JP4812625B2 - 糖転移酵素の酵素活性を向上させる方法 - Google Patents
糖転移酵素の酵素活性を向上させる方法 Download PDFInfo
- Publication number
- JP4812625B2 JP4812625B2 JP2006542306A JP2006542306A JP4812625B2 JP 4812625 B2 JP4812625 B2 JP 4812625B2 JP 2006542306 A JP2006542306 A JP 2006542306A JP 2006542306 A JP2006542306 A JP 2006542306A JP 4812625 B2 JP4812625 B2 JP 4812625B2
- Authority
- JP
- Japan
- Prior art keywords
- sialyltransferase
- gene
- enzyme
- strain
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Enzymes And Modification Thereof (AREA)
Description
参考例1 ビブリオ科微生物由来のα2,3−シアル酸転移酵素の同定とクローニング
材料および方法
参考例1−1: α2,3−シアル酸転移酵素を発現する微生物のスクリーニングと菌株の同定
海水、海砂、海泥あるいは海産魚介類を接種源とした。この接種源をマリンブロスアガー2216培地(ベクトン・ディッキンソン製)からなる平板培地上に塗布し、15℃、25℃もしくは30℃で生育する微生物を取得した。常法に従い、得られた微生物を純粋培養した後、マリンブロス2216培地(ベクトン・ディッキンソン製)からなる液体培地を用いてそれぞれの微生物を培養した。微生物が十分成育した後に、培養液から菌体を遠心分離によって集めた。集めた菌体に、0.2%トリトンX−100(関東化学製)を含む20mMカコジレート緩衝液(pH6.0)を添加し、菌体を懸濁した。この菌体懸濁液を氷冷下、超音波処理し細胞を破砕した。この細胞破砕液を酵素溶液としてシアル酸転移活性を測定し、さらに、ピリジルアミノ化糖鎖を用いて、シアル酸結合様式の決定を行った。その結果、α2,3-シアル酸転移活性を有する菌株JT−ISH−467株、JT−ISH−224株、およびJT−FAJ−16株を得た。なお、JT−ISH−467株は、スルメイカの表皮から、JT−ISH−224株はカマスの内臓から、およびJT−FAJ−16株はアジの内臓から、それぞれ得られた。
(i)JT−ISH−467株
得られたJT−ISH−467株の性質は以下の通りであった:
(菌学的性質)
(1)細胞の形態は桿菌で、大きさは0.7〜0.8μm×1.5〜2.0μm。
(3)グラム染色性 −
(4)胞子の有無 −
(生理学生化学的性質)
(1)生育温度 4℃では+、25℃では+、30℃では−
(2)集落の色調 特徴的集落色素を産生せず
(3)O/Fテスト +/−
(4)カタラーゼテスト −
(5)オキシダーゼテスト +
(6)グルコースからの酸産生 −
(7)グルコースからのガス産生 −
(8)発光性 +
(9)硝酸塩還元 +
(10)インドール産生 +
(11)ブドウ糖酸性化 −
(12)アルギニンジヒドロラーゼ +
(13)ウレアーゼ −
(14)エスクリン加水分解 −
(15)ゼラチン加水分解性 −
(16)β‐ガラクトシダーゼ +
(17)ブドウ糖資化性 −
(18)L−アラビノース資化性 −
(19)D−マンノース資化性 −
(20)D−マンニトール資化性 −
(21)N−アセチル−D−グルコサミン資化性 −
(22)マルトース資化性 −
(23)グルコン酸カリウム資化性 −
(24)n−カプリン酸資化性 −
(25)アジピン酸資化性 −
(26)dl−リンゴ酸資化性 −
(27)クエン酸ナトリウム資化性 −
(28)酢酸フェニル資化性 −
(29)チトクロームオキシダーゼ +
(30)菌体内DNA のGC含量(モル%)39.7%
(16S rRNA遺伝子の塩基配列解析およびDNA−DNAハイブリダイゼーションによる種の同定)
JT−ISH−467株から、常法により抽出したゲノムDNAを鋳型として、PCRにより16S rRNA遺伝子の全塩基配列を増幅し、塩基配列を決定した。塩基配列を配列番号3に示した。この塩基配列はフォトバクテリウム・フォスフォレウム(Photobacterium phosphoreum)基準株であるATCC11040株の16S rRNA遺伝子の塩基配列に対し、相同率100%の高い相同性を示した。この結果から、JT−ISH−467株はフォトバクテリウム属に属することが明らかとなった。しかしながら、16S rRNA遺伝子は細菌の全ゲノムの一部でしかないので、16S rRNA遺伝子の塩基配列による同定解析は種レベルの極めて近縁な生物間の距離に対しては誤差が非常に大きいとされている。そこで、属内における菌株の類縁関係の定量的な評価に一般的に用いられているDNA−DNAハイブリダイゼーション試験法を用い、種の決定を行った。JT−ISH−467株およびフォトバクテリウム・フォスフォレウム基準株であるNCIMB1282株(ATCC11040株と同一株)の全DNAを抽出し、供試した。その結果、84.7%の高い相同値(DNA-DNA relatedness)が得られた。一般に、同一種間のDNA−DNA相同値は60%以上を示すことから、JT−ISH−467株はフォトバクテリウム・フォスフォレウム(Photobacterium phosphoreum)と同定された。なお、DNA−DNAハイブリダイゼーション試験は「微生物の分類・同定実験法」(鈴木健一郎・平石 明・横田 明 編、シュプリンガー・フェアラーク東京株式会社、2001年9月、参照によりその全体を本明細書に援用する)に従い、マイクロプレートを用いたフォトビオチン標識法によって行った。
(ii)JT−ISH−224株
得られたJT−ISH−224株の性質は以下の通りであった:
(菌学的性質)
(1)細胞の形態は桿菌で、大きさは0.7〜0.8μm×1.0〜1.5μm。
(3)グラム染色性 −
(4)胞子の有無 −
(生理学生化学的性質)
(1)生育温度 4℃では−、25℃では+、30℃では+、37℃では−
(2)集落の色調 特徴的集落色素を産生せず
(3)O/Fテスト +/−
(4)カタラーゼテスト +
(5)オキシダーゼテスト +
(6)グルコースからの酸産生 +
(7)グルコースからのガス産生 +
(8)発光性 −
(9)硝酸塩還元 +
(10)インドール産生 +
(11)ブドウ糖酸性化 −
(12)アルギニンジヒドロラーゼ +
(13)ウレアーゼ −
(14)エスクリン加水分解 −
(15)ゼラチン加水分解性 −
(16)β‐ガラクトシダーゼ +
(17)ブドウ糖資化性 −
(18)L−アラビノース資化性 −
(19)D−マンノース資化性 −
(20)D−マンニトール資化性 −
(21)N−アセチル−D−グルコサミン資化性 −
(22)マルトース資化性 −
(23)グルコン酸カリウム資化性 −
(24)n−カプリン酸資化性 −
(25)アジピン酸資化性 −
(26)dl−リンゴ酸資化性 −
(27)クエン酸ナトリウム資化性 −
(28)酢酸フェニル資化性 −
(29)チトクロームオキシダーゼ +
(30)O/129感受性、10μg −、15μg +
(31)菌体内DNA のGC含量(モル%)39.4%
(16S rRNA遺伝子の塩基配列解析)
JT−ISH−224株から、常法により抽出したゲノムDNAを鋳型として、PCRにより16S rRNA遺伝子の全塩基配列を増幅し、塩基配列を決定した。塩基配列を配列番号32に示した。
(iii)JT−FAJ−16株
得られたJT−FAJ−16株の性質は以下の通りであった:
(菌学的性質)
(1)細胞の形態は桿菌で、大きさは0.7〜0.8μm×1.2〜1.5μm。
(3)グラム染色性 −
(4)胞子の有無 −
(生理学生化学的性質)
(1)生育温度 4℃では+w、25℃では+、30℃では+、37℃では+
(2)集落の色調 淡黄色〜クリーム色
(3)O/Fテスト +/+
(4)カタラーゼテスト +
(5)オキシダーゼテスト +
(6)グルコースからの酸産生 +
(7)グルコースからのガス産生 −
(8)硝酸塩還元 +
(9)インドール産生 −
(10)ブドウ糖酸性化 +
(11)アルギニンジヒドロラーゼ −
(12)ウレアーゼ −
(13)エスクリン加水分解 +
(14)ゼラチン加水分解性 −
(15)β‐ガラクトシダーゼ +
(16)ブドウ糖資化性 −
(17)L−アラビノース資化性 −
(18)D−マンノース資化性 −
(19)D−マンニトール資化性 −
(20)N−アセチル−D−グルコサミン資化性 −
(21)マルトース資化性 −
(22)グルコン酸カリウム資化性 −
(23)n−カプリン酸資化性 −
(24)アジピン酸資化性 −
(25)dl−リンゴ酸資化性 −
(26)クエン酸ナトリウム資化性 −
(27)酢酸フェニル資化性 −
(28)チトクロームオキシダーゼ +
(29)O/129感受性、 −
(30)マンイトール発酵性、 +
(31)イノシトール発酵性、 +
(32)アラビノース発酵性、 +
(33)ラムノース発酵性、 −
(34)サッカロース発酵性、 −
(35)生育性(NaCl)、3%NaCl+、4%NaCl+、6%NaCl+、
(36)デンプン加水分解、 −
(37)Tween80分解、 −
(38)H2S産生、 −
(39)アセトイン産生(VPテスト)、 −
(16S rRNA遺伝子の塩基配列解析)
JT−FAJ−16株から、常法により抽出したゲノムDNAを鋳型として、PCRにより16S rRNA遺伝子の全塩基配列を増幅し、塩基配列を決定した。塩基配列を配列番号33に示した。
参考例1−2: フォトバクテリウム フォスフォレウム(Photobacterium phosphoreum)JT−ISH−467からのα2,3−シアル酸転移酵素の抽出および精製
マリンアガー2216平板培地上で継代培養したフォトバクテリウム フォスフォレウムJT−ISH−467株のコロニーから菌体をループで採取し、マリンブロス2216液体培地10mlに接種し、25℃、毎分180回転で8時間振とう培養した。
参考性1−2で得られた酵素を用い、参考例1−1のように、ピリジルアミノ化糖鎖を糖受容体基質として酵素反応を行った。その結果、本酵素を用いることにより、ピリジルアミノ化ラクトースからピリジルアミノ化α2,3−シアリルラクトースが合成されることが明らかとなった。
参考例1−4: フォトバクテリウム・フォスフォレウムJT−ISH−467株が生産するα2,3−シアル酸転移酵素をコードする遺伝子の塩基配列解析および当該遺伝子の形質転換
(1)ゲノムDNAの精製とゲノムライブラリーの作成
JT−ISH−467株の菌体ペレット約0.5gから、Qiagen Genomic-tip 100/G(Qiagen社製)を用いて、キット添付の説明書きに従って、約100μgのゲノムDNAを調製した。1−2μgのDNAに対して、0.1〜0.2ユニットの四塩基認識の制限酵素Sau3AIを反応させ、部分分解を行った。反応バッファーは酵素に添付のものを用い、反応条件は37℃、30分とした。反応終了後、反応液に最終濃度25mMのEDTA pH8.0を加え、フェノール・クロロホルム処理を行った。ゲノムDNAをエタノール沈殿で回収し、TE 400μlに溶解した。遠心チューブ(日立製作所製40PA)に、グラジエント作製装置を用いて、40%シュークロースバッファー(20mM Tris pH8.0,5mM EDTA pH8.0,1M NaCl)と10%シュークロースバッファーから、40−10%のグラジエントを作製し、そこへ上記の部分分解DNA溶液を重層した。超遠心機(日立製作所製SCP70H、ローター:SRP28SA)を用いて、26,000rpm、20℃、15時間遠心した。遠心後チューブの底部に25Gの針で穴を空け、底部の液から1mlずつ回収した。回収したゲノムDNAを含むサンプルの一部を、サブマリン電気泳動糟を用い、0.5−0.6%アガロースゲル/TAEバッファー中で、26V、20時間電気泳動を行い、9−16kbのサイズのDNAを含む画分を把握した。マーカーとしてλ/HindIIIを用いた。9−16kbのサイズのDNA断片を含む画分にTEを2.5ml加えシュークロース濃度を下げた後,エタノール沈殿、リンスを行い、少量のTEに溶解した。
(2)プライマー設計とプローブ作成
Procise 494 cLC Protein Sequencing System(Applied Biosystems製)を用いて、JT−ISH−467株由来のβ−ガラクトシド−α2,3−シアル酸転移酵素のアミノ末端(N末端)アミノ酸配列、および内部アミノ酸配列を決定した。
(3)スクリーニングと遺伝子クローニング
上記(2)でクローン化されたフォトバクテリウム・フォスフォレウムJT−ISH−467株由来α2,3−シアル酸転移酵素遺伝子の一部からなるDNA断片を、pCR2.1 TOPOベクターから制限酵素EcoRIで切り出し、これをプローブとして、上記(1)作製したフォトバクテリウム・フォスフォレウムJT−ISH−467株由来ゲノムDNAライブラリーをスクリーニングした。直径9cmの丸形シャーレにλDASH II/BamHI ベクターキット(Stratagene製)の説明書きに従って、約300−500pfuのファージを宿主菌XL1−blue MRA(P2)とともにプレーティングした。プラークをHybond−N+ナイロンメンブレンフィルター(Amersham製)に接触させ、メンブレン添付の説明書きに従ってアルカリ処理を行いDNAを変性させ、メンブレン上に固定させた。プローブはrediprime IITM DNA labelling system(アマシャムバイオサイエンス製)を用いて32Pラベルした。ハイブリダイゼーションは0.5M リン酸ナトリウムバッファー pH7.2、7% SDS、1mM EDTA中で65(Cで一晩、洗浄の条件は40mM リン酸ナトリウムバッファー pH7.2、1mM EDTA、5%SDS中で65℃、15分を2回、40mM リン酸ナトリウムバッファー pH 7.2、1% SDS、1mM EDTA中で65(C、15分を2回行った。1次スクリーニングで約5,000pfuのファージから24個のポジティブクローンが得られた。うち18個のクローンに関して、プラークの精製を兼ねた2次スクリーニングを行った。その結果、6種類の選抜・精製プラークを得ることが出来た。
(4)発現ベクターの構築
クローン化した遺伝子が、シアル酸転移活性を有するか否かを調べるため、同遺伝子の全長、およびN末端側のシグナルペプチド部分を除去したタイプの遺伝子を発現ベクターに組み込み、大腸菌内でタンパク質を生産させ、この発現タンパク質の活性を測定した。
(5)発現誘導と活性測定
上記(4)で得られた467−N0C0遺伝子、467−N2C0遺伝子に関して、タンパク質発現誘導実験を行った。467−N0C0遺伝子および467−N2C0遺伝子がそれぞれ組み込まれた発現ベクターpTrc99Aをもつ大腸菌TB1の単一コロニーを、抗生物質アンピシリン(最終濃度100(g/mL)を含むLB培地(5ml)に接種し、A600=0.5程度になるまで30℃で菌を前培養し、その後IPTG(イソプロピル−β−D(−)−チオガラクトピラノシド、和光純薬工業製)を最終濃度で1mMとなるように加え、30℃でさらに4時間振とう培養した。培養液2ml中の菌体を遠心分離によって集めた。この菌体を、200μlの0.336%トリトンX−100および0.5M塩化ナトリウムを含む20mM ビストリス緩衝液(pH7.0)に懸濁し、氷冷下で超音波破砕した。得られた破砕液を粗酵素液とし、活性測定に供試した。反応は2反復で行い、反応組成は実施例1と同様に行った。但し、反応時間は15時間とした。その結果、下記の表7に示すように、467−N0C0遺伝子形質転換体の粗酵素液中および467−N2C0遺伝子形質転換体の粗酵素液中には、糖供与体であるCMP−NeuAc中の14CでラベルされたNeuAcを糖受容体基質であるラクトースに転移する因子、即ちシアル酸転移酵素活性が存在することが示された。この結果から、467−N0C0遺伝子、または467−N2C0遺伝子を導入した大腸菌にはシアル酸転移酵素が発現されていることが明らかとなった。
上記(5)の粗酵素液を用いて、467−N2C0遺伝子を導入した大腸菌で発現されたシアル酸転移酵素がα2,3−シアル酸転移活性を有するかどうか調べた。参考例1−1と同様に、糖受容体としてピリジルアミノ化ラクトースを用い、酵素反応を行った。反応終了後、95℃で5分間、反応溶液を熱処理することにより酵素を失活させ、HPLCで分析した。なお、酵素反応は、ピリジルアミノ化ラクトースが2.0μM、CMP−シアル酸が5.7μMとなるように、それぞれを20mM カコジレート緩衝液(pH6.0)25μl中に溶解し、25℃下で6時間行った(反応1)。一方、CMP−シアル酸を含まない反応液を供試した対照実験(反応2)を行った。また、標品の保持時間を明らかにするため、熱処理(95℃、5分間)によって失活させた粗酵素液を加え、ピリジルアミノ化ラクトースおよびピリジルアミノ化α2,3−シアリルラクトースを添加した試験を行った。
参考例1−5: フォトバクテリウム属細菌JT−ISH−224株由来α2,3−シアル酸転移酵素遺伝子のクローニングと、塩基配列解析および当該遺伝子の大腸菌での発現
(1)JT−ISH−224株のβ−ガラクトシド−α2,3−シアル酸転移酵素活性と同酵素遺伝子の存在の確認
参考例1−1でシアル酸転移酵素活性を有することが明らかとなったフォトバクテリウム属JT−ISH−224株において、フォトバクテリウム・フォスフォレウムJT−ISH−467株由来α2,3−シアル酸転移酵素遺伝子のホモローグが存在するか否かを明らかにするため、ゲノミックサザンハイブリダイゼーションを実施した。参考例1−4に記載した方法で、JT−ISH−224株の菌体ペレットからゲノムDNAを調製した後、JT−ISH−224株のゲノムDNAを制限酵素EcoRIまたはHindIIIで消化し、0.7%アガロースゲル電気泳動で分画後、0.4M NaOHを用いたアルカリブロッティングにより、ゲルをHybond−N+ナイロンメンブレンフィルター(アマシャムバイオサイエンス製)に転写した。このフィルターに関して、上記のJT−ISH−467株由来α2,3−シアル酸転移酵素遺伝子の部分断片(929bp;配列番号17)をプローブとして用いて、参考例1−4に記載した方法でサザンハイブリダイゼーションを行った。ただしハイブリダイゼーション温度、および洗浄処理の温度は、55℃とした。その結果、EcoRI消化では、16kbのバンドが検出された。一方、HindIII消化の場合、5kbと2.7kbのバンドが検出された。この結果から、JT−ISH−224株にはJT−ISH−467株由来のα2,3−シアル酸転移酵素遺伝子のホモローグが存在することが明らかとなった。
(2)JT−ISH−224株由来α2,3−シアル酸転移酵素遺伝子のクローニング
次に、JT−ISH−224株のα2,3−シアル酸転移酵素遺伝子のクローニングを行った。参考例1−4に記載した方法により、JT−ISH−224株のゲノムDNAから、λDASH II(Stratagene製)を用いて、ゲノムライブラリーを構築した。JT−ISH−467株由来α2,3−シアル酸転移酵素遺伝子の部分断片(929bp;配列番号17)をプローブに用い、JT−ISH−224株のゲノムライブラリーをスクリーニングした。ただし、参考例1−4と同様にハイブリダイゼーション、および洗浄の温度は55℃とした。その結果、プラーク精製を兼ねた二次選抜までに、12クローンを得、うち6つのλDNAを、参考例1−4のようにQIAGEN Lambda Mini Kit(キアゲン製)を用いて精製した。さらにこのうち3クローンのλDNAサンプル、およびJT−ISH−224株の全ゲノムDNAについて、制限酵素EcoRIまたはHindIIIで消化した。消化物をアガロースゲル電気泳動で分画し、上述の様にナイロンメンブレンフィルターに転写した。このフィルターを用いて、JT−ISH−467株由来α2,3−シアル酸転移酵素遺伝子の部分断片(929bp;配列番号17)をプローブに用い、サザン分析を行った。ハイブリダイゼーション、洗浄の温度は55℃とした。その結果、EcoRI消化の場合、12kbまたはそれ以上のバンドが検出されたのに対し、HindIII消化の場合は、3つ全てのλDNAサンプルとJT−ISH−224株の全ゲノムDNAに関して、5kbと2.7kbの二本のバンドが検出された。そこでλDNAサンプルを再度HindIIIで消化し、これら5kbと2.7kbの二本のDNA断片をゲル精製し、プラスミドベクターpBluescript SK(−)のHindIII部位に常法に従いクローニングした。
クローン化した遺伝子が、シアル酸転移酵素活性を有するか否かを調べるため、同遺伝子の全長、およびN末端側のシグナルペプチド部分を除去したタイプの遺伝子を発現ベクターに組み込み、大腸菌内でタンパク質を生産させ、この発現タンパク質の活性を測定した。
(4)発現誘導と活性測定
参考例1−4と同様に、224−N0C0遺伝子および224−N1C0遺伝子の2クローンに関して、タンパク質発現誘導実験を行い、酵素活性を測定した。その結果、下記の表10に示すように、224−N0C0遺伝子および224−N1C0遺伝子の形質転換体の粗酵素液中にシアル酸転移酵素活性が存在することが示された。
参考例1−4と同様に、224−N0C0遺伝子および224−N1C0遺伝子をそれぞれ大腸菌に導入して酵素を発現させ、ピリジルアミノ化ラクトースを糖受容体として用いる反応により、α2,3−シアル酸転移酵素活性を調べた。大腸菌で発現されたシアル酸転移酵素による反応生成物をHPLCにより評価した結果、いずれのクローンを用いた反応についてもピリジルアミノ化α2,3−シアリルラクトースのピークが検出された。この結果から、JT−ISH−224株由来のシアル酸転移酵素がα2,3−シアル酸転移活性を有することが明らかとなった。
参考例1−6: ビブリオ属細菌JT−FAJ−16株由来α2,3−シアル酸転移酵素遺伝子のクローニングと塩基配列解析、および当該遺伝子の大腸菌での発現
(1)JT−FAJ−16株のβ−ガラクトシド−α2,3−シアル酸転移酵素活性と同酵素遺伝子の存在の確認
参考例1−1でシアル酸転移酵素活性を有することが明らかとなったビブリオ属 JT−FAJ−16株において、フォトバクテリウム・フォスフォレウム JT−ISH−467株由来α2,3−シアル酸転移酵素遺伝子のホモローグが存在するか否かを明らかにするため、ゲノミックサザンハイブリダイゼーションを実施した。参考例1−4に記載した方法で、JT−FAJ−16株の菌体ペレットからゲノムDNAを調製した後、制限酵素EcoRI、HindIIIで消化し、0.7%アガロースゲル電気泳動で分画後、0.4M NaOHを用いたアルカリブロッティングにより、ゲルをHybond−N+ナイロンメンブレンフィルター(アマシャムバイオサイエンス製)に転写した。このフィルターに関して、上記の929bpのプローブ(配列番号17)を用いて、参考例1−4に記載した方法でサザンハイブリダイゼーションを行った。ただしハイブリダイゼーション温度、および洗浄処理の温度は、55℃とした。その結果、EcoRI消化で、3.6kbのバンドが、HindIII消化で、7kbのバンドが検出された。即ちJT−FAJ−16株にはJT−ISH−467株由来のα2,3−シアル酸転移酵素遺伝子のホモローグが存在することが明らかとなった。
次に、JT−FAJ−16株のα2,3−シアル酸転移酵素遺伝子のクローニングを行った。参考例1−4に記載した方法で、JT−FAJ−16株のゲノムDNAから、λDASH II(Stratagene製)を用いて、ゲノムライブラリーを構築した。JT−ISH−467株由来α2,3−シアル酸転移酵素遺伝子の部分断片(929bp;配列番号17)をプローブに用い、JT−FAJ−16株のゲノムライブラリーをスクリーニングした。ただし、ハイブリダイゼーション実験はECL direct labelling & detection system(アマシャムバイオサイエンス製)を使用した。キット添付の説明書きに従ってプローブを作成した。ハイブリダイゼーションは、キット中のハイブリダイゼーションバッファーにブロッキング試薬を5%(w/v)、NaClを0.5Mになるように加え、37℃で4時間行った。洗浄は、0.4%SDS、0.5X SSC中で、50℃で20分を2回、2X SSC中で室温、5分を1回行った。シグナルの検出は、キット添付の説明書きに従った。
クローン化した遺伝子が、シアル酸転移酵素活性を有するか否かを調べるため、同遺伝子の全長、およびN末端側のシグナルペプチド部分を除去したタイプの遺伝子を発現ベクターに組み込み、大腸菌内でタンパク質を生産させ、この発現タンパク質の活性を測定した。
参考例1−4と同様に、FAJ−N0C0遺伝子、およびFAJ−N1C0遺伝子の2クローンに関して、タンパク質発現誘導実験を行い、酵素活性を測定した。その結果、下記の表14に示すように、FAJ−N0C0遺伝子およびFAJ−N1C0遺伝子の形質転換体の粗酵素液中にシアル酸転移酵素活性が存在することが示された。
参考例1−4と同様に、FAJ−N0C0遺伝子、およびFAJ−N1C0遺伝子をそれぞれ大腸菌に導入して酵素を発現させ、ピリジルアミノ化ラクトースを糖受容体として用いる反応により、α2,3−シアル酸転移酵素活性を調べた。大腸菌で発現されたシアル酸転移酵素による反応生成物をHPLCにより分析した結果、いずれのクローンを用いた反応においてもピリジルアミノ化α2,3−シアリルラクトースのピークが検出された。この結果から、JT−FAJ−16株由来のシアル酸転移酵素がα2,3−シアル酸転移活性を有することが明らかとなった。
実施例1 P. damselae JT0160株由来の糖転移酵素(α2,6-シアル酸転移酵素)の酵素活性に及ぼすNaClの影響
材料および方法
海洋性微生物であるP. damselae JT0160株から、既に報告されている方法(特許第3062409号)に従ってβ-ガラクトシド-α2,6-シアル酸転移酵素を精製した。酵素の精製純度はSDS-PAGEで確認し、最終精製酵素は電気泳動的に単一のタンパク質であることを確認した。この完全精製した酵素を用いて以下の実験を行った。
結果
P. damselae JT0160株由来のシアル酸転移酵素は、酵素反応系中のNaClの存在により、その酵素活性が増加することが認められた。NaClが酵素反応系に0.2Mから1M濃度で存在した場合、NaCl無添加の場合と比較して、その酵素活性はいずれも約1.2倍から1.4倍に向上した(図1)。
実施例2 P. damselae JT0160株由来の糖転移酵素(α2,6-シアル酸転移酵素)の酵素活性に及ぼすKClの影響
材料および方法
実施例1と同様にして、P. damselae JT0160株からβ-ガラクトシド-α2,6-シアル酸転移酵素を完全精製し、以下の実験を行った。
結果
酵素反応系中に添加した様々な濃度のKClが、P. damselae JT0160株由来のシアル酸転移酵素活性を向上させることは認められなかった(図2)。
実施例3 P. damselae JT0160株由来の糖転移酵素の酵素活性に及ぼす2価イオンを含む塩類の影響
材料および方法
実施例1と同様にして、P. damselae JT0160株からβ-ガラクトシド-α2,6-シアル酸転移酵素を完全精製し、以下の実験を行った。
結果
反応溶液中の各種2価イオンを含む塩類が、P. damselae JT0160株由来のα2,6-シアル酸転移酵素活性を向上させることは認められなかった(表15)。
材料および方法
ラット肝臓由来のβ-ガラクトシド-α2,6-シアル酸転移酵素(和光純薬製)を使用し、酵素に添付されてきた酵素活性測定法に若干の変更を加えた以下の方法で実験を行った。
結果
結果を図3に示す。なお、図3では反応溶液中にNaClを含まない場合を1とした相対活性で示した。ラット肝臓由来のβ-ガラクトシド-α2,6-シアル酸転移酵素では、NaClの添加による酵素活性の上昇は認められなかった。
実施例5 Photobacterium. damselaeに属する各種菌株から調製した糖転移酵素(α2,6-シアル酸転移酵素の粗酵素)の酵素活性に及ぼすNaClの影響
材料および方法
Photobacterium damselaeに属し、JT0160とは異なる菌株 ATCC33539T及びATCC35083を培養し、得られた菌体からP. damselae JT0160の粗酵素溶液調製方法(Purification and characterization of a Marine bacterial β-Galactoside α2,6-Sialyltransferase from Photobacterium damselae JT0160 J.Biochem. 120, 104-110. 1996)に従って粗酵素溶液を調整した。それらの粗酵素を用いて以下の実験を行った。
結果
いずれの菌株由来の糖転移酵素についても、0.5M NaClが反応系に存在した場合、酵素活性が向上していた。その程度は菌株によって異なるが、おおよそ1.2から1.3倍程度に酵素活性が上昇した(表16)。
材料および方法
P. damselae JT0160株由来のβ-ガラクトシド-α2,6-シアル酸転移酵素遺伝子のデリーション・ミュータントN2C1を作製し、発現プラスミドに組換え、同発現プラスミドで大腸菌の形質転換を行った。形質転換された大腸菌をL Broth(アンピシリン:最終濃度0.2mg/ml、IPTG:最終濃度1mMを含む)で、30℃、180rpmで12時間培養した後に、遠心分離で菌体を集めた。集めた菌体を20mM Sodium cacodyrate buffer(pH5.0)に懸濁後、4℃で超音波処理を行うことで菌体を破砕して、N2C1遺伝子由来のシアル酸転移酵素タンパク質を含む粗酵素液を調製した。N2C1遺伝子由来のシアル酸転移酵素タンパク質は、P. damselae JT0160株由来のβ-ガラクトシド-α2,6-シアル酸転移酵素をコードする遺伝子配列から想定されるアミノ酸配列と比較すると、そのアミノ酸配列のN末端側(Met)から107残基のアミノ酸及び、C末端側から176残基のアミノ酸が削除されているが、天然の酵素と実質的に同じ酵素活性を有する。このN2C1遺伝子由来のシアル酸転移酵素タンパク質を用いて以下の実験を行った。
結果
その結果、反応溶液中に0.2〜1.5MまでのNaClが含まれている場合、NaCl無添加の場合と比較して、酵素活性の活性化が認められた(図4)。
実施例7 ビブリオ科微生物由来の糖転移酵素(組換えα2,3−シアル酸転移酵素)の酵素活性に及ぼすNaClの影響
材料および方法
フォトバクテリウム・フォスフォレウム JT−ISH−467株より抽出・精製したα2,3−シアル酸転移酵素(467 native)、JT−ISH−467株由来の組換えα2,3−シアル酸転移酵素(467 N0C0または467 N2C0)、フォトバクテリウム属 JT−ISH−224株由来の組換えα2,3−シアル酸転移酵素(224 N1C0)、および、ビブリオ属 JT−FAJ−16株由来の組換えα2,3−シアル酸転移酵素(FAJ N1C0)について、これらの酵素活性に及ぼすNaClの影響を調べた。組換え酵素はいずれも、SDS−ポリアクリルアミドゲル電気泳動で単一のバンドを示す程度に完全に精製したものを用いた。
結果
467 native、467 N0C0、467 N2C0、224 N1C0、およびFAJ N1C0についての結果は、それぞれ、図5ないし図9に示す。フォトバクテリウム・フォスフォレウム JT−ISH−467株、フォトバクテリウム属 JT−ISH−224株、およびビブリオ属 JT−FAJ−16株由来のシアル酸転移酵素あるいは組換えシアル酸転移酵素はいずれも、酵素反応系中のNaClの存在により、その酵素活性が増加することが認められた。NaClが酵素反応系に0.2Mから1.5M濃度で存在した場合、NaCl無添加の場合と比較して、その酵素活性はいずれも約1.5倍から2.6倍に向上した。
Claims (5)
- フォトバクテリウム(Photobacterium)属またはビブリオ(Vibrio)属に属する海洋性微生物に由来するβ−ガラクトシド−α2,3−シアル酸転移酵素を用いて、糖転移反応を行うに際し、当該反応をNaClの存在下で行うことにより、NaClの非存在下に比べて当該反応の効率を高める方法。
- NaClを0.1M〜1.5Mの濃度で存在させる請求項1に記載の方法。
- NaClを0.2M〜1.0Mの濃度で存在させる請求項1に記載の方法。
- フォトバクテリウム(Photobacterium)属の海洋性微生物が、フォトバクテリウム・フォスフォレウム(Photobacterium phosphoreum)またはフォトバクテリウム属菌(Photobacterium sp.)であり、またはビブリオ(Vibrio)属の海洋性微生物が、ビブリオ属菌(Vibrio sp.)である請求項1〜3のいずれか1項に記載の方法。
- β−ガラクトシド−α2,3−シアル酸転移酵素が、配列番号2、配列番号2のアミノ酸25〜409、配列番号29、配列番号29のアミノ酸25〜409、配列番号31、および配列番号31のアミノ酸23〜402からなる群より選択されるアミノ酸配列を含むタンパク質である、請求項1〜4のいずれか1項に記載の方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006542306A JP4812625B2 (ja) | 2004-10-18 | 2005-09-30 | 糖転移酵素の酵素活性を向上させる方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2004/015363 WO2006043305A1 (ja) | 2004-10-18 | 2004-10-18 | 糖転移酵素の酵素活性を向上させる方法 |
JPPCT/JP2004/015363 | 2004-10-18 | ||
JP2006542306A JP4812625B2 (ja) | 2004-10-18 | 2005-09-30 | 糖転移酵素の酵素活性を向上させる方法 |
PCT/JP2005/018169 WO2006043406A1 (ja) | 2004-10-18 | 2005-09-30 | 糖転移酵素の酵素活性を向上させる方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2006043406A1 JPWO2006043406A1 (ja) | 2008-05-22 |
JP4812625B2 true JP4812625B2 (ja) | 2011-11-09 |
Family
ID=45044771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006542306A Expired - Fee Related JP4812625B2 (ja) | 2004-10-18 | 2005-09-30 | 糖転移酵素の酵素活性を向上させる方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4812625B2 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10234373A (ja) * | 1997-02-28 | 1998-09-08 | Japan Tobacco Inc | β−ガラクトシド−α2,6−シアル酸転移酵素をコードする遺伝子 |
JPH10234364A (ja) * | 1997-02-28 | 1998-09-08 | Japan Tobacco Inc | β−ガラクトシド−α2,6−シアル酸転移酵素 |
JP2001507215A (ja) * | 1997-01-16 | 2001-06-05 | サイテル コーポレイション | 組換え糖タンパク質のインビトロでの実用的なシアリル化 |
-
2005
- 2005-09-30 JP JP2006542306A patent/JP4812625B2/ja not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001507215A (ja) * | 1997-01-16 | 2001-06-05 | サイテル コーポレイション | 組換え糖タンパク質のインビトロでの実用的なシアリル化 |
JPH10234373A (ja) * | 1997-02-28 | 1998-09-08 | Japan Tobacco Inc | β−ガラクトシド−α2,6−シアル酸転移酵素をコードする遺伝子 |
JPH10234364A (ja) * | 1997-02-28 | 1998-09-08 | Japan Tobacco Inc | β−ガラクトシド−α2,6−シアル酸転移酵素 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2006043406A1 (ja) | 2008-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120070863A1 (en) | Novel beta-galactoside-alpha2,3-sialyltransferase, a gene encoding thereof, and a method for producing thereof | |
US20120282659A1 (en) | Novel beta-galactoside-alpha2,6-sialyltransferase, a gene encoding thereof, and a method for enhancing enzyme activity | |
US8187838B2 (en) | β-Galactoside-α2, 6-sialyltransferase, a gene encoding thereof, and a method for producing thereof | |
US7713722B2 (en) | Method for improving enzymatic activity of glycosyltransferases | |
Park et al. | Expression and characterization of β-1, 4-galactosyltransferase from Neisseria meningitidis and Neisseria gonorrhoeae | |
WO2010143713A1 (ja) | 新規タンパク質およびそれをコードする遺伝子 | |
JP4812625B2 (ja) | 糖転移酵素の酵素活性を向上させる方法 | |
EP1876234B1 (en) | Beta-galactoside-alpha2,3-sialyltransferase, gene encoding the same, and process for production of the same | |
WO2012014980A1 (ja) | 新規酵素タンパク質、当該酵素タンパク質の製造方法及び当該酵素タンパク質をコードする遺伝子 | |
JP4856636B2 (ja) | 新規なβ−ガラクトシド−α2,3−シアル酸転移酵素、それをコードする遺伝子およびその製造方法 | |
US5827714A (en) | β-galactoside-α-2, 6-sialyltransferase, and a process for producing from Photobacterium | |
JP4977125B2 (ja) | 新規なβ−ガラクトシド−α2,6−シアル酸転移酵素、それをコードする遺伝子およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110729 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110823 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140902 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |