
[0026] 本発明の方法において、使用できる糖供与体の例としては、糖ヌクレオチド、例え ば CMP- NeuAc、 CMP- KDN、 CMP- NeuGc等の CMP-シアル酸、 UDP-ガラクトース、 GDP-フコース、 GDP-マンノース、 UDP- N-ァセチルダルコサミン、 UDP- N-ァセチル ガラクトサミン、 UDP-グルコース等が挙げられる力 これらに限定されるものではない
[0027] 本明細書において、糖転移酵素とはグリコシル基を含む糖供与体力 糖受容体に グリコシル基を転移する反応を触媒する酵素である。糖転移酵素の例には、シアル 酸の転移反応を触媒するシアル酸転移酵素、グルコースの転移反応を触媒するグ ルコース転移酵素、ガラクトースの転移反応を触媒するガラクトース転移酵素、 N ァ セチルガラタトサミンの転移反応を触媒するァセチルガラタトサミン転移酵素、 N ァ セチルダルコサミンの転移反応を触媒するァセチルダルコサミン転移酵素、マンノー スの転移反応を触媒するマンノース転移酵素、フコースの転移反応を触媒するフコ ース転移酵素、が挙げられるが、これらに限定されない。
[0028] 本明細書においてシアル酸転移酵素とは、シアル酸を含む糖供与体から糖受容体 にシアル酸を転移する反応を触媒する酵素である。本発明の方法におけるシアル酸 転移酵素の例としては、ガラクトシド - α 2,3-シアル酸転移酵素、ガラクトシド - a 2,4- シアル酸転移酵素、ガラクトシド- a 2,6-シアル酸転移酵素、シアル酸- a 2,8-シアル 酸転移酵素、およびシアル酸- a 2,9-シアル酸転移酵素などが挙げられるが、これら に限定されない。好ましい態様において、本発明の方法におけるシアル酸転移酵素 は、ガラクトシド - a 2,6-シアル酸転移酵素、および Zまたは、ガラクトシド - a 2,3-シァ ル酸転移酵素である。
[0029] 本明細書において、「 β ガラクトシドー a 2, 6 シアル酸転移酵素」とは、シチジ ン 1リン酸 (CMP)—シアル酸力ゝらシアル酸を、複合糖質糖鎖もしくは遊離の糖鎖を 構成しているガラクトース残基等の 6位の炭素に水酸基を有する単糖の 6位、ラタトー スもしくは N ァセチルラクトサミンなどのオリゴ糖を構成しているガラクトース残基等 の 6位の炭素に水酸基を有する単糖の 6位、またはガラクトース、マンノース、 N ァ セチルダルコサミン、 N ァセチルガラタトサミンなどの複合糖質を構成しうる単糖で あって 6位の炭素に水酸基を有する単糖の 6位、に転移させる活性を有するタンパク 質を意味する。なお、いずれの単糖も、 a配位であっても、 j8配位であっても構わな い。本明細書において、「j8—ガラクトシド α 2, 6 シアル酸転移酵素活性」とは、 β—ガラタトシド α 2, 6 シアル酸転移酵素について上述した活性を意味する。
[0030] 本明細書において、「 β ガラクトシドー α 2, 3 シアル酸転移酵素」とは、シチジ ン 1リン酸 (CMP)—シアル酸力ゝらシアル酸を、複合糖質糖鎖もしくは遊離の糖鎖を 構成しているガラクトース残基等の 3位の炭素に水酸基を有する単糖の 3位、ラタトー スもしくは Ν ァセチルラクトサミンなどのオリゴ糖を構成しているラタトース残基等の 3位の炭素に水酸基を有する単糖の 3位、またはガラクトース、マンノース、 Ν ァセ チルダルコサミン、 Ν ァセチルガラタトサミンなどの複合糖質を構成しうる単糖であ つて 3位の炭素に水酸基を有する単糖の 3位、に転移させる活性を有するタンパク質 を意味する。なお、いずれの単糖も、 α配位であっても、 j8配位であっても構わない 。本明細書において、「j8—ガラクトシド— α 2, 3—シアル酸転移酵素活性」とは、 β —ガラタトシド α 2, 3 シアル酸転移酵素について上述した活性を意味する。
[0031] また、ここでいう「シアル酸」とは、シアル酸ファミリーに属するノィラミン酸誘導体を 示す。具体的には、 Ν ァセチルノイラミン酸 (Neu5Ac)、 Ν—グリコリルノィラミン酸( Neu5Gc)、 5—デァミノ一 5—ヒドロキシノイラミン酸 (KDN)、ジシアル酸などを示す 力 これらに限定されない。
[0032] 本発明の方法は、ビブリオ科に属する微生物に由来する糖転移酵素について、そ の酵素反応系に NaClを添加することにより、酵素活性を増加させる方法である。ここ で、酵素活性が増加するとは、当該反応を NaClの存在下で行うことにより、 NaClの 非存在下に比べて当該反応の効率が高まることをいう。好ましい態様において、酵素 活性が増加するとは、当該反応を NaClの存在下で行うことにより、 NaClの非存在下 に比べて、酵素の相対活性が 1倍より大きい、より好ましくは 1. 1倍より大きい、さらに 好ましくは 1. 2倍より大きいことをいう。増カロした酵素活性の上限は特に定めなくても よぐ好ましくは 10倍以下、 5倍以下、 3倍以下、 2倍以下であってもよい。
図面の簡単な説明
[0033] [図 1]フォトバタテリゥム属に属する細菌(Photobacterium damselae)由来の糖転移酵 素( a 2,6-シアル酸転移酵素; native)に対する NaClの酵素活性に及ぼす影響を示 すグラフである。 [図 2]フォトバタテリゥム属に属する細菌(Photobacterium damselae)由来の糖転移酵 素( ex 2,6-シアル酸転移酵素; native)に対する KC1の酵素活性に及ぼす影響を示す グラフである。
[図 3]ラット由来の糖転移酵素( oc 2,6-シアル酸転移酵素)に対する NaClの酵素活性 に及ぼす影響を示すグラフである。
[図 4]フォトバタテリゥム属に属する細菌(Photobacterium damselae)由来の糖転移酵 素(組換え a 2,6-シアル酸転移酵素のデリーシヨン'ミュータント; N2C1)に対する NaC 1の酵素活性に及ぼす影響を示すグラフである。
[図 5]フォトバタテリゥム属に属する細菌(Phobacterium phosphoreum)由来の糖転移 酵素( a 2,3-シアル酸転移酵素; 467 native)に対する NaClの酵素活性に及ぼす影 響を示すグラフである。
[図 6]フォトバタテリゥム属に属する細菌(Phobacterium phosphoreum)由来の糖転移 酵素 (組換え a 2,3-シアル酸転移酵素; 467 N0C0)に対する NaClの酵素活性に及ぼ す影響を示すグラフである。
[図 7]フォトバタテリゥム属に属する細菌(Phobacterium phosphoreum)由来の糖転移 酵素 (組換え a 2,3-シアル酸転移酵素; 467 N2C0)に対する NaClの酵素活性に及ぼ す影響を示すグラフである。
[図 8]フォトパクテリゥム属に属する細菌(Phobacterium sp.)由来の糖転移酵素 (組換 え a 2,3-シアル酸転移酵素; 224 N1C0)に対する NaClの酵素活性に及ぼす影響を 示すグラフである。
[図 9]ビブリオ属に属する細菌 (Vibrio sp.)由来の糖転移酵素 (組換え a 2,3-シアル 酸転移酵素; FAJ N1C0)に対する NaClの酵素活性に及ぼす影響を示すグラフである 実施例
以下、実施例により本発明を具体的に説明する力 本発明の範囲はこれらの実施 例に限定されるものではない。
参者例 1 ビブリオ科微生物由来の α 2, 3—シアル酸転移酵素の同定とクローニン グ 材料および方法
参考例 1 1 : α 2. 3 シアル酸転移酵素を発現する微生物のスクリーニングと菌 株の同定
海水、海砂、海泥あるいは海産魚介類を接種源とした。この接種源をマリンブロスァ ガー 2216培地(ベタトン'ディッキンソン製)からなる平板培地上に塗布し、 15°C、 25 °Cもしくは 30°Cで生育する微生物を取得した。常法に従い、得られた微生物を純粋 培養した後、マリンブロス 2216培地 (ベタトン'ディッキンソン製)からなる液体培地を 用いてそれぞれの微生物を培養した。微生物が十分成育した後に、培養液から菌体 を遠心分離によって集めた。集めた菌体に、 0. 2%トリトン X— 100 (関東ィ匕学製)を 含む 20mMカコジレート緩衝液 (pH6. 0)を添カ卩し、菌体を懸濁した。この菌体懸濁 液を氷冷下、超音波処理し細胞を破砕した。この細胞破砕液を酵素溶液としてシァ ル酸転移活性を測定し、さらに、ピリジルァミノ化糖鎖を用いて、シアル酸結合様式 の決定を行った。その結果、 α 2,3-シアル酸転移活性を有する菌¾[丁— ISH— 467 株、 JT— ISH— 224株、および JT— FAJ— 16株を得た。なお、 JT— ISH— 467株は 、スルメイ力の表皮から、 JT—ISH— 224株は力マスの内臓から、および JT— FAJ— 16株はアジの内臓から、それぞれ得られた。
[0035] シアル酸転移活性は、 J. Biochem., 120, 104-110 (1996) (引用によりその全体を本 明細書に援用する)に記載されている方法に準じ測定した。具体的には、糖供与体 基質 CMP— NeuAc (70nmol、 14Cで NeuAcをラベルした CMP— NeuAc 25000 cpmを含む、 356cpm/nmol)、糖受容体基質としてラタトース(1. 25 /z mol)、およ び上記に記した方法で調製した酵素を含む反応溶液 (30 μ 1)を用いて酵素反応を 行った。酵素反応は 25°Cで 10分間から 30分間行った。反応終了後、反応溶液に 1 . 97mlの5mMリン酸緩衝液(pH6. 8)を加え、この溶液を Dowexl X 8 (PO 3-フォ
4 ーム、 0. 2 X 2cm、 BIO— RAD製)カラムに供した。このカラムの溶出液(0〜2ml) に含まれる反応生成物、すなわち、シァリルラタトースに含まれる放射活性を測定す ることで、酵素活性を算出した。
[0036] また、シアル酸結合様式の決定はピリジルァミノ化糖鎖を用いて行った。得られた 酵素を用い、ピリジルァミノ化糖鎖を糖受容体基質として酵素反応を行った。ピリジル アミノ化糖鎖としては、ピリジルァミノ化ラタトース (Gal 1, 4Glc— PA、タカラバィォ 製 PA— Sugar Chain 026)を用い分析した。なお、標品として、ピリジルアミノィ匕 a 2, 3シァリルラタトース(NeuAc a 2, 3Gal j8 1, 4Glc— PA、タカラバイオ製 PA— Sugar Chain 029)を用いた。糖受容体基質が 2. O /z M、 CMP—NeuAcが 5. 7 Mおよび酵素が 20mUZml程度となるように、それぞれを 20mM カコジレート緩 衝液 (pH6. 0)あるいはビストリス緩衝液 (pH6. 0) 25 1中に溶解し、 25。C下で3時 間から 18時間反応させた。反応終了後、 100°Cで 2分間反応溶液を処理すること〖こ より酵素を失活させた。その後、 HPLCで反応生成物の分析を行った。
[0037] HPLCシステムとして Shimadzu LCI OA (島津製作所製)を用い、分析カラムに は Takara PALPAK Type R (タカラバイオ製)を用いた。 0. 15% N ブタノー ルを含む lOOmM 酢酸—トリェチルァミン (pH5. 0)で平衡化したカラムに溶出液 A (lOOmM 酢酸—トリェチルァミン、 pH5. 0)で希釈した反応液を注入した。ピリジ ルァミノ化糖鎖の溶出には溶出液 A (lOOmM 酢酸—トリェチルァミン、 pH5. 0)お よび溶出液 B (0. 5%、 n—ブタノールを含む lOOmM 酢酸—トリェチルァミン、 pH 5. 0)を用い、 30〜100%溶出液 Bの直線濃度勾配法 (0〜35分)および 100%溶 出液 B (35〜50分)により、順次ピリジルァミノ化糖鎖を溶出した。なお、分析は以下 の条件で行った(流速: lmlZmin、カラム温度: 40°C、検出:蛍光(Ex : 320nm、 E m : 400nm) )。
(i) TT ISH— 467株
得られ^ JT ISH— 467株の性質は以下の通りであった:
(菌学的件皙)
(1)細胞の形態は桿菌で、大きさは 0. 7〜0. 8 /z m X l . 5〜2. 0 m。
[0038] (2)運動性
(3)グラム染色性
(4)胞子の有無
(生理学生化学的性質)
(1)生育温度 4°Cでは +、 25°Cでは +、 30°Cでは
(2)集落の色調 特徴的集落色素を産生せず (3) OZFテスト +Z—
(4)カタラーゼテスト
(5)ォキシダーゼテスト +
(6)グルコースからの酸産生
(7)グノレコースからのガス産生
(8)発光性 +
(9)硝酸塩還元 +
(10)インドール産生 +
(11)ブドウ糖酸性ィ匕
( 12)アルギニンジヒドロラーゼ +
(13)ゥレアーゼ
(14)エスクリン加水分解
(15)ゼラチン加水分解性
(16) β -ガラタトシダーゼ +
(17)ブドウ糖資化性
( 18) L ァラビノース資化性
(19) D マンノース資化性
(20) D マンニトール資化性
(21) Ν ァセチルー D—ダルコサミン資化性
(22)マルトース資化性
(23)ダルコン酸カリウム資化性
(24) η—力プリン酸資化性
(25)アジピン酸資化性
(26) dl リンゴ酸資化性
(27)クェン酸ナトリウム資化性
(28)酢酸フエ二ル資化性
(29)チトクロームォキシダーゼ +
(30)菌体内 DNA の GC含量(モル%) 39. 7% (16S rRNA遣伝子の塩某配列解析および DNA— DNAノ、イブリダィゼーシヨン による種の同定)
JT— ISH— 467株から、常法により抽出したゲノム DNAを铸型として、 PCRにより 1
6S rRNA遺伝子の全塩基配列を増幅し、塩基配列を決定した。塩基配列を配列 番号 3に示した。この塩基配列はフォトバタテリゥム 'フォスフォレゥム(Photobacterium phosphoreum)基準株である ATCC11040株の 16S rRNA遺伝子の塩基配列に 対し、相同率 100%の高い相同性を示した。この結果から、 JT—ISH— 467株はフォ トバクテリゥム属に属することが明ら力となった。しかしながら、 16S rRNA遺伝子は 細菌の全ゲノムの一部でしかないので、 16S rRNA遺伝子の塩基配列による同定 解析は種レベルの極めて近縁な生物間の距離に対しては誤差が非常に大きいとさ れている。そこで、属内における菌株の類縁関係の定量的な評価に一般的に用いら れて 、る DNA— DNAノヽイブリダィゼーシヨン試験法を用い、種の決定を行った。 JT
— ISH— 467株およびフォトバクテリウム'フォスフォレゥム基準株である NCIMB128
2株 (ATCC11040株と同一株)の全 DNAを抽出し、供試した。その結果、 84. 7% の高い相同値(DNA- DNA relatedness)が得られた。一般に、同一種間の DNA—D
NA相同値は 60%以上を示すことから、 JT—ISH—467株はフォトバタテリゥム ·フォ スフォレゥム(Photobacterium phosphoreum)と同定された。なお、 DNA— DNAハイ ブリダィゼーシヨン試験は「微生物の分類.同定実験法」(鈴木健一郎'平石 明.横 田 明 編、シュプリンガー'フエアラーク東京株式会社、 2001年 9月、参照によりそ の全体を本明細書に援用する)に従い、マイクロプレートを用いたフォトピオチン標識 法によって行った。
(ii) TT ISH— 224株
得られ^ JT ISH— 224株の性質は以下の通りであった:
(菌学的件皙)
(1)細胞の形態は桿菌で、大きさは 0. 7〜0. 8 /z m X l. 0〜1. 5 m。
(2)運動性 +
(3)グラム染色性
(4)胞子の有無 (生理学生化学的性質)
(1)生育温度 4°Cでは一、 25°Cでは +、 30°Cでは +、 37°Cでは
(2)集落の色調 特徴的集落色素を産生せず
(3) OZFテスト +Z—
(4)カタラーゼテスト +
(5)ォキシダーゼテスト +
(6)グルコースからの酸産生 +
(7)グノレコースからのガス産生 +
(8)発光性
(9)硝酸塩還元 +
(10)インドール産生 +
(11)ブドウ糖酸性ィ匕
( 12)アルギニンジヒドロラーゼ +
(13)ゥレアーゼ
(14)エスクリン加水分解
(15)ゼラチン加水分解性
(16) β -ガラタトシダーゼ +
(17)ブドウ糖資化性
( 18) L ァラビノース資化性
(19) D マンノース資化性
(20) D マンニトール資化性
(21) Ν ァセチルー D—ダルコサミン資化性
(22)マルトース資化性
(23)ダルコン酸カリウム資化性
(24) η—力プリン酸資化性
(25)アジピン酸資化性
(26) dl リンゴ酸資化性
(27)クェン酸ナトリウム資化性 (28)酢酸フエ二ル資化性
(29)チトクロームォキシダーゼ +
(30) OZ129感受性、 ΙΟ /z g - , 15 μ Ε +
(31)菌体内 DNA の GC含量(モル%) 39. 4%
(16S rRNA遣伝子の塩某配列解析)
JT— ISH— 224株から、常法により抽出したゲノム DNAを铸型として、 PCRにより 1 6S rRNA遺伝子の全塩基配列を増幅し、塩基配列を決定した。塩基配列を配列 番号 32に示した。
[0040] JT—ISH— 224株はマリンァガー上での生育性、桿菌、グラム染色性、グルコース 発酵的分解性、 OZ129感受性などの形態観察および生理'生化学的性状試験の 結果力もビブリオ科に属することが示された。さらに、 JT— ISH— 224株の 16S rR NA遺伝子の DNA塩基配列はフォトバタテリゥム ·フォスフォレゥム(Photobacterium phosphoreum)基準株 ATCC11040の 16S rRNA遺伝子の配列に最も相同性が 高ぐその相同率は 99. 2%であること、次にフォトバタテリゥム 'イリオピスカリウム(Ph otobacterium iliopiscarium)基準株 ATCC51760の 16S rRNA遺伝子の配列に相 同性が高ぐその相同率は 99. 1%であることが明ら力となった。これらの結果から、 J T— ISH— 224株はフォトバタテリゥム属(Photobacterium sp.)に属する微生物である ことが明ら力となった。
(iii) TT_FAT_ 16株
得られ^ JT—FAJ— 16株の性質は以下の通りであった:
(菌学的件皙)
(1)細胞の形態は桿菌で、大きさは 0. 7〜0. 8 /z m X l. 2〜1. 5 m。
[0041] (2)運動性
(3)グラム染色性
(4)胞子の有無
(生理学生化学的性質)
(1)生育温度 4°Cでは +w、 25°Cでは +、 30°Cでは +、 37°Cでは +
(2)集落の色調 淡黄色〜クリーム色 (3) OZFテスト +Z +
(4)カタラーゼテスト +
(5)ォキシダーゼテスト +
(6)グルコースからの酸産生 +
(7)グノレコースからのガス産生
(8)硝酸塩還元 +
(9)インドール産生
(10)ブドウ糖酸性ィ匕 +
(11)アルギニンジヒドロラーゼ
(12)ゥレアーゼ
(13)エスクリン加水分解 +
(14)ゼラチン加水分解性
(15) β -ガラタトシダーゼ +
(16)ブドウ糖資化性
( 17) L ァラビノース資化性
(18) D マンノース資化性
(19) D マンニトール資化性
(20) Ν ァセチルー D ダルコサミン資化性
(21)マルトース資化性
(22)ダルコン酸カリウム資化性
(23) η—力プリン酸資化性
(24)アジピン酸資化性
(25) dl リンゴ酸資化性
(26)クェン酸ナトリウム資化性
(27)酢酸フエ二ル資化性
(28)チトクロームォキシダーゼ +
(29) OZl29感受性、
(30)マンィトール発酵性、 + (31)イノシトール発酵性、 +
(32)ァラビノース発酵性、 +
(33)ラムノース発酵性、
(34)サッカロース発酵性、
(35)生育性(NaCl)、 3%NaCl+、 4%NaCl +、 6%NaCl +、
(36)デンプン加水分解、
(37) Tween80分解、 -
(38) H S産生、
2
(39)ァセトイン産生 (VPテスト)、
H 6S rRNA遣伝早の 西 R列解析)
JT— FAJ— 16株から、常法により抽出したゲノム DNAを铸型として、 PCRにより 16 S rRNA遺伝子の全塩基配列を増幅し、塩基配列を決定した。塩基配列を配列番 号 33に示した。
[0042] JT—FAJ— 16株はマリンァガー上での生育性、桿菌、グラム染色性、グルコース発 酵的分解性、 OZ129感受性などの形態観察および生理'生化学的性状試験の結 果カもビブリオ科に属することが示された。さらに、 JT— FAJ— 16株の 16S rRNA 遺伝子の DNA塩基配列はビブリオ ·ルモイエンシス (Vibrio rumoiensis)基準株の 16 S rRNA遺伝子の配列に最も相同性が高ぐその相同率は 99. 5%であることが明 らカとなった。これらの結果から、 JT—FAJ— 16株はビブリオ属(Vibrio sp.)に属する 微生物であることが明らかとなつた。
参考例 1— 2: フォトパクテリゥムフォスフォレゥム(Photobacterium phosphoreum) T T— ISH— 467からの a 2. 3 シアル酸転移酵素の抽出および精製
マリンァガー 2216平板培地上で継代培養したフォトバクテリゥムフォスフォレゥム J T— ISH— 467株のコロニーから菌体をループで採取し、マリンブロス 2216液体培 地 10mlに接種し、 25°C、毎分 180回転で 8時間振とう培養した。
[0043] 本培養は、以下の手順で実施した。 20gZLの Bacto Peptoneおよび 4 gZLの Bacto Yeast Extractをカ卩えたマリンブロス 2216培地を 1000ml容のコブ付フラ スコに 300ml張り込み、オートクレーブ(121°C、 15分間)で滅菌した。これを 36本( 合計 10. 8L)用意した。各々のフラスコに前述の培養液 10mlを接種し、 25°C、毎分 180回転で 24時間振とう培養した。培養液を遠心分離し、菌体を回収した。湿重量 で約 60gを得た。
[0044] この菌体を、 990mlの 0. 2%トリトン X— 100および 3M塩化ナトリウムを含む 20m Mカコジレート緩衝液 (pH6. 0)に懸濁し、氷冷下で超音波破砕した。菌体破砕液を 4°C、 100, 000 8で1時間、遠心分離を行い、上清を得た。得られた上清を、透析 膜チューブに入れ、 0. 2%トリトン X— 100を含む 20mMカコジレート緩衝液(pH6. 0)中で 4°C、塩ィ匕ナトリウムが 20mM程度になるまで透析した。透析後、溶液中に沈 澱が生じたため、 4°Cで、 100, 000 X gで 1時間遠心分離を行い、沈殿を取り除いた
[0045] この粗酵素液を、 0. 2%トリトン X— 100なる界面活性剤を含む 20mMカコジレート 緩衝液(ρΗ6. 0)で平衡化した HiPrep 16/10 DEAE FF (アマシャムバイオサ ィエンス製)という陰イオン交換カラムに吸着させ、 0. 2%トリトン X— 100を含む 20m Mカコジレート緩衝液 (pH6. 0)から 1M塩ィ匕ナトリウムを含む同緩衝液へ直線濃度 勾配法で溶出させた。その結果、塩ィ匕ナトリウム濃度が 0. 25M付近で溶出された酵 素活性を有する画分を回収した。
[0046] 回収した画分を 20mMリン酸緩衝液 (pH6. 0)で希釈し、予め 0. 2%トリトン X— 1 00を含む 20mMリン酸緩衝液 (pH6. 0)で平衡化したハイドロキシアパタイト(Bio— Rad製)に吸着させ、 0. 2%トリトン X— 100を含む 20mMリン酸緩衝液(pH6. 0)か ら 0. 2%トリトン X— 100を含む 500mMリン酸緩衝液 (pH6. 0)へ直線濃度勾配法 で溶出させた。その結果、リン酸緩衝液濃度が 125mM付近に溶出された酵素活性 を有する画分を回収した。
[0047] この画分を MonoQ 5/50 GL (アマシャムバイオサイエンス製)陰イオン交換力 ラムに吸着させ、 0. 2%トリトン X— 100を含む 20mM カコジレート緩衝液(pH6. 0 )から 1M 塩ィ匕ナトリウムを含む同緩衝液へ直線濃度勾配法で溶出させた。その結 果、塩ィ匕ナトリウム濃度が 300mM付近で溶出される酵素活性を有する画分を回収し た。
[0048] この画分を、 0. 2%トリトン X—100を含む 20mM カコジレート緩衝液(pH7. 0)で 10倍希釈し、 MonoQ 5/50 GL (フアルマシア製)陰イオン交換カラムに吸着さ せた。 0. 2%トリトン X— 100を含む 20mMカコジレート緩衝液(pH7. 0)から 1M 塩ィ匕ナトリウムを含む同緩衝液へ、直線濃度勾配法で溶出させた。塩ィ匕ナトリウム濃 度が 300mM付近で溶出される酵素活性を有する画分を回収した。
[0049] この画分を 0. 2%トリトン X— 100および 0. 2M塩化ナトリウムを含む 20mMカコジ レー卜緩衝液(ρΗ7. 0)で 2倍希釈し、 HiLoad 16/60 Superdex 200 prep grade (アマシャムバイオサイエンス製)ゲルろ過カラムで分画した。 0. 2%トリトン X— 100および 0. 2M塩化ナトリウムを含む 20mM カコジレート緩衝液(pH7. 0)で溶 出させた。
[0050] 活性のあった画分を SDS—ポリアクリルアミドゲル電気泳動(アクリルアミドゲルの 濃度は 12. 5%)した結果、 目的酵素は単一のバンドを示し、約 39, 000の分子量を 示した (本明細書において 467 nativeと表記する)。この画分の比活性は、菌体破砕 時の比活性に比べて約 350倍に上昇した (表 3)。
[0051] 粗酵素液力ゝらの JT— ISH— 467株由来の《2, 3—シアル酸転移酵素の精製につ いて、上述したそれぞれの精製工程を経た試料の酵素活性を表 1に示す。酵素活性 は、実施例 7— 1に記載したのと同様に J. Biochem. 120, 104-110(1996)に記載され ている方法で測定した。また、タンパク質の定量は Coomassie Protein Assay Reagent (PIERCE製)を用いて、添付されたマニュアルにしたがってタンパク質の定量を行つ た。酵素 1単位(1U)は、 1分間に 1マイクロモルのシアル酸を転移する酵素量とした
[0052] [表 1]
表 1 . 粗酵素液からの J ISH-467株由来の α2,3—シアル酸転移酵素の精製表
精製工程 体積 総タンパク質 総活性 比活性 収率 精製度
(ml) (mg) (U) (U/mg) (%) (倍) 粗酵素液 950 2,930 21.3 0.0073 100 1
DEAE 90 468 4.0 0.0085 19 1.2 八ィドロキシァパタイト 85 129 2.7 0.0212 13 2.9
Mono Q (pH6) 1 1.64 0.073 0.0448 0.34 6.2
Mono Q (pH7) 0.5 0.138 0.023 0.164 0.11 22.5
Superdex 200 1.5 0.0047 0.012 2.50 0.044 343.6
[0053] 参者例 1 3: ピリジルアミノ化糖鎖を用 ヽたシアル酸結合様式の決定 参考性 1 2で得られた酵素を用い、参考例 1 1のように、ピリジルァミノ化糖鎖を 糖受容体基質として酵素反応を行った。その結果、本酵素を用いることにより、ピリジ ルァミノ化ラタトースカもピリジルアミノィ匕 a 2, 3 シァリルラタトースが合成されること が明らかとなった。
参考例 1—4 : フォトバクテリウム*フォスフォレゥム TT—ISH— 467株が生産する a 2. 3 シアル酸転移酵素をコードする遺伝子の塩某 §R列解析および当該遺伝子の 形皙転椽
( 1)ゲノム DNAの精製とゲノムライブラリーの作成
JT— ISH— 467株の菌体ペレット約 0. 5g力ら、 Qiagen Genomic- tip 100/G (Qiage n社製)を用いて、キット添付の説明書きに従って、約 100 gのゲノム DNAを調製し た。 1 2 gの DNAに対して、 0. 1〜0. 2ユニットの四塩基認識の制限酵素 Sau3 AIを反応させ、部分分解を行った。反応バッファ一は酵素に添付のものを用い、反 応条件は 37°C、 30分とした。反応終了後、反応液に最終濃度 25mMの EDTA p H8. 0を加え、フエノール'クロ口ホルム処理を行った。ゲノム DNAをエタノール沈殿 で回収し、 TE 400 μ 1に溶解した。遠心チューブ(日立製作所製 40ΡΑ)に、グラジ ェント作製装置を用いて、 40%シユークロースバッファー(20mM Tris pH8. 0, 5 mM EDTA pH8. 0, 1M NaCl)と 10%シユークロースバッファーから、 40— 10 %のグラジェントを作製し、そこへ上記の部分分解 DNA溶液を重層した。超遠心機 (日立製作所製 SCP70H、ローター: SRP28SA)を用いて、 26, 000rpm、 20。C、 15時間遠心した。遠心後チューブの底部に 25Gの針で穴を空け、底部の液から lm 1ずつ回収した。回収したゲノム DNAを含むサンプルの一部を、サブマリン電気泳動 糟を用い、 0. 5 -0. 6%ァガロースゲル ZTAEバッファ一中で、 26V、 20時間電気 泳動を行い、 9— 16kbのサイズの DNAを含む画分を把握した。マーカーとして λ Ζ Hindlllを用いた。 9— 16kbのサイズの DNA断片を含む画分に TEを 2. 5ml加えシ ユークロース濃度を下げた後,エタノール沈殿、リンスを行い、少量の TEに溶解した
[0054] JT—ISH— 467株のゲノムライブラリー作成のためのベクターとして、 DASH II (Stratagene製)を用いた。 λ DASH IlZBamHIベクターとゲノム DNA断片のライ ゲーシヨン反応は Stratagene製のライゲーシヨンキットを用いて、 12°Cでー晚行った。 反応後、反応液を GigaPack III Gold Packaging extractと反応させ、ゲノム DNAが組 み込まれた λベクターをファージ粒子に取り込ませた。ファージ液は 500 μ 1の SMバ ッファーと 20 ΐのクロ口ホルム中で 4°C保管した。大腸菌 XLl— Blue MRA (P2) ( Stratagene製)を LBMM (LB + 0. 2%マルトース + 10mM MgSO )中で A = 0.
4 600
5になるまで培養し、この培養液 200 1〖こ、適量のファージ溶液をカ卩え、 37°Cで 15 分間培養した。ここへ 48°Cで保温した NZYトップァガロースを 4mlカ卩え、混合し、 NZ Yァガープレート(直径 9cmのプラスチックシャーレ)にプレーティングした。プレート を 37°Cで一晩培養し、プラーク数を数え、 titerを計算したところ、ライブラリーサイズ は約 30万 pfu (plaque forming unit)と算出された。
(2)プライマー設 t ^プローブ作成
Precise 494 cLし Protein sequencing System (Applied Biosystems製)を用 ヽ飞、 JT — ISH— 467株由来の |8—ガラクトシド一 《 2, 3—シアル酸転移酵素のァミノ末端( Ν末端)アミノ酸配列、および内部アミノ酸配列を決定した。
[0055] Ν末端アミノ酸配列の決定は、次のようにして行った。当該シアル酸転移酵素を 5Ζ 20%グラジェントゲル(ΑΤΤΟ製)にて SDS—ポリアクリルアミドゲル電気泳動を行つ た。泳動後、当該酵素を PVDF膜に吸着させ、アミノ酸配列分析装置により、アミノ末 端側 10個のアミノ酸の配列を決定した。その結果、当該酵素の Ν末端アミノ酸配列 は XNSDSKHNNS (配列番号 4)であった。
[0056] また、内部アミノ酸配列の決定は、次のようにして行った。当該シアル酸転移酵素を 5Ζ20%グラジェントゲル (ΑΤΤΟ製)にて SDS—ポリアクリルアミドゲル電気泳動を 行った。ゲルを染色した後、 目的のバンドを切り出し、リジルエンドべプチダーゼを含 むトリスバッファー(ρΗ8. 5)を加え、 35°C、 20時間の処理を行った。その後、溶液の 全量を逆相 HPLC (カラム: Symmetry C18 3. 5 m)に供して、断片ペプチドを 分離した。アミノ酸配列分析装置により、当該酵素の内部アミノ酸配列は、 SLDSMI LTNEIK (配列番号 5)、 FYNFTGFNPE (配列番号 6)および GHPSATYNQQII DAHNMIEIY (配列番号 7)を有することが明らかとなつた。 [0057] 上記のように決定されたフォトバタテリゥム ·フォスフォレゥム JT— ISH— 467由来 α 2, 3—シアル酸転移酵素の部分アミノ酸配列、即ち Ν末アミノ酸配列: XNSDSKH NNS (配列番号 4)と、三箇所の内部アミノ酸配列のうち、二箇所の内部アミノ酸配列 : FYNFTGFNPE (配列番号 6)および GHPSATYNQQIIDAHNMIEIY (配列番 号 7)を基に以下の degenerateプライマーを設計、合成した。即ち、 N末端のァミノ 酸配列: XNSDSKHNNS (配列番号 4)から、下記の表 2に示す 3本のプライマーを 合成した。
[0058] [表 2] 表 2.
名称 配列 5' - 3' mix度 長さ
467N- -RV AAY WSI GAY WSI AAR CAY AAY AA (配列番号 8) 256 Z3mer
467N- -RV2 GAY WSI AAR CAY AAY AAY WS (配列番号 9) 512 20mer
467N- -RV3 AAY WSN GAY WSI AAR CAY AAY AA (配列番号 1 0) 1024 23mer 表中、 Yはチミンまたはシトシン; Wはチミンまたはアデニン; Sはシトシンまたはグァニン; Rはアデニンまたはグァニン; Nはアデニン、 グァニン, シトシンまたはチミン; Iはイノシン;をそれぞれ表す。
[0059] また、内部アミノ酸配列: GHPSATYNQQIIDAHNMIEIY (配列番号 7)から下記 の表 3に示す 4本のプライマーを合成した。
[0060] [表 3] 表 3.
名称 配列 5' 3' mix度 長さ
4671 nlRV ATH ATH GAY GCN CAY AAY ATG (配列番号 1 1 ) 288 21mer
467i n1F CAT RTT RTG NGC RTC DAT DAT (配列番号 1 2) 288 21mer
467i n1RV2 TAY AAY CAR CAR ATH ATH GAY GC (配列番号 1 3 ) 288 23mer
4B7i n1FW2 GCR TCD ATD ATY TGY TG TTR TA (配列番号 1 4 ) 288 23mer
Hはチミン、 シトシンまたはアデニン; Yはチミンまたはシ卜シン; Rはアデニンまたはグァニン; Dはアデニン、 グァニンまたはチミン; Νはアデニン、 グァニン、 シトシンまたはチミン;をそれぞれ表す。 さらに、内部アミノ酸配列: FYNFTGFNPE (配列番号 6)力 下記の表 4に す 2本 のプライマーを合成した。
[0062] [表 4] 表 4 .
名称 配列 5' - 3' m i (度 長さ
467 i n2RV TAY AAY TTY ACN GGN TTY AAY CC (配列番号 1 5 ) 512 23mer
467 i n2FW GGR TTfi ΑΑΝ CCN GTR AAR TTR TA (配列番号 1 6 ) 512 23me r 表中、 Yはチミンまたはシトシン; Rはアデニンまたはグァニン
Nはアデニン、 グァニン、 シトシンまたはチミン;をそれぞれ表す。 これらのプライマーを用いて、上記(1)で抽出'精製し^ JT— ISH— 467株のゲノム DNAを铸型に PCRを行!ヽ、ライブラリーをスクリーニングするためのプローブとなる J T—ISH—467株由来 α 2, 3—シアル酸転移酵素遺伝子の部分長 DNAを増幅し た。プライマー組み合わせは、 Ν末端配列由来の 3本のプライマーのそれぞれと、 46 7inlFW (配列番号 12)、 467inlFW2 (配列番号 14)もしくは 467in2FW (配列番 号 16)の 9つの組み合わせ、 467inlRV (配列番号 11)もしくは 467inlRV2 (配列 番号 13)と 467in2FW (配列番号 16)の 2つの組み合わせ、さらに 467in2RV (配列 番号 15)と 467inlFW (配列番号 12)もしくは 467inlFW2 (配列番号 14)の 2つの 組み合わせの、総計 13組み合わせである。 PCR反応は以下のように行った。 50 1 の反応液中に、ゲノム DNA 250ng、 10( Ex taqバッファー 5 1、 2. 5mM 各 dNTPs 4 1,プライマーをそれぞれの配列について 5pmole, Ex taq (タカラバイ ォ製) 0. 5 1、をそれぞれ含み、プログラムテンプコントロールシステム PC— 700 (A STEK社)を用いて、 96。C 3分を 1回、 96。C 1分、 50。C 1分、 72。C 2分を 40回 、 72°C 6分を 1回行った。その結果、 9つのプライマー組み合わせ(467N—RV (配 列番号 8)と 467inlFW (配列番号 12)、 467N— RV (配列番号 8)と 467in2FW (配 列番号 16)、 467inlRV (配列番号 11)と 467in2FW (配列番号 16)、 467in2RV ( 配列番号 15)と 467inlFW (配列番号 12)の組み合わせ以外の 9つ)において、 PC R産物が増幅された。これらの PCR産物のうち、特異的かつ高い増幅効率の得られ た組み合わせ(467N— RV3 (配列番号 10)と 467inlFW (配列番号 12) )由来の P CR産物をベクター pCR2. 1TOPO (Invitrogen製)にクローユングした。ライゲーショ ン反応はベクターキット添付の説明書きに従った。大腸菌 TBIにエレクト口ポレーショ ン法を用いて DN Aを導入し、常法(Sambrook et al. 1989, Molecular Cloning, A labo ratory manual, 2nd edition (引用によりその全体を本明細書に援用する))に従いプラ スミド DNAを抽出した。このクローンに関して、 M l 3プライマー(タカラバイオ製)を用 いて、 ABI PRISM蛍光シークェンサ一(Model 310 Genetic Analyzer, Perkin Elme r製)で、 PCR産物の塩基配列をその両端力も決定した。
決定された DNA塩基配列(929bp:配列番号 17)に関して、 National Center for B iotechnology Information (NCBI)の GeneBankデータベースに対して、 BLASTプロ グラムによる相同性検索を行った。その結果、有意な相同性を示す DNA配列は検 出されなかった。これは本発明によって明らかにされた、フォトバタテリゥム'フォスフォ レゥム JT—ISH—467株由来 a 2, 3 シアル酸転移酵素遺伝子の DNA塩基配列 が新規な配列であることを意味する。次に、この塩基配列をアミノ酸に翻訳して、再度 BLASTサーチをかけたところ、フォトバクテリウム'ダムセーラ(Photobacterium dams elae)の α 2, 6 シアル酸転移酵素 (JC5898)と 30%の相同性、ノスッレラ'ムルト シダ亜種ムノレトシダ株 (Pasteurella multocida subsp. multocida) Pm70の仮定上のタ ンパク質 PM0188 (AAK02272)と 26%の相同性、へモフィルス 'デュクレイ(Hae mophilus ducreyi) 35000HP株の仮定上のタンパク質 HD0053 (AAP95068)と 2 1 %の相同性が検出された。さらに、翻訳されたアミノ酸配列は、上記の精製酵素か ら直接決定された内部アミノ酸配列: FYNFTGFNPE (配列番号 6)と SLDSMILT NAIK (配列番号 5)の全体を含み、 N末アミノ酸配列: XNSDSKHNNS (配列番号 4)と、内部アミノ酸配列: GHPSATYNQQIIDAHNMIEIY (配列番号 7)の一部を 含んでいた。以上の結果から、クローユングされた DNAは、フォトバタテリゥム 'フォス フォレゥム JT ISH— 467株由来 ex 2, 3 シアル酸転移酵素遺伝子の一部であり、 かつ本発明のフォトバタテリゥム.フォスフォレゥム JT—ISH— 467株由来 α 2, 3 シ アル酸転移酵素のアミノ酸配列は、既報配列と 30%程度し力 4目同性を示さない新規 なアミノ酸配列であることが明ら力となった。
(3)スクリーニングと遣伝子クローニング
上記(2)でクローン化されたフォトバタテリゥム 'フォスフォレゥム JT—ISH— 467株 由来ひ 2, 3 シアル酸転移酵素遺伝子の一部力もなる DNA断片を、 pCR2. 1 T OPOベクター力 制限酵素 EcoRIで切り出し、これをプローブとして、上記(1)作製 したフォトバクテリウム'フォスフォレゥム JT— ISH— 467株由来ゲノム DNAライブラリ 一をスクリーニングした。直径 9cmの丸形シャーレに λ DASH Il/BamHI ベクタ 一キット(Stratagene製)の説明書きに従って、約 300— 500pfuのファージを宿主菌 XL 1 -blue MRA(P2)とともにプレーティングした。プラークを Hybond—N +ナイ ロンメンブレンフィルター(Amersham製)に接触させ、メンブレン添付の説明書きに 従ってアルカリ処理を行い DNAを変性させ、メンブレン上に固定させた。プローブは rediprime II™ DNA labelling system (アマシャムバイオサイエンス製)を用いて32 Pラベ ルした。ハイブリダィゼーシヨンは 0. 5M リン酸ナトリウムバッファー pH7. 2、 7% SDS、 ImM EDTA中で 65(Cでー晚、洗浄の条件は 40mM リン酸ナトリウムバッ ファー pH7. 2、 ImM EDTA, 5%SDS中で 65。C、 15分を 2回、 40mM リン酸 ナトリウムバッファー pH 7. 2、 1% SDS、 ImM EDTA中で 65(C、 15分を 2回 行った。 1次スクリーニングで約 5, OOOpfuのファージから 24個のポジティブクローン が得られた。うち 18個のクローンに関して、プラークの精製を兼ねた 2次スクリーニン グを行った。その結果、 6種類の選抜'精製プラークを得ることが出来た。
これらのプラークを回収し、それぞれ大腸菌 XL 1— blue MRA(P2)とともに、一 枚数万 pfuとなるように NZYプレートにプレーティングし、ー晚 37°Cで保温した。プラ ークがー面に出ている 6枚のプレートに SMバッファーを 4mlづっ注ぎ、 4°Cでー晚静 置した。パスツールピペットで、ファージプレートライセートを回収し、 QIAGEN Lambd a Mini Kit (キアゲン製)で、 λ DNAを抽出、精製した。これら 6種類の λ DNA、およ び(1)で精製し^ JT— ISH— 467株の全ゲノム DNAを制限酵素 EcoRI、 Hindlllで 消化し、 0. 7%ァガロースゲル電気泳動で分画後、 0. 4M NaOHを用いたアル力 リブロッテイングにより、ゲルを Hybond— N +ナイロンメンブレンフィルター(アマシャ ムバイオサイエンス製)に転写した。このフィルターに関して、上記の 929bpのプロ一 ブ(配列番号 17)を用いて、上述のようにサザンノヽイブリダィゼーシヨンを行った。そ の結果、 EcoRI消化では、 9kbまたはそれ以上のバンドが検出された。一方、 Hindll I消化の場合、全ての DNA、ゲノム DNAともに 4. 6kbのバンドが検出された。そこ で、 λ DNAを再度 Hindlllで消化し、ァガロースゲル電気泳動を行い、 4. 6kb Hi ndlll断片を回収し、プラスミドベクター pBluescript SK (—)の Hindlll部位に、常 法に従 、クローニングした。 [0066] 次に、フォトバタテリゥム 'フォスフォレゥム JT—ISH— 467株由来 α 2, 3—シアル 酸転移酵素遺伝子の全塩基配列を決定するため、同遺伝子の部分 DNA配列(上 述、 929bp :配列番号 17)を基に以下の表 5に示すプライマーを合成した。
[0067] [表 5] 表 5 .
名称 配列 5' - 3' 長さ
467- -23STi i nRVI TGTTGATAGAGCAACATTACC (配列番号 1 8 ) 21mer
467- •23STi nRV2 TGGTAATACCTTATGGGCAG (配列番号 1 9 ) 20tner
467- ■23ST i ! nRV3 GAACAGCAACGGCAGAGC (配列番号 2 0 ) 18me r
467- 23ST i nRV4 CTAATTCAATTCAAGGATTGG (配列番号 2 1 ) 21 me r
467- 23ST i nFWl TGGTAATGTTGCTCTATCAAC (配列番号 2 2 ) 21 mer
467- 23ST i nFWZ ACTGCCCATAAGGTATTACC (SS列番号 2 3 ) 20mer
467- Z3ST i nFW3 GCTCTGCCGTTGCTGTTC (配列番号 2 4 ) 18mer
[0068] これらのプライマーを用いて、 ABI PRISM蛍光シークェンサ一(Model 310 Genet ic Analyzer, Perkin Elmer製)で、 4. 6kb Hindlll断片の内部塩基配列を解析し、フ オトバタテリゥム'フォスフォレゥム JT—ISH— 467株由来 ex 2, 3—シアル酸転移酵素 遺伝子の内部、およびその近傍の塩基配列を解析した。その結果、配列表の配列番 号 1の配列を得た。この配列は、フォトバタテリゥム 'フォスフォレゥム JT—ISH— 467 株由来 α 2, 3—シアル酸転移酵素遺伝子のオープンリーディングフレーム(ORF) の全塩基配列である。最初の ATGの上流には同じ読み枠で、翻訳終止コドンが現 れるのでこれ力 本遺伝子の翻訳開始コドンであると考えられる。
[0069] フォトバタテリゥム 'フォスフォレゥム JT—ISH— 467株由来 α 2, 3—シアル酸転移 酵素遺伝子の ORFは、 1230塩基力らなり、 409個アミノ酸をコードしていた。このァ ミノ酸配列を配列表の配列番号 2に示す。このアミノ酸配列は、精製酵素から決定さ れた 4箇所のアミノ酸配列全てを完全に含む。 Ν末のアミノ酸配列の一文字目が解読 されて 、な力つた力 遺伝子から演繹されるこの部分のアミノ酸は Cys (システィン)で あった。また成熟タンパクの N末端は、配列表の配列番号 2の配列のうちの第 22番 目の Cysであることから、初めの 21アミノ酸力もなる配列は、フォトバタテリゥム 'フォス フォレゥムにおいてはプロセッシングを受け、除去されると考えられた。遺伝情報処理 ソフトウェア GENETYX Ver. 7 (ゼネテイツタス製)を用いて、本発明のフォトバクテ リウム 'フォスフォレゥム JT— ISH— 467株由来 α 2, 3 シアル酸転移酵素タンパク 質全長、およびその遺伝子全長と、それらのホモローグの全長同士の相同性を解析 したところ、アミノ酸配列では、フォトパクテリゥム 'ダムセーラの α 2, 6 シアル酸転 移酵素 (JC5898)と 32%の相同性、パスッレラ 'ムルトシダ亜種ムルトシダ株 Pm70 の仮定上のタンパク質 PM0188 (AAK02272)と 28%の相同性を有し、そして、遺 伝子 DNA配列ではそれぞれと、 53%、 51%の相同性を有していた。
(4)発現ベクターの構築
クローンィ匕した遺伝子が、シアル酸転移活性を有するか否力 ^調べるため、同遺伝 子の全長、および N末端側のシグナルペプチド部分を除去したタイプの遺伝子を発 現ベクターに組み込み、大腸菌内でタンパク質を生産させ、この発現タンパク質の活 性を測定した。
[0070] フォトバタテリゥム 'フォスフォレゥム JT—ISH— 467株由来 α 2, 3 シアル酸転移 酵素のアミノ酸配列について、遺伝情報処理ソフトウェア GENETYX Ver. 7で解 析を行ったところ、 N末端の 24アミノ酸力 シグナルペプチドであると予測された。そ こで、遺伝子全長 (本明細書において 467— NOCO遺伝子と表記する)をクローンィ匕 するためのプライマー 467— 23ST— NO— Pci (酉己列番号 27)および 467— 23ST CO— Bm (配列番号 26)、さらにシグナルペプチド部分のアミノ酸が除かれたタイ プのタンパク質をコードする遺伝子 (本明細書において 467— N2C0遺伝子と表記 する)をクローン化するためのプライマー 467— 23ST— N2— Nco (配列番号 25) および 467— 23ST— CO— Bm (配列番号 26)を設計、合成した(表 6)。
[0071] [表 6] 表 6 .
名称 配列 5' -3 長さ
467-23ST-N2-NCO GGGCTGTACCATGGACTCTAAGCACAATAACTCAG (配列番号 2 5 ) 35mer
467 23ST- CO- Bm CTTAGAATGGATCC|TTACTGCAAATCACTTATCAAC (配列番号 2 6 ) 36mer
467-23ST-N0-Pc i AAGGGAATACftTQTTCGTTTTTTGTAAAAAAATA (配列番号 2 7 ) 34mer
[0072] クローユング用にプライマーに予め組み込んだ制限酵素 Pcil (467— 23ST— NO
- Pci)、 Ncol (467- 23ST-N2- Nco)、 BamHI (467— 23ST— CO— Bm)部 位を下線で示した。翻訳開始コドン ATG、翻訳終止コドンに対応する相補配列 TAA を四角で囲んだ。さらに、プライマー配列のうち、制限酵素部位より 3'側で、铸型 DN Aとアニーリングする部分の配列を太字で示した。 PCR時の铸型 DNAは、フォトバタ テリゥム 'フォスフォレゥム JT—ISH— 467株由来ひ 2, 3—シアル酸転移酵素遺伝子 全長を含む上記 Hindm 4. 6kb断片が組み込まれたプラスミドを用いた。 PCRの 反応条件は以下のように設定した。 50 iu lの反応液中に、铸型DNA 100ng、 10 X
Ex taq buffer 5 1、 2. 5mM 各 dNTP 4 1、プライマー 50pmole、 Ex t aq (タカラバイオ製) 0. 5 1をそれぞれ含み、プログラムテンプコントロールシステム PC— 700 (ASTEK製)を用いて、 96。C 3分を 1回、 96。C 1分、 50。C 1分、 72。C
2分を 15回、 72°C 6分を 1回行った。その結果、 467— NOCO遺伝子でおよそ 1. 2kb、 467— N2C0遺伝子でおよそ 1. lkbの PCR産物が増幅された。これらの PCR 産物のうち、 467— NOCO遺伝子を制限酵素 PciI (New England Biolab製)と BamHI (タカラバイオ製)で二重消化し、そして、 467— N2C0遺伝子を制限酵素 Ncol (タカ ラバイオ製)と BamHIで二重消化した後、ゲル精製した。大腸菌発現用ベクターは p Trc99A (Pharmacia LKB製)を用いた。このベクターを同じ制限酵素 Pcilと BamHI、 または制限酵素 Ncolと BamHIで二重消化しゲル精製したものを、制限酵素処理を 行った PCR産物と Takara Ligation Kit (タカラバイオ製)を用いてライゲーシヨンし、大 腸菌 TBIに形質転換した。常法に従いプラスミド DNAを抽出、制限酵素分析し、ィ ンサートの組み込みを確認した。さらに、クローンした 467— N0C0遺伝子およびクロ ーンした 467— N2C0遺伝子の全塩基配列を決定し、 PCR反応による塩基配列の 変異がないことを確認した。即ち、クローンした 467— N0C0遺伝子は配列番号 1に 示す塩基配列を含み、そしてクローンした 467— N2C0遺伝子は配列番号 1の第 73 番目の塩基力も第 1230番目の塩基までの配列を含んでいた。
) 現. 活件沏 I
上記 (4)で得られた 467— N0C0遺伝子、 467— N2C0遺伝子に関して、タンパク 質発現誘導実験を行った。 467— N0C0遺伝子および 467— N2C0遺伝子がそれ ぞれ組み込まれた発現ベクター pTrc99Aをもつ大腸菌 TBIの単一コロニーを、抗 生物質アンピシリン (最終濃度 100(gZmL)を含む LB培地(5ml)に接種し、 A = 0. 5程度になるまで 30°Cで菌を前培養し、その後 IPTG (イソプロピル— β— D (―) —チォガラタトピラノシド、和光純薬工業製)を最終濃度で ImMとなるように加え、 30 °Cでさらに 4時間振とう培養した。培養液 2ml中の菌体を遠心分離によって集めた。 この菌体を、 200 1の 0. 336%トリトン X— 100および 0. 5M塩ィ匕ナトリウムを含む 2 OmM ビストリス緩衝液 (pH7. 0)に懸濁し、氷冷下で超音波破砕した。得られた破 砕液を粗酵素液とし、活性測定に供試した。反応は 2反復で行い、反応組成は実施 例 1と同様に行った。但し、反応時間は 15時間とした。その結果、下記の表 7に示す ように、 467— NOCO遺伝子形質転換体の粗酵素液中および 467— N2C0遺伝子 形質転換体の粗酵素液中には、糖供与体である CMP— NeuAc中の14 Cでラベルさ れた NeuAcを糖受容体基質であるラタトースに転移する因子、即ちシアル酸転移酵 素活性が存在することが示された。この結果から、 467— NOCO遺伝子、または 467 N2C0遺伝子を導入した大腸菌にはシアル酸転移酵素が発現されていることが明 らかとなつた。
[0073] [表 7] 表 7 : JT-ISH- 株由来 ;8 _ガラクトシド _ α 2,3—シアル酸転移酵素遺伝子を
組み換えた大腸菌破砕液中のシアル酸転移酵素活性
Figure imgf000030_0001
[0074] (6) α 2. 3 シアル酸転移活件の確認
上記(5)の粗酵素液を用いて、 467— N2C0遺伝子を導入した大腸菌で発現され たシアル酸転移酵素が《2, 3 シアル酸転移活性を有するかどうか調べた。参考例 1—1と同様に、糖受容体としてピリジルァミノ化ラタトースを用い、酵素反応を行った 。反応終了後、 95°Cで 5分間、反応溶液を熱処理することにより酵素を失活させ、 H PLCで分析した。なお、酵素反応は、ピリジルアミノィ匕ラタトースが 2. 0 M、 CMP ーシアル酸が 5. 7 iu Mとなるょぅに、それぞれを20mM カコジレート緩衝液(pH6. 0) 25 ^中に溶解し、 25°C下で 6時間行った (反応 1)。一方、 CMP シアル酸を含 まない反応液を供試した対照実験 (反応 2)を行った。また、標品の保持時間を明ら かにするため、熱処理(95°C、 5分間)によって失活させた粗酵素液をカ卩え、ピリジル アミノ化ラタトースおよびピリジルァミノ化 a 2, 3 シァリルラタトースを添加した試験 を行った。
[0075] 標品の分析結果から、ピリジルァミノ化ラタトースの保持時間は 4. 1分、ピリジルアミ ノィ匕 α 2, 3 シァリルラタトースの保持時間は 5. 4分であることが示された。これによ り反応 1では検出されるが、反応 2では検出されない保持時間 5. 3分のピークが、ピリ ジルアミノィ匕 α 2, 3 シァリルラタトースであることが明ら力となった。すなわち、 467 N2C0遺伝子を導入した大腸菌で発現されたシアル酸転移酵素が a 2, 3 シァ ル酸転移活性を有することが証明された。
[0076] また、同様に 467— NOCO遺伝子を導入した大腸菌で発現されたシアル酸転移酵 素がひ 2, 3 シアル酸転移活性を有するかどうか調べた。その結果、大腸菌で発現 されたシアル酸転移酵素による反応において、反応生成物としてピリジルァミノ化 ex 2 , 3 シァリルラタトースのピークが検出された。よって、この酵素が α 2, 3 シアル酸 転移活性を有することが明らかとなった。
参者例 ί 5 : フォトパクテリゥム Μ細前丁 TSH— 224株由 " 2. 3 シアル酸 転移酵素遣伝早のクローニング 、 列解析および 該遣伝早の大腸菌での 懇
( ί) ΤΤ— TSH— 224株の β—ガラクトシド— 2. 3 シアル酸転移酵素活件 同 酵素遺伝子の存在の確認
参考例 1 1でシアル酸転移酵素活性を有することが明ら力となったフォトパクテリ ゥム JSJT— ISH— 224株において、フォトバタテリゥム 'フォスフォレゥム JT—ISH— 4 67株由来 a 2, 3 シアル酸転移酵素遺伝子のホモローグが存在するか否かを明ら かにするため、ゲノミツクサザンノヽイブリダィゼーシヨンを実施した。参考例 1—4に記 載した方法で、 JT— ISH— 224株の菌体ペレットからゲノム DNAを調製した後、 JT — ISH— 224株のゲノム DNAを制限酵素 EcoRIまたは Hindlllで消化し、 0. 7%ァ ガロースゲル電気泳動で分画後、 0. 4M NaOHを用いたアルカリブロッテイングに より、ゲルを Hvbond— N +ナイロンメンブレンフィルター(アマシャムバイオサイェン ス製)に転写した。このフィルターに関して、上記の JT—ISH—467株由来 α 2, 3— シアル酸転移酵素遺伝子の部分断片(929bp;配列番号 17)をプローブとして用い て、参考例 1—4に記載した方法でサザンノヽイブリダィゼーシヨンを行った。ただしノヽ イブリダィゼーシヨン温度、および洗浄処理の温度は、 55°Cとした。その結果、 EcoR I消化では、 16kbのバンドが検出された。一方、 Hindm消化の場合、 5kbと 2. 7kb のバンドが検出された。この結果から、 JT—ISH— 224株に ίお T—ISH—467株由 来の a 2, 3 シアル酸転移酵素遺伝子のホモローグが存在することが明らかとなつ た。
(2) TT-ISH 224株由来 α 2. 3 シアル酸転移酵素遣伝子のクローニング 次に、 JT— ISH— 224株のひ 2, 3 シアル酸転移酵素遺伝子のクローユングを行 つた。参考例 1— 4に記載した方法により、 JT— ISH— 224株のゲノム DNAから、 λ DASH II (Stratagene製)を用いて、ゲノムライブラリーを構築した。 JT—ISH— 467 株由来《2, 3 シアル酸転移酵素遺伝子の部分断片(929bp ;配列番号 17)をプ ローブに用い、 JT—ISH— 224株のゲノムライブラリーをスクリーニングした。ただし、 参考例 1—4と同様にハイブリダィゼーシヨン、および洗浄の温度は 55°Cとした。その 結果、プラーク精製を兼ねた二次選抜までに、 12クローンを得、うち 6つのえ DNAを 、参考例 1—4のように QIAGEN Lambda Mini Kit (キアゲン製)を用いて精製した。さ らにこのうち 3クローンの λ DNAサンプル、および JT— ISH— 224株の全ゲノム DN Aについて、制限酵素 EcoRIまたは Hindmで消化した。消化物をァガロースゲル電 気泳動で分画し、上述の様にナイロンメンブレンフィルターに転写した。このフィルタ 一を用いて、 JT— ISH— 467株由来ひ 2, 3 シアル酸転移酵素遺伝子の部分断片 (929bp ;配列番号 17)をプローブに用い、サザン分析を行った。ハイブリダィゼーシ ヨン、洗浄の温度は 55°Cとした。その結果、 EcoRI消化の場合、 12kbまたはそれ以 上のバンドが検出されたのに対し、 Hindm消化の場合は、 3つ全ての DNAサン プル ^JT— ISH— 224株の全ゲノム DNAに関して、 5kbと 2. 7kbの二本のバンドが 検出された。そこでえ DNAサンプルを再度 Hindmで消化し、これら 5kbと 2. 7kbの 二本の DNA断片をゲル精製し、プラスミドベクター pBluescript SK (—)の Hindlll 部位に常法に従 、クローユングした。 [0077] 次に、これらのクローンに関して、 Ml 3プライマー(タカラバイオ製)を用いて、 ABI PRISM蛍光シークェンサ一(Model 310 Genetic Analyzer, Perkin Elmer社製)で、 5kb Hindlll断片と 2. 7kb Hindlll断片の両端の塩基配列を決定した。その結果 、 5kb断片の片側の DNA配列、および 2. 7kbの片側の DNA配列力も推定されるァ ミノ酸配列が、データベース検索の結果ともに、シアル酸転移酵素と相同性を示した 。 JT ISH— 224株の同酵素の遺伝子の DNAを完全に決定するため、 Hindlll 2 . 7kb断片カゝら得られた DNA配列を基に、下記の表 8のプライマーを合成し、塩基配 列決定に用いた。
[0078] [表 8] 表 8 .
名称 配列 5' -3' 長さ
224-23ST- i nRV1 CAGGAACTGCAACAGCAGAG (配列番号 3 4 ) 20mer
[0079] その結果、配列表の配列番号 28の配列を得た。この配列は、 JT ISH— 224株由 来 α 2, 3 シアル酸転移酵素遺伝子のオープンリーディングフレーム(ORF)の全 塩基配列である。最初の ATGの上流には同じ読み枠で翻訳終止コドンが現れるの で、これが本遺伝子の翻訳開始コドンであると考えられる。フォトパクテリゥム属 JT— 1311— 224株由来0;2, 3 シアル酸転移酵素遺伝子の ORFは、フォトバクテリウム' フォスフォレゥム JT—ISH—467株由来 ex 2, 3 シアル酸転移酵素遺伝子のそれと 同様に、 1230塩基からなり、 409個のアミノ酸をコードしていた。このアミノ酸配列を 配列表の配列番号 29に示す。遺伝子内部には Hindlll部位を有していた。 GENE TYX Ver. 7を用いて核酸、およびアミノ酸配列の解析を行ったところ、 JT— ISH— 224株由来 α 2, 3 シアル酸転移酵素遺伝子は、 JT ISH— 467株由来 α 2, 3— シアル酸転移酵素遺伝子と 92%の相同性を有して ヽた。またアミノ酸配列でも、 JT — ISH— 467株由来《2, 3 シアル酸転移酵素と 92%の相同性を示した。さらに、 JT— ISH— 224株由来《2, 3 シアル酸転移酵素のアミノ酸配列は、フォトバタテリ ゥム.ダムセーラの α 2, 6 シアル酸転移酵素 (JC5898)と 33%の相同性、パスッレ ラ'ムルトシダ亜種ムルトシダ株 Pm70の仮定上のタンパク質 ΡΜ0188 (ΑΑΚ0227 2)と 29%の相同性を示し、遺伝子 DNA配列ではそれぞれと、 54%、 50%という相 同'性であった。
[0080] (3)発現ベクターの構築
クローン化した遺伝子が、シアル酸転移酵素活性を有するか否かを調べるため、同 遺伝子の全長、および N末端側のシグナルペプチド部分を除去したタイプの遺伝子 を発現ベクターに組み込み、大腸菌内でタンパク質を生産させ、この発現タンパク質 の活性を測定した。
[0081] JT ISH— 224株由来 α 2, 3 シアル酸転移酵素のアミノ酸配列について、遺伝 情報処理ソフトウェア GENETYX Ver. 7で解析を行ったところ、 N末端の 24ァミノ 酸が、シグナルペプチドであると予測された。そこで、遺伝子全長 (本明細書におい て 224— NOCO遺伝子と表記する)をクローン化するためのプライマー 224— 23ST ー?^0 ?(^ (配列番号35)、 224— 233丁ーじ0116 ー:6111 (配列番号37)、さらにシ グナルペプチド部分のアミノ酸が除かれたタイプのタンパク質をコードする遺伝子 (本 明細書において 224— N1CO遺伝子と表記する)をクローンィ匕するためのプライマー 224— 233丁ー?^1ー?^0 (配列番号36)、 224— 233丁ーじ0116 ー:6111(配列番号 37)を設計、合成した (表 9)。
[0082] [表 9]
表 9 .
Figure imgf000034_0001
[0083] クロー-ング用にプライマーに予め組み込んだ制限酵素 Pcil (224— 23ST— NO— Pci)、 Ncol (224— 23ST—N1—Nco)、 BamHI (224— 23ST—C0new—Bm) 部位を下線で示した。翻訳開始コドン ATG、および翻訳終止コドンに対応する相補 配列 TAAを四角で囲んだ。さらに、プライマー配列のうち、铸型 DNAとアニーリング する部分の配列を太字で示した。プライマー 224— 23ST— NO— Pciの場合、後の クロー-ング用に Pcil部位を導入したことで、翻訳開始コドン ATG直後のシトシン (C )がチミン (T)に置換される。このため、翻訳開始メチォニンの直後のアミノ酸配列が ロイシン(Leu)力らフヱ-ルァラニン(Phe)に置換される。 Leuと Pheは同じ疎水性の アミノ酸であること、この部分はシグナルペプチド領域であることから、この変異によつ て酵素活性に大きな変化をもたらす可能性は低いと判断した。
続いて PCRを行い、発現ベクターに組み込むための JT—ISH— 224株由来 α 2, 3 シアル酸転移酵素遺伝子を増幅した。铸型 DNAは、 JT— ISH— 224株由来 oc 2, 3 シアル酸転移酵素遺伝子を含む上記え DNAを用いた。 PCRの反応条件は 以下のように設定した。 50 1の反応液中に、铸型 DNA 100ng、 10 X Ex taq buffer 5 1、2. 5mM 各 dNTP 4 ΐ、プライマー 50pmole、 Ex taq (タカラバ ィォ製) 0. 5 1をそれぞれ含み、プログラムテンプコントロールシステム PC— 700 (A STEK製)を用いて、 96。C 3分を 1回、 96。C 1分、 50。C 1分、 72。C 2分を 15回、 72°C 6分を 1回行った。その結果、 224— NOCO遺伝子でおよそ 1. 2kb、そして 22 4 N1CO遺伝子でおよそ 1. lkbの PCR産物が増幅された。これらの PCR産物を、 制限酵素 Pcil (New England Biolab社製)と BamHI (224— NOCO遺伝子の場合)、 または制限酵素 Ncolと BamHI (224— N1C0遺伝子の場合)で二重消化した後、ゲ ル精製した。大腸菌発現用ベクターは pTrc99Aを用いた。このベクターを同じ制限 酵素 Pcilと BamHI (224— N0C0遺伝子を導入する場合)、または制限酵素 Ncolと BamHI (224— N1C0遺伝子を導入する場合)で二重消化しゲル精製したものを、 制限酵素処理を行った PCR産物と Takara Ligation Kit (タカラバイオ製)を用いてライ ゲーシヨンし、大腸菌 TBIに形質転換した。常法に従いプラスミド DNAを抽出、制限 酵素分析して、インサートの組み込みを確認し、そしてクローンした 224— N0C0遺 伝子、ならびにクローンした 224— N1C0遺伝子の全塩基配列を確認した。その結 果、 224— N0C0遺伝子においては、上述のシトシン(C)からチミン (T)への置換が 確認されたが、それ以外は塩基配列の変異はな力つた。同様に 224— N1C0遺伝 子の場合は、塩基配列の変異はなぐ所望の塩基配列、即ち配列表の配列番号 28 のうち、第 73番目の塩基力も第 1230番目の塩基までを含んでいた。
(4) 現. 活件沏 I
参考例 1—4と同様に、 224— N0C0遺伝子および 224— N1C0遺伝子の 2クロー ンに関して、タンパク質発現誘導実験を行い、酵素活性を測定した。その結果、下記 の表 10に示すように、 224— NOCO遺伝子および 224— N 1 CO遺伝子の形質転換 体の粗酵素液中にシアル酸転移酵素活性が存在することが示された。
[表 10] 表 1 0 : JT- ISH-224株由来 JT-ISH-467 —ガラクトシド £ϊ 2,3—シアル酸転移酵素遺伝子 ホモローグを組み換えた大'腸菌の破砕液中のシアル酸転移酵素活性
Figure imgf000036_0001
(5) α 2. 3 シアル酸転移酵素活件の確認
参考例 1 4と同様に、 224— NOCO遺伝子および 224— N1CO遺伝子をそれぞ れ大腸菌に導入して酵素を発現させ、ピリジルァミノ化ラタトースを糖受容体として用 いる反応により、 a 2, 3—シアル酸転移酵素活性を調べた。大腸菌で発現されたシ アル酸転移酵素による反応生成物を HPLCにより評価した結果、いずれのクローン を用いた反応についてもピリジルアミノィ匕 a 2, 3 シァリルラタトースのピークが検出 された。この結果から、 JT ISH— 224株由来のシアル酸転移酵素が α 2, 3 シァ ル酸転移活性を有することが明らかとなった。
参者例 1 6 : ビブリオ属細菌 ΤΤ FAT— 16株由 α 2. 3 シアル酸転移酵素 遺伝子のクローユング 塩某西 R列解析、および当該遣伝子の大腸菌での発現
( 1) TT FAT— 16株の β ガラクトシド ' α 2. 3 シアル酸転移酵素活件 同酵 素遺伝子の存在の確認
参考例 1 1でシアル酸転移酵素活性を有することが明らかとなったビブリオ属 JT — FAJ— 16株において、フォトバタテリゥム 'フォスフォレゥム JT— ISH— 467株由 来 α 2, 3 シアル酸転移酵素遺伝子のホモローグが存在するか否かを明らかにす るため、ゲノミツクサザンノヽイブリダィゼーシヨンを実施した。参考例 1—4に記載した 方法で、 JT— FAJ— 16株の菌体ペレットからゲノム DNAを調製した後、制限酵素 Ε coRI、 Hindlllで消化し、 0. 7%ァガロースゲル電気泳動で分画後、 0. 4M NaO Hを用いたアルカリブロッテイングにより、ゲルを Hybond—N+ナイロンメンブレンフ ィルター(アマシャムバイオサイエンス製)に転写した。このフィルターに関して、上記 の 929bpのプローブ(配列番号 17)を用いて、参考例 1—4に記載した方法でサザン ハイブリダィゼーシヨンを行った。ただしハイブリダィゼーシヨン温度、および洗浄処 理の温度は、 55°Cとした。その結果、 EcoRI消化で、 3. 6kbのバンド力 Hindlll消 化で、 7kbのバンドが検出された。即ち JT— FAJ— 16株に〖お T— ISH— 467株由来 の α 2, 3 シアル酸転移酵素遺伝子のホモローグが存在することが明らかとなった。
[0087] (2) TT— FAT— 16株由来 α 2. 3 シアル酸転移酵素遣伝子のクローニング
次に、 JT FAJ— 16株の ex 2, 3 シアル酸転移酵素遺伝子のクローニングを行つ た。参考例 1—4に記載した方法で、 JT—FAJ—16株のゲノム DNAから、 1 DASH i Stratagene製)を用いて、ゲノムライブラリーを構築した。 JT— ISH— 467株由来 a 2, 3 シアル酸転移酵素遺伝子の部分断片(929bp ;配列番号 17)をプローブに 用い、 JT—FAJ— 16株のゲノムライブラリーをスクリーニングした。ただし、ハイブリダ ィゼーシヨン実験は ECL direct labelling & detection system (アマシャムバイオサイエ ンス製)を使用した。キット添付の説明書きに従ってプローブを作成した。ハイブリダィ ゼーシヨンは、キット中のハイブリダィゼーシヨンバッファーにブロッキング試薬を 5% ( wZv)、 NaClを 0. 5Mになるようにカロえ、 37°Cで 4時間行った。洗浄は、 0. 4%SD S、 0. 5X SSC中で、 50。Cで 20分を 2回、 2X SSC中で室温、 5分を 1回行った。 シグナルの検出は、キット添付の説明書きに従った。
[0088] その結果、プラーク精製を兼ねた一次選抜で、 12クローンを得、うち 6つの λ DNA を、参考例 1— 4のように QIAGEN Lambda Mini Kit (キアゲン製)を用いて精製した。 さらにこれらの λ DNAサンプル、および JT— FAJ— 16株の全ゲノム DNAに関して、 制限酵素 EcoRIで消化した。消化物をァガロースゲル電気泳動で分画し、上述の様 にナイロンメンブレンフィルターに転写した。このフィルターを用いて、 JT— ISH— 46 7株由来《2, 3 シアル酸転移酵素遺伝子の部分断片(929bp ;配列番号 17)をプ ローブに用い、 ECLシステムを用いて、上述と同じ条件でサザン分析を行った。その 結果、 6つ全ての DNAサンプル ^JT— FAJ— 16株の全ゲノム DNAについて、 3. 6kbのバンドが検出された。そこでえ DNAサンプルを再度 EcoRIで消化し、この 3. 6kbの DNA断片をゲル精製し、プラスミドベクター pBluescript SK (—)の EcoRI 部位に常法に従 、クローユングした。
[0089] 次に、 JT— FAJ— 16株由来《2, 3 シアル酸転移酵素遺伝子を含むと考えられ た EcoRI 3. 6kb断片に関して、 Ml 3プライマー(タカラバイオ製)を用いて、 ABI PRISM蛍光シークェンサ一(Model 310 Genetic Analyzer, Perkin Elmer製)で、両 端の塩基配列を決定した。その結果、片側の端の DNA配列から推定されるアミノ酸 配列が、データベース検索でフォトバタテリゥム 'ダムセーラの α 2, 6 シアル酸転移 酵素 (JC5898)と 27%の相同性を示した。 JT— FAJ— 16株の α 2, 3 シアル酸転 移酵素遺伝子の全塩基配列を完全に決定するため、 EcoRI 3. 6kb断片力 得ら れた DNA配列を基に、下記の表 11に記載のプライマーを合成し、塩基配列決定に 用いた。
[0090] [表 11] 表 1 1 .
名称 配列 5' -3' 長さ
FAJEC3. 6RV1 TTC AAA ACT GCC TGA GTC AG (配列番号 3 8 ) 20 mer
FAJEc3. 6RV2 ATT TCA TGG TCT AGA TAC CC (配列番号 3 9 ) 20 me r
[0091] 得られた塩基配列データ力もさらに以下の表 12に記載のプライマーを設計、合成し
、全塩基配列の決定を行った。
[0092] [表 12] 表 1 2 .
名称 配列 5' -3' 長さ
FAJ23ST i nFW3 CTG ACT CAG GCA GTT TTG AA (配列番号 4 0 ) 20mer
FAJ23ST i nFW4 GAA AGC AAC TCT CTC AAT GGG (配列番号 4 1 ) 21 mer
FAJ 23ST i nRV3 ATA AAC CCA TTG AGA GAG TTG (配列番号 4 2 ) 21mer
[0093] その結果、配列表の配列番号 30の配列を得た。この配列は、 JT FAJ— 16株由 来 α 2, 3 シアル酸転移酵素遺伝子のオープンリーディングフレーム(ORF)の全 塩基配列である。最初の ATGの上流には同じ読み枠で翻訳終止コドンが現れるの で、これが本遺伝子の翻訳開始コドンであると考えられる。 JT—FAJ— 16株由来 a 2 , 3 シアル酸転移酵素遺伝子の ORFは、 1209塩基からなり、 402個アミノ酸をコ ードしていた。このアミノ酸配列を配列表の配列番号 31に示す。 GENETYX Ver. 7を用いて核酸、およびアミノ酸配列の解析を行ったところ、 JT—FAJ— 16株由来 α 2, 3 シアル酸転移酵素遺伝子は、 JT ISH— 467株および JT ISH— 224株由 来《2, 3 シアル酸転移酵素遺伝子と、それぞれ 69. 7%および 68%の相同性を 有していた。またアミノ酸配列でも、それぞれ、 64. 7%および 64. 8%の相同性を示 した。さらに、 JT—FAJ—16株由来《2, 3 シアル酸転移酵素のアミノ酸配列は、フ オトバタテリゥム 'ダムセーラの α 2, 6 シァノレ酸転移酵素 (JC5898)と 30. 5%の相 同性、パスッレラ 'ムルトシダ亜種ムルトシダ株 Pm70の仮定上のタンパク質 PM01 88 (AAK02272)と 27. 3%の相同性を示し、遺伝子 DNA配列ではそれぞれと、 5 1. 2%, 48. 3%という相同性であった。
[0094] (3)発現ベクターの構築
クローンィ匕した遺伝子が、シアル酸転移酵素活性を有するか否かを調べるため、同 遺伝子の全長、および N末端側のシグナルペプチド部分を除去したタイプの遺伝子 を発現ベクターに組み込み、大腸菌内でタンパク質を生産させ、この発現タンパク質 の活性を測定した。
[0095] JT FAJ— 16株由来 α 2, 3 シアル酸転移酵素のアミノ酸配列について、遺伝 情報処理ソフトウェア GENETYX Ver. 7で解析を行ったところ、 N末端の 22ァミノ 酸が、シグナルペプチドであると予測された。そこで、遺伝子全長 (本実施例におい て FAJ— NOCO遺伝子と表記する)をクローン化するためのプライマー FAJ23STNO BspHI (配列番号 43)、 FAJ23STCO— BamHI (配列番号 45)、さらにシグナル ペプチド部分のアミノ酸が除かれたタイプのタンパク質をコードする遺伝子 (本実施 例において FAJ— N1CO遺伝子と表記する)をクローン化するためのプライマー FAJ 23STN1 -BspHI (配列番号 44)、 FAJ23STCO- BamHI (配列番号 45)を設計 、合成した (表 13)。
[0096] [表 13] 表 1 3 .
名称 ― 配列 5 ' -3 ' 長さ FAJ 23STN0-BspH I TGGATAACT [OCAATTSC¾AAAAACATTATAACAAAAAGAATG (配列番号 4 3 ) 37rae r FAJ 23STNl -BspH I TATTATCGT fCClAATTdQAACAATGATAACAGCACTACC (配列番号 4 4 ) 34nie r FAJ 23STC0-BamH I TCTTTTTAGGATCCTTAWATGTCGCTGATTAGTTTTAT (配列番号 4 5 ) 38me r クロー-ング用にプライマーに予め組み込んだ制限酵素 BspHI (FAJ23STNO- BspHI、 FAJ23STN1— BspHI)、 BamHI (FAJ23STCO— BamHI)部位を下線 で示した。翻訳開始コドン ATG、翻訳終止コドンに対応する相補配列 TAAを四角で 囲んだ。さら〖こ、プライマー配列のうち、铸型 DNAとアニーリングする部分の配列を 太字で示した。これらのプライマーを用いて PCRを行い、発現ベクターに組み込むた めの JT— FAJ— 16株由来《2, 3—シアル酸転移酵素遺伝子を増幅した。铸型 DN Aは、同遺伝子を含む上記 3. 6kbの DNA断片を用いた。 PCRの反応条件は以下 のよう【こ設定した。 50 1の反応液中【こ、録型 DNA 300ng、 10 X Ex taq buff er 5 1、2. 5mM 各 dNTP 4 ΐ、プライマー 50pmole、 Ex taq (タカラバイオ 製) 0. 5 1をそれぞれ含み、プログラムテンプコントロールシステム PC— 700 (AS TEK製;)を用いて、 96。C 3分を 1回、 96。C 1分、 50。C 1分、 72。C 2分を 10回、 72°C 6分を 1回行った。その結果、 FAJ— N0C0でおよそ 1. 2kb、 FAJ— N1C0で およそ 1. lkbの PCR産物が増幅された。これらの PCR産物を、 TAクロー-ング用 ベクター pCR2. 1TOPO (Invitrogen製)に、 TAクロー-ングキット(Invitrogen製)に 添付された説明書に従って、クローユングした。大腸菌は TBIを使用した。得られた コロニーから常法でプラスミドを精製し、制限酵素 EcoRIで PCR産物のベクターへの 導入を確認した。導入の確認されたプラスミドサンプルを、制限酵素 BspHIと BamHI で二重消化した後、 1. 2kb (FAJ— N0C0遺伝子)または 1. lkb (FAJ— N1C0遺 伝子)断片をゲル精製した。これらの DNAサンプルを、予め制限酵素 Ncolと BamH Iで二重消化した大腸菌発現用ベクター pTrc99Aに、 Takara Ligation Kit (タカラバ ィォ製)を用いてライゲーシヨンし、大腸菌 TBIに組み込んだ。常法に従いプラスミド DNAを抽出、制限酵素分析を行いインサートの組み込みを確認し、クローンされた F AJ— N0C0遺伝子およびクローンされた FAJ— N1C0遺伝子の全塩基配列を確認 した。 FAJ— N0C0遺伝子については、塩基配列の変異はなぐ所望の塩基配列、 即ち、配列表の配列番号 30のうち、第 1番目の塩基力も第 1209番目の塩基までを 含んでいた。また、 FAJ— N1CO遺伝子については、塩基配列の変異はなぐ所望 の塩基配列、即ち、配列表の配列番号 30うち、第 67番目の塩基力も第 1209番目の 塩基までを含んでいた。
[0098] (4)発頊,誘導 活件測定
参考例 1—4と同様に、 FAJ—NOCO遺伝子、および FAJ— N1CO遺伝子の 2クロ ーンに関して、タンパク質発現誘導実験を行い、酵素活性を測定した。その結果、下 記の表 14に示すように、 FAJ— NOCO遺伝子および FAJ— N 1 CO遺伝子の形質転 換体の粗酵素液中にシアル酸転移酵素活性が存在することが示された。
[0099] [表 14] 表 1 4 : JT-FAJ-16株由来 JT-ISH-467 J8—ガラクトシド— α 2,3—シアル酸転移酵素遺伝子 ホモローグを組み換えた大腸菌の破砕液中のシアル酸転移酵素活性
Figure imgf000041_0001
[0100] ( 5) α 2. 3 シアル酸転移活件の確認
参考例 1 4と同様に、 FAJ— NOCO遺伝子、および FAJ— N1CO遺伝子をそれぞ れ大腸菌に導入して酵素を発現させ、ピリジルァミノ化ラタトースを糖受容体として用 いる反応により、 a 2, 3—シアル酸転移酵素活性を調べた。大腸菌で発現されたシ アル酸転移酵素による反応生成物を HPLCにより分析した結果、いずれのクローン を用いた反応においてもピリジルァミノ化 a 2, 3 シァリルラタトースのピークが検出 された。この結果から、 JT—FAJ— 16株由来のシアル酸転移酵素が《2, 3 シアル 酸転移活性を有することが明らかとなった。
実飾 II P. damselae JTO 160株由来の糖転移酵素( a 2,6-シアル酸転移酵素)の酵 素活性に及ぼす NaClの影響
材料および方法
海洋性微生物である P. damselae JT0160株から、既に報告されている方法 (特許第 3062409号)に従って 13 -ガラタトシド- a 2,6-シアル酸転移酵素を精製した。酵素の 精製純度は SDS-PAGEで確認し、最終精製酵素は電気泳動的に単一のタンパク質 であることを確認した。この完全精製した酵素を用いて以下の実験を行った。
[0101] 反応溶液 20 1中に、糖供与体基質 CMP- 14C- NeuAc (50.066 nmol、 25000cpm)、 糖受容体基質ラタトース(1 mmol)、シアル酸転移酵素(0.5mU〜1.5mU)、 NaClをそ れぞれ 0〜2.5M濃度になるように添加し、酵素反応を行った (30°C、 1分)。酵素反応 終了後、それぞれの条件においてラタトースに転移された NeuAcの放射活性を測定 して酵素活性を算出し、各試験区における酵素活性に対する NaClの影響を検討した
[0102] なお具体的には、反応終了後、反応溶液に 1.98mlの 5mMリン酸緩衝液 (pH6.8)を 加え、この溶液を AG1- X 2Resin (PO 3 -form, 0.2 X 2cm)カラムに供した。このカラム
4
は、 AGl- X 2Resin (OH— form)(BIO- RAD社製)を 1Mリン酸緩衝液(pH6.8)に懸濁し、 30分後レジンを蒸留水で洗浄した後、蒸留水に懸濁して作成した。このカラムの溶 出液 (0〜2ml)の放射活性を測定した。このカラムの溶出液には、反応で生じた14 C-N euAc (N-ァセチルノイラミン酸)が結合したシァリルラクト一ス及び未反応のラクト一ス が含まれる力 未反応の CMP-"C- NeuAcはカラムに保持されたままである。従って、 酵素反応の結果生じたシァリルラクト—ス由来の14 Cの放射活性は、全て反応生成物 由来であり、この画分の放射活性力 酵素活性を算出することができる。
P. damselae JT0160株由来のシアル酸転移酵素は、酵素反応系中の NaClの存在 により、その酵素活性が増加することが認められた。 NaClが酵素反応系に 0.2Mから 1 M濃度で存在した場合、 NaC嘸添加の場合と比較して、その酵素活性はいずれも約 1.2倍から 1.4倍に向上した(図 1)。
実施例 2 P. damselae JT0160株由来の糖転移酵素( a 2,6-シアル酸転移酵素)の酵 素活性に及ぼす KC1の影響
材料および方法
実施例 1と同様にして、 P. damselae JT0160株から β -ガラタトシド- α 2,6-シアル酸 転移酵素を完全精製し、以下の実験を行った。 [0103] 反応溶液に 20 1中に、糖供与体基質 CMP- C -NeuAc (50.066 nmol,25000cpm) 、糖受容体基質ラタトース(1 mmol)、シアル酸転移酵素(0.5mU〜1.5mU)、 KC1をそ れぞれ 0〜1M濃度になるように添加し、酵素反応を行った (30°C、 1分)。酵素反応終 了後、それぞれの条件においてラタトースに転移された NeuAcの放射活性を測定し て酵素活性を算出し、各試験区における酵素活性に対する KC1の影響を検討した。 なお具体的には、反応終了後、反応溶液に 1.98mlの 5mMリン酸緩衝液 (pH6.8)をカロ え、この溶液を AG1- X 2Resin (PO 3 -form, 0.2 X 2cm)カラムに供した。このカラムは、
4
AGl- X 2Resin (OH— form)(BIO- RAD社製)を 1Mリン酸緩衝液(pH6.8)に懸濁し、 30 分後レジンを蒸留水で洗浄した後、蒸留水に懸濁して作成した。このカラムの溶出液 (0〜2ml)の放射活性を測定した。
¾
酵素反応系中に添カ卩した様々な濃度の KC1が、 P. damselae JT0160株由来のシァ ル酸転移酵素活性を向上させることは認められな力つた(図 2)。
実飾 13 P. damselae JT0160株由来の糖転移酵素の酵素活性に及ぼす 2価イオン を含む塩類の影響
材料および方法
実施例 1と同様にして、 P. damselae JT0160株から β -ガラタトシド- α 2,6-シアル酸 転移酵素を完全精製し、以下の実験を行った。
[0104] 反応溶液 20 1中に、糖供与体基質 CMP-"C -NeuAc (50.066 nmol、 25000cpm)、 糖受容体基質ラタトース(1 mmol)、シアル酸転移酵素(0.5mU〜1.5mU)、 MgCl -Mg
2
SO -CoCl -CaCl -MnCl -FeSOをそれぞれ最終濃度 0mM、 10mM、 20mMになるよ
4 2 2 2 4
うに添加し、酵素反応を行った (30°C、 1分)。酵素反応終了後、それぞれの条件にお いてラクト—スに転移された NeuAcの放射活性を測定して酵素活性を算出し、各試験 区における酵素活性に対する各種塩類の影響を検討した。なお具体的には、反応 終了後、反応溶液に 1.98mlの 5mMリン酸緩衝液 (pH6.8)をカ卩え、この溶液を AG1- X 2Resin (PO 3- form、 0.2 X 2cm)カラムに供した。このカラムは、 AG1- X 2Resin (OH— fo
4
rmXBIO- RAD社製)を 1Mリン酸緩衝液 (pH6.8)に懸濁し、 30分後レジンを蒸留水で 洗浄した後、蒸留水に懸濁して作成した。このカラムの溶出液 (0〜2ml)の放射活性 を測定した。
反応溶液中の各種 2価イオンを含む塩類が、 P. damselae JT0160株由来の α 2,6- シアル酸転移酵素活性を向上させることは認められな力つた (表 15)。
[0105] [表 15] 表 1 5 添加した各種無 ttt^頃の種類と反応溶液中の演度、 相対活性値の関係
Figure imgf000044_0001
[0106] 実飾 14 ラット肝臓由来のシアル酸転移酵素(ひ 2,6-シアル酸転移酵素)の酵素活 性に及ぼす NaClの影響
材料および方法
ラット肝臓由来の β -ガラタトシド- a 2,6-シアル酸転移酵素 (和光純薬製)を使用し 、酵素に添付されてきた酵素活性測定法に若干の変更を加えた以下の方法で実験 を行った。
[0107] 糖供与体基質 CMP-WC -NeuAc (50.066 nmol、 25000cpm)、糖受容体基質ァシァ 口フェツイン(10mg)、シアル酸転移酵素(lmU〜5mU)、 NaClをそれぞれ 0〜1.4M濃 度になるように添加し、酵素反応を行った (37°C、 1時間)。酵素反応終了後、反応溶 液を Sephadex G- 50 super fine (アマシャム製)カラム(0.8 X 20cm)に供し、 0.1M NaC 1溶液を移動層に用いて、 2〜4mlに溶出する反応生成物(ァシァロフェツインに14じで ラベルされた NeuAcが転移した酵素反応生成物)を含む高分子画分を集めた。なお 、この画分には、未反応の CMP-"C -NeuAcは溶出されないことはコントロール実験 で反応毎に確認を行った。その画分力ゝらァシァロフェツインに転移された NeuAcの放 射活性を測定して酵素活性を算出した。
結果を図 3に示す。なお、図 3では反応溶液中に NaClを含まない場合を 1とした相 対活性で示した。ラット肝臓由来の 13 -ガラタトシド- a 2,6-シアル酸転移酵素では、 N aClの添カ卩による酵素活性の上昇は認められな力つた。
実施例 5 Photobacterium. damselaeに属する各種菌株カゝら調製した糖転移酵素( oc 2,6-シアル酸転移酵素の粗酵素)の酵素活性に及ぼす NaClの影響
材料および方法
Photobacterium damselaeに属し、 JT0160とは異なる菌株 ATCC33539T及び ATCC 35083を培養し、得られた菌体から P. damselae JT0160の粗酵素溶液調製方法(Purif ication and characterization of a Marine bacterial β - alactosiae 2,o— Sialyltransfe rase from Photobacterium damselae JT0160 J.Biochem. 120, 104—110. 1996)に従つ て粗酵素溶液を調整した。それらの粗酵素を用いて以下の実験を行った。
[0108] 反応溶液 20 1中に、糖供与体基質 CMP- 14C- NeuAc (50.066 nmol、 25000cpm)、 糖受容体基質ラタトース(1 mmol)、各種菌株由来の糖転移酵素(lmU以下)、 NaClを それぞれ 0.5M濃度になるように添加し、酵素反応を行った (30°C、 1分)。酵素反応終 了後、それぞれの条件においてラタトースに転移された NeuAcの放射活性を測定し て酵素活性を算出し、各試験区における酵素活性に対する NaClの影響を検討した。 なお具体的には、反応終了後、反応溶液に 1.98mlの 5mMリン酸緩衝液 (pH6.8)をカロ え、この溶液を AG1- X 2Resin (PO 3 -form, 0.2 X 2cm)カラムに供した。このカラムは、
4
AGl- X 2Resin (OH— form)(BIO- RAD社製)を 1Mリン酸緩衝液(pH6.8)に懸濁し、 30 分後レジンを蒸留水で洗浄した後、蒸留水に懸濁して作成した。このカラムの溶出液 (0〜2ml)の放射活性を測定した。
いずれの菌株由来の糖転移酵素についても、 0.5M NaClが反応系に存在した場合 、酵素活性が向上していた。その程度は菌株によって異なるが、おおよそ 1.2から 1.3 倍程度に酵素活性が上昇した (表 16)。
[0109] [表 16] Photobacteriiim属に属する微生物由来糖転移酵素の活性に及ぼす
NaClの影響
Figure imgf000046_0002
[0110] 実施例 6 ?.
Figure imgf000046_0001
110160由来の糖転移酵素(組換ぇ0;2,6-シァル酸転移酵素 のデリーシヨン'ミュータント; N2C 1)の酵素活性に及ぼす NaClの影響
材料および方法
P. damselae JT0160株由来の β -ガラタトシド- α 2,6-シアル酸転移酵素遺伝子の デリーシヨン'ミュータント N2C1を作製し、発現プラスミドに組換え、同発現プラスミドで 大腸菌の形質転換を行った。形質転換された大腸菌を L Broth (アンピシリン:最終濃 度 0.2mgZml、 IPTG :最終濃度 ImMを含む)で、 30°C、 180rpmで 12時間培養した後 に、遠心分離で菌体を集めた。集めた菌体を 20mM Sodium cacodyrate buffer(pH5.0 )に懸濁後、 4°Cで超音波処理を行うことで菌体を破砕して、 N2C1遺伝子由来のシァ ル酸転移酵素タンパク質を含む粗酵素液を調製した。 N2C1遺伝子由来のシアル酸 転移酵素タンパク質は、 p. damselae JT0160株由来の j8 -ガラタトシド- a 2,6-シアル 酸転移酵素をコードする遺伝子配列から想定されるアミノ酸配列と比較すると、その アミノ酸配列の N末端側 (Met)から 107残基のアミノ酸及び、 C末端側から 176残基の アミノ酸が削除されているが、天然の酵素と実質的に同じ酵素活性を有する。この N2 C1遺伝子由来のシアル酸転移酵素タンパク質を用いて以下の実験を行った。
[0111] 反応溶液 20 μ 1中に、糖供与体基質 CMP- "C- NeuAc (50.066 nmol、 25000cpm)、 糖受容体基質ラタトース(1 mmol)、 N2Cl (0.5mU〜1.5mU)、 NaClをそれぞれ 0〜2.5 M濃度になるように添加し、酵素反応を行った (30°C、 1分)。酵素反応終了後、それ ぞれの条件においてラタトースに転移された NeuAcの放射活性を測定して酵素活性 を算出し、各試験区における酵素活性に対する NaClの影響を検討した。
[0112] なお具体的には、反応終了後、反応溶液に 1.98mlの 5mMリン酸緩衝液 (pH6.8)を 加え、この溶液を AGl- X 2Resin (PO 3 form, 0.2 X 2cm)カラムに供した。このカラムは
4
、 AGl- X 2Resin (OH— form)(BIO- RAD社製)を 1Mリン酸緩衝液(pH6.8)に懸濁し、 3 0分後レジンを蒸留水で洗浄した後、蒸留水に懸濁して作成した。このカラムの溶出 液 (0〜2ml)の放射活性を測定した。
その結果、反応溶液中に 0.2〜1.5Mまでの NaClが含まれている場合、 NaCl無添カロ の場合と比較して、酵素活性の活性化が認められた(図 4)。
実施例 7 ビブリオ科微生物由来の糖転移酵素 (組換えひ 2, 3—シアル酸転移酵素 )の酵素活性に及ぼす NaClの影響
材料および方法
フォトバタテリゥム 'フォスフォレゥム 11—1311—467株ょり抽出'精製した0;2, 3— シアル酸転移酵素(467 native)、 JT—ISH— 467株由来の組換え α 2, 3—シアル 酸転移酵素(467 N0C0または 467 N2C0)、フォトバタテリゥム属 JT—ISH— 224株 由来の組換え ex 2, 3—シアル酸転移酵素(224 N1C0)、および、ビブリオ属 JT—F AJ— 16株由来の組換え α 2, 3—シアル酸転移酵素(FAJ N1C0)について、これら の酵素活性に及ぼす NaClの影響を調べた。組換え酵素はいずれも、 SDS—ポリア クリルアミドゲル電気泳動で単一のバンドを示す程度に完全に精製したものを用いた
[0113] 467 N2C0、 224 NlC0ぉょびFAJ NlC0にっぃて、反応溶液3O l中に、 l iu lのlM カコジレート緩衝液(pH 5.5) ,糖供与体基質 CMP- "C- NeuAc (70.041 nmol、 2540 Ocpm)、糖受容体基質ラタトース(2.88 μ mol)、シアル酸転移酵素(約 2mU)、 NaClを それぞれ 0〜2.0M濃度になるように添加し、酵素反応を行った (25°C、 5分)。また、 46 7 nativeおよび 467 N0C0〖こついて、反応溶液 30 μ 1中に、糖供与体基質 CMP- 14C- Ν euAc (7.041 nmol、 25400cpm)、糖受容体基質ラタトース(2.88 μ mol)、シアル酸転 移酵素 (約 250 U)、 NaClをそれぞれ 0〜2.0M濃度になるように添加し、酵素反応を 行った (25°C、 5分)。酵素反応終了後、それぞれの条件においてラタトースに転移さ れた NeuAcの放射活性を測定して酵素活性を算出し、各試験区における酵素活性 に対する NaClの影響を検討した。
なお具体的には、反応終了後、反応溶液に 1.98mlの 5mMリン酸緩衝液 (pH6.8)を 加え、この溶液を AG1- X 2Resin (PO 3 -form, 0.2 X 2cm)カラムに供した。このカラム
4
の溶出液 (0〜2ml)の放射活性を測定した。このカラムの溶出液には、反応で生じた1 4C-NeuAc (N-ァセチルノイラミン酸)が結合したシァリルラクト—ス及び未反応のラクト —スが含まれるが、未反応の CMP-"C- NeuAcはカラムに保持されたままである。従つ て、酵素反応の結果生じたシァリルラクト—ス由来の14 Cの放射活性は、全て反応生 成物由来であり、この画分の放射活性力 酵素活性を算出することができる。
467 native, 467 N0C0、 467 N2C0、 224 N1C0、および FAJ N1C0についての結果は 、それぞれ、図 5ないし図 9に示す。フォトバタテリゥム 'フォスフォレゥム JT— ISH— 467株、フォトバタテリゥム属 JT—ISH— 224株、およびビブリオ属 JT—FAJ—16 株由来のシアル酸転移酵素あるいは組換えシアル酸転移酵素は 、ずれも、酵素反 応系中の NaClの存在により、その酵素活性が増加することが認められた。 NaClが酵 素反応系に 0.2Mから 1.5M濃度で存在した場合、 NaCl無添加の場合と比較して、そ の酵素活性はいずれも約 1.5倍から 2.6倍に向上した。

Claims

請求の範囲
[1] フォトパクテリゥム (Photobacterium)属に属する微生物に由来する糖転移酵素を用 いて、糖転移反応を行うに際し、当該反応を NaClの存在下で行うことにより、 NaClの 非存在下に比べて当該反応の効率を高める方法。
[2] NaClを 0.1M〜1.5Mの濃度で存在させる請求項 1記載の方法。
[3] NaClを 0.2M〜1.0Mの濃度で存在させる請求項 1記載の方法。
[4] フォトバタテリゥム(Photobacterium)属の微生物力 フォトバクテリウム'ダムセーラ(
Photobacterium damselae)である請求項 1〜3の!、ずれか 1項記載の方法。
[5] 糖転移酵素が、シアル酸転移酵素である、請求項 1〜4の!、ずれか 1項記載の方 法。
[6] 糖転移酵素が、 β -ガラタトシド- a 2,6-シアル酸転移酵素である、請求項 1〜4の ヽ ずれか 1項記載の方法。
[7] 糖転移酵素が、 β -ガラタトシド- a 2,3-シアル酸転移酵素である、請求項 1〜3の ヽ ずれか 1項記載の方法。
[8] ビブリオ科に属する微生物に由来する糖転移酵素を用いて、糖転移反応を行うに 際し、当該反応を NaClの存在下で行うことにより、 NaClの非存在下に比べて当該反 応の効率を高める方法。
相対性活 ()%対活相性 ()%
相対活性 ()%
Figure imgf000050_0001
0 0 0 0 0
NaCl濃度 (mol濃度、 反応溶液中)
〔図 2〕
Figure imgf000050_0002
0.2 0.4 0.6 0.8
KC1濃度 (mol濃度、 反応溶液中)
〔図 3〕
Figure imgf000050_0003
0.2 0.3 5 1 .4
NaCl濃度 (mol濃度、 反応溶液中)
^替え用紙 (規則 26) 対活性 (相)対活性相) (%%
Figure imgf000051_0001
Figure imgf000051_0002
'.8 .0 .5 .0
NaCl濃度 (mol濃度、 反応溶液中)
〔図 6〕
Figure imgf000051_0003
0.0 0.3 0.5 0.8 1.0 1.5 2.0
NaCl濃度 (mol濃度、 反応溶液中)
^替え用紙 (規則 26) 図 7〕
相対活性相対活 (性 ())%%
相対活性 ()%
Figure imgf000052_0001
0.0 0.3 0.5 0.8 1.0 1.5 2.0
NaCI濃度 (mol濃度、 反応溶液中) 図 8〕
Figure imgf000052_0002
0.0 0.3 0.5 0.8 1.0 1.5 2.0
NaCI濃度 (mol濃度、 反応溶液中) 図 9
Figure imgf000052_0003
0.3 0.5 0.8 1.0 1.5 2.0 濃度 (mol濃度、 反応溶液中) 差替え用紙(規則 26)
PCT/JP2005/018169 2004-10-18 2005-09-30 糖転移酵素の酵素活性を向上させる方法 WO2006043406A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006542306A JP4812625B2 (ja) 2004-10-18 2005-09-30 糖転移酵素の酵素活性を向上させる方法
AU2005297659A AU2005297659B2 (en) 2004-10-18 2005-09-30 Method for improving enzymatic activity of glycosyltransferases
US11/665,568 US7713722B2 (en) 2004-10-18 2005-09-30 Method for improving enzymatic activity of glycosyltransferases
CA002590578A CA2590578A1 (en) 2004-10-18 2005-09-30 Method for improving enzymatic activity of glycosyltransferases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/015363 WO2006043305A1 (ja) 2004-10-18 2004-10-18 糖転移酵素の酵素活性を向上させる方法
JPPCT/JP2004/015363 2004-10-18

Publications (1)

Publication Number Publication Date
WO2006043406A1 true WO2006043406A1 (ja) 2006-04-27

Family

ID=36202730

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/015363 WO2006043305A1 (ja) 2004-10-18 2004-10-18 糖転移酵素の酵素活性を向上させる方法
PCT/JP2005/018169 WO2006043406A1 (ja) 2004-10-18 2005-09-30 糖転移酵素の酵素活性を向上させる方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015363 WO2006043305A1 (ja) 2004-10-18 2004-10-18 糖転移酵素の酵素活性を向上させる方法

Country Status (6)

Country Link
US (1) US7713722B2 (ja)
JP (1) JP4638447B2 (ja)
KR (1) KR20070069196A (ja)
AU (1) AU2005297659B2 (ja)
CA (1) CA2590578A1 (ja)
WO (2) WO2006043305A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014980A1 (ja) * 2010-07-30 2012-02-02 日本たばこ産業株式会社 新規酵素タンパク質、当該酵素タンパク質の製造方法及び当該酵素タンパク質をコードする遺伝子
CN111133112A (zh) * 2017-07-26 2020-05-08 詹尼温生物技术有限责任公司 唾液酸转移酶及其在生产唾液酸化低聚糖中的用途

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9101160B2 (en) 2005-11-23 2015-08-11 The Coca-Cola Company Condiments with high-potency sweetener
US8017168B2 (en) 2006-11-02 2011-09-13 The Coca-Cola Company High-potency sweetener composition with rubisco protein, rubiscolin, rubiscolin derivatives, ace inhibitory peptides, and combinations thereof, and compositions sweetened therewith

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10234364A (ja) * 1997-02-28 1998-09-08 Japan Tobacco Inc β−ガラクトシド−α2,6−シアル酸転移酵素

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MULLER W.E. ET AL: "Species-specific aggregation factor in sponges. Sialyltransferase associated with aggregation factor", J. BIOL. CHEM., vol. 252, 1977, pages 3836 - 3842, XP002985928 *
SHIMAMURA A. ET AL: "Effect of NaCl concentration on the activities of three glucosyltransferases from streptococcus mutans 6715", BULL. NATL. DEF. MED. COLL., vol. 9, 1986, pages 171 - 178, XP002985929 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014980A1 (ja) * 2010-07-30 2012-02-02 日本たばこ産業株式会社 新規酵素タンパク質、当該酵素タンパク質の製造方法及び当該酵素タンパク質をコードする遺伝子
CN103052710A (zh) * 2010-07-30 2013-04-17 日本烟草产业株式会社 新型酶蛋白、该酶蛋白的制造方法和编码该酶蛋白的基因
CN111133112A (zh) * 2017-07-26 2020-05-08 詹尼温生物技术有限责任公司 唾液酸转移酶及其在生产唾液酸化低聚糖中的用途
JP2020528280A (ja) * 2017-07-26 2020-09-24 イェネヴァイン ビオテヒノロギー ゲーエムベーハー シアリルトランスフェラーゼ及びシアリル化オリゴ糖の生産におけるその使用
CN111133112B (zh) * 2017-07-26 2024-09-10 科汉森母乳低聚糖股份有限公司 唾液酸转移酶及其在生产唾液酸化低聚糖中的用途

Also Published As

Publication number Publication date
AU2005297659B2 (en) 2011-01-06
WO2006043305A1 (ja) 2006-04-27
US7713722B2 (en) 2010-05-11
KR20070069196A (ko) 2007-07-02
JP4638447B2 (ja) 2011-02-23
AU2005297659A1 (en) 2006-04-27
JPWO2006043305A1 (ja) 2008-05-22
US20090087894A1 (en) 2009-04-02
CA2590578A1 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
US20120070863A1 (en) Novel beta-galactoside-alpha2,3-sialyltransferase, a gene encoding thereof, and a method for producing thereof
JP5189585B2 (ja) 新規なβ−ガラクトシド−α2,6−シアル酸転移酵素、それをコードする遺伝子および酵素活性を向上させる方法
WO2007105321A1 (ja) 新規なβ-ガラクトシド-α2,6-シアル酸転移酵素、それをコードする遺伝子およびその製造方法
WO2006043406A1 (ja) 糖転移酵素の酵素活性を向上させる方法
WO2010143713A1 (ja) 新規タンパク質およびそれをコードする遺伝子
US9783838B2 (en) PmST3 enzyme for chemoenzymatic synthesis of alpha-2-3-sialosides
Song et al. Cloning and characterization of a levanbiohydrolase from Microbacterium laevaniformans ATCC 15953
Mori et al. Cloning, sequencing and expression of the genes encoding cyclic α-maltosyl-(1→ 6)-maltose hydrolase and α-glucosidase from an Arthrobacter globiformis strain
EP1876234B1 (en) Beta-galactoside-alpha2,3-sialyltransferase, gene encoding the same, and process for production of the same
JP4812625B2 (ja) 糖転移酵素の酵素活性を向上させる方法
US20160177275A1 (en) Photobacterium sp. alpha-2-6-sialyltransferase variants
WO2012014980A1 (ja) 新規酵素タンパク質、当該酵素タンパク質の製造方法及び当該酵素タンパク質をコードする遺伝子
JP4856636B2 (ja) 新規なβ−ガラクトシド−α2,3−シアル酸転移酵素、それをコードする遺伝子およびその製造方法
JP4977125B2 (ja) 新規なβ−ガラクトシド−α2,6−シアル酸転移酵素、それをコードする遺伝子およびその製造方法
WO2006054333A1 (ja) 短縮型シアル酸転移酵素

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006542306

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077010687

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005297659

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2590578

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2005297659

Country of ref document: AU

Date of ref document: 20050930

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005297659

Country of ref document: AU

122 Ep: pct application non-entry in european phase

Ref document number: 05788041

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11665568

Country of ref document: US