WO2006054333A1 - 短縮型シアル酸転移酵素 - Google Patents

短縮型シアル酸転移酵素 Download PDF

Info

Publication number
WO2006054333A1
WO2006054333A1 PCT/JP2004/017021 JP2004017021W WO2006054333A1 WO 2006054333 A1 WO2006054333 A1 WO 2006054333A1 JP 2004017021 W JP2004017021 W JP 2004017021W WO 2006054333 A1 WO2006054333 A1 WO 2006054333A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
peptide
acid residue
sialyltransferase
acid sequence
Prior art date
Application number
PCT/JP2004/017021
Other languages
English (en)
French (fr)
Inventor
Hiroshi Tsukamoto
Takeshi Yamamoto
Yoshimitsu Takakura
Original Assignee
Japan Tobacco Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc. filed Critical Japan Tobacco Inc.
Priority to PCT/JP2004/017021 priority Critical patent/WO2006054333A1/ja
Publication of WO2006054333A1 publication Critical patent/WO2006054333A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1081Glycosyltransferases (2.4) transferring other glycosyl groups (2.4.99)

Definitions

  • the present invention relates to a sialyltransferase having a higher activity than natural sialyltransferase and a method for producing a high amount of sialyltransferase.
  • Glycosyltransferases are enzymes involved in biosynthesis of sugar chains such as glycoproteins and glycolipids in vivo.
  • the reaction products such as glycoproteins and glycolipids (hereinafter referred to as complex carbohydrate sugar chains), have very important functions in vivo.
  • sugar chains are important molecules that function as tags for signal transduction and glycoconjugates between cells in the differentiation and development and between the extracellular matrix in mammalian cells.
  • erythropoietin As described above, a sugar chain has a very important function, and erythropoietin can be mentioned as a specific example of application thereof. Erythropoietin is originally a glycoprotein, but a recombinant erythropoietin protein with an increased number of sugar chains and an improved life span has been produced and is now commercially available.
  • glycosyltransferase genes have been isolated from eukaryotic organisms such as humans, mice, rats and yeasts, and sugars have been produced in production systems using CHO cells, E. coli, etc. as host cells. A protein having transferase activity is expressed.
  • glycosyltransferase genes have also been isolated from prokaryotic bacteria, and proteins with glycosyltransferase activity are expressed in recombinant production systems using E. coli. Chemical properties have been revealed.
  • sialic acid is a sugar that is extremely important from the viewpoint of sugar chain function because it is often present at the non-reducing end. Therefore, sialyltransferase is one of the most highly demanded glycosyltransferases of increasing importance today.
  • a stable enzyme derived from Photobacterium damsela JT0160 (hereinafter referred to as “JT0160”) is used.
  • JT0160 j8-galactoside-a 2,6-sialyltransferase
  • ST0160 has been reported (JP-A-8-154673; Patent No. 3062409).
  • This molecular weight and 15 amino acid residues (N-terminal side) from the full-length enzyme described later When the molecular weight of the enzyme minus 1-15) of SEQ ID NO: 1 is compared, there is a large difference in molecular weight, and the force strongly suggests that there is a deletion even at the C-terminal side of the full-length enzyme. It is unclear whether the defect has occurred. However, due to the molecular weight, it is impossible that more than 137 residues are missing on the C-terminal side.
  • the productivity of ST0160 reaches about 550 U per liter of the solution obtained by disrupting cultured cells when the culture conditions, medium composition, etc. of JT0160 strain producing ST0160 are optimized.
  • this method there is a limit to high-density culture, so that it is extremely difficult to further improve enzyme productivity. (Japanese Patent Laid-Open No. 10-234373; Japanese Patent No. 3140976).
  • Patent Document 1 Japanese Patent Laid-Open No. 8-154673
  • Patent Document 2 JP-A-10-234373
  • the problem to be solved by the present invention is to obtain a method for obtaining a highly functional enzyme from a sialyltransferase derived from the genus Photopacteria and to produce a high yield of sialyltransferase by gene recombination technology. There is to develop.
  • the present invention relates to a sialyltransferase having the N-terminal or both N-terminal and c-terminal truncation of an appropriate number of amino acids (hereinafter referred to as a shortened form in the present specification).
  • the present invention relates to a method for improving the enzyme activity of a sialyltransferase solution obtained by transforming host bacteria using the DNA, and DNA encoding the enzyme.
  • the present inventors have obtained a DNA encoding a peptide obtained by cleaving a region encoding an appropriate number of amino acids from the sialyltransferase shown in SEQ ID NO: 1 at both the N-terminal or N-terminal and C-terminal. It was found that the enzyme activity of the enzyme solution obtained from the host fungus is greatly improved when the host fungus is transformed with the fungus.
  • the membrane-bound region is a sialyltransferase derived from a microorganism of the genus Photopacteria, and is a sialyltransferase of the genus Photopacteria that the enzyme is derived from.
  • the C-terminal force is a region having at least 178 amino acids.
  • ⁇ -galatatoside-a 2,6-sialyltransferase ST0160 (alcohol) composed of 675 amino acid residues as described in JP-A-10-234373 (Patent No. 3140976) is used.
  • Column No. 1 An enzyme having the amino acid sequence shown in SEQ ID No. 1 is hereinafter referred to as “full-length enzyme”).
  • An expression plasmid ( ⁇ 137) with a codon inserted was used as a PCR template (same as previously reported for the N-terminal side).
  • a shortened DNA from which the base sequence encoding the amino acid of the residue was deleted, and a short DNA from which the base sequence encoding the 107 amino acid from the N-terminal was deleted was also prepared.
  • Each of these was transformed into E. coli, and there was no loss at the N-terminal! Sialyltransferase, N-terminal sialyltransferase lacking 63 amino acids, 107 residues from the N-terminal Enzyme solutions containing recombinant sialyltransferases lacking the amino acids of each were prepared from recombinant Escherichia coli, and the enzyme activity of each crude enzyme solution was investigated. It is deleted up to 137 amino acid residues).
  • the enzyme activity of these crude enzyme solutions was 1.2 times and 7.6 times that of the sialic acid transfer enzyme without deletion at the N-terminus, respectively.
  • the larger the DNA transformed the better the enzyme activity.
  • the activity of recombinant sialyltransferase lacking 107 amino acids from the N-terminal side is very high.
  • sialic acid transferase in which 248 amino acids were deleted from the N-terminal had no ability to recognize enzyme activity.
  • the improvement of sialyltransferase activity or the high activity means that the natural enzyme or all or part of the membrane-bound region is deleted from the natural enzyme.
  • the same microorganism-derived shortened sialyltransferase has a higher specific activity, a lower Km value, or the same number of cells when produced in a host cell. This means that the enzyme activity per unit solution of the crude enzyme solution obtained from the same amount of the culture broth contained is increased.
  • the crude enzyme solution is usually not limited to the force obtained by crushing the cells in the culture solution.
  • the shortened enzyme of the present invention is preferably cleaved from the N-terminus of the full-length enzyme peptide of 63 to 107 residues, more preferably 107 amino acid residues. ing.
  • the number of amino acid residues cleaved from the N-terminus is not particularly limited as long as the sialyltransferase activity is retained as long as it is less than 248 residues.
  • the cleavage of the full-length enzyme peptide is not particularly limited as long as the sialyltransferase activity is maintained, but preferably it is 137 to 178 residues, For example, preferably 176 residues are cleaved. These cleavages may be performed only on the N-terminus, but it is more preferable to cleave both the N-terminus and the C-terminus in terms of improving the activity.
  • deletion of amino acid residues is continuous, partial or intermittent. It may be.
  • the amino acid residue on the N-terminal side of the amino acid sequence possessed by the sialyltransferase derived from the microorganism of the genus Photopacteria is deleted within a range that can enhance the sialyltransferase activity (for example, (Less than 248 residues, preferably 63 residues or more and 107 residues or less, more preferably 107 residues deleted), characterized by having enhanced enzyme activity compared to natural sialyltransferases, A truncated sialyltransferase peptide is also provided.
  • one of the preferred sialyltransferases of the genus Photobacterium that improves the activity when shortened is a photobacterium damsela (Photobacterium damsela) having the sequence shown in SEQ ID NO: 1. ) Is an enzyme produced.
  • a preferred sialyltransferase is j8-galatatoside-a 2,6-sialyltransferase (ST0160).
  • one embodiment of the truncated enzyme of the present invention is:
  • the amino acid residue from the N-terminal to the 538th amino acid residue (D) also has the amino acid at position 108 (T) and the amino acid at position 497. It contains an amino acid sequence consisting of residues (A), and a part or all of the amino acid residues in other regions have been deleted, provided that at least part of the amino acid sequence up to 107 amino acid residues at the N-terminus Is characterized in that it also has a deleted amino acid sequence, and has a higher activity than the full-length enzyme consisting of the amino acid sequence represented by SEQ ID NO: 1, preferably ST0160.
  • sialyltransferases produced by photobacterium microorganisms exist. Each of these sialyltransferase shortened enzymes forms another aspect of the present invention.
  • the present invention also provides DNA encoding the truncated sialyltransferase of the present invention.
  • the method for producing a shortened sialyltransferase in which the N-terminus and / or both the N-terminus and the C-terminus are cleaved.
  • the corresponding shortened DNA is produced.
  • a primer pair capable of producing the desired truncated sialyltransferase DNA is designed. By using these primer pairs and using the natural sialyltransferase gene as a saddle and amplifying the DNA by PCR, DNA encoding a truncated sialyltransferase can be obtained.
  • a preferred example of the sialyltransferase gene of the cocoon type is derived from Photobatarum damsera JT0160 (FERM BP-4900).
  • a preferred example of the DNA of the present invention includes the amino acid residue up to the 108th amino acid residue (A) and the 108th amino acid residue (T) in the amino acid sequence shown in SEQ ID NO: 1. A part or all of the amino acid residues in other regions are deleted, provided that all or part of the amino acid sequence from the N-terminal to the 107th amino acid residue is necessarily deleted. A DNA encoding a peptide having sialyltransferase activity.
  • Such DNA is a DNA containing a nucleotide sequence (SEQ ID NO: 4) that has a 322 th base (a) and 1497 th base (t) force in the nucleotide sequence shown in SEQ ID NO: 1, and more Specific examples include DNA comprising a nucleotide sequence that encodes the peptide according to any one of 2 to 17 above.
  • the DNA of the present invention may optionally include a start codon, a signal sequence, and a Z or stop codon.
  • the DNA encoding the ST0160 truncated enzyme may comprise a nucleotide region encoding the start codon in SEQ ID NO: 1 followed by the 15th amino acid residue.
  • DNA of the present invention means a DNA consisting of any nucleotide sequence capable of encoding the amino acid sequence.
  • the present invention also provides a nucleotide encoding the truncated sialyltransferase peptide of the present invention.
  • DNA or RNA consisting of a nucleotide sequence complementary to the nucleotide sequence is also included.
  • the DNA of the present invention is used by being incorporated into an appropriate expression vector.
  • the expression vector may appropriately contain, for example, a promoter, an enhancer, a terminator and the like as control elements for expressing the DNA of the present invention.
  • the promoter may be one that constitutively controls expression, or is preferably a promoter whose expression time can be controlled.
  • a host cell such as an E. coli cell is transformed with the vector.
  • the transformed cell is preferably cultured in a liquid medium to produce the truncated sialyltransferase of the present invention.
  • the present invention also includes an expression vector incorporating the DNA of the present invention, a host cell transformed with the expression vector, and a method for producing the truncated sialyltransferase of the present invention by culturing the cell.
  • the shortened sialyltransferase produced by the method of the present invention is more active than a natural enzyme derived from the same microorganism or a part or most of the C-terminal membrane binding region deleted from the enzyme. high.
  • the shortened sialyltransferase of the present invention is an amino acid sequence of the shortened peptide described in 1 above, for example, an amino acid sequence of the shortened peptide described in 5, 13 and 17 above (each of which is a sequence).
  • No. 5, 6 or 7 and 60% or more, more preferably 70% or more, more preferably 80% or more, particularly preferably 90% or more, most preferably 95% or more, and having an amino acid sequence having 95% or more homology Also included are those having the same activity as the truncated sialyltransferase of 1 above. Homology comparison is performed using the BLAST algorithm, with the parameters used in the default state or optimized as appropriate.
  • an equivalent activity refers to a key having an activity equal to or higher than the activity of the shortened sialyltransferase to be compared, or It means that it has an activity improved according to the above definition over the activity of a natural sialyltransferase derived from the same microorganism or a natural sialyltransferase lacking a membrane-bound region.
  • deletion of native ST0160 or membrane-bound region This means that it is a shortened sialyltransferase having higher activity than ST0160.
  • the activity of the truncated ST0160 of the present invention is significantly higher than ST0160, which is not substantially deleted on the N-terminal side and lacks most of the membrane-bound region, and preferably 5-8 times higher. It is about 30 times more expensive.
  • amino acid sequence of a polypeptide having physiological activity is slightly changed, that is, one or more amino acids in the amino acid sequence are substituted or deleted, or one or more amino acids are It is a well-known fact that even when added, the physiological activity of the polypeptide may be maintained.
  • a variant may contain conservatively substituted sequences, which may mean that certain amino acid residues are replaced by residues with similar physicochemical characteristics. I mean.
  • conservative substitutions include substitution within a hydrophobic amino acid group, substitution within a hydrophilic amino acid group, substitution within a charged amino acid group, and the like.
  • the present invention provides the shortened enzyme of the present invention obtained by cleaving an appropriate length from the N-terminus or from both the N-terminus and the C-terminus from the sialyltransferase shown in SEQ ID NO: 1.
  • Variants of sialyltransferases that have been modified as such and have the biological activity of sialyltransferases are also within the scope of the present invention.
  • Such a conservative substitution may be any substitution in the amino acid sequence shown in SEQ ID NO: 1 as long as the physiological activity of the polypeptide is maintained. That is, even if the 108th amino acid residue (T) force in the amino acid sequence shown in SEQ ID NO: 1 also occurs in the amino acid sequence up to the 499th amino acid residue (H), What happened! /.
  • the DNA encoding the sialyltransferase in the present invention hybridizes to the nucleotide sequence encoding the sialyltransferase disclosed in the present specification under mild or severe stringency conditions, and Also included are isolated DNAs and RNAs that encode sialyltransferases that are biologically enhanced compared to native enzymes or native enzymes lacking a membrane-bound region.
  • the nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 1 is also 499th
  • the transferase is expected to have a large effect of improving the activity by shortening.
  • Hybridization conditions due to severe stringency include, for example, 65 ° C in 0.5 M sodium phosphate pH 7.2, 1 mM EDTA, 7% SDS, 1% BSA described in Molecular Cloning etc.
  • hybridization was performed in 30% deionized formamide, 0.6M NaCl, 40 mM sodium phosphate pH7.4, 2.5 mM EDTA, 1% SDS at 42 ° C, followed by 2XSSC, 0.1
  • the conditions include, but are not limited to, washing in 10% twice at room temperature in% SDS and 1 hour at 55 ° C in the same buffer.
  • the C-terminal in the amino acid sequence represented by SEQ ID NO: 1 is also expected to exist even if it is deleted beyond 178 amino acid residues.
  • the peptide and the DNA encoding it are included in the present invention.
  • the present invention provides a peptide in which the N-terminal side of the peptide according to 17 above is gradually deleted from the 108th amino acid residue (T) to the 247th amino acid residue (I) in SEQ ID NO: 1.
  • the active N-terminal region is identified as the shortest peptide, and the N-terminal amino acid residue of the peptide is the N-terminal of the shortest active fragment of the sialic acid transferase of the peptide having the amino acid sequence shown by SEQ ID NO: 1. It also provides a way to determine.
  • the invention's effect is identified as the shortest peptide, and the N-terminal amino acid residue of the peptide is the N-terminal of the shortest active fragment of the sialic acid transferase of the peptide having the amino acid sequence shown by SEQ ID NO: 1. It also provides a way to determine. The invention's effect
  • the sialyltransferase derived from a microorganism of the genus Photopacteria or the sialyltransferase described in SEQ ID NO: 1 is a shortened enzyme, a natural enzyme or a natural enzyme
  • the enzyme activity is improved as compared with an enzyme having an amino acid strength that lacks the membrane-bound region.
  • the reason why the activity is improved is that the Km value of the enzyme with respect to the sugar donor substrate becomes very small, and the affinity with the sugar donor substrate is greatly improved.
  • the smaller Km value means that the enzyme acts even if the substrate concentration is lower.
  • the shortened enzyme of the present invention has a higher specific activity than the natural enzyme. Furthermore, it was confirmed that the production amount of the enzyme in the host cell increased due to the shortening type.
  • sialyltransferases that have been difficult to produce on a commercial scale can be produced in large quantities using genetic engineering techniques.
  • FIG. 1 is a diagram showing the creation of a Delhi clone of the sialyltransferase gene of the photobatterium damsera strain JT0160 and the construction of an expression vector.
  • FIG. 2 is a graph showing the relationship between culture time and growth of E. coli transformed with a gene encoding a truncated sialyltransferase.
  • FIG. 3 Graph showing the relationship between the sugar donor concentration and the initial rate of the truncated recombinant enzyme (N2C1)
  • FIG. 4 is an enlarged view of a portion A surrounded by a frame in FIG. Example
  • Photobatterium 'Damsera-derived j8-galactoside- ⁇ -2,6-sialyltransferase is a protein with a multi-domain structure consisting of 675 amino acids (patent No. 3140976). Signal peptide (Ml-A15), central catalytic region (C16- ⁇ 499), and membrane binding region ( ⁇ 500-D675) of C-terminal.
  • Signal peptide Ml-A15
  • C16- ⁇ 499 central catalytic region
  • membrane binding region ⁇ 500-D675
  • the amino acid sequence of the protein for which the function of Pasteurella multocida is unknown and the T113-W496 region are 34 in the National Enter for Biotechnology Information (NCBI) keyword.
  • NCBI National Enter for Biotechnology Information
  • D498-L674 area includes Photobactenum profundum, Yersinia pestis, Salmonella entenca, Viono
  • the restriction enzyme BspHI (Pd26N0, Nl, N2, N3) and BamHI (Pd26C0, CI) sites previously incorporated into the primers for cloning are underlined.
  • the translation initiation codon ATG and translation termination codon TAA (complementary sequence) are boxed.
  • the sequence of the primer sequence that is 3 ′ from the restriction enzyme site and annealed to the truncated DNA is shown in bold. Tm was calculated based on the sequence of this site.
  • the position on the gene sequence indicates the position on SEQ ID NO: 1.
  • the reaction was carried out as follows. In a reaction solution of 50 1, 75 ng, 10 (Ex taq buffer 5 ⁇ 1 2.5 mM each dNTPs 4 ⁇ 1, primer 10 pmoles each, Ex taq (Takara clay) 0.5 ⁇ ⁇ each, using Program Temp Control System PC-700 (ASTEK), 96 ° C 3 One minute, 96 ° C for 1 minute, 55 ° C for 1 minute, 72 ° C for 2 minutes 35 times, 72 ° C for 6 minutes once. As a result, PCR products were amplified using the primer combinations NO-CO, Nl-C0 N2-C0, N2-Cl N3- C0 N3-CI.
  • the eight PCR products, restriction enzymes Bs P HI (manufactured by New England Biolab Co.), was double digested with BamHl (Takara Co.), was gel purified.
  • the vector for expression of E. coli is pTrc99A (c
  • Pharmacia LKB Pharmacia LKB was used. This vector was double-digested with restriction enzymes Ncol (Takara) and BamHI and purified by gel.
  • Isopropyl-(-D (-)-thiogalactopyranoside, manufactured by Wako Pure Chemical Industries, Ltd.) was added at a final concentration of 1 mM to induce protein expression, and cultured with shaking at 30 ° C for an additional 4 hours.
  • the culture scale was 4 mL. After completion of the culture, the cells were collected by centrifugation.
  • the enzyme activity was determined by the method described in J. Biochem. 120, 104-110 (1996). It was measured. Specifically, the sugar donor substrate CMP-NeuAc (70 nmol, including neutron-labeled CMP-NeAc 25000cpm at 14 C, 356 cpm / nmol), ratose (1.25 ⁇ mol) as the sugar acceptor substrate, and the above The enzyme activity was measured using the reaction solution (20 ⁇ 1, ⁇ 5.0) containing the enzyme prepared by the method described above. The enzyme reaction was performed at 30 ° C for 9 hours.
  • E. coli transformed with clones with recognized enzyme activity (N0C0, N1C0, N2C0, N2C1) (12 hours at 30 ° C after inoculation on LB plate) Plates that were cultured and then stored at 4 ° C) were used as inoculum.
  • One platinum loop of cells was taken from each of the above plates and inoculated into a test tube containing 6 ml of LB liquid medium, and cultured with shaking (150 rpm) at 30 ° C for 12 hours.
  • the culture solution is 100 gZml. Help ampicillin! ]did.
  • the sugar donor substrate CMP-NeuAc 70 nmol, “C labeled NeuAc with C
  • each bacterial cell lysate was subjected to protein quantification using Coomassie Protein Assay Reagent (manufactured by PIERCE) according to the attached manual.
  • the growth of the transformant was as shown in FIG.
  • the enzyme activity per protein contained in each crude enzyme solution is 1.0 times, 3.0 times, and 9.6 times, respectively, when there is no deletion and the value is 1. (Table 3). Therefore, it can be presumed that the activity of the enzyme itself is improved even in consideration of the enzyme productivity of the transformant.
  • the enzyme reaction was performed in the following reaction solution ( ⁇ 5.0, 20 ⁇ 1). Various concentrations of the sugar donor substrate CMP- NeuAc (25.17- 178.3 ⁇ ⁇ , both CMP-NeuAc was labeled NeuAc 1 hand; including 25000cpm), using Ratatosu (1.25 / z mol) as a glycosyl acceptor substrate It was.
  • As the enzyme solution a solution obtained by performing the following treatment was used. After culturing E. coli transformed with an expression plasmid containing N2C1, 20 mM cacodylate buffer (pH 5.0) was added to the collected cells to suspend the cells. After that, the solution was sonicated to break the cells, and used as an enzyme solution.
  • the enzyme reaction was performed at V, the deviation was 30 ° C, and the reaction time was 5-10 minutes. End of enzyme reaction After completion, the initial velocity was calculated by measuring the radioactivity of NeuAc transferred to latatoses under each condition.
  • the crude enzyme solution of N2C1 enzyme obtained in Example 3 was subjected to ultracentrifugation treatment (X 100,000g, 1 hour, 4 ° C), and then an ion exchange column (Q-sepharose 26/10 column, manufactured by Amersham) It was used for. After the sample was added, it was washed with 2 column volume of 20 mM cacodylate buffer (pH 7.0) to remove proteins not adsorbed on the column. After that, using 20 mM cacodylate buffer (pH 7.0) and 20 mM cacodylate buffer (pH 7.0, containing 1M NaCl), the protein is eluted with a linear concentration gradient of NaCl, and sialic acid transfer activity The fraction in which was observed was collected.
  • the fraction showing enzyme activity was applied to a Hydroxyapatite column (manufactured by BioRad). After adding the sample, the column was washed with 2 column volume of 20 mM phosphate buffer (PH6.0) to remove proteins not adsorbed on the column. Then, the protein was eluted with a linear concentration gradient of phosphate using 20 mM phosphate buffer (pH 6.0) and 5 OO mM phosphate buffer (pH 6.0). The fraction in which metastatic activity was observed was collected. )
  • the enzyme activity was measured and the protein was quantified to calculate the specific activity of the enzyme.
  • the enzyme activity was measured by the method described in Example 2.
  • the protein was quantified using Coomassie Protein Assay Reagent (PIERCE) according to the attached manual.
  • the specific activity of the natural enzyme ST0160 which has also been purified from JT0160 strain, is 5.5 U / mg 'protein, and the molecular weight of the protein has been reported to be 61 kDa (Patent No. 3140976).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 フォトバクテリウム属微生物由来のシアル酸転移酵素が有するアミノ酸配列のN末端側の63ないし107アミノ酸残基を欠失させ、及び/又はC末端側のアミノ酸残基を137ないし178残基欠失させ、天然のシアル酸転移酵素に比べて酵素活性を高めたことを特徴とする、短縮型シアル酸転移酵素。                                                                                       

Description

明 細 書
短縮型シアル酸転移酵素
技術分野
[0001] 本発明は、天然のシアル酸転移酵素より活性の高いシアル酸転移酵素およびシァ ル酸転移酵素を高生産する方法に関する。
背景技術
[0002] 糖転移酵素は、生体内において糖タンパク質や糖脂質等の糖鎖の生合成に関与 する酵素である。そしてその反応生成物である糖タンパク質や糖脂質等の糖鎖 (以 下、複合糖質糖鎖)は、生体内において非常に重要な機能を有している。例えば、糖 鎖は、主に哺乳類細胞において、分化や発生における細胞間および細胞 細胞外 マトリックス間のシグナル伝達や複合糖質のタグとして機能する重要な分子であること などが明らかにされている。
[0003] 上記のとおり、糖鎖は非常に重要な機能を有しているが、これを応用した具体例と して、エリスロポエチンが挙げられる。エリスロポエチンは本来糖タンパク質であるが、 糖鎖の数を増カロさせ、その寿命を向上させた組換えエリスロポエチンタンパク質が作 製され、現在市販されている。
[0004] 今後もこのように糖鎖を応用した医薬品、機能性食品等の開発が想定される。その ため、糖鎖を合成 ·生産する手段としての糖転移酵素の重要性が増大して ヽる。
[0005] これまでに約 150種類以上の糖転移酵素遺伝子がヒト、マウス、ラット及び酵母等 の真核生物力 単離されており、さらに CHO細胞や大腸菌等を宿主細胞とする生産 系で糖転移酵素活性を有するタンパク質が発現されている。一方、原核生物である 細菌からも、いくつかの糖転移酵素遺伝子が単離されており、さらに大腸菌を用いる 組換え生産系で糖転移酵素活性を有するタンパク質が発現され、それらの基質特性 や酵素化学的な諸性質が明らかにされている。
[0006] 糖鎖を構成する糖の中でも、非還元末端に存在することの多!、シアル酸は、糖鎖 機能という観点力も極めて重要な糖である。従って、シアル酸転移酵素は、現在重要 性が増して!/ヽる糖転移酵素の中で最も需要が高!ヽ酵素の一つである。現在までに報 告されて!/、るシアル酸転移酵素の中で、大量に生産可能で安定な酵素の例として、 フォトバタテリゥム 'ダムセーラ(Photobacterium damsela )JT0160株(以下「JT0160株」 という。)由来の j8 -ガラクトシド - a 2,6-シアル酸転移酵素(以下「ST0160」という。)が 報告されて ヽる(特開平 8-154673;特許第 3062409号)。
ST0160のタンパク質は、遺伝子配列の解析の結果、 15個のアミノ酸残基 (配列番号 1の 1 15)からなるシグナル配列と C末端領域に存在する膜結合領域を含む、全長 675個のアミノ酸残基で構成されていた。しかし、 JT0160株力も精製した ST0160 ( =後述の天然型 ST0160)の N末端配列を解析したところ、その N末端アミノ酸配列 は、配列番号 1の 16番目力 のアミノ酸配列と一致しており遺伝子配列力 想定され るアミノ酸配列から、 N末端側の 15個のアミノ酸残基 (配列番号 1の 1 15)が欠損し ていた。さらに、この精製した ST0160 ( =後述の天然型 ST0160)の分子量は、 SDS PAGEで 61kDa、ゲルろ過で 64kDaであり、この分子量と後述の完全長酵素から N 末端側の 15個のアミノ酸残基 (配列番号 1の 1-15)を差し引いた酵素の分子量を比 較した場合、分子量に大きな差があり、完全長酵素の C末端側においても欠損があ ることが強く示唆される力 どの部分で欠損が起きているのかは不明である。但し、分 子量から、 C末端側において 137残基以上欠損がおきているということはありえない。
[0007] ST0160の生産性は、 ST0160を生産する JT0160株の培養条件、培地組成等を最 適化した場合、培養菌体を破砕して得られる溶液 1Lあたり約 550Uに及ぶ。しかしな がら、この方法の場合、高密度培養に限界があり、そのため更に酵素生産性を向上 させることは極めて困難である。(特開平 10-234373 ;特許第 3140976号)。
[0008] 一方、同酵素の遺伝子を発現プラスミドに組換え、それを大腸菌に組み込んだ場 合の酵素生産性についても報告がなされている(特開平 10-234373 ;特許第 3140976 号)。それによれば、 JT0160株からシアル酸転移酵素遺伝子(以下「bst遺伝子」 t ヽ う。)を単離して、その 3'側 (酵素タンパク質の C末端側)に存在する膜結合領域をコ ードする領域の途中 2箇所 (C末端から 137アミノ酸残基の位置と 178アミノ酸残基の 位置)に終止コドンを挿入し、膜結合領域を翻訳させないようなシアル酸転移酵素遺 伝子を作製して大腸菌に形質転換することで、組換え大腸菌から得られる培養菌体 破砕液の単位溶液量あたりのシアル酸転移酵素溶液の酵素活性が向上することが 明らかにされた。この場合に、シアル酸転移酵素遺伝子全てを形質転換した場合の 抽出液の酵素活性を 1とすると、シアル酸転移酵素の C末端から 137残基以降のアミ ノ酸を上述の方法で欠失させたもの( Δ 137)をコードする DNAを形質転換した場合 、 C末端から 178残基以降のアミノ酸を上述の方法で欠失させたもの( Δ 178)をコー ドする DNAを形質転換した場合の、それぞれの抽出液の酵素活性は、 1 : 1.7 : 3.6 ( Δ 178の酵素活性は、 Δ 137の酵素活性の、 2.1倍)であったと報告されている。 特許文献 1:特開平 8-154673
特許文献 2:特開平 10-234373
発明の開示
発明が解決しょうとする課題
[0009] 本発明が解決しょうとする課題は、フォトパクテリゥム属由来のシアル酸転移酵素か らより高機能の酵素を得るとともに、遺伝子組換技術でシアル酸転移酵素を高生産 する方法を開発することにある。
課題を解決するための手段
[0010] 本発明は、配列番号 1に記載のシアル酸転移酵素について、 N末端又は N末端と c末端の双方力 適切な数のアミノ酸を切断したシアル酸転移酵素 (本明細書中で 短縮型酵素と呼ぶことがある)、該酵素をコードする DNA、及び該 DNAを用いて宿 主菌を形質転換することにより、得られるシアル酸転移酵素溶液の酵素活性を向上 させる方法に関する。
[0011] 本発明者らは、配列番号 1に記載のシアル酸転移酵素から、 N末端又は N末端と C 末端の双方力 適切な数のアミノ酸をコードする領域を切断したペプチドをコードす る DNAで宿主菌を形質転換すると、宿主菌カゝら得られる酵素溶液の酵素活性が大 幅に向上することを見出した。
[0012] また本発明者らは、鋭意研究に努めた結果、配列番号 1に記載のシアル酸転移酵 素について、 N末端又は N末端と C末端の双方力 適切な数のアミノ酸を切断した酵 素が、フォトパクテリゥム属微生物力も得られる天然のシアル酸転移酵素(以下「天然 型酵素」と ヽぅ。ま T0160株由来の天然型酵素を特に「天然型 ST0610」 t 、う) )や 、天然型酵素から膜結合領域のみを削除したものと比べ、ミカエリス定数 (以下「Km 値」)が非常に小さくなり、糖供与体基質との親和性が大幅に向上することを見出した
[0013] ここで、本明細書及び請求の範囲を通して、膜結合領域とは、フォトパクテリゥム属 微生物由来のシアル酸転移酵素にお 、て、当該酵素が由来するフォトパクテリゥム 属微生物の細胞膜に結合する機能を持つアミノ酸配列をいうが、配列番号 1に記載 のシアル酸転移酵素では、 C末端力も少なくとも 178ァミノ残基までの領域を 、う。
[0014] 本発明においては、特開平 10-234373(特許第 3140976号)に記載の、全長 675個 のアミノ酸残基から構成される β -ガラタトシド- a 2,6-シアル酸転移酵素 ST0160 (配 列番号 1。配列番号 1に記載のアミノ酸配列を持つ酵素を、以下「完全長酵素」という 。)について、 C末端から 137アミノ酸残基のアミノ酸部分を切断することを目的として 、 bst遺伝子に終止コドンを挿入した発現プラスミド( Δ 137)を PCRのテンプレートと して使用し (N末端側についてはこれまでに報告されていたものと同じ)、 N末端に欠 失がないもの、 N末端から 63残基のアミノ酸をコードする塩基配列を欠失させた短縮 型 DNA、同じく N末端から 107残基のアミノ酸をコードする塩基配列を欠失させた短 縮型 DNAを作製した。そして、それらをそれぞれ大腸菌に形質転換し、 N末端に欠 失がな!ヽシアル酸転移酵素、 N末端カゝら 63残基のアミノ酸を欠失したシアル酸転移 酵素、 N末端から 107残基のアミノ酸を欠失した組換えシアル酸転移酵素を含んだ 酵素溶液を、それぞれ組換え大腸菌カゝら調整し、各粗酵素溶液の酵素活性を調査 した (なお、これらの酵素は、 C末端から 137アミノ酸残基まで欠失したものとなる)。 その結果、これらの粗酵素溶液の酵素活性は N末端に欠失がな ヽシアル酸転移酵 素と比較して、それぞれ 1. 2倍、 7. 6倍と、 N末端からの欠失部分が大きい DNAを 形質転換したものほど酵素活性が向上することを見出した。特に、 N末端側から 107 残基のアミノ酸を欠失した組換えシアル酸転移酵素の活性は非常に大きぐ特開平
10- 234373(特許第 3140976号)に記載されている、 C末端から 178残基欠失し膜結合 領域を失っているシアル酸転移酵素と比べても顕著に高かった (C末端 137残基欠 失させたもの(=天然型 ST0160の 1. 7倍の活性)から、 C末端 178残基欠失させた もの(天然型 ST0160の 3. 6倍の活性)に改変した時の活性向上は 2. 1倍( = 3. 6倍 /1. 7倍))。 [0015] また、 C末端側から 176残基のアミノ酸を欠失させ且つ N末端側から 107残基のアミ ノ酸欠失させたシアル酸転移酵素をコードする DNAを作製し、大腸菌に形質転換し たところ、抽出液の酵素活性は、前記の N末端側に欠失がないシアル酸転移酵素と 比べて約 33倍と大幅に上昇することを見出した。ここで、上記の結果 (N末端 107残 基欠失の効果 = 7. 6倍)と、特開平 10-234373(特許第 3140976号)に記載されている 、 C末端が 137残基欠失したものから C末端が 178残基欠失させたものに改変した時 の効果 (2. 1倍)から予想される、短縮型酵素 (N末端が 107残基欠失し且つ C末端 力 残基欠失した酵素)の活性( = 7. 6 X 2. 1 =約 16. 0倍)と比較しても顕著な 効果であった。
[0016] これらは、短縮型酵素をコードする DNAを形質転換した大腸菌が、天然型酵素を コードする DNAを形質転換した大腸菌と比べて酵素ペプチドをより多く生産した効 果と、短縮型酵素自体の酵素活性向上の相乗効果であると考えられた。
[0017] また、このシアル酸転移酵素の Km値は天然型 ST0160と比べ約 1Z3に低下して おり、糖供与体基質との親和性が大幅に向上していた。更に、天然型 ST0160から膜 結合領域を欠失させたシアル酸転移酵素の Km値と比較しても、大幅に低下して!/ヽ た。
[0018] なお、 N末端から 248残基のアミノ酸を欠失させたシアル酸転移酵素では、酵素活 性が認められな力 た。
[0019] ここで、本明細書及び請求の範囲を通して、シアル酸転移酵素活性の向上または 該活性が高いとは、天然型酵素、又は、天然型酵素から膜結合領域の全部または一 部が削除されている酵素と比較して、同じ微生物由来の短縮型シアル酸転移酵素に おいて、比活性が高いこと、 Km値が低いこと、または宿主細胞に生産させたときに、 同数の菌体を含む同量の培養液カゝら得られる粗酵素溶液の、単位溶液量あたりの 酵素活性が高まること、のいずれかを意味する。なお、粗酵素溶液は、通常、培養液 中の菌体を破砕して得られる力 これに限るものではない。
また、シアル酸転移酵素活性に関する比較及び Z又は倍率にっ ヽて言及するときの 活性の測定条件は、本明細書の実施例 2に記載したとおり、 J.Biochem. 120, 104-110 (1996)に記載されている条件で測定した値で行う。 Km値は、 Lineweaver— burk plotによって決定する。
[0020] 以上の結果に基づき、本発明の短縮型酵素は、完全長酵素ペプチドの N末端から 、好ましくは 63残基以上 107残基以下、さらに好ましくは 107残基のアミノ酸残基が 切断されている。しかし、 N末端から切断されるアミノ酸残基数は 248残基未満であ れば、シアル酸転移酵素活性が保持されているかぎり特に制限されるものではない。 また、完全長酵素ペプチドの C末端力ゝらの切断も、シアル酸転移酵素活性が保持さ れている限りば特に制限されるものではないが、好ましくは 137残基以上 178残基以 下、例えば好ましくは 176残基が切断される。これらの切断は、 N末端のみに対して 行ってもよいが、 N末端と C末端の両方を切断することが、活性向上の点でより好まし い。
[0021] 本明細書中で、特定のアミノ酸配列の一部に関する欠失、除外、削除、切断、短縮 等に言及するときは、アミノ酸残基の欠失は、連続的、部分的、間歇的であってよい。
[0022] 本発明においては、フォトパクテリゥム属微生物に由来するシアル酸転移酵素が有 するアミノ酸配列の N末端側のアミノ酸残基を、シアル酸転移活性を高めうる範囲で 欠失させ (例えば 248残基未満、好ましくは 63残基以上 107残基以下、さらに好まし くは 107残基欠失させ)、天然型のシアル酸転移酵素に比べて酵素活性を高めたこ とを特徴とする、短縮型シアル酸転移酵素ペプチドも提供する。
[0023] 本発明において、短縮型にしたとき活性が向上する好ましいフォトバクテリウム属微 生物のシアル酸転移酵素の一つは、配列番号 1に配列を示すフォトバタテリゥム 'ダ ムセーラ(Photobacterium damsela)が生産する酵素である。シアル酸転移酵素の好 まし 、ものは、 j8 -ガラタトシド- a 2,6-シアル酸転移酵素(ST0160)である。
[0024] したがって、本発明の短縮型酵素の一つの態様は、
1)配列番号 1に示される ST0160のアミノ酸配列中、 N末端から 538番目までのアミ ノ酸残基 (D)力もなるアミノ酸配列のうち、 108番目のアミノ酸残基 (T)力も 497番目 のアミノ酸残基 (A)からなるアミノ酸配列を含み、それ以外の領域のアミノ酸残基の 一部もしくは全部を欠失しており、但し、 N末端の 107アミノ酸残基までのアミノ酸配 列の少なくとも一部は必ず欠失したアミノ酸配列力もなることを特徴とし、配列番号 1 により示されるアミノ酸配列からなる完全長酵素よりも高 ヽ活性、好ましくは ST0160の 膜結合領域の一部(例えば、 C末端 137アミノ酸残基)又は実質的に全部(例えば C 末端 178アミノ酸残基)を欠失したアミノ酸配列からなるペプチドよりも高い活性を有 するペプチドからなるシアル酸転移酵素、である。
[0025] 本態様に属する具体的な短縮型酵素は、特許請求の範囲の請求項 3— 6に記載さ れているが、より具体的には、下記のものが挙げられる。
[0026] 2)配列番号 1に示されるアミノ酸配列中の N末端から 63番目のアミノ酸残基 (P)ま での一部を欠失し、及び 539番目のアミノ酸残基 (L)以後の C末端側の領域の一部 を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素。
[0027] 3)配列番号 1に示されるアミノ酸配列中の N末端から 63番目のアミノ酸残基 (P)ま での一部を欠失し、及び 539番目のアミノ酸残基 (L)以後の C末端側の領域の全部 を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素。
[0028] 4)配列番号 1に示されるアミノ酸配列中の N末端から 63番目のアミノ酸残基 (P)ま での全部を欠失し、及び 539番目のアミノ酸残基 (L)以後の C末端側の領域の一部 を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素。
[0029] 5)配列番号 1に示されるアミノ酸配列中の N末端から 63番目のアミノ酸残基 (P)ま での全部を欠失し、及び 539番目のアミノ酸残基 (L)以後の C末端側の領域の全部 を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素 (N1C0 ;配列表 5)。
[0030] 6)配列番号 1に示されるアミノ酸配列中の N末端から 63番目のアミノ酸残基 (P)ま での一部を欠失し、及び 500番目のアミノ酸残基 (K)以後の C末端側の領域の一部 を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素。
[0031] 7)配列番号 1に示されるアミノ酸配列中の N末端から 63番目のアミノ酸残基 (P)ま での一部を欠失し、及び 500番目のアミノ酸残基 (K)以後の C末端側の領域の全部 を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素。
[0032] 8)配列番号 1に示されるアミノ酸配列中の N末端から 63番目のアミノ酸残基 (P)ま での全部を欠失し、及び 500番目のアミノ酸残基 (K)以後の C末端側の領域の一部 を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素。
[0033] 9)配列番号 1に示されるアミノ酸配列中の N末端から 63番目のアミノ酸残基 (P)ま での全部を欠失し、及び 500番目のアミノ酸残基 (K)以後の C末端側の領域の全部 を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素。
[0034] 10)配列番号 1に示されるアミノ酸配列中の N末端から 107番目のアミノ酸残基 (L) までの一部を欠失し、及び 539番目のアミノ酸残基 (L)以後の C末端側の領域の一 部を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素。
[0035] 11)配列番号 1に示されるアミノ酸配列中の N末端から 107番目のアミノ酸残基 (L) までの一部を欠失し、及び 539番目のアミノ酸残基 (L)以後の C末端側の領域の全 部を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素。
[0036] 12)配列番号 1に示されるアミノ酸配列中の N末端から 107番目のアミノ酸残基 (L) までの全部を欠失し、及び 539番目のアミノ酸残基 (L)以後の C末端側の領域の一 部を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素。
[0037] 13)配列番号 1に示されるアミノ酸配列中の N末端から 107番目のアミノ酸残基 (L) までの全部を欠失し、及び 539番目のアミノ酸残基 (L)以後の C末端側の領域の全 部を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素 (N2C0 ;配列表 6)
[0038] 14)配列番号 1に示されるアミノ酸配列中の N末端から 107番目のアミノ酸残基 (L) までの一部を欠失し、及び 500番目のアミノ酸残基 (K)以後の C末端側の領域の一 部を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素。
[0039] 15)配列番号 1に示されるアミノ酸配列中の N末端から 107番目のアミノ酸残基 (L) までの一部を欠失し、及び 500番目のアミノ酸残基 (K)以後の C末端側の領域の全 部を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素。
[0040] 16)配列番号 1に示されるアミノ酸配列中の N末端から 107番目のアミノ酸残基 (L) までの全部を欠失し、及び 500番目のアミノ酸残基 (K)以後の C末端側の領域の一 部を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素。
[0041] 17)配列番号 1に示されるアミノ酸配列中の N末端から 107番目のアミノ酸残基 (L) までの全部を欠失し、及び 500番目のアミノ酸残基 (K)以後の C末端側の領域の全 部を欠失したペプチドからなる、上記 1記載のシアル酸転移酵素 (N2C1;配列表 7)
[0042] ST0160以外にも、フォトバタテリゥム属微生物が生産するシアル酸転移酵素は存 在しており、それら各シアル酸転移酵素の短縮型酵素は、それぞれ本発明の別の態 様を形成する。
[0043] 本発明は本発明の短縮型シアル酸転移酵素をコードする DNAも提供する。
[0044] 本発明にお 、て、 N末端及び,又は N末端と C末端の双方が切断された短縮型シ アル酸転移酵素を生産する方法に特に制限はないが、遺伝子工学的手法で製造す るためには、対応する短縮型の DNAを製造する。例えば、天然型シアル酸転移酵 素遺伝子の配列に基づいて、 目的の短縮型シアル酸転移酵素 DNAを製造できるプ ライマー対を設計する。これらのプライマー対を用い、天然シアル酸転移酵素遺伝子 を铸型として、 PCRによって DNAを増幅すれば、短縮型シアル酸転移酵素をコード する DNAが得られる。铸型とするシアル酸転移酵素遺伝子の好ましい例は、フォト バタテリゥム.ダムセーラ JT0160 (FERM BP— 4900)由来のものである。
[0045] したがって、本発明の DNAの好ましい例は、配列番号 1に示されるアミノ酸配列中 の 108番目のアミノ酸残基 (T)力も 497番目のアミノ酸残基 (A)までのアミノ酸残基 を含み、それ以外の領域のアミノ酸残基の一部もしくは全部を欠失しており、但し、 N 末端から 107番目のアミノ酸残基までのアミノ酸配列の全部又は一部は必ず欠失し たアミノ酸配列力 なるシアル酸転移酵素活性を有するペプチドをコードする DNA である。そのような DNAは、配列番号 1に示されるヌクレオチド配列中の 322番目の 塩基 (a)な 、し 1497番目の塩基 (t)力もなるヌクレオチド配列(配列番号 4)を含む D NAであり、より具体的な例には、上記 2ないし 17のいずれかに記載のペプチドをコ ードするヌクレオチド配列からなる DNAが挙げられる。本発明の DNAは、場合により 開始コドン、シグナル配列、及び Z又は終止コドンを含んでよい。例えば、 ST0160の 短縮型酵素をコードする DNAは、配列番号 1における開始コドン及びそれに続く 15 番目のアミノ酸残基までをコードするヌクレオチド領域を含んでもよい。
[0046] なお、コドンの縮重のため同じペプチド配列をコードするヌクレオチド配列が複数存 在することはよく知られている。本発明の DNAをそれがコードするアミノ酸配列で規 定したときは、当該アミノ酸配列をコードしうる任意のヌクレオチド配列からなる DNA を意味する。
[0047] 本発明はまた、本発明の短縮型シアル酸転移酵素ペプチドをコードするヌクレオチ ド配列と相補するヌクレオチド配列からなる DNAまたは RNAも包含する。
[0048] 本発明の DNAは適当な発現ベクターに組み込んで用いる。典型的には発現べク ターは、本発明の DNAを発現させるための制御要素として、例えばプロモーター、 ェンハンサー、ターミネータ一等を適宜含んでいてよい。プロモーターは構成的に発 現を司るものでもよぐあるいは好ましくは発現時期が制御可能なプロモーターである 。当該ベクターで宿主細胞、例えば大腸菌細胞を形質転換する。当該形質転換細 胞を好ましくは液体培地で培養して本発明の短縮型シアル酸転移酵素を生産させる 。生産された短縮型シアル酸転移酵素は、常法により単離回収することができる。好 ましい発現ベクター、宿主細胞、宿主細胞の培養条件等に関する選定は、天然のシ アル酸転移酵素の遺伝子工学による生産に関する特開平 10-234373の記載及び通 常の遺伝子工学技術に基づいて、当業者が適宜決定することができる。
[0049] したがって、本発明は本発明の DNAを組み込んだ発現ベクター、該発現ベクター で形質転換した宿主細胞、該細胞を培養して本発明の短縮型シアル酸転移酵素を 製造する方法も包含する。本発明の方法で製造された短縮型シアル酸転移酵素は、 同一の微生物に由来する天然型酵素あるいは同酵素の C末端の膜結合領域の一部 または大部分が欠失したものよりも活性が高い。
[0050] さらに、本発明の短縮型シアル酸転移酵素は、上記 1に記載の短縮型ペプチドの アミノ酸配列、例えば上記 5、 13、 17に記載の短縮型ペプチドのアミノ酸配列(それ ぞれ、配列番号 5、 6または 7)と 60%以上、より好ましくは 70%以上、さらに好ましく は 80%以上、特に好ましくは 90%以上、最も好ましくは 95%以上の相同性を有する アミノ酸配列を有し、且つ上記 1の短縮型シアル酸転移酵素と同等の活性を有するも のも包含する。相同性の比較は BLASTアルゴリズムにより、パラメータはデフォルト の状態で用いるか、適宜最適化して行う。
[0051] なお、本明細書及び請求項の範囲の記載において、同等の活性というときは、比較 する短縮型のシアル酸転移酵素の活性と同一もしくはそれ以上の活性であるカゝ、あ るいは、同一の微生物に由来する天然型シアル酸転移酵素または天然型シアル酸 転移酵素から膜結合領域を欠失したものの活性よりも前記の定義に従って向上した 活性を有していることを意味する。例えば、天然型 ST0160または膜結合領域を欠失 した ST0160よりも高い活性を有する短縮型シアル酸転移酵素であることを意味する 。本発明の短縮型 ST0160の活性は、 N末端側は実質的に欠失せず膜結合領域の 大部分を欠失した ST0160に比べて有意に高ぐ好ましくは 5— 8倍以上高ぐ最も好 ましくは約 30倍以上高 、ことを特徴とする。
[0052] 一般に生理活性を有するポリペプチドのアミノ酸配列が多少変更された場合、即ち 、該アミノ酸配列の中の 1または複数のアミノ酸が置換され若しくは欠失し、または 1ま たは複数のアミノ酸が付加された場合でも該ポリペプチドの生理活性が維持されるこ とがあるのは周知の事実である。例えば、変異体は保存的に置換された配列を含ん でいてもよぐこれは、特定のアミノ酸残基が類似の物理化学的特徴を有する残基に よって置き換えられて 、てもよ 、ことを意味して 、る。保存的置換の非限定的な例に は、疎水性アミノ酸群内の置換、親水性アミノ酸群内の置換、荷電アミノ酸群内の置 換等が含まれる。力かる置換の方法はよく知られているが、例えば、部位特異的変異 法、形質転換体を変異原で処理する方法、遺伝子を選択的に開裂し、次に選択され たヌクレオチドを除去、付加または置換し、ついで連結する方法等により行うことがで きる。したがって、本発明は、配列番号 1に記載のシアル酸転移酵素から、その N末 端又は N末端と C末端の双方から適切な長さを切断した本発明の短縮型酵素にお いて、このような修飾が加えられ、かつシアル酸転移酵素の生物活性を有するシアル 酸転移酵素の変異体も本発明の範囲内である。このような保存的置換は、配列番号 1に示されるアミノ酸配列中のどこで置換されたものでも該ポリペプチドの生理活性が 維持されていれば構わない。即ち、配列番号 1に示されるアミノ酸配列中の 108番目 のアミノ酸残基 (T)力も 499番目のアミノ酸残基 (H)までのアミノ酸配列の中で起こつ たものであっても、その外側で起こったものであってもよ!/、。
[0053] また本発明におけるシアル酸転移酵素をコードする DNAには、温和なまたは苛酷 なストリンジエンシーの条件下で本明細書に開示したシアル酸転移酵素をコードする 塩基配列にハイブリダィズし、かつ天然型酵素または膜結合領域を欠失した天然型 酵素に比べて生物学的に活性が向上したシアル酸転移酵素をコードする単離され た DNA及び RNAも含まれる。例えば、配列番号 1に示すアミノ酸配列をコードする ヌクレオチド配列(特に、少なくともその 108番目のアミノ酸残基 (T)力も 499番目の アミノ酸残基 (H)までのアミノ酸配列をコードするヌクレオチド配列)と、温和な!/ヽし過 酷なストリンジェント条件でノヽイブリダィズする DNAの相補配列がコードするペプチド をペプチド配列中に含むシアル酸転移酵素は、短縮ィ匕による活性向上効果が大き いと期待される。過酷なストリンジエンシーによるハイブリダィゼーシヨンの条件として は、例えば、 Molecular Cloning等に記載されている、 0.5M sodium phosphate pH7.2、 1 mM EDTA、 7% SDS、 1% BSA中で 65°Cでハイブリダィゼーシヨンさせた後、 40 mM sodium phosphate buffer pH7.2、 1 mM EDTA, 5% SDS、 0.5% BSA中で 65。C、 40 mM sodium phosphate buffer pH7.2、 1 mM EDTA, 1% SDS中で 65°C、洗浄操作を行うと いう条件、より温和なストリンジエンシーによるハイブリダィゼーシヨンの条件としては、 0.5M sodium phosphate pH7.2、 1 mM EDTA、 7% SDS、 1% BSA中で 55°Cでハイブリ ダイゼーシヨンさせた後、 40 mM sodium phosphate buffer pH7.2、 1 mM EDTA, 5% SDS、 0.5% BSA中で 55°C、 15分を 2回、 40 mM sodium phosphate buffer pH7.2、 1 mM
EDTA, 1% SDS中で 55°C、 15分を 2回、洗浄操作を行うという条件、あるいは
Molecular Cloningに記載されているように、 30% deionized formamide, 0.6M NaCl, 40 mM sodium phosphate pH7.4, 2.5 mM EDTA, 1% SDS中で 42°Cで、ハイブリダィゼ ーシヨンさせた後、 2XSSC, 0.1% SDS,中で室温で 10分を 2回、さらに同じ buffer中で 55 °Cで 1時間洗浄操作を行うという条件が挙げられるが、これらに限定されるものではな い。
[0054] 以上説明した通り、本発明によれば、配列番号 1により示されるアミノ酸配列中の N 末端から 107番目のアミノ酸残基 (L)まで削除しても、シアル酸転移酵素活性が天 然型酵素より高いこと、及び 248番目(E)まで削除すると酵素活性が失われることが 判明した。したがって、 107番目を超え 248番目以前のいずれかのアミノ酸残基まで 削除しても、酵素活性が維持されている可能性が大きぐそのような場合も、天然型 酵素または天然型酵素から膜結合領域を欠失したものより活性が大きいものは本発 明の短縮型シアル酸転移酵素に含まれる。また、それをコードする DNAも本発明に 含まれる。
[0055] さらに、配列番号 1により示されるアミノ酸配列中の C末端についても、 178アミノ酸 残基を超えて削除しても、活性を有し、存在すると予測され、そのような酵素活性べ プチド及びそれをコードする DNAは本発明に含まれる。
[0056] また、本発明は、上記 17記載のペプチドの N末端側を配列番号 1における 108番 目のアミノ酸残基 (T)から 247番目のアミノ酸残基 (I)まで徐々に削除したペプチドを 製造し;
製造されたペプチドのシアル酸転移酵素活性を測定し;
活性を有する N末端領域が最短のペプチドを突き止めて、当該ペプチドの N末端 アミノ酸残基を、配列番号 1により示されるアミノ酸配列力 なるペプチドのシアル酸 転移酵素の最短の活性フラグメントの N末端であると決定する方法も提供する。 発明の効果
[0057] 本発明によれば、フォトパクテリゥム属微生物由来のシアル酸転移酵素または配列 番号 1に記載のシアル酸転移酵素は、短縮型の酵素にした場合に、天然型酵素や 天然型酵素から膜結合領域を欠失したアミノ酸力 なる酵素に比べて酵素活性が向 上する。本発明において、活性が向上する理由には酵素の糖供与体基質に対する Km値が非常に小さくなり、糖供与体基質との親和性が大幅に向上することが特筆さ れる。 Km値が小さくなることは、基質の濃度がより低くても酵素が作用する。また同 一濃度の基質においても本発明の短縮型酵素は天然型酵素に比べて比活性が高 い。さらに、短縮型になったことにより、宿主細胞中の酵素の生産量が増大することも 確認された。
[0058] このように、本発明によれば、これまで商業的規模での生産が困難であったシアル 酸転移酵素を、遺伝子工学の手法を用いて大量に製造することが可能である。 図面の簡単な説明
[0059] [図 1]フォトバタテリゥム 'ダムセーラ JT0160菌株のシアル酸転移酵素遺伝子のデリー シヨンクローンの作成と発現ベクターの構築を示す図である。
[図 2]短縮型シアル酸転移酵素をコードする遺伝子で形質転換した大腸菌の、培養 時間と増殖の関係を示すグラフである。
[図 3]短縮型の組換え酵素 (N2C1)の糖供与体濃度と初速度の関係を示すグラフ
(Lineweaver- burk plot)である。
[図 4]図 1の枠で囲った部分 Aの拡大図である。 実施例
[0060] 実施例 1
フォトバタテリゥム 'ダムセーラ由来の α - 2,6シアル酸転移酵素遺伝子の欠失クロ ーンの作成
1-1.プライマー設計
フォトバタテリゥム 'ダムセーラ由来の j8 -ガラクトシド - α -2,6シアル酸転移酵素(S T0160)は、全長 675アミノ酸カゝらなるマルチドメイン構造を有するタンパク質で (特許 第 3140976号)、 Ν末のシグナルペプチド(Ml-A15)、中央部の触媒領域(C16— Η49 9)、 C末の膜結合領域 (Κ500— D675)力もなる。また、そのアミノ酸配列は、 National し enter for Biotechnology Information (NCBI)のァ ~~タへ' ~~ス GeneBankにおける BLAST検索力ら、 Pasteurella multocidaの機能が未知のタンパク質と、 T113- W496の 領域で 34%の相同性が(図 1参照)、 Haemophilus ducreyiの hypothetical protein HD0053と、 V109-D465の領域で 25%の相同性を示す。さらに D498-L674の領域は、 Photobactenum profundum、 Yersinia pestis、 Salmonella entenca、 Viono
parahaemolyticusの Putative phosphate transport system regulatory protein PhoUと 68- 87%の相同性を示す。これらの情報と、 Photobacterium damsela α - 2,6シアル 酸転移酵素遺伝子の塩基配列(GeneBankァクセッション番号 Ε17028、 2743 bp)を参 考に、以下のプライマーを設計、合成した (表 1、図 1参照)。組み合わせとして、 N末 側のプライマー 4つと、 C末側プライマー 2つで、計 8組み合わせとなる。
[0061] [表 1]
表丄 設計したプライマーの一覧
名称 塩基配列 (5' →3' ) Tm 遺伝子 DNA
配列上の位置
N末側プライマ一
I 2&N0 tgtgc 11 aj jatgjaagaaaatactgacagt t c 58 -22
(配列番号 8)
Pd26Nl atgtggc atc[a l¾alcttgaat aaagt gacaag 56 190-210
(配列番号 9)
Pd26N2 aaa t ac aa 1 φ t gac t gt tgt tgcacc t cgc 58 322-340
(配列番号 1 0 )
Pd26N3 aaataagalc|atg(acattagaaggtgaagta1cg 58 745-765
(配列番号 1 1 )
C末側プライマー
Pd26C0 gt t tc t igggatcc[t taatcgagcalagtaccaaaatc
(配列番号 1 2 )
Pd26Cl tccatcgaggatcc[t ta|atgatcagcccagaacagaac
(配列番号 13 )
[0062] クロー-ング用にプライマーに予め組み込んだ制限酵素 BspHI (Pd26N0、 Nl、 N2、 N3)、 BamHI(Pd26C0、 CI)部位を下線で示した。翻訳開始コドン ATG、翻訳終止コド ン TAA (この相補配列)を四角で囲んだ。さらに、プライマー配列のうち、制限酵素部 位より 3'側で、铸型 DNAとアニーリングする部分の配列を太字で示した。 Tmはこの部 位の配列に基づいて算出した。また遺伝子配列上の位置は、配列番号 1上の位置を 示している。
1-2. PCR
ST0160の C末端側から 137アミノ酸残基を欠失させた発現プラスミド( Δ 137)を PCR のテンプレートとして使用し、当該遺伝子の N末端側と C末端側がそれぞれさらに欠 失した DNAクローンのクローユングを試みた。
[0063] 反応は以下のように行った。 50 1の反応液中に、铸型 DNA 75 ng, 10 ( Ex taq buffer 5 μ 1 2.5 mM each dNTPs 4^ 1, primer 10 pmoles each, Ex taq (Takaraネ土製 ) 0.5 μ\をそれぞれ含み、プログラムテンプコントロールシステム PC- 700 (ASTEK社 )を用いて、 96°C 3分を 1回、 96°C 1分、 55°C 1分、 72°C 2分を 35回、 72°C 6分を 1回 行った。その結果、 NO-CO, Nl- C0 N2-C0, N2- Cl N3- C0 N3 - CIのプライマー組 み合わせにおいて、 PCR産物が増幅された。
1-3.欠失クローンを発現するベクターの構築
上記 8種類の PCR産物を、制限酵素 BsPHI(New England Biolab社製)、 BamHl( Takara社製)で二重消化した後、ゲル精製した。大腸菌発現用ベクターは pTrc99A( c
Pharmacia LKB社製)を用いた。このベクターを制限酵素 Ncol (Takara社製)と BamHI で二重消化しゲル精製したものを、上述の制限酵素処理を施した PCR産物とライゲ o s
ーシヨンし、大腸菌 TBIに組み込んだ (BspHIと Ncolは、同じ切断面を産む)。その結 果、全ての PCR産物の発現ベクターへの組み込みに成功した。
[¾2] 表 2 各欠失クローンのアミノ酸配列の、 Photobacleriura damsela α-2, 6 シアル酸 転移酵素に対する対応表
クローン 対応する DNA 対応するアミノ酸 サイズ
配列部分 配列部分 (アミノ酸)
N0-CO 1 -2028 538
N1-C0 I64-D538 475+M
N2-C0 322-2028 431+M
N2-C1 392 + M
N3-C0 745-2028 T249-D538 290 + M
N3-C1 745— 1497 T249-H499 2SI+M
Photobacterium damsela a -2,6シアル酸転移酵素遺伝子(GeneBnkァクセッション 番号 E17028)における、対応する DNA、アミノ酸配列部分を示した。 C0を用いたクロ ーンにおいては、铸型に用いた DNAクローン(Δ 137)において、 L539 E540 R541 が全て終止コドンに置き換わっているため、翻訳は D538までとなる。また N0を用いな かったクローンにおいては、 N末端に翻訳開始メチォニン (M)が新たに付加されてい る(+ Mと表記)。
1-4.発現誘導実験
表 2のクローンのうち、 NO- C0、 Nl- C0、 N2- C0、 N2- Cl、 N3- CIに関して、タンパク 質発現誘導実験を行った。各クローンが組み込まれた発現ベクター pTrc99Aをもつ 大腸菌 TBIの単一コロニーを、抗生物質アンピシリン (最終濃度 100(g/mL)を含む LB 培地に接種し、 A =0.5程度になるまで菌を前培養し、その後 IPTG (
600
Isopropyl-(-D(-)-thiogalactopyranoside,和光純薬社製)を最終濃度で 1 mM加えタ ンパク質発現を誘導し、 30°Cでさらに 4時間振とう培養した。培養スケールは 4mLとし た。培養終了後、菌体を遠心分離によって集めた。
[0066] 上記クローンが組み込まれた発現ベクターで形質転換した大腸菌から、調製した粗 酵素溶液を用いて、酵素活性を J. Biochem. 120, 104-110(1996)に記載されている方 法で測定した。具体的には、糖供与体基質 CMP-NeuAc (70nmol、 14Cで NeuAcをラベ ルした CMP- NeuAc 25000cpmを含む、 356cpm/nmol)、糖受容体基質としてラタトー ス(1.25 μ mol)及び、上記に記した方法で調製した酵素を含む反応溶液 (20 μ 1、 ΡΗ5.0)を用いて、酵素活性を測定した。酵素反応は 30°Cで 9時間行った。
[0067] 反応終了後、反応溶液に 1.98mlの 5mMリン酸緩衝液 (pH6.8)を加え、この溶液を Dowexl X 8 (PO 3"form, 0.2 X 2cm)カラムに供した。このカラムの溶出液(0— 2ml)に
4
含まれる反応生成物(=シァリルラタト-ス)由来の放射活性を測定することで、酵素 活性を算出した。
[0068] その結果、酵素活性を有するクローンは, N0C0、 N1C0、 N2C0、 N2C1であった 実施例 2 各種組換え大腸菌の生育と酵素生産との関係
材料および方法
実施例 1で構築した各種の発現プラスミドの内、酵素活性の認められたクローン( N0C0、 N1C0、 N2C0、 N2C1)を用いて形質転換した大腸菌(LBプレートに植菌後、 30°Cで 12時間培養し、その後 4°Cで保存したプレート)を種菌とした。上記のプレート からそれぞれ 1白金耳分の菌体をとり、 6mlの LB液体培地を含む試験管にそれぞれ 接種し、 12時間、 30°Cで振とう培養(150rpm)した。なお、培養液には 100 gZmlとな るようにアンピシリンを添力!]した。
[0069] その後、この液体培養液を種菌として、 300mlの LB液体培地に対して 1%接種して 、本培養を開始した。培養は 30°C、 180rpmで振とう培養で実施した。その後、経時的 に菌体の増殖、酵素活性を測定した。なお本培養の際には、培養液に ImMとなるよう に IPTGを、 100 /z gZmlとなるようにアンピシリンをそれぞれ添カ卩した。菌体の増殖は、 培養液の OD600nmを測定することでモニターした。それぞれの菌体の増殖を図 2に 示す。酵素溶液の調製は、経時的にサンプリングした培養液 2mlを遠心分離( 15,000rpm、 3min、 4°C)して菌体を集め、菌体に 0.2%の TritonX- 100を含む 20mM力 コジレート緩衝液 (PH5.0)を 100 1カ卩えて菌体を懸濁後、超音波処理を行うことで調 製した。この菌体破砕液を酵素源(=粗酵素溶液)として酵素活性を測定した。
[0070] 酵素活性は、 J. Biochem. 120, 104-110(1996)に記載されている方法で測定した。
具体的には、糖供与体基質 CMP-NeuAc (70nmol、 "Cで NeuAcをラベルした
CMP- NeuAc25000cpmを含む、 356cpmZnmol)、糖受容体基質としてラタトース(1.25 μ mol)及び、上記に記した方法で調製した酵素を含む反応溶液 (20 μ 1、 ρΗ5.0)を 用いて、酵素活性を測定した。酵素反応は 30°Cで 10分間行った。
[0071] 反応終了後、反応溶液に 1.98mlの 5mMリン酸緩衝液 (pH6.8)を加え、この溶液を Dowexl X 8 (PO 3-form, 0.2 X 2cm)カラムに供した。このカラムの溶出液(0— 2ml)に
4
含まれる反応生成物(=シァリルラタト-ス)由来の放射活性を測定することで、酵素 活性を算出した。
[0072] また、各菌体破碎液にっ 、て、 Coomassie Protein Assay Reagent (PIERCE社製)を 用いて、添付されてきたマニュアルにしたがってタンパク質の定量を行った。
結果
形質転換体の生育は、図 2に示すとおりであった。
[0073] N末端側に欠失が無く C末端側から 137残基欠失したもの (N0C0酵素)、 N末端側 から 63残基欠失し C末端側から 137残基欠失したもの (N1C0酵素)、 N末端側から 1 07残基欠失し C末端側から 137残基欠失したもの (N2C0酵素)、 N末端側から 107 残基欠失し C末端側から 176残基欠失したもの (N2C1酵素)のそれぞれから調製し た粗酵素溶液の最大酵素活性は、欠失の無いものを 1とした場合、それぞれ 1. 2倍 、 7. 6倍、 32. 9倍に増加した (表 3)。
[0074] また、同数の形質転換体力も得られた粗酵素溶液 1L中に含まれるタンパク質量も
、 N末端からの欠失が大きいものほど大き力つた (表 3)。形質転換した DNA以外の 諸条件は同じであるため、この結果は、欠失の大きい DNAを形質転換した形質転換 体の、酵素生産性が向上したことによると推測される。
[0075] さらに、それぞれの粗酵素溶液の含有タンパク質当りの酵素活性は、欠失の無レ、も のを 1とした場合、それぞれ 1. 0倍、 3. 0倍、 9. 6倍となった(表 3)。従って、前記の 形質転換体の酵素生産性を考慮しても、酵素自体の活性が向上していると推測でき る。
[0076] [表 3] 各菌株から得られた粗酵素溶液の酵素活性
Figure imgf000020_0001
[0077] 実施例 3 組換え N2C1酵素の性質
(1) CMP— NeuAcに対する Km値の測定
酵素反応は、以下に示す反応溶液 (ρΗ5.0、 20 ^ 1)中で行った。様々な濃度の糖 供与体基質 CMP- NeuAc (25.17— 178.3 μ Μ、いずれも1てで NeuAcをラベルした CMP-NeuAc;25000cpmを含む)、糖受容体基質としてラタトース(1.25 /z mol)を用い た。酵素溶液は、以下の処理を行って得られた溶液を用いた。 N2C1を含む発現ブラ スミドで形質転換した大腸菌を培養後、集めた菌体に 20mMカコジレート緩衝液 (p H5.0)を添加して、菌体を懸濁した。その後、同溶液を超音波処理することで菌体を 破際したものを酵素溶液とした。
[0078] 酵素反応は、 V、ずれも 30°Cで行 、、反応時間は、 5— 10分間行った。酵素反応終 了後、それぞれの条件にぉ 、てラタトースに転移された NeuAcの放射活性を測定して 初速度を算出した。
[0079] 上記の結果得られた初速度、それぞれの糖供与体基質濃度 (表 4)を
Lineweaver- burk plotにプロットして、糸且換え体酵素(N2C1酵素)の CMP- NeuAcに対 する Km値を求めたところ(図 3)、その値は 93 μ Μであった。この値は非組換え体の Km値 (320 /ζ Μ)と比較すると、約 1Ζ3程度に低下していた。このことは、組換え体酵 素 N2C1の CMP-NeuAcに対する親和性が約 3倍になったことを示しており、このシァ ル酸転移酵素を用いる糖鎖合成にぉ 、て、極めて有用であることを示して 、る。
[0080] [表 4] 表 4 糖供与体基質濃度と酵素活性 (初速度) 基質濃度 (mM) 酵素活性 ) MS) 1/M
0.025175 0.239 39.72195 4.1841
0.04705 0.385 21.25399 2.597403
0.0908 0.579 11.01322 1.727116
0.1783 0.708 5.608525 1.412429
Km= 9 3 M (CMP-NeuAcに対して)
[0081] 実施例 4 N2C1が生産する組換え酵素の精製
材料および方法
(1)組換え N2C1酵素の精製
実施例 3で得られた N2C1酵素の粗酵素溶液を、超遠心分離処理(X 100,000g、 1 時間、 4°C)した後に、イオン交換カラム(Q- sepharose 26/10カラム、アマシャム社製) に供した。サンプルを添加後、 2カラムヴォリュームの 20mM カコジレート緩衝液 (p H7.0)で洗浄して、同カラムに吸着しないタンパク質を除去した。その後に、 20mM カコジレート緩衝液(pH7.0)と 20mM カコジレート緩衝液(pH7.0、 1M NaClを含む) を用いて、 NaClの直線的な濃度勾配でタンパク質の溶出を行い、シアル酸転移活性 が認められた画分を分取した。その後、酵素活性を示す画分を Hydroxyapatiteカラム (BioRad社製)に供した。サンプルを添加後、 2カラムヴォリュームの 20mM リン酸緩 衝液 (PH6.0)で洗浄して、同カラムに吸着しないタンパク質を除去した。その後に、 20mM リン酸緩衝液 (pH6.0)と5 OOmM リン酸緩衝液 (pH6.0)を用いて、リン酸ィォ ンの直線的な濃度勾配でタンパク質の溶出を行 ヽ、シアル酸転移活性が認められた 画分を分取した。 )
Hydroxyapatiteカラムにより得られた高 、シアル酸転移活性を示す画分にっ 、て、 酵素活性の測定とタンパク質の定量を行い、酵素の比活性を算出した。酵素活性は 実施例 2に記載された方法により測定した。また、タンパク質の定量は、 Coomassie Protein Assay Reagent (PIERCE社製)を用いて、添付されてきたマニュアルにしたが つて実施した。
[0082] 結果を表 5に示す。その結果、組換え体酵素の比活性は 18.79UZmg'タンパク質と 算出された。
[0083] ところで JT0160株力も精製した天然型酵素 ST0160の比活性は、 5.5U/mg 'タンパ ク質であり、そのタンパク質の分子量は、 61kDaと報告されている(特許第 3140976号) 。ここで、遺伝子配列から推定される N2C1酵素タンパク質の分子量は 43.4 kDaであり 、タンパク質の分子量力 考えた場合、 N2C1の比活性は 5.5UZmg'タンパク質 X ( 61 kDa/43.4 kDa) =7.7UZmg'タンパク質になると想定される。しかしながら、 Hydroxyapatiteカラムで得られた高いシアル酸転移活性を示す画分の比活性は 18.79UZmg'タンパク質と、想定される酵素の比活性よりも遥かに大き力つた。
[0084] [表 5]
表 5 組換え N2C1酵素の精製
含有タンパ
体積 酵素活性 比活性 純度 精製段階 ク量
(ml) (unit) (U/mg) (fold)
Figure imgf000023_0001
粗酵素溶液 8400.0 2902.40 562.03 0.19 1.0
Q-sepharoseカフムによ
148.0 273.32 776.78 2.84 14.7 る精製後
Hydroxyapatiteカフムの
6.5 7.86 147.61 18.79 97.0 よる精製後

Claims

請求の範囲
[1] 配列番号 1に示されるアミノ酸配列中 N末端から 538番目までのアミノ酸残基 (D)か らなるアミノ酸配列のうち、 108番目のアミノ酸残基 (T)力も 497番目のアミノ酸残基( A)力もなるアミノ酸配列を含み、それ以外の領域のアミノ酸残基の一部もしくは全部 を欠失しており、但し、 N末端から 107番目のアミノ酸残基 (L)までのアミノ酸配列の 少なくとも一部が必ず欠失したアミノ酸配列からなることを特徴とし、配列番号 1により 示されるアミノ酸配列からなるペプチドよりも高いシアル酸転移酵素活性を有するぺ プチド。
[2] 配列番号 1に示されるアミノ酸配列中 N末端から 538番目までのアミノ酸残基 (D)か らなるアミノ酸配列のうち、 108番目のアミノ酸残基 (T)力も 497番目のアミノ酸残基( A)力もなるアミノ酸配列を含み、それ以外の領域のアミノ酸残基の一部もしくは全部 を欠失しており、但し、 N末端から 107番目のアミノ酸残基 (L)までのアミノ酸配列の 少なくとも一部が必ず欠失したアミノ酸配列からなることを特徴とし、配列番号 1により 示されるアミノ酸配列力もなるペプチドから膜結合領域の一部又は全部を欠失したぺ プチドよりも高いシアル酸転移酵素活性を有するペプチド。
[3] 配列番号 1に示されるアミノ酸配列中の N末端から 63番目のアミノ酸残基 (P)までの 一部または全部を欠失した請求項 1又は 2に記載のペプチド。
[4] 配列番号 1に示されるアミノ酸配列中の N末端から 63番目のアミノ酸残基 (P)までの 一部または全部を欠失し、及び 498番目のアミノ酸残基 (D)から 538番目のアミノ酸 残基 (D)までの一部または全部を欠失した、請求項 1又は 2に記載のペプチド (但し 、請求項 3のペプチドと重複するものは除く)。
[5] 配列番号 1に示されるアミノ酸配列中の N末端から 107番目のアミノ酸残基 (ひまで の一部または全部を欠失した、請求項 1又は 2記載のペプチド (但し、請求項 3または 請求項 4のペプチドと重複するものは除く)。
[6] 配列番号 1に示されるアミノ酸配列中の N末端から 107番目のアミノ酸残基 (ひまで の一部または全部を欠失し、及び 498番目のアミノ酸残基 (D)力も 538番目のァミノ 酸残基 (D)までの一部または全部を欠失した、請求項 1又は 2に記載のペプチド (伹 し、請求項 3、 4または 5のペプチドと重複するものは除く)。
[7] 請求項 1のペプチドにおけるアミノ酸配列中の 1一数個のアミノ酸残基が別のアミノ酸 残基に保存的に置換されており、且つ置換前のペプチドと同等のシアル酸転移酵素 活性を有するペプチド。
[8] 請求項 1のペプチドのアミノ酸配列と 60%以上、より好ましくは 70%以上、さらに好ま しくは 80%以上、特に好ましくは 90%以上、最も好ましくは 95%以上の相同性を有 するアミノ酸配列を含み、且つ請求項 1記載のペプチドと同等のシアル酸転移酵素 活性を有するペプチド。
[9] フォトパクテリゥム属微生物由来のシアル酸転移酵素が有するアミノ酸配列の N末端 側のアミノ酸残基を欠失させ、天然型のシアル酸転移酵素に比べて酵素活性を高め たことを特徴とする、短縮型シアル酸転移酵素ペプチド。
[10] 配列番号 1に示されるアミノ酸配列中の N末端から 538番目までのアミノ酸残基 (D) 力 なるアミノ酸配列のうち、 108番目のアミノ酸残基 (T)力 497番目のアミノ酸残 基 (A)までのアミノ酸残基を含み、それ以外の領域のアミノ酸残基の一部もしくは全 部を欠失しており、但し、 16番目のアミノ酸残基 (C)から 107番目のアミノ酸残基 (L) のアミノ酸残基の一部を必ず欠失したアミノ酸配列からなるシアル酸転移酵素活性を 有するペプチドをコードする DNAまたはその相補鎖 DNA。
[11] 請求項 10に記載の DNAと緩和なまたは過酷なストリンジェント条件下でノ、イブリダイ ズし、請求項 10に記載の DNAがコードするペプチドと同等のシアル酸転移酵素活 性を有するペプチドをコードする DNA。
[12] 請求項 10または 11に記載の DNAを含む発現ベクター。
[13] 請求項 12の発現ベクターで形質転換された大腸菌または酵母細胞。
[14] 請求項 13の細胞を、シアル酸転移酵素活性を有するペプチドが発現される条件で 培養して、該ペプチドを培養物から単離精製することにより、天然型のシアル酸転移 酵素に比べて高い活性を有するシアル酸転移酵素ペプチドを製造する方法。
[15] 請求項 13の細胞を、シアル酸転移酵素活性を有するペプチドが発現される条件で 培養して、該ペプチドを培養物から単離精製することにより、効率的にシアル酸転移 酵素ペプチドを製造する方法。
[16] 請求項 1又は 2に記載のペプチドの N末端側を配列番号 1における 108番目のァミノ 酸残基 (T)から 247番目のアミノ酸残基 (I)まで徐々に削除したペプチドを製造し; 製造されたペプチドのシアル酸転移酵素活性を測定し;
前記酵素活性を有し且つ Ν末端領域が最短のペプチドを突き止めて、当該べプチ ドの Ν末端アミノ酸残基を、配列番号 1により示されるアミノ酸配列からなるペプチドの シアル酸転移酵素の最短の活性フラグメントの Ν末端であると決定する方法。
1/3
〔図 1〕
Photobacterium damsela JT0160菌株のシアル酸転移酵素遺伝子
Catalytic domain Membrane association 丽 2 illi!i!i!i!l!l!!!!!i!!!!lil!!l!!ll!i!i!!^
Pd26C0
Pd26N0
Pd26Nl —►
Pd26Cl
Pd26N2
Pd26N3 PCR primer
PCR primer 発現べク夕一 p rc99Aへクローンィ匕
'活性の出たもの
Figure imgf000027_0001
NH2- 醒 COOH N0C0 △ 63aa NH2- ii!!!!!!!!!!!!!!!!!!!! ii!!!ii!i!!!!ii N1C0
A 107aa NH2- iiiiiii翻 ii闘魏闘讀 iiiiii關 i謂疆顏 iiiii顏謂讀讓闘顏闘 iiiii驟 COOH N2C0 △ 107aa NH2-賴 i顏ii顏 i 顏顏 園 -COOH N2C1
〇活性の出なかったもの
△ 248aa iCOOH N3C1
差替え用紙(規則 26) /vD/ O So/Joさ oifcId ££sso900iAV
〔墨〕
Figure imgf000028_0001
Figure imgf000029_0001
PCT/JP2004/017021 2004-11-16 2004-11-16 短縮型シアル酸転移酵素 WO2006054333A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/017021 WO2006054333A1 (ja) 2004-11-16 2004-11-16 短縮型シアル酸転移酵素

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/017021 WO2006054333A1 (ja) 2004-11-16 2004-11-16 短縮型シアル酸転移酵素

Publications (1)

Publication Number Publication Date
WO2006054333A1 true WO2006054333A1 (ja) 2006-05-26

Family

ID=36406881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017021 WO2006054333A1 (ja) 2004-11-16 2004-11-16 短縮型シアル酸転移酵素

Country Status (1)

Country Link
WO (1) WO2006054333A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2116598A1 (en) * 2007-03-02 2009-11-11 Japan Tobacco Inc. Novel beta-galactoside-alpha-2,6-sialyltransferase, gene encoding the same and method for enhancing enzymatic activity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08154673A (ja) * 1994-12-07 1996-06-18 Japan Tobacco Inc 新規なβ−ガラクトシド−α2,6−シアル酸転移酵素及びその製造方法
JPH10234373A (ja) * 1997-02-28 1998-09-08 Japan Tobacco Inc β−ガラクトシド−α2,6−シアル酸転移酵素をコードする遺伝子
JPH10234374A (ja) * 1997-02-28 1998-09-08 Japan Tobacco Inc シグナルペプチド
JPH10234364A (ja) * 1997-02-28 1998-09-08 Japan Tobacco Inc β−ガラクトシド−α2,6−シアル酸転移酵素

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08154673A (ja) * 1994-12-07 1996-06-18 Japan Tobacco Inc 新規なβ−ガラクトシド−α2,6−シアル酸転移酵素及びその製造方法
JPH10234373A (ja) * 1997-02-28 1998-09-08 Japan Tobacco Inc β−ガラクトシド−α2,6−シアル酸転移酵素をコードする遺伝子
JPH10234374A (ja) * 1997-02-28 1998-09-08 Japan Tobacco Inc シグナルペプチド
JPH10234364A (ja) * 1997-02-28 1998-09-08 Japan Tobacco Inc β−ガラクトシド−α2,6−シアル酸転移酵素

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEGAIGNEUR P. ET AL.: "Exploring the Acceptor Substrate Recognition of the Human beta-Galactoside alpha2, 6-Sialyltransferase", J. BIOL. CHEM., vol. 276, no. 24, 2001, pages 21608 - 21617, XP002983751 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2116598A1 (en) * 2007-03-02 2009-11-11 Japan Tobacco Inc. Novel beta-galactoside-alpha-2,6-sialyltransferase, gene encoding the same and method for enhancing enzymatic activity
EP2116598A4 (en) * 2007-03-02 2010-06-09 Japan Tobacco Inc Novel Beta GALACTOSIDE ALPHA-2,6-SIALYLTRANSFERASE, GENE FOR THEIR CODING AND METHOD FOR INCREASING ENZYMATIC ACTIVITY
US8187853B2 (en) 2007-03-02 2012-05-29 Japan Tobacco Inc. β-galactoside-α2,6-sialyltransferase, a gene encoding thereof, and a method for enhancing enzyme activity
US8372617B2 (en) 2007-03-02 2013-02-12 Japan Tobacco Inc. β-galactoside-α2,6-sialyltransferase, a gene encoding thereof, and a method for enhancing enzyme activity
JP5189585B2 (ja) * 2007-03-02 2013-04-24 日本たばこ産業株式会社 新規なβ−ガラクトシド−α2,6−シアル酸転移酵素、それをコードする遺伝子および酵素活性を向上させる方法

Similar Documents

Publication Publication Date Title
KR102074957B1 (ko) 타가토스 생산용 조성물 및 이를 이용한 타가토스 제조방법
Monchois et al. Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity
US20160304853A1 (en) Polynucleotide encoding psicose epimerase and method of producing psicose using the same
TWI700370B (zh) 用於生產塔格糖的組成物及利用其生產塔格糖的方法
JP3266166B2 (ja) 超好熱性α−アミラーゼ遺伝子
Oguma et al. Cloning and sequence analysis of the cyclomaltodextrinase gene from Bacillus sphaericus and expression in Escherichia coli cells
KR20180111679A (ko) 타가토스 생산용 조성물 및 이를 이용한 타가토스 제조방법
JP2022544267A (ja) 酵母でのオリゴ糖産生の改善
WO2006112025A1 (ja) 新規なβ-ガラクトシド-α2,3-シアル酸転移酵素、それをコードする遺伝子およびその製造方法
JP2023011749A (ja) 新規なプシコース-6-リン酸の脱リン酸化酵素、それを含むプシコース生産用組成物、及びこれを用いたプシコース製造方法
WO2007105321A1 (ja) 新規なβ-ガラクトシド-α2,6-シアル酸転移酵素、それをコードする遺伝子およびその製造方法
Yamamoto et al. Cloning and sequencing of kojibiose phosphorylase gene from Thermoanaerobacter brockii ATCC35047
EP2843046B1 (en) Practical method for enzymatically synthesizing cyclic di-gmp
Jemli et al. The cyclodextrin glycosyltransferase of Paenibacillus pabuli US132 strain: molecular characterization and overproduction of the recombinant enzyme
KR102114865B1 (ko) 신규한 사이코스-6-인산 탈인산효소, 상기 효소를 포함하는 사이코스 생산용 조성물, 상기 효소를 이용하여 사이코스를 제조하는 방법
JP4146095B2 (ja) 耐熱性グルコキナーゼ遺伝子、それを含有する組換えベクター、その組換えベクターを含有する形質転換体及びその形質転換体を用いた耐熱性グルコキナーゼの製造方法
KR20170101578A (ko) 신규 폴리포스페이트-의존형 포도당인산화효소 및 이를 이용한 포도당-6-인산 제조방법
US9938510B2 (en) Photobacterium sp. alpha-2-6-sialyltransferase variants
KR101877120B1 (ko) 생물전환공정을 이용한 2'-데옥시시티딘의 제조방법
KR20120028304A (ko) 신규 단백질 및 그것을 코드하는 유전자
WO2006054333A1 (ja) 短縮型シアル酸転移酵素
WO2006043406A1 (ja) 糖転移酵素の酵素活性を向上させる方法
KR102232837B1 (ko) 글루코실글리세롤 생산 활성을 가지는 신규한 폴리펩티드 및 이를 이용한 글루코실글리세롤 제조방법
WO2010097416A1 (en) Fructanase
TW201209167A (en) Novel enzyme protein, process for production of the enzyme protein, and gene encoding the enzyme protein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 04822644

Country of ref document: EP

Kind code of ref document: A1