WO2006109595A1 - 放射性物質除去フィルター及びそれを用いるフィルターユニット - Google Patents

放射性物質除去フィルター及びそれを用いるフィルターユニット Download PDF

Info

Publication number
WO2006109595A1
WO2006109595A1 PCT/JP2006/306872 JP2006306872W WO2006109595A1 WO 2006109595 A1 WO2006109595 A1 WO 2006109595A1 JP 2006306872 W JP2006306872 W JP 2006306872W WO 2006109595 A1 WO2006109595 A1 WO 2006109595A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
filter
radioactive
carbon fiber
radioactive substance
Prior art date
Application number
PCT/JP2006/306872
Other languages
English (en)
French (fr)
Inventor
Makoto Inoue
Ichiro Miyazaki
Norio Nogawa
Original Assignee
Toyo Boseki Kabushiki Kaisha
Wakaida Engineering Inc.
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha, Wakaida Engineering Inc., The University Of Tokyo filed Critical Toyo Boseki Kabushiki Kaisha
Priority to JP2007512908A priority Critical patent/JP4549388B2/ja
Priority to EP06730820A priority patent/EP1868209A4/en
Publication of WO2006109595A1 publication Critical patent/WO2006109595A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2065Carbonaceous material the material being fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0464Impregnants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0618Non-woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2068Iodine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/66Other type of housings or containers not covered by B01J2220/58 - B01J2220/64

Definitions

  • the present invention relates to a radioactive substance removal filter that collects and removes radioactive gas generated in medical facilities, nuclear facilities, and the like, and a filter unit using the same.
  • radioactive gases such as radioactive iodine are discharged in medical facilities and nuclear facilities
  • an air purifier is installed in the gas treatment path of the air conditioning facility, and the concentration of the generated radioactive gas After being reduced to below the legally regulated standard value, it is discharged outside the facility.
  • the activated carbon fiber used here has a pore volume of 3 to 30 nm and a pore volume of 0.
  • An activated carbon fiber sheet having a pore shape with a pore diameter of 15 ccZg or less and a pore diameter of 3 nm or less and a pore volume of 0.50 ccZg or more is attached with an amine effective for organic adsorption, and is attached to at least one of the sheets having active carbon fiber strength.
  • a laminate of protective sheets has been proposed (see Patent Document 2).
  • a filter that adsorbs a minute amount of radioactive substance in water by using oxidized activated carbon fibers has also been proposed (see Patent Document 3).
  • the activated carbon fiber is a sheet
  • a filter medium is folded and processed. It is used by being folded into a zigzag through a corrugated separator and stored in a unit. Alternatively, a comb-shaped separator is inserted between the folds, folded in a zigzag and used in the unit.
  • a filter normally needs to adsorb rarely generated radioactive materials while exhausting a large amount of air.
  • the charcoal filter unit used in this field has a life span that maintains the same level of collection efficiency as the initial stage even after long-term ventilation. Characteristics are also required.
  • the unit When using activated carbon fiber as a radioactive substance removal filter unit, the unit should be filled with as much activated carbon as possible to maintain the specified performance such as initial collection efficiency and life within the allowable range of pressure loss. It is necessary to use as As a result, the unit itself becomes heavier and the handling of the unit is reduced, making it less practical.
  • a typical Ciacoal filter on the market is close to 60 kg per unit, and many people and tools such as chain blocks are required for replacement.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-66191
  • Patent Document 2 JP 2004-205490 A
  • Patent Document 3 Japanese Patent Laid-Open No. 6-343856
  • the present invention was devised to solve the above-described problems of the prior art.
  • the purpose of the present invention is to provide a filter with high organic iodine removal efficiency and high removal efficiency after aeration for a long time.
  • a filter unit that is light in weight while maintaining a constant collection efficiency and pressure loss performance after initial and long-term ventilation, especially with the 1-inch thick granular activated carbon packing currently used. It is to solve the problem in the CHIACOL filter with layers.
  • the present invention has been obtained as a result of diligent studies to achieve a powerful problem.
  • the present invention relates to a radioactive substance removal filter that uses activated carbon fibers to collect a small amount of radioactive substances in the gas phase, wherein the total amount of acidic groups of the activated carbon fibers is 0.2 meq Zg or less,
  • a radioactive substance removal filter, wherein the activated carbon fiber is attached with at least one chemical substance, and the equilibrium moisture adsorption rate at 45% relative humidity of the activated carbon fiber is 10% by weight or less. is there.
  • the amount of chemical substance attached to the activated carbon fiber is 0.1 wt% to 5 wt%.
  • the present invention also provides a radioactive substance removal filter that uses a nonwoven fabric composed of activated carbon fibers to collect a small amount of radioactive material in the gas phase, and the average single fiber diameter of the activated carbon fibers is 25. It is a radioactive substance removal filter characterized by being less than ⁇ m.
  • the permeation rate coefficient of the filter is 0.07-0.60 cmZsZPa
  • the activated carbon fiber contained in the filter has a weight force S 150 gZm 2 to 1500 gZm 2 .
  • radioactive substance removal filter of the present invention it is used in a radioactive substance removal filter unit.
  • the present invention not only the initial removal efficiency of radioactive organic iodine but also the removal efficiency after long-term ventilation can be provided, and a filter can be provided. This reduces the filter filling volume.
  • the unit can be configured, and as a result, it is possible to supply a filter unit that is light in weight and low in pressure loss.
  • FIG. 1 shows an overall schematic diagram of a unit using a filter of the present invention.
  • FIG. 1 shows an overall schematic view of a filter unit using the filter of the present invention.
  • the filter unit is composed of a folded filter 1 and a separator 2, and a frame 3 surrounding them.
  • a filter containing as much adsorbent as possible to meet lifetime and removal efficiency.
  • the pressure loss increases, so a filter with high density and thin thickness is used to increase the space between the pleats after folds, thereby reducing the structural resistance as much as possible. Therefore, it is desired in terms of filter design to reduce the pressure loss. For this purpose, it is necessary to minimize the amount of filter used and to satisfy the collection efficiency.
  • the adsorption rate of organic iodine after long-term aeration is set to 10% by weight or less, preferably 9% by weight or less, and more preferably 8% by weight or less. Do not decline. If the equilibrium moisture adsorption rate is greater than 10% by weight, the amount of moisture adsorbed during ventilation increases, and the degree of absorption of acidic gas in the air increases, resulting in pores for adsorbing organic iodine. Is blocked, and the amount of organic iodine adsorbed after ventilation is reduced, which is not preferable.
  • the activated carbon has hydroxyl groups, carboxyl groups,! /, And other functional groups that are acidic groups on the activated carbon surface.
  • These functional groups inherently contribute greatly to the wettability with water. They do not contribute significantly to the adsorption of moisture in gas phase systems. However, the presence of such a functional group causes a weak bond with the attached chemical substance and deprives the chemical of its activity, thereby causing a reduction in the initial removal efficiency. Therefore, in the filter of the present invention, the total amount of acidic groups of the activated carbon fiber used as the filter is 0.2 meq / g or less, preferably 0.19 meqZg or less, more preferably 0.18 meqZg or less. The removal efficiency is not lowered. However, if the total amount of acidic groups is greater than 0.2 meq Zg, the activity of the chemical substance is reduced for the reasons described above, which is not preferable.
  • the filter of the present invention uses a non-woven fabric composed of activated carbon fibers, and by making the average single fiber diameter of the activated carbon fibers 25 ⁇ m or less, high efficiency with a minimum amount of activated carbon fibers. High life and low pressure loss can be realized.
  • the average single fiber diameter of the activated carbon fiber is preferably less than that in consideration of pressure loss, thickness, and weight balance, and more preferably not more than 23 m. If the average single fiber diameter is larger than 25 m, the pressure loss will be small, but many activated carbon fibers will be required to obtain the required collection efficiency and life characteristics, resulting in an increase in the weight of the filter unit. This is not preferable.
  • the filter of the present invention has a filter transmission rate coefficient of 0.07 to 0.60 cm / s / Pa, preferably 0.071 to 0.59 cm / s / Pa, and more preferably 0.072 to 0.00. It is preferable to consider the balance between the pressure loss and the removal efficiency to be composed of 58c mZsZPa.
  • the permeation rate coefficient is the wind speed at the time of pressure loss measurement of the filter divided by the measured pressure loss. When this is large, the ventilation resistance is low and the ventilation resistance is generally low. Resistance is high.
  • the filter of the present invention has a suitable ventilation resistance but exhibits a necessary radioactive iodine removal performance with a minimum amount of activated carbon fibers.
  • the ventilation resistance increases, so the pressure loss in the filter unit becomes high, and when it exceeds 0.6 cmZsZPa, the ventilation resistance becomes very low. Therefore, the radioactive organic iodine that is the adsorbed substance passes through, and the necessary radioiodine removal performance cannot be obtained.
  • activated carbon fiber weight constituting the filter is 150 ⁇ 1500gZm 2. This is because radioactive iodine, especially iodine that forms radioactive organic iodine compounds represented by methyl iodide (CH 131 1).
  • the activated carbon fiber is impregnated with at least one chemical substance in order to reduce the decrease in organic iodine collection efficiency after long-term ventilation.
  • Chemical substances to be attached to the activated carbon fiber include cyclooctane (triethylenediamine), N, N'-bis (3-aminopropyl) monopiperazine, N, N dimethyl monoaminoethyl methacrylate, N, N Dimethylaminopropylamine, 3-aminopropyltrimethoxysilane, 1,5 diazabicycloundecene, poly tert-butylaminoethyl methacrylate, polyethyleneimine, 1,5 diazapicyclo [4, 3, 0] non 5,5, 1,5 diazapicyclo [5, 4, 0] unde 7-5, 2-methyl-1,4 diazapicyclo [2, 2, 2] octane, phenhydrazine, 2-cyanopyridine, diisopropyl
  • amines such as
  • the amount of chemical substances attached to the activated carbon fiber is 5% by weight or less, preferably 4% by weight or less, and even 3% by weight or less in order to maintain a low equilibrium water adsorption rate at a relative humidity of 45%.
  • the amount exceeds 5% by weight the pores of the activated carbon are blocked, and the adsorbed chemical substance adsorbs moisture, so that the absorption of acid gas increases and the adsorption characteristics of organic iodine are hindered. Absent.
  • the amount of impregnation is 0.1% by weight or more, preferably 0.15% by weight or more, more preferably 0.2% by weight, and still more preferably 0.3% by weight or more.
  • the method of calculating the amount of adhesion varies depending on the substance.
  • metal iodide it is heat ashed and dissolved in acid, and the metal content is analyzed by a known method such as atomic absorption method or plasma emission method. Calculated as the rate of metal iodide adhesion.
  • the sample is extracted and the power obtained from the weight loss is obtained indirectly from the pH and titration of the extracted solution.
  • activated carbon fibers having a general specific surface area of 700 m 2 Zg or more by the BET method are used, and the total acid group amount of the activated carbon fibers is 0.2 m eqZg or less.
  • the activated carbon fiber of the present invention is made of natural cellulose fibers such as cotton and hemp, as well as rayon, polynosic, regenerated cellulose fibers by melt spinning, polybulal alcohol fibers, acrylic fibers, aromatic polyamide fibers.
  • Synthetic carbon fiber such as cross-linked formaldehyde fiber, lignin fiber, phenolic fiber and petroleum pitch fiber is carbonized at 800-1200 ° C under activated gas and activated by activated gas containing water vapor, carbon dioxide and carbon monoxide In particular, it suppresses the cracked gas generated by using raw materials with high carbon content such as phenol fibers and petroleum pitch fibers as raw materials, and carbonizes and activates them at a high temperature of 900 ° C or higher. It is preferable that the concentration of water vapor as the activation gas is set to be low. In addition, in order to remove the acidic group of activated carbon fiber produced by a known method, it is heated in a nitrogen or argon atmosphere or in a vacuum at 700 to 1200 ° C. or treated with hydrogen plasma or the like. You can get it.
  • the strength of the activated carbon fiber sheet includes a nonwoven fabric, a woven fabric, a paper-like material, and the like, and is not particularly limited, and is appropriately used in consideration of strength and pressure loss. It is formed into a sheet at the time of the raw material of activated carbon fiber, and carbonized and activated by the above-mentioned method to obtain activated carbon fiber Although it is preferable to increase the content of the activated carbon fiber in the sheet, the chip-shaped raw material may be used to prepare the activated carbon fiber, and then mixed with a binder or the like to form a sheet. Further, such a sheet may be laminated by appropriately joining as a laminated filter medium in order to maintain the handleability during unit formation.
  • the bonding method includes a chemical bond method using an adhesive, a thermal bond method using hot melt resin, a needle punch method, a stitch bond method, and a quilting method, but is not particularly limited.
  • a chemical substance is attached to activated carbon fiber
  • the method of attaching is to prepare an aqueous solution of the chemical substance, impregnate the activated carbon fiber, dehydrate and dry it, and if necessary, laminate it with other sheets.
  • U is preferred in consideration of the uniformity of attachment, but is not particularly limited.
  • the filter obtained by force is cut into an appropriate size so that the air flow per unit and the filter area force are converted to a passing air speed of 0.12 mZs or less, and folded together with the separator and unitized.
  • the separator to be used is preferably a combustible material that also has paper and / or non-woven power in consideration of disposal after use, but is not particularly limited if it does not stick to combustion.
  • wave shapes, comb shapes, and bead-molded products of the separator but a wave shape that stably fixes the filter is preferably used.
  • the folded filter is coated with grease on the end face and joined to the frame to form a unit.
  • the frame can be made of wood, plywood, paper, resin, aluminum, or stainless steel. Paper and resin are preferably used.
  • Moisture adsorption rate Place the sample in a thermo-hygrostat adjusted to a temperature of 25 ⁇ 2 ° C and a humidity of 45 ⁇ 3%, let it stand for 24 hours, evaluate its weight change, and divide by the dry weight of the sample to determine the moisture adsorption rate. did.
  • Activated carbon fiber is fixed on a table with a small amount of tweezers, photographed with a scanning electron microscope at a magnification of 2000 to 4000, and the diameter of the fiber reflected in the center is read with a ruler. Is calculated. Ten photographs were taken and the average of the data was taken as the average fiber diameter.
  • the sheet was cut into a 72mm diameter circle, placed on a cylindrical column, and air with an air velocity of lOcmZs was made to impinge vertically on the sheet, and the pressure difference between the upstream and downstream sides was measured to determine the pressure loss.
  • the measured wind speed, in this case lOcmZs, was divided by the pressure loss to obtain the filter transmission rate coefficient.
  • Sample is punched out to a diameter of 60mm, and from upstream, HE40T or QR100 (Advantech Toyo), sample, knock-up filter CHC-50 (Advantech Toyo) It attached to the holder for collection in order.
  • Humidity control including CH 131 1 generated by chemical reaction
  • the air was circulated for 30 minutes from the upstream side at a wind speed of 8 cm per second.
  • the radioactivity of the radioactive substance 131 1 was measured with a gamma counter (Packard 5003, manufactured by PerkinElmer Life Science) for the entire amount of the filter or, in the case of CHC-50, a part of the granular activated carbon.
  • the collection efficiency of the sample was calculated by dividing the collected radioactivity of the sample by the total collected radioactivity of the sample and the backup filter, excluding the radiation dose of HE40T.
  • the sample was punched to a diameter of 60 mm, and HE40T or QR100 (manufactured by Advantech Toyo) was installed from the upstream side, and the sample was attached to the ventilation holder.
  • HE40T or QR100 manufactured by Advantech Toyo
  • the air was aerated from the upstream side of the holder at a wind speed of 40 cm / s for 24 hours a day for 24 hours a day. Thereafter, a sample was taken out and the radioactive material collection efficiency was evaluated.
  • the filter is slit to a width of 583 mm and folds to a specified peak height, and a separator is inserted between the folds and loaded into a frame with an inner dimension of 586 mm. Adhesive is applied to the contact area between the slit end face and the frame.
  • the filter unit was fixed by flowing. This filter was loaded into a filter unit test device compliant with JIS B 99 08 and measured by flowing air with a set air volume of 28.3 m 3 Zmin.
  • a phenol fiber non-woven fabric having a weight of 450 gZm 2 was put into a baking apparatus.
  • the temperature in the apparatus was raised from room temperature to 920 ° C at a rate of 5 ° CZ, and then carbonized by holding for 30 minutes.
  • the atmosphere at this time was an inert atmosphere (N). After carbonization, 13 vol% of water vapor is passed through the equipment.
  • a fiber nonwoven fabric was obtained.
  • the nonwoven fabric had a basis weight of 205 gZm 2 , a thickness of 2.5 mm, a specific surface area of 1580 m 2 Zg, and a total acidic group content of 0.02 meq Zg.
  • the activated carbon fiber was impregnated for one hour to 0.6 weight 0/0 potassium iodide solution, dehydrated and dried to obtain a 1.0 wt% potassium iodide impregnated active carbon fibers.
  • Table 1 shows the moisture adsorption rate of the impregnated activated carbon fibers, the collection efficiency of radioactive materials after the initial and 24-day ventilation, and the rate of decrease in the collection efficiency.
  • a phenol fiber non-woven fabric having a weight of 450 gZm 2 was put into a baking apparatus.
  • the temperature in the apparatus was raised from room temperature to 920 ° C at a rate of 5 ° CZ, and then carbonized by holding for 30 minutes.
  • the atmosphere at this time was an inert atmosphere (N). After carbonization, 13 vol% of water vapor is passed through the equipment.
  • a fiber nonwoven fabric was obtained.
  • the nonwoven fabric had a basis weight of 198 g / m 2 , a thickness of 2.4 mm, a specific surface area of 18 10 m 2 Zg, and a total acidic group content of 0.08 meq / g.
  • the activated carbon fiber was impregnated for one hour to 0.6 weight 0/0 ® ⁇ potassium solution, dehydrated and dried to obtain a 1.0 wt% potassium iodide impregnated activated carbon fibers.
  • Table 1 shows the moisture adsorption rate of this impregnated activated carbon fiber, the collection efficiency of radioactive materials after the initial and 24-day ventilation, and the rate of decrease in collection efficiency.
  • a phenol fiber non-woven fabric having a weight of 450 gZm 2 was put into a baking apparatus.
  • the temperature inside the apparatus was raised from room temperature to 860 ° C at a rate of 5 ° CZ, and then carbonized by holding for 30 minutes.
  • the atmosphere at this time was an inert atmosphere (N). After carbonization, the equipment contains 13vol% water vapor.
  • a fiber nonwoven fabric (sample B) was obtained.
  • basis weight of the nonwoven fabric is 218gZm 2, the thickness of 2. 6 mm, specific surface area 1240m 2 Zg, and a total acidic group content 0. 09meqZg.
  • This activated carbon fiber was impregnated with 0.8% by weight 1,4 diaza-2,2,2 bicyclooctane solution for 1 hour, dehydrated and dried to be impregnated with 10% by weight 1,4 diaza 2,2,2 bicyclooctane.
  • Activated carbon fiber was obtained.
  • Table 1 shows the moisture adsorption rate of the impregnated activated carbon fiber, the collection efficiency of radioactive materials after the initial and 24-day ventilation, and the rate of decrease in the collection efficiency.
  • the temperature inside the device is raised from room temperature to 300 ° C at a rate of 5 ° CZ, then held for 30 minutes for flameproofing treatment, and the temperature in the device is increased from 300 to 920 ° C.
  • the temperature was raised at a rate of ° CZ and then carbonized by holding for 30 minutes.
  • the atmosphere at this time was an inert atmosphere (N). After carbonization, the equipment contains 13vol% water vapor.
  • Atmosphere (remaining N), and kept activated at 920 ° C for 45 minutes to activate activated carbon fiber.
  • a woven fabric was obtained. In basis weight of the nonwoven fabric is 148gZm 2, the thickness is 1. 9 mm, a specific surface area of 1930M 2 I total acidic group content 0. 25meqZg.
  • This activated carbon fiber was impregnated with a 0.6 wt% potassium iodide solution for 1 hour, dehydrated and dried to obtain 1.1 wt% potassium iodide impregnated activated carbon fiber.
  • Table 1 shows the moisture adsorption rate of the impregnated activated carbon fiber, the collection efficiency of the radioactive material at the initial stage and after 24 days of ventilation, and the rate of decrease in the collection efficiency.
  • a non-woven fabric having a fineness of 2.2 dTex and a length of 72 mm was made into a non-woven fabric by a one-dollar punch method to obtain a non-woven fabric having a weight of 220 gZm 2 and a thickness of 3. Omm.
  • the nonwoven fabric was put into a baking apparatus, and the temperature in the apparatus was raised from room temperature to 920 ° C at a rate of 5 ° CZ, and then held for 30 minutes for carbonization.
  • the atmosphere at this time was an inert atmosphere (N). After carbonization, water inside the device
  • a nonwoven fabric that is active and also has activated carbon fiber strength was obtained.
  • the basis weight of the nonwoven fabric was l 2 lgZm 2 , the thickness was 2. lmm, the average single fiber diameter of the activated carbon fiber was 13 ⁇ , the specific surface area was 1550 m 2 Zg, and the total acidic group content was 0.02 meq Zg.
  • the activated carbon fiber was impregnated with a 1.0 wt% potassium iodide solution for 1 hour, dehydrated and dried to obtain 1.0 wt% potassium iodide impregnated activated carbon fiber.
  • the moisture adsorption amount of this impregnated activated carbon fiber at a relative humidity of 45% was 5.2% by weight.
  • Package insert wear activated carbon fiber was 3 ply by laminating, weight 35 g / m scissors on both sides by two polypropylene spun lace nonwoven fabric, needle-punched total basis weight 427GZm 2, Uchikatsu carbon fiber content 400GZm 2, thickness 5.
  • a multilayer filter having a 2 mm filter and a transmission rate coefficient of 0.169 cm / s / Pa was obtained. Table 2 shows the collection efficiency of radioactive material at the initial stage and after 24 days of ventilation.
  • the activated carbon fiber filter manufactured in Example B1-1 was slit into a width of 583 mm, folded into a 280 mm peak height and 20 ridges, and formed into a corrugated shape with a peak height of 7.2 mm, a width of 270 mm, and a length of 583 mm.
  • 39 sheets of paper separators are sandwiched between filter folds, and polyurethane foam is applied to the end face of the filter, and installed in a frame of 610mm square and 290mm depth composed of 12mm thick plywood. And created a filter unit.
  • the filter passing air velocity in this filter unit is 0.08 mZs, and the weight and pressure loss of the unit are shown in Table 3.
  • a non-woven fabric having a fineness of 5.5 dTex and a length of 5 lmm was made into a non-woven fabric by a one-dollar punch method to obtain a non-woven fabric having a weight of 450 gZm 2 and a thickness of 4. Omm.
  • the nonwoven fabric was put into a baking apparatus, and the temperature in the apparatus was raised from room temperature to 920 ° C at a rate of 5 ° CZ, and then held for 30 minutes for carbonization.
  • the atmosphere at this time was an inert atmosphere (N). After carbonization, water inside the device
  • a nonwoven fabric that is active and also has activated carbon fiber strength was obtained.
  • basis weight of the nonwoven fabric is 220gZm 2, the thickness of 2. 9 mm, average of activated carbon fiber single fiber diameter is 22 m, a specific surface area of 1590M 2
  • the total amount of acidic groups was 0.02 meqZg.
  • the activated carbon fiber was impregnated in a 1.0 wt% potassium iodide solution for 1 hour, dehydrated and dried to obtain 1.0 wt% potassium iodide impregnated activated carbon fiber.
  • the moisture adsorption amount of this impregnated activated carbon fiber at 45% relative humidity was 5.2% by weight.
  • Example B2-1 and the filter manufactured in Example B2-2 were laminated through heat-sealing fibers, and heat-bonded to obtain a laminated filter.
  • a total weight of this filter was 1245 gZm 2 , of which a multilayer filter having an activated carbon fiber content of 1100 gZm 2 , a thickness of 12.5 mm, and a transmission rate coefficient of 0.092 cmZsZPa was obtained.
  • Table 2 shows the collection efficiency of radioactive material at the initial stage and after 24 days of ventilation.
  • Example B2-1 The activated carbon fiber filter manufactured in 1 was slit to a width of 583 mm, folded into a 280 mm peak height and 20 peaks, and formed into a corrugated shape with a peak height of 7.2 mm, a width of 265 mm, and a length of 583 mm. 39 sheets of paper separators were sandwiched between filter folds, and grease was applied to the end face of the filter, and installed in a frame of 610 mm square and 290 mm deep composed of 12 mm thick plywood. A filter unit was created. This filter unit The air velocity passing through the filter is 0.08mZs, and the unit weight and pressure loss are shown in Table 3.
  • Fineness 16 5 dtex, phosphate monohydrogen ammonium of 10 weight 0/0 polynosic fiber length 51 mm - by impregnating the ⁇ beam, and a nonwoven fabric by needle punching, by weight 600GZm 2, the thickness 6. 0 mm of the nonwoven fabric Obtained.
  • the non-woven fabric was put into a baking apparatus, the temperature in the apparatus was raised from room temperature to 250, held for 30 minutes and subjected to flameproofing treatment, and then heated to 895 ° C at a rate of 5 ° CZ. After that, it was kept for 30 minutes and carbonized. The atmosphere at this time was an inert atmosphere (N). Charcoal
  • the atmosphere inside the equipment is an atmosphere containing 13vol% of water vapor (the balance is N).
  • a nonwoven fabric composed of activated carbon fibers.
  • basis weight of the nonwoven fabric is 200gZm 2, the thickness of 2. 6 mm, an average single fiber diameter 27 m, specific surface area of the active carbon fibers 1520m 2 Zg, total acidic group content was 0. lmeqZg.
  • This activated carbon fiber was impregnated in a 1.0 wt% potassium iodide solution for 1 hour, dehydrated and dried to obtain 1.0 wt% rhodium iodide-impregnated activated carbon fiber. The moisture adsorption amount of this impregnated activated carbon fiber at 45% relative humidity was 6.1% by weight.
  • Example B1 A non-woven fabric composed of activated carbon fiber produced in B1 is finely woven with a polypropylene non-woven fabric with a fineness of 5.5 dTex and a basis weight of 200 gZm 2 and needle punched to give a total basis weight of 511 gZm 2 , of which activated carbon A multilayer filter having a fiber amount of 120 gZm 2 , a thickness of 5.2 mm, and a transmission rate coefficient of 0.171 cmZsZPa was obtained. Table 2 shows the collection efficiency of radioactive material at the initial stage and after 24 days of ventilation.
  • Example 12g / m 2 per nonwoven fabric composed of activated carbon fiber produced in B2 A polypropylene spunbond nonwoven fabric was sandwiched on both sides and needle punched to give a laminated filter having a total weight of 220 gZm 2 , of which the amount of activated carbon fiber was 200 gZm 2 , the thickness was 2.7 mm, and the transmission rate coefficient was 0.6666 cmZsZPa. Table 2 shows the collection efficiency of radioactive material at the initial stage and after 24 days of ventilation.
  • the multilayer filter manufactured in Example B1-1 and the multilayer filter manufactured in Example B1-2 were heat bonded to each other to form a multilayer filter.
  • the total basis weight was 1210 gZm 2 , of which the amount of activated carbon fiber was 1125 gZm 2 , the thickness was 13. Omm, and the transmission rate coefficient was 0.057 cm / s ZPa.
  • Table 2 shows the collection efficiency of radioactive material at the initial stage and after aeration for 24 days.
  • the activated carbon fiber filter was slit to a width of 583 mm, folded into a 280 mm peak height and 16 peaks, and a paper separator molded into a corrugated shape with a peak height of 5.
  • Omm, a width of 265 mm, and a length of 583 mm 31 sheets was put between filter folds, coated with grease on the end face of the filter, and installed on a frame of 610mm square and 290mm depth composed of 12mm thick plywood to create a filter unit.
  • the filter through-air speed in this filter unit is 0.1 lOmZs, and Table 3 shows the unit weight and pressure loss.
  • Example B2-3 and the filter manufactured in Example B2-2 were laminated via heat-sealing fibers, and heat bonded to obtain a laminated filter.
  • a total weight of this filter was 1980 gZm 2 , of which a laminated filter having an active carbon fiber content of 1760 gZm 2 and a thickness of 20.2 mm was obtained.
  • Table 2 shows the collection efficiency of radioactive material at the initial stage and after 24 days of ventilation.
  • This activated carbon fiber filter was slit to a width of 583 mm, and a pleat fold was attempted by inserting a spacer with a peak height of 280 mm and a peak height of 3 mm. Due to its large size, it was impossible to fold it because its handling was extremely bad.

Abstract

 有機ヨウ素の除去効率が高く、かつ長時間通気した後の除去効率も高いフィルターを提供する。活性炭素繊維を使用して気相中の微量の放射性物質を捕集する放射性物質除去フィルターにおいて、前記活性炭素繊維の全酸性基量が0.2meq/g以下であること、前記活性炭素繊維が少なくとも1種類の化学物質を添着されていること、及び前記活性炭素繊維の相対湿度45%における平衡水分吸着率が10重量%以下であることを特徴とする放射性物質除去フィルター。活性炭素繊維で構成される不織布を使用して気相中の微量の放射性物質を捕集する放射性物質除去フィルターにおいて、前記活性炭素繊維の平均単繊維直径が25μm以下であることを特徴とする放射性物質除去フィルター。

Description

放射性物質除去フィルター及びそれを用いるフィルターユニット 技術分野
[0001] 本発明は、医療施設や原子力施設などで発生した放射性気体分を捕集除去する 放射性物質除去フィルター及びそれを用いるフィルターユニットに関するものである。 背景技術
[0002] 従来、医療施設や原子力施設などにおいては、放射性ヨウ素などの放射性気体が 排出されるため、空調施設の気体処理経路中に空気浄化装置を設置し、発生した放 射性気体分の濃度を法律に規制された基準値以下に低下させた後、施設外に排出 している。
[0003] 近年は、原子力技術の利用の高まりから、大学の研究施設や医療施設あるいは原 子力発電所などにおいて排出される放射性気体量も増加する傾向にあり、また、環 境面への配慮からも、大気中に排出される放射性気体の濃度の規制が一段と厳しく 設定されてきている。
[0004] このため、設置されている空気浄化装置の見直しが図られてきているが、放射性気 体濃度の規制の厳格化が図られると、既設の空気浄化装置を取り替えたり改変した りしなければならないという事態が生じる。そのため、シートィ匕されたチヤコールフィル ターを内蔵し、該シート状チヤコールフィルターへの通過による放射性気体成分の捕 集除去を行うことが提案されている (特許文献 1参照)。また、この文献ではチャコ一 ルフィルタ一は織布状、不織布状の活性炭素繊維が用いられて!/、る。
[0005] ここで用いられる活性炭素繊維については、細孔直径 3〜30nmの細孔容積が 0.
15ccZg以下で、細孔直径 3nm以下の細孔容積が 0. 50ccZg以上の細孔形状を 有する活性炭素繊維シートに有機吸着に有効なアミンを添着し、この活性炭素繊維 力もなるシートの少なくとも一方に保護シートを積層したものが提案されている (特許 文献 2参照)。また、酸化処理された活性炭素繊維を利用することにより水中の微量 な放射性物質を吸着させるフィルターも提案されて ヽる (特許文献 3参照)。
[0006] 活性炭素繊維がシートである場合、これを必要に応じ、例えば濾材をひだ折加工し 、波型に成型されたセパレーターを介しジグザグに折りたたんで収めてユニットィ匕さ れて使用される。あるいは櫛型のセパレーターをひだの間に挿入してジグザグに折り たたんでユニットに収めたりして使用される。こうしたフィルタ一は通常多量の空気を 排気しつつもまれに発生する放射性物質を確実に吸着せしめる必要がある。
[0007] し力しながら、従来の活性炭素繊維ではヨウ素 (I )蒸気に比べてヨウ化メチルに代
2
表される有機ヨウ素の除去効率が悪ぐ比較的早い時期に悪ィ匕するという問題点を 有している。これは通気時の空気中の微量ガスが有機ヨウ素の吸着を阻害している ためであると考えられる。この微量ガスは過去の知見では窒素酸ィ匕物やィォゥ酸ィ匕 物などと言われて 、るが特定されて 、な 、。こうした空気中の微量ガスは長期間の通 気により活性炭の特定の吸着サイトに吸着し、結果として長期間通気後の特に放射 性有機ヨウ素の捕集効率を低下させる。もちろん特許文献 3に見られるようなアミン系 の化学物質を添着して除去効率の向上を狙ったものもあるがそれでもなお不十分で ある。そのため、ユニットにするにあたり多量の活性炭素繊維フィルターを充填する必 要があり、結果としてユニットとしての圧力損失が非常に高くなりかつ重量が重くなる ためユニットとしての実用性に乏しくなる。
[0008] また、この分野に使用されるチヤコールフィルターユニットは一般的な初期の捕集 効率や圧力損失の他に、長期通気後も初期と同程度の捕集効率を保持するような寿 命特性も求められる。活性炭素繊維を放射性物質除去フィルターユニットとして用い る場合、こうしたユニットの圧力損失の許容される範囲で初期捕集効率や寿命などの 所定の性能を維持するべぐできるだけ多くの活性炭を充填してユニットとして用いる ことが必要である。そのためユニット単体の重量が重くなるためユニットとしての取扱 性が低下し、実用性に乏しくなる。市販されている一般的なチヤコールフィルタ一は 1 ユニットあたり 60kg近くあり、交換に多数の人員とチェーンブロックなどの工具が必要 である。
特許文献 1 :特開 2003— 66191号公報
特許文献 2:特開 2004 - 205490号公報
特許文献 3:特開平 6 - 343856号公報
発明の開示 発明が解決しょうとする課題
[0009] 本発明は、上記従来技術の問題を解決するために創案されたものであり、その目 的は、有機ヨウ素の除去効率が高ぐかつ長時間通気した後の除去効率も高いフィ ルターを提供すること、さらに初期および長期通気後の捕集効率や圧力損失の一定 の性能を保持しつつ、重量の軽いフィルターユニットを提供すること、特に現在使用 されている 1インチ厚の粒状活性炭充填層を有するチヤコールフィルターにおける問 題点を解決することである。
課題を解決するための手段
[0010] 本発明は力かる課題を達成するために鋭意検討した結果、得られたものである。
即ち、本発明は活性炭素繊維を使用して気相中の微量の放射性物質を捕集する 放射性物質除去フィルターにおいて、前記活性炭素繊維の全酸性基量が 0. 2meq Zg以下であること、前記活性炭素繊維が少なくとも 1種類の化学物質を添着されて いること、及び前記活性炭素繊維の相対湿度 45%における平衡水分吸着率が 10重 量%以下であることを特徴とする放射性物質除去フィルターである。
本発明の放射性物質除去フィルターの好まし 、態様では、活性炭素繊維に対する 化学物質の添着量が 0. 1重量%〜5重量%である。
また、本発明は、活性炭素繊維で構成される不織布を使用して気相中の微量の放 射性物質を捕集する放射性物質除去フィルターにおいて、前記活性炭素繊維の平 均単繊維直径が 25 μ m以下であることを特徴とする放射性物質除去フィルターであ る。
本発明の放射性物質除去フィルターの好まし 、態様では、フィルターの透過速度 係数が 0. 07-0. 60cmZsZPaであり、フィルターの中に含まれる活性炭素繊維 重量力 S 150gZm2〜 1500gZm2である。
本発明の放射性物質除去フィルターの好ま 、態様では、放射性物質除去フィル ターユニットに用いられる。 発明の効果
[0011] 本発明によれば、放射性有機ヨウ素の初期除去効率だけでなく長期間通気後の除 去効率も高 、フィルターを提供することができる。これによりフィルター充填量の低 ヽ ユニットを構成することが可能となり、結果として重量が軽く圧力損失が小さいフィル ターユニットを供給することが可能となる。
図面の簡単な説明
[0012] [図 1]本発明のフィルターを用いたユニットの全体概略図を示す。
符号の説明
[0013] 1 : フィルター
2 : セノ レーター
3 : 枠体
発明を実施するための最良の形態
[0014] 以下、本発明の放射性物質除去フィルターを詳細に説明する。
図 1は本発明のフィルターを用いたフィルターユニットの全体概略図を示す。図 1か らわかるようにフィルターユニットはひだ折りされたフィルター 1とセパレーター 2、およ びこれらを囲う枠体 3から構成される。こうしたユニットの場合、寿命や除去効率を満 足するためにできるだけ多くの吸着剤を含むフィルターを充填することが望ましい。し 力しながら、あまり多く充填すると圧力損失も高くなるため、高い密度、薄い厚みを有 するフィルターを使用してひだ折後のひだとひだの間の間隔を空け、構造抵抗を極 力低減することにより圧力損失を低減することがフィルターの設計上望まれている。そ のためには使用されるフィルターの充填量を極力少なくしかつ捕集効率を満足させ なければならない。し力もフィルターユニットは仮に初期の捕集効率が良くても設置し て長期間通気される間に捕集効率が落ちるので、こうした事態が生じないようにしな ければならな 、。この原因は不確定ながら窒素酸ィ匕物やィォゥ酸ィ匕物などの酸性ガ スにあり、こうしたガスが空気中の水分と共に活性炭の特定の吸着サイトに吸着する ためと考えられる。特に低 、相対湿度下で吸着する水分は活性炭のある特定の細孔 に吸着され易ぐこれが結果的に有機ヨウ素の吸着を阻害する結果となる。また、化 学物質は化学反応により有機ヨウ素の捕集特性を向上させているが、これは同時に 低 、相対湿度での水分を多量に吸着し、かえって長時間通気後の捕集効率を低下 させている。
[0015] そこで、本発明のフィルタ一はフィルターを構成する活性炭素繊維に少なくとも 1種 類の化学物質を添着させ、相対湿度 45%における平衡水分吸着率を 10重量%以 下、望ましくは 9重量%以下、さらに望ましくは 8重量%以下として、長期間通気後の 有機ヨウ素吸着率を低下しな 、ようにして 、る。平衡水分吸着率が 10重量%より大き い場合、通気時に水分が吸着する量が多くなり、空気中の酸性ガスを吸収する度合 いが高くなるため、結果として有機ヨウ素を吸着するための細孔が閉塞してしまい、通 気後の有機ヨウ素の吸着量が減少し、好ましくない。
[0016] また、活性炭には上述の細孔の他に活性炭表面に酸性基である水酸基、カルボキ シル基と!/、つた官能基が存在して 、る。これらの官能基は本来水との濡れ性に大きく 寄与している力 気相系における水分の吸着には大きく寄与しない。し力しながら、こ うした官能基の存在は添着されている化学物質と弱い結合をして化学薬品の活性を 奪ってしまうため初期除去効率の低下の原因となる。従って、本発明のフィルタ一は フィルタ一として用いる活性炭素繊維の全酸性基量を 0. 2meq/g以下、望ましくは 0. 19meqZg以下、さらに望ましくは 0. 18meqZg以下として、初期における有機ョ ゥ素の除去効率を低下しないようにしている。しかしながら、全酸性基量が 0. 2meq Zgより大き ヽ場合は上述の理由により化学物質の活性を低減せしめるため好ましく ない。
[0017] 本発明のフィルタ一は、活性炭素繊維で構成される不織布を用い、該活性炭素繊 維の平均単繊維直径を 25 μ m以下にすることによって最小限の活性炭素繊維量で 高効率、高寿命、及び低圧力損失を実現することができる。活性炭素繊維の平均単 繊維直径は圧力損失と厚み、重量バランスを考えると、好ましくは 以下、さら に好ましくは 23 m以下である。平均単繊維直径が 25 mより大きい場合、圧損は 小さくなるものの必要な捕集効率と寿命特性を得るために多くの活性炭素繊維が必 要となり、結果的にフィルターユニットにした場合の重量が上昇してしまうため好ましく ない。また、本発明のフィルタ一は、フィルターの透過速度係数が 0. 07〜0. 60cm /s/Pa、好ましくは 0. 071〜0. 59cm/s/Pa、さらに好ましくは 0. 072〜0. 58c mZsZPaの範囲で構成されていることが圧力損失と除去効率のバランスを考える上 で好ま 、。透過速度係数とはフィルターの圧力損失測定時の風速を測定された圧 力損失で除したものであり、これが大きい場合、総じて通気抵抗が低ぐ小さいと通気 抵抗が高い。本発明のフィルタ一は適度な通気抵抗を有するが最小限の活性炭素 繊維量で必要な放射性ヨウ素除去性能を発現するものである。然るに透過速度係数 が 0. 07cm/s/Paより小さい場合、通気抵抗が高くなるためフィルターユニットにし た状態での圧力損失が高くなり、また 0. 60cmZsZPaより大きい場合、通気抵抗が 非常に低くなるため、被吸着物質である放射性有機ヨウ素が素通りしてしまい、必要 な放射性ヨウ素除去性能を得ることができず、どちらも好ましくない。また、本発明の フィルタ一は必要な放射性ヨウ素除去性能を得るために、フィルターを構成する活性 炭素繊維重量が 150〜1500gZm2であることが好ましい。これは、放射性ヨウ素、特 にヨウ化メチル (CH 1311)に代表される放射性有機系ヨウ素化合物を構成するヨウ素
3
131が吸着し、かつ通気時における妨害物質の影響を少なくするために必要な量で あり、好ましくは 160〜1400gZm2、より好ましくは 170〜1300gZm2である。活性 炭素繊維重量が 150gZm2より少ない場合、必要な有機ヨウ素除去効率を得ること ができず、また 1500g/m2より大きい場合、フィルターとしての折り曲げ特性が著しく 悪ィ匕するため好ましくない。
また、活性炭素繊維は、長期通気後の有機ヨウ素捕集効率の減少を少なくするた めに少なくとも 1種類の化学物質を添着されて!ヽることが好ま ヽ。活性炭素繊維に 添着させる化学物質としては、シクロオクタン(トリエチレンジァミン)、 N, N'—ビス一 (3—ァミノプロピル)一ピペラジン、 N, N ジメチル一アミノエチルメタタリレート、 N, N ジメチルァミノプロピルァミン、 3 ァミノプロピルトリメトキシシラン、 1, 5 ジァザ ビシクロウンデセン、ポリ 3級一ブチルアミノエチルメタタリレート、ポリエチレンィミン 、 1, 5 ジァザピシクロ〔4, 3, 0〕ノン 5 ェン、 1, 5 ジァザピシクロ〔5, 4, 0〕ゥ ンデ 7— 5 ェン、 2—メチルー 1, 4 ジァザピシクロ〔2, 2, 2〕オクタン、フエ-ルヒド ラジン、 2—シァノピリジン、ジイソプロピルァミン、トリメチルアミノエチルピペラジン、 へキサメチレンテトラミン、メチルポリエチレンィミン、ポリアルキルポリアミン等のアミン 類の他、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化錫といった金属ヨウ化物が挙げられる が、添着する化学物質の種類は限定されない。しかしながら、活性炭繊維に対する 化学物質の添着量は 5重量%以下、望ましくは 4重量%以下、さらには 3重量%以下 であることが相対湿度 45%での低 ヽ平衡水分吸着率を維持する上で好ま Uヽ。添着 量が 5重量%を越える場合は活性炭の細孔を塞ぎ、添着された化学物質が水分を吸 着してしまい、酸性ガスの吸収も多くなり、有機ヨウ素の吸着特性を阻害するので好 ましくない。また添着量は 0. 1重量%以上、好ましくは 0. 15重量%以上、より好まし くは 0. 2重量%、さらに好ましくは 0. 3重量%以上であることが放射性ヨウ素を有する ヨウ化メチルの吸着寿命を向上させる上で好ましい。 0. 1重量%未満の場合は化学 物質とヨウ化メチルとの反応が困難になるため好ましくない。なお、添着量の算出方 法は物質によって異なる力 金属ヨウ化物の場合は加熱灰化して酸に溶解し、原子 吸光法、プラズマ発光法などの公知の方法により金属含有率を分析し、モル換算し て金属ヨウ化物の添着率として算出する。またアミン類の場合、サンプルを抽出して 重量減少量より求める力、抽出した溶液の pHや滴定から間接的に求める。
[0019] 本発明のフィルターでは、 BET法による比表面積が 700m2Zg以上の一般的な比 表面積を有する活性炭素繊維を用いるが、該活性炭素繊維の全酸性基量が 0. 2m eqZg以下であり、少なくとも 1種類の化学物質を添着され、相対湿度 45%での平衡 水分吸着率が 10重量%以下になるように製造されることができる。例えば、本発明の 活性炭素繊維は、材料が綿、麻といった天然セルロース繊維の他、レーヨン、ポリノ ジック、溶融紡糸法による再生セルロース繊維、さらにはポリビュルアルコール繊維、 アクリル系繊維、芳香族ポリアミド繊維、架橋ホルムアルデヒド繊維、リグニン繊維、フ ェノール系繊維、石油ピッチ繊維等の合成繊維を 800〜 1200°Cで賦活性ガス下で 炭化し、水蒸気や炭酸ガス、一酸化炭素が含有した賦活ガスによって賦活し製造す ることができるが、特に原料としてフエノール系繊維、石油ピッチ繊維といった炭素含 有量の高い原料を用いて発生する分解ガスを抑え、 900°C以上の高温で炭化、賦 活し、賦活ガスである水蒸気の濃度が低く設定して製造されることが好ましい。また、 公知の方法で製造された活性炭素繊維の酸性基を除去するために窒素やアルゴン 雰囲気下、または真空中で 700〜1200°Cで加熱することや、水素プラズマ等で処 理すること〖こよっても得られる。
[0020] 活性炭素繊維シートの組織としては不織布、織布、紙状物などが存在する力 特に 限定されずに強度や圧力損失を勘案して適宜使用される。活性炭素繊維の原料の 時点でシートに形成し、上述の方法で炭化、賦活を行い、活性炭素繊維を得るのが シート中の活性炭素繊維の含有率を高める上で好ましいが、チップ状の原料を用い 、活性炭素繊維を作成した後、バインダーなどと混ぜてシートィ匕してもよい。さらにこう したシートは積層濾材として、ユニット形成時の取扱性を保持するために適宜接合し て積層してもよい。接合方法は接着剤によるケミカルボンド法、ホットメルト榭脂による サーマルボンド法、ニードルパンチによる方法、ステッチボンド法、キルティングによる 方法などがあるが、特に限定されない。また、シートの強度をさらに保持するために上 記の活性炭素繊維以外の他の種類のシートを積層してもよ!ヽ。活性炭素繊維に化学 物質を添着する場合、添着方法は化学物質の水溶液を調製し、これに活性炭素繊 維を含浸、脱水して乾燥し、必要であれば他のシートなどともに積層する方法が添着 の均一性を考慮する上で好ま U、が、特に限定されな 、。
[0021] 力べして得られたフィルタ一はユニットあたりの風量とフィルター面積力 換算される 通過風速が 0. 12mZs以下になるように適度な寸法に切断され、セパレーターをとも に折り込んでユニットィ匕されて使用される。この場合、使用されるセパレーターは使用 後の廃棄を考慮した場合、紙およびまたは不織布力もなる燃焼可能な素材であるこ とが望ましいが、燃焼にこだわらない場合は特に限定されない。また、セパレーター の形状は公知である波型、櫛型、ビード成型品があるが、フィルターを安定に固定す る波型が好ましく用いられる。ひだ折りされたフィルタ一は端面に榭脂を塗布して枠 体と接合してユニットとする。端面に塗布される榭脂はポリエステル系、酢酸ビニル系 、セルロース系、ポリオレフイン系、エポキシ榭脂系、発泡ポリウレタン系などが公知の 材料として存在するが、力さ密度の低いフィルターを固定する場合、発泡ポリウレタン 系を使用することがフィルターとの接着性と安定性を考慮した場合好ましい。また、枠 体は木製、合板製、紙製、榭脂製、アルミ製、ステンレス製のいずれも用いることが可 能であるが、特に使用後燃焼廃棄する場合は燃焼可能な木製、合板製、紙製、樹脂 製が好ましく用いられる。
実施例
[0022] 次に実施例、比較例を用いて本発明を具体的に説明するが、測定方法は下記の 方法に準拠した。
(1)水分吸着率 温度 25± 2°C、湿度 45 ± 3%に調整された恒温恒湿器に試料を入れ、 24時間放 置してその重量変化を評価し、試料の乾燥重量で除して水分吸着率とした。
(2)全酸性基量
試料を洗浄して化学物質を取り除き、乾燥し、三角フラスコに 1Z100規定の水酸 化ナトリウム水溶液 60ccと試料 0. 5gを含浸させ、 25°Cに調整された水浴中にて 3時 間振とうした。水溶液をガラスろうとでろ過して、ろ液を 25cc取り出し、 1Z100規定塩 酸水溶液で逆滴定し、ブランク (試料を入れずに同様に振とうさせたもの)との差を D として以下の式に従って全酸性基量を求めた。 全酸性基量(meq,g) =D X 60 X 0. 01
25 X 0. 5
(3)比表面積
島津製作所製 ASAP2010を使用し、液体窒素温度における窒素吸着等温線より 比 BET法により(相対圧 0. 02-0. 2)算出した。
(4)平均単繊維直径
活性炭素繊維を適当に少量ピンセットで台に固定して走査型電子顕微鏡で 2000 〜4000倍に拡大して写真撮影し、中央に映って ヽる繊維の直径をものさしで読み 取り、縮尺から繊維直径を算出する。写真を 10点撮影し、データの平均をとり、平均 繊維直径とした。
(5)フィルターの透過速度係数
シートを 72mm φの円形にくり抜き、円筒カラムに設置して風速 lOcmZsの空気を シートに垂直に当たるように流し、上流側と下流側の圧力差を測定し、圧力損失とし た。測定した風速、この場合 lOcmZsを圧力損失で除し、フィルターの透過速度係 数とした。
(6)フィルターの放射性物質捕集効率評価
試料を直径 60mmの大きさに打ち抜 、て、上流側から HE40Tまたは QR100 (アド バンテック東洋製)、試料、ノ ックアップフィルター CHC— 50 (アドバンテック東洋製) の順に捕集用ホルダーに装着した。化学反応により発生させた CH 1311を含む調湿
3
された空気を風速毎秒 8cmで上流側より 30分間流通させた。放射性物質1311の放射 能は、フィルターの全量または CHC - 50の場合は粒状活性炭の一部をガンマカウ ンター(パーキンエルマ一ライフサイエンス社製パッカード 5003型)で測定した。試 料の捕集効率は、 HE40Tの捕集放射線量を除き、試料とバックアップフィルターと の合計の捕集放射能で試料の捕集放射能を除して求めた。
(7)フィルターの 24日通気後の放射性物質捕集効率評価
試料を直径 60mmの大きさに打ち抜 、て、上流側から HE40Tまたは QR100 (アド バンテック東洋製)、試料を通気用ホルダーに装着した。温度 25±2°C、相対湿度 4 0± 3%に調整された恒温恒湿室の中でホルダー上流側より風速毎秒 40cmで、空 気を 1日 24時間で 24日間通気した。その後試料を取り出し、放射性物質捕集効率 評価を行った。
(8)フィルターユニットの圧力損失
フィルターを幅 583mmにスリット加工して所定の山高にひだ折りし、セパレーター をひだの間に挿入して内寸 586mm角の枠体に装填し、スリットの端面と枠体の接触 部分に接着剤を流して固定し、フィルターユニットとした。このフィルターを JIS B 99 08に準拠したフィルターユニット試験装置に装填し、設定風量 28. 3m3Zminの空 気を流して測定した。
実施例 A1
重量 450gZm2のフエノール系繊維不織布を焼成装置に投入した。装置内温度を 常温から 920°Cまで 5°CZ分の速度で昇温させた後、 30分間保持して炭化した。こ の際の雰囲気は不活性雰囲気 (N )とした。炭化後、同装置内を水蒸気 13vol%を
2
含有する雰囲気 (残部は N )とし、引続き 920°Cで 45分保持して賦活し、活性炭素
2
繊維不織布を得た。不織布の目付は 205gZm2で、厚さは 2. 5mm,比表面積は 15 80m2Zg、全酸性基量は 0. 02meqZgであった。この活性炭素繊維を 0. 6重量0 /0 ヨウ化カリウム溶液に 1時間含浸し、脱水、乾燥して 1. 0重量%ヨウ化カリウム添着活 性炭素繊維を得た。この添着活性炭素繊維の水分吸着率、初期及び 24日通気後の 放射性物質捕集効率、捕集効率低下率を表 1に示す。 [0024] 実施例 A2
重量 450gZm2のフエノール系繊維不織布を焼成装置に投入した。装置内温度を 常温から 920°Cまで 5°CZ分の速度で昇温させた後、 30分間保持して炭化した。こ の際の雰囲気は不活性雰囲気 (N )とした。炭化後、同装置内を水蒸気 13vol%を
2
含有する雰囲気 (残部は N )とし、引続き 920°Cで 60分保持して賦活し、活性炭素
2
繊維不織布を得た。不織布の目付は 198g/m2で、厚さは 2. 4mm,比表面積は 18 10m2Zg、全酸性基量 0. 08meq/gであった。この活性炭素繊維を 0. 6重量0 /0ョ ゥ化カリウム溶液に 1時間含浸し、脱水、乾燥して 1. 0重量%ヨウ化カリウム添着活性 炭素繊維を得た。この添着活性炭素繊維の水分吸着率、初期及び 24日通気後の放 射性物質捕集効率、捕集効率低下率を表 1に示す。
[0025] 比較例 A1
重量 450gZm2のフエノール系繊維不織布を焼成装置に投入した。装置内温度を 常温から 860°Cまで 5°CZ分の速度で昇温させた後、 30分間保持して炭化した。こ の際の雰囲気は不活性雰囲気 (N )とした。炭化後、装置内を水蒸気 13vol%を含
2
有する雰囲気 (残部は N )とし、引続き 860°Cで 45分保持して賦活し、活性炭素繊
2
維不織布(サンプル B)を得た。不織布の目付は 218gZm2で、厚さは 2. 6mm、比 表面積は 1240m2Zg、全酸性基量 0. 09meqZgであった。この活性炭素繊維を 0 . 8重量%1, 4 ジァザ—2, 2, 2 ビシクロオクタン溶液に 1時間含浸し、脱水、乾 燥して 10重量%1, 4 ジァザ 2, 2, 2 ビシクロオクタン添着活性炭素繊維を得 た。この添着活性炭素繊維の水分吸着率、初期及び 24日通気後の放射性物質捕 集効率、捕集効率低下率を表 1に示す。
[0026] 比較例 A2
重量 600gZm2のセルロース系繊維不織布にリン酸水素 2アンモ-ゥムを 7重量0 /0 添着し、炭化処理装置に投入した。装置内温度を常温から 300°Cまで 5°CZ分の速 度で昇温させた後、 30分間保持して耐炎化処理を行い、さらに同装置内で温度を 3 00から 920°Cまで 5°CZ分の速度で昇温させた後、 30分間保持して炭化した。この 際の雰囲気は不活性雰囲気 (N )とした。炭化後、装置内を水蒸気 13vol%含有す
2
る雰囲気 (残部は N )とし、引続き 920°Cで 45分保持して賦活し、活性炭素繊維不 織布を得た。不織布の目付は 148gZm2で、厚さは 1. 9mm、比表面積は 1930m2 ん全酸性基量 0. 25meqZgであった。この活性炭素繊維を 0. 6重量%ヨウ化力 リウム溶液に 1時間含浸し、脱水、乾燥して 1. 1重量%ヨウ化カリウム添着活性炭素 繊維を得た。この添着活性炭素繊維の水分吸着率、初期及び 24日通気後の放射性 物質捕集効率、捕集効率低下率を表 1に示す。
[0027] [表 1] 表 1
Figure imgf000014_0001
[0028] 実施例 B1
繊度 2. 2dTex、長さ 72mmのフエノール系繊維を-一ドルパンチ法により不織布 化し、重量 220gZm2、厚み 3. Ommの不織布を得た。該不織布を焼成装置に投入 し、装置内温度を常温から 920°Cまで 5°CZ分の速度で昇温させた後、 30分間保持 して炭化した。この際の雰囲気は不活性雰囲気 (N )とした。炭化後、同装置内を水
2
蒸気 13vol%を含有する雰囲気 (残部は N )とし、引続き 920°Cで 45分保持して賦
2
活し、活性炭素繊維力も構成される不織布を得た。不織布の目付は l2lgZm2で、 厚さは 2. lmm、活性炭素繊維の平均単繊維直径は 13 μ πι、比表面積は 1550m2 Zg、全酸性基量は 0. 02meqZgであった。該活性炭素繊維を 1. 0重量%ヨウ化力 リウム溶液に 1時間含浸し、脱水、乾燥して 1. 0重量%ヨウ化カリウム添着活性炭素 繊維を得た。この添着活性炭素繊維の相対湿度 45%での水分吸着量は 5. 2重量 %であった。 実施例 B 1—1
該添着活性炭素繊維を 5枚重ねて積層し、重量 35g/m2のポリプロピレン製スパン レース不織布で両側をはさみ、ニードルパンチを施して総目付量 690g/m2、うち活 性炭素繊維量 600gZm2、厚み 8. 5mm、フィルターの透過速度係数 0. 091cm/s ZPaの積層フィルターを得た。この初期及び 24日通気後の放射性物質捕集効率を 表 2に示す。
実施例 B 1—2
該添着活性炭素繊維を 3枚重ねて積層し、重量 35g/m2のポリプロピレン製スパン レース不織布で両側をはさみ、ニードルパンチを施して総目付量 427gZm2、うち活 性炭素繊維量 400gZm2、厚み 5. 2mmフィルター、透過速度係数 0. 169cm/s/ Paの積層フィルターを得た。このフィルターの初期及び 24日通気後の放射性物質 捕集効率を表 2に示す。
実施例 B 1—3
実施例 B1 - 1で製造した活性炭素繊維フィルターを巾 583mmにスリットし、山高さ 280mm,山数 20山にひだ折りして、山高さ 7. 2mm、巾 270mm、長さ 583mmの 波型に成型された紙セパレーター 39枚をフィルターのひだの間に挟みこみ、フィル ターの端面に発泡ポリウレタン榭脂を塗布して、厚み 12mmの合板で構成された外 寸 610mm角、奥行き 290mmの枠体に設置し、フィルターユニットを作成した。この フィルターユニットにおけるフィルター通過風速は 0. 08mZsであり、ユニットの重量 および圧力損失を表 3に示す。
実施例 B2
繊度 5. 5dTex、長さ 5 lmmのフエノール系繊維を-一ドルパンチ法により不織布 化し、重量 450gZm2、厚み 4. Ommの不織布を得た。該不織布を焼成装置に投入 し、装置内温度を常温から 920°Cまで 5°CZ分の速度で昇温させた後、 30分間保持 して炭化した。この際の雰囲気は不活性雰囲気 (N )とした。炭化後、同装置内を水
2
蒸気 13vol%を含有する雰囲気 (残部は N )とし、引続き 920°Cで 45分保持して賦
2
活し、活性炭素繊維力も構成される不織布を得た。不織布の目付は 220gZm2で、 厚さは 2. 9mm、活性炭素繊維の平均単繊維直径は 22 m、比表面積は 1590m2 ん全酸性基量は 0. 02meqZgであった。この活性炭素繊維を 1. 0重量%ヨウ化 カリウム溶液に 1時間含浸し、脱水、乾燥して 1. 0重量%ヨウ化カリウム添着活性炭 素繊維を得た。この添着活性炭素繊維の相対湿度 45%での水分吸着量は 5. 2重 量%であった。
実施例 B2— 1
該添着活性炭素繊維を 3枚重ねて積層し、重量 35g/m2のポリプロピレン製スパン レース不織布で両側をはさみ、ニードルパンチを施して総目付 728g/m2、うち活性 炭素繊維量 660gZm2、厚み 7. 8mm、透過速度係数 0. 171cmZsZPaの積層フ ィルターを得た。このフィルターの初期及び 24日通気後の放射性物質捕集効率を表 2に示す。
実施例 B2— 2
該添着活性炭素繊維を 2枚重ねて積層し、重量 35g/m2のポリプロピレン製スパン レース不織布で両側をはさみ、ニードルパンチを施して総目付 507g/m2、うち活性 炭素繊維量 440gZm2、厚み 4. 8mm、透過速度係数 0. 25cmZsZPaの積層フィ ルターを得た。このフィルターの初期及び 24日通気後の放射性物質捕集効率を表 2 に示す。
実施例 B2— 3
実施例 B2— 1で製造されたフィルターと実施例 B2— 2で製造されたフィルターを熱 融着繊維を介して積層し、加熱接合して積層フィルターを得た。このフィルターの総 目付は 1245gZm2、うち活性炭素繊維量 1100gZm2、厚み 12. 5mm、透過速度 係数 0. 092cmZsZPaの積層フィルターを得た。このフィルターの初期及び 24日 通気後の放射性物質捕集効率を表 2に示す。
実施例 B2— 4
実施例 B2— 1で製造した活性炭素繊維フィルターを巾 583mmにスリットし、山高さ 280mm,山数 20山にひだ折りして、山高さ 7. 2mm、巾 265mm、長さ 583mmの 波型に成型された紙セパレーター 39枚をフィルターのひだの間に挟みこみ、フィル ターの端面に榭脂を塗布して、厚み 12mmの合板で構成された外寸 610mm角、奥 行き 290mmの枠体に設置し、フィルターユニットを作成した。このフィルターユニット におけるフィルター通過風速は 0. 08mZsであり、ユニットの重量および圧力損失を 表 3に示す。
[0030] 比較例 B1
繊度 16. 5dTex、長さ 51mmのポリノジック繊維を 10重量0 /0のリン酸 1水素アンモ -ゥムを添着して、ニードルパンチ法により不織布化し、重量 600gZm2、厚み 6. 0 mmの不織布を得た。該不織布を焼成装置に投入し、装置内温度を常温から 250ま で昇温し、 30分保持して耐炎化処理を行った後 895°Cまで 5°CZ分の速度で昇温さ せた後、 30分間保持して炭化した。この際の雰囲気は不活性雰囲気 (N )とした。炭
2 化後、同装置内を水蒸気 13vol%を含有する雰囲気 (残部は N )とし、引続き 895°C
2
で 45分保持して賦活し、活性炭素繊維から構成される不織布を得た。不織布の目付 は 200gZm2で、厚さは 2. 6mm、活性炭素繊維の平均単繊維直径は 27 m、比表 面積は 1520m2Zg、全酸性基量は 0. lmeqZgであった。この活性炭素繊維を 1. 0重量%ヨウ化カリウム溶液に 1時間含浸し、脱水、乾燥して 1. 0重量%ヨウ化力リウ ム添着活性炭素繊維を得た。この添着活性炭素繊維の相対湿度 45%での水分吸 着量は 6. 1重量%であった。
該添着活性炭素繊維を 3枚重ねて積層し、重量 35g/m2のポリプロピレン製スパン レース不織布で両側をはさみ、ニードルパンチを施して総目付 680g/m2、うち活性 炭素繊維量 600gZm2、厚み 7. 8mm、透過速度係数 0. 25cmZsZPaの積層フィ ルターを得た。このフィルターの初期及び 24日通気後の放射性物質捕集効率を表 2 に示す。
[0031] 比較例 B2
実施例 B1で製造された活性炭素繊維カゝら構成される不織布 1枚に繊度 5. 5dTex 、目付 200gZm2のポリプロピレン製不織布で両側をはさみ、ニードルパンチを施し て総目付 511gZm2、うち活性炭素繊維量 120gZm2、厚み 5. 2mm、透過速度係 数 0. 171cmZsZPaの積層フィルターを得た。このフィルターの初期及び 24日通 気後の放射性物質捕集効率を表 2に示す。
[0032] 比較例 B3
実施例 B2で製造された活性炭素繊維から構成される不織布 1枚に目付 12g/m2 のポリプロピレン製スパンボンド不織布を両側にはさみ、ニードルパンチを施して総 目付 220gZm2、うち活性炭素繊維量 200gZm2、厚み 2. 7mm、透過速度係数 0. 666cmZsZPaの積層フィルターを得た。このフィルターの初期及び 24日通気後の 放射性物質捕集効率を表 2に示す。
[0033] 比較例 B4
実施例 B1 - 1で製造した積層フィルターと実施例 B1— 2で製造した積層フィルタ 一を熱融着繊維を挿入して加熱接着し、積層フィルタ一とした。総目付 1210gZm2 、うち活性炭素繊維量 1125gZm2、厚み 13. Omm、透過速度係数 0. 057cm/s ZPaであった。このフィルターの初期及び 24日通気後の放射性物質捕集効率を表 2に示す。
該活性炭素繊維フィルターを巾 583mmにスリットし、山高さ 280mm、山数 16山に ひだ折りして、山高さ 5. Omm、巾 265mm、長さ 583mmの波型に成型された紙セ パレーター 31枚をフィルターのひだの間に挟みこみ、フィルターの端面に榭脂を塗 布して、厚み 12mmの合板で構成された外寸 610mm角、奥行き 290mmの枠体に 設置し、フィルターユニットを作成した。このフィルターユニットにおけるフィルタ一通 過風速は 0. lOmZsであり、ユニット重量および圧力損失を表 3に示す。
[0034] 比較例 B5
実施例 B2— 3で製造されたフィルターと実施例 B2— 2で製造されたフィルターを熱 融着繊維を介して積層し、加熱接合して積層フィルターを得た。このフィルターの総 目付は 1980gZm2、うち活性炭素繊維量 1760gZm2、厚み 20. 2mmの積層フィ ルターを得た。このフィルターの初期及び 24日通気後の放射性物質捕集効率を表 2 に示す。
該活性炭素繊維フィルターを巾 583mmにスリットし、山高さ 280mmで山高 3mm のスぺーサーを入れてひだ折りを試みた力 折り曲げ部分のポリプロピレン不織布が 一部破壊された他、折り曲げ時の曲げ応力が大きいためにとり回しが極めて悪ぐひ だ折りが不可能であった。
[0035] [表 2] 表 2
Figure imgf000019_0002
Figure imgf000019_0001
ユニットの性能 圧力損失(Pa) 重量 (kg) 実施例 B1 B1-3 220 11 実施例 B2-4 170 9 比較例 B4 360 10 比較例 B5 製造不可能

Claims

請求の範囲
[1] 活性炭素繊維を使用して気相中の微量の放射性物質を捕集する放射性物質除去 フィルターにおいて、前記活性炭素繊維の全酸性基量が 0. 2meqZg以下であるこ と、前記活性炭素繊維が少なくとも 1種類の化学物質を添着されていること、及び前 記活性炭素繊維の相対湿度 45%における平衡水分吸着率が 10重量%以下である ことを特徴とする放射性物質除去フィルター。
[2] 活性炭素繊維に対する化学物質の添着量が 0. 1重量%〜5重量%であることを特 徴とする請求項 1に記載の放射性物質除去フィルター。
[3] 請求項 1又は 2に記載の放射性物質除去フィルターを用いたことを特徴とする放射 性物質除去フィルターユニット。
[4] 活性炭素繊維で構成される不織布を使用して気相中の微量の放射性物質を捕集 する放射性物質除去フィルターにおいて、前記活性炭素繊維の平均単繊維直径が 25 μ m以下であることを特徴とする放射性物質除去フィルター。
[5] フィルターの透過速度係数が 0. 07-0. 60cmZsZPaであることを特徴とする請 求項 4に記載の放射性物質除去フィルター。
[6] フィルターの中に含まれる活性炭素繊維重量が 150g/m2〜 1500g/m2であるこ とを特徴とする請求項 4または 5に記載の放射性物質除去フィルター
[7] 請求項 4〜6の 、ずれかに記載の放射性物質除去フィルターを用いたことを特徴と する放射性物質除去フィルターユニット。
PCT/JP2006/306872 2005-04-06 2006-03-31 放射性物質除去フィルター及びそれを用いるフィルターユニット WO2006109595A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007512908A JP4549388B2 (ja) 2005-04-06 2006-03-31 放射性物質除去フィルター及びそれを用いるフィルターユニット
EP06730820A EP1868209A4 (en) 2005-04-06 2006-03-31 FILTER FOR REMOVING RADIOACTIVE SUBSTANCES AND FILTER UNIT THEREWITH

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005109712 2005-04-06
JP2005-109712 2005-04-06

Publications (1)

Publication Number Publication Date
WO2006109595A1 true WO2006109595A1 (ja) 2006-10-19

Family

ID=37086874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306872 WO2006109595A1 (ja) 2005-04-06 2006-03-31 放射性物質除去フィルター及びそれを用いるフィルターユニット

Country Status (3)

Country Link
EP (1) EP1868209A4 (ja)
JP (1) JP4549388B2 (ja)
WO (1) WO2006109595A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105545A (ja) * 2009-11-17 2011-06-02 Toyobo Co Ltd 活性炭素繊維
WO2011158664A1 (ja) * 2010-06-18 2011-12-22 中部電力株式会社 放射性有機ヨウ素除去装置
WO2012002188A1 (ja) * 2010-06-29 2012-01-05 株式会社ワカイダ・エンジニアリング 放射性有機ヨウ素除去フィルタ
JP2012240910A (ja) * 2011-05-18 2012-12-10 Tycoon Llc 炭の吸着を利用した放射性ヨウ素汚染土壌・汚染水の浄化法
JP2014032066A (ja) * 2012-08-02 2014-02-20 Japan Vilene Co Ltd 放射性物質吸着材
JP2015045588A (ja) * 2013-08-28 2015-03-12 三菱重工業株式会社 放射性ヨウ素除去装置
JP2017227633A (ja) * 2016-06-21 2017-12-28 フタムラ化学株式会社 放射性ヨウ素吸着材及びその製造方法
CN110073444A (zh) * 2016-12-15 2019-07-30 东洋纺株式会社 放射性物质去除过滤器、使用其的放射性物质去除过滤器单元及放射性物质的去除方法
CN110575731A (zh) * 2019-09-03 2019-12-17 中国辐射防护研究院 一种纤维材料抽屉式碘吸附器
CN111203066A (zh) * 2020-02-25 2020-05-29 中国辐射防护研究院 一体化壳体、大过滤面积的碘吸附器结构

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5781279B2 (ja) * 2010-06-15 2015-09-16 三菱重工業株式会社 放射性ヨウ素の吸着材及び放射性ヨウ素の除去装置
CN102226949B (zh) * 2011-04-20 2014-03-19 衡阳师范学院 一种提高放射性气体吸附量和除氢的方法及装置
JP6368129B2 (ja) * 2014-04-11 2018-08-01 株式会社ワカイダ・エンジニアリング 放射性物質を除去する方法
EP3125253A1 (en) * 2015-07-30 2017-02-01 Great South Group Limited A method and composition for absorbing ionizing radiation
CN106448782B (zh) * 2016-12-13 2018-08-31 中广核工程有限公司 核电站废滤芯转运容器
JP6427293B1 (ja) * 2018-07-06 2018-11-21 株式会社ワカイダ・エンジニアリング フィルターユニット及び合成室

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191347A (ja) * 2002-12-11 2004-07-08 Wakaida Eng:Kk 放射性気体の吸着用フィルター装置
JP2004314064A (ja) * 2003-04-17 2004-11-11 Bluecher Gmbh 吸着容量が高くかつ破過挙動が低い吸着フィルタ材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824340A (ja) * 1981-08-05 1983-02-14 Toho Rayon Co Ltd フイルタ−
JP2810979B2 (ja) * 1995-09-14 1998-10-15 工業技術院長 表面疎水性活性炭とその製造法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191347A (ja) * 2002-12-11 2004-07-08 Wakaida Eng:Kk 放射性気体の吸着用フィルター装置
JP2004314064A (ja) * 2003-04-17 2004-11-11 Bluecher Gmbh 吸着容量が高くかつ破過挙動が低い吸着フィルタ材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1868209A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105545A (ja) * 2009-11-17 2011-06-02 Toyobo Co Ltd 活性炭素繊維
WO2011158664A1 (ja) * 2010-06-18 2011-12-22 中部電力株式会社 放射性有機ヨウ素除去装置
WO2012002188A1 (ja) * 2010-06-29 2012-01-05 株式会社ワカイダ・エンジニアリング 放射性有機ヨウ素除去フィルタ
JP2012240910A (ja) * 2011-05-18 2012-12-10 Tycoon Llc 炭の吸着を利用した放射性ヨウ素汚染土壌・汚染水の浄化法
JP2014032066A (ja) * 2012-08-02 2014-02-20 Japan Vilene Co Ltd 放射性物質吸着材
JP2015045588A (ja) * 2013-08-28 2015-03-12 三菱重工業株式会社 放射性ヨウ素除去装置
JP2017227633A (ja) * 2016-06-21 2017-12-28 フタムラ化学株式会社 放射性ヨウ素吸着材及びその製造方法
JP7111447B2 (ja) 2016-06-21 2022-08-02 フタムラ化学株式会社 放射性ヨウ素吸着材の製造方法
CN110073444A (zh) * 2016-12-15 2019-07-30 东洋纺株式会社 放射性物质去除过滤器、使用其的放射性物质去除过滤器单元及放射性物质的去除方法
CN110073444B (zh) * 2016-12-15 2023-10-27 东洋纺Mc株式会社 放射性物质去除过滤器、使用其的放射性物质去除过滤器单元及放射性物质的去除方法
CN110575731A (zh) * 2019-09-03 2019-12-17 中国辐射防护研究院 一种纤维材料抽屉式碘吸附器
CN111203066A (zh) * 2020-02-25 2020-05-29 中国辐射防护研究院 一体化壳体、大过滤面积的碘吸附器结构

Also Published As

Publication number Publication date
JP4549388B2 (ja) 2010-09-22
EP1868209A4 (en) 2010-09-01
JPWO2006109595A1 (ja) 2008-11-06
EP1868209A1 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
WO2006109595A1 (ja) 放射性物質除去フィルター及びそれを用いるフィルターユニット
US7160369B2 (en) Adsorption filter material with high adsorption capacity and low breakthrough behavior
US7615194B2 (en) Purification composition and filter for ozone-containing exhaust gas
JP3618761B2 (ja) 触媒フィルター材料とその製造方法
US7247237B2 (en) Fluid cleaning filter and filter device
US9061234B2 (en) Gas filter assemblies and methods for filtering gases
JP5435839B2 (ja) 消臭抗菌シート及びそれを用いたフィルター材
JP5150090B2 (ja) 難燃性オゾンvoc除去フィルタ
CN204100533U (zh) 一种汽车空调滤芯
JP2004205490A (ja) 放射性物質除去フィルター
JP2002204928A (ja) 光触媒担持脱臭シート及び空気浄化用フィルター
JP2001317000A (ja) 活性炭含有紙およびエアフィルター
JP2006112820A (ja) 放射性物質除去フィルター及びそれを用いるフィルターユニット
JP6115413B2 (ja) フィルターエレメント
JPH06104350B2 (ja) 吸着体
JPH04104813A (ja) ガス吸着処理用吸着体
JP4642599B2 (ja) 放射性物質除去フィルターユニット
JP5790591B2 (ja) 燃料電池用フィルター
JP2008104556A (ja) 積層体シート
JPH0389913A (ja) 積層吸着体およびそれを用いたフィルター
WO2020145345A1 (ja) エアフィルタ
JP2695450B2 (ja) フィルター用濾紙
JPH0214117B2 (ja)
WO2020203508A1 (ja) ガス吸着剤
JP2004156963A (ja) 放射性物質モニタリング材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512908

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006730820

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730820

Country of ref document: EP