WO2006107013A1 - Supply power adjusting apparatus and semiconductor manufacturing apparatus - Google Patents

Supply power adjusting apparatus and semiconductor manufacturing apparatus Download PDF

Info

Publication number
WO2006107013A1
WO2006107013A1 PCT/JP2006/307030 JP2006307030W WO2006107013A1 WO 2006107013 A1 WO2006107013 A1 WO 2006107013A1 JP 2006307030 W JP2006307030 W JP 2006307030W WO 2006107013 A1 WO2006107013 A1 WO 2006107013A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
heater
supply
fluctuation
regulator
Prior art date
Application number
PCT/JP2006/307030
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Ishizu
Masayuki Suzuki
Original Assignee
Kokusai Electric Semiconductor Service Inc.
Sanko Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Semiconductor Service Inc., Sanko Co., Ltd. filed Critical Kokusai Electric Semiconductor Service Inc.
Priority to JP2007511224A priority Critical patent/JP5204481B2/en
Priority to CN2006800062069A priority patent/CN101128972B/en
Publication of WO2006107013A1 publication Critical patent/WO2006107013A1/en
Priority to HK08108043.2A priority patent/HK1112536A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/40Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices
    • G05F1/44Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only
    • G05F1/45Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating

Definitions

  • the present invention relates to a supply power regulator that supplies power to a heater, and a semiconductor manufacturing apparatus using the same.
  • FIG. 3 shows a conventional supply power regulator for a heater.
  • the heater power supply regulator 20 has a power receiving terminal block 2 connected to the AC power source 1 at its input end and a distribution terminal block 6 connected to the heater 7 at its output end.
  • a power breaker 3, a power transformer 4, and a power control thyristor 5 as a power regulator are connected between the power receiving terminal block 2 and the distribution terminal block 6.
  • the heater 7 is provided with a thermocouple 8 for temperature measurement.
  • AC power supply 1 is received by power receiving terminal block 2, and power is supplied to power transformer 4 through power breaker 3.
  • the power transformed by the power transformer 4 is controlled by the power control thyristor 5 and supplied from the distribution terminal block 6 to the heater 7.
  • the heater 7 is heated and the temperature of the heater 7 changes.
  • the heater temperature is measured by a temperature measuring thermocouple 8 and input to a temperature controller 9.
  • the temperature controller 9 calculates the difference between the measurement temperature measured by the thermocouple 8 for temperature measurement and the set temperature, and calculates the amount of electric power to be supplied to the heater 7 according to the temperature difference.
  • the calculation result is converted into a phase control amount and output as a control signal from the temperature controller 9 to the power control thyristor 5.
  • the power control thyristor 5 supplies power to the heater 7 according to the timing of the control signal.
  • the heater supply power regulator 20 detects the heater temperature and determines the timing at which the temperature controller 9 outputs a control signal, and controls the phase of the power control thyristor 5 according to this timing.
  • the temperature of the heater 7 is controlled to become the set temperature.
  • FIG. 4 shows how this phase is controlled.
  • Fig. 4 (a) shows the power supply waveform of the AC power supply
  • Fig. 4 (b) shows the power control thyristor control signal for controlling the power control thyristor.
  • the power control thyristor control signal generation power for each cycle of the AC power supply is set to the power control period A, which is the period until the power supply waveform reaches zero volts.
  • the period until the control signal is generated is designated as reactive power period B.
  • the power supply is required to have a maximum power that is greater than that required when the temperature is stable. Therefore, the active power when the temperature is stable is only about 60% to 80% of the maximum power, and the rest is reactive power, so the efficiency as a power source is bad.
  • Zero cross control has the same circuit power as Fig. 3
  • SSR solid state relay
  • Fig. 5 shows how this zero-cross control is performed.
  • Fig. 5 (a) shows the power supply waveform of the AC power supply
  • Fig. 5 (b) shows the SSR control signal for power control that controls the SSR. Uses a firing method that turns on the SSR when the power supply waveform is at zero volts.
  • the AC power supply's specified time (A + B) is set to one cycle (one cycle time), and the power control SSR control signal is output during This period is referred to as power control period A, and other periods are referred to as non-energization period B during which no power is consumed.
  • Zero-crossing control simply turns the power on and off, so no reactive power is generated in principle.
  • FIG. 6 shows a control method using a phase advance capacitor.
  • the solid line in Fig. 6 (a) shows the supply-side AC power supply waveform W1
  • the dotted line shows the control-side power supply waveform W2.
  • Figure 6 (b) shows the thyristor control signal for power control.
  • the power control at the phase angle P1 is, for example, 70%.
  • the SSR has a relatively large on-state voltage compared to a high-speed switching power control semiconductor such as an insulated bipolar transistor IGBT (Insulated Gate Bipolar Transistor). Because of this, there was a problem that the responsiveness of the heater temperature deteriorated. Also, when using a phase advance capacitor, With capacitor correction, power adjustment is required to limit the profile up to the maximum power. This is because the phase is advancing, and suddenly the phase is lost when the maximum power is applied. Therefore, it was not easy to use.
  • IGBT Insulated Gate Bipolar Transistor
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and is compact, excellent in temperature responsiveness, stable against power supply fluctuations and load fluctuations, and easy to use. It is to provide a semiconductor manufacturing apparatus.
  • a heater provided around the reactor, and a supply power regulator that adjusts the supply power to the heater;
  • the power supply regulator converts the AC voltage of the AC power source into AC power corresponding to the frequency of the control signal and supplies it to the heater, and the reverse generated by the switching operation of the IGBT conversion.
  • a semiconductor manufacturing apparatus comprising a regenerative IGB T change for regenerating an electromotive force and returning it to the AC power source.
  • the present inventor has found that the IGBT is optimal for the above-mentioned object in consideration of power consumption, high-speed switching, and the like.
  • the present inventors have come up with the idea that if switching is performed, it is not necessary to provide a rectifier circuit.
  • the supply power regulator of the embodiment supplies the output of the converter that performs high-speed switching operation as power to the heater, and uses an IGBT that is a high-speed switching power control element for the converter device. Speak.
  • the power source is effectively used by switching the AC voltage of the AC power source directly with an IGBT and supplying pulsed AC power to the heater so that the reactive power is almost zero.
  • a supply power regulator 21 for supplying power from an AC power source 1 to a heater 7 includes a power receiving terminal block 2 connected to the AC power source 1 at its input end, and a heater at its output end. Distribution terminal block 6 connected to 7.
  • the AC power source 1 is, for example, a single-phase commercial power source having a frequency of 50Z60Hz and AC 200V.
  • the heater 7 is, for example, a resistance-mouth heat heater made of molybdenum silicide.
  • a power supply breaker 3 is connected to the power receiving terminal block 2, and a power transformer 4 is further connected as necessary.
  • AC power source 1 is received by power receiving terminal block 2, and power is supplied to power source transformer 4 through power source breaker 3.
  • This power transformer 4 may not be used depending on the specifications of the heater 7.
  • the supply power regulator 21 may prepare a plurality of IGBT conversions 11 so that the heater 7 can be divided into a plurality of regions and individually controlled.
  • the secondary side of the power transformer 4 further includes an input side filter circuit 10, an IGBT converter 11, a power fluctuation detection means 22, a load fluctuation detection means 23, a temperature fluctuation detection means 24, and a variable frequency.
  • Means (hereinafter referred to as frequency variable circuit) 15 and an output side filter circuit 30 are provided.
  • the power transformed by the power supply transformer 4 is supplied to the IGBT transformer 1 controlled by the frequency variable circuit 15 through the input side filter circuit 10 and connected to the distribution terminal block 6 through the output side filter circuit 30.
  • the input-side filter circuit 10 is a low-pass filter using LC as a filter system, and has a configuration in which filter elements are arranged in the order of CLC.
  • Coil L is inserted into the input line and common line divided into L1-1 and L1-2.
  • the capacitor C11 before the LC is for removing high-frequency components on the power supply waveform and for reducing loss, and it is desirable to use a capacitor with a very small capacity.
  • the cut-off frequency of the low-pass filter is set to 1Z10 to 1Z40 (500Hz to 2KHz) at the switching frequency (the number of times the IGBT is turned ONZOFF in 1 second and set to 20KHz in this example) from the viewpoint of power supply waveform and noise. Yes. Therefore, it is possible to cut off high frequency components and reliably supply electric power of the target commercial frequency (50 or 60 Hz) to the heater 7.
  • the input side filter circuit 10 suppresses electromagnetic noise generated by switching the IGBT transformation 11 at high speed and high frequency. Therefore, induction of electromagnetic noise in the input line of the IGBT converter 11 connected to the AC power source 1 side can be suppressed, and noise failure can be prevented from occurring in the AC power source.
  • the output side filter circuit 30 is a low-pass filter using LC as a filter system, and is configured in the order of filter elements LCC.
  • the coil L is divided into L2-1 and L2-2 and inserted in the output line and common line.
  • the capacitor C2-2 after the LC is a capacitor for removing a high frequency component on the power supply waveform as described in the input side filter circuit 10.
  • the cutoff frequency of this low-pass filter is similarly 500 Hz to 2 kHz.
  • the output side filter circuit 30 smoothes (smooths) the output obtained by switching with the IGBT converter 11 and effectively removes harmonic components contained in the output.
  • the IGBT conversion 11 includes a power IGBT conversion 1 la and a regeneration IGBT conversion 1 lb.
  • the IGBT transformation 11 is preferably a double arm type because switching of positive voltage 'current and negative voltage' current waveforms is performed separately.
  • the power IGBT converter 11a is also composed of a high-speed rectifier circuit FRD1 and a chopper section and a force with IGBT2.
  • the chopper part has an upper arm to which a PWM signal is partially applied and a lower arm.
  • IGBT conversion for regeneration 1 lb is equipped with IGBT3 and high-speed rectifier circuit FRD2.
  • the alternating current is directly switched at the high-speed and high-frequency basic carrier frequency by the IGBT2.
  • the switch timing by the PWM method detects the zero cross point from the alternating current of the supplier, and adjusts the control signal (PWM signal) based on the zero cross point. Then, the alternating current of the supply source is switched at the combined carrier frequency to obtain a pulse modulated wave, and this is supplied to the heater 7 via the output side filter circuit 30.
  • the control signal output from the frequency variable circuit 15 changes the duty ratio of the control signal applied to the gate (arm) of the IGBT according to fluctuations (temperature, power, load).
  • FIG. 8 shows the switching operation of the main part of the supply power regulator shown in FIG. 7, and the voltage waveforms at each point ((a) to (, (f) to (i)) shown in FIG.
  • the operation of the IGBT converter 11 will be described in detail with reference to Fig. 8.
  • the voltage waveform A of the commercial frequency AC power supply is supplied to the terminal block TBI as shown in (a).
  • the input frequency of the PWM signal to the IG BT converter 11 is fixed at 20 KHz (50 sec), as shown in (b) and (c) on the upper and lower arms of IG BT2, respectively.
  • the PWM waveform 11 output voltage waveform B is such that the commercial frequency AC power supply is energized only when IGBT2 is ON (when the PWM signal is applied).
  • the output waveform is as shown in (d). It is smoother and the output side filter circuit 30 outputs a voltage waveform with less distortion and a commercial frequency as shown in (e) via the distribution terminal block (TB2).
  • the voltage peak value of the supply voltage that is output to the final load is controlled by changing the time that IGBT2 is ON, so the frequency of the supply voltage is controlled by the PWM signal to IGBT2 that is used for IGBT conversion 11. Without changing the value, only the peak value can be controlled within the range of 0 to 70% and output to the load!
  • the pulse width of the chopper PWM signal applied to the upper arm and lower arm of IGBT 2 is larger than the pulse widths shown in (b) and (c) above, as shown in (f) and (g). If it is increased, the voltage waveform B at the output of the IGBT converter 11 becomes a waveform as shown in (h), and the voltage waveform of the supply voltage output to the final load (i) is as described above (e). Can increase the voltage peak value
  • IGBT2 which is the switching element that constitutes this IGBT transformation 11, is a bipolar power transistor combined with a voltage-driven gate, and has low gate drive power consumption and is suitable for high-speed switching. It is a high-frequency and large-capacity element, and its on-voltage is much smaller than that of MOSFET (SSR). This IGBT2 is controlled at a high frequency to reduce reactive power.
  • SSR MOSFET
  • the temperature fluctuation detection means 24 detects the temperature fluctuation of the heater 7 and outputs a feedback signal corresponding to the fluctuation to the frequency variable circuit 15.
  • This temperature fluctuation detecting means 24 has a temperature measuring thermocouple 8 as a temperature sensor and a temperature controller 9 for adjusting the heater temperature.
  • the required number of thermocouples 8 for temperature measurement are provided near the heater 7, and the heater temperature is measured by the thermoelectromotive force.
  • the temperature controller 9 obtains the temperature difference (temperature fluctuation) between the measured temperature of the heater 7 measured by the thermocouple 8 for temperature measurement and the set temperature. In accordance with this temperature difference, the amount of power to be supplied to the heater 7 is calculated, and the calculation result is output to the frequency variable circuit 15 as a feedback signal.
  • the temperature controller 9 outputs an alarm when a temperature abnormality is detected.
  • the power fluctuation detection means 22 detects a fluctuation in output power from the input-side filter circuit 10 and outputs a feedforward signal corresponding to the fluctuation to the frequency variable circuit 15.
  • This power fluctuation detection means 22 includes a power transformer 12 that measures the current flowing through the output of the input side filter circuit 10, a voltage measurement line 13 that measures the output line voltage of the input side filter circuit 10, and a power supply voltage ' Current feedforward circuit 14.
  • the power supply voltage / current feedforward circuit 14 determines the difference between the measured current measured by the current transformer 12 and the set current, and the measured voltage and setting measured by the voltage measurement line 13. Find the difference from the voltage. The product (electric power) of these differences is the power supply fluctuation. This power supply fluctuation is reported to the frequency variable circuit 15 as a feedforward signal.
  • the load fluctuation detecting means 23 detects a fluctuation in the output power supplied to the heater 7, and outputs a feedback signal corresponding to the fluctuation to the frequency variable circuit 15.
  • This load fluctuation detecting means 23 is a voltage measurement line 17 for measuring the output line voltage of the output side filter circuit 30. And a current transformer 18 for measuring the current flowing through the heater 7 and a control voltage / current feedback circuit 16.
  • the control voltage / current feedback circuit 16 calculates the difference between the measured voltage measured by the voltage measurement line 17 and the set voltage and the difference between the measured current measured by the current transformer 18 and the set current. .
  • the product of these differences (electric power) is the load fluctuation.
  • This load variation is applied to the frequency variable circuit 15 as a feedback signal.
  • the current transformer 18 may be provided on the heater 7 side outside the distribution terminal block 6 in order to accurately measure fluctuations in the load current.
  • the frequency variable circuit 15 frequency-controls the IGBT conversion 11 according to the fluctuation results of the power fluctuation detection means 22 and the load fluctuation detection means 23.
  • the frequency variable circuit 15 includes a fluctuation signal output from the control voltage / current feedback circuit 16 of the power supply voltage of the power supply fluctuation detection means 22, the current feedforward circuit 14 and the load fluctuation detection means 23, and the temperature. From the signal output from the temperature controller 9 of the fluctuation detecting means 24, a gate control signal having a frequency corresponding to the amount of power to be supplied to the heater 7 is added to the gate of each IGBT constituting the IGBT converter 11.
  • the IGBT is frequency controlled, and the electric power supplied to the heater 7 is controlled by changing the frequency substantially continuously.
  • the controllability of power is improved as the frequency variable width is larger.
  • the frequency control by the frequency variable circuit 15 is the same as the VF (variable frequency) control of the WVF control in that the frequency is changed.
  • This frequency control includes PWM control that controls the duty ratio while keeping the basic carrier frequency constant. V and deviation of VF control and PWM control are zero cross control because the IGBT is turned on at zero volt.
  • the temperature controller 9 and the frequency variable circuit 15 control the temperature of the heater 7 to be the set temperature as follows.
  • the temperature controller 9 calculates the temperature difference between the measured temperature and the set temperature, calculates the amount of power to be supplied to the heater 7 according to the temperature difference, and outputs the calculation result to the frequency variable circuit 15. Output.
  • the frequency variable circuit 15 provides the IGBT conversion 11 with a gate control signal having a frequency corresponding to the output value from the temperature controller 9.
  • the IGBT converter 11 converts the AC power from the input-side filter circuit 10 into AC power having a frequency corresponding to the gate control signal of the frequency variable circuit 15. Instead, the heat is supplied to the heater 7 via the output side filter circuit 30. When electric power is supplied to the heater 7, the temperature of the heater 7 changes.
  • Feedback control is performed by such a closed loop of temperature fluctuation detection ⁇ control calculation ⁇ output of output value ⁇ temperature change ⁇ temperature fluctuation detection ⁇ ⁇ . Since the output amount is determined by the temperature controller 9 and the frequency variable circuit 15 after detecting the temperature state, the feedback control can be performed satisfactorily. Therefore, the temperature fluctuation of the heater is corrected, stable electric power can be supplied to the heater 7, and the heater 7 can be maintained at a predetermined temperature. In addition, since frequency control is zero-cross control, highly efficient control without reactive power can be achieved.
  • the voltage fluctuation becomes a current fluctuation and a voltage fluctuation in the output of the input side filter circuit 10.
  • the current fluctuation and voltage fluctuation are measured by the current transformer 12 and the voltage measurement line 13 and detected by the power supply voltage'current feedforward circuit 14.
  • a control signal corresponding to the power fluctuation is input from the power supply voltage / current feedforward circuit 14 to the frequency variable circuit 15.
  • the frequency variable circuit 15 outputs a gate control signal having a frequency corresponding to the difference between the power supply power and the set power.
  • the gate control signal is added to the IGBT transformation 11 to control the frequency of the IGBT transformation 11.
  • the heater 7 when the heater temperature is favorably feedback-controlled, the heater 7 may be disturbed (for example, exposed to outside air), or the properties of the heater may be slightly changed. When it fluctuates, it appears as a fluctuation in the output power of the IGBT converter 11. That is, the load current flowing through the heater 7 and the load voltage applied to the heater 7 fluctuate. This current fluctuation and voltage fluctuation are detected by the current transformer 18 and the voltage measurement line 17 and measured by the control voltage / current feedback circuit 16. From the control voltage / current feedback circuit 16, a signal corresponding to the power fluctuation is input to the frequency variable circuit 15. The frequency variable circuit 15 uses this signal to control the frequency gate according to the difference between the power supply and the set power. Output a signal.
  • the gate control signal is added to the IGBT converter 11 to control the frequency. Therefore, the load fluctuation is corrected and stable power can be supplied to the heater 7. In addition, since frequency control is zero-cross control, highly efficient control without reactive power can be achieved.
  • This load fluctuation control has two steps, disturbance ⁇ power fluctuation detection, compared to temperature fluctuation control that goes through three steps of disturbance ⁇ heater temperature change ⁇ thermocouple detection, so the thermocouple detection step can be omitted. Fast response characteristics.
  • the power supply fluctuation detection means 22, the load fluctuation detection means 23, the temperature fluctuation detection means 24, and the frequency variable circuit 15 are provided in the power supply regulator 21, but this is not an example.
  • a power fluctuation detection means 22, a load fluctuation detection means 23, a temperature fluctuation detection means 24, and a frequency variable circuit 15 are provided. These may be combined.
  • the frequency variable circuit 15 outputs the gate control signal to the IGBT from the power fluctuation detection means 22, the load fluctuation detection means 23, the temperature fluctuation detection means 24, and the fluctuation signal of 24 powers. Another embodiment will be described.
  • the power fluctuation detection means 22 converts the current by the current transformer 12 and the voltage by the voltage measurement line 13 from the effective value (RMS) to DC by the ACZDC converters 22a and 22b, respectively, and the current by the calculator 22c (DC)
  • X Voltage (DC) —Calculate the secondary power and input it to the frequency variable circuit 15 as the primary power fluctuation feedback signal FB1.
  • the temperature fluctuation detecting means 24 inputs the signal output from the temperature controller 9 to the frequency variable circuit 15 as a power setting signal.
  • the frequency variable circuit 15 has two power gain adjusters 15a and 15b and one power setting gain adjuster 15c inside, and can be adjusted individually by analog calculation or CPU calculation. Adjust the level of each signal level. Each level-adjusted signal is input to the adder 15f and added. This addition is also analog or CPU Is done by.
  • the primary side power fluctuation feedback signal FBI and the secondary load fluctuation feedback signal FB2 are input to the frequency variable circuit 15, respectively, the primary side feedback power fluctuation signal FBI and the secondary side
  • the gain of the load fluctuation feedback signal FB2 is adjusted by the power gain adjusters 15a and 15b, inverted by the inverters 15d and 15e, respectively, and input to the adder 15f.
  • the adder 15f compares the feedback signal FBI ′ (FB2 ′) when the power setting signal is output in advance with the feedback signal FB 1 (FB2). The difference is added to the power setting signal as power fluctuation (load fluctuation).
  • the power setting signal is input from the temperature variation detecting means 24 to the frequency variable circuit 15, the power setting signal is input to the adder 15f after the gain is adjusted by the power setting gain adjuster 15c.
  • the frequency variable circuit 15 uses the adder 15f to change the fluctuations of the primary-side power fluctuation feedback signal FBI and the secondary-side load fluctuation feedback signal FB2 that have been gain-adjusted as described above.
  • the optimal power setting signal is output as a gate control signal (IGBT frequency setting signal).
  • FIG. 2 is a specific explanatory diagram of the input side filter circuit 10, the IGBT converter 11, and the output side filter circuit 30 described above.
  • Both the input side filter circuit 10 and the output side filter circuit 30 are configured by normal mode filter circuits.
  • the input-side filter circuit 10 is connected in parallel between the choke coil ACL 1 connected in series to the input line 31 and the input line 31 on the power side of the choke coil ACL 1 11 and the common line 33.
  • multiple capacitors CF1 to CF6 Power is also constructed.
  • the input side filter circuit 10 is configured by a normal mode filter circuit, electromagnetic noise leaking from the IGBT modification 11 to the input side can be effectively attenuated.
  • the output side filter circuit 30 includes a choke coil ACL2 connected in series to the output line 32, and a plurality of capacitors connected in parallel between the output line 32 on the heater 7 side of the choke coil ACL2 and the common line 33. Consists of CF7 to CF12. If the output side filter circuit 30 is configured with a normal mode filter circuit, harmonic components contained in the AC power output from the IGBT converter 11 can be effectively removed. Also, do not provide an element on the common line 33! / Zoom mode filter is a high frequency spike component (back electromotive force) Can be returned to lb. As a result, it is possible to effectively perform power regeneration without releasing energy on the common line 33, and the energy efficiency of the AC power source 1 can be improved.
  • the IGBT converter 11 is composed of a power IGBT conversion 11 & which is a main circuit switching element section that performs ONZOFF of the main circuit, and a regenerative IGBT BT converter l ib that operates when the main circuit switching element is OFF. It is configured and integrated into a package. Each element consists of two systems, positive voltage * current and negative voltage * current, and a high-speed rectifier element is also arranged to prevent backflow.
  • the power IGBT converter 11a includes a high-speed rectifier circuit FRD1, a series upper and lower two-stage front-stage switch circuit IGBT1, a snubber circuit CRF1, and a series upper and lower two-stage rear-stage switch circuit (part of Chiyoba). You are composed. In Figure 2, two IGBTs are prepared to allow a large amount of current to flow. As a switching method, the IGBT conversion 11a for electric power is ONZOFF controlled by PWM control (pulse width modulation) as described above.
  • PWM control pulse width modulation
  • the regenerative IGBT converter l ib operates by judging whether the power supply voltage is positive or negative. Depending on the pure resistance load with a pure resistance load or inductive load, it is desirable to have a circuit configuration that can adjust the switching operation with a delay time.
  • the high-speed rectifier circuit FRD1 is composed of a center-tap type high-speed rectifier element with the input line 31 connected to the center tap. Then, the upper switch circuit IGBT1 is divided into the upper and lower stages according to the polarity. [0047]
  • the front-stage switch circuit IGBT1 and the rear-stage switch circuit IGBT2 are both composed of tabular IGBTs stacked in two stages in series, and a freewheel diode is connected in parallel to each IGBT.
  • the front-stage switch circuit IGBT1 and the rear-stage switch circuit IGBT2 are operated in parallel, and the positive half-wave distributed by the high-speed rectifier circuit FRD1 is directly switched by the upper IGBT and the negative half-wave is directly switched by the lower IGBT.
  • the snubber circuit CRF1 is also configured in a tabular form, and is commonly connected to the front-stage switch circuit IGBT1 and the rear-stage switch circuit IGBT2, and generates current in the circuit when each of the IGBTs constituting them is off and flows through the freewheel diode FWD. Dissipate as heat.
  • the power IGBT conversion 11a distributes the AC applied to the input line 31 according to the polarity by the high-speed rectifier circuit FRD1, and switches the front switch circuit IGBT1 and the rear switch circuit IGBT2 to obtain AC power. Apply AC power to the output side filter circuit 30. Also, the snubber circuit CRF1 dissipates the back electromotive force generated in the power IGBT converter 11a.
  • IGBT conversion for regeneration l ib is a center tap type high-speed rectifier circuit FRD2 with a common line 33 connected to the center tap, a series upper and lower two-stage tabular switch circuit IGBT3, and a switch circuit IGBT3. It consists of two single-type snubber circuits CRF2 and CRF3 connected in parallel to the stage.
  • FIG. 10 shows an example of a perspective view of a heat treatment apparatus 110 as a semiconductor manufacturing apparatus for performing heat treatment on a semiconductor substrate, which is one of processes for manufacturing a semiconductor according to an embodiment of the present invention.
  • This heat treatment apparatus 110 is a batch type vertical heat treatment, and has a casing 112 in which a main part is arranged.
  • a reaction furnace 140 is arranged on the upper rear side in the housing 112. In this reaction furnace 140, a substrate support 130 loaded with a plurality of substrates is carried and heat treatment is performed.
  • FIG. 11 shows an example of a cross-sectional view of the reaction furnace 140.
  • the reactor 140 has a reaction tube 1 42 made of quartz.
  • the reaction tube 142 has a cylindrical shape with the upper end closed and the lower end open. Below this reaction tube 142, a quartz adapter 44 is arranged to point to the reaction tube 142.
  • a reaction vessel 143 is formed by the reaction tube 142 and the adapter 144.
  • a heater 146 is disposed around the reaction tube 142 excluding the adapter 44 in the reaction vessel 143.
  • the lower part of the reaction vessel 143 formed by the reaction tube 142 and the adapter 144 is opened for inserting the substrate support 130, and the open portion (furnace portion) is connected to the furnace seal cap 148 by the adapter 144. It is made to seal by contact
  • the furnace seal cap 148 supports the substrate support 130 and is provided so as to be able to move up and down together with the substrate support 130.
  • the substrate supporter 130 supports a large number of, for example, 25-: L00 substrates 154 in a substantially horizontal state in multiple stages with gaps, and is loaded into the reaction tube 142.
  • the adapter 144 is provided with a gas supply port 156, a gas exhaust port 159, and a force S integrally with the adapter 144.
  • a gas introduction pipe 160 is connected to the gas supply port 156, and an exhaust pipe 162 is connected to the gas exhaust port 159.
  • the processing gas introduced from the gas introduction pipe 160 to the gas supply port 156 is supplied into the reaction pipe 142 via the gas introduction pipe 160 and the nozzle 166 provided on the side wall of the adapter 144.
  • each unit constituting the heat treatment apparatus 110 that is, the substrate processing apparatus for performing the heat treatment, is controlled by the controller 170.
  • the pod 116 is transferred from the pod stage 114 to the pod shelf 120 by the pod transfer device 118, and stocked on the pod shelf 120.
  • the pod 116 stocked on the pod shelf 120 is transported and set to the pod opener 122 by the pod transport device 118, the lid of the pod 116 is opened by the pod opener 122, and the pod 116 is detected by the substrate number detector 124. Detect the number of substrates 154 stored in the.
  • the substrate transfer machine 126 takes out the substrate 154 from the pod 116 at the position of the pod opener 122 and transfers it to the notch aligner 128. In the notch aligner 128, the notch is detected and aligned while the substrate 154 is rotated.
  • the substrate transfer machine 126 takes out the substrate 154 from the notch aligner 128 and transfers it to the substrate support 130.
  • reaction furnace 140 reaction vessel 143 set to a temperature of, for example, about 600 ° C.
  • the substrate support 130 loaded with is inserted, and the reactor 140 is hermetically sealed with the furnace seal cap 148.
  • the furnace temperature is raised to the heat treatment temperature, and the gas is introduced into the reaction tube 142 from the gas introduction pipe 160 through the gas supply port 156, the adapter 144, the gas introduction path 164 provided in the side wall portion, and the nozzle 166. Introduce processing gas.
  • the substrate 154 is heat-treated, the substrate 154 is heated to a set temperature of 1000 ° C., for example.
  • the power supply regulator of the embodiment is used as a part of the controller 170.
  • the temperature in the furnace is lowered to a temperature of about 600 ° C, and then the substrate support 130 supporting the heat-treated substrate 154 is unloaded from the reaction furnace 140 to support the substrate. While all the substrates 154 supported by the tool 130 are cooled, the substrate support tool 130 is put on standby at a predetermined position.
  • the substrate transfer device 126 takes out the substrate 154 from the substrate support 130, and the empty pod set in the pod opener 122 Transport to 116 and house.
  • the pod carrying device 118 carries the pod 116 containing the substrate 154 to the pod shelf 120 or the pod stage 114 to complete a series of processes.
  • the power supply regulator according to the embodiment has the following effects.
  • a full-wave rectifier circuit has a magnitude of 200 (W) X 350 (D) X 100 (H) in the 200A class, which also depends on its capacity. Supply power with such a full-wave rectifier circuit
  • the overall size of the adjuster is about 600 (W) X 800 (D) X 1200 (H).
  • the size of the entire power supply regulator can be reduced to about 80%.
  • the harmonic component included in the output of the IGBT transformation is suppressed by the output side filter circuit, the harmonic component in the AC power supplied to the heater can be attenuated.
  • the energy efficiency of the AC power supply can be improved.
  • IGBT converters are switched at a high speed and a high frequency, so that the number of counter electromotive force generations is so high that power regeneration is performed frequently, which can greatly contribute to the improvement of energy efficiency.
  • the temperature fluctuation feedback control is incorporated, so that a control system with excellent temperature stability can be provided. In addition, stable power control is possible, and usability is good. Since zero-crossing control is used, it is possible to provide a highly efficient supply power regulator that can effectively use power source power that has no reactive power in principle.
  • the output of the temperature controller 9 is added to the frequency variable circuit 15 and the gate control signal of the IGBT is output, it can be compatible with the conventional system. Therefore, the conventional system power can be easily changed to this system with only a slight change.
  • the arithmetic function is ported to the frequency variable circuit 15, and the temperature controller is simply a circuit that detects only the temperature fluctuation. You can make it up!
  • both the power supply voltage fluctuation and the load fluctuation are taken into the control in addition to the temperature fluctuation.
  • only the power supply voltage fluctuation is taken into the control in the temperature fluctuation control.
  • only load fluctuations may be taken into the temperature fluctuation control. In the former, it is possible to obtain stable supply power by correcting voltage fluctuations of the supply power. In the latter, it is possible to suppress the load fluctuation of the heater.
  • the supply power regulator 21 of the above-described embodiment can be used for a semiconductor manufacturing apparatus including a reaction furnace heated by a heater.
  • the reactor is composed of a quartz tube and a cylindrical heater that heats the quartz tube from the outside.
  • the power supply regulator according to the embodiment is used. If the above-described supply power regulator is used in a semiconductor manufacturing apparatus, the stability of the heater temperature can be obtained, so that a high-performance semiconductor device can be obtained.
  • the AC voltage of the AC power source is converted into AC power corresponding to the frequency of the control signal, and this AC power is supplied to the heater, and provided on the input side of the IGBT conversion.
  • Output fluctuation filter circuit for suppressing temperature fluctuation, temperature fluctuation detection means for detecting temperature fluctuation of the heater, and power fluctuation detection for detecting power fluctuation of the AC power supply from AC voltage supplied from the AC power supply to the IGBT converter
  • the amount of power to be supplied to the heater is calculated, and the frequency of the control signal applied to the IGBT converter is controlled according to the calculation result. And a frequency varying means.
  • the harmonic component included in the output of the IGBT conversion is suppressed by the output side filter circuit, it is possible to prevent the harmonic component from being included in the AC power supplied to the heater.
  • the temperature fluctuation is detected by the temperature fluctuation detecting means, the electric energy corresponding to the detection result is calculated by the frequency variable means, and the IGBT fluctuation is frequency controlled according to the calculation result, whereby the temperature fluctuation is detected.
  • the power supplied to the heater is feedback controlled. Therefore, it is possible to keep the heater temperature well at a predetermined temperature.
  • the fluctuation appears as a fluctuation in power on the input side of the IGBT converter.
  • the power fluctuation detection means detects this power fluctuation, the frequency variable means calculates the amount of power according to the detection result, and the IGBT fluctuation is frequency controlled according to the calculation result, thereby supplying power to the power fluctuation. Feedforward control. Therefore, it is possible to suppress the disturbance of the heater temperature caused by the fluctuation of the power source when the feedback control is satisfactorily performed and the amount of power supplied to the heater fluctuates.
  • the load fluctuation detection means detects this power fluctuation, the frequency variable means calculates the amount of power according to the detection result, and the IGBT fluctuation is frequency controlled according to the calculation result, thereby supplying the load fluctuation.
  • the power is feedback controlled. Therefore, it is possible to suppress the disturbance of the heater temperature that occurs when the load fluctuation occurs when the feedback control is performed well and the control of the amount of power supplied to the heater is greatly disturbed by the load fluctuation.
  • the feedback control with respect to the temperature control is incorporated into the feedback control with respect to the temperature control by incorporating the feedforward control with respect to the power supply variation and the feedback control with respect to the load variation.
  • Extremely stable against fluctuations Excellent stability and high stability in heater temperature.
  • IGBT switching is made to switch at high speed, so it has excellent temperature response.
  • the control is not based on the compensation of the phase-advancing capacitor, which improves usability.
  • the converter since the converter is composed of IGBTs, it has excellent transient response.
  • the IGBT frequency control is zero-cross control, the efficiency of the power supply can be improved.
  • the IGBT conversion is a regenerative IGBT conversion that regenerates the back electromotive force generated by the switching operation of the IGBT conversion and returns it to the AC power source. It is a power supply regulator characterized by!
  • the IGBT transformation is equipped with an IGBT transformation for regeneration, and the back electromotive force released as thermal energy is regenerated and returned to the AC power supply, so that the energy efficiency of the AC power supply can be improved.
  • a third aspect is a semiconductor manufacturing apparatus using the supply power regulator of the first or second aspect as a heater power source. Since the power supply regulator of the first invention or the second invention that provides high stability in the heater temperature is provided, a high-performance semiconductor device can be manufactured.
  • FIG. 1 is a block diagram of a supply power regulator according to an embodiment of the present invention.
  • FIG. 2 is a specific block diagram of a main part of a supply power regulator according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a power supply regulator according to a conventional example.
  • FIG. 4 is an explanatory diagram of how power is supplied by conventional phase control.
  • FIG. 5 is an explanatory diagram of how to apply power by zero-crossing control common to the prior art and the embodiment.
  • FIG. 6 is an explanatory diagram of power factor improvement by a conventional phase advance capacitor method.
  • Fig. 7 is a main part diagram of a power supply regulator according to one embodiment of the present invention.
  • FIG. 8 is a diagram showing a switching operation of a main part of the supply power regulator according to one embodiment of the present invention, and voltage waveforms at each point.
  • FIG. 9 is a specific explanatory diagram of a power supply fluctuation detecting unit 22, a load fluctuation detecting unit 23, and a frequency variable circuit 15 according to an embodiment of the present invention.
  • FIG. 10 is a perspective view showing an example of a heat treatment apparatus for performing a heat treatment on a semiconductor substrate, which is one of processes for manufacturing a semiconductor according to an embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing an example of a reaction furnace according to an embodiment of the present invention.

Abstract

A semiconductor manufacturing apparatus for performing heat treatment by carrying a substrate holder, on which a plurality of substrates are loaded, into a reacting furnace. The semiconductor manufacturing apparatus is provided with a heater arranged on a circumference of the reacting furnace, and a supply power adjusting apparatus for adjusting a supplying power to the heater. The supply power adjusting apparatus is composed of a power IGBT converter for converting an alternating voltage from an alternating power supply into an alternating power in accordance with the frequency of a control signal and supplying the heater with the alternating power, and a regenerating IGBT converter for regenerating a back electromotive force generated by switching operation of the IGBT converter and returning the back electromotive force to the alternating power supply.

Description

明 細 書  Specification
供給電力調整器及び半導体製造装置  Supply power regulator and semiconductor manufacturing apparatus
技術分野  Technical field
[0001] 本発明は、ヒータに電力を供給する供給電力調整器、及びそれを用いた半導体製 造装置に関するものである。  The present invention relates to a supply power regulator that supplies power to a heater, and a semiconductor manufacturing apparatus using the same.
背景技術  Background art
[0002] 図 3に従来のヒータ用の供給電力調整器を示す。ヒータ用の供給電力調整器 20は 、その入力端に交流電源 1に接続される受電端子台 2を持ち、その出力端にヒータ 7 に接続される分配用端子台 6を持つ。受電端子台 2と分配用端子台 6との間に、電源 ブレーカ 3、電源トランス 4、電力調整器としての電力制御用サイリスタ 5が接続される 。ヒータ 7に温度測定用熱電対 8が設けられる。  FIG. 3 shows a conventional supply power regulator for a heater. The heater power supply regulator 20 has a power receiving terminal block 2 connected to the AC power source 1 at its input end and a distribution terminal block 6 connected to the heater 7 at its output end. A power breaker 3, a power transformer 4, and a power control thyristor 5 as a power regulator are connected between the power receiving terminal block 2 and the distribution terminal block 6. The heater 7 is provided with a thermocouple 8 for temperature measurement.
[0003] 交流電源 1を受電端子台 2で受電し、電源ブレーカ 3を通して、電源トランス 4に電 力を供給する。電源トランス 4で変圧された電力は、電力制御用サイリスタ 5で制御さ れ、分配用端子台 6からヒータ 7に供給される。これによりヒータ 7が加熱されて、ヒー タ 7の温度が変化する。このヒータ温度は温度測定用熱電対 8によって測定されて温 度調節計 9に入力される。温度調節計 9は、温度測定用熱電対 8で測定された測定 温度と設定温度との差を求め、その温度差に応じてヒータ 7に供給すべき電力量を 演算する。この演算結果は位相制御量に換算されて、温度調節計 9から電力制御用 サイリスタ 5に制御信号として出力される。電力制御用サイリスタ 5は、その制御信号 のタイミングに応じた電力をヒータ 7に供給する。  [0003] AC power supply 1 is received by power receiving terminal block 2, and power is supplied to power transformer 4 through power breaker 3. The power transformed by the power transformer 4 is controlled by the power control thyristor 5 and supplied from the distribution terminal block 6 to the heater 7. As a result, the heater 7 is heated and the temperature of the heater 7 changes. The heater temperature is measured by a temperature measuring thermocouple 8 and input to a temperature controller 9. The temperature controller 9 calculates the difference between the measurement temperature measured by the thermocouple 8 for temperature measurement and the set temperature, and calculates the amount of electric power to be supplied to the heater 7 according to the temperature difference. The calculation result is converted into a phase control amount and output as a control signal from the temperature controller 9 to the power control thyristor 5. The power control thyristor 5 supplies power to the heater 7 according to the timing of the control signal.
このようにヒータ用の供給電力調整器 20は、ヒータ温度を検出して力も温度調節計 9で制御信号を出力するタイミングを決定し、このタイミングに応じて電力制御用サイ リスタ 5を位相制御することで、ヒータ 7の温度が設定温度となるように制御して 、る。  In this way, the heater supply power regulator 20 detects the heater temperature and determines the timing at which the temperature controller 9 outputs a control signal, and controls the phase of the power control thyristor 5 according to this timing. Thus, the temperature of the heater 7 is controlled to become the set temperature.
[0004] この位相制御のやり方を図 4に示す。図 4 (a)は交流電源の電源波形を示し、図 4 ( b)は電力制御用サイリスタを制御する電力制御用サイリスタ制御信号を示す。位相 制御方法では、交流電源の 1サイクル毎に、電力制御用サイリスタ制御信号の発生 時力も電源波形のゼロボルト時までの期間を電力制御期間 Aとし、ゼロボルト時から 制御信号の発生時までの期間を無効電力期間 Bとする。また、温度安定時に必要と される電力よりも大きな最大電力が電源に求められる。したがって、温度安定時の有 効電力は最大電力の 60%〜80%程度にとどまり、それ以外は無効電力となるため、 電源としての効率が悪力つた。 [0004] FIG. 4 shows how this phase is controlled. Fig. 4 (a) shows the power supply waveform of the AC power supply, and Fig. 4 (b) shows the power control thyristor control signal for controlling the power control thyristor. In the phase control method, the power control thyristor control signal generation power for each cycle of the AC power supply is set to the power control period A, which is the period until the power supply waveform reaches zero volts. The period until the control signal is generated is designated as reactive power period B. In addition, the power supply is required to have a maximum power that is greater than that required when the temperature is stable. Therefore, the active power when the temperature is stable is only about 60% to 80% of the maximum power, and the rest is reactive power, so the efficiency as a power source is bad.
[0005] これを改善するために、無効電力が原理的に生じな!/、ゼロクロス制御を採用したも のや、力率改善用の進相コンデンサを用いて有効電力の比率を 85%以上に高める 工夫がされている。 [0005] In order to improve this, reactive power does not occur in principle! /, Adopting zero-crossing control, and using a phase advance capacitor for power factor improvement, the ratio of active power to 85% or more There is a device to raise.
[0006] ゼロクロス制御は、回路的には図 3と同じである力 一般に電力制御用素子としてサ イリスタではなぐ SSR (ソリッドステートリレー)を採用し、その制御信号の内容を変え ている点が異なる。このゼロクロス制御のやり方を図 5に示す。図 5 (a)は交流電源の 電源波形を示し、図 5 (b)は SSRを制御する電力制御用 SSR制御信号を示す。電源 波形のゼロボルト時に SSRをオンさせる点弧方式を採用し、交流電源の規定時間( A+B)を 1周期(1サイクルタイム)として、その間に電力制御用 SSR制御信号が出力 されて通電している期間を電力制御期間 Aとし、それ以外を電力の消費されない非 通電期間 Bとしている。ゼロクロス制御は、電源をオン Zオフするだけなので、原理的 に無効電力は生じない。  [0006] Zero cross control has the same circuit power as Fig. 3 Generally, SSR (solid state relay) that is not a thyristor is used as a power control element, and the contents of the control signal are changed. . Figure 5 shows how this zero-cross control is performed. Fig. 5 (a) shows the power supply waveform of the AC power supply, and Fig. 5 (b) shows the SSR control signal for power control that controls the SSR. Uses a firing method that turns on the SSR when the power supply waveform is at zero volts. The AC power supply's specified time (A + B) is set to one cycle (one cycle time), and the power control SSR control signal is output during This period is referred to as power control period A, and other periods are referred to as non-energization period B during which no power is consumed. Zero-crossing control simply turns the power on and off, so no reactive power is generated in principle.
[0007] また、進相コンデンサによる制御方式を図 6に示す。図 6 (a)の実線が供給側交流 電源波形 W1を示し、点線が制御側電源波形 W2を示す。また、図 6 (b)は電力制御 用サイリスタ制御信号を示す。この制御信号により実線で示す供給側交流電源波形 W1を制御する場合、無効電力期間 Bが大きいため、位相角 P1のときの電力制御は 例えば 70%にとどまる。しかし、進相コンデンサで位相を進ませた点線で示す制御 側電源波形 W2を電力制御用サイリスタ制御信号で制御するようにすると、位相角 P2 の進んだ分だけ無効電力期間 B'が小さくなり、見かけ上の力率が向上し、電力制御 は 90%に増加する。  [0007] FIG. 6 shows a control method using a phase advance capacitor. The solid line in Fig. 6 (a) shows the supply-side AC power supply waveform W1, and the dotted line shows the control-side power supply waveform W2. Figure 6 (b) shows the thyristor control signal for power control. When the supply-side AC power supply waveform W1 indicated by the solid line is controlled by this control signal, since the reactive power period B is large, the power control at the phase angle P1 is, for example, 70%. However, if the control-side power supply waveform W2 indicated by the dotted line whose phase is advanced by the phase advance capacitor is controlled by the thyristor control signal for power control, the reactive power period B ′ is reduced by the advance of the phase angle P2, The apparent power factor increases and power control increases to 90%.
[0008] しかし、ゼロクロス制御の場合には、電力制御用素子に、絶縁型バイポーラトランジ スタ IGBT (Insulated Gate Bipolor Transistor)のような高速スイッチング電力 制御用半導体と比べて、オン電圧が比較的大きい SSRを用いているため、ヒータ温 度の応答性が悪くなるという問題があった。また、進相コンデンサによる場合は、進相 コンデンサの補正があることで最大電力に至るまでのプロフィールを制限する電力調 整が必要となる。これは進相しているので、いきなり最大電力をかけると欠相するから である。したがって、使い勝手が悪かった。 [0008] However, in the case of zero-cross control, the SSR has a relatively large on-state voltage compared to a high-speed switching power control semiconductor such as an insulated bipolar transistor IGBT (Insulated Gate Bipolar Transistor). Because of this, there was a problem that the responsiveness of the heater temperature deteriorated. Also, when using a phase advance capacitor, With capacitor correction, power adjustment is required to limit the profile up to the maximum power. This is because the phase is advancing, and suddenly the phase is lost when the maximum power is applied. Therefore, it was not easy to use.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 上述したように従来の電力制御用素子に SSRを用いた供給電力調整器では、電 力制御用サイリスタをゼロクロス制御して温度制御する場合は、温度応答性が悪くな るという問題があった。また、進相コンデンサによる場合は、最大電力に至るまでのプ ロフィールを制限する電力調整が必要となり、使い勝手が悪力つた。さらに、両者に 共通して言えることであるが、電源変動及び負荷変動に対する措置を講じていない ため、電源変動及び負荷変動に対する安定度が悪いという問題があった。  [0009] As described above, in the power supply regulator using the SSR as a conventional power control element, when temperature control is performed by performing zero-cross control of the power control thyristor, there is a problem that the temperature responsiveness deteriorates. there were. In addition, in the case of using a phase advance capacitor, it is necessary to adjust the power to limit the profile up to the maximum power, and the usability is bad. Furthermore, the same can be said for both. However, since measures were not taken for power supply fluctuations and load fluctuations, there was a problem that stability against power supply fluctuations and load fluctuations was poor.
[0010] 本発明の目的は、上述した従来技術の問題点を解消して、コンパクトで、温度応答 性に優れ、電源変動及び負荷変動に対する安定度も良好で、使い勝手のよい供給 電力調整器及び半導体製造装置を提供することにある。  An object of the present invention is to solve the above-mentioned problems of the prior art, and is compact, excellent in temperature responsiveness, stable against power supply fluctuations and load fluctuations, and easy to use. It is to provide a semiconductor manufacturing apparatus.
課題を解決するための手段  Means for solving the problem
[0011] 本発明の態様によれば、反応炉内に複数枚の基板を装填した基板保持具を搬入 して熱処理を行う半導体製造装置にぉ ヽて、 According to an aspect of the present invention, in a semiconductor manufacturing apparatus that carries in a heat treatment by carrying a substrate holder loaded with a plurality of substrates into a reaction furnace,
前記反応炉の周囲に設けられたヒータと、前記ヒータへの供給電力を調整する供 給電力調整器と、を有し、  A heater provided around the reactor, and a supply power regulator that adjusts the supply power to the heater;
前記供給電力調整器は、交流電源の交流電圧を、制御信号の周波数に応じた交 流電力に変換して前記ヒータに供給する電力用 IGBT変翻と、該 IGBT変翻の スイッチング動作により生じる逆起電力を回生して前記交流電源に戻す回生用 IGB T変 とで構成されていることを特徴とする半導体製造装置が提供される。  The power supply regulator converts the AC voltage of the AC power source into AC power corresponding to the frequency of the control signal and supplies it to the heater, and the reverse generated by the switching operation of the IGBT conversion. There is provided a semiconductor manufacturing apparatus comprising a regenerative IGB T change for regenerating an electromotive force and returning it to the AC power source.
発明の効果  The invention's effect
[0012] 本発明の実施の形態によれば、コンパクトで、温度応答性に優れ、電源変動及び 負荷変動に対する安定度も良好で、使い勝手のよい供給電力調整器及び半導体製 造装置を得ることができる。 発明を実施するための最良の形態 According to the embodiment of the present invention, it is possible to obtain a supply power regulator and a semiconductor manufacturing apparatus that are compact, excellent in temperature responsiveness, excellent in stability against power supply fluctuation and load fluctuation, and easy to use. it can. BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明者は、前述した目的を達すべく研究の結果、 IGBTが、消費電力、高速スィ ツチング等を考慮した場合、上記目的に最適であることを見出し、さらに IGBTで交流 電圧を直接スイッチングすれば、整流回路を備える必要がなくなるとの知見を得て本 発明を創案するに至ったものである。  [0013] As a result of research to achieve the above-mentioned object, the present inventor has found that the IGBT is optimal for the above-mentioned object in consideration of power consumption, high-speed switching, and the like. The present inventors have come up with the idea that if switching is performed, it is not necessary to provide a rectifier circuit.
以下に本発明の供給電力調整器の一実施の形態について説明する。  An embodiment of the power supply regulator of the present invention will be described below.
[0014] 実施の形態の供給電力調整器は、高速スイッチング動作する変換器の出力をヒー タに電力として供給するものであり、その変換器のデバイスに高速スイッチング電力 制御用素子である IGBTを用いて ヽる。交流電源の交流電圧を IGBTで直接スィッチ ングしてパルス変調した交流電力をヒータに供給し、無効電力をほとんどゼロにして 電源を有効利用している。  The supply power regulator of the embodiment supplies the output of the converter that performs high-speed switching operation as power to the heater, and uses an IGBT that is a high-speed switching power control element for the converter device. Speak. The power source is effectively used by switching the AC voltage of the AC power source directly with an IGBT and supplying pulsed AC power to the heater so that the reactive power is almost zero.
[0015] 図 1に示すように、交流電源 1からヒータ 7に電力を供給する供給電力調整器 21は 、その入力端に交流電源 1に接続する受電端子台 2を備え、その出力端にヒータ 7に 接続する分配用端子台 6とを備える。交流電源 1は、例えば周波数 50Z60Hz、 AC 200Vの単相の商用電源である。ヒータ 7は、例えば-ケィ化モリブデン製の抵抗力口 熱ヒータである。  As shown in FIG. 1, a supply power regulator 21 for supplying power from an AC power source 1 to a heater 7 includes a power receiving terminal block 2 connected to the AC power source 1 at its input end, and a heater at its output end. Distribution terminal block 6 connected to 7. The AC power source 1 is, for example, a single-phase commercial power source having a frequency of 50Z60Hz and AC 200V. The heater 7 is, for example, a resistance-mouth heat heater made of molybdenum silicide.
[0016] 受電端子台 2には、電源ブレーカ 3が接続され、さらに必要に応じて電源トランス 4 が接続される。交流電源 1を受電端子台 2で受電し、電源ブレーカ 3を通して、電源ト ランス 4に電力を供給するようになっている。この電源トランス 4は、ヒータ 7の仕様によ り、使われない場合もある。なお、供給電力調整器 21は、ヒータ 7を複数の領域に分 割して個別に電力制御が可能なように、 IGBT変翻11を複数用意することもある。  [0016] A power supply breaker 3 is connected to the power receiving terminal block 2, and a power transformer 4 is further connected as necessary. AC power source 1 is received by power receiving terminal block 2, and power is supplied to power source transformer 4 through power source breaker 3. This power transformer 4 may not be used depending on the specifications of the heater 7. The supply power regulator 21 may prepare a plurality of IGBT conversions 11 so that the heater 7 can be divided into a plurality of regions and individually controlled.
[0017] 電源トランス 4の 2次側には、さらに入力側フィルタ回路 10と、 IGBT変翻 11と、 電源変動検出手段 22と、負荷変動検出手段 23と、温度変動検出手段 24と、周波数 可変手段 (以下周波数可変回路) 15と、出力側フィルタ回路 30とを備える。電源トラ ンス 4で変圧された電力は、入力側フィルタ回路 10を通して、周波数可変回路 15に より制御される IGBT変 1へ供給され、出力側フィルタ回路 30を介して分配用 端子台 6に接続されたヒータ 7に加えられるようになって 、る。  [0017] The secondary side of the power transformer 4 further includes an input side filter circuit 10, an IGBT converter 11, a power fluctuation detection means 22, a load fluctuation detection means 23, a temperature fluctuation detection means 24, and a variable frequency. Means (hereinafter referred to as frequency variable circuit) 15 and an output side filter circuit 30 are provided. The power transformed by the power supply transformer 4 is supplied to the IGBT transformer 1 controlled by the frequency variable circuit 15 through the input side filter circuit 10 and connected to the distribution terminal block 6 through the output side filter circuit 30. Added to the heater 7
[0018] 次に、図 7に示す供給電力調整器の要部図を用いて入力側フィルタ回路 10、出力 側フィルタ回路 30、及び IGBT変翻 11につ ヽて説明する。 [0018] Next, the input side filter circuit 10, output using the main part diagram of the supply power regulator shown in FIG. The side filter circuit 30 and the IGBT transformation 11 will be described.
[0019] 入力側フィルタ回路 10は、フィルタ方式に LCを用いたローパスフィルタであり、フィ ルタ要素が CLCの順に配置された構成をしている。コイル Lは、入力ライン及びコモ ンラインに L1— 1と L1— 2とに分割されて挿入されている。尚、 LCの前のコンデンサ C1 1は電源波形にのった高周波成分を除去するためと損失低減のためのもので あり、非常に小さな容量のコンデンサとするのが望ましい。ローパスフィルタの遮断周 波数は、電源波形やノイズの観点からスイッチング周波数 (IGBTが 1秒間に ONZO FFする回数で本実施例では 20KHzとする。)の 1Z10〜1Z40 (500Hz〜2KHz) に設定されている。従って、高い周波数成分を遮断して、目的とする商用周波数 (50 又は 60Hz)程度の電力を確実にヒータ 7に供給できる。  The input-side filter circuit 10 is a low-pass filter using LC as a filter system, and has a configuration in which filter elements are arranged in the order of CLC. Coil L is inserted into the input line and common line divided into L1-1 and L1-2. The capacitor C11 before the LC is for removing high-frequency components on the power supply waveform and for reducing loss, and it is desirable to use a capacitor with a very small capacity. The cut-off frequency of the low-pass filter is set to 1Z10 to 1Z40 (500Hz to 2KHz) at the switching frequency (the number of times the IGBT is turned ONZOFF in 1 second and set to 20KHz in this example) from the viewpoint of power supply waveform and noise. Yes. Therefore, it is possible to cut off high frequency components and reliably supply electric power of the target commercial frequency (50 or 60 Hz) to the heater 7.
入力側フィルタ回路 10は、 IGBT変翻11を高速 '高周波でスイッチング動作させ ることにより発生する電磁ノイズを抑制する。したがって、交流電源 1側につながる IG BT変換器 11の入力ラインに電磁ノイズが誘導されるのを抑制でき、交流電源にノィ ズ障害が発生するのを防止することができる。  The input side filter circuit 10 suppresses electromagnetic noise generated by switching the IGBT transformation 11 at high speed and high frequency. Therefore, induction of electromagnetic noise in the input line of the IGBT converter 11 connected to the AC power source 1 side can be suppressed, and noise failure can be prevented from occurring in the AC power source.
[0020] 出力側フィルタ回路 30は、入力側フィルタ回路 10と同様に、フィルタ方式に LCを 用いたローノ スフィルタであり、フィルタ要素 LCCの順に配置された構成をしている。 コイル Lは、出力ライン及びコモンラインに L2—1と L2— 2とに分割されて挿入されて いる。尚、 LCの後のコンデンサ C2— 2は、入力側フィルタ回路 10においても説明し たように、電源波形にのった高周波成分を除去するためのコンデンサである。更に、 このローパスフィルタの遮断周波数も同様に 500Hz〜2kHzである。  [0020] Like the input side filter circuit 10, the output side filter circuit 30 is a low-pass filter using LC as a filter system, and is configured in the order of filter elements LCC. The coil L is divided into L2-1 and L2-2 and inserted in the output line and common line. Note that the capacitor C2-2 after the LC is a capacitor for removing a high frequency component on the power supply waveform as described in the input side filter circuit 10. Furthermore, the cutoff frequency of this low-pass filter is similarly 500 Hz to 2 kHz.
出力側フィルタ回路 30は、 IGBT変翻 11でスイッチングして得た出力をスムージ ング (平滑)すると共に、出力中に含まれる高調波成分を有効に除去する。  The output side filter circuit 30 smoothes (smooths) the output obtained by switching with the IGBT converter 11 and effectively removes harmonic components contained in the output.
[0021] IGBT変翻 11は電力用 IGBT変翻 1 laと回生用 IGBT変翻 1 lbとを備えて いる。 IGBT変翻 11は、正の電圧'電流と負の電圧'電流波形のスイッチングを別 々に行うため、ダブルアーム型が望ましい。電力用 IGBT変翻 11aは高速整流回 路 FRD1と、 IGBT2を有するチョッパー部と力も構成されている。チョッパー部はチヨ ッパ一部 PWM信号が加えられる上アームと、下アームとを有する。回生用 IGBT変 翻 1 lbは IGBT3と高速整流回路 FRD2とを備えて 、る。 [0022] 上記 IGBT2により交流を高速 ·高周波の基本キャリア周波数で直接スィッチさせる 。例えば PWM方式によるスィッチのタイミングは、供給元の交流からゼロクロス点を 検出し、そのゼロクロス点を基準に、制御信号 (PWM信号)を合わせる。そして、合 わせたキャリア周波数で供給元の交流をスィッチしてパルス変調波を得、これを出力 側フィルタ回路 30を介してヒータ 7に供給する。周波数可変回路 15から出力される 制御信号は、 IGBTのゲート (アーム)に加えられる制御信号のデューティ比を変動( 温度、電力、負荷)に応じて変える。 [0021] The IGBT conversion 11 includes a power IGBT conversion 1 la and a regeneration IGBT conversion 1 lb. The IGBT transformation 11 is preferably a double arm type because switching of positive voltage 'current and negative voltage' current waveforms is performed separately. The power IGBT converter 11a is also composed of a high-speed rectifier circuit FRD1 and a chopper section and a force with IGBT2. The chopper part has an upper arm to which a PWM signal is partially applied and a lower arm. IGBT conversion for regeneration 1 lb is equipped with IGBT3 and high-speed rectifier circuit FRD2. [0022] The alternating current is directly switched at the high-speed and high-frequency basic carrier frequency by the IGBT2. For example, the switch timing by the PWM method detects the zero cross point from the alternating current of the supplier, and adjusts the control signal (PWM signal) based on the zero cross point. Then, the alternating current of the supply source is switched at the combined carrier frequency to obtain a pulse modulated wave, and this is supplied to the heater 7 via the output side filter circuit 30. The control signal output from the frequency variable circuit 15 changes the duty ratio of the control signal applied to the gate (arm) of the IGBT according to fluctuations (temperature, power, load).
[0023] 図 8は、図 7に示される供給電力調整器の要部のスイッチング動作、並びに図 7に 示される各ポイント((a)〜( 、(f)〜(i) )での電圧波形を示したものである。図 8を 用いて IGBT変換器 11の作用について詳述する。まず、端子台 TBIに商用周波数 交流電源の電圧波形 Aが(a)に示すように供給される。アームを介してカ卩えられる IG BT変換器 11への PWM信号の入力周波数は 20KHz (50 sec)で固定される。 IG BT2の上アーム及び下アームに、それぞれ (b)、(c)に示すようなチョッパー部 PWM 信号が加えられる。 IGBT変翻 11の出力の電圧波形 Bは、 IGBT2が ONの時(P WM信号が加えられて 、る時)だけ商用周波数交流電源を通電させ、 IGBT2が OF Fの時には商用周波数交流電源を遮断させるため、(d)のような出力波形となる。こ の出力は出力側フィルタ回路 30により平滑ィ匕され、出力側フィルタ回路 30から分配 用端子台 (TB2)を介して、歪みの少な!/、商用周波数の電圧波形じが(e)のように出 力される。このように、 IGBT2が ONしている時間を変えて最終的な負荷へ出力され る供給電圧の電圧波高値を制御する。したがって、 IGBT変翻11に用いられる IG BT2への PWM信号により、供給電圧の周波数を変えないで、波高値のみを 0〜70 %の範囲で制御し、負荷へ出力できるようになって!/、る。  FIG. 8 shows the switching operation of the main part of the supply power regulator shown in FIG. 7, and the voltage waveforms at each point ((a) to (, (f) to (i)) shown in FIG. The operation of the IGBT converter 11 will be described in detail with reference to Fig. 8. First, the voltage waveform A of the commercial frequency AC power supply is supplied to the terminal block TBI as shown in (a). The input frequency of the PWM signal to the IG BT converter 11 is fixed at 20 KHz (50 sec), as shown in (b) and (c) on the upper and lower arms of IG BT2, respectively. The PWM waveform 11 output voltage waveform B is such that the commercial frequency AC power supply is energized only when IGBT2 is ON (when the PWM signal is applied). Since the commercial frequency AC power supply is shut off during OF F, the output waveform is as shown in (d). It is smoother and the output side filter circuit 30 outputs a voltage waveform with less distortion and a commercial frequency as shown in (e) via the distribution terminal block (TB2). The voltage peak value of the supply voltage that is output to the final load is controlled by changing the time that IGBT2 is ON, so the frequency of the supply voltage is controlled by the PWM signal to IGBT2 that is used for IGBT conversion 11. Without changing the value, only the peak value can be controlled within the range of 0 to 70% and output to the load!
[0024] 尚、 IGBT2の上アーム及び下アームに加えられるチョッパー部 PWM信号のパル ス幅を (f)、(g)のように、上述した (b)、(c)に示すパルス幅よりも大きくすると、 IGBT 変換器 11の出力の電圧波形 Bは、(h)のような波形となり、最終的な負荷へ出力され る供給電圧の電圧波形 ま (i)のように、上述した (e)よりも電圧波高値を大きくできる  [0024] The pulse width of the chopper PWM signal applied to the upper arm and lower arm of IGBT 2 is larger than the pulse widths shown in (b) and (c) above, as shown in (f) and (g). If it is increased, the voltage waveform B at the output of the IGBT converter 11 becomes a waveform as shown in (h), and the voltage waveform of the supply voltage output to the final load (i) is as described above (e). Can increase the voltage peak value
[0025] IGBT変換器 11内に組込んだ IGBT2で交流を直接スィッチして!/、るので、 IGBT 変換器 11の入力側にダイオード全波整流回路が不要となる。 [0025] Since the AC is directly switched by the IGBT 2 built in the IGBT converter 11! /, The IGBT A diode full-wave rectifier circuit is not required on the input side of the converter 11.
この IGBT変翻 11を構成するスイッチング素子である IGBT2は、電圧駆動のゲ ートを組み合わされたバイポーラパワートランジスタであり、ゲート駆動消費電力が少 なく高速スイッチングに適している。また、高周波かつ大容量の素子であり、オン電圧 が MOSFET(SSR)より大幅に小さい。この IGBT2は無効電力を低減するために高 周波で制御される。  IGBT2, which is the switching element that constitutes this IGBT transformation 11, is a bipolar power transistor combined with a voltage-driven gate, and has low gate drive power consumption and is suitable for high-speed switching. It is a high-frequency and large-capacity element, and its on-voltage is much smaller than that of MOSFET (SSR). This IGBT2 is controlled at a high frequency to reduce reactive power.
[0026] 温度変動検出手段 24は、ヒータ 7の温度変動を検出して、その変動に応じたフィー ドバック信号を周波数可変回路 15に出力する。この温度変動検出手段 24は、温度 センサとしての温度測定用熱電対 8と、ヒータ温度を調節するための温度調節計 9と を有する。  The temperature fluctuation detection means 24 detects the temperature fluctuation of the heater 7 and outputs a feedback signal corresponding to the fluctuation to the frequency variable circuit 15. This temperature fluctuation detecting means 24 has a temperature measuring thermocouple 8 as a temperature sensor and a temperature controller 9 for adjusting the heater temperature.
温度測定用熱電対 8は、ヒータ 7の近傍に必要数設けられ、熱起電力によりヒータ 温度を測定する。温度調節計 9は、温度測定用熱電対 8で測定されたヒータ 7の測定 温度と設定温度との温度差 (温度変動)を求める。この温度差に応じて、ヒータ 7に供 給すべき電力量を演算し、周波数可変回路 15に演算結果をフィードバック信号とし て出力する。また、温度調節計 9は、温度異常を検出した時は、アラームを出力する  The required number of thermocouples 8 for temperature measurement are provided near the heater 7, and the heater temperature is measured by the thermoelectromotive force. The temperature controller 9 obtains the temperature difference (temperature fluctuation) between the measured temperature of the heater 7 measured by the thermocouple 8 for temperature measurement and the set temperature. In accordance with this temperature difference, the amount of power to be supplied to the heater 7 is calculated, and the calculation result is output to the frequency variable circuit 15 as a feedback signal. The temperature controller 9 outputs an alarm when a temperature abnormality is detected.
[0027] 電源変動検出手段 22は、入力側フィルタ回路 10からの出力電力の変動を検出し て、その変動に応じたフィードフォワード信号を周波数可変回路 15に出力する。この 電源変動検出手段 22は、入力側フィルタ回路 10の出力に流れる電流を測定する力 レントトランス 12と、入力側フィルタ回路 10の出力線間電圧を測定する電圧測定ライ ン 13と、電源電圧'電流フィードフォワード回路 14とを有する。出力電力の変動を検 出するために、電源電圧 ·電流フィードフォワード回路 14は、カレントトランス 12で測 定した測定電流と設定電流との差、及び電圧測定ライン 13で測定した測定電圧と設 定電圧との差を求める。これらの差の積 (電力)が電源変動となる。この電源変動が 周波数可変回路 15にフィードフォワード信号としてカ卩えられる。 The power fluctuation detection means 22 detects a fluctuation in output power from the input-side filter circuit 10 and outputs a feedforward signal corresponding to the fluctuation to the frequency variable circuit 15. This power fluctuation detection means 22 includes a power transformer 12 that measures the current flowing through the output of the input side filter circuit 10, a voltage measurement line 13 that measures the output line voltage of the input side filter circuit 10, and a power supply voltage ' Current feedforward circuit 14. In order to detect fluctuations in the output power, the power supply voltage / current feedforward circuit 14 determines the difference between the measured current measured by the current transformer 12 and the set current, and the measured voltage and setting measured by the voltage measurement line 13. Find the difference from the voltage. The product (electric power) of these differences is the power supply fluctuation. This power supply fluctuation is reported to the frequency variable circuit 15 as a feedforward signal.
[0028] 負荷変動検出手段 23は、ヒータ 7に供給される出力電力の変動を検出して、その 変動に応じたフィードバック信号を周波数可変回路 15に出力する。この負荷変動検 出手段 23は、出力側フィルタ回路 30の出力線間電圧を測定する電圧測定ライン 17 と、ヒータ 7に流れる電流を測定するカレントトランス 18と、制御電圧 ·電流フィードバ ック回路 16とを有する。負荷変動を検出するために、制御電圧 ·電流フィードバック 回路 16は、電圧測定ライン 17で測定した測定電圧と設定電圧との差、及びカレントト ランス 18で測定した測定電流と設定電流との差を求める。これらの差の積 (電力)が 負荷変動となる。この負荷変動が周波数可変回路 15にフィードバック信号として加え られる。 [0028] The load fluctuation detecting means 23 detects a fluctuation in the output power supplied to the heater 7, and outputs a feedback signal corresponding to the fluctuation to the frequency variable circuit 15. This load fluctuation detecting means 23 is a voltage measurement line 17 for measuring the output line voltage of the output side filter circuit 30. And a current transformer 18 for measuring the current flowing through the heater 7 and a control voltage / current feedback circuit 16. In order to detect the load fluctuation, the control voltage / current feedback circuit 16 calculates the difference between the measured voltage measured by the voltage measurement line 17 and the set voltage and the difference between the measured current measured by the current transformer 18 and the set current. . The product of these differences (electric power) is the load fluctuation. This load variation is applied to the frequency variable circuit 15 as a feedback signal.
なお、カレントトランス 18は負荷電流の変動を精度良く測定するために、分配用端 子台 6よりも外側のヒータ 7側に設けるとよい。  The current transformer 18 may be provided on the heater 7 side outside the distribution terminal block 6 in order to accurately measure fluctuations in the load current.
[0029] 周波数可変回路 15は、電源変動検出手段 22、及び負荷変動検出手段 23の変動 結果に応じて IGBT変翻11を周波数制御する。具体的には、周波数可変回路 15 は、電源変動検出手段 22の電源電圧,電流フィードフォワード回路 14、及び負荷変 動検出手段 23の制御電圧 ·電流フィードバック回路 16から出力される変動信号と、 温度変動検出手段 24の温度調節計 9から出力される信号とから、ヒータ 7に供給する べき電力量に応じた周波数をもつゲート制御信号を IGBT変換器 11を構成する各 I GBTのゲートに加える。  The frequency variable circuit 15 frequency-controls the IGBT conversion 11 according to the fluctuation results of the power fluctuation detection means 22 and the load fluctuation detection means 23. Specifically, the frequency variable circuit 15 includes a fluctuation signal output from the control voltage / current feedback circuit 16 of the power supply voltage of the power supply fluctuation detection means 22, the current feedforward circuit 14 and the load fluctuation detection means 23, and the temperature. From the signal output from the temperature controller 9 of the fluctuation detecting means 24, a gate control signal having a frequency corresponding to the amount of power to be supplied to the heater 7 is added to the gate of each IGBT constituting the IGBT converter 11.
IGBTは周波数制御され、周波数を略連続的に変化させることで、ヒータ 7に投入さ れる電力を制御している。周波数可変幅が大きいほど電力の制御性が良くなる。 周波数可変回路 15による周波数制御は、周波数を変化させるという点で、 WVF 制御の VF (可変周波数)制御と同じである。本周波数制御には、基本キャリア周波数 を一定としてデューティ比を制御する PWM制御も含まれる。 VF制御、 PWM制御の V、ずれも、ゼロボルト時に IGBTがオンするのでゼロクロス制御となる。  The IGBT is frequency controlled, and the electric power supplied to the heater 7 is controlled by changing the frequency substantially continuously. The controllability of power is improved as the frequency variable width is larger. The frequency control by the frequency variable circuit 15 is the same as the VF (variable frequency) control of the WVF control in that the frequency is changed. This frequency control includes PWM control that controls the duty ratio while keeping the basic carrier frequency constant. V and deviation of VF control and PWM control are zero cross control because the IGBT is turned on at zero volt.
[0030] 上述した実施の形態による供給電力調整器 21にお ヽて、温度調節計 9及び周波 数可変回路 15は、次のようにしてヒータ 7の温度を設定温度となるように制御する。  [0030] In the supplied power regulator 21 according to the above-described embodiment, the temperature controller 9 and the frequency variable circuit 15 control the temperature of the heater 7 to be the set temperature as follows.
[0031] 温度調節計 9は、測定温度と設定温度との温度差を求め、この温度差に応じて、ヒ ータ 7に供給すべき電力量を演算し、周波数可変回路 15に演算結果を出力する。周 波数可変回路 15は、温度調節計 9からの出力値に応じた周波数を持つゲート制御 信号を IGBT変翻 11にカ卩える。 IGBT変翻 11は、入力側フィルタ回路 10からの 交流電力を、周波数可変回路 15のゲート制御信号に応じた周波数の交流電力に変 換し、出力側フィルタ回路 30を介してヒータ 7に供給する。ヒータ 7に電力が供給され ることにより、ヒータ 7の温度が変化する。 [0031] The temperature controller 9 calculates the temperature difference between the measured temperature and the set temperature, calculates the amount of power to be supplied to the heater 7 according to the temperature difference, and outputs the calculation result to the frequency variable circuit 15. Output. The frequency variable circuit 15 provides the IGBT conversion 11 with a gate control signal having a frequency corresponding to the output value from the temperature controller 9. The IGBT converter 11 converts the AC power from the input-side filter circuit 10 into AC power having a frequency corresponding to the gate control signal of the frequency variable circuit 15. Instead, the heat is supplied to the heater 7 via the output side filter circuit 30. When electric power is supplied to the heater 7, the temperature of the heater 7 changes.
[0032] このような温度変動検出→制御演算→出力値の出力→温度の変化→温度変動の 検出→〜という閉じたループによりフィードバック制御を行う。温度状態を検出してか ら、温度調節計 9及び周波数可変回路 15により出力量を決定するので、良好にフィ ードバック制御することができる。したがって、ヒータの温度変動が補正されてヒータ 7 に安定した電力を供給し、ヒータ 7を所定の温度に保持できる。また、周波数制御は ゼロクロス制御であるため、無効電力がなぐ効率の高い制御ができる。  [0032] Feedback control is performed by such a closed loop of temperature fluctuation detection → control calculation → output of output value → temperature change → temperature fluctuation detection → ˜. Since the output amount is determined by the temperature controller 9 and the frequency variable circuit 15 after detecting the temperature state, the feedback control can be performed satisfactorily. Therefore, the temperature fluctuation of the heater is corrected, stable electric power can be supplied to the heater 7, and the heater 7 can be maintained at a predetermined temperature. In addition, since frequency control is zero-cross control, highly efficient control without reactive power can be achieved.
[0033] 上述したようにヒータ温度が良好にフィードバック制御されているときに、交流電源 1 の電圧が変動すると、その電圧変動は入力側フィルタ回路 10の出力に、電流変動 及び電圧変動となってあらわれる。この電流変動及び電圧変動は、カレントトランス 1 2と電圧測定ライン 13で測定され、電源電圧'電流フィードフォワード回路 14で検出 される。電源電圧 ·電流フィードフォワード回路 14から、その電力変動に応じた制御 信号が周波数可変回路 15に入力される。周波数可変回路 15は、この信号を用いて 、電源電力と設定電力との差に応じた周波数のゲート制御信号を出力する。そのゲ ート制御信号を IGBT変翻11に加えて IGBT変翻11を周波数制御する。したが つて、交流電源 1の電圧変動が補正されてヒータ 7に安定した電力を供給できる。ま た、周波数制御はゼロクロス制御であるため、無効電力がなぐ効率の高い制御がで きる。このフィードフォワード制御によって、入力側フィルタ(交流電源) 10から温度測 定用熱電対 8までの応答特性が改善される。  [0033] As described above, if the voltage of the AC power supply 1 fluctuates while the heater temperature is favorably feedback-controlled, the voltage fluctuation becomes a current fluctuation and a voltage fluctuation in the output of the input side filter circuit 10. Appears. The current fluctuation and voltage fluctuation are measured by the current transformer 12 and the voltage measurement line 13 and detected by the power supply voltage'current feedforward circuit 14. A control signal corresponding to the power fluctuation is input from the power supply voltage / current feedforward circuit 14 to the frequency variable circuit 15. Using this signal, the frequency variable circuit 15 outputs a gate control signal having a frequency corresponding to the difference between the power supply power and the set power. The gate control signal is added to the IGBT transformation 11 to control the frequency of the IGBT transformation 11. Therefore, the voltage fluctuation of the AC power source 1 is corrected and stable power can be supplied to the heater 7. In addition, since frequency control is zero-cross control, high-efficiency control without reactive power is possible. This feedforward control improves the response characteristics from the input side filter (AC power supply) 10 to the thermocouple 8 for temperature measurement.
[0034] また、上述したようにヒータ温度が良好にフィードバック制御されているときに、ヒー タ 7に外乱 (例えば外気が当たる等)が生じたり、ヒータの性質が多少変化したりして 負荷が変動すると、それは IGBT変換器 11の出力電力の変動として現れる。すなわ ちヒータ 7に流れる負荷電流、及びヒータ 7に加わる負荷電圧が変動する。この電流 変動及び電圧変動は、カレントトランス 18と電圧測定ライン 17で検出され、制御電圧 •電流フィードバック回路 16で測定される。制御電圧 ·電流フィードバック回路 16から 、その電力変動に応じた信号が周波数可変回路 15に入力される。周波数可変回路 15は、この信号を用いて、電源電力と設定電力との差に応じた周波数のゲート制御 信号を出力する。そのゲート制御信号を IGBT変換器 11に加えて周波数制御する。 したがって、負荷変動が補正されてヒータ 7に安定した電力を供給できる。また、周波 数制御はゼロクロス制御であるため、無効電力がなぐ効率の高い制御ができる。 この負荷変動制御は、外乱→ヒータ温度変化→熱電対検出の 3ステップを経る温 度変動制御と比べて、外乱→電力変動検出と 2ステップであり、熱電対検出のステツ プが省略できるので、応答特性が速い。 [0034] Further, as described above, when the heater temperature is favorably feedback-controlled, the heater 7 may be disturbed (for example, exposed to outside air), or the properties of the heater may be slightly changed. When it fluctuates, it appears as a fluctuation in the output power of the IGBT converter 11. That is, the load current flowing through the heater 7 and the load voltage applied to the heater 7 fluctuate. This current fluctuation and voltage fluctuation are detected by the current transformer 18 and the voltage measurement line 17 and measured by the control voltage / current feedback circuit 16. From the control voltage / current feedback circuit 16, a signal corresponding to the power fluctuation is input to the frequency variable circuit 15. The frequency variable circuit 15 uses this signal to control the frequency gate according to the difference between the power supply and the set power. Output a signal. The gate control signal is added to the IGBT converter 11 to control the frequency. Therefore, the load fluctuation is corrected and stable power can be supplied to the heater 7. In addition, since frequency control is zero-cross control, highly efficient control without reactive power can be achieved. This load fluctuation control has two steps, disturbance → power fluctuation detection, compared to temperature fluctuation control that goes through three steps of disturbance → heater temperature change → thermocouple detection, so the thermocouple detection step can be omitted. Fast response characteristics.
上記実施形態では、電源変動検出手段 22、負荷変動検出手段 23、温度変動検 出手段 24、周波数可変回路 15が供給電力調整器 21に備えられていたが、この形 態によらず、例えば負荷 (ヒータ)への供給電力を調整する公知の電力調整器と制御 信号を出力する手段として、電源変動検出手段 22、負荷変動検出手段 23、温度変 動検出手段 24、周波数可変回路 15を設け、これらを組み合わせてもよい。  In the above embodiment, the power supply fluctuation detection means 22, the load fluctuation detection means 23, the temperature fluctuation detection means 24, and the frequency variable circuit 15 are provided in the power supply regulator 21, but this is not an example. As a means for outputting a control signal and a known power regulator for adjusting the power supplied to the (heater), a power fluctuation detection means 22, a load fluctuation detection means 23, a temperature fluctuation detection means 24, and a frequency variable circuit 15 are provided. These may be combined.
[0035] 周波数可変回路 15が、電源変動検出手段 22、負荷変動検出手段 23、温度変動 検出手段 24力もの変動信号より、 IGBTへのゲート制御信号を出力する処理につい て、図 9を用いて別の実施形態について説明する。  [0035] With reference to FIG. 9, the frequency variable circuit 15 outputs the gate control signal to the IGBT from the power fluctuation detection means 22, the load fluctuation detection means 23, the temperature fluctuation detection means 24, and the fluctuation signal of 24 powers. Another embodiment will be described.
[0036] 電源変動検出手段 22は、カレントトランス 12による電流、電圧測定ライン 13による 電圧を実効値 (RMS)から ACZDC変換器 22a、 22bでそれぞれ DC変換し、演算 器 22cで電流 (DC) X電圧 (DC) =—次側電力を計算して、一次側電源変動フィー ドバック信号 FB 1として周波数可変回路 15に入力する。  [0036] The power fluctuation detection means 22 converts the current by the current transformer 12 and the voltage by the voltage measurement line 13 from the effective value (RMS) to DC by the ACZDC converters 22a and 22b, respectively, and the current by the calculator 22c (DC) X Voltage (DC) = —Calculate the secondary power and input it to the frequency variable circuit 15 as the primary power fluctuation feedback signal FB1.
[0037] 負荷変動検出手段 23は、カレントトランス 18による電流、電圧測定ライン 17による 電圧を実効値 (RMS)から ACZDC変換器 23a、 23bでそれぞれ DC変換し、演算 器 23cで電流 (DC) X電圧 (DC) =二次側電力を計算して、二次側負荷変動フィー ドバック信号 FB2として周波数可変回路 15に入力する。  [0037] The load fluctuation detecting means 23 converts the current by the current transformer 18 and the voltage by the voltage measurement line 17 from the effective value (RMS) to DC by the ACZDC converters 23a and 23b, respectively, and the current by the calculator 23c (DC) X Voltage (DC) = secondary power is calculated and input to frequency variable circuit 15 as secondary load fluctuation feedback signal FB2.
[0038] 温度変動検出手段 24は、温度調節計 9から出力される信号を電力設定信号として 周波数可変回路 15に入力する。  [0038] The temperature fluctuation detecting means 24 inputs the signal output from the temperature controller 9 to the frequency variable circuit 15 as a power setting signal.
[0039] 周波数可変回路 15は、内部に 2個の電力ゲイン調整器 15a、 15bと、 1個の電力設 定ゲイン調整器 15cとを有し、個別に調整可能なアナログ演算又は CPU演算により 、それぞれの信号レベルのレベル調整を行う。そして、レベル調整されたそれぞれの 信号を加算器 15fに入力して加算を行う。この加算もアナログ演算または CPU演算 によって行われる。 [0039] The frequency variable circuit 15 has two power gain adjusters 15a and 15b and one power setting gain adjuster 15c inside, and can be adjusted individually by analog calculation or CPU calculation. Adjust the level of each signal level. Each level-adjusted signal is input to the adder 15f and added. This addition is also analog or CPU Is done by.
[0040] 上記のような構成において、周波数可変回路 15に一次側電源変動フィードバック 信号 FBI及び二次側負荷変動フィードバック信号 FB2がそれぞれ入力されると、一 次側フィードバック電源変動信号 FBI及び二次側負荷変動フィードバック信号 FB2 は、電力ゲイン調整器 15a、 15bでゲインが調整され、インバータ 15d、 15eによりそ れぞれ負に反転されて加算器 15fに入力される。そして、加算器 15fでは、予め電力 設定信号を出力するときのフィードバック信号 FBI' (FB2')とフィードバック信号 FB 1 (FB2)が比較される。その差が電源変動 (負荷変動)として、電力設定信号に加算 される。  In the configuration as described above, when the primary side power fluctuation feedback signal FBI and the secondary load fluctuation feedback signal FB2 are input to the frequency variable circuit 15, respectively, the primary side feedback power fluctuation signal FBI and the secondary side The gain of the load fluctuation feedback signal FB2 is adjusted by the power gain adjusters 15a and 15b, inverted by the inverters 15d and 15e, respectively, and input to the adder 15f. The adder 15f compares the feedback signal FBI ′ (FB2 ′) when the power setting signal is output in advance with the feedback signal FB 1 (FB2). The difference is added to the power setting signal as power fluctuation (load fluctuation).
温度変動検出手段 24から周波数可変回路 15に電力設定信号が入力されると、電 力設定信号は、電力設定ゲイン調整器 15cでゲインが調整されて加算器 15fに入力 される。周波数可変回路 15は、電源変動または負荷変動が生じた場合、上記のよう にゲイン調整した一次側電源変動フィードバック信号 FBI及び二次側負荷変動フィ ードバック信号 FB2の変動分を、加算器 15f内で電力設定信号に加算して、最適な 電力設定信号をゲート制御信号 (IGBT周波数設定信号)として出力する。  When the power setting signal is input from the temperature variation detecting means 24 to the frequency variable circuit 15, the power setting signal is input to the adder 15f after the gain is adjusted by the power setting gain adjuster 15c. When the power fluctuation or load fluctuation occurs, the frequency variable circuit 15 uses the adder 15f to change the fluctuations of the primary-side power fluctuation feedback signal FBI and the secondary-side load fluctuation feedback signal FB2 that have been gain-adjusted as described above. In addition to the power setting signal, the optimal power setting signal is output as a gate control signal (IGBT frequency setting signal).
[0041] このように高速スイッチング電力制御用半導体変換器を構成する素子として高周波 かつ大容量の IGBTを用いて、温度制御に対するフィードバック制御に、電源変動に 対するフィードフォワード制御及び負荷変動に対するフィードバック制御を取り込むよ うにしたので、温度安定度、及び電源変動及び負荷変動に対する安定度が極めて 優れ、ヒータ温度に高い安定性が得られる。特に、温度変動に加えて電源電圧変動 及び負荷変動を取り込むことは、高周波かつ大容量の素子である IGBTを採用する ことで初めて可能になる。  [0041] By using a high-frequency and large-capacity IGBT as an element constituting the semiconductor converter for high-speed switching power control, feedback control for temperature control, feedforward control for power supply fluctuation, and feedback control for load fluctuation are performed. Since it is incorporated, the temperature stability, stability against power supply fluctuations and load fluctuations are extremely excellent, and the heater temperature is highly stable. In particular, power supply voltage fluctuations and load fluctuations in addition to temperature fluctuations can be captured for the first time by using IGBTs, which are high-frequency and large-capacity elements.
[0042] 図 2は、上述した入力側フィルタ回路 10、 IGBT変換器 11、出力側フィルタ回路 30 の具体的な説明図である。  FIG. 2 is a specific explanatory diagram of the input side filter circuit 10, the IGBT converter 11, and the output side filter circuit 30 described above.
[0043] 入力側フィルタ回路 10及び出力側フィルタ回路 30はともにノーマルモードフィルタ 回路で構成する。すなわち、入力側フィルタ回路 10は、入力ライン 31に直列に接続 されたチョークコイル ACL 1と、チョークコイル ACL 1の電力用 IGBT変^^ 11 a側の 入力ライン 31とコモンライン 33間に並列接続された複数のコンデンサ CF1〜CF6と 力も構成される。入力側フィルタ回路 10をノーマルモードフィルタ回路で構成すると、 IGBT変 11から入力側に漏れる電磁ノイズを有効に減衰させることができる。 [0043] Both the input side filter circuit 10 and the output side filter circuit 30 are configured by normal mode filter circuits. In other words, the input-side filter circuit 10 is connected in parallel between the choke coil ACL 1 connected in series to the input line 31 and the input line 31 on the power side of the choke coil ACL 1 11 and the common line 33. With multiple capacitors CF1 to CF6 Power is also constructed. When the input side filter circuit 10 is configured by a normal mode filter circuit, electromagnetic noise leaking from the IGBT modification 11 to the input side can be effectively attenuated.
[0044] また、出力側フィルタ回路 30は、出力ライン 32に直列に接続されたチョークコイル ACL2と、チョークコィノレ ACL2のヒータ 7側の出力ライン 32とコモンライン 33間に並 列接続された複数のコンデンサ CF7〜CF 12とから構成される。出力側フィルタ回路 30をノーマルモードフィルタ回路で構成すると、 IGBT変 11から出力される交流 電力中に含まれる高調波成分を有効に除去できる。また、コモンライン 33に素子を 設けな!/ゾーマルモードフィルタであると、高 、周波数のスパイク成分 (逆起電力)を
Figure imgf000014_0001
lbに有効に戻すことがで きる。その結果、コモンライン 33でのエネルギー放出なしに電力回生を有効に行うこ とができ、交流電源 1のエネルギー効率を向上できる。
[0044] The output side filter circuit 30 includes a choke coil ACL2 connected in series to the output line 32, and a plurality of capacitors connected in parallel between the output line 32 on the heater 7 side of the choke coil ACL2 and the common line 33. Consists of CF7 to CF12. If the output side filter circuit 30 is configured with a normal mode filter circuit, harmonic components contained in the AC power output from the IGBT converter 11 can be effectively removed. Also, do not provide an element on the common line 33! / Zoom mode filter is a high frequency spike component (back electromotive force)
Figure imgf000014_0001
Can be returned to lb. As a result, it is possible to effectively perform power regeneration without releasing energy on the common line 33, and the energy efficiency of the AC power source 1 can be improved.
[0045] IGBT変換器 11は、主回路の ONZOFFを行う主回路スイッチング素子部である 電力用 IGBT変翻11&と、主回路スイッチング素子の OFF時に動作する回生用 IG BT変換器 l ibとから構成され、それぞれ一体化されてパッケージ化されている。各 素子は、正の電圧 *電流用と負の電圧 *電流用の 2系統で構成され、逆流防止のため 、高速整流素子も各々配置される。 [0045] The IGBT converter 11 is composed of a power IGBT conversion 11 & which is a main circuit switching element section that performs ONZOFF of the main circuit, and a regenerative IGBT BT converter l ib that operates when the main circuit switching element is OFF. It is configured and integrated into a package. Each element consists of two systems, positive voltage * current and negative voltage * current, and a high-speed rectifier element is also arranged to prevent backflow.
[0046] 電力用 IGBT変換器 11aは、高速整流回路 FRD1と、直列上下二段の前段スイツ チ回路 IGBT1と、スナバ回路 CRF1と、直列上下二段の後段スィッチ回路 (チヨツバ 一部) IGBT2とカゝら構成される。図 2では、電流を多く流すため IGBTを 2つ用意して いる。スイッチング方法として、電力用 IGBT変翻 11aは、上述したように PWM制 御 (パルス幅変調)にて ONZOFF制御する。回生用 IGBT変換器 l ibは電源電圧 の正負を判断して動作する。負荷が純抵抗負荷又は誘導性負荷をもった純抵抗負 荷によってはスイッチング動作に遅延時間を入れて調整できるような回路構成にして おくのが望ましい。  [0046] The power IGBT converter 11a includes a high-speed rectifier circuit FRD1, a series upper and lower two-stage front-stage switch circuit IGBT1, a snubber circuit CRF1, and a series upper and lower two-stage rear-stage switch circuit (part of Chiyoba). You are composed. In Figure 2, two IGBTs are prepared to allow a large amount of current to flow. As a switching method, the IGBT conversion 11a for electric power is ONZOFF controlled by PWM control (pulse width modulation) as described above. The regenerative IGBT converter l ib operates by judging whether the power supply voltage is positive or negative. Depending on the pure resistance load with a pure resistance load or inductive load, it is desirable to have a circuit configuration that can adjust the switching operation with a delay time.
高速整流回路 FRD1は、センタタップに入力ライン 31が接続されるセンタタップ型 の高速整流素子で構成され、入力ライン 31から加えられる供給元の交流を正の半波 と負の半波とに整流して、極性に応じて前段スィッチ回路 IGBT1の上段と下段とに 振分ける。 [0047] 前段スィッチ回路 IGBT1と後段スィッチ回路 IGBT2は、ともに直列上下二段積み されたタブラ型の IGBTで構成され、各 IGBTに並列にフリーホイールダイオードが接 続されている。前段スィッチ回路 IGBT1と後段スィッチ回路 IGBT2は、並列運転さ れ、高速整流回路 FRD1により振分けられた正の半波を上段の IGBTで、負の半波 を下段の IGBTでそれぞれ直接スィッチする。 The high-speed rectifier circuit FRD1 is composed of a center-tap type high-speed rectifier element with the input line 31 connected to the center tap. Then, the upper switch circuit IGBT1 is divided into the upper and lower stages according to the polarity. [0047] The front-stage switch circuit IGBT1 and the rear-stage switch circuit IGBT2 are both composed of tabular IGBTs stacked in two stages in series, and a freewheel diode is connected in parallel to each IGBT. The front-stage switch circuit IGBT1 and the rear-stage switch circuit IGBT2 are operated in parallel, and the positive half-wave distributed by the high-speed rectifier circuit FRD1 is directly switched by the upper IGBT and the negative half-wave is directly switched by the lower IGBT.
スナバ回路 CRF1は、同じくタブラ型で構成され、前段スィッチ回路 IGBT1と後段 スィッチ回路 IGBT2とに共通接続され、これらを構成する各 IGBTのオフ時に回路 内で発生し、フリーホイールダイオード FWDを通して流れる電流を熱として消費させ る。  The snubber circuit CRF1 is also configured in a tabular form, and is commonly connected to the front-stage switch circuit IGBT1 and the rear-stage switch circuit IGBT2, and generates current in the circuit when each of the IGBTs constituting them is off and flows through the freewheel diode FWD. Dissipate as heat.
[0048] 電力用 IGBT変翻 11aは、入力ライン 31に加えられる交流を極性に応じて高速 整流回路 FRD1で振分け、前段スィッチ回路 IGBT1及び後段スィッチ回路 IGBT2 でスィッチして交流電力を得て、この交流電力を出力側フィルタ回路 30に加える。ま た、スナバ回路 CRF1により電力用 IGBT変換器 11a内で発生する逆起電力を熱消 費させる。  [0048] The power IGBT conversion 11a distributes the AC applied to the input line 31 according to the polarity by the high-speed rectifier circuit FRD1, and switches the front switch circuit IGBT1 and the rear switch circuit IGBT2 to obtain AC power. Apply AC power to the output side filter circuit 30. Also, the snubber circuit CRF1 dissipates the back electromotive force generated in the power IGBT converter 11a.
[0049] 回生用 IGBT変翻 l ibは、センタタップにコモンライン 33が接続されるセンタタツ プ型の高速整流回路 FRD2と、直列上下二段のタブラ型のスィッチ回路 IGBT3と、 スィッチ回路 IGBT3の各段に並列に接続される 2つのシングルタイプのスナバ回路 CRF2、 CRF3とから構成される。  [0049] IGBT conversion for regeneration l ib is a center tap type high-speed rectifier circuit FRD2 with a common line 33 connected to the center tap, a series upper and lower two-stage tabular switch circuit IGBT3, and a switch circuit IGBT3. It consists of two single-type snubber circuits CRF2 and CRF3 connected in parallel to the stage.
この回生用 IGBT変 1 lbでは、 IGBT変 11外で発生してコモンライン 33 力 戻ってくる逆起電力を極性に応じて高速整流回路 FRD2で振分け、スィッチ回 路 IGBT3の各段で極性に応じて直接交流をスィッチして回生電力を得、この回線電 力を電力用 IGBT変翻11&、入力側フィルタ回路 10を介して交流電源 1に戻す。 また、スナバ回路 CRF2、 CRF3では、回生用 IGBT変換器 l ib内で発生する逆起 電力を熱消費させる。 With this regenerative IGBT modification 1 lb, the back electromotive force generated outside the IGBT modification 11 and returning to the common line 33 is distributed by the high-speed rectifier circuit FRD2 according to the polarity, and depending on the polarity at each stage of the switch circuit IGBT3 The AC is switched directly to obtain regenerative power, and this line power is returned to the AC power source 1 via the power IGBT conversion 11 & and the input side filter circuit 10. In the snubber circuits CRF2 and CRF3, the back electromotive force generated in the regenerative IGBT converter l ib is consumed.
[0050] 図 10に、本発明の実施の形態に係る半導体を製造するプロセスの一つである、熱 処理を半導体基板に行うための半導体製造装置としての熱処理装置 110の斜視図 の一例を示す。この熱処理装置 110は、バッチ式縦型熱処理であり、主要部が配置 される筐体 112を有する。 [0051] 筐体 112内の背面側上側には反応炉 140が配置されている。この反応炉 140内に 、複数枚の基板を装填した基板支持具 130が搬入され熱処理が行われる。 FIG. 10 shows an example of a perspective view of a heat treatment apparatus 110 as a semiconductor manufacturing apparatus for performing heat treatment on a semiconductor substrate, which is one of processes for manufacturing a semiconductor according to an embodiment of the present invention. . This heat treatment apparatus 110 is a batch type vertical heat treatment, and has a casing 112 in which a main part is arranged. [0051] A reaction furnace 140 is arranged on the upper rear side in the housing 112. In this reaction furnace 140, a substrate support 130 loaded with a plurality of substrates is carried and heat treatment is performed.
[0052] 図 11に反応炉 140の断面図の一例を示す。この反応炉 140は、石英製の反応管 1 42を有する。この反応管 142は、上端部が閉塞され下端部が開放された円筒形状を している。この反応管 142の下方には反応管 142を指示するよう石英製のアダプタ 4 4が配置される。この反応管 142とアダプタ 144により反応容器 143が形成されてい る。また、反応容器 143のうち、アダプタ 44を除いた反応管 142の周囲には、ヒータ 1 46が配置されている。  FIG. 11 shows an example of a cross-sectional view of the reaction furnace 140. The reactor 140 has a reaction tube 1 42 made of quartz. The reaction tube 142 has a cylindrical shape with the upper end closed and the lower end open. Below this reaction tube 142, a quartz adapter 44 is arranged to point to the reaction tube 142. A reaction vessel 143 is formed by the reaction tube 142 and the adapter 144. A heater 146 is disposed around the reaction tube 142 excluding the adapter 44 in the reaction vessel 143.
[0053] 反応管 142とアダプタ 144により形成される反応容器 143の下部は、基板支持具 1 30を挿入するために開放され、この開放部分 (炉ロ部)は炉ロシールキャップ 148が アダプタ 144の下端部フランジの下面に当接することにより密閉されるようにしてある 。炉ロシールキャップ 148は基板支持具 130を支持し、基板支持具 130と共に昇降 可能に設けられている。基板支持具 130は、多数枚、例えば 25〜: L00枚の基板 154 を略水平状態で隙間をもって多段に支持し、反応管 142内に装填される。  [0053] The lower part of the reaction vessel 143 formed by the reaction tube 142 and the adapter 144 is opened for inserting the substrate support 130, and the open portion (furnace portion) is connected to the furnace seal cap 148 by the adapter 144. It is made to seal by contact | abutting to the lower surface of the lower end flange of this. The furnace seal cap 148 supports the substrate support 130 and is provided so as to be able to move up and down together with the substrate support 130. The substrate supporter 130 supports a large number of, for example, 25-: L00 substrates 154 in a substantially horizontal state in multiple stages with gaps, and is loaded into the reaction tube 142.
[0054] アダプタ 144には、アダプタ 144と一体にガス供給口 156とガス排気口 159と力 S設 けられている。ガス供給口 156にはガス導入管 160が、ガス排気口 159〖こは排気管 1 62がそれぞれ接続されて 、る。  [0054] The adapter 144 is provided with a gas supply port 156, a gas exhaust port 159, and a force S integrally with the adapter 144. A gas introduction pipe 160 is connected to the gas supply port 156, and an exhaust pipe 162 is connected to the gas exhaust port 159.
[0055] ガス導入管 160からガス供給口 156に導入された処理ガスは、アダプタ 144の側壁 部に設けられたガス導入管 160、ノズル 166を介して反応管 142内に供給される。  The processing gas introduced from the gas introduction pipe 160 to the gas supply port 156 is supplied into the reaction pipe 142 via the gas introduction pipe 160 and the nozzle 166 provided on the side wall of the adapter 144.
[0056] 次に上述したように構成された熱処理装置 110の作用について説明する。  Next, the operation of the heat treatment apparatus 110 configured as described above will be described.
なお、以下の説明において、熱処理装置 110、すなわち熱処理を行うための基板 処理装置を構成する各部の動作はコントローラ 170により制御される。  In the following description, the operation of each unit constituting the heat treatment apparatus 110, that is, the substrate processing apparatus for performing the heat treatment, is controlled by the controller 170.
[0057] まず、ポッドステージ 114に複数枚の基板 154を収容したポッド 116がセットされると 、ポッド搬送装置 118によりポッド 116をポッドステージ 114からポッド棚 120へ搬送し 、このポッド棚 120にストックする。次に、ポッド搬送装置 118により、このポッド棚 120 にストックされたポッド 116をポッドオーブナ 122に搬送してセットし、このポッドオーブ ナ 122によりポッド 116の蓋を開き、基板枚数検知器 124によりポッド 116に収容され ている基板 154の枚数を検知する。 [0058] 次に、基板移載機 126により、ポッドオーブナ 122の位置にあるポッド 116から基板 154を取り出し、ノッチァライナ 128に移載する。このノッチァライナ 128に置いては、 基板 154を回転させながら、ノッチを検出し、整列させる。次に、基板移載機 126によ り、ノッチァライナ 128から基板 154を取り出し、基板支持具 130に移載する。 [0057] First, when a pod 116 containing a plurality of substrates 154 is set on the pod stage 114, the pod 116 is transferred from the pod stage 114 to the pod shelf 120 by the pod transfer device 118, and stocked on the pod shelf 120. To do. Next, the pod 116 stocked on the pod shelf 120 is transported and set to the pod opener 122 by the pod transport device 118, the lid of the pod 116 is opened by the pod opener 122, and the pod 116 is detected by the substrate number detector 124. Detect the number of substrates 154 stored in the. Next, the substrate transfer machine 126 takes out the substrate 154 from the pod 116 at the position of the pod opener 122 and transfers it to the notch aligner 128. In the notch aligner 128, the notch is detected and aligned while the substrate 154 is rotated. Next, the substrate transfer machine 126 takes out the substrate 154 from the notch aligner 128 and transfers it to the substrate support 130.
[0059] このようにして、 1バッチ分の基板 154を基板支持具 130に移載すると、例えば 600 °C程度の温度に設定された反応炉 140 (反応容器 143)内に複数枚の基板 154を装 填した基板支持具 130を挿入し、炉ロシールキャップ 148により反応炉 140内を密 封する。次に、炉内温度を熱処理温度まで昇温させて、ガス導入管 160からガス供 給口 156、アダプタ 144側壁部に設けられたガス導入経路 164、及びノズル 166を 介して反応管 142内に処理ガスを導入する。基板 154を熱処理する際、基板 154は 例えば 1000°Cの設定温度に加熱される。設定温度にするためヒータへの供給電力 を調節する際に、実施の形態の供給電力調整器が前記コントローラ 170の一部とし て用いられる。  [0059] When one batch of substrates 154 is transferred onto the substrate support 130 in this way, a plurality of substrates 154 are placed in the reaction furnace 140 (reaction vessel 143) set to a temperature of, for example, about 600 ° C. Then, the substrate support 130 loaded with is inserted, and the reactor 140 is hermetically sealed with the furnace seal cap 148. Next, the furnace temperature is raised to the heat treatment temperature, and the gas is introduced into the reaction tube 142 from the gas introduction pipe 160 through the gas supply port 156, the adapter 144, the gas introduction path 164 provided in the side wall portion, and the nozzle 166. Introduce processing gas. When the substrate 154 is heat-treated, the substrate 154 is heated to a set temperature of 1000 ° C., for example. When adjusting the power supplied to the heater to reach the set temperature, the power supply regulator of the embodiment is used as a part of the controller 170.
[0060] 基板 154の熱処理が終了すると、例えば炉内温度を 600°C程度の温度に降温した 後、熱処理後の基板 154を支持した基板支持具 130を反応炉 140からアンロードし 、基板支持具 130に支持された全ての基板 154が冷える間で、基板支持具 130を所 定位置で待機させる。次に、待機させた基板支持具 130の基板 154が所定温度まで 冷却されると、基板移載機 126により、基板支持具 130から基板 154を取り出し、ポッ ドオーブナ 122にセットされている空のポッド 116に搬送して収容する。次に、ポッド 搬送装置 118により、基板 154が収容されたポッド 116をポッド棚 120、またはポッド ステージ 114に搬送して一連の処理が完了する。  [0060] When the heat treatment of the substrate 154 is completed, for example, the temperature in the furnace is lowered to a temperature of about 600 ° C, and then the substrate support 130 supporting the heat-treated substrate 154 is unloaded from the reaction furnace 140 to support the substrate. While all the substrates 154 supported by the tool 130 are cooled, the substrate support tool 130 is put on standby at a predetermined position. Next, when the substrate 154 of the substrate support 130 that has been put on standby is cooled to a predetermined temperature, the substrate transfer device 126 takes out the substrate 154 from the substrate support 130, and the empty pod set in the pod opener 122 Transport to 116 and house. Next, the pod carrying device 118 carries the pod 116 containing the substrate 154 to the pod shelf 120 or the pod stage 114 to complete a series of processes.
[0061] 以上述べたように、実施の形態の供給電力調整器によれば次のような効果を奏す る。  [0061] As described above, the power supply regulator according to the embodiment has the following effects.
[0062] 交流電源の交流電圧を直接 IGBT変換器でスイッチングしているので、 IGBT変換 器の前段のダイオード全波整流回路が不要となり、コンパクトな供給電力調整器を実 現できる。  [0062] Since the AC voltage of the AC power source is directly switched by the IGBT converter, the diode full-wave rectifier circuit in front of the IGBT converter is not required, and a compact supply power regulator can be realized.
例えば、全波整流回路は、その容量にも依存する力 200Aクラスでは、 200 (W) X 350 (D) X 100 (H)位の大きさとなる。このような全波整流回路を備えた供給電力 調整器全体の大きさは、 600 (W) X 800 (D) X 1200 (H)位の大きさとなる。本実施 の形態では、全波整流回路がないので、供給電力調整器全体の大きさを、この 80% 位のサイズにすることが可能になる。 For example, a full-wave rectifier circuit has a magnitude of 200 (W) X 350 (D) X 100 (H) in the 200A class, which also depends on its capacity. Supply power with such a full-wave rectifier circuit The overall size of the adjuster is about 600 (W) X 800 (D) X 1200 (H). In the present embodiment, since there is no full-wave rectifier circuit, the size of the entire power supply regulator can be reduced to about 80%.
[0063] また、 IGBT変^^で発生した電磁ノイズは、入力側フィルタ回路によって抑制され るので、交流電源へ電磁ノイズが混入するを防止できる。したがって、交流電源にノ ィズ障害が発生するのを防止することができる。また、交流電源力も IGBT変翻に 至る入力ケーブルに電磁ノイズが誘導されるのを抑制することができる。  [0063] Further, since electromagnetic noise generated by the IGBT module is suppressed by the input side filter circuit, it is possible to prevent the electromagnetic noise from being mixed into the AC power supply. Therefore, it is possible to prevent a noise failure from occurring in the AC power supply. In addition, AC power can also suppress induction of electromagnetic noise in the input cable leading to IGBT transformation.
[0064] また、 IGBT変翻の出力に含まれる高調波成分は、出力側フィルタ回路によって 抑制されるので、ヒータに供給される交流電力中の高調波成分を減衰することできる  [0064] In addition, since the harmonic component included in the output of the IGBT transformation is suppressed by the output side filter circuit, the harmonic component in the AC power supplied to the heater can be attenuated.
[0065] また、回生用 IGBT変翻を備え、 IGBT変翻外で発生する逆起電力を回生して 交流電源に戻しているので、交流電源のエネルギー効率を向上できる。特に、 IGBT 変換器は、高速,高周波でスイッチング動作させるので、逆起電力の発生回数もそれ だけ多ぐ電力回生が頻繁に行われるので、エネルギー効率の向上に大きく寄与で きる。 [0065] Further, since the regenerative IGBT conversion is provided and the back electromotive force generated outside the IGBT conversion is regenerated and returned to the AC power supply, the energy efficiency of the AC power supply can be improved. In particular, IGBT converters are switched at a high speed and a high frequency, so that the number of counter electromotive force generations is so high that power regeneration is performed frequently, which can greatly contribute to the improvement of energy efficiency.
[0066] 電源電圧変動をフィードフォワード制御として、及び負荷変動をフィードバック制御 として、温度変動のフィードバック制御に取り込んだので、温度安定性に優れた制御 システムが提供可能となる。また、安定した電力制御が可能となり、使い勝手がよい。 ゼロクロス制御であるため、原理的に無効電力のない、電源電力を有効利用でき、 高効率な供給電力調整器を提供することができる。  Since the power supply voltage fluctuation is used as feedforward control and the load fluctuation is used as feedback control, the temperature fluctuation feedback control is incorporated, so that a control system with excellent temperature stability can be provided. In addition, stable power control is possible, and usability is good. Since zero-crossing control is used, it is possible to provide a highly efficient supply power regulator that can effectively use power source power that has no reactive power in principle.
[0067] 既存の温度調節計 9を用いて、その出力を周波数可変回路 15に加えて、 IGBTの ゲート制御信号を出力するようにしたので、従来のシシステムと互換性を持たせること ができ、僅かな変更をカ卩えるだけで、従来システム力も本システムに容易に変更でき る。なお、温度調節計に既存のものを用いず、電源変動や負荷変動の場合と同様に 、演算機能を周波数可変回路 15に移植して、温度調節計は、単に温度変動のみを 検出する回路として構成するようにしてもよ!、。  [0067] Since the output of the temperature controller 9 is added to the frequency variable circuit 15 and the gate control signal of the IGBT is output, it can be compatible with the conventional system. Therefore, the conventional system power can be easily changed to this system with only a slight change. In addition, without using an existing temperature controller, just as in the case of power supply fluctuation or load fluctuation, the arithmetic function is ported to the frequency variable circuit 15, and the temperature controller is simply a circuit that detects only the temperature fluctuation. You can make it up!
[0068] 高速スイッチング素子を採用することで省電力化され、無駄なく必要な電力を得る ことが可能となる。特に、高周波の素子である IGBTを用いているので、温度応答性 に優れ、またノイズを嫌う計装ライン近辺のヒータ制御に好適である。 [0068] By adopting a high-speed switching element, it is possible to save power and obtain necessary power without waste. In particular, because it uses IGBT, which is a high-frequency element, temperature response In addition, it is suitable for heater control in the vicinity of an instrumentation line that dislikes noise.
[0069] なお、上述した実施の形態では、温度変動に加えて電源電圧変動及び負荷変動 の両方を制御に取り込むようにしたが、温度変動制御に電源電圧変動のみを制御に 取り込むようにしたり、あるいは温度変動制御に負荷変動のみを制御に取り込むよう にしたりしても良い。前者では供給電源の電圧変動を補正して、安定した供給電力を 得ることが可能となる。後者では、ヒータの負荷変動を押さえることが可能となる。  [0069] In the above-described embodiment, both the power supply voltage fluctuation and the load fluctuation are taken into the control in addition to the temperature fluctuation. However, only the power supply voltage fluctuation is taken into the control in the temperature fluctuation control. Alternatively, only load fluctuations may be taken into the temperature fluctuation control. In the former, it is possible to obtain stable supply power by correcting voltage fluctuations of the supply power. In the latter, it is possible to suppress the load fluctuation of the heater.
[0070] 本発明の実施の形態より、使用する機器への誤動作'破損、更に周辺機器への誤 動作原因となっていた高速スイッチング時に発生させるサージ電流や高周波ノイズを 小さくすることができるようになり、歪みの少ない、きれいな交流正弦波出力にするこ とができるようになった。  [0070] According to the embodiment of the present invention, it is possible to reduce the surge current and high frequency noise generated at the time of high-speed switching, which has been a cause of malfunctions to the devices used, damage, and malfunctions to peripheral devices. As a result, it has become possible to produce a clean AC sine wave output with little distortion.
[0071] また、上述した実施の形態の供給電力調整器 21は、ヒータにより加熱される反応炉 を備えた半導体製造装置に用いることが可能である。反応炉は、石英チューブと、こ の石英チューブを外部から加熱する筒状のヒータとから構成される。このヒータをカロ 熱するために実施の形態の供給電力調整器を用いる。上述した供給電力調整器を 半導体製造装置に用いれば、ヒータ温度の安定性が得られるので、高性能な半導体 デバイスを得ることができる。  In addition, the supply power regulator 21 of the above-described embodiment can be used for a semiconductor manufacturing apparatus including a reaction furnace heated by a heater. The reactor is composed of a quartz tube and a cylindrical heater that heats the quartz tube from the outside. In order to heat the heater, the power supply regulator according to the embodiment is used. If the above-described supply power regulator is used in a semiconductor manufacturing apparatus, the stability of the heater temperature can be obtained, so that a high-performance semiconductor device can be obtained.
[0072] 以下に、本発明の好ましい態様を付記する。  [0072] Preferred embodiments of the present invention will be additionally described below.
第 1の態様は、交流電源の交流電圧を、制御信号の周波数に応じた交流電力に変 換して、この交流電力をヒータに供給する IGBT変翻と、前記 IGBT変翻の入力 側に設けられ、前記 IGBT変 で発生する電磁ノイズを抑制する入力側フィルタ回 路と、前記 IGBT変翻の出力側に設けられ、前記 IGBT変翻カゝら出力される交 流電力に含まれる高調波成分を抑制する出力側フィルタ回路と、前記ヒータの温度 変動を検出する温度変動検出手段と、前記交流電源から前記 IGBT変換器に供給 される交流電圧から前記交流電源の電源変動を検出する電源変動検出手段と、前 記 IGBT変 力 前記ヒータに供給される交流電力から負荷変動を検出する負荷 変動検出手段と、前記温度変動検出手段、前記電源変動検出手段、及び前記負荷 変動検出手段の各検出結果に応じて、前記ヒータに供給すべき電力量を演算して、 その演算結果に応じて前記 IGBT変換器に加える前記制御信号の周波数を制御す る周波数可変手段と、を備えたことを特徴とする供給電力調整器である。 In the first mode, the AC voltage of the AC power source is converted into AC power corresponding to the frequency of the control signal, and this AC power is supplied to the heater, and provided on the input side of the IGBT conversion. And an input side filter circuit for suppressing electromagnetic noise generated by the IGBT transformation, and a harmonic component included in the AC power output from the IGBT transformation module provided on the output side of the IGBT transformation. Output fluctuation filter circuit for suppressing temperature fluctuation, temperature fluctuation detection means for detecting temperature fluctuation of the heater, and power fluctuation detection for detecting power fluctuation of the AC power supply from AC voltage supplied from the AC power supply to the IGBT converter Each of the detection results of the load fluctuation detecting means for detecting a load fluctuation from the AC power supplied to the heater, the temperature fluctuation detecting means, the power supply fluctuation detecting means, and the load fluctuation detecting means. In response to the The amount of power to be supplied to the heater is calculated, and the frequency of the control signal applied to the IGBT converter is controlled according to the calculation result. And a frequency varying means.
[0073] 本態様によれば、交流電源の交流電圧を直接 IGBT変換器でスイッチングしている ので、 IGBT変^^の前段の整流回路が不要となり、コンパクトな電源を実現できる。 [0073] According to this aspect, since the AC voltage of the AC power source is directly switched by the IGBT converter, the rectifier circuit in the previous stage of the IGBT converter is not required, and a compact power source can be realized.
[0074] また、 IGBT変^^で発生した電磁ノイズは、入力側フィルタ回路によって抑制され るので、交流電源へ電磁ノイズが混入するを防止できる。 [0074] Further, since electromagnetic noise generated by the IGBT module is suppressed by the input side filter circuit, it is possible to prevent the electromagnetic noise from being mixed into the AC power supply.
また、 IGBT変翻の出力に含まれる高調波成分は、出力側フィルタ回路によって 抑制されるので、ヒータに供給される交流電力中に高調波成分が含まれるのを防止 できる。  In addition, since the harmonic component included in the output of the IGBT conversion is suppressed by the output side filter circuit, it is possible to prevent the harmonic component from being included in the AC power supplied to the heater.
[0075] また、温度変動検出手段で温度変動を検出し、周波数可変手段でその検出結果 に応じた電力量を演算し、その演算結果に応じて IGBT変 を周波数制御するこ とにより、温度変動に対するヒータへの供給電力をフィードバック制御している。した がって、ヒータの温度を所定の温度に良好に保つことができる。  [0075] Further, the temperature fluctuation is detected by the temperature fluctuation detecting means, the electric energy corresponding to the detection result is calculated by the frequency variable means, and the IGBT fluctuation is frequency controlled according to the calculation result, whereby the temperature fluctuation is detected. The power supplied to the heater is feedback controlled. Therefore, it is possible to keep the heater temperature well at a predetermined temperature.
[0076] また、交流電源が変動すると、その変動は IGBT変換器の入力側に電力の変動とし て現れる。電源変動検出手段で、この電力変動を検出し、周波数可変手段でその検 出結果に応じた電力量を演算し、その演算結果に応じて IGBT変 を周波数制御 することにより、電源変動に対する供給電力をフィードフォワード制御している。した がって、良好にフィードバック制御されているときに電源変動が生じて、ヒータへの供 給電力量が変動してしまうことで生じるヒータ温度の乱れを抑制することができる。  [0076] When the AC power supply fluctuates, the fluctuation appears as a fluctuation in power on the input side of the IGBT converter. The power fluctuation detection means detects this power fluctuation, the frequency variable means calculates the amount of power according to the detection result, and the IGBT fluctuation is frequency controlled according to the calculation result, thereby supplying power to the power fluctuation. Feedforward control. Therefore, it is possible to suppress the disturbance of the heater temperature caused by the fluctuation of the power source when the feedback control is satisfactorily performed and the amount of power supplied to the heater fluctuates.
[0077] また、負荷が変動すると、その変動はヒータに供給される電力の変動として現れる。  [0077] When the load fluctuates, the fluctuation appears as a fluctuation in the electric power supplied to the heater.
負荷変動検出手段でこの電力変動を検出し、周波数可変手段でその検出結果に応 じた電力量を演算し、その演算結果に応じて IGBT変 を周波数制御することによ り、負荷変動に対する供給電力をフィードバック制御している。したがって、良好にフ イードバック制御されているときに負荷変動が生じて、ヒータへの供給電力量の制御 が負荷変動で大きく乱れてしまうことで生じるヒータ温度の乱れを抑制することができ る。  The load fluctuation detection means detects this power fluctuation, the frequency variable means calculates the amount of power according to the detection result, and the IGBT fluctuation is frequency controlled according to the calculation result, thereby supplying the load fluctuation. The power is feedback controlled. Therefore, it is possible to suppress the disturbance of the heater temperature that occurs when the load fluctuation occurs when the feedback control is performed well and the control of the amount of power supplied to the heater is greatly disturbed by the load fluctuation.
[0078] このように IGBT変翻を用いて、温度制御に対するフィードバック制御に、電源変 動に対するフィードフォワード制御及び負荷変動に対するフィードバック制御を取り 込むようにしたので、温度安定度、及び電源変動及び負荷変動に対する安定度が極 めて優れ、ヒータ温度に高い安定性が得られる。また、 IGBT変^^に高速スィッチ ング動作をさせるので温度応答性に優れる。また、進相コンデンサの補正によらない 制御なので、使い勝手がよくなる。さらに、変換器を IGBTで構成したので、特に過渡 応答性に優れる。また、 IGBTの周波数制御は、ゼロクロス制御であるので、電源の 効率を向上できる。 [0078] In this way, the feedback control with respect to the temperature control is incorporated into the feedback control with respect to the temperature control by incorporating the feedforward control with respect to the power supply variation and the feedback control with respect to the load variation. Extremely stable against fluctuations Excellent stability and high stability in heater temperature. In addition, IGBT switching is made to switch at high speed, so it has excellent temperature response. In addition, the control is not based on the compensation of the phase-advancing capacitor, which improves usability. Furthermore, since the converter is composed of IGBTs, it has excellent transient response. In addition, since the IGBT frequency control is zero-cross control, the efficiency of the power supply can be improved.
[0079] 第 2の態様は、第 1の態様にぉ 、て、前記 IGBT変翻は、該 IGBT変翻のスィ ツチング動作により生じる逆起電力を回生して前記交流電源に戻す回生用 IGBT変 を備えて!/ヽることを特徴とする供給電力調整器である。  [0079] In the second mode, in the first mode, the IGBT conversion is a regenerative IGBT conversion that regenerates the back electromotive force generated by the switching operation of the IGBT conversion and returns it to the AC power source. It is a power supply regulator characterized by!
IGBT変翻が回生用 IGBT変翻を備えて、熱エネルギーとして放出される逆起 電力を回生して交流電源に戻しているので、交流電源のエネルギー効率を上げるこ とがでさる。  The IGBT transformation is equipped with an IGBT transformation for regeneration, and the back electromotive force released as thermal energy is regenerated and returned to the AC power supply, so that the energy efficiency of the AC power supply can be improved.
[0080] 第 3の態様は、第 1ないし第 2の態様の供給電力調整器をヒータ用電源に用いた半 導体製造装置である。ヒータ温度に高い安定性が得られる第 1の発明ないし第 2の発 明の供給電力調整器を備えて ヽるので、高性能な半導体デバイスを製造することが できる。  [0080] A third aspect is a semiconductor manufacturing apparatus using the supply power regulator of the first or second aspect as a heater power source. Since the power supply regulator of the first invention or the second invention that provides high stability in the heater temperature is provided, a high-performance semiconductor device can be manufactured.
図面の簡単な説明  Brief Description of Drawings
[0081] [図 1]本発明の一実施の形態による供給電力調整器のブロック図である。 FIG. 1 is a block diagram of a supply power regulator according to an embodiment of the present invention.
[図 2]本発明の一実施の形態による供給電力調整器の要部の具体的なブロック図で ある。  FIG. 2 is a specific block diagram of a main part of a supply power regulator according to an embodiment of the present invention.
[図 3]従来例による供給電力調整器のブロック図である。  FIG. 3 is a block diagram of a power supply regulator according to a conventional example.
[図 4]従来の位相制御による電力の与え方の説明図である。  FIG. 4 is an explanatory diagram of how power is supplied by conventional phase control.
[図 5]従来と実施例とに共通したゼロクロス制御による電力の与え方の説明図である。  FIG. 5 is an explanatory diagram of how to apply power by zero-crossing control common to the prior art and the embodiment.
[図 6]従来の進相コンデンサ方式による力率改善の説明図である。  FIG. 6 is an explanatory diagram of power factor improvement by a conventional phase advance capacitor method.
[図 7]本発明の一実施の形態による供給電力調整器の要部図である。  [Fig. 7] Fig. 7 is a main part diagram of a power supply regulator according to one embodiment of the present invention.
[図 8]本発明の一実施の形態による供給電力調整器の要部のスイッチング動作、並 びに各ポイントでの電圧波形を示す図である。  FIG. 8 is a diagram showing a switching operation of a main part of the supply power regulator according to one embodiment of the present invention, and voltage waveforms at each point.
[図 9]本発明の一実施の形態による電源変動検出手段 22、負荷変動検出手段 23、 及び周波数可変回路 15の具体的な説明図である。 [図 10]本発明の一実施の形態による半導体を製造するプロセスの一つである、半導 体基板に熱処理を行うための熱処理装置の一例を示す斜視図である。 FIG. 9 is a specific explanatory diagram of a power supply fluctuation detecting unit 22, a load fluctuation detecting unit 23, and a frequency variable circuit 15 according to an embodiment of the present invention. FIG. 10 is a perspective view showing an example of a heat treatment apparatus for performing a heat treatment on a semiconductor substrate, which is one of processes for manufacturing a semiconductor according to an embodiment of the present invention.
圆 11]本発明の一実施の形態による反応炉の一例を示す断面図である。 [11] FIG. 11 is a cross-sectional view showing an example of a reaction furnace according to an embodiment of the present invention.
符号の説明 Explanation of symbols
1 交流電源  1 AC power supply
7 ヒータ  7 Heater
8 温度測定用熱電対  8 Thermocouple for temperature measurement
9 温度調節計  9 Temperature controller
10 入力側フィルタ回路  10 Input side filter circuit
11 IGBT変  11 IGBT modification
20 出力側フィルタ回路  20 Output side filter circuit
21 供給電力調整器  21 Power supply regulator
14 電源電圧 ·電流フィードフォワード回路  14 Power supply voltage and current feedforward circuit
16 制御電圧 ·電流フィードバック回路  16 Control voltage / current feedback circuit
15 周波数可変回路 (周波数可変手段)  15 Frequency variable circuit (frequency variable means)
22 電源変動検出手段  22 Power fluctuation detection means
23 負荷変動検出手段  23 Load fluctuation detection means
24 温度変動検出手段  24 Temperature fluctuation detection means

Claims

請求の範囲 The scope of the claims
[1] 反応炉内に複数枚の基板を装填した基板保持具を搬入して熱処理を行う半導体 製造装置において、  [1] In a semiconductor manufacturing apparatus that carries in a heat treatment by carrying a substrate holder loaded with a plurality of substrates into a reaction furnace,
前記反応炉の周囲に設けられたヒータと、前記ヒータへの供給電力を調整する供 給電力調整器と、を有し、  A heater provided around the reactor, and a supply power regulator that adjusts the supply power to the heater;
前記供給電力調整器は、交流電源の交流電圧を、制御信号の周波数に応じた交 流電力に変換して前記ヒータに供給する電力用 IGBT変翻と、該 IGBT変翻の スイッチング動作により生じる逆起電力を回生して前記交流電源に戻す回生用 IGB T変換器とで構成されて ヽることを特徴とする半導体製造装置。  The power supply regulator converts the AC voltage of the AC power source into AC power corresponding to the frequency of the control signal and supplies it to the heater, and the reverse generated by the switching operation of the IGBT conversion. A semiconductor manufacturing apparatus comprising: a regenerative IGB T converter that regenerates electromotive force and returns it to the AC power source.
[2] 前記供給電力調整器は、前記電力用 IGBT変換器の入力側と前記回生用 IGBT 変 の出力側にフィルタ回路が設けられていることを特徴とする請求項 1記載の半 導体製造装置。 2. The semiconductor manufacturing apparatus according to claim 1, wherein the supply power regulator is provided with a filter circuit on an input side of the power IGBT converter and an output side of the regeneration IGBT converter. .
[3] 前記供給電力調整器の入力側に設けられている入力側フィルタ回路が、前記電力 用 IGBT変 で発生する電磁ノイズを抑制することを特徴とする請求項 2記載の半 導体製造装置。  3. The semiconductor manufacturing apparatus according to claim 2, wherein an input side filter circuit provided on an input side of the power supply regulator suppresses electromagnetic noise generated by the power IGBT change.
[4] 前記供給電力調整器の出力側に設けられている出力側フィルタ回路が、前記回生 用 IGBT変 力 出力される交流電力に含まれる高調波成分を抑制することを特 徴とする請求項 2記載の半導体製造装置。  [4] The output filter circuit provided on the output side of the supply power regulator suppresses harmonic components contained in the AC power output from the regenerative IGBT. 2. The semiconductor manufacturing apparatus according to 2.
[5] 前記供給電力調整器は、前記ヒータの温度変動を検出する温度検出手段と、 前記交流電源から前記 IGBT変換器に供給される交流電圧から前記交流電源の 電源変動を検出する電源変動検出手段と、 [5] The supply power regulator includes temperature detection means for detecting a temperature fluctuation of the heater, and a power fluctuation detection for detecting a power fluctuation of the AC power supply from an AC voltage supplied from the AC power supply to the IGBT converter. Means,
前記 IGBT変 力も前記ヒータに供給される交流電力から負荷変動を検出する 負荷変動検出手段と、  A load fluctuation detecting means for detecting a load fluctuation from the AC power supplied to the heater,
前記温度変動検出手段、前記電源変動検出手段、及び負荷変動検出手段の各検 出結果に応じて、前記供給電力調整器に加える前記ヒータに供給すべき電力量に 応じた制御信号の周波数を制御する周波数可変手段と、  Control the frequency of the control signal according to the amount of power to be supplied to the heater to be supplied to the supply power regulator according to the detection results of the temperature fluctuation detection means, the power fluctuation detection means, and the load fluctuation detection means. Frequency variable means to perform,
を更に備えたことを特徴とする請求項 1乃至 4のいずれか一つの半導体製造装置。  The semiconductor manufacturing apparatus according to claim 1, further comprising:
[6] 反応炉内に複数枚の基板を装填した基板保持具を搬入して熱処理を行う半導体 製造装置において、 [6] A semiconductor that carries a substrate holder loaded with multiple substrates into the reactor and performs heat treatment In manufacturing equipment,
前記反応炉の周囲に設けられたヒータと、前記ヒータへの供給電力を調整する供 給電力調整器と、を有し、  A heater provided around the reactor, and a supply power regulator that adjusts the supply power to the heater;
前記供給電力調整器は、前記ヒータの温度変動を検出する温度検出手段と、 交流電源から前記供給電力調整器に供給される交流電圧から前記交流電源の電 源変動を検出する電源変動検出手段と、  The supply power regulator includes temperature detection means for detecting temperature fluctuations of the heater, and power supply fluctuation detection means for detecting power fluctuations of the AC power supply from an AC voltage supplied from an AC power supply to the supply power regulator. ,
前記ヒータに供給される交流電力から負荷変動を検出する負荷変動検出手段と、 前記温度変動検出手段、前記電源変動検出手段、及び負荷変動検出手段の各検 出結果に応じて、前記供給電力調整器に加える前記ヒータに供給すべき電力量に 応じた制御信号の周波数を制御する周波数可変手段と、  Load fluctuation detecting means for detecting a load fluctuation from the AC power supplied to the heater, and the supply power adjustment according to the detection results of the temperature fluctuation detecting means, the power supply fluctuation detecting means, and the load fluctuation detecting means. Frequency variable means for controlling the frequency of the control signal in accordance with the amount of power to be supplied to the heater to be applied to the heater;
を備えたことを特徴とする半導体製造装置。  A semiconductor manufacturing apparatus comprising:
[7] 外部ヒータへの供給電力を調整するための供給電力調整器であって、  [7] A supply power regulator for adjusting the supply power to the external heater,
前記供給電力調整器は、交流電源の交流電圧を、制御信号の周波数に応じた交 流電力に変換して前記ヒータに供給する電力用 IGBT変翻と、該 IGBT変翻の スイッチング動作により生じる逆起電力を回生して前記交流電源に戻す回生用 IGB T変 とで構成されていることを特徴とする供給電力調整器。  The power supply regulator converts the AC voltage of the AC power source into AC power corresponding to the frequency of the control signal and supplies it to the heater, and the reverse generated by the switching operation of the IGBT conversion. A power supply regulator comprising: a regenerative IGB T variable for regenerating an electromotive force and returning it to the AC power source.
[8] 前記供給電力調整器は、前記電力用 IGBT変換器の入力側と前記回生用 IGBT 変 の出力側にフィルタ回路が設けられていることを特徴とする請求項 7記載の供 給電力調整器。  [8] The supply power regulator according to claim 7, wherein the supply power regulator is provided with a filter circuit on an input side of the power IGBT converter and an output side of the regeneration IGBT converter. vessel.
[9] 前記供給電力調整器の入力側に設けられている入力側フィルタ回路が、前記電力 用 IGBT変換器で発生する電磁ノイズを抑制することを特徴とする請求項 8記載の供 給電力調整器。  9. The supply power adjustment according to claim 8, wherein the input side filter circuit provided on the input side of the supply power regulator suppresses electromagnetic noise generated in the power IGBT converter. vessel.
[10] 前記供給電力調整器の出力側に設けられている出力側フィルタ回路が、前記回生 用 IGBT変 力 出力される交流電力に含まれる高調波成分を抑制することを特 徴とする請求項 8記載の供給電力調整器。  [10] The output filter circuit provided on the output side of the supply power regulator suppresses harmonic components contained in the AC power output from the regenerative IGBT. 8. The power supply regulator described in 8.
[11] 前記供給電力調整器は、前記ヒータの温度変動を検出する温度検出手段と、 前記交流電源から前記 IGBT変換器に供給される交流電圧から前記交流電源の 電源変動を検出する電源変動検出手段と、 前記 IGBT変 力も前記ヒータに供給される交流電力から負荷変動を検出する 負荷変動検出手段と、 [11] The supply power regulator includes temperature detection means for detecting a temperature fluctuation of the heater, and a power fluctuation detection for detecting a power fluctuation of the AC power supply from an AC voltage supplied from the AC power supply to the IGBT converter. Means, A load fluctuation detecting means for detecting a load fluctuation from the AC power supplied to the heater,
前記温度変動検出手段、前記電源変動検出手段、及び負荷変動検出手段の各検 出結果に応じて、前記供給電力調整器に加える前記ヒータに供給すべき電力量に 応じた制御信号の周波数を制御する周波数可変手段と、  Control the frequency of the control signal according to the amount of power to be supplied to the heater to be supplied to the supply power regulator according to the detection results of the temperature fluctuation detection means, the power fluctuation detection means, and the load fluctuation detection means. Frequency variable means to perform,
を更に備えたことを特徴とする請求項 7乃至 10のいずれか一つの供給電力調整器。 外部ヒータへの供給電力を調整するための供給電力調整器であって、 The power supply regulator according to claim 7, further comprising: A power supply regulator for adjusting power supplied to an external heater,
前記供給電力調整器は、前記ヒータの温度変動を検出する温度検出手段と、 交流電源から前記供給電力調整器に供給される交流電圧から前記交流電源の電 源変動を検出する電源変動検出手段と、  The supply power regulator includes temperature detection means for detecting temperature fluctuations of the heater, and power supply fluctuation detection means for detecting power fluctuations of the AC power supply from an AC voltage supplied from an AC power supply to the supply power regulator. ,
前記ヒータに供給される交流電力から負荷変動を検出する負荷変動検出手段と、 前記温度変動検出手段、前記電源変動検出手段、及び負荷変動検出手段の各検 出結果に応じて、前記供給電力調整器に加える前記ヒータに供給すべき電力量に 応じた制御信号の周波数を制御する周波数可変手段と、  Load fluctuation detecting means for detecting a load fluctuation from the AC power supplied to the heater, and the supply power adjustment according to the detection results of the temperature fluctuation detecting means, the power supply fluctuation detecting means, and the load fluctuation detecting means. Frequency variable means for controlling the frequency of the control signal according to the amount of power to be supplied to the heater applied to the heater;
を備えたことを特徴とする供給電力調整器。  A power supply regulator characterized by comprising:
PCT/JP2006/307030 2005-04-04 2006-04-03 Supply power adjusting apparatus and semiconductor manufacturing apparatus WO2006107013A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007511224A JP5204481B2 (en) 2005-04-04 2006-04-03 Semiconductor manufacturing apparatus, power supply regulator, semiconductor device manufacturing method, and power control method
CN2006800062069A CN101128972B (en) 2005-04-04 2006-04-03 Supply power adjusting apparatus and semiconductor manufacturing apparatus and its manufacture method
HK08108043.2A HK1112536A1 (en) 2005-04-04 2008-07-22 Supply power adjusting apparatus, semiconductor manufacturing apparatus and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-107931 2005-04-04
JP2005107931 2005-04-04

Publications (1)

Publication Number Publication Date
WO2006107013A1 true WO2006107013A1 (en) 2006-10-12

Family

ID=37073559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307030 WO2006107013A1 (en) 2005-04-04 2006-04-03 Supply power adjusting apparatus and semiconductor manufacturing apparatus

Country Status (5)

Country Link
JP (2) JP5204481B2 (en)
KR (2) KR100940306B1 (en)
CN (3) CN101902131B (en)
HK (2) HK1112536A1 (en)
WO (1) WO2006107013A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287754A (en) * 2009-06-12 2010-12-24 Shin Etsu Handotai Co Ltd Method and apparatus for control of heater output at heat treatment furnace, and resistance heating type heat treatment furnace
KR101017653B1 (en) 2008-11-12 2011-02-25 세메스 주식회사 Bake apparatus and substrate treatment apparatus with it
JP2011108596A (en) * 2009-11-20 2011-06-02 Kokusai Electric Semiconductor Service Inc Power supply system
JP2013520801A (en) * 2010-02-19 2013-06-06 アプライド マテリアルズ インコーポレイテッド High efficiency / high accuracy heater driver

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135782B (en) * 2011-02-16 2013-06-19 北京七星华创电子股份有限公司 Electrical control system and vertical furnace heating device containing same
KR101312960B1 (en) * 2012-08-29 2013-10-01 삼성중공업 주식회사 Method for detecting error of dbr unit and recording medium thereof
DE102014221962A1 (en) * 2014-10-28 2016-04-28 Robert Bosch Gmbh Method and device for heating a supply device in connection with an internal combustion engine
CN104864725A (en) * 2015-05-17 2015-08-26 成都中冶节能环保工程有限公司 Wet protection type coke oven waste heat recovery and power generation system based on power voltage setting circuit
JP6971199B2 (en) * 2018-05-31 2021-11-24 東京エレクトロン株式会社 Board processing method and board processing equipment
KR200491236Y1 (en) * 2019-07-22 2020-03-09 주식회사 토르 Heater Temperature Controller
CN113161574A (en) * 2020-01-22 2021-07-23 中国科学院大连化学物理研究所 Fuel cell heating system and control method thereof
KR102572807B1 (en) 2021-06-10 2023-08-29 경희대학교 산학협력단 Apparatus and method for controlling temperature uniformity of substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296117A (en) * 1990-04-13 1991-12-26 Tokyo Rikoushiya:Kk Variable automatic voltage controller
JPH09218720A (en) * 1996-02-08 1997-08-19 Ricoh Co Ltd Ac controller
JP2000293243A (en) * 1999-04-07 2000-10-20 Mitsubishi Electric Corp Voltage varying device
JP2003348843A (en) * 2002-05-27 2003-12-05 Kyoto Denkiki Kk Ac power regulator
JP2004022943A (en) * 2002-06-19 2004-01-22 Hitachi Kokusai Electric Inc Semiconductor manufacturing equipment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234620A (en) * 1985-04-10 1986-10-18 Nissin Electric Co Ltd Ac switching circuit
JP3045301B2 (en) * 1990-03-07 2000-05-29 勲 高橋 Switching element loss recovery circuit
CN1178371C (en) * 1997-02-25 2004-12-01 松下电器产业株式会社 High frequency heating equipment
JPH11262264A (en) * 1998-03-13 1999-09-24 Yaskawa Electric Corp Power converter
JP3805927B2 (en) * 1999-06-10 2006-08-09 株式会社アイ・ヒッツ研究所 AC voltage regulator
JP2003309994A (en) * 2002-04-12 2003-10-31 Daikin Ind Ltd Linear compressor drive device
KR100434153B1 (en) * 2002-04-12 2004-06-04 엘지산전 주식회사 Hybrid dc electromagnetic contactor
JP2003309973A (en) * 2002-04-16 2003-10-31 Kyoto Denkiki Kk Alternating-current power regulator
CN2574298Y (en) * 2002-09-30 2003-09-17 杨忠民 AC chopper frequency-changing speed governing device
JP2004135444A (en) * 2002-10-11 2004-04-30 Fuji Electric Fa Components & Systems Co Ltd Stack structure of power converter
JP2004187360A (en) * 2002-11-29 2004-07-02 Toshiba Corp Gate drive circuit of voltage driven switching element, and semiconductor module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296117A (en) * 1990-04-13 1991-12-26 Tokyo Rikoushiya:Kk Variable automatic voltage controller
JPH09218720A (en) * 1996-02-08 1997-08-19 Ricoh Co Ltd Ac controller
JP2000293243A (en) * 1999-04-07 2000-10-20 Mitsubishi Electric Corp Voltage varying device
JP2003348843A (en) * 2002-05-27 2003-12-05 Kyoto Denkiki Kk Ac power regulator
JP2004022943A (en) * 2002-06-19 2004-01-22 Hitachi Kokusai Electric Inc Semiconductor manufacturing equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101017653B1 (en) 2008-11-12 2011-02-25 세메스 주식회사 Bake apparatus and substrate treatment apparatus with it
JP2010287754A (en) * 2009-06-12 2010-12-24 Shin Etsu Handotai Co Ltd Method and apparatus for control of heater output at heat treatment furnace, and resistance heating type heat treatment furnace
JP2011108596A (en) * 2009-11-20 2011-06-02 Kokusai Electric Semiconductor Service Inc Power supply system
JP2013520801A (en) * 2010-02-19 2013-06-06 アプライド マテリアルズ インコーポレイテッド High efficiency / high accuracy heater driver
JP2016076708A (en) * 2010-02-19 2016-05-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated High efficiency high accuracy heater driver
US9612020B2 (en) 2010-02-19 2017-04-04 Applied Materials, Inc. High efficiency high accuracy heater driver
KR101824234B1 (en) * 2010-02-19 2018-01-31 어플라이드 머티어리얼스, 인코포레이티드 High efficiency high accuracy heater driver

Also Published As

Publication number Publication date
CN101128972A (en) 2008-02-20
KR20090042874A (en) 2009-04-30
JPWO2006107013A1 (en) 2008-09-25
JP5204481B2 (en) 2013-06-05
CN102122892B (en) 2014-02-12
CN101902131B (en) 2013-06-26
HK1157078A1 (en) 2012-06-22
KR100966375B1 (en) 2010-06-28
KR100940306B1 (en) 2010-02-05
JP5727450B2 (en) 2015-06-03
HK1112536A1 (en) 2008-09-05
KR20070102571A (en) 2007-10-18
JP2013118385A (en) 2013-06-13
CN101128972B (en) 2010-12-29
CN102122892A (en) 2011-07-13
CN101902131A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP5727450B2 (en) Supply power regulator and semiconductor manufacturing apparatus
EP2779405B1 (en) Methods and apparatus for continuous and discontinuous active rectifier boost operation to increase power converter rating
TWI551026B (en) Dielectric barrier discharge power system and method of generating dielectric barrier discharge
JP5567318B2 (en) Power supply system, substrate processing apparatus, semiconductor manufacturing apparatus, and deterioration diagnosis method
WO2006019056A1 (en) Supplying power adjusting apparatus, semiconductor manufacturing equipment, method for controlling power to heater and semiconductor device manufacturing method
US20140160815A1 (en) Power factor correction circuit
CN102686351A (en) Universal input power supply utilizing parallel power
JP6782429B2 (en) Single-stage commercial frequency-high frequency converter for induction heating and its control method
US20110242867A1 (en) Power Inverters and Related Methods
Nagai et al. High-frequency inverter with phase-shifted PWM and load-adaptive PFM control strategy for industrial induction-heating
JP2006238621A (en) Uninterruptible power supply
CN112019035B (en) Power factor correction system and method
JP4872090B2 (en) Voltage regulator
WO2024011875A1 (en) Converter and chopper transistor blocking control method therefor
El-Nakeeb et al. A high frequency modular resonant converter for the induction heating
CN110932587B (en) High-efficiency low-harmonic control method for high-switching-frequency silicon carbide inverter
Nagata et al. The phase-controlled class-D ZVS inverter with current protection
CN212785193U (en) Combinable switch type power supply structure for arc plasma
JP2004040995A (en) Method and apparatus for controlling power supplied to load
CN110376946A (en) Control method, electric appliance and the computer readable storage medium of electric appliance output power
Park et al. Input impedance and current feedforward control of single-phase boost PFC converters
JP2014197944A (en) Gate driver
KR101883052B1 (en) Apparatus for controlling of power factor correction
CN117856603A (en) Totem pole power factor correction circuit and operation method thereof
Ramteke et al. Single-phase resonant converter in three-phase system in modular approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007511224

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680006206.9

Country of ref document: CN

Ref document number: 1020077019514

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730978

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097007943

Country of ref document: KR