WO2006109890A1 - Photosensitive resin composition, printed wiring board, and semiconductor package substrate - Google Patents

Photosensitive resin composition, printed wiring board, and semiconductor package substrate Download PDF

Info

Publication number
WO2006109890A1
WO2006109890A1 PCT/JP2006/308166 JP2006308166W WO2006109890A1 WO 2006109890 A1 WO2006109890 A1 WO 2006109890A1 JP 2006308166 W JP2006308166 W JP 2006308166W WO 2006109890 A1 WO2006109890 A1 WO 2006109890A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin
group
formula
epoxy
Prior art date
Application number
PCT/JP2006/308166
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuya Kiyota
Yukihiro Kiuchi
Masatoshi Iji
Original Assignee
Tamura Kaken Corporation
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Kaken Corporation, Nec Corporation filed Critical Tamura Kaken Corporation
Priority to CN2006800080565A priority Critical patent/CN101142528B/en
Priority to JP2007513044A priority patent/JP4878597B2/en
Publication of WO2006109890A1 publication Critical patent/WO2006109890A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1494Polycondensates modified by chemical after-treatment followed by a further chemical treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4292Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof together with monocarboxylic acids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions

Definitions

  • Photosensitive resin composition printed wiring board, and semiconductor package substrate
  • the present invention is capable of forming an image by ultraviolet exposure and development with a dilute alkaline aqueous solution, and does not contain halogen, phosphorus, or antimony, and achieves, for example, “UL 9 4 V-0”.
  • the present invention relates to a composition, a printed wiring board and a semiconductor package substrate using the composition. Background art
  • the printed wiring board is for mounting electronic circuits on the soldering land of the pattern by forming a conductor circuit on the board, excluding the soldering land.
  • the conductor circuit part is covered with a solder resist film as a permanent protective film. This prevents solder from adhering to unnecessary parts when soldering electronic components to a printed circuit board, and also prevents circuit conductors from being directly exposed to air and being corroded by oxidation and humidity. To do.
  • solder resist compositions are required to have high flame retardancy (UL 94 V-0), but as a flame retardant method, a halogen-containing thermosetting resin (a derivative of tetrabromobisphenol A) ( Japanese Patent No. 2 0 03-08442 9) is used.
  • a halogen-containing thermosetting resin a derivative of tetrabromobisphenol A
  • Japanese Patent No. 2 0 03-08442 9 Japanese Patent No. 2 0 03-08442 9
  • inorganic phosphorus such as red phosphorus (Tokukaihei 09-2 5 844 6) and organic phosphorus compounds (Tokuyo 2000 00 1-2)
  • any of the prior arts exhibits a high level of flame retardancy, for example, as required for semiconductor applications, and a high level of sensitivity, tackiness, developability, resistance to resistance, for example, required for semiconductor solder resist films.
  • Photosensitive resin compositions that exhibit chemical properties, heat resistance, and insulation resistance are not provided.
  • the photosensitive resin composition according to the present invention is
  • a 1 a reaction product of an epoxy resin selected from the group consisting of an epoxy resin of the formula (1) and an epoxy resin of the formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride
  • A2 a reaction product of an epoxy resin selected from the group consisting of an epoxy resin of the formula (1) and an epoxy resin of the formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride
  • (a2) selected from the group consisting of a reaction product of an epoxy resin of the formula (1) and an epoxy resin other than the epoxy resin of the formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride
  • the present invention also relates to a printed wiring board or a semiconductor package substrate before or after mounting an electronic component, comprising the photosensitive resin composition.
  • This substrate is not limited to a plate shape, and may be a sheet that is flexibly curved or a deformed shape such as a spherical shape.
  • the photosensitive resin composition of the present invention is sensitive to active energy rays and can be developed with a dilute aqueous solution.
  • a coating film excellent in adhesion and insulating properties and excellent in flame retardancy can be formed, and is suitable for a solder resist of a printed wiring board substrate.
  • the flame retardancy and heat resistance of the coating can be improved. Can do.
  • the active energy ray-curable resin (A) alone can increase the flame retardancy and heat resistance of the coating, but it satisfies the sensitivity, especially the sensitivity required when used as a solder resist. It turns out that you can't. For this reason, for example, in order to satisfy the sensitivity required as a solder resist, (a) an active energy ray-curable resin composition synthesized from an epoxy resin other than the formulas (1) and (2) is used in combination.
  • the epoxy resin (D) component is further used in combination.
  • This is a specific epoxy resin containing a phenyl group or a biphenyl group in the molecule, and has the same structure as (A).
  • the present inventors further added (E) a molybdenum compound to maintain the sensitivity and film properties derived from the active energy ray-curable resin (a).
  • E a molybdenum compound to maintain the sensitivity and film properties derived from the active energy ray-curable resin (a).
  • it effectively strengthens the foamed layer that forms the cured product composed of the active energy ray-curable resin (A) and epoxy resin (D) when ignited, thereby achieving high flame retardancy.
  • the (A) active energy ray-curable resin is one or more active energy ray-curable resins selected from the group consisting of (A 1) and (A2).
  • (A1) a reaction product of an epoxy resin selected from the group consisting of an epoxy resin of formula (1) and an epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride
  • A2 a reaction product of an epoxy resin selected from the group consisting of an epoxy resin of formula (1) and an epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride
  • the resin of (A) may be selected from one or more types from (A 1), may be selected from one or more types from (A 2), and may be either (A l) or (A 2) May be selected.
  • one or more of the epoxy resins of formula (1) may be reacted as described above, and one or more of the epoxy resins of formula (2) may be reacted as described above. Or a mixture of both the epoxy resin of formula (1) and the epoxy resin of formula (2) may be reacted as described above.
  • the active energy linear curable resin synthesized from the compounds of the formulas (1) and (2) contains a rigid functional group such as a biphenyl group or a phenyl group in the main chain. And since the active energy ray curable resin containing a phenyl group or biphenyl group in the molecule reacts to form a crosslinked structure, it is generated inside the cured product of the resin composition when ignited. The cracked gas expands the surface like a rubber to form a foamed layer, confining volatile substances due to thermal decomposition. This foamed layer cuts off the supply of heat and oxygen to the unburned area and exhibits high flame retardancy. In addition, when a resin synthesized from the compounds of formulas (1) and (2) is used with a similar structure, it is possible to improve various properties such as high flame retardancy and sensitivity, heat resistance, and developability. I found it.
  • n is 1 to 10: 1. If n exceeds 11, the resin viscosity becomes too high. From the viewpoint of the present invention, n is more preferably 7 or less.
  • the epoxy resins of the formulas (1) and (2) can be obtained by glycidyl etherification of each phenol resin having a structure corresponding thereto.
  • one or more active energy ray-curable resins selected from the group consisting of (a) (a 1) and (a 2) are used in combination.
  • (a2) An epoxy resin of the formula (1) and an epoxy resin other than the epoxy resin of the formula (2) and an unsaturated monocarboxylic acid, and a polybasic acid And a resin obtained by reacting a resin selected from the group consisting of polybasic acid anhydrides with a glycidyl compound having a radically polymerizable unsaturated group and an epoxy group.
  • the active energy ray curable resin (A) alone can increase the flame retardancy and heat resistance of the coating, it must satisfy the sensitivity, especially the sensitivity required when used as a solder resist. I found it impossible. Therefore, for example, in order to satisfy the sensitivity required as a solder resist, (a) an active energy line curable resin composition synthesized from an epoxy resin other than the formula (1) and formula (2) is used in combination. To do.
  • the epoxy resin other than those represented by formulas (1) and (2) a polyfunctional epoxy resin having two or more epoxy groups in the molecule is preferable. Further, it is preferable that the main chain skeleton does not have a condensed aromatic ring skeleton such as a biphenyl skeleton or a naphthalene skeleton.
  • Any polyfunctional epoxy resin can be used as long as it is a bifunctional or higher functional epoxy resin.
  • an epoxy equivalent having an epoxy equivalent of 1,00 or less, preferably from 100 to 500 is used.
  • bisphenol type epoxy resins such as bisphenol A type and bisphenol F type
  • novolac type epoxy resins such as o-cresol novolak
  • cyclic aliphatic polyfunctional epoxy resin such as o-cresol novolak
  • cyclic aliphatic polyfunctional epoxy resin such as o-cresol novolak
  • glycidyl ester type epoxy resin glycidylamine type
  • epoxy resins include epoxy resins, heterocyclic polyfunctional epoxy resins, bisphenol-modified novolak epoxy resins, and the like. These epoxy resins may be used alone or in combination of two or more.
  • (A 1) is the reaction of an epoxy resin selected from the group consisting of the epoxy resin of formula (1) and the epoxy resin of formula (2) with an unsaturated monocarboxylic acid And a compound selected from the group consisting of a polybasic acid and a polybasic acid anhydride.
  • (a 1) is a group consisting of a reaction product of an epoxy resin of formula (1) and an epoxy resin other than the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride. It can be obtained by reacting with a selected compound. This process is described.
  • an epoxy resin of formula (1) an epoxy resin of formula (2), or a formula
  • the epoxy resin When an epoxy resin other than (2) is reacted with a radically polymerizable unsaturated monocarboxylic acid, the epoxy resin is cleaved by the reaction between the epoxy group and the carboxyl group, and a hydroxyl group and an ester bond are formed.
  • the radically polymerizable unsaturated monocarboxylic acid to be used is not particularly limited, and examples thereof include (meth) acrylic acid, crotonic acid, cinnamic acid, and (meth) acrylic acid is most preferable.
  • the reaction method of the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid is not particularly limited.
  • the epoxy resin and (meth) acrylic acid can be reacted by heating and stirring together with a catalyst in an appropriate solvent. .
  • the solvent examples include ketones such as methylethylketone and cyclohexanone, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol, isopropanol, and cyclohexanol, cyclohexanone, and methylcyclohexane.
  • ketones such as methylethylketone and cyclohexanone
  • aromatic hydrocarbons such as toluene and xylene
  • alcohols such as methanol, ethanol, isopropanol, and cyclohexanol, cyclohexanone, and methylcyclohexane.
  • Alicyclic hydrocarbons such as xanone, petroleum-based solvents such as petroleum ether and petroleum naphtha, cellosolves such as cellosolve and petroleum sorbate, carbitols such as carbitol and butylcarbitol, ethyl acetate, acetic acid Butyl, Butyl Seguchi Solbucetate And acetates such as citrate, carbitol acetate, and butyl carbitol acetate.
  • the catalyst include amines such as tritylamine, tributylamine and dimethylbenzylamine, and phosphorous compounds such as triphenylphosphine and triphenylphosphate.
  • each of the above epoxy resins with the radically polymerizable unsaturated monocarboxylic acid it is preferable to react 0.7 to 1.0 equivalent of the radically polymerizable unsaturated monocarboxylic acid with respect to 1 equivalent of the epoxy group of the epoxy resin.
  • (meth) acrylic acid the reaction is more preferably carried out in an amount equivalent to 0.8 to 1.0. If the amount of the radically polymerized unsaturated monocarboxylic acid is less than 0.7 equivalent, gelation may occur during the subsequent synthesis reaction, and the storage stability of the resin may be deteriorated.
  • the reaction between the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid is preferably performed in a heated state, and the reaction temperature is preferably 80 to 140 ° C. If the reaction temperature exceeds 140 ° C, the radically polymerizable unsaturated monocarboxylic acid may cause thermal polymerization and may be difficult to synthesize, and if it is less than 80 ° C, the reaction rate becomes slow. In some cases, it is not preferable in actual production.
  • the reaction product of the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid can be subjected to the reaction with the following polybasic acids in the solution without isolation.
  • a polybasic acid or an anhydride thereof is reacted with the unsaturated monocarboxylic oxide epoxy resin which is a reaction product of the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid.
  • the polybasic acid or its anhydride is not particularly limited, and either saturated or unsaturated can be used.
  • Such polybasic acids include succinic acid, maleic acid, adipic acid, fuuric acid, tetrahydrohydride.
  • the polybasic acid or polybasic acid anhydride reacts with a hydroxyl group formed by the reaction of each of the above epoxy resins with a radically polymerizable unsaturated monocarboxylic acid, thereby giving the resin a free carboxyl group.
  • the amount of the polybasic acid or its anhydride is preferably 0.2 to 1.0 mol with respect to 1 mol of the hydroxyl group of the reaction product of each epoxy resin and radically polymerizable unsaturated monocarboxylic acid. . From the point that a highly sensitive resin film can be obtained at the time of exposure, the reaction is carried out at 0.3 to 0.9 mol, more preferably at 0.4 to 0.9 mol. If it is less than 0.2 mol, the solubility of the resulting resin in dilute aqueous solutions may be reduced, and if it exceeds 1.0 mol, the properties of the cured film finally obtained will be reduced. May decrease.
  • the polybasic acid or its anhydride is added to the above unsaturated monocarboxylic oxide epoxy resin and subjected to a dehydration condensation reaction, and the water produced during the reaction is continuously taken out from the reaction system.
  • the reaction is preferably performed in a heated state, and the reaction temperature is preferably 70 to 130 ° C.
  • the reaction temperature exceeds 130 ° C, synthesis may be difficult due to thermal bonding of those bonded to the epoxy resin or unreacted radically polymerizable unsaturated groups. If it is less than 70 ° C, the reaction rate becomes slow, which may be undesirable in actual production.
  • Polybasic acid-modified unsaturated carboxylic acid which is a reaction product of the above polybasic acid or its anhydride and unsaturated monocarboxylic epoxy resin
  • the acid value of the epoxy resin is preferably 60 to 130 mg KOH / g.
  • the acid value of the reaction product can be adjusted by the amount of the polybasic acid or its anhydride to be reacted.
  • the above polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin can be used as a photosensitive resin. This corresponds to the active energy ray curable resin (A1) (a1).
  • Examples of the glycidyl compound having one or more radically polymerizable unsaturated groups and an epoxy group include glycidyl (meth) acrylate, allylic glycidyl ether, pentaerythritol triacrylate monoglycidyl ether, and the like. A plurality of glycidyl groups may be present.
  • the glycidyl compound is added to the solution of the polybasic acid-modified unsaturated monocarbon-oxidized epoxy resin and allowed to react. Usually, 0.05 mol to 0.5 mol per mol of the carboxyl group introduced into the resin. Respond at the rate of.
  • the reaction should be carried out at a rate of 0.1 to 0.5 mol, and the reaction temperature is 8 0 to 120 ° C is preferred.
  • the acid value of the photosensitive resin comprising the glycidyl compound-added polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin thus obtained is 45 to 25 O mg KOH / g. It is desirable.
  • the active energy ray-curable resin (A) is preferably added at a ratio of 2 to 40% by weight in the photosensitive resin composition of the present invention. If the amount added is less than 2% by weight, it is difficult to obtain sufficient flame retardancy. If this added amount exceeds 40% by weight, the photosensitivity of the resin composition is lowered, and for example, it tends to be difficult to satisfy the requirements as a solder resist.
  • the active energy ray-curable resin ( a ) is preferably added in a proportion of 5 to 30% by weight in the photosensitive resin composition of the present invention.
  • the amount added is less than 5% by weight, the photosensitivity of the resin composition is lowered, and for example, it tends to be difficult to satisfy the requirements as a solder resist. If this amount is more than 30% by weight, flame retardancy is difficult to obtain.
  • the photopolymerization initiator (B) is not particularly limited, and any conventionally known photopolymerization initiator (B) can be used. Specific examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin sobutyl ether, acetophenone, dimethylaminoacetophenone, 2, 2- Dimethoxy-2 -phenylacetophenone, 2,2-diethoxy-2 -phenylacetophenone, 2-hydroxy-2--2-methyl-1-phenylpropane-1-one, 2-methyl-1- (4- (methylthio) Phenyl)-2 -morpholino -propan-1 -one, 4-(2 -hydroxyethoxy) phenyl-2-(hydroxy -2 -provir) ketone, 2-benzyl-2-dimethylamino-1 -(4-morpholino) buevenone, benzophenone, p-
  • the amount of the photopolymerization initiator (B) used is 0.5 to 50 parts by mass with respect to 100 parts by mass of the active energy ray-curable resin of the component (A), and less than 0.5 parts by mass. Then, the photopolymerization reaction of the active energy ray-curable resin (A) component becomes insufficient, and if it exceeds 50 parts by mass, the effect of the photopolymerization on the ratio of the added amount is not improved.
  • the active energy ray-curable resin of the above component (A) is further sufficiently photocured to impart chemical resistance, and at least in one molecule.
  • the reactive diluent is preferably a liquid at room temperature and has a boiling point of 100 ° C. or higher or less than 10 ° C. and does not sublime. If the solder resist composition containing a reactive diluent is exposed to a solid at room temperature, the reactive diluent molecules hardly move in the coating film, and a sufficient curing depth can be obtained. Absent.
  • the reactive diluent when the boiling point or sublimation point is less than 10 ° C., the reactive diluent also evaporates at the same time when the solvent contained in the solder resist composition is dried.
  • Commonly used reactive diluents include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentylglycol di (meth) acrylate, polyethylene glycol Di (meth) acrylate, neopentylglycol adipate di (meth) acrylate, hydroxypivalic acid neopentylglycol di (meth) acrylate, di-sic mouth pen genil di (meth) acrylate, force prolacton modified disic (Meth) acrylate, ethylene oxide-modified phosphate di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylol
  • the addition amount of the reactive diluent (C) is usually in the range of 2 to 40 parts by mass per 100 parts by mass of the active energy ray-curable resin of the component (A). If the addition amount is less than 2 parts by mass, sufficient photocuring cannot be obtained, and it is difficult to obtain sufficient performance in terms of chemical resistance and plating resistance of the cured coating film. If it exceeds, the tack becomes strong and the exposure mask substrate tends to adhere during the exposure process using a contact type exposure apparatus, making it difficult to obtain the desired cured coating film.
  • the epoxy resin of component (D) contains a rigid functional group such as biphenyl or phenyl in the main chain.
  • the epoxy resin containing a phenyl group or a biphenyl group in the molecule reacts to form a cross-linked structure. Therefore, when ignited, the surface is rubberized by the decomposition gas generated inside the cured product of the resin composition. It expands upward to form a foamed layer that traps volatiles from pyrolysis. This foamed layer cuts off the supply of heat and oxygen to the unburned part and exhibits a high degree of flame retardancy.
  • the epoxy resin of the present invention can be used in combination with (d) an epoxy resin having at least two epoxy groups in one molecule other than the compounds of the formulas (1) and (2).
  • phenol novolak resins include Epicoat 152, 1 54 (hereinafter, Japan Epoxy Resin), Epiclon N-740, N-770 (above, Dainippon Ink & Chemicals), Cresol Novolac.
  • the (D) epoxy thermosetting resin is preferably added at a ratio of 5 to 30 parts by mass with respect to 100 parts by mass of the active energy ray-curable resin (A).
  • (d) epoxy-type thermosetting resin is the ratio of 5-30 mass parts with respect to 100 mass parts of active energy ray curable resin of said (A) component. It is preferable to add.
  • the total amount of the component (D) and the component (d) is preferably 20 to 50 parts by mass with respect to 100 parts by mass of the active energy ray-curable resin of the component (A). .
  • epoxy thermosetting resins may be used alone or in combination of two or more.
  • a reaction accelerator a known epoxy resin curing accelerator such as a melamine compound, an imidazole compound, or a phenol compound can be used in combination.
  • the (E) molybdenum compound is a compound containing a molybdenum element, but a material containing molybdate is preferable, and the use of this material improves the flame retardancy.
  • This is composed of a resin containing aromatics such as a phenyl group or a biphenyl group in the molecule, such as the active energy ray-curable resin (A) or epoxy resin (D) of the present application, by adding a molybdenum compound. It is considered that the result of the thermal decomposition of the cured product is a result of a specific and efficient suppression, and the formation of a strong carbonized film on the surface of the foam layer formed by the cured product upon ignition.
  • molybdate examples include zinc molybdate, a composite of zinc molybdate and magnesium silicate, calcium molybdate, and zinc calcium molybdate.
  • the amount of the molybdenum compound added is usually in the range of 5 to 40 parts by mass per 100 parts by mass of the active energy ray-curable resin (A). If the addition amount is less than 5 parts by mass, sufficient flame retardancy cannot be obtained, and if the addition amount exceeds 40 parts by mass, there is a possibility that it will adversely affect the repelling property and the strength re-developability. There is.
  • the solder resist composition of the present invention may contain various additives such as silica, alumina, talc, calcium carbonate, barium sulfate, magnesium hydroxide, aluminum hydroxide and the like.
  • additives such as silica, alumina, talc, calcium carbonate, barium sulfate, magnesium hydroxide, aluminum hydroxide and the like.
  • Inorganic pigments, copper phthalocyanine, isoindoline, carbon black and other known color pigments, antifoaming agents, leveling agents and other coating additives can be incorporated.
  • the solder resist soot composition obtained as described above is applied to a circuit board having a conductive circuit by etching, for example, a copper foil of a copper clad laminate, and is applied at a predetermined thickness. After the solvent is evaporated by heating at a temperature of 15 to 60 minutes, the mask with a light-shielded pattern is brought into close contact with the soldering land of the above circuit, and the soldering land is irradiated with ultraviolet rays. The coating film is developed by removing the non-exposed areas corresponding to the above with a dilute alkaline aqueous solution.
  • the target solder resist film can be obtained by performing a post cure for 10 to 60 minutes in a hot air circulating drying oven at 140 to 160 ° C. In this way, a printed wiring board coated with a solder resist film is obtained, and electronic components are connected and mounted on the printed wiring board by a jet soldering method or a reflow soldering method. After mounting the semiconductor chip, the semiconductor chip is resin-sealed by transfer molding, or fixed with underfill resin, and mounted on another substrate as the semiconductor package substrate by the soldering method described above .
  • a printed wiring board coated with a solder resist before mounting an electronic component or a semiconductor chip a printed wiring board having an electronic component or a semiconductor chip mounted on the printed wiring board, and this printed wiring board None of the electronic devices used Include in subject.
  • Example 1 a printed wiring board coated with a solder resist before mounting an electronic component or a semiconductor chip, a printed wiring board having an electronic component or a semiconductor chip mounted on the printed wiring board, and this printed wiring board None of the electronic devices used Include in subject.
  • a cresol novolac type epoxy resin made by Nippon Kayaku Co., Ltd., E 0 CN — 1 04 S (epoxy equivalent 2 2 0) 2 20 parts was heated and dissolved in 98.9 parts of carbitol acetate, and then acrylic.
  • An active energy ray-curable resin solution was obtained, which contained 17.5 parts carbitol acetate and 17.5 parts petroleum naphtha.
  • KA YAR ADR— 7 50 9 (epoxy equivalent: 32 0) 3 20 parts of bisphenol F type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., is dissolved in carbitol acetate 1 2 5. 8 parts by heating. 70. 5 parts, 0.5 part of methylhydroquinone and 0.5 part of triphenylphosphine are added and reacted at 110 to 120 ° C for 8 hours. When the acid value of the reaction solution reaches 2 or less, add 76 parts of tetrahydrophthalic anhydride and 15.8.8 parts of petroleum naphtha and react at 90 to 100 ° C for 2 hours to activate. An energy ray curable resin solution was obtained. This resin solution contains 17.5 parts carbitol acetate and 17.5 parts petroleum naphtha.
  • Dipentaerythritol Hexaacrylate 2 3 parts, (D) 20 parts of NC-300 as epoxy-based cured resin, (d) Epiclone N-770 as epoxy-based cured resin (Dainippon KEMGARD 9 11 C (compound of Nippon Molybdenum Japan, zinc molybdate and magnesium silicate) with 20 parts of (Eno) a phenol novolac type epoxy resin made by Ink Chemical Co., Ltd.
  • Example 1 it was the same except that (A) the active energy ray-curable resin solution obtained in Synthesis Example 1 was used instead of 100 parts of the active energy ray-curable resin solution obtained in Synthesis Example 2.
  • Tables 1 and 2 show the results of preparing a photosensitive resin composition and testing the same as in Example 1.
  • Example 1 (a) Synthesis as active energy ray-curable resin solution Synthesis of active energy ray-curable resin solution obtained in Synthesis Example 4 instead of active energy ray-curable resin solution obtained in Example 3 1 0 0
  • Tables 1 and 2 show the results obtained by preparing a photosensitive resin composition in the same manner except that the parts are used, and testing in the same manner as in Example 1.
  • Example 4 In Example 1, instead of Epiclone N-7700 as (d) Epoxy Curing Resin, YX-4000 (2,2,-(3,3,5,5,5-Tetra made by Japan Epoxy Resin Co., Ltd.) A photosensitive resin composition was prepared in the same manner except that methyl (1,1'-biphenyl) -4,4, -diyl) bis (oxymethylene)) bisoxysilane) was used and tested in the same manner as in Example 1. The results are shown in Tables 1 and 2.
  • Example 1 a photosensitive resin composition was prepared in the same manner except that (d) Epotot YS LV-8 00 XY (manufactured by Tohto Kasei Co., Ltd.) was used instead of Epiclone N-770 as the epoxy-based cured resin. Tables 1 and 2 show the results prepared and tested in the same manner as in Example 1.
  • Example 1 Epoxy Coat 807 (Bisphenol F type epoxy type cured resin manufactured by Japan Poxy Resin Co., Ltd.) was used instead of Epiclone N-770 as epoxy type cured resin.
  • Tables 1 and 2 show the results of preparing a photosensitive resin composition and testing it in the same manner as in Example 1.
  • Example 1 Photosensitive R-684 (Nippon Kayaku Co., Ltd. dicyclopentyl diacrylate) instead of DP HA was used as the reactive diluent.
  • Tables 1 and 2 show the results of preparing a functional resin composition and testing the same as in Example 1.
  • Example 1 a photosensitive resin composition was prepared in the same manner as in Example 1 except that KEMGARD 9 11 B (Nihon Shaw Williams, a compound of zinc molybdate) was used as (E). And tested as The results are shown in Tables 1 and 2.
  • KEMGARD 9 11 B Nihon Shaw Williams, a compound of zinc molybdate
  • a photosensitive resin composition was prepared in the same manner as in Example 1 except that (E) was not contained, and the results of the same tests as in Example 1 are shown in Tables 1 and 2.
  • Example 1 Synthesis as an active energy ray-curable resin solution Using only 200 parts of the active energy ray-curable resin solution obtained in Example 3,
  • a photosensitive resin composition was prepared in the same manner except that the active energy ray-curable resin was not used, and the results of testing in the same manner as in Example 1 are shown in Tables 1 and 2.
  • Example 1 Synthesis as an active energy ray-curable resin solution Using only 200 parts of the active energy ray-curable resin solution obtained in Example 3, (A) Using an active energy ray-curable resin Furthermore, a photosensitive resin composition was prepared in the same manner except that magnesium hydroxide was used instead of barium sulfate, and the results of tests similar to Example 1 are shown in Tables 1 and 2.
  • Example 1 the same procedure was used except that (A) 200 parts of the active energy ray-curable resin solution obtained in Synthesis Example 1 was used alone, and (a) the active energy ray-curable resin solution was not used.
  • Tables 1 and 2 show the results of preparing a photosensitive resin composition and testing it in the same manner as in Example 1. table 1
  • Example 1 active energy ray-curable resin solution obtained in Synthesis Example 1 was 173 parts, and (a) active energy ray-curable resin solution obtained in Synthesis Example 3 was 27 parts.
  • Tables 3 and 4 show the results of adjusting the photosensitive resin composition in the same manner except that, and testing in the same manner as in Example 1.
  • Example 1 130 parts of (A) active energy ray-curable resin solution obtained in Synthesis Example 1 and 70 parts of (a) active energy ray-curable resin solution obtained in Synthesis Example 3 were used. Tables 3 and 4 show the results of adjusting the photosensitive resin composition in the same manner except that, and testing in the same manner as in Example 1.
  • Example 1 In Example 1, (A) 70 parts of the active energy ray-curable resin solution obtained in Synthesis Example 1 and (a) 125 parts of the active energy ray-curable resin solution obtained in Synthesis Example 3 (d) Tables 3 and 4 show the results of the same test as in Example 1 except that the photosensitive resin composition was prepared in the same manner except that 15 parts of Epiclone N-770 was used as the epoxy-based cured resin.
  • Example 1 In Example 1, (A) 165 parts of the active energy line curable resin solution obtained in Synthesis Example 1 and (a) 35 parts of the active energy ray curable resin solution obtained in Synthesis Example 3 ( Tables 3 and 4 show the results obtained by preparing a photosensitive resin composition in the same manner except that KEMGARD 9 1 1 C was 9 parts as E) and testing in the same manner as in Example 1. Table 3 Examples
  • the test method is as follows.
  • a puffed copper clad laminate was subjected to the above-mentioned Examples 1 to 4 by screen printing.
  • Each photosensitive resin composition of Comparative Examples 1 to 4 was applied at a thickness of 20 ⁇ m (after drying), dried at 80 ° C. for 20 minutes, and then Kodak C ONT RO LS CAL ET-1 4 (Eastman Kodak) is placed on the coating surface, and the scattered light exposure device with blue filter (9-8900, manufactured by Ono Sokki) on the resist surface. Irradiated / cm 2 . After that, using a 1% aqueous sodium carbonate solution and developing at a spray pressure of 0.2 MPa for 90 seconds, the number of stages where the photocurable / thermosetting resin coating film remains without being developed. was the sensitivity.
  • the puffed copper clad laminate was coated with the photosensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 to 4 in a thickness of 20 ⁇ m (after drying) by screen printing. After drying at 80 ° C. for 20 minutes, the stickiness of the coating film cooled to room temperature was confirmed by touch and evaluated according to the following criteria.
  • the coating film has a slight stickiness
  • the puffed copper-clad laminate was coated with the photosensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 to 4 in a thickness of 20 ⁇ m (after drying) by screen printing. After drying at 80 ° C. at intervals of 10 minutes each, the longest drying time that can be developed in 90 seconds at a spray pressure of 0.2 MPa using a 1% aqueous sodium carbonate solution was measured.
  • the photosensitive resin composition of each of Examples 1 to 8 and Comparative Examples 1 to 4 was applied to a conductor circuit (conductor thickness 3 5 ⁇ 1) puffed on the conductor circuit by screen printing. After coating at 80 ° C and drying at 80 ° C for 20 minutes, a mask film with a pattern corresponding to the conductor circuit is placed on the coating surface, and a scattered light exposure device with a blue filter ( TN-890B (manufactured by Ono Sokki Co., Ltd.) was irradiated at 500 mJ / cm 2 on the resist surface. Thereafter, the film was developed for 90 seconds at a spray pressure of 0.2 MPa using a 1% aqueous sodium carbonate solution. Subsequently, this substrate was thermally cured at 150 ° C. for 60 minutes to prepare a printed wiring board having a cured coating film, and the coating film performance was evaluated.
  • TN-890B manufactured by Ono Sokki Co., Ltd.
  • the peeling test with cellophane adhesive tape is defined as one cycle. 1 to 3 cycles
  • the state of the coating film after the observation was visually observed and evaluated according to the following criteria. .
  • Examples 1 to 8 achieve combustibility V-0 while sufficiently satisfying the requirements for solder resist.

Abstract

A photosensitive resin composition which comprises: (A) a resin which is, e.g., one obtained by reacting a product of the reaction of an unsaturated monocarboxylic acid with an epoxy resin selected from the group consisting of compounds of the formula (1) and compounds of the formula (2) with a compound selected from the group consisting of polybasic acids and polybasic acid anhydrides; (a) a resin which is, e.g., one obtained by reacting a product of the reaction of an unsaturated monocarboxylic acid with an epoxy resin other than the compounds of the formula (1) and the compounds of the formula (2) with a compound selected from the group consisting of polybasic acids and polybasic acid anhydrides; (B) a photopolymerization initiator; (C) a reactive diluent; (D) an epoxy resin selected from the group consisting of compounds of the formula (1) and compounds of the formula (2); (d) an epoxy resin other than the compounds of the formula (1) and the compounds of the formula (2); and (E) a molybdenum compound.

Description

明細書  Specification
感光性樹脂組成物、 プリン ト配線板、 および半導体パッケージ基板 技術分野  Photosensitive resin composition, printed wiring board, and semiconductor package substrate
本発明は、 紫外線露光及び希アルカリ水溶液による現像で画像形成が 可能であり、 ハロゲン、 リン、 アンチモンを含まずに、 例えば 「U L 9 4 V - 0」 を達成する難燃性を持つ感光性樹脂組成物並びにこれを用 いたプリン.ト配線板および半導体パッケ一ジ基板に関する。 背景技術  The present invention is capable of forming an image by ultraviolet exposure and development with a dilute alkaline aqueous solution, and does not contain halogen, phosphorus, or antimony, and achieves, for example, “UL 9 4 V-0”. The present invention relates to a composition, a printed wiring board and a semiconductor package substrate using the composition. Background art
プリ ン ト配線板は、 基板の上に導体回路.を形成し、 そのパターンのは んだ付けランドに電子部品をはんだ付けすることにより搭載するための ものであり、 そのはんだ付けラン ドを除く導体回路部分は永久保護皮膜 としてのソルダーレジス ト膜で被覆される。 これにより、 プリント配線 板に電子部品をはんだ付けする際にはんだが不必要な部分に付着するの を防止すると共に、 回路導体が空気に直接曝されて酸化や湿度により腐 食されるのを防止する。  The printed wiring board is for mounting electronic circuits on the soldering land of the pattern by forming a conductor circuit on the board, excluding the soldering land. The conductor circuit part is covered with a solder resist film as a permanent protective film. This prevents solder from adhering to unnecessary parts when soldering electronic components to a printed circuit board, and also prevents circuit conductors from being directly exposed to air and being corroded by oxidation and humidity. To do.
これらソルダーレジス ト組成物は高い難燃性 (UL 94 V - 0 ) が 要求されるが、 難燃化の手法として、 テ トラブロモビスフエノ一ル Aの 誘導体であるハロゲン含有熱硬化樹脂 (特閧 2 0 03 - 08442 9号 公報) が用いられる。 しかし、 このようなハロゲン含有熱硬化樹脂は、 焼却時に有毒なダイォキシンの発生が懸念されており、 脱ハロゲン化の 要求が高まっている。  These solder resist compositions are required to have high flame retardancy (UL 94 V-0), but as a flame retardant method, a halogen-containing thermosetting resin (a derivative of tetrabromobisphenol A) ( Japanese Patent No. 2 0 03-08442 9) is used. However, such halogen-containing thermosetting resins are concerned about the generation of toxic dioxin during incineration, and there is an increasing demand for dehalogenation.
また、 リンを用いた難燃化手法として、 赤リンのような無機リン (特 開平 09 - 2 5 844 6号公報) や有機リン化合物 (特閧 2 00 2 - 1 In addition, as a flame-retarding technique using phosphorus, inorganic phosphorus such as red phosphorus (Tokukaihei 09-2 5 844 6) and organic phosphorus compounds (Tokuyo 2000 00 1-2)
2 1 24 5号公報) (特閧 2 00 2 - 040 6 3 3号公報)を用いる手法 がある。 しかし、 リン系難燃剤を使用したハロゲンフリー基板が、 耐湿 性に劣ることが報告されている ( Rajoo and E. H. Wong: " Moisture Characteristics and Performance of Halogen - Free Laminates " , International Conference on Electronics Packaging ( ICEP) , pp 4 80 - 4 8 5, 2 0 0 2 )。 2 1 24 5 publication) (Japanese patent 2 00 2 -040 6 3 publication 3) There is. However, halogen-free substrates using phosphorus-based flame retardants have been reported to have poor moisture resistance (Rajoo and EH Wong: "Moisture Characteristics and Performance of Halogen-Free Laminates", International Conference on Electronics Packaging (ICEP) , pp 4 80-4 85, 2 0 0 2).
このような背景から、 ソルダーレジス ト組成物に水酸化アルミニウム や水酸化マグネシウムといった金属水酸化物を用いた難燃化が検討され ている (特開 2 00 2 - 1 5 6 748号公報)。 しかし、 この方法ではソ ルダーレジス ト組成物に要求される特性と難燃性を両立することが困難 である。  Against this background, flame retardancy using a metal hydroxide such as aluminum hydroxide or magnesium hydroxide in the solder resist composition has been studied (Japanese Patent Application Laid-Open No. 2000-156748). However, with this method, it is difficult to achieve both the properties required for the solder resist composition and the flame retardancy.
なお、 特開平 1 1— 1 40 2 7 7号公報には、 (A) 分子中にビフヱ ニル誘導体および/またはナフ夕レン誘導体を含むノボラック構造のフ エノ一ル樹脂を総フエノール樹脂量中に 30〜 1 00質量部含むフエノ —ル樹脂、 (B)分子中にビフエ二ル誘導体および/またはナフタレン誘 導体を含むノボラック構造のエポキシ樹脂を総エポキシ樹脂、 ( C)無機 充填材、 (D)硬化促進剤を必須成分とする半導体封止用エポキシ樹脂組 成物が開示されている。 発明の開示  In Japanese Patent Laid-Open No. 1-140 2777, (A) a novolac-structured phenolic resin containing a biphenyl derivative and / or a naphthenic derivative in the molecule is included in the total phenolic resin amount. 30 to 100 parts by mass of a phenolic resin, (B) a novolac-structured epoxy resin containing a biphenyl derivative and / or a naphthalene derivative in the molecule, (C) an inorganic filler, (D) An epoxy resin composition for encapsulating a semiconductor containing a curing accelerator as an essential component is disclosed. Disclosure of the invention
しかし、 いずれの従来技術においても、 例えば半導体用途に要求され るような高度の難燃性を示し、 かつ例えば半導体ソルダーレジス ト膜に 要求されるような高度の感度、 タック性、 現像性、 耐薬品性、 耐熱性、 絶縁抵抗を示すような感光性樹脂組成物は提供されていない。  However, any of the prior arts exhibits a high level of flame retardancy, for example, as required for semiconductor applications, and a high level of sensitivity, tackiness, developability, resistance to resistance, for example, required for semiconductor solder resist films. Photosensitive resin compositions that exhibit chemical properties, heat resistance, and insulation resistance are not provided.
本発明の課題は、 高度の感度、 タック性、 現像性、 耐薬品性、 耐熱性、 絶縁抵抗を示し、 ハロゲン系やリン系の化合物を使用しなく とも優れた 難燃性を示す感光性樹脂組成物を提供することである。 また、 本発明の課題は、 この感光性樹脂組成物のソルダーレジス ト膜 の硬化膜を有する電子部品搭載前若しくは後のプリント配線板、 又は半 導体パッケージ基板等の電子部品搭載用構造体を提供することである。 本発明に係る感光性樹脂組成物は、 The subject of the present invention is a photosensitive resin which exhibits a high degree of sensitivity, tackiness, developability, chemical resistance, heat resistance, insulation resistance, and exhibits excellent flame retardancy without using a halogen-based or phosphorus-based compound. It is to provide a composition. Another object of the present invention is to provide a printed wiring board before or after mounting an electronic component having a cured film of a solder resist film of the photosensitive resin composition, or a structure for mounting an electronic component such as a semiconductor package substrate. It is to be. The photosensitive resin composition according to the present invention is
( A) (A 1 ) および (A 2 ) からなる群より選ばれた一種以上の 活性エネルギー線硬化性樹脂、  (A) one or more active energy ray-curable resins selected from the group consisting of (A 1) and (A 2),
(A 1 ) 式 ( 1 ) のエポキシ樹脂および式 ( 2 ) のエポキシ樹 脂からなる群より選ばれたエポキシ樹脂と不飽和モノカルボン酸との反 応物と、 多塩基酸および多塩基酸無水物からなる群より選ばれた化合物 とを反応させて得られる樹脂、  (A 1) a reaction product of an epoxy resin selected from the group consisting of an epoxy resin of the formula (1) and an epoxy resin of the formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride A resin obtained by reacting a compound selected from the group consisting of:
( A 2 ) 式 ( 1 ) のエポキシ樹脂および式 ( 2 ) のエポキシ樹 脂からなる群より選ばれたェポキシ樹脂と不飽和モノカルボン酸との反 応物と、 多塩基酸および多塩基酸無水物からなる群より選ばれた化合物 とを反応させて得られる樹脂を、 更にラジカル重合性不飽和基とェポキ シ基を有するグリシジル化合物と反応させて得られる樹脂、  (A2) a reaction product of an epoxy resin selected from the group consisting of an epoxy resin of the formula (1) and an epoxy resin of the formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride A resin obtained by reacting a resin selected from a group selected from the group consisting of a glycidyl compound having a radical polymerizable unsaturated group and an epoxy group;
( a) ( a 1 ) および ( a 2 ) からなる群より選ばれた一種以上 の活性エネルギー線硬化性樹脂、  (a) one or more active energy ray-curable resins selected from the group consisting of (a1) and (a2),
(a 1 ) 式 ( 1 ) のエポキシ樹脂および式 ( 2 ) のエポキシ樹 脂以外のエポキシ樹脂と不飽和モノカルボン酸との反応物と、 多塩基酸 および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得 られる樹脂、  (a 1) selected from the group consisting of an epoxy resin of the formula (1) and an epoxy resin other than the epoxy resin of the formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride Resin obtained by reacting with the compound obtained,
( a 2 ) 式 ( 1 ) のエポキシ樹脂および式 ( 2 ) のエポキシ樹 脂以外のェポキシ樹脂と不飽和モノカルボン酸との反応物と、 多塩基酸 および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得 られる樹脂を、 更にラジカル重合性不飽和基とエポキシ基を有するグリ シジル化合物と反応させて得られる樹脂、 (B) 光重合開始剤、 (a2) selected from the group consisting of a reaction product of an epoxy resin of the formula (1) and an epoxy resin other than the epoxy resin of the formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride A resin obtained by further reacting a resin obtained by reacting the compound with a glycidyl compound having a radical polymerizable unsaturated group and an epoxy group, (B) a photopolymerization initiator,
(C) 反応性希釈剤、  (C) a reactive diluent,
(D) 式 ( 1 ) の化合物および式 (2) の化合物からなる群より 選ばれたエポキシ樹脂、  (D) an epoxy resin selected from the group consisting of a compound of formula (1) and a compound of formula (2),
(d) 式 ( 1) の化合物および式 (2) の化合物以外のエポキシ 樹脂、 および  (d) an epoxy resin other than the compound of formula (1) and the compound of formula (2), and
(E) モリブデン化合物を含有することを特徴とする。  (E) It contains a molybdenum compound.
Figure imgf000005_0001
Figure imgf000005_0001
(n= 1以上、 10以下) (n = 1 or more, 10 or less)
Figure imgf000005_0002
Figure imgf000005_0002
(2) ( n = 1以上、 1 0以下) (2) (n = 1 or more, 1 or less)
また、 本発明は、 前記感光性樹脂組成物を有することを特徴とする、 電子部品搭載前若しくは搭載後のプリン ト配線板、 又は、 半導体パッケ 一ジ基板に係るものである。 この基板は板状に限られるものではなく、 フレキシブルに湾曲するシートや、 球状等の異形であってよい。  The present invention also relates to a printed wiring board or a semiconductor package substrate before or after mounting an electronic component, comprising the photosensitive resin composition. This substrate is not limited to a plate shape, and may be a sheet that is flexibly curved or a deformed shape such as a spherical shape.
本発明の感光性樹脂組成物は、 活性エネルギー線に感度よく反応し、 かつ希アル力リ水溶液により現像可能であって、 プリン ト配線基板のソ ルダーレジス ト等として使用された場合、 耐熱性、 密着性、 絶縁性に優 れ、 かつ難燃性に優れた塗膜を'形成することができ、 プリン ト配線板基 板のソルダーレジス ト等に好適なものである。  The photosensitive resin composition of the present invention is sensitive to active energy rays and can be developed with a dilute aqueous solution. When used as a solder resist for printed wiring boards, A coating film excellent in adhesion and insulating properties and excellent in flame retardancy can be formed, and is suitable for a solder resist of a printed wiring board substrate.
即ち、 特定の選択された芳香族骨格とグリシジル基側鎖とを有する式 That is, a formula having a specific selected aromatic skeleton and glycidyl group side chain
( 1 ) ( 2 )の化合物を出発点として合成して得られた活性エネルギー線 硬化性樹脂(A 1 ) ( A 2 ) を使用することによって、 被膜の難燃性ゃ耐 熱性を向上させることができる。 しかし、 ( A )の活性エネルギー線硬化 性樹脂だけでは、 被膜の難燃性、 耐熱性は高くすることができるが、 感 度、 特にソルダ一レジス トとして使用した場合に要求される感度を満足 することができないことが判った。 このため、 例えばソルダ一レジス ト として要求される感度を満足するため、 (a ) 式 ( 1 )、 式 ( 2 ) 以外の エポキシ樹脂から合成された活性エネルギー線硬化性樹脂組成物を併用 する。 (1) By using the active energy ray curable resin (A 1) (A 2) obtained by synthesizing the compound of (2) as a starting point, the flame retardancy and heat resistance of the coating can be improved. Can do. However, the active energy ray-curable resin (A) alone can increase the flame retardancy and heat resistance of the coating, but it satisfies the sensitivity, especially the sensitivity required when used as a solder resist. It turns out that you can't. For this reason, for example, in order to satisfy the sensitivity required as a solder resist, (a) an active energy ray-curable resin composition synthesized from an epoxy resin other than the formulas (1) and (2) is used in combination.
しかし、 ( a )成分の量を、 充分に高い感度を得られる程度に増加させ ると、 被膜の難燃性は低下する傾向がある。 ここで、 本発明では、 (D ) 成分のエポキシ樹脂を更に併用する。 これは、 分子中にフヱニル基ゃビ フエ二ル基を含有する特定のエポキシ樹脂であり、 かつ (A ) と同じ構 造部分を有している。 このようなエポキシ樹脂を併用することにより、 着火した際に、 樹脂組成物の硬化物の内部で発生する分解ガスにより被 膜表面がゴム上に膨張して発泡層を生成し易くなる。 However, if the amount of the component (a) is increased to such a degree that sufficiently high sensitivity can be obtained, the flame retardancy of the coating tends to decrease. Here, in the present invention, the epoxy resin (D) component is further used in combination. This is a specific epoxy resin containing a phenyl group or a biphenyl group in the molecule, and has the same structure as (A). By using such an epoxy resin in combination, it is covered by the decomposition gas generated inside the cured product of the resin composition when ignited. The film surface expands on the rubber, and a foamed layer is easily generated.
本発明者等は、 このような組成物をベースとした上で、 更に (E) モ リブデン化合物を添加することによって、 活性エネルギー線硬化型樹脂 ( a ) に由来する感度や被膜特性を保持しつつ、 活性エネルギー線硬化 型樹脂 (A) やエポキシ樹脂 (D) から構成される硬化物を着火時に形 成する発泡層を効果的に強化し、 これによつて高度な難燃性を発現でき ることを知見した。 発明を実施するための最良の形態  Based on such a composition, the present inventors further added (E) a molybdenum compound to maintain the sensitivity and film properties derived from the active energy ray-curable resin (a). However, it effectively strengthens the foamed layer that forms the cured product composed of the active energy ray-curable resin (A) and epoxy resin (D) when ignited, thereby achieving high flame retardancy. I found out. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において (A) 活性エネルギー線硬化性樹脂とは、 (A 1 ) および (A2) からなる群より選ばれた一種以上の活性エネルギー線硬 化性樹脂である。  In the present invention, the (A) active energy ray-curable resin is one or more active energy ray-curable resins selected from the group consisting of (A 1) and (A2).
( A 1 ) 式 ( 1) のエポキシ樹脂および式 (2) のエポキシ樹 脂からなる群より選ばれたェポキシ樹脂と不飽和モノカルボン酸との反 応物と、 多塩基酸および多塩基酸無水物からなる群より選ばれた化合物 とを反応させて得られる樹脂、  (A1) a reaction product of an epoxy resin selected from the group consisting of an epoxy resin of formula (1) and an epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride A resin obtained by reacting a compound selected from the group consisting of:
( A 2 ) 式 ( 1) のエポキシ樹脂および式 (2) のエポキシ樹 脂からなる群より選ばれたエポキシ樹脂と不飽和モノカルボン酸との反 応物と、 多塩基酸および多塩基酸無水物からなる群より選ばれたィ'匕合物 とを反応させて得られる樹脂を、 更にラジカル重合性不飽和基とェポキ シ基を有するグリシジル化合物と反応させて得られる樹脂  (A2) a reaction product of an epoxy resin selected from the group consisting of an epoxy resin of formula (1) and an epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride A resin obtained by reacting a resin obtained by reacting with a compound selected from the group consisting of a glycidyl compound having a radical polymerizable unsaturated group and an epoxy group.
(A)の樹脂は、 (A 1)から一種または二種以上を選択してよく、 (A 2) から一種または二種以上を選択してよく、 (A l ) ( A 2 ) の両方か ら選択してもよい。  The resin of (A) may be selected from one or more types from (A 1), may be selected from one or more types from (A 2), and may be either (A l) or (A 2) May be selected.
また、 式 ( 1 ) のエポキシ樹脂の一種または二種以上を上述のように 反応させてよく、 式 (2) のエポキシ樹脂の一種または二種以上を上述 のように反応させてよく、 式 ( 1 ) のエポキシ樹脂と式 ( 2 ) のェポキ シ樹脂との両方の混合物を上述のように反応させてもよい。 Also, one or more of the epoxy resins of formula (1) may be reacted as described above, and one or more of the epoxy resins of formula (2) may be reacted as described above. Or a mixture of both the epoxy resin of formula (1) and the epoxy resin of formula (2) may be reacted as described above.
本発明において、 式 ( 1 )、 式 ( 2 ) の化合物から合成した活性エネル ギ一線硬化性樹脂は、 ビフエ二ル基ゃフエニル基といった剛直な官能基 を主鎖に含む。 そして、 分子中にフエニル基ゃビフエ二ル基を含有する 活性エネルギー線硬化樹脂が反応して架橋構造を形成しているために、 着火した際に、 樹脂組成物の硬化物の内部で発生する分解ガスにより表 面がゴム状に膨張して発泡層を形成して熱分解による揮発物質を閉じ込 める。 この発泡層により、 未燃 部への熱と酸素の供給が遮断され高度 な難燃性が発現する。 しかも、 類似の構造で、 式 ( 1 ) ( 2 ) の化合物か ら合成した樹脂を利用したときに、 高い難燃性と、 感度、 耐熱性、 現像 性といった種々の特性を向上させ得ることを見いだした。  In the present invention, the active energy linear curable resin synthesized from the compounds of the formulas (1) and (2) contains a rigid functional group such as a biphenyl group or a phenyl group in the main chain. And since the active energy ray curable resin containing a phenyl group or biphenyl group in the molecule reacts to form a crosslinked structure, it is generated inside the cured product of the resin composition when ignited. The cracked gas expands the surface like a rubber to form a foamed layer, confining volatile substances due to thermal decomposition. This foamed layer cuts off the supply of heat and oxygen to the unburned area and exhibits high flame retardancy. In addition, when a resin synthesized from the compounds of formulas (1) and (2) is used with a similar structure, it is possible to improve various properties such as high flame retardancy and sensitivity, heat resistance, and developability. I found it.
式 ( 1 )、 式 ( 2 ) において、 nは 1〜: 1 0である。 nが 1 1を超える と樹脂粘度が高くなり過ぎる。 本発明の観点からは、 nは 7以下である ことが更に好ましい。  In the formula (1) and the formula (2), n is 1 to 10: 1. If n exceeds 11, the resin viscosity becomes too high. From the viewpoint of the present invention, n is more preferably 7 or less.
式 ( 1 )、 ( 2 ) のエポキシ樹脂は、 これに対応する構造の各フエノー ル樹脂をグリシジルエーテル化させて得られる。  The epoxy resins of the formulas (1) and (2) can be obtained by glycidyl etherification of each phenol resin having a structure corresponding thereto.
本発明においては、 (A)成分に加えて、 (a) (a 1 )および(a 2 ) からなる群より選ばれた一種以上の活性エネルギー線硬化性樹脂を 併用する。  In the present invention, in addition to the component (A), one or more active energy ray-curable resins selected from the group consisting of (a) (a 1) and (a 2) are used in combination.
(a 1 ) 式 ( 1 ) のエポキシ樹脂および式 ( 2 ) のエポキシ樹脂 以外のエポキシ樹脂と不飽和モノカルボン酸との反応物と、 多塩基酸お よび多塩基酸無水物からなる群より選ばれた化合物とを反応させて得ら れる樹脂、  (a 1) selected from the group consisting of an epoxy resin of formula (1) and a reaction product of an epoxy resin other than the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, and a polybasic acid and a polybasic acid anhydride A resin obtained by reacting with the compound obtained,
( a 2 ) 式 ( 1 ) のエポキシ樹脂および式 ( 2 ) のエポキシ樹脂 以外のエポキシ樹脂と不飽和モノカルボン酸との反応物と、 多塩基酸お よび多塩基酸無水物からなる群より選ばれた化合物とを反応させて得ら れる樹脂を、 更にラジカル重合性不飽和基とエポキシ基を有するグリシ ジル化合物と反応させて得られる樹脂 (a2) An epoxy resin of the formula (1) and an epoxy resin other than the epoxy resin of the formula (2) and an unsaturated monocarboxylic acid, and a polybasic acid And a resin obtained by reacting a resin selected from the group consisting of polybasic acid anhydrides with a glycidyl compound having a radically polymerizable unsaturated group and an epoxy group.
( A ) の活性エネルギー線硬化性樹脂だけでは、 被膜の難燃性、 耐熱 性は高くすることができるが、 感度、 特にソルダ一レジス トとして使用 した場合に要求される感度を満足することができないことが判った。 こ のため、例えばソルダ一レジス トとして要求される感度を満足するため、 ( a ) 式 ( 1 )、 式 ( 2 ) 以外のエポキシ樹脂から合成された活性エネル ギ一線硬化性樹脂組成物を併用する。  Although the active energy ray curable resin (A) alone can increase the flame retardancy and heat resistance of the coating, it must satisfy the sensitivity, especially the sensitivity required when used as a solder resist. I found it impossible. Therefore, for example, in order to satisfy the sensitivity required as a solder resist, (a) an active energy line curable resin composition synthesized from an epoxy resin other than the formula (1) and formula (2) is used in combination. To do.
ここで、 式 ( 1 ) ( 2 ) 以外のエポキシ樹脂としては、 分子中にェポキ シ基を 2個以上有する多官能エポキシ樹脂が好ましい。 また、 主鎖骨格 中にビフエニル骨格や、 ナフタレン骨格等の縮合芳香環骨格を有してい ないことが好ましい。  Here, as the epoxy resin other than those represented by formulas (1) and (2), a polyfunctional epoxy resin having two or more epoxy groups in the molecule is preferable. Further, it is preferable that the main chain skeleton does not have a condensed aromatic ring skeleton such as a biphenyl skeleton or a naphthalene skeleton.
上記多官能エポキシ樹脂としては、 2官能以上のエポキシ樹脂であれ ばいずれでも使用可能であり、 通常 1, 0 0 0以下、 好ましくは 1 0 0 〜 5 0 0のエポキシ当量のものを用いる。例えば、ビスフエノール A型、 ビスフエノール F型等のビスフエノール型エポキシ樹脂、 o -クレゾ一 ルノボラック等のノボラック型エポキシ樹脂、 環状脂肪族多官能ェポキ シ樹脂、 グリシジルエステル型エポキシ樹脂、 グリシジルァミン型ェポ キシ樹脂、 複素環式多官能エポキシ樹脂、 ビスフエノール変性ノボラッ ク型エポキシ樹脂等を挙げることができる。 これらのエポキシ樹脂は単 独で用いても良く、 また 2種類以上を併用しても良い。  Any polyfunctional epoxy resin can be used as long as it is a bifunctional or higher functional epoxy resin. Usually, an epoxy equivalent having an epoxy equivalent of 1,00 or less, preferably from 100 to 500 is used. For example, bisphenol type epoxy resins such as bisphenol A type and bisphenol F type, novolac type epoxy resins such as o-cresol novolak, cyclic aliphatic polyfunctional epoxy resin, glycidyl ester type epoxy resin, glycidylamine type Examples thereof include epoxy resins, heterocyclic polyfunctional epoxy resins, bisphenol-modified novolak epoxy resins, and the like. These epoxy resins may be used alone or in combination of two or more.
以下、 (A l ) ( A 2 ) ( a 1 ) ( a 2 ) の各成分の合成について更に述 ベる。  Hereinafter, the synthesis of each component of (A l) (A 2) (a 1) (a 2) will be further described.
( A 1 ) は、 式 ( 1 ) のエポキシ樹脂および式 ( 2 ) のエポキシ樹脂 からなる群より選ばれたエポキシ樹脂と不飽和モノカルボン酸との反応 物と、 多塩基酸および多塩基酸無水物からなる群より選ばれた化合物と を反応させて得られる。 (A 1) is the reaction of an epoxy resin selected from the group consisting of the epoxy resin of formula (1) and the epoxy resin of formula (2) with an unsaturated monocarboxylic acid And a compound selected from the group consisting of a polybasic acid and a polybasic acid anhydride.
( a 1 ) は、 式 ( 1 ) のエポキシ樹脂および式 ( 2 ) のエポキシ樹 脂以外のエポキシ樹脂と不飽和モノカルボン酸との反応物と、 多塩基酸 および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得 られる。 このプロセスについて述べる。  (a 1) is a group consisting of a reaction product of an epoxy resin of formula (1) and an epoxy resin other than the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride. It can be obtained by reacting with a selected compound. This process is described.
まず、 式 ( 1 ) のエポキシ樹脂、 式 ( 2 ) のエポキシ樹脂、 または式 First, an epoxy resin of formula (1), an epoxy resin of formula (2), or a formula
( 1 ) ( 2 )以外のエポキシ樹脂の少なく とも一部に、 ァクリル酸又はメ タクリル酸等のラジカル重合性'不飽和モノカルボン酸を反応させ、 これ によって生成した水酸基に多塩基酸またはその無水物を反応させる。 式 ( 1 ) のエポキシ樹脂、 式 ( 2 ) のエポキシ樹脂、 または式 ( 1 )(1) At least a part of the epoxy resin other than (2) is reacted with a radically polymerizable 'unsaturated monocarboxylic acid such as acrylic acid or methacrylic acid, and the resulting hydroxyl group is polybasic acid or anhydride thereof. Make things react. Epoxy resin of formula (1), epoxy resin of formula (2), or formula (1)
( 2 ) 以外のエポキシ樹脂にラジカル重合性不飽和モノカルボン酸を反 応させると、 エポキシ基とカルボキシル基との反応によりエポキシ樹脂 が開裂し、 水酸基とエステル結合が生成する。 使用するラジカル重合性 不飽和モノカルボン酸としては特に制限はなく、例えば、 (メタ)ァクリ ル酸、 クロ トン酸、 桂皮酸などがあるが、 (メタ) ァクリル酸が最も好適 である。 エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応 方法には特に制限はなく、 例えばエポキシ樹脂と (メタ) アクリル酸を 適当な溶剤中で触媒とともに加熱、 攪拌することにより反応させること ができる。 溶剤としては例えば、 メチルェチルケ トン、 シクロへキサノ ンなどのケトン類、 トルエン、 キシレン等の芳香族炭化水素、 メタノー ル、 エタノール、 イソプロパノール、 シクロへキサノール等のアルコ一 ル類、 シクロへキサノン、 メチルシクロへキサノンなどの脂環式炭化水 素類、 石油エーテル、 石油ナフサ等の石油系溶剤類、 セロソルブ、 プチ ルセ口ソルブ等のセロソルブ類、 カルビトール、 ブチルカルビトール等 のカルビトール類、 酢酸ェチル、 酢酸ブチル、 ブチルセ口ソルブァセテ ート、 カルビトールアセテート、 プチルカルビトールアセテート等の酢 酸エステル類をあげることができる。 また、 触媒としては、 例えばト リ ェチルァミン、 ト リブチルアミン、 ジメチルベンジルアミン等のアミン 類、 ト リフエニルホスフィ ン、 ト リフエニルホスフェート等のリン化合 物類等を挙げることができる。 When an epoxy resin other than (2) is reacted with a radically polymerizable unsaturated monocarboxylic acid, the epoxy resin is cleaved by the reaction between the epoxy group and the carboxyl group, and a hydroxyl group and an ester bond are formed. The radically polymerizable unsaturated monocarboxylic acid to be used is not particularly limited, and examples thereof include (meth) acrylic acid, crotonic acid, cinnamic acid, and (meth) acrylic acid is most preferable. The reaction method of the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid is not particularly limited. For example, the epoxy resin and (meth) acrylic acid can be reacted by heating and stirring together with a catalyst in an appropriate solvent. . Examples of the solvent include ketones such as methylethylketone and cyclohexanone, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol, isopropanol, and cyclohexanol, cyclohexanone, and methylcyclohexane. Alicyclic hydrocarbons such as xanone, petroleum-based solvents such as petroleum ether and petroleum naphtha, cellosolves such as cellosolve and petroleum sorbate, carbitols such as carbitol and butylcarbitol, ethyl acetate, acetic acid Butyl, Butyl Seguchi Solbucetate And acetates such as citrate, carbitol acetate, and butyl carbitol acetate. Examples of the catalyst include amines such as tritylamine, tributylamine and dimethylbenzylamine, and phosphorous compounds such as triphenylphosphine and triphenylphosphate.
上記の各エポキシ樹脂とラジカル重合性不飽和モノカルボン酸の反応 において、 エポキシ樹脂が有するエポキシ基 1当量あたりラジカル重合 性不飽和モノカルボン酸を 0 . 7〜 1 . 0当量反応させることが好ましい。 (メタ) アクリル酸を用いるときは、 さらに好ましくは 0 . 8〜 1 . 0当 量反応させる。ラジカル重合不飽和モノカルボン酸が 0 . 7当量未満であ ると、 後続の合成反応時にゲル化を起こすことや、 樹脂の保存安定性が 悪くなる懸念がある。 また、 ラジカル重合性不飽和モノカルボン酸が過 剰であると未反応のカルボン酸が多く残存するため、 硬化物の諸特性を 低下させる恐れがある。 エポキシ樹脂とラジカル重合性不飽和モノカル ボン酸との反応は、 加熱状態で行うことが望ましく、 その反応温度は 8 0〜 1 4 0 °Cであることが好ましい。 反応温度が 1 4 0 °Cを超えるとラ ジカル重合性不飽和モノカルボン酸が熱重合を起こしゃすくなり、 合成 が困難になることがあり、 また 8 0 °C未満では反応速度が遅くなり、 実 際の製造上好ましくないことがある。 エポキシ樹脂とラジカル重合性不 飽和モノカルボン酸の反応生成物は単離することなく、 溶液のまま、 次 の多塩基酸類との反応に供することができる。  In the reaction of each of the above epoxy resins with the radically polymerizable unsaturated monocarboxylic acid, it is preferable to react 0.7 to 1.0 equivalent of the radically polymerizable unsaturated monocarboxylic acid with respect to 1 equivalent of the epoxy group of the epoxy resin. When (meth) acrylic acid is used, the reaction is more preferably carried out in an amount equivalent to 0.8 to 1.0. If the amount of the radically polymerized unsaturated monocarboxylic acid is less than 0.7 equivalent, gelation may occur during the subsequent synthesis reaction, and the storage stability of the resin may be deteriorated. In addition, if the radically polymerizable unsaturated monocarboxylic acid is excessive, a large amount of unreacted carboxylic acid remains, which may deteriorate various properties of the cured product. The reaction between the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid is preferably performed in a heated state, and the reaction temperature is preferably 80 to 140 ° C. If the reaction temperature exceeds 140 ° C, the radically polymerizable unsaturated monocarboxylic acid may cause thermal polymerization and may be difficult to synthesize, and if it is less than 80 ° C, the reaction rate becomes slow. In some cases, it is not preferable in actual production. The reaction product of the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid can be subjected to the reaction with the following polybasic acids in the solution without isolation.
上記エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応生 成物である不飽和モノカルボン酸化エポキシ樹脂に、 多塩基酸またはそ の無水物を反応させる。 多塩基酸またはその無水物としては、 特に制限 はなく、 飽和、 不飽和のいずれでも使用できる。 このような多塩基酸と しては、 コハク酸、 マレイン酸、 アジピン酸、 フ夕ル酸、 テ トラヒ ドロ フ夕ル酸、 3 -メチルテ トラヒ ドロフタル酸、 4 -メチルテ トラヒ ドロ フ夕ル酸、 3 -ェチルテ トラヒ ドロフ夕ル酸、 4 -ェチルテ トラヒ ドロ フ夕ル酸、 へキサヒ ドロフ夕ル酸、 3 -メチルへキサヒ ドロフ夕ル酸、 4 -メチルへキサヒ ドロフ夕ル酸、 3 -ェチルへキサヒ ド口フ夕ル酸、 4 -ェチルへキサヒ ドロフタル酸、 ト リメ リッ ト酸、 ピロメ リ ッ ト酸及 びジグリコール酸などが挙げられ、 多塩基酸無水物としてはこれらのす ベての無水物が挙げられる。 これらの化合物は単独でも使用でき、 またA polybasic acid or an anhydride thereof is reacted with the unsaturated monocarboxylic oxide epoxy resin which is a reaction product of the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid. The polybasic acid or its anhydride is not particularly limited, and either saturated or unsaturated can be used. Such polybasic acids include succinic acid, maleic acid, adipic acid, fuuric acid, tetrahydrohydride. Fuuric acid, 3-methyltetrahydrodrofuric acid, 4-methyltetrahydrodrofuric acid, 3-ethylactetrahidrofuric acid, 4-ethylethyltrachrofurauric acid, hexahydrodrofuric acid, 3- Methylhexahydrofurauric acid, 4-Methylhexadolofuric acid, 3-Ethylhexahydrofuranuric acid, 4-Ethylhexahydrophthalic acid, Trimellitic acid, Pyromellitic acid and And diglycolic acid, and polybasic acid anhydrides include all of these anhydrides. These compounds can be used alone or
2種類以上混合しても良い。 多塩基酸または多塩基酸無水物は、 上記の 各エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応で生成 した水酸基に反応し、 樹脂に遊離のカルボキシル基を持たせる。 Two or more types may be mixed. The polybasic acid or polybasic acid anhydride reacts with a hydroxyl group formed by the reaction of each of the above epoxy resins with a radically polymerizable unsaturated monocarboxylic acid, thereby giving the resin a free carboxyl group.
多塩基酸またはその無水物の使用量は、 各エポキシ樹脂とラジカル重 合性不飽和モノカルボン酸の反応生成物が有する水酸基 1モルに対し、 0 . 2〜 1 . 0モルであることが望ましい。 露光時に高感度の樹脂膜が得 られる点からは、 0 . 3〜 0 . 9モル、 さらに好ましくは 0 . 4〜 0 . 9モ ルで反応させる。 0 . 2モル未満.であると得られた樹脂の希アル力リ水溶 液に対する溶解性が低下することがあり、また 1 . 0モルを超えると最終 的に得られる硬化塗膜の諸特性を低下させることがある。 多塩基酸また はその無水物は、 上記の不飽和モノカルボン酸化エポキシ樹脂に添加さ れ、 脱水縮合反応され、 反応時に生成した水は反応系から連続的に取り 出すこと'が好ましいが、 その反応は加熱状態で行うことが好ましく、 そ の反応温度は 7 0〜 1 3 0 °Cであることが好ましい。 反応温度が 1 3 0 °Cを超えるとエポキシ樹脂に結合されたものや、 未反応のラジカル重 合性不飽和基が熱重合を起こしゃすくなって合成が困難になることがあ り、 また 7 0 °C未満では反応速度が遅くなり、 実際の製造上好ましくな いことがある。 上記の多塩基酸またはその無水物と不飽和モノカルボン 酸化エポキシ樹脂との反応生成物である多塩基酸変性不飽和カルボン酸 化エポキシ樹脂の酸価は 6 0〜 1 3 0 m g K O H / gが好ましい。 反応 させる多塩基酸またはその無水物の量により、 反応生成物の酸価は調整 することが可能である。 The amount of the polybasic acid or its anhydride is preferably 0.2 to 1.0 mol with respect to 1 mol of the hydroxyl group of the reaction product of each epoxy resin and radically polymerizable unsaturated monocarboxylic acid. . From the point that a highly sensitive resin film can be obtained at the time of exposure, the reaction is carried out at 0.3 to 0.9 mol, more preferably at 0.4 to 0.9 mol. If it is less than 0.2 mol, the solubility of the resulting resin in dilute aqueous solutions may be reduced, and if it exceeds 1.0 mol, the properties of the cured film finally obtained will be reduced. May decrease. It is preferable that the polybasic acid or its anhydride is added to the above unsaturated monocarboxylic oxide epoxy resin and subjected to a dehydration condensation reaction, and the water produced during the reaction is continuously taken out from the reaction system. The reaction is preferably performed in a heated state, and the reaction temperature is preferably 70 to 130 ° C. When the reaction temperature exceeds 130 ° C, synthesis may be difficult due to thermal bonding of those bonded to the epoxy resin or unreacted radically polymerizable unsaturated groups. If it is less than 70 ° C, the reaction rate becomes slow, which may be undesirable in actual production. Polybasic acid-modified unsaturated carboxylic acid which is a reaction product of the above polybasic acid or its anhydride and unsaturated monocarboxylic epoxy resin The acid value of the epoxy resin is preferably 60 to 130 mg KOH / g. The acid value of the reaction product can be adjusted by the amount of the polybasic acid or its anhydride to be reacted.
本発明においては、 上記の多塩基酸変性不飽和モノカルボン酸化ェポ キシ樹脂を感光性樹脂として使用できる。 これは活性エネルギー線硬化 性樹脂 ( A 1 ) ( a 1 ) に該当する。  In the present invention, the above polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin can be used as a photosensitive resin. This corresponds to the active energy ray curable resin (A1) (a1).
一方、 この多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂( A 1 ) ( a 1 ) の有するカルボキシル基に、 1個以上のラジカル重合性不飽和 基とエポキシ基を有するグリシジル化合物を反応させることにより、 ラ ジカル重合性不飽和基を更に導入し、 さらに感光性を向上させた感光性 樹脂(A 2 ) ( a 2 ) としてもよい。 この感光性を向上させた感光性樹脂 は、 最終のグリシジル化合物との反応によって、 ラジカル重合性不飽和 基が、 その感光性樹脂の側鎖として結合するため、 ラジカル重合性が高 く、 優れた感光特性を付与することができる。  On the other hand, by reacting the carboxyl group of the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin (A 1) (a 1) with one or more radically polymerizable unsaturated groups and an glycidyl compound having an epoxy group. Further, a photosensitive resin (A 2) (a 2) in which a radically polymerizable unsaturated group is further introduced to further improve the photosensitivity may be used. This photosensitive resin with improved photosensitivity has high radical polymerizability because the radical polymerizable unsaturated group is bonded as a side chain of the photosensitive resin by the reaction with the final glycidyl compound. Photosensitive properties can be imparted.
1個以上のラジカル重合性不飽和基とエポキシ基を有するグリシジル 化合物としては、 例えば、 グリシジル (メタ) ァクリレート、 ァリルグ リシジルエーテル、 ペンタエリスリ トールトリァクリレートモノグリシ ジルエーテル等が挙げられる。 なお、 グリシジル基は複数個有していて もよい。 上記グリシジル化合物は、 上記の多塩基酸変性不飽和モノカル ボン酸化エポキシ樹脂の溶液に添加して反応させるが、 その樹脂に導入 したカルボキシル基 1モルに対し、 通常 0 . 0 5〜 0 . 5モルの割合で反 応させる。得られる感光性樹脂を含有する感光性樹脂組成物の感光性や、 熱管理幅、 絶縁特性を考慮すると、 0 . 1〜0 . 5モルの割合で反応させ るのがよく、 反応温度は 8 0〜 1 2 0 °Cが好ましい。 このようにして得 られるグリシジル化合物付加多塩基酸変性不飽和モノカルボン酸化ェポ キシ樹脂からなる感光性樹脂の酸価は 4 5〜 2 5 O m g K O H / gであ ることが望ましい。 Examples of the glycidyl compound having one or more radically polymerizable unsaturated groups and an epoxy group include glycidyl (meth) acrylate, allylic glycidyl ether, pentaerythritol triacrylate monoglycidyl ether, and the like. A plurality of glycidyl groups may be present. The glycidyl compound is added to the solution of the polybasic acid-modified unsaturated monocarbon-oxidized epoxy resin and allowed to react. Usually, 0.05 mol to 0.5 mol per mol of the carboxyl group introduced into the resin. Respond at the rate of. Considering the photosensitivity, thermal management width, and insulation characteristics of the resulting photosensitive resin composition containing the photosensitive resin, the reaction should be carried out at a rate of 0.1 to 0.5 mol, and the reaction temperature is 8 0 to 120 ° C is preferred. The acid value of the photosensitive resin comprising the glycidyl compound-added polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin thus obtained is 45 to 25 O mg KOH / g. It is desirable.
活性エネルギー線硬化樹脂 (A) は、 本発明の感光性樹脂組成物中の 2〜 4 0重量%の割合で添加することが好ましい。 この添加量が 2重 量%より少ないと、 十分な難燃性が得られにくい。 この添加量が 4 0重 量%を超えると、 樹脂組成物の感光性が低下し、 例えばソルダーレジス トとしての要求を満たすことが困難となる傾向がある。  The active energy ray-curable resin (A) is preferably added at a ratio of 2 to 40% by weight in the photosensitive resin composition of the present invention. If the amount added is less than 2% by weight, it is difficult to obtain sufficient flame retardancy. If this added amount exceeds 40% by weight, the photosensitivity of the resin composition is lowered, and for example, it tends to be difficult to satisfy the requirements as a solder resist.
活性エネルギー線硬化樹脂 ( a) は、 本発明の感光性樹脂組成物中の 5〜 3 0重量%の割合で添加することが好ましい。 この添加量が 5重 量%より少ないと、 樹脂組成物の感光性が低下し、 例えばソルダーレジ ス トとしての要求を満たすことが困難となる傾向がある。 この添加量が 30重量%より多いと、 難燃性が得られにく くなる。 The active energy ray-curable resin ( a ) is preferably added in a proportion of 5 to 30% by weight in the photosensitive resin composition of the present invention. When the amount added is less than 5% by weight, the photosensitivity of the resin composition is lowered, and for example, it tends to be difficult to satisfy the requirements as a solder resist. If this amount is more than 30% by weight, flame retardancy is difficult to obtain.
光重合開始剤 (B) としては、 特に制限はなく、 従来知られているも のはいずれも使用できる。 具体的には、 ベンゾイ ン、 ベンゾインメチル エーテル、 ベンゾインェチルエーテル、 ベンゾインイソプロピルエーテ ル、ベンゾィン - n -ブチルエーテル、ベンゾィンィソブチルェ一テノレ、 ァセ トフエノン、 ジメチルアミノアセ トフエノン、 2 , 2 -ジメ トキシ - 2 - フエニルァセ トフエノン、 2 , 2 -ジエトキシ - 2 - フエニルァセ ト フエノン、 2 - ヒ ドロキシ - 2 -メチル - 1 -フェニルプロパン - 1 - オン、 2 -メチル - 1 - ( 4 - (メチルチオ) フエニル) - 2 -モルフ ォリノ -プロパン - 1 -オン、 4 - ( 2 - ヒ ドロキシエ トキシ) フエ二 ル - 2 - (ヒ ドロキシ - 2 -プロビル) ケ トン、 2 -ベンジル - 2 -ジ メチルァミノ - 1 - ( 4 -モルフォリノ) ブ夕ノン、 ベンゾフエノン、 p -フエニルベンゾフエノン、 4 , 4, -ジェチルァミノべンゾフエノン、 ジクロロべンゾフエノン、 2 -メチルアントラキノン、 2 -ェチルアン トラキノン、 2 - t e r t -ブチルアン トラキノン、 2 -アミノアン ト ラキノン、 2 -メチルチオキサン トン、 ·2, 4 -ジェチルチオキサン 卜ン 等が挙げられる。 これらは単独あるいは 2種類以上組み合わせて用いる ことができる。 The photopolymerization initiator (B) is not particularly limited, and any conventionally known photopolymerization initiator (B) can be used. Specific examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin sobutyl ether, acetophenone, dimethylaminoacetophenone, 2, 2- Dimethoxy-2 -phenylacetophenone, 2,2-diethoxy-2 -phenylacetophenone, 2-hydroxy-2--2-methyl-1-phenylpropane-1-one, 2-methyl-1- (4- (methylthio) Phenyl)-2 -morpholino -propan-1 -one, 4-(2 -hydroxyethoxy) phenyl-2-(hydroxy -2 -provir) ketone, 2-benzyl-2-dimethylamino-1 -(4-morpholino) buevenone, benzophenone, p-phenylbenzophenone, 4, 4, -jetylaminobenzophenone, Chloro base Nzofuenon, 2 - methyl anthraquinone, 2 - Echiruan Torakinon, 2 - tert - Buchiruan Torakinon, 2 - Aminoan DOO Rakinon, 2 - methylthioxanthone, & 2, 4 - GETS Chi Lucio hexane Bokun Etc. These can be used alone or in combination of two or more.
光重合開始剤 (B ) の使用量は、 上記 (A ) 成分の活性エネルギー線 硬化性樹脂 1 0 0質量部に対して 0 . 5〜 5 0質量部であり、 0 . 5質 量部未満では (A ) 成分の活性エネルギー線硬化性樹脂の光重合反応が 不十分となり、 5 0質量部を超えると添加量の割合に対する光重合性の 効果は向上しない。  The amount of the photopolymerization initiator (B) used is 0.5 to 50 parts by mass with respect to 100 parts by mass of the active energy ray-curable resin of the component (A), and less than 0.5 parts by mass. Then, the photopolymerization reaction of the active energy ray-curable resin (A) component becomes insufficient, and if it exceeds 50 parts by mass, the effect of the photopolymerization on the ratio of the added amount is not improved.
反応性希釈剤 ( C ) としては、 上記 .(A ) 成分の活性エネルギー線硬 化性樹脂の光硬化をさらに十分にして、 耐薬品性を付与するものであつ て、 1分子中に少なく とも二重結合を 1個以上、 好適には 2個以上有す る化合物である。反応性希釈剤として好ましくは、常温にて液状であり、 沸点が 1 0 0 °C以上、 もしくは 1 0 o °c未満で昇華しないものである。 常温にて固形であると、 反応性希釈剤を配合したソルダーレジス ト組成 物を露光する際、 塗膜中で反応性希釈剤分子の移動が起こりにく く、 十 分な硬化深度が得られない。 また、 沸点や昇華点が 1 0 o °c未満である とソルダーレジス ト組成物中に含まれる溶剤を乾燥する際に、 同時に反 応性希釈剤も蒸発してしまうためである。 通常用いられる反応性希釈剤 としては、 1 , 4 -ブタンジオールジ (メタ) ァクリレート、 1 , 6 -へ キサンジオールジ(メタ)ァクリレート、 ネオペンチルグリコ一ルジ(メ 夕) ァク リレート、 ポリエチレングリコールジ (メタ) ァクリレート、 ネオペンチルグリコールアジペートジ (メタ) ァクリレート、 ヒ ドロキ シピバリン酸ネオペンチルグリコールジ (メタ) ァクリ レート、 ジシク 口ペン夕ジェニルジ (メタ) ァクリレート、 力プロラク トン変性ジシク 口ペン夕ジェニルジ (メタ) ァクリレート、 エチレンォキシ ド変性リン 酸ジ (メタ) ァクリレート、 イソシァヌレートジ (メタ) ァクリ レート、 トリメチロールプロパン ト リ (メタ) ァクリレート、 ジペン夕エリスリ ト一ルト リ (メタ) ァクリ レート、 ペン夕エリスリ トールト リ (メタ) ァクリレート、 ト リス (ァクリロキシェチル) イソシァヌレート、 ジぺ ン夕エリスリ トールへキサ (メタ) ァクリレート等の反応性希釈剤が挙 げられる。 上記の反応性希釈剤は単独または複数の混合系においても使 用可能である。 As the reactive diluent (C), the active energy ray-curable resin of the above component (A) is further sufficiently photocured to impart chemical resistance, and at least in one molecule. A compound having one or more double bonds, preferably two or more. The reactive diluent is preferably a liquid at room temperature and has a boiling point of 100 ° C. or higher or less than 10 ° C. and does not sublime. If the solder resist composition containing a reactive diluent is exposed to a solid at room temperature, the reactive diluent molecules hardly move in the coating film, and a sufficient curing depth can be obtained. Absent. Further, when the boiling point or sublimation point is less than 10 ° C., the reactive diluent also evaporates at the same time when the solvent contained in the solder resist composition is dried. Commonly used reactive diluents include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentylglycol di (meth) acrylate, polyethylene glycol Di (meth) acrylate, neopentylglycol adipate di (meth) acrylate, hydroxypivalic acid neopentylglycol di (meth) acrylate, di-sic mouth pen genil di (meth) acrylate, force prolacton modified disic (Meth) acrylate, ethylene oxide-modified phosphate di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentyl ester Reactive diluents such as triethyl (meth) acrylate, pen erythritol triacrylate (meth) acrylate, tris (acrylochelate) isocyanurate, dipentaerythritol hexa (meth) acrylate, etc. Can be mentioned. The reactive diluents described above can be used alone or in mixed systems.
反応性希釈剤 (C ) の添加量は (A ) 成分の活性エネルギー線硬化性 樹脂 1 0 0質量部あたり、 通常 2〜4 0質量部の範囲で使用される。 添 加量が 2質量部より少ないと、 十分な光硬化が得ちれず、 硬化塗膜の耐 薬品性、 耐めっき性において十分な性能が得られ難く、 また、 添加量が 4 0質量部を超えるとタックが強くなり、 接触型露光装置を使用した露 光工程の際に露光マスクの基板の付着が生じやすくなり、 目的とする硬 化塗膜が得られ難くなる。  The addition amount of the reactive diluent (C) is usually in the range of 2 to 40 parts by mass per 100 parts by mass of the active energy ray-curable resin of the component (A). If the addition amount is less than 2 parts by mass, sufficient photocuring cannot be obtained, and it is difficult to obtain sufficient performance in terms of chemical resistance and plating resistance of the cured coating film. If it exceeds, the tack becomes strong and the exposure mask substrate tends to adhere during the exposure process using a contact type exposure apparatus, making it difficult to obtain the desired cured coating film.
本発明において、 (D ) 式 ( 1 ) のエポキシ樹脂および式 ( 2 ) のェポ キシ樹脂からなる群より選ばれたエポキシ樹脂は、 本発明の感光性樹脂 において、 その塗膜を露光し、 現像した後の工程であるポス トキュアに よって塗膜の性能を向上させるものである。  In the present invention, (D) the epoxy resin selected from the group consisting of the epoxy resin of the formula (1) and the epoxy resin of the formula (2) is exposed to the coating film in the photosensitive resin of the present invention, Post-curing, a process after development, improves the performance of the coating film.
本発明において、 (D )成分のエポキシ樹脂は、 ビフエニルゃフエニル といった剛直な官能基を主鎖に含む。 分子中にフヱニル基ゃビフヱニル 基を含有するエポキシ樹脂が反応して架橋構造を形成しているために、 着火した際に、 樹脂組成物の硬化物の内部で発生する分解ガスにより表 面がゴム上に膨張して発泡層を形成して熱分解による揮発物質を閉じ込 める。 この発泡層により、 未燃焼部への熱と酸素の供給が遮断され高度 な難燃性が発現する。 (D ) 式 ( 1 ) のエポキシ樹脂および式 ( 2 ) のェ ポキシ樹脂からなる群より選ばれたエポキシ樹脂は前述したが、 具体的 には、 「N C— 3 0 0 0」 「N C— 3 0 0 0— H」 (以上、 日本化薬社製) や、 「X L」 ·「X L C」 シリーズ (特殊フエノール樹脂、 ザィロック) の エポキシ化物 (三井化学製) が挙げられる。 In the present invention, the epoxy resin of component (D) contains a rigid functional group such as biphenyl or phenyl in the main chain. The epoxy resin containing a phenyl group or a biphenyl group in the molecule reacts to form a cross-linked structure. Therefore, when ignited, the surface is rubberized by the decomposition gas generated inside the cured product of the resin composition. It expands upward to form a foamed layer that traps volatiles from pyrolysis. This foamed layer cuts off the supply of heat and oxygen to the unburned part and exhibits a high degree of flame retardancy. (D) Although the epoxy resin selected from the group consisting of the epoxy resin of the formula (1) and the epoxy resin of the formula (2) has been described above, specifically, “NC-3 300”, “NC-3” “0 0 0—H” (Nippon Kayaku Co., Ltd.) and “XL” · “XLC” series (special phenolic resin, zylock) Epoxidized products (Mitsui Chemicals) are listed.
本発明のエポキシ樹脂は、 上記 (D) 成分の他に、 (d) 式 ( 1)、 式 ( 2 ) の化合物以外の 1分子中に少なく とも 2個のエポキシ基を有する エポキシ樹脂を併用できる。 具体的には、 フエノールノボラック型樹脂 として、 ェピコート 152、 同 1 54 (以下、 ジャパンエポキシレジン 社製)、 ェピクロン N - 740、 同 N - 770 (以上、 大日本ィンキ化学 工業社製)、 クレゾールノボラック型エポキシ樹脂として、 ェピクロン N - 680、 同 N - 695 (以上、 大日本ィンキ化学工業社製)、 ジシクロ ペン夕ジェン型エポキシ樹脂としてェピクロン HP - 7200 (大日本 ィンキ化学工業社製)、 グリシジルアミン型エポキシ樹脂としては、 T E P I C - S、 TEP I C - H (日産化学社製)、 ビスフヱノール A型ェポ キシ樹脂として、 ェピコート 100 1、 同 1002、 同 1003、 同 1 004 (以上、 ジャパンエポキシレジン社製)、 ェビクロン 1050、 同 3050 (以上、 大日本ィンキ化学工業社製)、 ァラルダイ ト AER 60 7 1、同 AER 6072 (以上、旭チバ社製)、ェポトート YD - 0 1 1、 同 YD - 0 12 (以上、 東都化成社製)、 ビスフエノール F型エポキシ樹 脂としてェポトート YDF - 200 1、 同 YDF - 2004 (以上、 東 都化成社製)、水添ビスフエノール A型エポキシ樹脂としてェピクロン E X A - 7015 (大日本ィンキ工業社製)、 その他の骨格を有するェポキ シ樹脂としてェピコート YX - 4000、 同 103 I S (ジャパンェポ キシレジン社製)、 ェポトート YSLV - 80XY (東都化成社製) が挙 げられる。  In addition to the component (D), the epoxy resin of the present invention can be used in combination with (d) an epoxy resin having at least two epoxy groups in one molecule other than the compounds of the formulas (1) and (2). . Specific examples of phenol novolak resins include Epicoat 152, 1 54 (hereinafter, Japan Epoxy Resin), Epiclon N-740, N-770 (above, Dainippon Ink & Chemicals), Cresol Novolac. Epiclone N-680, N-695 (manufactured by Dainippon Ink & Chemicals, Inc.), Epiclone HP-7200 (Dinippon Ink & Chemicals, Inc.), glycidylamine As the type epoxy resin, TEPIC-S, TEP IC-H (Nissan Chemical Co., Ltd.), Bisphenol A type epoxy resin, Epicoat 100 1, 1002, 1003, 1004 (above, Japan Epoxy Resin Co., Ltd.) ), Ebicron 1050, 3050 (above, Dainippon Ink Chemical Co., Ltd.), Araldite AER 60 71, AER 6072 (above, Asahi Ciba), Potato YD-0 1 1, YD-0 12 (above, manufactured by Tohto Kasei), Bisphenol F type epoxy resin Epototo YDF-200 1, YDF-2004 (above, manufactured by Tohto Kasei), water Epiclone EXA-7015 (Dainippon Ink Industries Co., Ltd.) as bisphenol A type epoxy resin, Epoxy Coat YX-4000, Epoxy resin as other epoxy resin having skeleton, 103 IS (manufactured by Japan Epoxy Resin Co., Ltd.), Epotote YSLV-80XY ( Manufactured by Tohto Kasei Co., Ltd.).
上記(D)エポキシ系熱硬化樹脂は、 (A)成分の活性エネルギー線硬 化性樹脂 100質量部に対して 5〜30質量部の割合で添加することが 好ましい。 また、 (d) エポキシ系熱硬化樹脂は、 上記 (A)成分の活性 エネルギー線硬化性樹脂 1 00質量部に対して 5〜30質量部の割合で 添加することが好ましい。 また、 (D ) 成分と ( d ) 成分との合計量は、 ( A ) 成分の活性エネルギー線硬化性樹脂 1 0 0質量部に対して 2 0〜 5 0質量部の割合であることが好ましい。 The (D) epoxy thermosetting resin is preferably added at a ratio of 5 to 30 parts by mass with respect to 100 parts by mass of the active energy ray-curable resin (A). Moreover, (d) epoxy-type thermosetting resin is the ratio of 5-30 mass parts with respect to 100 mass parts of active energy ray curable resin of said (A) component. It is preferable to add. The total amount of the component (D) and the component (d) is preferably 20 to 50 parts by mass with respect to 100 parts by mass of the active energy ray-curable resin of the component (A). .
( D ) ( d ) 成分の添加量が前記下限値未満では、 ボス トキユア後のソ ルダーレジス トとしては、 十分な耐熱性、 密着性、 めっき耐性が得られ にくい。 (D ) ( d ) 成分の添加量が前記上限値を超えると、 希アルカリ 水溶液に溶解し難くなり、 はんだ付けラン ド上にソルダーレジス ト組成 物が残存する、 いわゆるスカムが発生しやすくなる。 これらのエポキシ 系熱硬化樹脂は単独で用いても良く、また 2種類以上を併用しても良い。 また、 反応促進剤として、 メラミン化合物、 イ ミダゾール化合物、 フエ ノール化合物等の公知のエポキシ樹脂硬化促進剤を併用することもでき る o  When the amount of the component (D) (d) added is less than the lower limit, it is difficult to obtain sufficient heat resistance, adhesion, and plating resistance as a solder resist after post-curing. When the amount of the component (D) (d) exceeds the upper limit, it becomes difficult to dissolve in the dilute alkaline aqueous solution, and the solder resist composition remains on the soldering land, so-called scum is likely to occur. These epoxy thermosetting resins may be used alone or in combination of two or more. As a reaction accelerator, a known epoxy resin curing accelerator such as a melamine compound, an imidazole compound, or a phenol compound can be used in combination.
本発明において、 (E )モリブデン化合物とは、 モリブデン元素を含む 化合物であるが、 モリブデン酸塩を含有する材料が好ましく、 この材料 を使用することで、 難燃性が向上する。 これは、 モリブデン化合物の添 加によって、 本願の活性エネルギー線硬化型樹脂 (A ) やエポキシ樹脂 ( D ) のように分子中にフヱニル基ゃビフエニル基などの芳香族類を含 有する樹脂から構成される硬化物が熱分解するのが、 特有かつ効率的に 抑制されて、 前記の硬化物が着火時に形成する発泡層の表面に強固な炭 化被膜が生成された結果と考える。 モリブデン酸塩の具体例としては、 モリブデン酸亜鉛、 モリブデン酸亜鉛と珪酸マグネシウムの複合化物、 モリブデン酸カルシウムおよびモリブデン酸亜鉛カルシウムが挙げられ る。モリブデン化合物の添加量は、 (A )成分の活性エネルギー線硬化性 樹脂 1 0 0質量部あたり、 通常 5〜4 0質量部の範囲で使用される。 添 加量が 5質量部より少ないと十分な難燃性が得られず、 添加量が 4 0質 量部を超えると、 レペリング性やアル力リ現像性に弊害を及ぼす可能性 がある。 In the present invention, the (E) molybdenum compound is a compound containing a molybdenum element, but a material containing molybdate is preferable, and the use of this material improves the flame retardancy. This is composed of a resin containing aromatics such as a phenyl group or a biphenyl group in the molecule, such as the active energy ray-curable resin (A) or epoxy resin (D) of the present application, by adding a molybdenum compound. It is considered that the result of the thermal decomposition of the cured product is a result of a specific and efficient suppression, and the formation of a strong carbonized film on the surface of the foam layer formed by the cured product upon ignition. Specific examples of molybdate include zinc molybdate, a composite of zinc molybdate and magnesium silicate, calcium molybdate, and zinc calcium molybdate. The amount of the molybdenum compound added is usually in the range of 5 to 40 parts by mass per 100 parts by mass of the active energy ray-curable resin (A). If the addition amount is less than 5 parts by mass, sufficient flame retardancy cannot be obtained, and if the addition amount exceeds 40 parts by mass, there is a possibility that it will adversely affect the repelling property and the strength re-developability. There is.
本発明のソルダ一レジス ト組成物には、 上記の成分のほかに、 必要に 応じて種々の添加剤、 例えばシリカ、 アルミナ、 タルク、 炭酸カルシゥ ム、 硫酸バリウム、 水酸化マグネシウムや水酸化アルミニウム等の無機 顔料、 銅フタロシアニン、 イソインドリン、 カーボンブラック等の公知 の着色顔料、 消泡剤、 レべリング剤等の塗料用添加剤等を含有させるこ とができる。  In addition to the above components, the solder resist composition of the present invention may contain various additives such as silica, alumina, talc, calcium carbonate, barium sulfate, magnesium hydroxide, aluminum hydroxide and the like. Inorganic pigments, copper phthalocyanine, isoindoline, carbon black and other known color pigments, antifoaming agents, leveling agents and other coating additives can be incorporated.
上記のようにして得られたソルダーレジス 卜組成物は、 例えば銅張積 層板の銅箔をエッチングして導 回路を有する回路基板に所定の厚さで 塗布し、 6 0〜 8 0 °Cの温度で 1 5〜 6 0分間程度加熱して溶剤を蒸発 させた後、 上記回路のはんだ付けラン ドを遮光したパターンのマスクを 密着させ、 その上から紫外線を照射し、 このはんだ付けラン ドに対応す る非露光領域を希アルカリ水溶液で除去することにより、 塗膜が現像さ れる。 この希アルカリ水溶液としては、 0 . 5〜 5質量%の炭酸ナト リ ゥム水溶液が一般的であるが、 他のアルカリでも使用可能である。 続い て 1 4 0〜 1 6 0 °Cの熱風循環式の乾燥炉で 1 0〜 6 0分間ボス トキュ ァを行うことにより、 目的とするソルダーレジス ト皮膜を得ることがで きる。 このようにしてソルダーレジス ト膜で被覆したプリン ト配線板が 得られ、 これに電子部品が噴流はんだ付け方法やリフローはんだ付け方 法により接続、 搭載される。 また、 半導体チップを搭載した後、 トラン スファーモールド成形で、 半導体チヅプを樹脂封止したり、 アンダーフ ィル樹脂によって固定し、 半導体パッケージ基板として述のはんだ付け 方法によって他の基板に搭載される。 本発明においては、 電子部品ある いは半導体チップ搭載前のソルダーレジス トを被覆したプリン ト配線板、 このプリン ト配線板に電子部品あるいは半導体チップを搭載したプリン ト配線板およびこのプリント配線板を使用した電子機器のいずれもその 対象に含む。 実施例 The solder resist soot composition obtained as described above is applied to a circuit board having a conductive circuit by etching, for example, a copper foil of a copper clad laminate, and is applied at a predetermined thickness. After the solvent is evaporated by heating at a temperature of 15 to 60 minutes, the mask with a light-shielded pattern is brought into close contact with the soldering land of the above circuit, and the soldering land is irradiated with ultraviolet rays. The coating film is developed by removing the non-exposed areas corresponding to the above with a dilute alkaline aqueous solution. As this dilute alkali aqueous solution, a 0.5 to 5 mass% sodium carbonate aqueous solution is generally used, but other alkalis can also be used. Subsequently, the target solder resist film can be obtained by performing a post cure for 10 to 60 minutes in a hot air circulating drying oven at 140 to 160 ° C. In this way, a printed wiring board coated with a solder resist film is obtained, and electronic components are connected and mounted on the printed wiring board by a jet soldering method or a reflow soldering method. After mounting the semiconductor chip, the semiconductor chip is resin-sealed by transfer molding, or fixed with underfill resin, and mounted on another substrate as the semiconductor package substrate by the soldering method described above . In the present invention, a printed wiring board coated with a solder resist before mounting an electronic component or a semiconductor chip, a printed wiring board having an electronic component or a semiconductor chip mounted on the printed wiring board, and this printed wiring board None of the electronic devices used Include in subject. Example
本発明を実施例により詳細に説明するが、 本発明はこれらの実施例に よって何ら限定されるものではない。 尚、 以下において 「部」 と記述す るものは、 特に断りのない限り全て 「質量部」 を表す。  Examples The present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. In the following description, “part” means “part by mass” unless otherwise specified.
<( A) 活性エネルギー線硬化性樹脂の調製〉  <(A) Preparation of active energy ray-curable resin>
〔合成例 1〕  (Synthesis Example 1)
日本化薬社製、 N C - 3 0 0 0 (エポキシ当量 2 73 ) 2 7 3部を、 カルビトールアセテート 1 1 3部に加熱溶解し、 アクリル酸 7 0. 5部 とメチルハイ ドロキノン 0. 5部、 およびト リフェニルホスフィ ン 0. 5部を加え、 1 1 0〜 1 2 0°Cで 8時間反応させる。 この反応溶液の酸 価が 2以下となつてから、 無水テ トラヒ ド口フ夕ル酸 7 6部と石油ナフ サ 1 1 3部を加え、 90〜 1 0 0 °Cで 2時間反応させて、 耐活性エネル ギ一線硬化性樹脂溶液を得た。 この樹脂溶液は 1 7. 5部のカルビトー ルアセテートおよび 1 7. 5部の石油ナフサを含有する。  Nippon Kayaku Co., Ltd., NC-3300 (Epoxy equivalent 2 73) 2 7 3 parts, dissolved in carbitol acetate 1 1 3 parts by heating, 70.5 parts acrylic acid and 0.5 parts methylhydroquinone And 0.5 part of triphenylphosphine are added, and the mixture is reacted at 110 to 120 ° C for 8 hours. When the acid value of this reaction solution becomes 2 or less, 76 parts of anhydrous tetrahydrofuran acid and 3 parts of petroleum naphtha are added and reacted at 90 to 100 ° C for 2 hours. An active energy line curable resin solution was obtained. This resin solution contains 17.5 parts carbitol acetate and 17.5 parts petroleum naphtha.
〔合成例 2〕  (Synthesis Example 2)
三井化学社製、 ミ レックス XL C - L L (水酸基当量 1 6 9 ) 1 6 9 部を、 カルビトールアセテート 1 03. 7部に加熱溶解し、 グリシジル メタクリ レート 1 3 9. 2部とメチルハイ ドロキノン 0. 5部およびジ メチルベンジルァミン 0. 5部を加え、 1 1 0〜 1 2 0 °Cで 8時間反応 させる。 この反応溶液の酸価が 2以下となつてから、 無水テ 卜ラヒ ドロ フ夕ル酸 7 6部と石油ナフサ 1 0 3. 7部を加え、 9 0〜: L 00°Cで 2 時間反応させて、 活性エネルギー線硬化性樹脂溶液を得た。 この樹脂溶 液は 1 7. 5部のカルビトールアセテートおよび 1 7. 5部の石油ナフ サを含有する。 ' <( a) の活性エネルギー線硬化性樹脂の調製〉 Made by Mitsui Chemicals Co., Ltd. Millex XL C-LL (Hydroxyl equivalent 1 6 9) 1 6 9 parts are dissolved in carbitol acetate 1 03.7 by heating to give glycidyl methacrylate 1 3 9. 2 parts and methyl hydroquinone 0 Add 5 parts and 0.5 part of dimethylbenzylamine, and react at 110-120 ° C for 8 hours. When the acid value of this reaction solution becomes 2 or less, add 76 parts of anhydrous hydrofluoric anhydride and 10.7. 7 parts of petroleum naphtha, and react for 90 hours at L 00 ° C for 2 hours. Thus, an active energy ray curable resin solution was obtained. This resin solution contains 17.5 parts carbitol acetate and 17.5 parts petroleum naphtha. ' <Preparation of active energy ray-curable resin (a)>
〔合成例 3〕  (Synthesis Example 3)
クレゾ一ルノボラック型エポキシ樹脂である日本化薬社製、 E 0 C N — 1 04 S (エポキシ当量 2 2 0 ) 2 2 0部を、 カルビトールァセテ一 ト 98. 9部に加熱溶解し、 アクリル酸 7 0. 5部とメチルハイ ドロキ ノン 0. 5部、 およびト リフェニルホスフィ ン 0. 5部を加え、 1 1 0 〜 1 2 0 °Cで 8時間反応させる。 この反応溶液の酸価が 2以下となって から、無水テ トラヒ ド口フ夕ル酸 76部と石油ナフサ 9 8.9部を加え、 9 0〜 1 0 0°Cで 2時間反応さ ½ "て、 活性エネルギー線硬化性樹脂溶液 を得た。 この樹脂溶液は 1 7. 5部のカルビトールアセテートおよび 1 7. 5部の石油ナフサを含有する。  A cresol novolac type epoxy resin made by Nippon Kayaku Co., Ltd., E 0 CN — 1 04 S (epoxy equivalent 2 2 0) 2 20 parts was heated and dissolved in 98.9 parts of carbitol acetate, and then acrylic. Add 70.5 parts of acid, 0.5 parts of methylhydroquinone and 0.5 part of triphenylphosphine, and react at 1 10 to 120 ° C. for 8 hours. After the acid value of the reaction solution became 2 or less, 76 parts of anhydrous tetrahydrofuran acid and 98.9 parts of petroleum naphtha were added and reacted at 90 to 100 ° C. for 2 hours. An active energy ray-curable resin solution was obtained, which contained 17.5 parts carbitol acetate and 17.5 parts petroleum naphtha.
〔合成例 4〕  (Synthesis Example 4)
ビスフエノール F型エポキシ樹脂である日本化薬社製、 K A YAR A D R— 7 5 0 9 (エポキシ当量 32 0 ) 3 2 0部を、 カルビトールァ セテート 1 2 5. 8部に加熱溶解し、 アク リル酸 70. 5部とメチルハ ィ ドロキノン 0. 5部、およびト リフエニルホスフィ ン 0. 5部を加え、 1 1 0〜 1 2 0°Cで 8時間反応させる。 この反応溶液の酸価が 2以下と なつてから、 無水テ トラヒ ドロフタル酸 7 6部と石油ナフサ 1 2 5. 8 部を加え、 9 0〜 1 0 0°Cで 2時間反応させて、 活性エネルギー線硬化 性樹脂溶液を得た。 この樹脂溶液は 1 7. 5部のカルビトールァセテ一 トおよび 1 7. 5部の石油ナフサを含有する。  KA YAR ADR— 7 50 9 (epoxy equivalent: 32 0) 3 20 parts of bisphenol F type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., is dissolved in carbitol acetate 1 2 5. 8 parts by heating. 70. 5 parts, 0.5 part of methylhydroquinone and 0.5 part of triphenylphosphine are added and reacted at 110 to 120 ° C for 8 hours. When the acid value of the reaction solution reaches 2 or less, add 76 parts of tetrahydrophthalic anhydride and 15.8.8 parts of petroleum naphtha and react at 90 to 100 ° C for 2 hours to activate. An energy ray curable resin solution was obtained. This resin solution contains 17.5 parts carbitol acetate and 17.5 parts petroleum naphtha.
(実施例 1 )  (Example 1)
合成例 1で得られた (A) 活性エネルギー線硬化性樹脂溶液を 1 00 部に対し、 合成例 3で得られた (a) 活性エネルギー線硬化性樹脂溶液 を 1 00部、 (B) 光重合開始剤としてィルガキュア 9 07 (チバ 'スぺ シャリティケミカルズ社製の [ 2 -メチル - 1 - (メチルチオ) フエ二 ル] - 2 -モルフォリノプロパン - 1 -オン) を 1 7部、 D E TX - S (日本化薬社製のジェチルチオキサン トン) を 1部、 (C)反応性希釈剤 として D PHA (日本化薬社製のジペンタエリスリ トールへキサァクリ レート) 2 3部、 (D)エポキシ系硬化樹脂として N C - 30 0 0を 2 0 部、 ( d)エポキシ系硬化樹脂としてェピクロン N - 77 0 (大日本イン キ化学工業社製のフエノールノボラック型ェ.ポキシ硬化樹脂)を 2 0部、 ( E ) として、 KEMGARD 9 1 1 C (日本シャ一ウィ ンウイ リア ムズ製、 モリブデン酸亜鉛と珪酸マグネシウムの化合物) を 2 5部、 消 泡剤として K S - 6 6 (信越化学工業社製) を 4部、 メラミンを 3部、 ジシアンジアミ ドを 1部、 硫酸バリウムを 1 2 0部、 フタロシアニンブ ル一を 1部、 カルビトールアセテートを 3部加え、 3本ロールミルで混 練してソルダーレジス ト組成物を調製した。 この感光性樹脂組成物につ いて、 その組成を表 1に示すとともに、 UL 94 V燃焼性、 感度、 現像 性、 塗膜性能を後述の試験法によって試験した結果を表 1、 2に示す。 (A) 100 parts of the active energy ray-curable resin solution obtained in Synthesis Example 1 to 100 parts of (a) 100 parts of the active energy ray-curable resin solution obtained in Synthesis Example 3 (B) Light Irgacure 9 07 as a polymerization initiator [2 -Methyl-1-(Methylthio) Feni, manufactured by Ciba Specialty Chemicals )-2 -morpholinopropane-1 -one) 17 parts, DE TX -S (Nippon Kayaku Co., Ltd., 1 part) (C) D PHA ( Nippon Kayaku Co., Ltd. Dipentaerythritol Hexaacrylate) 2 3 parts, (D) 20 parts of NC-300 as epoxy-based cured resin, (d) Epiclone N-770 as epoxy-based cured resin (Dainippon KEMGARD 9 11 C (compound of Nippon Molybdenum Japan, zinc molybdate and magnesium silicate) with 20 parts of (Eno) a phenol novolac type epoxy resin made by Ink Chemical Co., Ltd. 25 parts, KS-6 6 (made by Shin-Etsu Chemical Co., Ltd.) as an antifoaming agent, 3 parts melamine, 1 part dicyandiamide, 120 parts barium sulfate, 1 part phthalocyanine blue Add 3 parts of carbitol acetate and knead in 3 roll mill It was prepared solder registry composition Te. The composition of this photosensitive resin composition is shown in Table 1, and the results of UL 94 V flammability, sensitivity, developability, and coating film performance tested by the test methods described below are shown in Tables 1 and 2.
(実施例 2 )  (Example 2)
実施例 1において、 合成例 1で得られた (A) 活性エネルギー線硬化 性樹脂溶液の代わりに合成例 2で得られた活性エネルギー線硬化性樹脂 溶液 1 0 0部を使用したこと以外は同様にして感光性樹脂組成物を調製 し、 実施例 1と同様に試験した結果を表 1、 2に示す。  In Example 1, it was the same except that (A) the active energy ray-curable resin solution obtained in Synthesis Example 1 was used instead of 100 parts of the active energy ray-curable resin solution obtained in Synthesis Example 2. Tables 1 and 2 show the results of preparing a photosensitive resin composition and testing the same as in Example 1.
(実施例 3 )  (Example 3)
実施例 1において、 ( a)活性エネルギー線硬化性樹脂溶液として合成 例 3で得られた活性エネルギー線硬化性樹脂溶液の代わりに合成例 4で 得られた活性エネルギー線硬化性樹脂溶液 1 0 0部を使用したこと以外 は同様にして感光性樹脂組成物を調製し、 実施例 1と同様に試験した結 果を表 1、 2に示す。  In Example 1, (a) Synthesis as active energy ray-curable resin solution Synthesis of active energy ray-curable resin solution obtained in Synthesis Example 4 instead of active energy ray-curable resin solution obtained in Example 3 1 0 0 Tables 1 and 2 show the results obtained by preparing a photosensitive resin composition in the same manner except that the parts are used, and testing in the same manner as in Example 1.
(実施例 4) 実施例 1において、 ( d )エポキシ系硬化樹脂としてェピクロン N - 7 7 0の代わりに YX - 40 0 0 (ジャパンエポキシレジン社製の 2 , 2 - ( 3 , 3,, 5 , 5, -テトラメチル ( 1 , 1 ' - ビフエニル) - 4 , 4, -ジィル) ビス (ォキシメチレン)) ビスォキシラン) を使用したこ と以外は同様にして感光性樹脂組成物を調製し、 実施例 1と同様に試験 した結果を表 1、 2に示す。 (Example 4) In Example 1, instead of Epiclone N-7700 as (d) Epoxy Curing Resin, YX-4000 (2,2,-(3,3,5,5,5-Tetra made by Japan Epoxy Resin Co., Ltd.) A photosensitive resin composition was prepared in the same manner except that methyl (1,1'-biphenyl) -4,4, -diyl) bis (oxymethylene)) bisoxysilane) was used and tested in the same manner as in Example 1. The results are shown in Tables 1 and 2.
(実施例 5 )  (Example 5)
実施例 1において、 (d)エポキシ系硬化樹脂としてェピクロン N - 7 70の代わりにェポトート Y S LV - 8 00 XY (東都化成社製) を使 用したこと以外は同様にして感光性樹脂組成物を調製し、 実施例 1 と同 様に試験した結果を表 1、 2に示す。  In Example 1, a photosensitive resin composition was prepared in the same manner except that (d) Epotot YS LV-8 00 XY (manufactured by Tohto Kasei Co., Ltd.) was used instead of Epiclone N-770 as the epoxy-based cured resin. Tables 1 and 2 show the results prepared and tested in the same manner as in Example 1.
(実施例 6 )  (Example 6)
実施例 1において、 ( d )エポキシ系硬化樹脂としてェピクロン N - 7 70の代わりにェピコート 807 (ジャパンポキシレジン社製のビスフ エノ一ル F型エポキシ型硬化樹脂) を使用したこと以外は同様にして感 光性樹脂組成物を調製し、 実施例 1と同様に試験した結果を表 1、 2に 示す。  In Example 1, (d) Epoxy Coat 807 (Bisphenol F type epoxy type cured resin manufactured by Japan Poxy Resin Co., Ltd.) was used instead of Epiclone N-770 as epoxy type cured resin. Tables 1 and 2 show the results of preparing a photosensitive resin composition and testing it in the same manner as in Example 1.
(実施例 7 )  (Example 7)
実施例 1において、 ( C) 反応性希釈剤として D P HA の代わりに力 ャラッ ド R - 6 84 (日本化薬社製のジシクロペン夕ジェニルジァクリ レート) 2 3部を使用したこと以外は同様にして感光性樹脂組成物を調 製し、 実施例 1と同様に試験した結果を表 1、 2に示す。  In Example 1, (C) Photosensitive R-684 (Nippon Kayaku Co., Ltd. dicyclopentyl diacrylate) instead of DP HA was used as the reactive diluent. Tables 1 and 2 show the results of preparing a functional resin composition and testing the same as in Example 1.
(実施例 8 )  (Example 8)
実施例 1において、 (E) として KEMGARD 9 1 1 B (日本シャ —ウィ ンウイ リアムズ製、 モリブデン酸亜鉛の化合物) を使用したこと 以外は同様にして感光性樹脂組成物を調製し、 実施例 1 と同様に試験し た結果を表 1、 2に示す。 In Example 1, a photosensitive resin composition was prepared in the same manner as in Example 1 except that KEMGARD 9 11 B (Nihon Shaw Williams, a compound of zinc molybdate) was used as (E). And tested as The results are shown in Tables 1 and 2.
(比較例 1 )  (Comparative Example 1)
実施例 1において、 ( E ) を含有しないこと以外は同様にして感光性 樹脂組成物を調製し、実施例 1と同様に試験した結果を表 1、 2に示す。  A photosensitive resin composition was prepared in the same manner as in Example 1 except that (E) was not contained, and the results of the same tests as in Example 1 are shown in Tables 1 and 2.
(比較例 2 )  (Comparative Example 2)
実施例 1において、 ( a)活性エネルギー線硬化性樹脂溶液として合成 例 3で得られた活性エネルギー線硬化性樹脂溶液のみを 2 0 0部使用し、 In Example 1, (a) Synthesis as an active energy ray-curable resin solution Using only 200 parts of the active energy ray-curable resin solution obtained in Example 3,
(A) 活性エネルギー線硬化性樹脂を使用しないこと以外は同様にして 感光性樹脂組成物を調製し、 実施例 1と同様に試験した結果を表 1、 2 に示す。 (A) A photosensitive resin composition was prepared in the same manner except that the active energy ray-curable resin was not used, and the results of testing in the same manner as in Example 1 are shown in Tables 1 and 2.
(比較例 3)  (Comparative Example 3)
実施例 1において、 (a)活性エネルギー線硬化性樹脂溶液として合成 例 3で得られた活性エネルギー線硬化性樹脂溶液のみを 2 0 0部使用し、 (A) 活性エネルギー線硬化性樹脂を使用せず、 さらに、 硫酸バリウム の代わりに水酸化マグネシウムを使用すること以外は同様にして感光性 樹脂組成物を調製し、実施例 1 と同様に試験した結果を表 1、 2に示す。  In Example 1, (a) Synthesis as an active energy ray-curable resin solution Using only 200 parts of the active energy ray-curable resin solution obtained in Example 3, (A) Using an active energy ray-curable resin Furthermore, a photosensitive resin composition was prepared in the same manner except that magnesium hydroxide was used instead of barium sulfate, and the results of tests similar to Example 1 are shown in Tables 1 and 2.
(比較例 4)  (Comparative Example 4)
実施例 1において、 合成例 1で得られた (A) 活性エネルギー線硬化 性樹脂溶液のみを 2 00部使用し、 ( a)活性エネルギー線硬化性樹脂溶 液を使用しないこと以外は同様にして感光性樹脂組成物を調製し、 実施 例 1と同様に試験した結果を表 1、 2に示す。 表 1 In Example 1, the same procedure was used except that (A) 200 parts of the active energy ray-curable resin solution obtained in Synthesis Example 1 was used alone, and (a) the active energy ray-curable resin solution was not used. Tables 1 and 2 show the results of preparing a photosensitive resin composition and testing it in the same manner as in Example 1. table 1
Figure imgf000025_0001
Figure imgf000025_0001
表 2 Table 2
Figure imgf000026_0001
Figure imgf000026_0001
(実施例 9 ) (Example 9)
実施例 1において、 合成例 1で得られた (A) 活性エネルギー線硬化 性樹脂溶液を 173部、 合成例 3で得られた ( a ) 活性エネルギー線硬 化性樹脂溶液を 27部としたこと以外は同様にして感光性樹脂組成物を 調整し、 実施例 1と同様に試験した結果を表 3、 4に示す。  In Example 1, (A) active energy ray-curable resin solution obtained in Synthesis Example 1 was 173 parts, and (a) active energy ray-curable resin solution obtained in Synthesis Example 3 was 27 parts. Tables 3 and 4 show the results of adjusting the photosensitive resin composition in the same manner except that, and testing in the same manner as in Example 1.
(実施例 10)  (Example 10)
実施例 1において、 合成例 1で得られた (A) 活性エネルギー線硬化 性樹脂溶液を 130部、 合成例 3で得られた (a) 活性エネルギー線硬 化性樹脂溶液を 70部としたこと以外は同様にして感光性樹脂組成物を 調整し、 実施例 1と同様に試験した結果を表 3、 4に示す。  In Example 1, 130 parts of (A) active energy ray-curable resin solution obtained in Synthesis Example 1 and 70 parts of (a) active energy ray-curable resin solution obtained in Synthesis Example 3 were used. Tables 3 and 4 show the results of adjusting the photosensitive resin composition in the same manner except that, and testing in the same manner as in Example 1.
(実施例 1 1 )  (Example 1 1)
実施例 1において、 合成例 1で得られた (A) 活性エネルギー線硬化 性樹脂溶液を 70部、 合成例 3で得られた (a) 活性エネルギー線硬化 性樹脂溶液を 125部、 (d)エポキシ系硬化樹脂としてェピクロン N— 770を 15部としたこと以外は同様にして感光性樹脂組成物を調整し、 実施例 1と同様に試験した結果を表 3、 4に示す。  In Example 1, (A) 70 parts of the active energy ray-curable resin solution obtained in Synthesis Example 1 and (a) 125 parts of the active energy ray-curable resin solution obtained in Synthesis Example 3 (d) Tables 3 and 4 show the results of the same test as in Example 1 except that the photosensitive resin composition was prepared in the same manner except that 15 parts of Epiclone N-770 was used as the epoxy-based cured resin.
(実施例 12 )  (Example 12)
実施例 1において、 合成例 1で得られた ( A ) 活性ェネルギ一線硬化 性樹脂溶液を 1 65部、 合成例 3で得られた (a) 活性エネルギー線硬 化性樹脂溶液を 35部、 (E)として KEMGARD 9 1 1 Cを 9部とし たこと以外は同様にして感光性樹脂組成物を調整し、 実施例 1と同様に 試験した結果を表 3、 4に示す。 表 3 実施例 In Example 1, (A) 165 parts of the active energy line curable resin solution obtained in Synthesis Example 1 and (a) 35 parts of the active energy ray curable resin solution obtained in Synthesis Example 3 ( Tables 3 and 4 show the results obtained by preparing a photosensitive resin composition in the same manner except that KEMGARD 9 1 1 C was 9 parts as E) and testing in the same manner as in Example 1. Table 3 Examples
表 3  Table 3
9 10 11 12 9 10 11 12
(A)活性エネルギー線 樹脂(合成例 1) 173 130 70 165 硬化樹脂 樹脂(合成例 2) (A) Active energy ray Resin (Synthesis example 1) 173 130 70 165 Cured resin Resin (Synthesis example 2)
(a )活性エネルギー 樹脂(合成例 3) 27 70 125 35 線硬化樹脂 樹脂(合成例 4.)  (a) Active energy Resin (Synthesis example 3) 27 70 125 35 Wire-curing resin Resin (Synthesis example 4.)
ィルガキュア  Irgacure
17 17 17 17 17 17 17 17
(B)光重合開始剤 907 (B) Photopolymerization initiator 907
DETX-S 1 1 1 1 DETX-S 1 1 1 1
DPHA ' 23 23 23 23DPHA '23 23 23 23
(C)反応性希釈剤 力ャラッ ド (C) Reactive diluent force ladder
R-684  R-684
(D )エポキシ系  (D) Epoxy system
NC-3000 20 20 20 20 硬化樹脂  NC-3000 20 20 20 20 Cured resin
ェピクロン  Epiclon
20 20 15  20 20 15
N-770  N-770
(d )エポキシ系  (d) Epoxy system
YX-4000 20 硬化樹脂  YX-4000 20 Cured resin
YSLV-80XY  YSLV-80XY
ェピコ一ト 807  Epicote 807
KEMGARD 911C 25 25 25 9 KEMGARD 911C 25 25 25 9
(E)モリブデン化合物 (E) Molybdenum compound
KEMGARD 911B  KEMGARD 911B
メラミン 3 3 3 3 ジシアンジアミ ド 1 1 1 1 フタロシアニン · ブルー 1 1 1 1 硫酸バリゥム 120 120 120 120 水酸化マグネシゥム Melamine 3 3 3 3 Dicyandiamide 1 1 1 1 Phthalocyanine Blue 1 1 1 1 Barium sulfate 120 120 120 120 Magnesium hydroxide
カルビトールァセテ一ト 3 3 3 3 Carbitol acetate 3 3 3 3
表 4 Table 4
Figure imgf000029_0001
試験方法は以下の通りである。
Figure imgf000029_0001
The test method is as follows.
( 1 ) 燃焼性  (1) Flammability
日立化成社製のハロゲンフリ一基板 M C L - E - 6 7 9 F G( 0.3 m m t材)にスクリーン印刷法により片面 30 /mずつ両面塗膜を形成し、 この試験片を UL 94燃焼性試験に準じて測定した。  Halogen-free substrate made by Hitachi Chemical Co., Ltd. MCL-E-6 7 9 FG (0.3 mmt material) was coated on both sides by 30 / m on one side by screen printing, and this test piece conformed to UL 94 flammability test. Measured.
( 2 ) 感度  (2) Sensitivity
パフ研磨した銅張積層版に、 スクリーン印刷法により上記実施例 1〜 A puffed copper clad laminate was subjected to the above-mentioned Examples 1 to 4 by screen printing.
8、 比較例 1〜4のそれぞれの感光性樹脂組成物を 2 0〃m (乾燥後) の厚さで塗布し、 8 0°Cで 2 0分間乾燥した後、 K o d ak C ONT RO L S CAL E T - 1 4 (イース トマン · コダック社製) を塗布 表面に置き、 ブルーフィルター付き散乱光露光装置 (ΤΝ - 8 9 0 Β、 小野測器社製)でレジス ト表面上 5 0 0 m J / c m 2照射した。その後、 1 %炭酸ナト リゥム水溶液を用い、 0.2 MP aのスプレー圧で 9 0秒間 現像し、 光硬化性 ·熱硬化性樹脂塗膜が現像されずに残存している段数 を感度とした。 8. Each photosensitive resin composition of Comparative Examples 1 to 4 was applied at a thickness of 20 μm (after drying), dried at 80 ° C. for 20 minutes, and then Kodak C ONT RO LS CAL ET-1 4 (Eastman Kodak) is placed on the coating surface, and the scattered light exposure device with blue filter (9-8900, manufactured by Ono Sokki) on the resist surface. Irradiated / cm 2 . After that, using a 1% aqueous sodium carbonate solution and developing at a spray pressure of 0.2 MPa for 90 seconds, the number of stages where the photocurable / thermosetting resin coating film remains without being developed. Was the sensitivity.
( 3 ) タック性  (3) Tackiness
パフ研磨した銅張積層版に、 スクリーン印刷法により上記実施例 1〜 8、 比較例 1〜 4のそれそれの感光性樹脂組成物を 2 0〃m (乾燥後) の厚さで塗布し、 8 0°Cで 2 0分間乾燥後、 室温まで冷却した塗膜のベ たつきを指触にて確認し、 以下の基準に従い評価した。  The puffed copper clad laminate was coated with the photosensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 to 4 in a thickness of 20 μm (after drying) by screen printing. After drying at 80 ° C. for 20 minutes, the stickiness of the coating film cooled to room temperature was confirmed by touch and evaluated according to the following criteria.
〇 :塗膜のベたつきがないもの  ○: No sticky coating
△ :塗膜のベたつきが若干あるもの  Δ: The coating film has a slight stickiness
X :塗膜のベたつきが激しいもの  X: The film is very sticky
( 4 ) アル力リ現像性  (4) Al power re-developability
パフ研磨した銅張積層版に、 スクリーン印刷法により上記実施例 1〜 8、 比較例 1 ~4のそれそれの感光性樹脂組成物を 2 0〃m (乾燥後) の厚さで塗布し、 8 0°Cで各々 1 0分間隔で乾燥した後、 1 %炭酸ナト リゥム水溶液を用い、 0.2 MP aのスプレー圧で 9 0秒間で現像できる 最長の乾燥時間を測定した。  The puffed copper-clad laminate was coated with the photosensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 to 4 in a thickness of 20 μm (after drying) by screen printing. After drying at 80 ° C. at intervals of 10 minutes each, the longest drying time that can be developed in 90 seconds at a spray pressure of 0.2 MPa using a 1% aqueous sodium carbonate solution was measured.
( 5 ) 塗膜性能  (5) Coating film performance
パフ研磨した導体回路 (導体厚 3 5 Π1) に、 スクリーン印刷法によ り上記実施例 1〜8、 比較例 1〜4のそれぞれの感光性樹脂組成物を導 体回路上 2 0 i (乾燥後) の厚さで塗布し、 8 0°Cで 2 0分間乾燥し た後、 導体回路に対応したパターンが描かれているマスクフィルムを塗 膜表面に置き、ブルーフィルター付き散乱光露光装置(T N - 8 9 0 B、 小野測器社製)でレジス ト表面上 5 0 0 mJ/c m2照射した。その後、 1 %炭酸ナト リゥム水溶液を用い、 0.2 MP aのスプレー圧で 9 0秒間 現像した。 続いてこの基板を 1 5 0°Cで 6 0分間熱硬化して硬化塗膜を 有するプリン ト配線板を作成し、 塗膜性能の評価を行った。 The photosensitive resin composition of each of Examples 1 to 8 and Comparative Examples 1 to 4 was applied to a conductor circuit (conductor thickness 3 5 Π1) puffed on the conductor circuit by screen printing. After coating at 80 ° C and drying at 80 ° C for 20 minutes, a mask film with a pattern corresponding to the conductor circuit is placed on the coating surface, and a scattered light exposure device with a blue filter ( TN-890B (manufactured by Ono Sokki Co., Ltd.) was irradiated at 500 mJ / cm 2 on the resist surface. Thereafter, the film was developed for 90 seconds at a spray pressure of 0.2 MPa using a 1% aqueous sodium carbonate solution. Subsequently, this substrate was thermally cured at 150 ° C. for 60 minutes to prepare a printed wiring board having a cured coating film, and the coating film performance was evaluated.
(ィ) 耐酸性 · ( 5 ) に上述した方法で作成した試験片を、 常温の 1 0質量%硫酸水 溶液に 3 0分間浸漬後、 水洗した試験片の水分を十分拭き取った後、 セ ロハン粘着テープ (セロハンは商品名) でピーリング試験を行い、 塗膜 の状態を目視により観察し、 以下の基準に従い評価した。 (Ii) Acid resistance · (5) After immersing the test piece prepared by the method described above in 10% by weight sulfuric acid solution at room temperature for 30 minutes, and thoroughly wiping off the water of the test piece that has been washed, cellophane adhesive tape Name), a peeling test was conducted, and the state of the coating film was visually observed and evaluated according to the following criteria.
〇 : まったく変化のみられないもの  ○: Things that cannot be changed at all
△ : わずかに変化が見られるもの  △: Slight change
: 塗膜が膨潤し剥離しているもの  : The coating is swollen and peeled
(口) 耐溶剤性  (Mouth) Solvent resistance
( 5 ) に上述した方法で作成した試験片を、 常温のジクロロメタンに 3 0分間浸漬後、 水洗した試験片の水分を十分拭き取った後、 セロハン 粘着テープでピーリング試験を行い、 塗膜の状態を目視により観察し、 以下の基準に従い評価した。  (5) After immersing the test piece prepared in the above-mentioned method for 30 minutes in dichloromethane at room temperature, thoroughly wiping off the water of the test piece washed with water, and then performing a peeling test with a cellophane adhesive tape to determine the state of the coating film. It was observed visually and evaluated according to the following criteria.
〇 : まったく変化のみられないもの  ○: Things that cannot be changed at all
△ : わずかに変化が見られるもの  △: Slight change
X :塗膜が膨潤し剥離しているもの  X: The coating film is swollen and peeled
(ハ) 耐金めっき性  (C) Gold plating resistance
( 5 ) に上述した方法で作成した試験片に金メ ツキ処理を施した後、 セロハン粘着テープでピーリング試験を行い、 塗膜の状態を目視により 観察し、 以下の基準に従い評価した。  After performing the gold plating treatment on the test piece prepared by the method described in (5) above, a peeling test was conducted with a cellophane adhesive tape, and the state of the coating film was visually observed and evaluated according to the following criteria.
〇 : まったく変化のみられないもの  ○: Things that cannot be changed at all
△ : わずかに変化が見られるもの  △: Slight change
X :塗膜が膨潤し剥離しているもの  X: The coating film is swollen and peeled
(二) はんだ耐熱性  (2) Solder heat resistance
( 5 ) に上述した方法で作成した試験片について、 J I S C 6 4 8 1の試験方法に従って 2 6 0 °Cのはんだ槽に 3 0秒浸漬後、 セロハン 粘着テープによるピーリング試験を 1サイクルとし、 計 1〜 3サイクル を行った後の塗膜の状態を目視により観察し、 以下の基準に従い評価し た。. For the test piece prepared by the method described in (5) above, after being immersed in a solder bath at 26 ° C for 30 seconds in accordance with the test method of JISC 6 4 8 1, the peeling test with cellophane adhesive tape is defined as one cycle. 1 to 3 cycles The state of the coating film after the observation was visually observed and evaluated according to the following criteria. .
◎ : 3サイクル後も塗膜に変化がないもの  ◎: No change in coating after 3 cycles
〇 : 3サイクル後に剥離が生じているもの  〇: Exfoliation occurs after 3 cycles
△: 2サイクル後に剥離が生じているもの  Δ: Peeling after 2 cycles
X : 1サイクル後に剥離が生じているもの  X: Exfoliation occurs after 1 cycle
(ホ) プレッシャークヅ力一耐性試験  (E) Pressure-k resistance test
( 5 ) に上述した方法で作成した試験片を、 1 2 1° 1 00 %RH (相対湿度) の雰囲気下で 5時 処理した後、 セロハン粘着テープでピ 一リング試験を行い、 塗膜の状態を目視により観察し、 以下の基準に従 い評価した。  (5) After the test piece prepared by the method described above was treated at 1 2 1 ° 1 00% RH (relative humidity) for 5 o'clock, a peeling test was conducted with a cellophane adhesive tape, The condition was visually observed and evaluated according to the following criteria.
〇 : まったく変化のみられないもの  ○: Things that cannot be changed at all
△ : わずかに変化が見られるもの  △: Slight change
X :塗膜が膨潤し剥離しているもの  X: The coating film is swollen and peeled
(へ) 絶縁抵抗 ■  (To) Insulation resistance ■
( 5 ) に上述した方法で、 I P C - TM- 650の I P C - SM - 8 40 C B - 25テス トクーポンのく し型電極を用い、 85°C、 85% RHの雰囲気下で 500時間加湿したときの塗膜の絶縁抵抗値を D C (直流) 50 Vを印加して測定した。  (5) Using the IPC-TM-650 IPC-SM-8 40 CB-25 test coupon interdigitated electrode as described above in (5) for 500 hours in an atmosphere of 85 ° C and 85% RH. The insulation resistance value of the coating film was measured by applying DC (direct current) 50 V.
上記の表 1から、 実施例 1〜8のものは、 ソルダーレジス トとしての 要求を十分満たしつつ、 燃焼性 V - 0を達成している。  From Table 1 above, Examples 1 to 8 achieve combustibility V-0 while sufficiently satisfying the requirements for solder resist.
比較例 1、 2より、 (A)活性エネルギー線硬化性樹脂および (E)の 両方を含有していないと燃焼性 V- 0を達成することができない。  From Comparative Examples 1 and 2, the flammability V-0 cannot be achieved unless both (A) the active energy ray-curable resin and (E) are contained.
比較例 3に示されるように、 従来の難燃化技術の一つである水酸化マ グネシゥムを使用することにより、 耐酸性、 耐金めっき性の低下が顕著 になり、 ソルダーレジス トとしての要求を満足できなくなる。 比較例 4で示されるように、 ( a)活性エネルギ一線硬化性樹脂溶液を 使用しない場合は、 感光性樹脂組成物の 「感度」 の低下が顕著になり、 5 0 OmJ/cm2の露光量ではソルダーレジス ト としての要求を満足でき なくなる。 As shown in Comparative Example 3, the use of magnesium hydroxide, which is one of the conventional flame retardant technologies, significantly reduces acid resistance and gold plating resistance, and is a requirement as a solder resist. Can not be satisfied. As shown in Comparative Example 4, (a) When the active energy linear curable resin solution is not used, the “sensitivity” of the photosensitive resin composition is significantly reduced, and the exposure amount is 50 OmJ / cm 2 . In this case, it will not be possible to satisfy the requirements as a solder registry.

Claims

請求の範囲 The scope of the claims
1. (A) (A 1 ) および (A 2 ) からなる群より選ばれた一種 以上の活性エネルギー線硬化性樹脂、 1. (A) one or more active energy ray-curable resins selected from the group consisting of (A 1) and (A 2),
( A 1 ) 式 ( 1 ) のエポキシ樹脂および式 ( 2 ) のエポキシ樹 脂からなる群より選ばれたエポキシ樹脂と不飽和モノカルボン酸との反 応物と、 多塩基酸および多塩基酸無水物からなる群より選ばれた化合物 とを反応させて得られる樹脂、  (A 1) a reaction product of an epoxy resin selected from the group consisting of an epoxy resin of formula (1) and an epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride A resin obtained by reacting with a compound selected from the group consisting of:
( A 2 ) 式 ( 1 ) のエポキシ樹脂および式 ( 2 ) のエポキシ樹 脂からなる群より選ばれたエポキシ樹脂と不飽和モノカルボン酸との反 応物と、 多塩基酸および多塩基酸無水物からなる群より選ばれた化合物 とを反応させて得られる樹脂を、 更にラジカル重合性不飽和基とェポキ シ基を有するグリシジル化合物と反応させて得られる樹脂、  (A2) a reaction product of an epoxy resin selected from the group consisting of the epoxy resin of formula (1) and the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride A resin obtained by reacting a resin selected from a group selected from the group consisting of a glycidyl compound having a radical polymerizable unsaturated group and an epoxy group;
(a) ( a l ) および (a 2 ) からなる群より選ばれた一種以上 の活性エネルギー線硬化性樹脂、  (a) one or more active energy ray-curable resins selected from the group consisting of (al) and (a2),
( a 1 ) 式 ( 1 ) のエポキシ樹脂および式 ( 2 ) のエポキシ樹 脂以外のエポキシ樹脂と不飽和モノカルボン酸との反応物と、 多塩基酸 および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得 られる樹脂、  (a1) selected from the group consisting of an epoxy resin of formula (1) and an epoxy resin other than the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, and a polybasic acid and polybasic acid anhydride Resin obtained by reacting with the compound obtained,
( a 2 ) 式 ( 1 ) のエポキシ樹脂および式 ( 2 ) のエポキシ樹 脂以外のエポキシ樹脂と不飽和モノカルボン酸との反応物と、 多塩基酸 および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得 られる樹脂を、 更にラジカル重合性不飽和基とエポキシ基を有するグリ シジル化合物と反応させて得られる樹脂、  (a2) selected from the group consisting of an epoxy resin of the formula (1) and an epoxy resin other than the epoxy resin of the formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride A resin obtained by further reacting a resin obtained by reacting the compound with a glycidyl compound having a radical polymerizable unsaturated group and an epoxy group,
(B) 光重合開始剤、  (B) a photopolymerization initiator,
(C) 反応性希釈剤、 (D) 式 ( 1) のエポキシ樹脂および式 (2) のエポキシ樹脂か らなる群より選ばれたエポキシ樹脂、 . (C) a reactive diluent, (D) an epoxy resin selected from the group consisting of an epoxy resin of formula (1) and an epoxy resin of formula (2);
(d) 式 ( 1 ) のエポキシ樹脂および式 (2) のエポキシ樹脂以 外のエポキシ樹脂、 および  (d) an epoxy resin of formula (1) and an epoxy resin other than the epoxy resin of formula (2), and
(E) モリブデン化合物を含有することを特徴とする、 感光性樹 脂組成物。  (E) A photosensitive resin composition comprising a molybdenum compound.
Figure imgf000035_0001
Figure imgf000035_0001
以上、 10以下) 10 or less)
Figure imgf000035_0002
Figure imgf000035_0002
(2)  (2)
(n= 1以上、 10以下) (n = 1 or more, 10 or less)
2 . 請求項 1記載の感光性樹脂組成物を有することを特徴とする、 電子部品搭載前または搭載後のプリン ト配線板。 2. A printed wiring board before or after mounting an electronic component, comprising the photosensitive resin composition according to claim 1.
3 . 請求項 1記載の感光性樹脂組成物を有することを特徴とする、 電子部品搭載前または搭載後の半導体パッケージ基板。 3. A semiconductor package substrate having the photosensitive resin composition according to claim 1 before or after mounting an electronic component.
PCT/JP2006/308166 2005-04-13 2006-04-12 Photosensitive resin composition, printed wiring board, and semiconductor package substrate WO2006109890A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800080565A CN101142528B (en) 2005-04-13 2006-04-12 Photosensitive resin composition, printed wiring board, and semiconductor package substrate
JP2007513044A JP4878597B2 (en) 2005-04-13 2006-04-12 Photosensitive resin composition, printed wiring board, and semiconductor package substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-115279 2005-04-13
JP2005115279 2005-04-13
JP2005-284203 2005-09-29
JP2005284203 2005-09-29

Publications (1)

Publication Number Publication Date
WO2006109890A1 true WO2006109890A1 (en) 2006-10-19

Family

ID=37087146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308166 WO2006109890A1 (en) 2005-04-13 2006-04-12 Photosensitive resin composition, printed wiring board, and semiconductor package substrate

Country Status (4)

Country Link
JP (1) JP4878597B2 (en)
CN (1) CN101142528B (en)
TW (1) TWI392965B (en)
WO (1) WO2006109890A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041107A (en) * 2005-08-01 2007-02-15 Nippon Kayaku Co Ltd Photosensitive resin composition and cured product thereof
WO2008050653A1 (en) * 2006-10-24 2008-05-02 Hitachi Chemical Company, Ltd. Photosensitive resin composition and photosensitive element using the same
JP2008107458A (en) * 2006-10-24 2008-05-08 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element
JP2008180992A (en) * 2007-01-25 2008-08-07 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive film for permanent resist, resist pattern forming method, printed wiring board and semiconductor package
JP2009014970A (en) * 2007-07-04 2009-01-22 Tokyo Ohka Kogyo Co Ltd Colored photosensitive composition
JP2009014990A (en) * 2007-07-04 2009-01-22 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element using the same
WO2009028479A1 (en) * 2007-08-28 2009-03-05 Nippon Kayaku Kabushiki Kaisha Reactive carboxylate compound, curable resin composition using the same, and use of the same
JP2010224168A (en) * 2009-03-23 2010-10-07 Taiyo Ink Mfg Ltd Photo-curing thermosetting resin composition, its dry film, cured product, and printed wiring board using them
EP1944335A3 (en) * 2007-01-12 2010-12-01 Clariant Finance (BVI) Limited Flame retardant resin compositions and use thereof
CN102053494A (en) * 2009-10-28 2011-05-11 住友化学株式会社 Colored photosensitive resin composition
JP2011099919A (en) * 2009-11-04 2011-05-19 Mitsubishi Chemicals Corp Colored resin composition, color filter, liquid crystal display device, and organic el display
JP2013104013A (en) * 2011-11-15 2013-05-30 Goo Chemical Co Ltd Carboxyl-containing resin and resin composition for use in solder resist
JP2013174920A (en) * 2013-05-13 2013-09-05 Taiyo Holdings Co Ltd Photocurable thermosetting resin composition, dry film and cured product of the composition, and printed wiring board using the same
JP2018169518A (en) * 2017-03-30 2018-11-01 株式会社タムラ製作所 Photosensitive resin composition and printed wiring board
JP2019048998A (en) * 2018-11-14 2019-03-28 日立化成株式会社 Resin composition for mold underfill and electronic component device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015134844A (en) * 2012-05-15 2015-07-27 日本化薬株式会社 Reactive polyester compound, and active energy ray-curable resin composition using the same
CN106249545B (en) * 2016-08-25 2019-06-25 杭州福斯特应用材料股份有限公司 It is a kind of can selfreparing photosensitive dry film solder mask

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695380A (en) * 1992-09-11 1994-04-08 Daicel Chem Ind Ltd Photosetting resin composition
JPH0876379A (en) * 1994-08-31 1996-03-22 Taiyo Ink Mfg Ltd Photosetting and thermosetting resin composition
JP2000327742A (en) * 1999-05-19 2000-11-28 Taiyo Ink Mfg Ltd Photosetting/thermosetting composition
JP2002148799A (en) * 2000-11-14 2002-05-22 Mitsubishi Gas Chem Co Inc Resist composition with excellent flame resistance
JP2004107584A (en) * 2002-09-20 2004-04-08 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic part device provided with element
JP2004286818A (en) * 2003-03-19 2004-10-14 Mitsubishi Gas Chem Co Inc Flame retardant resist composition having excellent heat resistance
JP2006091243A (en) * 2004-09-22 2006-04-06 Mitsubishi Gas Chem Co Inc Resin composition for resist

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU674017B2 (en) * 1992-09-14 1996-12-05 Yoshino Kogyosho Co., Ltd. Printed thermoplastic resin products and method for printing such products
TW290583B (en) * 1993-10-14 1996-11-11 Alpha Metals Ltd
JPH0987346A (en) * 1995-09-19 1997-03-31 Dainippon Ink & Chem Inc Energy ray curing epoxyacrylate resin composition
JP2002356538A (en) * 2001-03-30 2002-12-13 Toray Ind Inc Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2006208853A (en) * 2005-01-28 2006-08-10 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695380A (en) * 1992-09-11 1994-04-08 Daicel Chem Ind Ltd Photosetting resin composition
JPH0876379A (en) * 1994-08-31 1996-03-22 Taiyo Ink Mfg Ltd Photosetting and thermosetting resin composition
JP2000327742A (en) * 1999-05-19 2000-11-28 Taiyo Ink Mfg Ltd Photosetting/thermosetting composition
JP2002148799A (en) * 2000-11-14 2002-05-22 Mitsubishi Gas Chem Co Inc Resist composition with excellent flame resistance
JP2004107584A (en) * 2002-09-20 2004-04-08 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic part device provided with element
JP2004286818A (en) * 2003-03-19 2004-10-14 Mitsubishi Gas Chem Co Inc Flame retardant resist composition having excellent heat resistance
JP2006091243A (en) * 2004-09-22 2006-04-06 Mitsubishi Gas Chem Co Inc Resin composition for resist

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041107A (en) * 2005-08-01 2007-02-15 Nippon Kayaku Co Ltd Photosensitive resin composition and cured product thereof
KR100997603B1 (en) 2006-10-24 2010-11-30 히다치 가세고교 가부시끼가이샤 Photosensitive resin composition and photosensitive element using the same
WO2008050653A1 (en) * 2006-10-24 2008-05-02 Hitachi Chemical Company, Ltd. Photosensitive resin composition and photosensitive element using the same
JP2008107458A (en) * 2006-10-24 2008-05-08 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element
JPWO2008050653A1 (en) * 2006-10-24 2010-02-25 日立化成工業株式会社 Photosensitive resin composition and photosensitive element using the same
JP4586922B2 (en) * 2006-10-24 2010-11-24 日立化成工業株式会社 Photosensitive resin composition and photosensitive element using the same
EP1944335A3 (en) * 2007-01-12 2010-12-01 Clariant Finance (BVI) Limited Flame retardant resin compositions and use thereof
JP2008180992A (en) * 2007-01-25 2008-08-07 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive film for permanent resist, resist pattern forming method, printed wiring board and semiconductor package
JP2009014970A (en) * 2007-07-04 2009-01-22 Tokyo Ohka Kogyo Co Ltd Colored photosensitive composition
JP2009014990A (en) * 2007-07-04 2009-01-22 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element using the same
JPWO2009028479A1 (en) * 2007-08-28 2010-12-02 日本化薬株式会社 Reactive carboxylate compound, curable resin composition using the same, and use thereof
TWI422608B (en) * 2007-08-28 2014-01-11 Nippon Kayaku Kk A reactive carboxylic acid ester compound, a hardening type resin composition using the same, and a use thereof
WO2009028479A1 (en) * 2007-08-28 2009-03-05 Nippon Kayaku Kabushiki Kaisha Reactive carboxylate compound, curable resin composition using the same, and use of the same
JP5604106B2 (en) * 2007-08-28 2014-10-08 日本化薬株式会社 Reactive carboxylate compound, curable resin composition using the same, and use thereof
JP2010224168A (en) * 2009-03-23 2010-10-07 Taiyo Ink Mfg Ltd Photo-curing thermosetting resin composition, its dry film, cured product, and printed wiring board using them
CN102053494A (en) * 2009-10-28 2011-05-11 住友化学株式会社 Colored photosensitive resin composition
CN102053494B (en) * 2009-10-28 2014-10-15 住友化学株式会社 Colored photosensitive resin composition, coating, pattern and colored filter
JP2011099919A (en) * 2009-11-04 2011-05-19 Mitsubishi Chemicals Corp Colored resin composition, color filter, liquid crystal display device, and organic el display
JP2013104013A (en) * 2011-11-15 2013-05-30 Goo Chemical Co Ltd Carboxyl-containing resin and resin composition for use in solder resist
EP2781530A4 (en) * 2011-11-15 2015-06-24 Goo Chemical Co Ltd Carboxyl-containing resin, resin composition for use in solder resist, and manufacturing process for carboxyl-containing resin
US9458284B2 (en) 2011-11-15 2016-10-04 Goo Chemical Co., Ltd. Carboxyl-containing resin, resin composition for solder mask, and method of preparing carboxyl-containing resin
KR101744211B1 (en) 2011-11-15 2017-06-07 고오 가가쿠고교 가부시키가이샤 Carboxyl-containing resin, resin composition for use in solder resist, and manufacturing process for carboxyl-containing resin
JP2013174920A (en) * 2013-05-13 2013-09-05 Taiyo Holdings Co Ltd Photocurable thermosetting resin composition, dry film and cured product of the composition, and printed wiring board using the same
JP2018169518A (en) * 2017-03-30 2018-11-01 株式会社タムラ製作所 Photosensitive resin composition and printed wiring board
JP2019048998A (en) * 2018-11-14 2019-03-28 日立化成株式会社 Resin composition for mold underfill and electronic component device

Also Published As

Publication number Publication date
CN101142528A (en) 2008-03-12
TW200641529A (en) 2006-12-01
TWI392965B (en) 2013-04-11
CN101142528B (en) 2011-12-28
JPWO2006109890A1 (en) 2008-11-20
JP4878597B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
WO2006109890A1 (en) Photosensitive resin composition, printed wiring board, and semiconductor package substrate
JP5585192B2 (en) Photosensitive resin composition, photosensitive element using the same, method for producing resist pattern, resist pattern and resist pattern laminated substrate
JP6967508B2 (en) Curable resin composition, dry film, cured product and printed wiring board
US7718714B2 (en) Resin curable with actinic energy ray, photocurable and thermosetting resin composition containing the same, and cured product obtained therefrom
JP4509561B2 (en) Thermosetting resin composition
JP2001302871A (en) Photocurable/thermosetting resin composition and printed wiring board having solder resist coating film and resin insulating layer formed by using the same
JP2013539072A (en) Photosensitive resin composition, dry film solder resist and circuit board
US20050054756A1 (en) Curable resins and curable resin compositions containing the same
WO2000068740A1 (en) Solder resist ink composition
JPH11288091A (en) Alkali-developable photosetting-thermosetting composition and hardened coating obtained from the same
US6458509B1 (en) Resist compositions
KR101900355B1 (en) Dry film layered product
JP5164092B2 (en) Thermosetting composition and cured product thereof
JP3953852B2 (en) Photo-curing / thermosetting resin composition
JP4042198B2 (en) Photocurable resin composition and photosensitive element using the same
WO2001053375A1 (en) Polynuclear epoxy compound, resin obtained therefrom curable with actinic energy ray, and photocurable/thermosetting resin composition containing the same
JP2001278947A (en) Active energy ray setting resin and photo-setting and thermosetting resin composition by applying the same
JP2001048955A (en) Flame retardant type energy beam photosensitive resin, photosensitive resin composition by using the same resin, and its cured material
JP4814134B2 (en) Curable composition and cured product thereof
JP4439614B2 (en) Alkali-developable photocurable / thermosetting composition
JP2001013679A (en) Resist composition
KR101394173B1 (en) Photosensitive hybrid resin with improved strength, hardness and adhesion, and curable composition comprising the same and cured product thereof
JP5484773B2 (en) Curable composition capable of alkali development and cured product thereof
WO2003032090A1 (en) Photosensitive resin composition
JP2002293878A (en) Photo-curing and thermosetting resin composition and cured material thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680008056.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007513044

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732073

Country of ref document: EP

Kind code of ref document: A1