JPH03296117A - Variable automatic voltage controller - Google Patents

Variable automatic voltage controller

Info

Publication number
JPH03296117A
JPH03296117A JP9808590A JP9808590A JPH03296117A JP H03296117 A JPH03296117 A JP H03296117A JP 9808590 A JP9808590 A JP 9808590A JP 9808590 A JP9808590 A JP 9808590A JP H03296117 A JPH03296117 A JP H03296117A
Authority
JP
Japan
Prior art keywords
voltage
regulator
output
current
frequency filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9808590A
Other languages
Japanese (ja)
Inventor
Sunao Hasegawa
直 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO RIKOUSHIYA KK
Original Assignee
TOKYO RIKOUSHIYA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO RIKOUSHIYA KK filed Critical TOKYO RIKOUSHIYA KK
Priority to JP9808590A priority Critical patent/JPH03296117A/en
Publication of JPH03296117A publication Critical patent/JPH03296117A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To ensure the high accuracy and high stability regardless of the power factors of a load by outputting the current/voltage via a high frequency filter, a regulator, a current transformer and a high frequency filter and at the same time controlling the output voltage and the switching current through a control part, and outputting these controlled voltage and current to the controller as the PWM signals. CONSTITUTION:The power voltage Vin is outputted to a load 8 set between the output terminals as the output voltage Vout via a high frequency filter 3, a regulator 4, a current transformer 5, and a high frequency filter 6. The voltage Vout and a switching current IL are always detected and controlled by a control part 9 and then outputted to the regulator 4 as the PWM signals. Then the ON time of an AC switch element 4-1 is increased when the voltage Vout is set at a high level or changed to a low level. Meanwhile the ON time of the element 4-1 is shortened when the voltage Vout is set at a low level or changed to a high level, or an excessive output current Iout flows. Thus the voltage is controlled. As a result, the highly accurate and stable output voltage is endured with a compact and inexpensive VV-AVR despite an expected disturbance or accident.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は商用電源やその他の交流電源から負荷に供給す
る出力電圧を0(V)から電源電圧の近くまで任意に可
変設定出来て、さらに外乱による出力電圧の変動を安定
化する可変型自動電圧調整器(以下VV−AVRと略称
する)に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention allows the output voltage supplied to a load from a commercial power source or other AC power source to be arbitrarily variably set from 0 (V) to close to the power supply voltage. This invention relates to a variable automatic voltage regulator (hereinafter abbreviated as VV-AVR) that stabilizes fluctuations in output voltage due to disturbances.

(従来の技術) 従来のVV−AVRには例えば、摺動型変圧器とモータ
ーを組合せた方式やサイリスタ位相制御ユニットとフィ
ルタを組合せた方式が有り、いずれも重量が重く形状が
大きい装置となる。
(Prior art) Conventional VV-AVRs include, for example, a system that combines a sliding transformer and a motor, and a system that combines a thyristor phase control unit and a filter, both of which are heavy and large in size. .

最近、小形軽量を指向したスイッチング方式では第6図
(a)に示すような整流ダイオードブリッジとゲートタ
ーンオフサイリスタ(以下GT○と略称する)を組合せ
た交流スイッチ素子1組を用いたものがある。
Recently, there is a switching system aiming at compactness and light weight that uses a set of AC switching elements that is a combination of a rectifying diode bridge and a gate turn-off thyristor (hereinafter abbreviated as GT○) as shown in FIG. 6(a).

第6図(a)によって説明すると、1は電源、2゜2は
入力端子、4は調整器、7,7は出力端子、8は負荷、
9は制御部とからなる。
To explain with reference to Fig. 6(a), 1 is a power supply, 2゜2 is an input terminal, 4 is a regulator, 7, 7 is an output terminal, 8 is a load,
9 consists of a control section.

調整器は電源と負荷の間に接続されており、第6図(b
)のように電源電圧Vinの交流半周期に複数回前記調
整器の交流スイッチ素子をオンオフし、出力電圧Vou
tを調整して負荷に出力する。
The regulator is connected between the power source and the load, as shown in Figure 6 (b
), the AC switching element of the regulator is turned on and off several times during an AC half cycle of the power supply voltage Vin, and the output voltage Vou is
Adjust t and output to the load.

外乱によって出力電圧Voutが低下したとき、または
高い値に設定した時には、制御部で基準電圧と比較し、
その比較信号に依って作られるパルス幅変調(以下PW
Mと略称する)制御信号により調整器のスイッチングは
周期T内のオン時間tonが長く、オフ時間toffが
短くなり、低い出力電圧Voutは設定値に調整される
When the output voltage Vout decreases due to disturbance or is set to a high value, the control section compares it with the reference voltage,
Pulse width modulation (hereinafter referred to as PW) created by the comparison signal
A control signal (abbreviated as M) causes the switching of the regulator to have a long on time ton and a short off time toff within the period T, so that the low output voltage Vout is regulated to a set value.

逆に出力電圧Voutが上昇したとき、または出力電圧
Voutを低い値に設定した時には、制御部の機能によ
り調整器のスイッチングはオフ時間toffが長く、オ
ン時間tonが短くなり、高い出力電圧vOutは設定
値に調整される。
Conversely, when the output voltage Vout increases or when the output voltage Vout is set to a low value, the off time toff of the regulator becomes longer and the on time ton becomes shorter due to the function of the control section, and the higher output voltage vOut becomes lower. Adjusted to the set value.

(発明が解決しようとする課題) 第6図(a)に示す回路では次のような課題を有する。(Problem to be solved by the invention) The circuit shown in FIG. 6(a) has the following problems.

(1)第6図(b)のように電源から負荷に流れている
電流Ioutを調整器で短時間にオフしたとき、前記ス
イッチ素子GT○のアノードとカソード間には第6図(
C)のVakような、ニクロム線などの抵抗負荷が持っ
ている小さな値のインダクタンスLおよび電源側及び配
線に存在している無視できない値のインダクタンスLが
発生する過大な逆起電力VLを吸収して、GTOを破損
から保護するためのスナバ−回路やサージ吸収素子が必
要となる。
(1) When the current Iout flowing from the power source to the load is turned off by the regulator for a short time as shown in FIG. 6(b), the voltage between the anode and cathode of the switching element GT○ is
Absorbs the excessive back electromotive force VL generated by the small inductance L of a resistive load such as a nichrome wire and the non-negligible inductance L present on the power supply side and wiring, such as Vak in C). Therefore, a snubber circuit and a surge absorption element are required to protect the GTO from damage.

例えば、インダクタンス L=10  (μH)出力電
流 Iout−10(A) ターンオフタイム tf= 1.0 (μ5ee)周波
数 f=20  <flz) とした場合の、逆起電力VLとスナバ−回路の損失Pl
ossは?  VL=L−△Iout/1f=100 
(V)Ploss−0,5LIout”f =1.0 
(W)  となる。
For example, when inductance L = 10 (μH) output current Iout-10 (A) turn-off time tf = 1.0 (μ5ee) frequency f = 20 <flz), back electromotive force VL and snubber circuit loss Pl
What about oss? VL=L-△Iout/1f=100
(V) Ploss-0,5LIout"f = 1.0
(W) becomes.

前記例の場合はインダクタンスが小さいために逆起電力
とスナバ−回路の損失は比較的小さなスナバ−回路やサ
ージ電圧抑制素子で対策出来るが、モーター等の巻線と
鉄芯で構成している負荷は抵抗負荷に比較してインダク
タンスが極めて大きい。
In the case of the above example, since the inductance is small, the back electromotive force and the loss of the snubber circuit can be countered with a relatively small snubber circuit or surge voltage suppressor, but the load consisting of the windings and iron core of a motor etc. has extremely large inductance compared to resistive loads.

例えば、インダクタンス L=10 (mH>出力電流
 Iout=10 (A> ターンオフタイム tf=10 (μ5ee)周波数 
f= 2 (KHz) とした場合の、逆起電力VLとスナバ−回路の損失Pl
ossは?    Vl、=L−ΔIout/1f=l
O(KV>P1oss=0.5LIout2f =1.
0 (KW)ともなる。
For example, inductance L=10 (mH>output current Iout=10 (A> turn-off time tf=10 (μ5ee) frequency
Back electromotive force VL and snubber circuit loss Pl when f = 2 (KHz)
What about oss? Vl,=L-ΔIout/1f=l
O(KV>P1oss=0.5LIout2f=1.
0 (KW).

逆起電力とスナバ−回路の損失が極めて大きく、装置の
効率が極めて低くて他の方式に依らなければ実用に供さ
ないことが分かる。
It can be seen that the back electromotive force and the loss of the snubber circuit are extremely large, and the efficiency of the device is extremely low, so that it cannot be put to practical use unless other methods are used.

つまり、第6図の方式は抵抗負荷のみに使用できるだけ
で、−船釣負荷に対する汎用性が極めて狭い。
In other words, the method shown in FIG. 6 can only be used for resistive loads, and its versatility for boat fishing loads is extremely limited.

(2)調整器がスイッチング動作したとき、電源側の電
流が直接急峻に変化するので、電源波形の歪みや外部へ
伝導ノイズとして悪影響を与える。
(2) When the regulator performs a switching operation, the current on the power supply side changes directly and sharply, causing distortion of the power supply waveform and adverse effects on the outside as conduction noise.

(3)調整器がスイッチング動作したとき、負荷に加わ
る電圧や電流が直接急峻に変化するので、使用出来る負
荷が限定され、又外部にノイズ等の悪影響を与える。
(3) When the regulator performs a switching operation, the voltage and current applied to the load directly change sharply, which limits the load that can be used and also causes negative effects such as noise on the outside.

(4)負荷短絡事故や負荷の突入電流などで過大な電流
が流れたときに、保護機能が無いためGTOなどの半導
体素子を保護できない。
(4) When excessive current flows due to a load short-circuit accident or load rush current, semiconductor elements such as GTO cannot be protected because there is no protection function.

静止型VV−AVHの小形軽量化及び高性能化は従来よ
りユーザーから要望されていたが、交流電源の諸条件や
負荷の多様性に対して適した回路方式やデバイスの応用
や開発に難しさが有り、現在までなかなか製品化出来な
かった。
Users have been requesting smaller, lighter weight and higher performance static VV-AVHs, but it has been difficult to apply and develop circuit systems and devices suitable for the various AC power conditions and loads. Because of this, it has not been possible to commercialize it until now.

本発明の目的は前記の諸課題を除去し、もしくは著しく
改善し、予期される外乱や事故によっても出力電圧の高
精度の安定化や装置の保護動作をし、負荷に任意の出力
電圧を設定出来て、小形軽量で、効率および力率が良く
、出力電圧の波形歪が少なく、応答速度が早く、信頼性
が高くかつ低価格のVV−AVRを提供することにある
The purpose of the present invention is to eliminate or significantly improve the above-mentioned problems, stabilize the output voltage with high precision and protect the device even in the event of anticipated disturbances or accidents, and set an arbitrary output voltage to the load. The object of the present invention is to provide a VV-AVR that is compact, lightweight, has good efficiency and power factor, has little waveform distortion of output voltage, has fast response speed, is highly reliable, and is inexpensive.

(課題を解決するための手段) 前記の目的を達するために本発明の手段を第1図によっ
て説明する。
(Means for Solving the Problems) The means of the present invention to achieve the above object will be explained with reference to FIG.

交流電源入力端子2−1.2−2間に前段高周波フィル
タ3の入力側を接続する。
The input side of the pre-stage high frequency filter 3 is connected between the AC power input terminals 2-1 and 2-2.

高周波フィルタ3の出力側に調整器4の入力側を接続す
る。
The input side of the regulator 4 is connected to the output side of the high frequency filter 3.

調整器4の出力側に変流器5の一次側を介して高周波フ
ィルタ6の入力側を接続する。
The input side of a high frequency filter 6 is connected to the output side of the regulator 4 via the primary side of a current transformer 5.

高周波フィルタ6の出力側に出力端子7−1.7−2を
介して負荷8を接続する。
A load 8 is connected to the output side of the high frequency filter 6 via output terminals 7-1, 7-2.

前記調整器4の入力側は交流半周期の間に複数回オンオ
フスイッチングを相反して行う二個の無方向の交流スイ
ッチ素子4(,4−2を直列接続した両端とする。
The input side of the regulator 4 is the two ends of two non-directional AC switching elements 4 (, 4-2) connected in series, which perform on-off switching multiple times during an AC half cycle.

交流スイッチ素子4−1.4−2の直列接続点と前記調
整器の入力側の片方との間を前記調整器4の出力側とす
る。
The output side of the regulator 4 is between the series connection point of the AC switching elements 4-1, 4-2 and one of the input sides of the regulator.

前記交流スイッチ素子4−1.4−2に、出力電圧と設
定基準電圧との誤差、および前記変流器5の二次側電圧
の保護電圧の超過をそれぞれ検出してPWM信号を出力
する制御部9を接続してなるものである。
Control for detecting an error between the output voltage and a set reference voltage and an excess of a protection voltage of the secondary side voltage of the current transformer 5 and outputting a PWM signal to the AC switch element 4-1, 4-2. It is formed by connecting parts 9.

(作用) 前記手段の作用を第1.2.3図に依って説明する。(effect) The operation of the above means will be explained with reference to FIG. 1.2.3.

電源電圧Vinは入力端子間から高周波フィルタ3、調
整器4.変流器5.高周波フィルタ6を経由して出力端
子間の負荷に出力電圧Voutとして出力する。
The power supply voltage Vin is applied between the input terminals, the high frequency filter 3, the regulator 4. Current transformer5. It is output as an output voltage Vout to the load between the output terminals via the high frequency filter 6.

出力電圧Voutとスイッチング電流ILは常に制御部
9で検出制御されPWM制御信号として調整器に出力す
る。
The output voltage Vout and the switching current IL are constantly detected and controlled by the control unit 9 and output to the regulator as a PWM control signal.

出力電圧Voutを高い値に設定したとき、または低い
方に変動したときには、PWM制御信号による前記調整
器4のスイッチング動作を、電源側と負荷側を接続して
出力にカ行する交流スイッチ素子4−1のオン時間を長
くし、電源側から負荷側を遮断して高周波フィルタ6の
入力側を短絡して電流を転流する交流スイッチ素子4−
2のオン時間を短くし、スイッチング電圧Vswは低い
出力電圧V。
When the output voltage Vout is set to a high value or fluctuates to a low value, an AC switching element 4 connects the power supply side and the load side and outputs the switching operation of the regulator 4 according to the PWM control signal. AC switching element 4- which increases the on-time of -1, cuts off the load side from the power supply side, and short-circuits the input side of the high frequency filter 6 to commutate the current.
The on-time of 2 is shortened, and the switching voltage Vsw is a low output voltage V.

utを適宜上昇させて調整し、高周波フィルタ6で平滑
して出力端子間の負荷に出力する。
ut is increased and adjusted as appropriate, smoothed by a high frequency filter 6, and output to the load between the output terminals.

出力電圧Voutを低い値に設定したとき、または高い
方に変動したとき、または過大な出力電流I。
When the output voltage Vout is set to a low value or fluctuates to a high value, or when the output current I is excessive.

utが流れようとするときには、PWM制御信号による
前記調整器4のスイッチング動作を、電源側と負荷側を
接続して出力にカ行する交流スイッチ素子4−1のオン
時間を短くし、電源側から負荷側を遮断して高周波フィ
ルタ6の入力側を短絡して電流ILを転流する交流スイ
ッチ素子4−2のオン時間を長くし、スイッチング電圧
Vswは高い出力電圧Voutを適宜降下させて調整し
、または過大に流れようとする出力電流Ioutを制限
する。
When ut is about to flow, the switching operation of the regulator 4 based on the PWM control signal is shortened on the ON time of the AC switching element 4-1 that connects the power supply side and the load side and goes to the output. The on-time of the AC switching element 4-2 that commutates the current IL is increased by cutting off the load side and short-circuiting the input side of the high-frequency filter 6, and the switching voltage Vsw is adjusted by appropriately lowering the high output voltage Vout. or limit the output current Iout that tends to flow excessively.

前記調整器4のスイッチング動作はカ行する交流スイッ
チ素子4−1がオフのとき、負荷側の電流ILを転流す
る交流スイッチ素子4−2がオンし、負荷側にどのよう
なインダクタンスが有っても過大な逆起電力が発生しな
いように作用する。
The switching operation of the regulator 4 is such that when the alternating current switching element 4-1 is off, the alternating current switching element 4-2, which commutates the current IL on the load side, is on, and what kind of inductance is present on the load side. It acts to prevent excessive back electromotive force from being generated.

(実施例) 以下、図面を参照して、本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

くメイン回路〉 第1図のように入力端子2−1゜2−
2間に電源を接続し、同じく入力端子2−1.2−2間
から高周波フィルタ3、調整器4、変流器5、高周波フ
ィルタ6を経由して出力端子7−1.7−2間に接続し
、同じく出力端子7−1.7−2間に負荷8を接続して
電源電力を負荷に供給する。
Main circuit〉 As shown in Figure 1, input terminal 2-1゜2-
Connect the power supply between 2 and 2, and also connect the input terminal 2-1. Similarly, a load 8 is connected between the output terminals 7-1 and 7-2 to supply power to the load.

〈高周波フィルタ3〉 高周波フィルタ3は入力端子2
−1.2−2間にチョークコイル3−1とコンデンサ3
−2を直列接続した両端を高周波フィルタ3の入力側と
して接続し、コンデンサ3−2の両端を高周波フィルタ
3の出力側とする。調整器4によるスイッチング動作の
影響と電源側からの影響をお互いに干渉しないように作
用する。
<High frequency filter 3> High frequency filter 3 is input terminal 2
-1. Choke coil 3-1 and capacitor 3 between 2-2
-2 connected in series are connected as the input side of the high frequency filter 3, and both ends of the capacitor 3-2 are connected as the output side of the high frequency filter 3. It acts so that the influence of the switching operation by the regulator 4 and the influence from the power supply side do not interfere with each other.

く調整器4〉 調整器4は高周波フィルタ3の出力側に
交流スイッチ素子4−1と相反した動作をする交流スイ
ッチ素子4−2を直列接続した両端を調整器4の入力側
として接続し、交流スイッチ素子4−2の両端を調整器
4の出力側とし、電界効果トランジスタ(以下FETと
略称する)を逆極性に直列接続したものを交流スイッチ
素子とし、PWM制御信号A2. A3に応じてスイッ
チング動作をする。
Adjuster 4> The regulator 4 has an AC switching element 4-1 and an AC switching element 4-2 that operate in opposition to each other connected in series to the output side of the high frequency filter 3, and both ends thereof are connected as the input side of the regulator 4. Both ends of the AC switching element 4-2 are connected to the output side of the regulator 4, field effect transistors (hereinafter referred to as FETs) connected in series with opposite polarities are used as the AC switching element, and the PWM control signals A2. A switching operation is performed according to A3.

く変流器5〉 変流器5は調整器4の出力側から高周波
フィルタ6の入力側に流れるスイッチング電流ILを検
出するように1次側を接続し、2次巻線の検出電圧Va
tは制御部9の比較増幅部9−3に入力する。
Current transformer 5> The current transformer 5 has its primary side connected so as to detect the switching current IL flowing from the output side of the regulator 4 to the input side of the high frequency filter 6, and detects the detection voltage Va of the secondary winding.
t is input to the comparison amplification section 9-3 of the control section 9.

く高周波フィルタ6〉 高周波フィルタ6は調整器4の
出力側と変流器の各々一方の端子間にチョークコイル6
−1とコンデンサ6−2を直列接続した両端を高周波フ
ィルタ6の入力側として接続し、コンデンサ6−2の両
端を高周波フィルタ6の出力側とする。調整器4による
スイッチング電圧Vswの波形を元の正弦波に平滑整形
する。
High frequency filter 6> The high frequency filter 6 has a choke coil 6 between the output side of the regulator 4 and each terminal of the current transformer.
-1 and a capacitor 6-2 connected in series are connected as input sides of the high frequency filter 6, and both ends of the capacitor 6-2 are connected as output sides of the high frequency filter 6. The waveform of the switching voltage Vsw by the regulator 4 is smoothed into the original sine wave.

く制御部9〉 制御部9は出力電圧Voutを出力端子
7−1.7−2間から検出し検出部9−1の出力検出電
圧VoとスイッチングIC部9−5の基準電圧Vref
を出力電圧設定部10に入力して設定基準電圧Vsを比
較増幅部9−2に入力して得た演算電圧Voplと、一
方変流器5で検出した電圧VctとスイッチングIC部
9−5の基準電圧Vrefを比較増幅部9−3に人力し
て得た演算出力Vop2をAND回路9−4を通して電
圧Vopを作り、スイッチングIC部9−5内で鋸歯状
波電圧vtrと前記電圧Vopを比較し、ここで電圧V
op値の高低がPWM信号信号源り、信号Aをパルス整
形回路網(以下PFNと略称する)9−6に人力し、信
号Aを反転した信号A1を作り、信号A、 Alの立上
がり時間をわずかに遅らせたのPWM制御信号A2. 
A3を絶縁・ドライブ部9−7を経由して前記交流スイ
ッチ素子4−1.4−2のFETのゲート、ソース間に
入力して出力電圧Voutの設定と安定化をする。
Control unit 9> The control unit 9 detects the output voltage Vout from between the output terminals 7-1, 7-2, and outputs the detection voltage Vo of the detection unit 9-1 and the reference voltage Vref of the switching IC unit 9-5.
is input into the output voltage setting unit 10 and the set reference voltage Vs is input into the comparison and amplification unit 9-2 to obtain the calculated voltage Vopl, the voltage Vct detected by the current transformer 5, and the switching IC unit 9-5. A calculation output Vop2 obtained by manually applying the reference voltage Vref to the comparison amplifier section 9-3 is passed through an AND circuit 9-4 to create a voltage Vop, and the sawtooth wave voltage Vtr is compared with the voltage Vop in the switching IC section 9-5. And here the voltage V
The height of the op value is the PWM signal source, and the signal A is input to the pulse shaping network (hereinafter abbreviated as PFN) 9-6 to create the signal A1 which is an inversion of the signal A, and the rise time of the signal A and Al is Slightly delayed PWM control signal A2.
A3 is inputted between the gate and source of the FET of the AC switching element 4-1, 4-2 via the insulation/drive section 9-7 to set and stabilize the output voltage Vout.

1 く動作説明〉 次に上記実施例の動作について説明する。1 Operation explanation> Next, the operation of the above embodiment will be explained.

第2図(a)ようにの電源電圧Vinは入力端子間から
高周波フィルタ3.調整器4.変流器5.高周波フィル
タ6を経由して出力端子間の負荷に出力電圧V。
The power supply voltage Vin as shown in FIG. 2(a) is applied between the input terminals of the high frequency filter 3. Adjuster 4. Current transformer5. The output voltage V is applied to the load between the output terminals via the high frequency filter 6.

utとして印加すると負荷力率によって出力電流1゜u
tのような電流が流れる。
When applied as ut, the output current is 1゜u depending on the load power factor.
A current of t flows.

電源電圧Vinが高周波フィルタ3を通って調整器4に
よってスイッチングされ、高周波フィルタ6の入力側に
印加するスイッチング電圧Vswと高周波フィルタ6の
チョークコイル6−1を流れる電流ILは第2図(b)
のように表わされ、その部分子1を分かり易いように拡
大したのが第2図(C)、(d)であり、メイン回路の
動作状態を表わしたのが第2図(e)、(f)である。
When the power supply voltage Vin passes through the high frequency filter 3 and is switched by the regulator 4, the switching voltage Vsw applied to the input side of the high frequency filter 6 and the current IL flowing through the choke coil 6-1 of the high frequency filter 6 are as shown in FIG. 2(b).
Figures 2 (C) and (d) are enlarged views of the molecule 1 for ease of understanding, and Figures 2 (e) and 2 (e) represent the operating state of the main circuit. (f).

区間t1〜t2は第2図(e)のように、交流スイッチ
素子4−1がオン、同4−2がオフとなり、電源電圧V
inは交流スイッチ素子4−1を通って高周波フィルタ
6の入力側に印加して電圧Vswとなってチョークコイ
ル6−1を流れる電流ILをカ行して値は増大2 し、交流スイッチ素子4−1を流れる電流Laの増大分
はコンデンサ3−2から供給されチョークコイル6−1
にエネルギーとして蓄えられる。
In the interval t1 to t2, as shown in FIG. 2(e), the AC switching element 4-1 is on, the AC switching element 4-2 is off, and the power supply voltage V
in passes through the AC switching element 4-1 and is applied to the input side of the high-frequency filter 6 to become the voltage Vsw, which causes the current IL to flow through the choke coil 6-1, increasing its value by 2, and the voltage in the AC switching element 4. The increase in current La flowing through -1 is supplied from capacitor 3-2 and choke coil 6-1
is stored as energy.

区間t2= t3は第2図(f>のように、交流スイッ
チ素子4−1と4−2が互いに反転して、同4−1がオ
フ、同4−2がオンとなり、電源電圧Vinとは交流ス
イッチ素子4−1で遮断し、高周波フィルタ6の入力側
は交流スイッチ素子4−2で短絡され電流ILは転流し
て値は減少し、交流スイッチ素子4−2を流れる電流I
fの減少分はチョークコイル6−1の蓄積エネルギーと
して負荷に放出される。
In the interval t2=t3, as shown in FIG. is cut off by the AC switching element 4-1, the input side of the high frequency filter 6 is short-circuited by the AC switching element 4-2, the current IL is commutated and its value decreases, and the current I flowing through the AC switching element 4-2
The decrease in f is released to the load as energy stored in the choke coil 6-1.

区間t3〜t4は再び交流スイッチ素子4−1と4−2
が互いに反転して、区間t1〜t2と同じ状態となる。
In the section t3 to t4, AC switching elements 4-1 and 4-2 are again used.
are mutually inverted, resulting in the same state as in the section t1 to t2.

このようにして、高周波フィルタ6の入力側には電源電
圧VinをPWMスイッチングした第2図(C)のよう
なスイッチング電圧Vswが印加し、高周波フィルタ6
を通過して平滑した出力電圧Voutは次式で表わすこ
とができる。
In this way, the switching voltage Vsw as shown in FIG. 2(C) obtained by PWM switching the power supply voltage Vin is applied to the input side of the high frequency filter 6, and the high frequency filter 6
The output voltage Vout smoothed by passing through can be expressed by the following equation.

Vout= (ton/T) −Vinつまり、制御部
9のAND回路の出力電圧Vopによって第2図(C)
の周期1時間内のオン時間t。
Vout= (ton/T) -Vin In other words, the output voltage Vop of the AND circuit of the control section 9 is determined as shown in FIG. 2(C).
The on time t within the cycle of 1 hour.

nを0から周期Tまでの間を連続可変制御することによ
って出力電圧Voutを0(v)から電源電圧Vinま
で調整できる。
By continuously variable control of n from 0 to period T, the output voltage Vout can be adjusted from 0 (v) to the power supply voltage Vin.

ここに、オン時間ton=t2−tl=t4−t3周期
 T=t3−tl=t4−t2 その他の詳細な回路定数は省略する。
Here, on-time ton=t2-tl=t4-t3 cycle T=t3-tl=t4-t2 Other detailed circuit constants are omitted.

〈出力電圧Voutを高い値に設定したとき、または低
い方に変動したとき〉 出力電圧Voutに比例する出力検出電圧Voが基準設
定電圧Vsより低くなり、第3図(b)のように、比較
増幅部9−2の演算電圧Vop lと等しいAND回路
の出力電圧Vopは鋸歯状波電圧Vtrの最小値から尖
頭値までの間にあって、高い方に変化して行き、スイッ
チングIC部9−5内の比較回路、PFN9−6、絶縁
・ドライブ部の機能によって、第3図(C)のスイッチ
ング電圧Vswはオン時間tonが長く、オフ時間to
ffが短くなって行き、低い出力電圧Voutを適宜上
昇させて調整する。
<When the output voltage Vout is set to a high value or fluctuates to a low value> The output detection voltage Vo, which is proportional to the output voltage Vout, becomes lower than the reference setting voltage Vs, and as shown in Fig. 3(b), the comparison The output voltage Vop of the AND circuit, which is equal to the operation voltage Vopl of the amplification section 9-2, is between the minimum value and the peak value of the sawtooth wave voltage Vtr, and changes toward the higher side, and the switching IC section 9-5 Due to the functions of the comparator circuit, PFN9-6, and insulation/drive section, the switching voltage Vsw in FIG. 3(C) has a long on time ton and a long off time to.
ff becomes shorter, and the low output voltage Vout is adjusted by increasing it appropriately.

く出力電圧Voutを低い値に設定したとき、または高
い方に変動したとき〉 出力検出電圧Voが基準設定電圧Vsより高くなり、第
3図(b)のように、電圧Vopは鋸歯状波電圧Vtr
の低い方に変化して行き、第3図(C)のスイッチング
電圧Vswはオン時間tonが短く、オフ時間toff
が長くなって行き、高い出力電圧Voutを適宜降下さ
せて調整する。
When the output voltage Vout is set to a low value or fluctuates to a high value> The output detection voltage Vo becomes higher than the reference setting voltage Vs, and as shown in FIG. 3(b), the voltage Vop becomes a sawtooth wave voltage. Vtr
The switching voltage Vsw in FIG. 3(C) has a short on time ton and a short off time toff.
becomes longer, and the high output voltage Vout is adjusted by lowering it appropriately.

〈過大な出力電流が流れようとするとき〉平常動作時は
、変流器5の一次側に第3図(a)の部分子2直前まで
のような出力電流Ioutに比例したチョークコイル電
流rLが流れており、変流器5の二次側に発生する電流
)Lに比例した検出電圧Vctを比較増幅部9−3に入
力し、スイッチングIC部9−5内の基準電圧Vref
に依って作られた+側保護しベルVpと絶対値が等しい
一側保護しペルーVpと比較し、このどちらのレベルも
超えないので比較増幅部9−3の演算電圧Vop2は鋸
歯状波電圧Vtrの尖頭値よりも上値で待機しており、
低値電圧信号優先機能を持つAND回路の出力電圧Vo
pは比5 較増幅部9−2の演算電圧Vop 1に依って決まり、
通常動作を持続する。
<When an excessive output current is about to flow> During normal operation, a choke coil current rL proportional to the output current Iout is applied to the primary side of the current transformer 5 up to just before the part 2 in FIG. 3(a). is flowing, and the detected voltage Vct proportional to the current (current) L generated on the secondary side of the current transformer 5 is input to the comparison amplifier section 9-3, and the reference voltage Vref in the switching IC section 9-5 is inputted to the comparison amplifier section 9-3.
The voltage Vop2 of the comparator amplifier 9-3 is a sawtooth wave voltage. Waiting at a value higher than the peak value of Vtr,
Output voltage Vo of AND circuit with low value voltage signal priority function
p is determined by the calculation voltage Vop1 of the comparison amplifier section 9-2,
Continue normal operation.

もし、チョークコイル6−1と変流器5の一次側に過大
な電流ILが流れようとすると、第3図(a)のように
表わされ、その部分子2の制御動作とスイッチング電圧
Vswの変化を分かり易いように拡大したのが第3図(
b)、(C)であり、第3図(a)の部分子2以降のよ
うに検出電圧Vctは保護レベルVp又はVpを超えて
、比較増幅部9−3の演算電圧V、op2は比較増幅部
9−2の演算電圧Voplよりも低くなって行き、AN
D回路の出力電圧Vopは電圧Vop2に切り代わり、
第3図(C)のスイッチング電圧Vswはオン時間to
nが短く、オフ時間toffが長くなって行き、過大な
出力電流Ioutを瞬時に制限する。
If an excessive current IL is to flow through the choke coil 6-1 and the primary side of the current transformer 5, it will be expressed as shown in FIG. Figure 3 (
b) and (C), the detection voltage Vct exceeds the protection level Vp or Vp as shown in sub-element 2 and subsequent parts in FIG. becomes lower than the calculation voltage Vopl of the amplifier section 9-2, and AN
The output voltage Vop of the D circuit is switched to the voltage Vop2,
The switching voltage Vsw in FIG. 3(C) is the on-time to
As n becomes shorter, off-time toff becomes longer, and excessive output current Iout is instantly limited.

メイン回路の全ての部品は過大電流から保護され、原因
を取り除けば平常動作に自動的に復帰する。
All parts of the main circuit are protected from excessive current and automatically return to normal operation once the cause is removed.

〈他の実施例〉 (1)前記メイン回路の構成は第1図を一実施例とする
が、第4図(a)のように高周波フィルタ66 の出力側と出力端子7.7の間に単巻変圧器11を挿入
すると出力電圧Voutは電源電圧Vinより高い電圧
または低い電圧を得ることも出来るし、絶縁型変圧器に
゛よれば電源側と負荷側を絶縁することも出来る。
<Other Embodiments> (1) The configuration of the main circuit is shown in FIG. 1 as an example, but as shown in FIG. When the autotransformer 11 is inserted, the output voltage Vout can be higher or lower than the power supply voltage Vin, and the insulation type transformer can also isolate the power supply side and the load side.

(2)メイン回路の構成は第1図を一実施例とするが、
第4図(b)のように高周波フィルタ6のチョークコイ
ル6−1とコンデンサ6−2の間にさらに1組の交流ス
イッチ素子4−3.4−4を接続することにより、出力
電圧Voutが電源電圧Vinより低い設定範囲では交
流スイッチ素子4−3をオフ、同4−4をオンのままと
して第1図の方式と同じように交流スイッチ素子4−1
.4−2を相反した動作にて出力を調整し、また出力電
圧Voutを電源電圧Vinよりも高くしたいときには
交流スイッチ素子4−1をオン、同4−2をオフのまま
として交流スイッチ素子4−3゜4−4を相反したPW
M制御動作にてチョークコイル6−1の逆起電力によっ
て出力電圧Voutを昇圧し調整を出来る。
(2) The configuration of the main circuit is shown in FIG. 1 as an example.
By further connecting one set of AC switching elements 4-3, 4-4 between the choke coil 6-1 and the capacitor 6-2 of the high-frequency filter 6 as shown in FIG. 4(b), the output voltage Vout can be increased. In the setting range lower than the power supply voltage Vin, the AC switch element 4-3 is turned off, and the AC switch element 4-4 is left on, and the AC switch element 4-1 is turned off in the same way as in the method shown in Fig. 1.
.. 4-2 is operated in a contradictory manner, and when it is desired to make the output voltage Vout higher than the power supply voltage Vin, the AC switching element 4-1 is turned on and the AC switching element 4-2 is left turned off. PW that contradicts 3°4-4
In the M control operation, the output voltage Vout can be boosted and adjusted by the back electromotive force of the choke coil 6-1.

この方式は前記項(1)の変圧器による昇圧に対して、
変圧器を使用しないで昇圧出来るのでさらに小形軽量化
ができる。
In this method, for boosting voltage using a transformer in the above section (1),
Since the voltage can be stepped up without using a transformer, it is possible to further reduce the size and weight.

(3)メイン回路の構成は第1図を一実施例とすルカ、
第4図(C)のように調整器4にさらに1組の交流スイ
ッチ素子4−3.4−4を接続することにより、出力電
圧Voutが電源電圧Vinと同じ位相の出力をする場
合は交流スイッチ素子4−3をオフ、同4−4をオンの
ままとして第1図の方式と同じように交流スイッチ素子
4−1.4−2を相反したPWM制御動作にて出力を調
整し、また出力電圧Voutが電源電圧Vinと逆相の
出力をする場合は交流スイッチ素子4−1をオン、同4
−2をオフのままとして、同様に交流スイッチ素子4−
3.4−4を相反したPWM制御動作にて調整をすると
、連続的に出力電圧Voutは電源電圧Vin値から0
(■)を経由して電源電圧Vinの逆相の電圧値までを
調整出来る。
(3) The configuration of the main circuit is as shown in Figure 1 as an example.
By further connecting one set of AC switching elements 4-3, 4-4 to the regulator 4 as shown in FIG. 4(C), when the output voltage Vout is output in the same phase as the power supply voltage Vin, Switching element 4-3 is turned off and switching element 4-4 is left on, and the output is adjusted using opposite PWM control operations on AC switching elements 4-1 and 4-2 in the same manner as in the method shown in Fig. 1. When the output voltage Vout outputs a phase opposite to the power supply voltage Vin, the AC switch element 4-1 is turned on;
-2 remains off, and in the same way, AC switch element 4-
If 3.4-4 is adjusted by contradictory PWM control operation, the output voltage Vout will continuously change from the power supply voltage Vin value to 0.
It is possible to adjust up to the voltage value of the opposite phase of the power supply voltage Vin via (■).

(4)メイン回路の構成は第1図を一実施例とするが、
第4図(d)のように調整器4の交流スイッチ素子4−
2と高周波フィルタ6のチョークコイル6−1の接続位
置をお互いに入れ替えて、第1図の方式と同じように交
流スイッチ素子4−1.4−2を相反したPWM制御動
作にて出力を調整すると、出力電圧Voutは電源電圧
Vinと逆相の出力をすることが出来る。
(4) The configuration of the main circuit is shown in FIG. 1 as an example.
As shown in FIG. 4(d), the AC switching element 4- of the regulator 4
2 and the choke coil 6-1 of the high-frequency filter 6, and adjust the output using opposite PWM control operations on the AC switching elements 4-1 and 4-2 in the same way as in the method shown in Fig. 1. Then, the output voltage Vout can be output in the opposite phase to the power supply voltage Vin.

(5)前記メイン回路の入力端子2−1.2−2側及び
出力端子7−1.7−2側には電源及び負荷のオンオフ
および過大電流からの二重保護の為にノーヒユーズブレ
ーカを、またこのVV−AVRの使用環境によっては伝
導ノイズの影響を低下させるためにノイズフィルタやノ
イズカット変圧器を接続することも出来る。
(5) Install a no-fuse breaker on the input terminal 2-1.2-2 side and the output terminal 7-1.7-2 side of the main circuit for turning on/off the power supply and load and for double protection from excessive current. Also, depending on the usage environment of this VV-AVR, a noise filter or a noise cut transformer may be connected to reduce the influence of conduction noise.

(6)調整器4の各交流スイッチ素子は前記第1図のF
ETを逆極性に直列接続して交流スイッチ素子としたも
のを一実施例とするが、第5図(a)。
(6) Each AC switch element of the regulator 4 is F in FIG.
An example of an AC switch element in which ETs are connected in series with opposite polarities is shown in FIG. 5(a).

(b)のようにFETの代わりに自己ターンオフ機能を
持った半導体素子、例えばトランジスタやGTOに高速
ダイオードを前記素子の電流方向と逆向きに並列接続し
たものと置き換えた交流スイッチ素子又は、第5図(c
)、 (d)、 (e)のように高速ダイオードの整流
ブリッジの正極と負極端子間にF9 ETのドレインとソース、又はトランジスタのコレクタ
とエミッタ、又はGTOのアノードとカソードを各々接
続し前記整流ブリッジの交流端子間を交流スイッチ素子
としたものでも同様の機能を有する。
As shown in (b), the FET is replaced with a semiconductor element having a self-turn-off function, such as a transistor or a GTO with a high-speed diode connected in parallel in the opposite direction to the current direction of the element, or an AC switching element; Figure (c
), (d), and (e), connect the drain and source of F9 ET, the collector and emitter of a transistor, or the anode and cathode of GTO between the positive and negative terminals of the rectifying bridge of the high-speed diode, respectively, and perform the rectification. A structure in which an AC switch element is used between the AC terminals of the bridge has a similar function.

(7)調整器4の交流スイッチ素子4−1と4−2、ま
たは同4−3と4−4が互いに反転するとき各素子のス
イッチング特性による上下素子による短絡を防止するた
めに制御部9のP F N 9−6で各交流スイッチ素
子のターンオンを僅かに遅らせるデッドタイムを設けて
おり、この時に素子間に発生するサージ電圧を吸収する
スナバ−回路を各交流スイッチ素子に並列接続すること
も出来る。
(7) When the AC switching elements 4-1 and 4-2 or 4-3 and 4-4 of the regulator 4 are reversed, the control unit 9 prevents short circuits caused by the upper and lower elements due to the switching characteristics of each element. A dead time is provided in P F N 9-6 to slightly delay the turn-on of each AC switching element, and a snubber circuit that absorbs the surge voltage generated between the elements at this time is connected in parallel to each AC switching element. You can also do it.

(8)チョークコイル電流ILを検出する電流検出器の
一実施例として変流器5を用いているが他に抵抗器やホ
ール素子を応用しても同様の機能を有する。
(8) Although the current transformer 5 is used as an example of the current detector for detecting the choke coil current IL, the same function can be achieved even if a resistor or a Hall element is applied.

(9)制御部9の検出部9−1と出力電圧設定部10か
ら比較増幅部9−2に入力する信号において、直流モー
ド方式は出力電圧Voutの絶対値を積分し、0 サンプリングホールドした直流電圧Voと直流の設定基
準電圧Vsを入力する方法であり、交流モード方式は交
流の出力検出電圧■0と電源電圧Vinに同期した交流
の基準電圧を入力する方法があり、第1図は直流モード
方式の場合を記述しである。
(9) In the signals input from the detection unit 9-1 of the control unit 9 and the output voltage setting unit 10 to the comparison amplification unit 9-2, the DC mode method integrates the absolute value of the output voltage Vout, and outputs a DC sampled and held at 0. This is a method of inputting the voltage Vo and the DC set reference voltage Vs.The AC mode method involves inputting an AC output detection voltage ■0 and an AC reference voltage synchronized with the power supply voltage Vin. The case of mode method is described below.

(10)本発明のVV−AVRは出力電圧を検出して定
出力電圧特性を持った装置で有るが、同様に出力電流を
検出して定出力電流特性を持った装置とすることも出来
るし、両方の特性を兼備えた装置や検出した電圧と電流
を演算して定出力電力特性を持った装置とすることも出
来る。
(10) The VV-AVR of the present invention is a device that detects the output voltage and has constant output voltage characteristics, but it can also be a device that similarly detects the output current and has constant output current characteristics. It is also possible to create a device that has both characteristics, or a device that has constant output power characteristics by calculating the detected voltage and current.

(11)本発明のVV−AVRの動作開始時や瞬時停電
回復時は基準電圧Vsを瞬時に低下させて一定の時間を
掛けて定常値Vsまで上昇することにより出力電圧Vo
utは基準電圧Vsに従って低い電圧から定常値Vou
tまで円滑に上昇させることも出来る。
(11) When the VV-AVR of the present invention starts operating or recovers from an instantaneous power outage, the reference voltage Vs is instantly lowered and then raised to the steady-state value Vs over a certain period of time, thereby increasing the output voltage Vo.
ut changes from a low voltage to a steady value Vou according to the reference voltage Vs.
It is also possible to smoothly raise the temperature up to t.

(12)制御部9の動作用電源は電源変圧器やスイッチ
ング直流電源を設けて供給することも出来る。
(12) The operating power for the control unit 9 can be supplied by providing a power transformer or a switching DC power supply.

(発明の効果) 本発明は前記のように構成したので以下の効果を有する
(Effects of the Invention) Since the present invention is configured as described above, it has the following effects.

(1)調整器に電流転流用の交流スイッチ素子が付いて
おり、常に電流ループが確立しているのでどのような力
率の負荷にも使用出来て、スナバ−回路の損失も極めて
小さくできる。
(1) Since the regulator is equipped with an AC switching element for current commutation, and a current loop is always established, it can be used with loads of any power factor, and the loss in the snubber circuit can be extremely small.

(2)調整器でスイッチングされた波形は高周波フィル
タ6に依って再び元の正弦波に整形されるのでどのよう
な種類の負荷にも使用出来る。
(2) The waveform switched by the regulator is reshaped into the original sine wave by the high frequency filter 6, so it can be used for any type of load.

(3)調整器でスイッチングしたときの高周波電流は電
源側の高周波フィルタ3から供給するので電源側に波形
歪みや伝導ノイズ等の悪影響を極めて小さく出来る。
(3) Since the high frequency current when switched by the regulator is supplied from the high frequency filter 3 on the power supply side, the adverse effects of waveform distortion, conduction noise, etc. on the power supply side can be minimized to a minimum.

(4)交流スイッチ素子の素子に加わる、負荷短絡事故
など過大電流やサージ電圧に対して保護動作が瞬時に働
くために、半導体素子の利用に対して高い信頼性が得ら
れる。
(4) High reliability can be obtained in the use of semiconductor devices because the protection action is instantaneously activated against excessive currents and surge voltages such as load short-circuit accidents that are applied to the elements of AC switching devices.

(5)連続的に可変出来るPWM制御によって、0(V
)から電源電圧Vinまでなど、任意の出力電圧に設定
出来る。
(5) Continuously variable PWM control allows 0 (V
) to the power supply voltage Vin, it can be set to any output voltage.

(6)連続的に可変出来るPWM制御によって入力変動
などの外乱から出力電圧を連続的に調整して高精度(±
1.0〜±0.1%)の安定化が得られる。
(6) Continuously variable PWM control allows high accuracy (±
1.0 to ±0.1%) is obtained.

(7)電源の周波数(50/ 60Hz)に比べて極め
て高い周波数(>20]Gtz)でPWM制御するため
に外乱があっても高速応答(200〜1m5ec)が得
られる為に出力電圧への影響を極めて少なく出来る。
(7) PWM control is performed at an extremely high frequency (>20 Gtz) compared to the power supply frequency (50/60 Hz), so even if there is a disturbance, a high-speed response (200 to 1 m5ec) can be obtained, so the output voltage can be reduced. The impact can be minimized.

(8)メイン回路を構成する主な部品は高周波用の小形
の部品と半導体の部品のみであるため、装置全体を小形
軽量(体積比175〜1/2)に出来る。
(8) Since the main components constituting the main circuit are only small high-frequency components and semiconductor components, the entire device can be made small and lightweight (volume ratio 175 to 1/2).

(9)調整器でスイッチングされた電圧波形の周波数は
超音波帯としであるので騒音は極めて小さい。
(9) The frequency of the voltage waveform switched by the regulator is in the ultrasonic band, so the noise is extremely small.

以上の効果が有るために他の方式と比較しても本発明は
極めて優れていることが理解される。
It is understood that because of the above effects, the present invention is extremely superior compared to other systems.

3

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に関わるVV−AVRの一実施例を示す
回路図、第2図と第3図は本発明に関わるVV−AVH
による波形図形とメイン部分回路図、第4図と第5図は
本発明に関わるVV−AVRの他の実施例を示す部分回
路図、第6図は従来方式のVV−AVRの回路図と波形
図形である。 1・・・電源、2・・・入力端子、3・・・高周波フィ
ルタ、4・・・調整器、5・・・変流器、 6・・・高
周波フィルタ、7・・・出力端子、 8・・・負荷、9
・・・制御部、10・・・・出力電圧設定部、  11
・・・・単巻変圧器。 4
FIG. 1 is a circuit diagram showing an embodiment of the VV-AVR related to the present invention, and FIGS. 2 and 3 are VV-AVH related to the present invention.
Figures 4 and 5 are partial circuit diagrams showing other embodiments of the VV-AVR according to the present invention, and Figure 6 is the circuit diagram and waveforms of a conventional VV-AVR. It is a figure. 1... Power supply, 2... Input terminal, 3... High frequency filter, 4... Regulator, 5... Current transformer, 6... High frequency filter, 7... Output terminal, 8 ...Load, 9
...control section, 10...output voltage setting section, 11
...Auto transformer. 4

Claims (1)

【特許請求の範囲】[Claims] 1 交流電源入力端子間に前段高周波フィルタの入力側
を接続し、この前段高周波フィルタの出力側に調整器の
入力側を接続し、この調整器の出力側に変流器の一次側
を介して後段高周波フィルタの入力側を接続し、この後
段高周波フィルタの出力側に出力端子を介して負荷を接
続し、前記調整器の入力側は交流半周期の間に複数回オ
ンオフスイッチングを相反して行う二個の無方向の交流
スイッチ素子を直列接続した両端とし、この交流スイッ
チ素子の直列接続点と前記調整器の入力側の片方との間
を前記調整器の出力側とし、前記交流スイッチ素子に、
出力電圧と設定基準電圧との誤差、および前記変流器の
二次側電圧の保護電圧の超過をそれぞれ検出してパルス
幅変調信号を出力する制御部を接続してなることを特徴
とする可変型自動電圧調整器。
1 Connect the input side of the front-stage high-frequency filter between the AC power input terminals, connect the input side of the regulator to the output side of this front-stage high-frequency filter, and connect the input side of the regulator to the output side of the regulator via the primary side of the current transformer. The input side of a second-stage high-frequency filter is connected, and a load is connected to the output side of this second-stage high-frequency filter via an output terminal, and the input side of the regulator performs on-off switching multiple times during an AC half cycle. Two non-directional AC switching elements are connected in series at both ends, and the output side of the regulator is between the series connection point of the AC switching elements and one of the input sides of the regulator. ,
The variable voltage converter is connected to a control unit that detects an error between the output voltage and the set reference voltage and an excess of the protection voltage of the secondary side voltage of the current transformer and outputs a pulse width modulation signal. Type automatic voltage regulator.
JP9808590A 1990-04-13 1990-04-13 Variable automatic voltage controller Pending JPH03296117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9808590A JPH03296117A (en) 1990-04-13 1990-04-13 Variable automatic voltage controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9808590A JPH03296117A (en) 1990-04-13 1990-04-13 Variable automatic voltage controller

Publications (1)

Publication Number Publication Date
JPH03296117A true JPH03296117A (en) 1991-12-26

Family

ID=14210508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9808590A Pending JPH03296117A (en) 1990-04-13 1990-04-13 Variable automatic voltage controller

Country Status (1)

Country Link
JP (1) JPH03296117A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107013A1 (en) * 2005-04-04 2006-10-12 Kokusai Electric Semiconductor Service Inc. Supply power adjusting apparatus and semiconductor manufacturing apparatus
JP2008518395A (en) * 2004-10-21 2008-05-29 エレクトロニック シアター コントロールス インコーポレイテッド Sine wave dimmer control method
WO2010150389A1 (en) * 2009-06-25 2010-12-29 東芝三菱電機産業システム株式会社 Low-frequency breaker
JP2013228868A (en) * 2012-04-25 2013-11-07 Japan Steel Works Ltd:The Ac switch device including element protection function at load short circuit
JP2017518732A (en) * 2014-06-03 2017-07-06 エッジ エレクトロンズ リミテッド Power-saving high-frequency series step-down AC voltage regulator system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113844A (en) * 1978-02-25 1979-09-05 Shibaura Eng Works Ltd Ac voltage control apparatus
JPS5541552A (en) * 1978-09-19 1980-03-24 Fuji Electric Co Ltd Alternating current voltage adjusting unit
JPS60214023A (en) * 1984-04-09 1985-10-26 Nippon Haazen Kk Solid transformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113844A (en) * 1978-02-25 1979-09-05 Shibaura Eng Works Ltd Ac voltage control apparatus
JPS5541552A (en) * 1978-09-19 1980-03-24 Fuji Electric Co Ltd Alternating current voltage adjusting unit
JPS60214023A (en) * 1984-04-09 1985-10-26 Nippon Haazen Kk Solid transformer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518395A (en) * 2004-10-21 2008-05-29 エレクトロニック シアター コントロールス インコーポレイテッド Sine wave dimmer control method
WO2006107013A1 (en) * 2005-04-04 2006-10-12 Kokusai Electric Semiconductor Service Inc. Supply power adjusting apparatus and semiconductor manufacturing apparatus
KR100940306B1 (en) * 2005-04-04 2010-02-05 가부시키가이샤 코쿠사이덴키 세미컨덕터 서비스 Supply power adjusting apparatus and semiconductor manufacturing apparatus
KR100966375B1 (en) * 2005-04-04 2010-06-28 가부시키가이샤 코쿠사이덴키 세미컨덕터 서비스 Supply power adjusting apparatus and semiconductor manufacturing apparatus
JP5204481B2 (en) * 2005-04-04 2013-06-05 株式会社国際電気セミコンダクターサービス Semiconductor manufacturing apparatus, power supply regulator, semiconductor device manufacturing method, and power control method
WO2010150389A1 (en) * 2009-06-25 2010-12-29 東芝三菱電機産業システム株式会社 Low-frequency breaker
JP5286413B2 (en) * 2009-06-25 2013-09-11 東芝三菱電機産業システム株式会社 Low frequency circuit breaker
US9263880B2 (en) 2009-06-25 2016-02-16 Toshiba Mitsubishi-Electric Industrial Systems Low-frequency circuit breaker
US9646795B2 (en) 2009-06-25 2017-05-09 Toshiba Mitsubishi-Electric Industrial Systems Corporation Low-frequency circuit breaker
JP2013228868A (en) * 2012-04-25 2013-11-07 Japan Steel Works Ltd:The Ac switch device including element protection function at load short circuit
JP2017518732A (en) * 2014-06-03 2017-07-06 エッジ エレクトロンズ リミテッド Power-saving high-frequency series step-down AC voltage regulator system

Similar Documents

Publication Publication Date Title
JP2868148B2 (en) Zero current switching power converter
JP2500999B2 (en) Switch mode converter
US6618274B2 (en) Synchronous rectifier controller to eliminate reverse current flow in a DC/DC converter output
JP2002330584A (en) Method for making dissipating clamp for electric circuit, and the device
JP2007523587A (en) DC-DC voltage regulator whose switching frequency is responsive to the load
US5488554A (en) Low-loss clamp circuit
US6778412B2 (en) Synchronous converter with reverse current protection through variable inductance
JPH0832162B2 (en) DC-DC converter and DC-DC conversion method
JP2009081992A (en) High-efficiency driver circuit for solid state switch
US5392206A (en) Control circuit for a switching DC-DC power converter including a controlled magnetic core flux resetting technique for output regulation
JP6794250B2 (en) Phase compensation circuit and DC / DC converter using it
JPH03296117A (en) Variable automatic voltage controller
JPH02269465A (en) Power unit
US5668704A (en) Self-exciting flyback converter
JP6794249B2 (en) Phase compensation circuit and DC / DC converter using it
US6717826B2 (en) Method to reduce bus voltage stress in a single-stage single switch power factor correction circuit
JP2990867B2 (en) Forward converter
JP3293447B2 (en) Switching power supply
JPH04207970A (en) Voltage regulator
JPH0898393A (en) Dc power unit
JP2737391B2 (en) Ringing choke converter
JP2799749B2 (en) Control method of buck-boost converter circuit
JP3391201B2 (en) DC-DC converter
JP3433343B2 (en) Power control circuit
JPH06276734A (en) Overcurrent protective circuit