WO2006109519A1 - 血圧測定装置および血圧測定方法 - Google Patents

血圧測定装置および血圧測定方法 Download PDF

Info

Publication number
WO2006109519A1
WO2006109519A1 PCT/JP2006/305951 JP2006305951W WO2006109519A1 WO 2006109519 A1 WO2006109519 A1 WO 2006109519A1 JP 2006305951 W JP2006305951 W JP 2006305951W WO 2006109519 A1 WO2006109519 A1 WO 2006109519A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure value
cuff
temperature
blood pressure
value
Prior art date
Application number
PCT/JP2006/305951
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Habu
Kouji Hagi
Hitoshi Ozawa
Shoichi Hayashida
Junichi Shimada
Hiroshi Koizumi
Original Assignee
Terumo Kabushiki Kaisha
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Kabushiki Kaisha, Nippon Telegraph And Telephone Corporation filed Critical Terumo Kabushiki Kaisha
Priority to EP06729899.2A priority Critical patent/EP1867276A4/en
Publication of WO2006109519A1 publication Critical patent/WO2006109519A1/ja
Priority to US11/858,683 priority patent/US20080071179A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the oscillometric method
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02208Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the Korotkoff method
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6815Ear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal

Definitions

  • the present invention relates to a blood pressure measurement technique, and more particularly to an adjustment technique for deriving a cuff pressure value of an output signal force of a pressure sensor.
  • a conventional electronic blood pressure monitor uses a pressure sensor that outputs a pressure value change as a voltage value change in order to measure the pressure in the cuff (control cuff pressure or pressure pulse wave detection). Yes.
  • a pressure sensor that outputs a pressure value change as a voltage value change in order to measure the pressure in the cuff (control cuff pressure or pressure pulse wave detection). Yes.
  • the temperature of the pressure sensor changes due to the external environment, the output characteristics of the pressure value and voltage value change. For this reason, when the pressure value is derived from the voltage value, an adjustment method by adding a predetermined compensation amount every time the required time elapses is used as disclosed in Patent Document 1.
  • Patent Document 1 Japanese Patent Publication No. 58-34159
  • the present invention has been made in view of the above problems, and is intended to derive the pressure value in the cuff when measuring blood pressure even when used in an environment where the temperature constantly changes. It provides a technology that can compensate for characteristic changes due to the temperature of the pressure sensor used for adjustment and derive an appropriate pressure value. It also provides technology that makes it possible to reduce the mental and physical burden on users during adjustment operations by making the adjustment operation frequency possible.
  • a cuff attached to the outer ear and its peripheral part a compression part by the cuff and its peripheral force, a pulse wave signal and Z or Korotkoff sound, and a pressure value in the cuff
  • a pressure sensor that outputs a predetermined signal level corresponding to the pressure level
  • a blood pressure value deriving means that derives a blood pressure value based on the pressure value and pulse wave signal derived from the signal level force and z or Korotkoff sound
  • a non-cuff Adjustment means for performing adjustment to compensate for a change in the characteristics of the pressure sensor with respect to the pressure value when the signal level at the time of pressurization changes by a predetermined value or more.
  • a cuff attached to the outer ear and its peripheral part a compression part by the cuff and its peripheral force, a pulse wave signal and Z or Korotkoff sound, and a pressure value in the cuff
  • a pressure sensor that outputs a predetermined signal level corresponding to the pressure sensor, a temperature measuring means for measuring the temperature in the vicinity of the pressure sensor, a pressure value and a pulse wave signal derived from the signal level, and Z or Korotkoff sound Blood pressure value deriving means for deriving the blood pressure value, and adjusting means for performing adjustment for compensating for the change in the characteristic of the pressure sensor with respect to the pressure value when the temperature measured by the temperature measuring means changes by a predetermined value or more.
  • a cuff attached to the outer ear and its peripheral part, a compression part by the cuff and its peripheral force, a pulse wave signal and Z or Korotkoff sound, and a pressure value in the cuff A pressure sensor that outputs a predetermined signal level corresponding to the pressure sensor, a temperature measuring means for measuring the temperature in the vicinity of the pressure sensor, a pressure value and a pulse wave signal derived from the signal level, and Z or Korotkoff sound Blood pressure value deriving means for deriving the blood pressure value, and a pressure sensor for the pressure value when the signal level when the cuff is not pressurized changes more than a predetermined value and the temperature measured by the temperature measuring means changes more than a predetermined value. And adjusting means for adjusting to compensate for the characteristic change.
  • a compression process of compressing the outer ear and its peripheral part with a cuff, and compression A signal acquisition step for acquiring a pulse wave signal and z or Korotkoff sound from the compressed portion compressed by the step and its surroundings, and a signal output step for outputting a predetermined signal level corresponding to the pressure value in the cuff.
  • a temperature measurement process to measure the temperature in the vicinity of the pressure sensor, the signal level force pressure value and pulse wave signal and z or Korotkoff The blood pressure value deriving step for deriving the blood pressure value, and the adjusting step for adjusting the pressure value to compensate for the characteristic change of the pressure sensor when the temperature measured in the temperature measuring step changes by a predetermined value or more.
  • the present invention it is possible to compensate for characteristic changes due to the temperature of the pressure sensor used for deriving the pressure value in the cuff when measuring blood pressure, and to derive an appropriate pressure value.
  • Technology can be provided.
  • by making it possible to reduce the frequency of the adjustment operation it is possible to provide a technology that can reduce the mental and physical burden on the user during the adjustment operation.
  • FIG. 1 is a configuration diagram of a photoelectric volume pulse wave sphygmomanometer according to a first embodiment.
  • FIG. 2 is an external perspective view of the photoelectric volume pulse wave sphygmomanometer of the first embodiment.
  • FIG. 3 is a diagram showing an example of attaching a cuff around the outer ear.
  • FIG. 4A is a flowchart of the entire operation of blood pressure measurement according to the first embodiment.
  • FIG. 4B is a flowchart of the entire operation of blood pressure measurement according to the first embodiment.
  • FIG. 5 is a flowchart of pressure value adjustment operation of the first embodiment.
  • FIG. 6 is a diagram showing an example of temperature characteristics of a pressure sensor.
  • FIG. 7 is a diagram showing a relationship between a pulse wave signal and a blood pressure value.
  • FIG. 8 is a configuration diagram of a pressure pulse wave sphygmomanometer according to a second embodiment.
  • FIG. 9 is a flowchart of the pressure value adjusting operation of the second embodiment.
  • FIG. 10 is a flowchart of pressure value adjustment operation of the third embodiment.
  • a photoelectric volume pulse sphygmomanometer will be described below as an example.
  • FIG. 1 is a block diagram showing a configuration of the photoelectric volume pulse wave sphygmomanometer of the embodiment.
  • 101 is a cuff and is fixed to the blood pressure measurement site.
  • Reference numeral 102 denotes an air tube that forms a flow path of air into the cuff 101.
  • Reference numeral 103 denotes a pressure pump that sends pressurized air into the cuff 101.
  • 104 is a quick drain valve that rapidly reduces the pressure in the cuff 101.
  • 105 is a fine exhaust valve that reduces the pressure in the cuff 101 at a constant rate (for example, 2 to 3 mmHg / sec).
  • Reference numeral 106 denotes a pressure sensor that changes an electrical parameter in accordance with the pressure in the cuff 101.
  • 10 7 is a pressure detection amplifier (AMP) that detects an electrical parameter of the pressure sensor 106, converts it into an electrical signal, amplifies it, and outputs an analog cuff pressure signal P (not shown).
  • AMP pressure detection amplifier
  • Reference numeral 108 denotes a pulse wave sensor installed in the cuff 101, which includes an LED 108a for irradiating light to a pulsating vascular blood flow and a phototransistor 108b for detecting reflected light from the vascular blood flow.
  • Reference numeral 109 denotes a pulse wave detection amplifier (AMP), which amplifies the output signal of the phototransistor 108b and outputs an analog pulse wave signal M (not shown).
  • the LED 108a is connected to a light amount control unit 118 that automatically changes the light amount, while the pulse wave detection amplifier 109 is connected to the gain control unit 119a that automatically changes the gain and the time constant is changed.
  • the constant controller 11 9b is connected.
  • 110 is AZD conversion (AZD), which converts analog signals M and P (not shown) into digital data.
  • Reference numeral 111 denotes a control unit (CPU) that performs main control of the photoelectric volume pulse wave sphygmomanometer. Of this control Details will be described later according to the flowcharts of FIGS. 4A to 5.
  • a ROM 112 stores various control programs executed by the CPU 111 and various parameters (such as a parameter for deriving a pressure value from the pressure sensor output signal). As examples of various control programs, there are programs that are executed by the CPU 111 and perform the control shown in FIGS. 4A to 5, for example.
  • a RAM 113 includes a data memory for temporarily storing data, an image memory for displaying images, and the like.
  • Reference numeral 114 denotes a liquid crystal display (LCD), which displays the contents of the image memory.
  • LCD liquid crystal display
  • Reference numeral 116 denotes a keyboard which can be used to set a measurement start command, an adjustment pressure value, and the like by user operation.
  • Reference numeral 115 denotes a buzzer that informs the user that the device has sensed that the key in the keyboard 116 has been depressed, or that the measurement has been completed.
  • an adjustment pressure storage unit is provided in the force RAMI 13 in which the adjustment pressure register 11 la is provided in the CPU 111.
  • FIG. 2 is an external perspective view of the photoelectric volume pulse wave sphygmomanometer of the embodiment.
  • Reference numeral 200 denotes a sphygmomanometer body, which includes a configuration excluding the cuff 101 and the pulse wave sensor 108 in FIG.
  • the air tube 102 includes a signal line (not shown) and is connected to a cuff 101 and a pulse wave sensor 108 not shown.
  • the LCD 114 uses a dot matrix type display panel, and therefore can display a variety of information (for example, characters, figures, signal waveforms, etc.).
  • Reference numeral 201 denotes a power switch, and the keyboard 116 has a measurement start switch (ST) and a numeric keypad for inputting a cuff pressure value and the like.
  • ST measurement start switch
  • the measurement part including the cuff is configured to press with the tragus sandwiched from both sides, as shown in FIG.
  • 4A and 4B are flowcharts of the blood pressure measurement processing procedure in the photoelectric volume pulse wave sphygmomanometer of the first embodiment.
  • the CPU 111 When the apparatus is powered on by the power switch 201, the CPU 111 first reads the self-diagnosis program and initial parameters stored in the ROM 112, performs self-diagnosis processing, initializes the apparatus, and enters a standby state. After that, press measurement start switch ST Thus, the blood pressure measurement process is started.
  • step S401 the pressure sensor force also derives the cuff pressure value P, and it is determined whether the derived P is also within the predetermined error range, and if it is out of the error range, the process proceeds to step S402. If it is within the error range, the process proceeds to step S403.
  • step S402 if P derived in step S401 is out of the error range, pressure value derivation adjustment is performed, and then the process proceeds to step S403.
  • the operation of pressure value derivation adjustment will be described in detail later.
  • step S403 the cuff pressurization value U (for example, a value larger than the maximum blood pressure value such as 120 to 280 mmHg) is set using the keyboard 116.
  • step S404 the pulse wave signal gain (light quantity and gain) is set. ) Is set.
  • step S407 the driving of the pressure pump 103 is started, and in step S408, the cuff pressure is increased until P> U.
  • step S409 the pressure pump 103 is stopped in step S409, and the fine exhaust valve 105 is opened in step S410.
  • the cuff pressure starts decreasing at a constant speed (for example, 2 to 3 mmHg / sec), and the blood pressure measurement process is started. During this time, data processing by each functional block is performed in step S411, and the systolic blood pressure and the diastolic blood pressure are measured. In step S412, it is determined whether or not a minimum blood pressure value is detected during decompression. If not detected, continue measurement. In step S413, it is determined whether or not the cuff pressure is lower than a predetermined value L (for example, 40 mmHg). If it is not P ⁇ L, it is still in the normal measurement range, and the flow returns to step S411. On the other hand, when P ⁇ L, the cuff pressure is lower than the normal measurement range, so “measurement error” is displayed on the LCD 114 in step S414. If necessary, detailed information such as “abnormal signal during decompression” may be displayed.
  • L for example, 40 mmHg
  • step S415 the remaining air in cuff 1 is rapidly exhausted, and the measurement is performed on LCD114 in step S416.
  • the high blood pressure value and the minimum blood pressure value are displayed, and a tone signal is sent to the buzzer 1 15 in step S417.
  • different tone signals are sent after normal termination and abnormal termination, the measurement is terminated, and the next measurement start is awaited.
  • FIG. 5 is a flowchart for explaining the detailed operation of step S402, which is the correction operation of the pressure sensor.
  • the pressure value adjustment since the air in the cuff is originally connected to the atmosphere after the initialization of the device, the pressure value should be derived as OmmHg. Executes when a value is derived.
  • step S501 the signal output value of the pressure sensor is read.
  • step S502 an offset value is derived such that the pressure value corresponding to the signal output value read in step S501 is 0 mmHg. In other words, the difference between the read signal output voltage value and the voltage value at which the pressure value becomes OmmHg at the initial parameter is obtained.
  • step S503 based on the offset value derived in step S502, the parameter stored in ROM 112 is replaced with a new parameter.
  • the ROM 112 stores a pressure value deriving meter corresponding to the temperature characteristic as shown in (b) as an initial parameter.
  • the temperature of the pressure sensor itself will rise to the same level.
  • the pressure sensor output signal immediately after the initialization of the blood pressure measurement device is 1.5 V. It becomes.
  • a pressure value of 50 mmHg can be obtained when converted to a pressure value using the Norameter (b). Even if blood pressure is measured in the state of parameter (b), a pressure as high as 50 mmHg will be obtained as a result.
  • step S501 the output value of the pressure sensor signal (1.5V in this case) is read in a state where the air in the cuff is essentially connected to the atmosphere.
  • step S502 an offset value (0.5 V) between the signal output value (1.0 V) corresponding to OmmHg in the initial parameter (b) and the value read in step S 501 (1.5 V). Is derived.
  • step S503 the parameter applied with the change by the offset value derived in step S502 is reset with respect to the currently read initial parameter.
  • the parameter corresponding to the temperature characteristic (a) in Fig. 6 is set, and the air pressure in the cuff is connected to the atmosphere and the signal of the pressure sensor Even with the output value (1.5V), it is correct! / And the pressure value OmmHg can be derived.
  • Figure 7 shows a graph (schematic diagram) of the cuff pressure and pulse wave signal during the time from the start to the end of the measurement when blood pressure measurement is performed normally.
  • the systolic and diastolic blood pressures are roughly calculated as follows. In other words, the peak pressure at the current time point (a) when the pulse wave signal is output is the maximum blood pressure, and the cuff pressure at the point (b) at which the magnitude of the pulse wave signal disappears is the minimum blood pressure.
  • the transmitted light may be detected instead of the force shown in the example of detecting the reflected light by blood in the blood vessel.
  • 108a and 108b are arranged on both sides so as to sandwich the measurement part.
  • the photoelectric volume pulse wave sphygmomanometer of the present embodiment compensates for a change in characteristics due to the temperature of the pressure sensor used for deriving the pressure value in the cuff when measuring blood pressure, Appropriate pressure value can be derived.
  • a pressure pulse wave sphygmomanometer will be described below as an example.
  • This embodiment is different from the first embodiment in that temperature information from a temperature sensor is mainly used.
  • the method for attaching the cuff to the measurement site and the blood pressure calculation operation are substantially the same as those in the first embodiment, and a description thereof will be omitted.
  • FIG. 8 is a block diagram showing a configuration of a pressure pulse wave sphygmomanometer according to the second embodiment. With Figure 1 The difference is that it does not have a photoelectric sensor and its related parts, but has a temperature sensor 807 for obtaining the temperature of the pressure sensor 806.
  • the ROM 812 also stores a plurality of parameters for deriving the pressure value of the output signal force of the pressure sensor 806. At the time of parameter setting, the temperature value of the corresponding pressure sensor 806 is stored in the RAM 813 by the CPU 811. Stored in the temperature storage area.
  • FIG. 9 is a flowchart for explaining the detailed operation of step S402 in the pressure value adjusting operation.
  • the pressure value adjustment since the air in the cuff is originally communicated with the atmosphere after the initialization of the device, a pressure value greater than a predetermined error is derived even though the pressure value should be derived as OmmHg. If executed, include the following steps! / Speak.
  • step S901 the temperature sensor 807 is used to read the temperature of the pressure sensor 806.
  • step S902 the temperature value read in the temperature storage area of the RAM is read. In other words, after the power is turned on, the temperature value at initialization is read for the first measurement, and the temperature value set at the previous pressure adjustment is read after the second measurement.
  • step S903 it is determined whether or not the temperature value read in step S901 and the temperature value read in step S902 are within a predetermined difference. If it is within the specified difference, it is considered that there is no change in the characteristics of the pressure sensor, and the existing parameters are used as they are without any new adjustments. If it is greater than the predetermined difference, the process proceeds to step S904.
  • the value of the predetermined difference is preferably determined so that it is equal to or less than the measurement error (standard deviation) of the temperature sensor when the measurement accuracy is important. If importance is placed on shortening the measurement time, a value greater than the measurement error of the temperature sensor may be adopted.
  • step S904 the pressure sensor parameter corresponding to the temperature value read in step S901 is read from the ROM 812, stored in the RAM 813, and overwritten on the existing parameter.
  • the operation in the above steps is performed in a place where the outside air temperature is 40 degrees using a pressure sensor having temperature characteristics as shown in (a) to (c) of FIG. 6 as in the first embodiment.
  • the ROM 812 stores pressure value derivation parameters corresponding to (a) to (c) of FIG. 6 as parameters indicating the temperature characteristics of the pressure sensor.
  • a pressure value of 50 mmHg can be obtained by converting the pressure value using the parameter corresponding to the temperature characteristic (b) that is read!
  • the pressure value adjustment is necessary. I know that there is.
  • step S901 the temperature of the pressure sensor (here 4
  • step S902 the temperature value (20 degrees) at the time of initialization stored at the time of initialization is stored in RA.
  • step S903 whether or not the temperature value (40 degrees) read in step S901 and the temperature value (20 degrees) read in step S902 are within a predetermined difference (for example, 1 degree). In this case, the difference is 15 degrees.
  • step S904 the parameter corresponding to (a) of the pressure sensor corresponding to the temperature value (40 degrees) read in step S901 is read from the ROM 812 and set.
  • the characteristics of the pressure sensor due to temperature change in a linear function and are described using a single parameter.
  • the temperature characteristics of the pressure sensor may be associated with higher order functions and realized using multiple parameters.
  • the start of blood pressure measurement is used as a trigger for temperature measurement (and adjustment operation).
  • the measurement can be started quickly by measuring the temperature continuously or periodically and adjusting it appropriately when a predetermined temperature difference occurs.
  • the pressure sensor characteristics can be corrected when there is no abnormality in the equipment. This makes it possible to derive a blood pressure value with high accuracy.
  • FIG. 10 shows a flowchart of the pressure value adjustment operation of the third embodiment.
  • step S1001 the temperature sensor 807 is used to read the temperature of the pressure sensor 806.
  • step S1002 the pressure sensor parameters corresponding to the temperature value read in step S1001 are read from ROM812 and stored in RAM813.
  • step S1003 the pressure value is derived using the parameters read in step S1002.
  • step S 1004 it is determined whether or not the pressure value force OmmHg derived in step S 1003 is within a predetermined error range. Even though correction is applied according to the temperature of the pressure sensor, it is not within the specified error range, so some device abnormality (abnormality of the pressure sensor or temperature sensor or abnormality of the on-off valve) occurs. It can be concluded that Therefore, an instrument error is immediately displayed and the measurement operation is terminated (stopped). If the pressure value force OmmHg derived in step S 1003 is within a predetermined error range, a normal blood pressure measurement operation is started.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Signal Processing (AREA)
  • Otolaryngology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

 絶えず環境温度が変化する環境においても、適切な圧力値導出が可能な血圧測定装置を提供する。  血圧測定装置において、外耳およびその周辺部に装着されるカフと、カフによる圧迫部及びその周辺から脈波信号かつ/またはコロトコフ音を取得する信号取得手段と、カフ内の圧力値に対応した所定の信号レベルを出力する圧力センサと、圧力センサ近傍の温度を測定するための温度測定手段と、信号レベルから導出される圧力値および脈波信号かつ/またはコロトコフ音に基づいて血圧値を導出する血圧値導出手段と、温度測定手段で測定された温度が所定値以上変化した場合に圧力値に対し圧力センサの特性変化を補償する調整を行う調整手段とを有する。

Description

明 細 書
血圧測定装置および血圧測定方法
技術分野
[0001] 本発明は血圧測定技術、特に圧力センサの出力信号力 のカフ圧値導出の調整 技術に関するものである。
背景技術
[0002] 従来の電子血圧計にお!、て、カフ内の圧力測定 (カフ圧の制御や圧脈波検出)を 行うために圧力値変化を電圧値変化として出力する圧力センサが用いられている。 一般的に圧力センサは外部環境により自身の温度が変化すると圧力値 電圧値の 出力特性が変化する。そのため、電圧値から圧力値を導出する際には特許文献 1〖こ 示されるように、所要の時間経過毎に所定の補償量を加算することによる調整方法 が利用されている。
特許文献 1:特公昭 58 - 34159号公報
発明の開示
発明が解決しょうとする課題
[0003] ところで、外耳及びその周辺を測定部とする血圧測定装置においては、長時間連 続測定で使用されることも想定されている。その際、測定装置は被験者と共に屋内外 、昼夜間を問わず移動することになる。そのため、外気温の変化や体温の変化など により圧力センサのおかれる環境温度が大きく上下することが想定され、圧力センサ の温度特性の調整による圧力値の補償が重要になる。
[0004] し力しながら、絶えず温度が変化する環境において血圧測定装置を使用した場合 、血圧測定装置が室内で使用されることを想定していた従来の調整技術では十分な 精度の補償を行うことが出来ないという問題がある。また、調整動作は一般的に時間 を要するため、調整動作の頻度が多くなると被験者の精神的,身体的負担となるとい う問題がある。
[0005] 本発明は上記問題点に鑑みてなされたものであり、絶えず温度が変化する環境に おいて使用した場合においても、血圧を測定する際のカフ内の圧力値を導出するた めに用いられる圧力センサの温度による特性変化を調整により補償し、適切な圧力 値導出を可能とする技術を提供するものである。また、調整動作頻度を低減可能とす ることにより、調整動作の際の利用者への精神的 ·身体的負担を軽減することを可能 にする技術を提供するものである。
課題を解決するための手段
[0006] 血圧測定装置において、外耳およびその周辺部に装着されるカフと、カフによる圧 迫部及びその周辺力 脈波信号かつ Zまたはコロトコフ音を取得する信号取得手段 と、カフ内の圧力値に対応した所定の信号レベルを出力する圧力センサと、信号レ ベル力 導出される圧力値および脈波信号かつ zまたはコロトコフ音に基づいて血 圧値を導出する血圧値導出手段と、カフの非加圧時における信号レベルが所定値 以上変化した場合に、圧力値に対し圧力センサの特性変化を補償する調整を行う調 整手段とを有する。
[0007] 血圧測定装置において、外耳およびその周辺部に装着されるカフと、カフによる圧 迫部及びその周辺力 脈波信号かつ Zまたはコロトコフ音を取得する信号取得手段 と、カフ内の圧力値に対応した所定の信号レベルを出力する圧力センサと、圧力セ ンサ近傍の温度を測定するための温度測定手段と、信号レベルから導出される圧力 値および脈波信号かつ Zまたはコロトコフ音に基づいて血圧値を導出する血圧値導 出手段と、温度測定手段で測定された温度が所定値以上変化した場合に圧力値に 対し圧力センサの特性変化を補償する調整を行う調整手段とを有する。
[0008] 血圧測定装置において、外耳およびその周辺部に装着されるカフと、カフによる圧 迫部及びその周辺力 脈波信号かつ Zまたはコロトコフ音を取得する信号取得手段 と、カフ内の圧力値に対応した所定の信号レベルを出力する圧力センサと、圧力セ ンサ近傍の温度を測定するための温度測定手段と、信号レベルから導出される圧力 値および脈波信号かつ Zまたはコロトコフ音に基づいて血圧値を導出する血圧値導 出手段と、カフの非加圧時における信号レベルが所定値以上変化しかつ温度測定 手段で測定された温度が所定値以上変化した場合に圧力値に対し圧力センサの特 性変化を補償する調整を行う調整手段とを有する。
[0009] 血圧測定方法にお!、て、外耳及びその周辺部をカフで圧迫する圧迫工程と、圧迫 工程により圧迫される圧迫部及びその周辺から脈波信号かつ zまたはコロトコフ音を 取得する信号取得工程と、カフ内の圧力値に対応した所定の信号レベルを圧力セン サ力 出力する信号出力工程と、圧力センサ近傍の温度を測定するための温度測 定工程と、信号レベル力 導出される圧力値および脈波信号かつ zまたはコロトコフ
Figure imgf000005_0001
、て血圧値を導出する血圧値導出工程と、温度測定工程で測定された温 度が所定値以上変化した場合に圧力値に対し圧力センサの特性変化を補償する調 整を行う調整工程とを有する。
発明の効果
[0010] 本発明によれば、血圧を測定する際のカフ内の圧力値を導出するために用いられ る圧力センサの温度による特性変化を調整により補償し、適切な圧力値導出を可能 とする技術を提供することができる。また、調整動作頻度を低減可能とすることにより 、調整動作の際の利用者への精神的 ·身体的負担を軽減することのできる技術を提 供することができる。
[0011] 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明ら かになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ 参照番号を付す。
図面の簡単な説明
[0012] 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その 記述と共に本発明の原理を説明するために用いられる。
[0013] [図 1]第 1実施形態の光電容積脈波血圧計の構成図である。
[図 2]第 1実施形態の光電容積脈波血圧計の外観斜視図である。
[図 3]外耳周辺部へのカフの装着例を示す図である。
[図 4A]第 1実施形態の血圧測定の全体動作のフローチャートである。
[図 4B]第 1実施形態の血圧測定の全体動作のフローチャートである。
[図 5]第 1実施形態の圧力値調整動作のフローチャートである。
[図 6]圧力センサの温度特性の例を示す図である。
[図 7]脈波信号と血圧値との関係を示す図である。
[図 8]第 2実施形態の圧脈波血圧計の構成図である。 [図 9]第 2実施形態の圧力値調整動作のフローチャートである。
[図 10]第 3実施形態の圧力値調整動作のフローチャートである。
発明を実施するための最良の形態
[0014] 以下に、図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明す る。ただし、この実施の形態に記載されている構成要素はあくまで例示であり、この発 明の範囲をそれらのみに限定する趣旨のものではない。
[0015] (第 1実施形態)
本発明に係る電子血圧計の第 1実施形態として、光電容積脈波血圧計を例に挙げ て以下に説明する。
[0016] <装置構成 >
図 1は実施形態の光電容積脈波血圧計の構成を示すブロック図である。図にお ヽ て、 101はカフであり、血圧測定部位に固定する。 102はエアチューブであり、カフ 1 01内への空気の流路を成す。 103は圧力ポンプであり、カフ 101内に圧力空気を送 り込む。 104は急排弁であり、カフ 101内の圧力を急速に減少させる。 105は微排弁 であり、カフ 101内の圧力を一定速度(例えば 2〜3mmHg/sec)で減少させる。 106 は圧力センサであり、カフ 101内の圧力に応じて電気的パラメータを変化させる。 10 7は圧力検出アンプ (AMP)であり、圧力センサ 106の電気的パラメータを検出し、こ れを電気的信号に変換し、かつ増幅してアナログのカフ圧信号 P (不図示)を出力す る。
[0017] 108はカフ 101内に設置された脈波センサであり、脈動する血管血流に光を照射 する LED108aと、該血管血流による反射光を検出するフォトトランジスタ 108bを含 む。 109は脈波検出アンプ (AMP)であり、フォトトランジスタ 108bの出力信号を増 幅してアナログの脈波信号 M (不図示)を出力する。ここで、 LED108aには光量を自 動的に変化させる光量制御部 118が接続され、一方脈波検出アンプ 109には、ゲイ ンを自動的に変化させるゲイン制御部 119aと時定数を変化させる時定数制御部 11 9bとが接続されている。 110は AZD変翻 (AZD)であり、アナログ信号 M, P (不 図示)をデジタルデータに変換する。
[0018] 111は制御部(CPU)であり、本光電容積脈波血圧計の主制御を行う。この制御の 詳細は図 4Aから図 5のフローチャートに従って後述する。 112は ROMであり、 CPU 111で実行される各種制御プログラムや、各種パラメータ (圧力センサの出力信号か ら圧力値を導出するパラメータなど)が記憶されている。各種制御プログラムの例とし ては、 CPU111が実行する例えば図 4Aから図 5に示される制御を行うプログラムが ある。 113は RAMであり、データを一時的に記憶するデータメモリや画像表示のた めの画像メモリ等を備える。 114は液晶表示器 (LCD)であり、画像メモリの内容を表 示する。 116はキーボードであり、使用者の操作により測定開始指令や調整圧力値 の設定等を行える。 115はブザーであり、使用者に対して装置がキーボード 116内の キーの押し下げを感知したことや測定終了等を知らせる。尚、本実施形態では、 CP U111に調整圧力レジスタ 11 laを設けた力 RAMI 13に調整圧力記憶部を設けて ちょい。
[0019] 図 2は実施形態の光電容積脈波血圧計の外観斜視図である。 200は血圧計本体 であり、内部には図 1のカフ 101及び脈波センサ 108を除く構成が含まれる。ここで、 エアチューブ 102は信号線 (不図示)を含み、不図示のカフ 101及び脈波センサ 10 8に接続している。 LCD114は、ドットマトリックス方式の表示パネルを使用しており、 従って多様な情報 (例えば文字,図形,信号波形等)を表示できる。また 201は電源 スィッチで、キーボード 116は測定開始スィッチ(ST)とカフの圧力値等を入力するた めのテンキーとを有して 、る。
[0020] <測定部位への装着方法 >
外耳部、特に耳珠およびその周辺を測定部位とするために、カフを含む測定部は 図 3に示される通り、耳珠を両側から挟んで圧迫するよう構成されて 、る。
[0021] <装置の血圧測定動作 >
次に、本実施形態に係る光電容積脈波血圧計の動作について以下に説明する。 図 4Aおよび図 4Bは第 1実施形態の光電容積脈波血圧計における血圧測定処理手 順のフローチャートである。
[0022] 装置に電源スィッチ 201により電源投入すると、まず CPU111は ROM112に記憶 された自己診断プログラムおよび初期パラメータを読み込み、自己診断処理を行 ヽ 装置の初期化が行われ、待機状態になる。その後、測定開始スィッチ STを押すこと により血圧測定処理が開始される。
[0023] ステップ S401では、圧力センサ力もカフ圧値 Pを導出し、導出された Pが OmmHg 力も所定の誤差範囲内にあるかどうかを判断し、誤差範囲外である場合にはステップ S402に進み、誤差範囲内である場合にはステップ S403に進む。
[0024] ステップ S402では、ステップ S401にお!/、て導出された Pが誤差範囲外である場合 に圧力値導出調整を行った後、ステップ S403に進む。圧力値導出調整の動作は後 程詳細に説明する。
[0025] ステップ S403では、カフの加圧値 U (例えば 120〜280mmHgなどの最高血圧値よ り大きい値)についてキーボード 116を使用して設定し、ステップ S404で脈波信号の ゲイン (光量及びゲイン)を設定する。
[0026] 加圧値およびゲイン設定が終わると、ステップ S405, S406では急排弁 104及び 微排弁 105を閉じる。ステップ S407では圧力ポンプ 103を駆動開始し、ステップ S4 08では、 P>Uとなるまでカフ圧を加圧する。 P>Uとなるとステップ S409では圧力ポ ンプ 103を停止し、ステップ S410では微排弁 105を開く。
[0027] カフ圧は一定速度 (例えば 2〜3mmHg/sec)で減少開始をはじめ、血圧計測行程 が開始される。この間にステップ S411で各機能ブロックによるデータ処理が行われ、 最高血圧及び最低血圧の測定が行われる。ステップ S412では減圧時における最低 血圧値の検出の有無を判別する。検出されていなければ引き続き計測を行う。ステツ プ S413ではカフ圧が所定値 L (例えば 40mmHg)より低いか否かを判別する。 Pく L でなければまだ正常測定範囲にあり、フローはステップ S411に戻る。一方、 P<Lの 時はもはやカフ圧が正常測定範囲よりも低いのでステップ S414で LCD114に「測定 エラー」を表示する。必要なら「減圧時信号異常」等の詳細情報を付記表示してもよ い。
[0028] また、ステップ S412の判別で測定終了の時は正常測定範囲で計測行程終了した ことになり、ステップ S415ではカフ 1の残りの空気を急速排気し、ステップ S416で L CD114に測定した最高血圧値及び最低血圧値を表示し、ステップ S417でブザー 1 15にトーン信号を送る。好ましくは、正常終了後と異常終了時とでは異なるトーン信 号を送り、測定を終了し、次の測定開始を待つ。 [0029] <圧力値調整の詳細動作 >
図 5は、圧力センサの補正動作である、ステップ S402の詳細動作を説明するため のフローチャートである。
[0030] 圧力値調整は、装置の初期化後、本来カフ内の空気は大気と導通しているため、 圧力値が OmmHgと導出されるべきであるにもかかわらず、所定の誤差以上の圧力 値が導出された場合に実行する。
[0031] ステップ S501では、圧力センサの信号出力値を読み取る。
[0032] ステップ S502では、ステップ S501で読み取った信号出力値に対する圧力値が 0 mmHgとなるようなオフセット値を導出する。つまり、読み取った信号出力電圧値と、 初期パラメータ時に圧力値が OmmHgとなる電圧値との差を求める。
[0033] ステップ S503では、ステップ S502で導出したオフセット値をもとに、 ROM112に 記憶されたパラメータを新しいパラメータに置き換える。
[0034] 上記の圧力調整動作に係る動作を、図 6に示されるような温度特性を有する圧力セ ンサが用いられ、外気温が 40度の場所で使用された場合について例示的に説明す る。
[0035] ROM112には初期パラメータとして (b)に示されるような温度特性に対応する圧力 値導出ノ メータが記憶されている。しかしながら、外気温が 40度の場所で測定を行 つた場合、圧力センサ自体の温度も同程度に上昇することになる結果、血圧測定装 置の初期化直後における圧力センサの出力信号は 1. 5Vとなる。その結果、ノラメ一 タ (b)を用い圧力値に換算すると、 50mmHgという圧力値が得られることになる。パラ メータ (b)の状態のまま、血圧測定を行ったとしても、 50mmHgほど高い圧力が結果 として得られることになつてしまう。
[0036] そのため、装置の初期化後、本来カフ内の空気が大気と導通している状態で、ステ ップ S501では、圧力センサの信号の出力値 (ここでは 1. 5V)を読み取る。
[0037] そして、ステップ S502では初期パラメータ (b)における OmmHgに相当する信号出 力値(1. 0V)とステップ S 501で読み出した値(1. 5V)とのオフセットの値(0. 5V)を 導出する。ステップ S503では、現在読み込まれている初期パラメータに対し、ステツ プ S502で導出したオフセットの値だけ変更を適用したパラメータを再設定する。 [0038] その結果、 40度の場合、図 6の温度特性 (a)に対応するパラメータが設定されること となり、カフ内の空気が大気と導通して 、る状態での圧力センサの信号の出力値( 1 . 5V)であっても正し!/、圧力値である OmmHgを導出できることとなる。
[0039] なお、上記では温度変化によるセンサ出力値に応じて、導出パラメータを変化させ ることにより、修正された圧力値を導出するような補正動作を説明したが、圧力センサ にフィードバック制御を施し、圧力センサからの出力値自体を修正するように構成し てもよい。
[0040] <血圧測定の詳細動作 >
正常に血圧測定が行われた際における、測定の開始から終了までの時間における カフ圧と脈波信号のグラフ (模式図)を図 7に示す。図 7のグラフに対し最高血圧およ び最低血圧は概略以下のように行われる。すなわち、脈波信号の出現時点(a)の力 フ圧を最高血圧、脈波信号の大きさの変化が無くなった点 (b)のカフ圧を最低血圧と する。
[0041] 本実施形態では血管内の血液による反射光を検出する例を示した力 替わりに透 過光を検出するものであってもよい。その場合には、 108aおよび 108bが測定部を 挟み込むように両側に配置されることとなる。
[0042] 以上説明したように、本実施形態の光電容積脈波血圧計により、血圧を測定する 際のカフ内の圧力値を導出するために用いられる圧力センサの温度による特性変化 を補償し、適切な圧力値導出を可能とする。また、調整動作頻度の低減化を可能と することにより、調整動作の際の利用者への精神的 ·身体的負担を軽減することも可 能にする血圧測定装置を提供することができる。
[0043] (第 2実施形態)
本発明に係る電子血圧計の第 2実施形態として、圧脈波血圧計を例に挙げて以下 に説明する。なお、本実施形態は、主に温度センサによる温度情報を利用する点で 第 1実施形態と異なっている。測定部位へのカフの装着方法および血圧の算出動作 は第 1実施形態とほぼ同様であるため説明は省略する。
[0044] <装置構成 >
図 8は第 2実施形態に係る圧脈波血圧計の構成を示すブロック図である。図 1との 相違点は、光電センサおよびその関連部分を有しておらず、圧力センサ 806の温度 を取得するための温度センサ 807を有する点である。
[0045] また、 ROM812には圧力センサ 806の出力信号力も圧力値を導出するためのパラ メータが複数記憶されており、パラメータの設定時には対応する圧力センサ 806の温 度の値が CPU811により RAM813の温度記憶領域に記憶される。
[0046] 他の部分は第 1実施形態とほぼ同様のため説明は省略する。
[0047] <圧力値調整の詳細動作 >
図 9は、圧力値調整動作におけるステップ S402の詳細動作を説明するためのフロ 一チャートである。圧力値調整は、装置の初期化後、本来カフ内の空気は大気と導 通しているため、圧力値力OmmHgと導出されるべきであるにもかかわらず、所定の 誤差以上の圧力値が導出された場合に実行され、以下のステップを含んで!/ヽる。
[0048] ステップ S901では、温度センサ 807を用い圧力センサ 806の温度を読み取る。
[0049] ステップ S902では、 RAMの温度記憶領域に読み込まれている温度値を読み取る 。つまり、電源 ON後、最初の測定であれば初期化時の温度値、 2回目の測定以降 であれば前回圧力調整時に設定された温度値が読み取られることになる。
[0050] ステップ S903では、ステップ S901で読み取られた温度値とステップ S902で読み 取られた温度値が所定の差に収まっている力否かを判断する。所定の差以内であれ ば、圧力センサの特性に変化は無いとみなし、新たに調整は行わずに、既存のパラ メータをそのまま用いる。所定の差以上であった場合はステップ S904に進む。なお、 所定の差の値は、測定精度を重視する場合は、温度センサの測定誤差 (標準偏差) 以下となるように値を決定することが望ましい。なお、測定時間の短縮を重視する場 合には、温度センサの測定誤差以上の値を採用してもよい。
[0051] ステップ S904では、ステップ S901で読み取られた温度値に対応する、圧力センサ のパラメータを ROM812から読み込み、 RAM813に記憶されて!、る既存のパラメ一 タに対し上書きを行う。
[0052] 上記のステップにおける動作を、第 1実施形態と同じく図 6の(a)〜(c)に示されるよ うな温度特性を有する圧力センサを用い、外気温が 40度の場所で使用された場合 について例示的に説明する。 [0053] ROM812には圧力センサの温度特性を示すパラメータとして図 6の(a)〜(c)に対 応するような、圧力値導出パラメータが記憶されて 、る。
[0054] 初期値として (b)に対応するパラメータが読み込まれて!/、る状態にぉ 、て、外気温 力 S40度の場所で測定を行った場合、圧力センサ自体の温度も同程度に上昇するこ とになる結果、血圧測定装置における初期化直後、つまり圧力センサが大気と導通 している状態における圧力センサの出力信号は(a)に従い 1. 5Vとなる。
[0055] その結果、読み込まれて!/ヽる温度特性 (b)に対応するパラメータを用い圧力値に換 算すると、 50mmHgという圧力値が得られることになる。つまり、温度特性 (b)に対応 するパラメータの状態のまま、血圧測定を行った場合正 、値よりも 50mmHgほど高 い圧力が結果として得られることになつてしまうため、圧力値調整が必要であることが 分かる。
[0056] 以下に、圧力値調整の具体的な動作例を示す。装置の初期化後、本来カフ内の空 気が大気と導通している状態で、ステップ S901では、圧力センサの温度(ここでは 4
0度)を温度センサにより読み取る。
[0057] そして、ステップ S902では初期化時に記憶された初期化時の温度値(20度)を RA
M813の温度値記憶領域から読み取る。
[0058] ステップ S903では、ステップ S901で読み取られた温度値(40度)とステップ S902 で読み取られた温度値(20度)が所定の差 (たとえば 1度)以内に収まって 、るか否 かを判断し、今回の場合は差が 15度であるので収まっていないと判断する。
[0059] ステップ S904では、ステップ S901で読み取られた温度値 (40度)に対応する、圧 力センサの(a)に対応するパラメータを ROM812から読み込み設定を行う。
[0060] その結果、 40度の場合、 (a)に対応するパラメータが設定され、カフ内の空気が大 気と導通して!/、る状態での圧力センサの信号の出力値( 1. 5V)であっても正 、圧 力値である OmmHgを導出できることとなる。
[0061] なお、図 6では、説明の簡略ィ匕のため圧力センサの温度による特性は、一次関数 的に変化するものと仮定し単一のパラメータを用い説明した。もちろん、圧力センサ の温度特性をより高次の関数により対応付け複数のパラメータを用いて実現してもよ い。 [0062] また、上記では血圧測定開始を温度測定 (および調整動作)のトリガとしたが、待機 状態 (つまり急排弁 804が開いておりカフ内の空気が待機と導通している状態)にお いて、連続的あるいは定期的に温度測定を行い、所定の温度差が生じた際適宜調 整動作を行うように構成することにより、測定開始を速やかに行えるという利点がある
[0063] (第 3実施形態)
第 1実施形態で説明したような圧力値変化、および第 2実施形態で説明したような 温度値の変化を利用することにより、機器の異常等が発生していない場合には圧力 センサ特性の補正が可能となり、精度の高い血圧値の導出が可能となる。
[0064] 一方、機器に何らかの異常が発生して 、る場合、本来得られるべき値が得られな ヽ 場合、圧力センサの補正が出来ないだけでなぐ補正前に比較しても異常な値を示 してしまう場合が発生しうる。機器の異常としては、例えば、圧力センサや温度センサ の故障 (異常値の出力)や開閉弁の故障などがある。そのため、機器の異常を検知し 、ユーザに通知することも重要である。
[0065] そこで、第 3実施形態では、圧力値変化および温度値変化の両方を監視することに より、温度変化による特性変化の補償に加え、機器異常の検知が可能となる構成に ついて説明する。
[0066] 図 10に第 3実施形態の圧力値調整動作のフローチャートを示す。
[0067] ステップ S1001では、温度センサ 807を用い圧力センサ 806の温度を読み取る。
[0068] ステップ S1002では、ステップ S 1001で読み取られた温度値に対応する、圧力セ ンサのパラメータを ROM812から読み込み、 RAM813に記憶する。
[0069] ステップ S 1003では、ステップ S 1002で読み込んだパラメータを利用して、圧力値 を導出する。
[0070] ステップ S 1004では、ステップ S 1003で導出した圧力値力 OmmHgから所定の 誤差範囲内であるか否かを判定する。圧力センサの温度に応じて、補正をかけてい るにもかかわらず、所定の誤差範囲に入っていないということから、何らかの機器異 常 (圧力センサや温度センサの異常や開閉弁の異常)が発生していると結論付けら れる。そのため、ただちに機器エラーを表示すると共に測定動作を終了(中止)する。 [0071] ステップ S 1003で導出した圧力値力 OmmHgから所定の誤差範囲内に収まって いる場合は、通常の血圧測定動作を開始する。
[0072] 以上、説明したように、本実施形態によれば、温度が変化する環境下での適切な圧 力値導出の補正が可能となり、より適切な血圧値を利用者に通知することが可能とな る。
[0073] また、圧力値導出もしくは温度値導出に係る機器異常発生時に、異常を検知し異 常であることを利用者に知らせることが可能となるという効果もある。
[0074] 本発明は上記実施の形態に制限されるものではなぐ本発明の精神及び範囲から 離脱することなぐ様々な変更及び変形が可能である。従って、本発明の範囲を公に するために、以下の請求項を添付する。

Claims

請求の範囲
[1] 外耳およびその周辺部に装着されるカフと、
前記カフによる圧迫部及びその周辺力 脈波信号かつ Zまたはコロトコフ音を取得 する信号取得手段と、
前記カフ内の圧力値に対応した所定の信号レベルを出力する圧力センサと、 前記信号レベルから導出される圧力値、および、前記脈波信号かつ Zまたはコロト コフ音、に基づいて血圧値を導出する血圧値導出手段と、
前記カフの非加圧時における前記信号レベルが所定値以上変化した場合に、前 記圧力値に対し前記圧力センサの特性変化を補償する調整を行う調整手段と、 を有することを特徴とする血圧測定装置。
[2] 外耳およびその周辺部に装着されるカフと、
前記カフによる圧迫部及びその周辺力 脈波信号かつ Zまたはコロトコフ音を取得 する信号取得手段と、
前記カフ内の圧力値に対応した所定の信号レベルを出力する圧力センサと、 前記圧力センサ近傍の温度を測定するための温度測定手段と、
前記信号レベルから導出される圧力値、および、前記脈波信号かつ Zまたはコロト コフ音、に基づいて血圧値を導出する血圧値導出手段と、
前記温度測定手段で測定された温度が所定値以上変化した場合に、前記圧力値 に対し前記圧力センサの特性変化を補償する調整を行う調整手段と、
を有することを特徴とする血圧測定装置。
[3] 外耳およびその周辺部に装着されるカフと、
前記カフによる圧迫部及びその周辺力 脈波信号かつ Zまたはコロトコフ音を取得 する信号取得手段と、
前記カフ内の圧力値に対応した所定の信号レベルを出力する圧力センサと、 前記圧力センサ近傍の温度を測定するための温度測定手段と、
前記信号レベルから導出される圧力値、および、前記脈波信号かつ Zまたはコロト コフ音、に基づいて血圧値を導出する血圧値導出手段と、
前記カフの非加圧時における前記信号レベルが所定値以上変化し、かつ、前記温 度測定手段で測定された温度が所定値以上変化した場合に、前記圧力値に対し前 記圧力センサの特性変化を補償する調整を行う調整手段と、
を有することを特徴とする血圧測定装置。
[4] 前記調整手段は、前記カフの非加圧時における前記圧力センサから出力される信 号レベルを圧力値の基準として調整することを特徴とする請求項 1に記載の血圧測 定装置。
[5] 圧力センサの温度特性に対応した 1以上の特性パラメータを記憶する記憶手段と、 前記記憶手段に記憶された 1以上の特性パラメータから、前記温度測定手段により 得られた温度に対応した特性パラメータを選択する選択手段と、
をさらに有し、前記調整手段は選択された特性パラメータに基づいて前記圧力値導 出手段に対して調整を行うことを特徴とする請求項 2に記載の血圧測定装置。
[6] 前記信号取得手段により得られる前記脈波信号が、光電センサにより得られる光電 脈波信号であることを特徴とする請求項 1に記載の血圧測定装置。
[7] 前記外耳及びその周辺部は、浅側頭動脈またはその分枝周辺であることを特徴と する請求項 1に記載の血圧測定装置。
[8] 外耳及びその周辺部をカフで圧迫する圧迫工程と、
前記圧迫工程により圧迫される圧迫部及びその周辺力 脈波信号かつ Zまたはコ 口トコフ音を取得する信号取得工程と、
前記カフ内の圧力値に対応した所定の信号レベルを圧力センサから出力する信号 出力工程と、
前記圧力センサ近傍の温度を測定するための温度測定工程と、
前記信号レベルから導出される圧力値、および、前記脈波信号かつ Zまたはコロト コフ音、に基づいて血圧値を導出する血圧値導出工程と、
前記温度測定工程で測定された温度が所定値以上変化した場合に、前記圧力値 に対し前記圧力センサの特性変化を補償する調整を行う調整工程と、
を有することを特徴とする血圧測定方法。
PCT/JP2006/305951 2005-04-08 2006-03-24 血圧測定装置および血圧測定方法 WO2006109519A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06729899.2A EP1867276A4 (en) 2005-04-08 2006-03-24 BLOOD PRESSURE METER AND BLOOD PRESSURE MEASUREMENT PROCEDURE
US11/858,683 US20080071179A1 (en) 2005-04-08 2007-09-20 Blood pressure measuring apparatus and blood pressure measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-112560 2005-04-08
JP2005112560A JP4559279B2 (ja) 2005-04-08 2005-04-08 血圧測定装置、血圧測定方法、並びに制御プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/858,683 Continuation US20080071179A1 (en) 2005-04-08 2007-09-20 Blood pressure measuring apparatus and blood pressure measuring method

Publications (1)

Publication Number Publication Date
WO2006109519A1 true WO2006109519A1 (ja) 2006-10-19

Family

ID=37086805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305951 WO2006109519A1 (ja) 2005-04-08 2006-03-24 血圧測定装置および血圧測定方法

Country Status (6)

Country Link
US (1) US20080071179A1 (ja)
EP (1) EP1867276A4 (ja)
JP (1) JP4559279B2 (ja)
CN (1) CN100542480C (ja)
TW (1) TWI308866B (ja)
WO (1) WO2006109519A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4941749B2 (ja) * 2007-07-20 2012-05-30 アイシン精機株式会社 マットレス装置
JP4978483B2 (ja) * 2008-01-23 2012-07-18 オムロンヘルスケア株式会社 血圧測定装置および血圧測定データの処理方法
JP5146439B2 (ja) 2009-11-04 2013-02-20 オムロンヘルスケア株式会社 電子血圧計
JP5658919B2 (ja) * 2010-06-22 2015-01-28 テルモ株式会社 血圧計
GB201012337D0 (en) * 2010-07-23 2010-09-08 Grotov Yury Blood pressure monitor calibration
EP2632324A4 (en) 2010-10-27 2015-04-22 Gen Hospital Corp DEVICES, SYSTEMS AND METHOD FOR MEASURING BLOOD PRESSURE IN AT LEAST ONE VESSEL
CN103284707A (zh) * 2012-02-28 2013-09-11 Ge医疗系统环球技术有限公司 校正脉搏压力值的传感器阵列和方法
CN102743164B (zh) * 2012-06-29 2014-02-12 深圳市理邦精密仪器股份有限公司 一种血压测量系统的硬件参数补偿方法及系统
JP6003487B2 (ja) * 2012-09-28 2016-10-05 オムロンヘルスケア株式会社 血圧測定装置、血圧測定方法、血圧測定プログラム
US20140288441A1 (en) * 2013-03-14 2014-09-25 Aliphcom Sensing physiological characteristics in association with ear-related devices or implements
US10758130B2 (en) 2014-03-31 2020-09-01 Welch Allyn, Inc. Single site vitals
US20160242731A1 (en) * 2014-12-17 2016-08-25 Albrik Levick Gharibian Smart blood pressure measuring system (SBPMS)
CN106923807A (zh) * 2015-12-31 2017-07-07 北京大学深圳研究生院 基于温度对血压测量值进行校正的方法及系统
CN106539578A (zh) * 2017-01-09 2017-03-29 广东小天才科技有限公司 一种生理参数检测方法及装置
WO2019237237A1 (en) * 2018-06-12 2019-12-19 Vita-Course Technologies Co., Ltd. Apparatus for determining blood and cardiovascular conditions and method for using the same
TWI688368B (zh) 2018-10-31 2020-03-21 研能科技股份有限公司 穿戴式健康監測裝置
CN112826471B (zh) * 2019-11-05 2023-12-01 深圳市大富智慧健康科技有限公司 血压检测装置、血压检测系统及血压监测方法
CN113018550A (zh) * 2021-03-11 2021-06-25 深圳市人民医院 一种便携式心衰脱水装置
CN113017588B (zh) * 2021-03-15 2024-01-09 广东乐心医疗电子股份有限公司 一种血压测量方法、系统、装置及血压计

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417651B2 (ja) * 1981-08-21 1992-03-26 Nat Res Dev
JPH057558A (ja) * 1991-07-04 1993-01-19 Nippon Koden Corp 連続型非観血血圧測定装置
JPH06254058A (ja) * 1993-03-05 1994-09-13 Omron Corp 電子血圧計
JPH06261869A (ja) * 1993-03-12 1994-09-20 Omron Corp 圧力計測装置
JPH07275226A (ja) * 1994-04-11 1995-10-24 Nippon Koden Corp 血液の光減衰量測定方法および光センサ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3051165A (en) * 1959-10-14 1962-08-28 Honeywell Regulator Co Apparatus for automatically measuring blood pressure and pulse rate
US3412729A (en) * 1965-08-30 1968-11-26 Nasa Usa Method and apparatus for continuously monitoring blood oxygenation, blood pressure, pulse rate and the pressure pulse curve utilizing an ear oximeter as transducer
US4140110A (en) * 1976-12-27 1979-02-20 American Optical Corporation Systolic pressure determining apparatus and process using integration to determine pulse amplitude
US4349034A (en) * 1978-04-10 1982-09-14 Johnson & Johnson Automatic mean blood pressure reading device
US4328810A (en) * 1979-10-03 1982-05-11 United States Surgical Corporation Automatic blood pressure system
US4520820A (en) * 1983-04-15 1985-06-04 Aspen Laboratories, Inc. Automatic tourniquet with improved pressure resolution
US5111817A (en) * 1988-12-29 1992-05-12 Medical Physics, Inc. Noninvasive system and method for enhanced arterial oxygen saturation determination and arterial blood pressure monitoring
EP0778001B1 (en) * 1995-05-12 2004-04-07 Seiko Epson Corporation Apparatus for diagnosing condition of living organism and control unit
US6099476A (en) * 1997-10-15 2000-08-08 W. A. Baum Co., Inc. Blood pressure measurement system
IL136079A0 (en) * 2000-04-19 2001-05-20 Cheetah Medical Inc C O Pepper Method and apparatus for monitoring the cardiovascular condition, particularly the degree of arteriosclerosis in individuals
US6575912B1 (en) * 2001-10-16 2003-06-10 Pacesetter, Inc. Assessing heart failure status using morphology of a signal representative of arterial pulse pressure
US7341559B2 (en) * 2002-09-14 2008-03-11 Masimo Corporation Pulse oximetry ear sensor
CN101912257B (zh) * 2003-10-09 2013-04-24 日本电信电话株式会社 生物体信息检测电路和生物体信息测量装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417651B2 (ja) * 1981-08-21 1992-03-26 Nat Res Dev
JPH057558A (ja) * 1991-07-04 1993-01-19 Nippon Koden Corp 連続型非観血血圧測定装置
JPH06254058A (ja) * 1993-03-05 1994-09-13 Omron Corp 電子血圧計
JPH06261869A (ja) * 1993-03-12 1994-09-20 Omron Corp 圧力計測装置
JPH07275226A (ja) * 1994-04-11 1995-10-24 Nippon Koden Corp 血液の光減衰量測定方法および光センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1867276A4 *

Also Published As

Publication number Publication date
JP2006288626A (ja) 2006-10-26
TW200640413A (en) 2006-12-01
CN100542480C (zh) 2009-09-23
TWI308866B (en) 2009-04-21
US20080071179A1 (en) 2008-03-20
EP1867276A1 (en) 2007-12-19
EP1867276A4 (en) 2014-01-08
JP4559279B2 (ja) 2010-10-06
CN101150979A (zh) 2008-03-26

Similar Documents

Publication Publication Date Title
WO2006109519A1 (ja) 血圧測定装置および血圧測定方法
US9326692B2 (en) Blood pressure measurement device and blood pressure measurement method
RU2522969C2 (ru) Электронный сфигмоманометр и способ измерения кровяного давления
US8808189B2 (en) Blood pressure measurement device including cuff to be wrapped around measurement site
US20100268098A1 (en) Sphygmomanometer and measurement accuracy check system of sphygmomanometer
WO2011052417A1 (ja) 電子血圧計
WO2010055783A1 (ja) 表示が改善された血圧測定装置
US6099476A (en) Blood pressure measurement system
US20220000380A1 (en) Sphygmomanometer
EP1808123A1 (en) Blood pressure measuring device and blood pressure measuring method
US20080077021A1 (en) Blood Pressure Monitor Calibration Device And Method For Calibrating A Blood Pressure Monitor
JP3261682B2 (ja) ハイブリッド血圧計
JP6658332B2 (ja) 血圧計
JP5200943B2 (ja) 血圧測定装置
JP2013056088A (ja) 血圧計
JP2012152372A (ja) 血圧測定装置および血圧測定方法
JP2011103982A (ja) 電子血圧計
WO2021039301A1 (ja) 血圧計、血圧算出方法、およびプログラム
JP2007135716A (ja) アナログ状表示器を備えた電子式血圧計
JP4878472B2 (ja) アナログ状表示器を備えた電子式血圧計
JP4673030B2 (ja) 血圧測定装置
US20230125180A1 (en) Blood pressure measurement system utilizing auscultatory signal acquisition
CN220588253U (zh) 血压仪
JP2012115413A (ja) 電子血圧計
WO2023106277A1 (ja) 血圧測定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680009852.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11858683

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006729899

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729899

Country of ref document: EP