WO2006106940A1 - グリセリルエーテルの製造方法 - Google Patents

グリセリルエーテルの製造方法 Download PDF

Info

Publication number
WO2006106940A1
WO2006106940A1 PCT/JP2006/306878 JP2006306878W WO2006106940A1 WO 2006106940 A1 WO2006106940 A1 WO 2006106940A1 JP 2006306878 W JP2006306878 W JP 2006306878W WO 2006106940 A1 WO2006106940 A1 WO 2006106940A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
reactor
reaction
glyceryl ether
supplying
Prior art date
Application number
PCT/JP2006/306878
Other languages
English (en)
French (fr)
Inventor
Takeshi Shirasawa
Kenichi Naka
Akira Saito
Original Assignee
Kao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005106587A external-priority patent/JP4587464B2/ja
Priority claimed from JP2005379439A external-priority patent/JP4738169B2/ja
Application filed by Kao Corporation filed Critical Kao Corporation
Priority to EP06730826A priority Critical patent/EP1880988B1/en
Priority to US11/910,357 priority patent/US20090275786A1/en
Priority to CN200680010047XA priority patent/CN101151235B/zh
Priority to ES06730826T priority patent/ES2376886T3/es
Publication of WO2006106940A1 publication Critical patent/WO2006106940A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for producing glyceryl ether.
  • Glyceryl ether obtained by hydrolyzing glycidyl ether is a useful compound as, for example, a solvent, an emulsifier, a dispersant, a cleaning agent, a foaming agent and the like.
  • glyceryl ether is produced using a catalyst.
  • a method that can produce glyceryl ether without a catalyst for example, a method of hydrolyzing glycidyl ether with subcritical water is known. (Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-88000
  • the present invention provides a compound of the general formula (I):
  • R represents a hydrocarbon group having 1 to 20 carbon atoms in which some or all of the hydrogen atoms may be substituted with fluorine atoms
  • OA may be the same or different! /, May! / C 2 -C 4 represents an alkylene group
  • p represents a number from 0 to 20.
  • a method for producing glyceryl ether which comprises supplying a compound represented by the formula (I) and water to a reactor, and subjecting the compound to a hydrolysis reaction under a condition where the water is in a subcritical state or a supercritical state. Collecting water from the reaction mixture in step (1), adjusting the pH of the water to 3.5 or higher and supplying it to the reactor, or filtering the water collected from the reaction mixture after hydrolysis through a reverse osmosis membrane
  • a method for producing glyceryl ether comprising a step (2) of treating and supplying the treated water obtained as recycled water to the reactor; and general formula (I): R— (OA) p -OCH 2 -CH-CH 2 ( j )
  • R represents a hydrocarbon group having 1 to 20 carbon atoms in which some or all of the hydrogen atoms may be substituted with fluorine atoms
  • OA may be the same or different! /, May! / C 2 -C 4 represents an alkylene group
  • p represents a number from 0 to 20.
  • a step (A) of supplying a compound represented by the formula (I) and water to the reactor, and subjecting the compound to hydrolysis under the condition that the water is in a subcritical or supercritical state, and a reaction mixture after the hydrolysis reaction A method for preventing coloration of glyceryl ether produced through the step (B) of collecting water from the reactor and supplying it to the reactor, wherein in step B, the pH of the water is adjusted to 3.5 or more.
  • a glyceryl ether comprising the step of supplying to the reactor (B-1) or the step of filtering the water through a reverse osmosis membrane and supplying the treated water obtained as recycled water to the reactor (B-2)
  • the present invention relates to a coloring prevention method.
  • the present invention is a high-quality glyceryl ether that can suppress the loss of water to be used and that can prevent the by-product formation and prevent the hue of glyceryl ether from being deteriorated.
  • the present invention relates to providing an efficient manufacturing method.
  • the present inventors have a correlation between the increase of the by-product as described above and a decrease in the pH of water used for the hydrolysis reaction, and by adjusting the pH of the water, Although it is possible to suppress the formation and the reason is unknown, the hydrolysis reaction of glycidyl ether was repeated using water obtained by filtering the water recovered from the reaction mixture through a reverse permeable membrane. Even if the coloring of glyceryl ether is reduced, high quality glyceryl ether was found and the present invention was completed.
  • the loss of water to be used is suppressed, and the generation of by-products is also suppressed, thereby preventing the bad hue of dalyceryl ether and efficiently producing high-quality glyceryl ether. can do.
  • the present invention uses a predetermined glycidyl ether as a raw material, and supplies the raw material and water to a reactor.
  • a method for producing dalyceryl ether wherein a hydrolysis reaction of the raw material is performed under conditions where water is in a subcritical state or a supercritical state.
  • Step (1) Step of recovering water from the reaction mixture after the hydrolysis reaction, adjusting the pH of the water to 3.5 or higher, and supplying the water to the reactor, or
  • Step (2) A step of filtering the water recovered from the reaction mixture after the hydrolysis reaction through a reverse osmosis membrane and supplying the obtained treated water to the reactor as recycled water
  • the main feature is that
  • unreacted water that has not been used in the hydrolysis reaction of the raw material is separated and recovered, and at least a part of the water is supplied (recycled) to the reactor. It is suppressed.
  • the water is adjusted to a predetermined pH or filtered through a reverse osmosis membrane, the glyceryl ether decomposition and side reactions during the hydrolysis reaction progress to the extent that the quality of the glyceryl ether becomes a problem. It is possible to prevent the bad hue of glyceryl ether.
  • the hydrolysis reaction is performed under conditions where water is in a subcritical or supercritical state, the water used according to the stoichiometric amount contributes effectively to the reaction, and the reaction is non-catalytic.
  • the reaction proceeds at a high reaction selectivity, and the removal of the catalyst from the reaction product can be omitted, so that high-quality glyceryl ether can be produced efficiently.
  • the glycidyl ether used as a raw material is a compound represented by the above general formula (I).
  • hydrocarbon group having 1 to 20 carbon atoms in which some or all of the hydrogen atoms represented by R may be substituted with fluorine atoms, for example, straight chain having 1 to 20 carbon atoms Or Examples thereof include a branched alkyl group, a linear or branched alkenyl group having 2 to 20 carbon atoms, and an aryl group having 6 to 14 carbon atoms.
  • hydrocarbon group examples include, for example, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n- Octyl group, n-nonyl group, n-decyl group, n-dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, eicosyl group, 2-propyl group, 2-butyl group, 2-methyl-2-propyl group , 2-pentyl group, 3-pentyl group, 2-hexyl group, 3-hexyl group, 2-octyl group, 2-ethylhexyl group, phenol group, benzyl group and the like.
  • Examples of those in which the hydrogen atom of the hydrocarbon group is substituted with a fluorine atom include, for example, a nanofluor hexyl group, a hexafluoro hexyl group, a tridecafluorooctyl group, a heptadecafluorooctyl group, and a heptadecafluoro group.
  • Perfluoroalkyl groups such as olodecyl group and the like, the hydrogen atoms of the hydrocarbon groups exemplified above are fluorine atoms, the degree of substitution and the substitution position are not particularly limited, and those optionally substituted are exemplified.
  • oxyalkylene group having 2 to 4 carbon atoms represented by OA include alkylene oxides such as an oxyshethylene group, an oxytrimethylene group, an oxypropylene group, and an oxybutylene group.
  • the carbon number of the hydrocarbon group represented by R is preferably 1 to 12 from the viewpoint of improving the reaction selectivity. Further, p is preferably 0 to 6, and more preferably 0.
  • examples include ricidyl ether, n-hexyl glycidyl ether, 2-methyl-pentyl glycidyl ether, ferul glycidyl ether, n-octyl daricidyl ether, 2-ethyl hexyl glycidyl ether, n-stearyl glycidyl ether, etc. It is done.
  • the type of water used for the hydrolysis reaction of the raw material is not particularly limited as long as the desired effect of the present invention is not inhibited.
  • Examples of water include ion exchange water, distilled water, reverse osmosis filtration treated water, and the like, and do not impair the essence of the present invention. You can use anything that contains salt, such as tap water, in the range! /.
  • water used for the hydrolysis reaction of the raw material in the present invention at least a part thereof is a reaction mixture after the hydrolysis reaction (after all or part of the water has been subjected to the hydrolysis reaction).
  • Reaction mixture Force Separated and recovered, and water that has been filtered through a pH adjustment or reverse osmosis membrane as described below (hereinafter sometimes referred to as recycled water) is used.
  • the pH-adjusted water has a pH of 3.5 or more, and the upper limit is usually about 12. From the viewpoint of suppressing the formation of by-products, the pH is preferably 4 to 9 and more preferably 5 to 8.
  • Concentration Z Acid ion concentration of recovered water
  • the inhibition rate of acid ions is preferably 1Z 2 or less, more preferably 1Z10 or less.
  • the recycled water may be obtained from the same reaction system force or from different reaction systems. Examples of the latter mode include the mode of Example 2 described later.
  • the amount of recycled water used is not particularly limited, but the molar ratio to the amount of water (externally supplied water) that is newly supplied to the reactor from the outside (recycled water Z externally supplied water) ) Is preferably 1 or more, more preferably 10 or more. This ratio can be said to be an indicator of the reduction in water loss, and the higher the value, the less water loss in the manufacturing process.
  • the water used for the hydrolysis reaction of the raw material may be all recycled water.
  • the aspect of supplying the recycled water to the reactor is not particularly limited.
  • the raw water that may be directly supplied to the reactor and Z or externally supplied water may be mixed and supplied to the reactor.
  • the glyceryl ether is produced by supplying the raw material and water as described above to the reactor and performing a hydrolysis reaction of the raw material.
  • the hydrolysis reaction is performed under conditions where water is in a subcritical state or a supercritical state from the viewpoint of increasing the reactivity between the raw material and water.
  • the condition for water to be in a subcritical state is the supercritical temperature of water (374 The condition that has a pressure higher than the saturated vapor pressure at a high temperature of less than (° C) and higher than 200 ° C.
  • the condition that becomes the supercritical state is the supercritical temperature of water (374 ° C) or higher, A condition having a pressure of supercritical pressure (22 MPa) or more, specifically, preferably 200 to 350 ° C., more preferably 250 to 300. Preference is given to conditions capable of holding water in a liquid state at a temperature of C and preferably under a pressure of 1.5 to: LOOMPa, more preferably 4.0 to 15 MPa! /.
  • the hydrolysis reaction is carried out in a reactor selected according to the embodiment of the production method of the present invention.
  • the reactor is not particularly limited as long as it can perform a hydrolysis reaction under the above-mentioned conditions and can recover the reaction product.
  • an autoclave, etc. These tank reactors are preferably used.
  • a flow-through tubular type such as a tubular reactor, a tower type reactor, or a static mixer type reactor and a semi-batch type such as a continuous stirred tank type reactor are used.
  • a tubular reactor is particularly preferably used because of its good operability and good pressure resistance during a high-pressure reaction.
  • the reactor may or may not have a stirring means, but from the viewpoint of allowing the reaction to proceed uniformly, a reactor having a stirring means is preferred.
  • the material of the reactor used in the present invention is not particularly limited, and materials generally used for chemical reactions can be arbitrarily used.
  • Specific examples include steel materials such as pure iron, carbon steel, pig iron, and nickel steel, austenitic stainless steel, martensitic stainless steel, ferritic stainless steel, Fe-Cr-Ni alloy, copper alloy, Metal materials such as aluminum alloy, Ni—Cr—Fe alloy, Ni—Cu alloy, Ni—Mo—Fe—Cr alloy, cobalt alloy, titanium alloy, zirconium alloy, molybdenum, chromium, etc .; hard glass, quartz glass, porcelain Glass lining, synthetic resin, ceramic material, and the like.
  • step (2) of the present invention a corrosive substance such as an acid contained in the raw material or by-produced by the reaction. By filtration through a reverse osmosis membrane, accumulation in the reaction system can be reduced, and corrosion of the above materials can be reduced.
  • the amount of water relative to the raw material during the hydrolysis reaction is not particularly limited, but is preferably 10 to 1000 times, more preferably 20 to 500 times the stoichiometric amount in terms of mole. Within the effective range, the progress of side reactions such as dimerization between the glycidyl ether as a raw material and the produced glyceryl ether is suppressed, and the reaction selectivity of glyceryl ether is increased. Further, from the viewpoint of efficient productivity in the continuous reaction operation, the condition range of 40 to 200 times is more preferable from the events peculiar to this reaction system.
  • the amount of water means the total amount of recycled water and externally supplied water. The molar ratio of the amount of recycled water used to the external supply water is preferably set as described above.
  • the raw material is supplied in an amount necessary for one batch, and the hydrolysis reaction is performed by continuously supplying the raw material even by a batch system in which the hydrolysis reaction is performed once. It can also be implemented by a formula. In particular, it is preferable to carry out the reaction in a continuous manner that has characteristics that the reaction time is short and the reaction conditions are easy to control and the reaction can proceed efficiently.
  • the method of the present invention is carried out batchwise, it is preferable to charge the raw material and water so that the amount of water relative to the raw material during the hydrolysis reaction is within the above range, while continuous.
  • the amount of water relative to the raw material is within the above range in the steady state of the reaction (that is, the state where the components involved in the reaction are constant).
  • the raw materials and water are individually and Z or premixed and fed into the reactor.
  • mix in the reactor is preferably performed using a stirring means having a strong shearing force because the reaction system is not uniform.
  • a stirring means having a strong shearing force because the reaction system is not uniform.
  • a propeller mixer for example, a propeller mixer, an azimuth homomixer, a homomixer, a disk turbine type stirring blade having a high shearing property, an inclined paddle type stirring blade, a paddle type stirring blade, etc. are preferably used.
  • continuous type for example, pipeline mixer, line homomixer, static mixer, ISG mixer, ultrasonic mixer, high pressure A homogenizer, pumps such as a high shearing centrifugal pump, a disperser, etc. are preferably used. Also, the hydrolysis reaction is preferably allowed to proceed under the mixing conditions by these stirring means.
  • the reaction time varies depending on the reaction temperature, the type of raw material used, etc., and cannot be determined unconditionally. After reaching a steady state of approximately 1 minute to 10 hours, it is selected. For example, when the reaction is performed at 200 ° C, the reaction time is preferably about 10 minutes.
  • the reaction time in the continuous reactor means the time that the reaction liquid stays in the powerful reactor, and the volume of the reactor is divided by the raw material flow rate per unit time supplied to the reactor. Shows the value.
  • the hydrolysis reaction since the hydrolysis reaction is carried out under conditions where water is in a subcritical state or a supercritical state, the reaction proceeds even in the absence of a catalyst, but an acid or alkali catalyst is added. It is also possible.
  • the catalyst used in the present invention is not particularly limited, and examples thereof include an acid, a base, and a combined system of an acid and a base, which are generally used in a hydrolysis reaction.
  • the amount used is not particularly limited as long as the desired hydrolysis efficiency of the raw material can be obtained, but is preferably about 0.01 relative to 100 parts by weight of the raw material. -10 parts by weight, more preferably 0.1-5 parts by weight.
  • the hydrolysis reaction of the glycidyl ether as a raw material is performed.
  • the separation / recovery of the reaction mixture force after the hydrolysis reaction is preferably performed using, for example, the following separation / recovery means.
  • the separation and recovery means used in the present invention means a means capable of recovering components other than water and water from the reaction mixture after the hydrolysis reaction.
  • the recovery of components other than water and the recovery of water may be performed integrally (Aspect 1) or may be performed independently (Aspect 2). From the viewpoint of ease of operation, it is preferable to use a separation and recovery means capable of recovering components other than water and water according to Embodiment 1.
  • the reaction mixture after the hydrolysis reaction may contain components other than water (glyceryl ether which is a reaction product) depending on the chemical structure of glycidyl ether used as a raw material. Including water) and water. Therefore, examples of the separation and recovery means that can recover components other than water and water according to Embodiment 1 include specific gravity difference separation and membrane separation. Specific gravity difference separation includes static separation such as API type oil separator, CPI oil separator, PPI oil separator, centrifugal separation such as shear-press type and Doraval type, and wet type cyclone.
  • membrane separation examples include microfiltration membranes, ultrafiltration membranes, rou RO membranes (loose reverse osmosis membranes), and reverse osmosis membranes.
  • standing separation is performed by supplying a reaction mixture and leaving it alone, and the reaction mixture is separated into components other than water (upper layer) and water (lower layer).
  • Other components are also recovered, which is preferable because recovery of components other than water and recovery of water can be performed integrally.
  • examples of the separation and recovery means that can recover components other than water and water according to Aspect 2 include, for example, a means that combines evaporation and Liebig condensation.
  • the reaction mixture is supplied to the evaporator and then heated above the boiling point of water, the water evaporates, and components other than water remain and are recovered in the evaporator.
  • the evaporated water is cooled by a Liebig condenser and recovered as water.
  • the amount of water to be recovered may be determined as appropriate, and at least part of the water in the reaction mixture may be recovered.
  • step (1) the recovered water is pH adjusted to a predetermined value and then supplied to a reactor for performing a hydrolysis reaction. Since the pH of the recycled water decreases with time, the pH of the water is adjusted using, for example, the following pH adjuster.
  • Examples of the pH adjuster include an inorganic ion adsorbent, an ion adsorbent such as an ion exchange resin, and a neutralizer such as an inorganic base and an organic base.
  • the production method of the present invention is preferably carried out continuously, but with inorganic ion adsorbents and ion exchange resins, the pH of water is suppressed by bringing them into contact with water. Therefore, when the production method of the present invention is carried out continuously, it is preferable to use such an adsorbent as a pH adjuster.
  • Examples of the inorganic ion adsorbent include metal complex oxides such as hydrated talcite, zeolite and magnesium silicate, alumina, silica, magnesium oxide, zinc oxide, and acid. Examples thereof include metal oxides such as calcium hydroxide, activated carbon, activated clay and the like, and hydrated talcite is preferable.
  • Examples of the ion exchange resin include strong basic anion exchange resin, weak basic anion exchange resin, anion exchange membrane, anion exchange fiber, etc., and weak basic anion exchange resin is preferable. . Among these, inorganic ion adsorbents are preferably used because of their excellent pH adjustment ability.
  • the amount of ion adsorbent used can be determined by the amount of glycidyl ether used in the reaction, and the amount used is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of glycidyl ether. More preferred is ⁇ 10 parts by weight.
  • Examples of the neutralizing agent include sodium carbonate, potassium carbonate, calcium carbonate, magnesium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and other metal carbonates, sodium hydroxide, potassium hydroxide, calcium hydroxide.
  • Metal hydroxides such as magnesium hydroxide and aluminum hydroxide
  • inorganic bases such as metal phosphates such as calcium phosphate and calcium hydrogen phosphate, and ammonia, allyl, ethylamine, jetylamine, triethylamine, ptyramine, pyridine, etc.
  • An organic base is mentioned.
  • Examples of the pH adjustment method include a method in which a column is filled with the inorganic ion adsorbent or ion exchange resin as described above, and the water separated and recovered is passed through the column.
  • a means for treating the separated and recovered water in the column there is no problem even if it is carried out either continuously or batchwise.
  • the separated and collected water can be treated in series. You may process cyclically through a storage tank etc. once.
  • a method of adding a neutralizing agent as described above to the separated and recovered water and adjusting to a desired pH can be mentioned.
  • the pH may be adjusted by any of these methods or a combination of these methods.
  • the production method of the present invention is carried out continuously, the pH of water should be easy. Therefore, the former method using an adsorbent or the like is more preferable.
  • the pH of water indicates a value measured at normal temperature and normal pressure.
  • the pH measurement method is not particularly limited, and examples thereof include an indicator method, a metal electrode method such as a hydrogen electrode and an antimony electrode, and a glass electrode method.
  • the technology may be implemented within a numerical range that is converted into a value at normal temperature to normal pressure in accordance with the temperature change.
  • the pH of the recovered water may be 3.5 or more.
  • the water recovery and the water pH adjustment are performed at the same time. Further, even if the pH of the recovered water is already 3.5 or more, it is assumed that the pH adjustment is performed in the present invention when the pH adjustment operation as described above is performed.
  • the recovered water is filtered through a reverse osmosis membrane and then supplied to a reactor that performs a hydrolysis reaction.
  • the filtration treatment is performed using, for example, the following reverse osmosis membrane.
  • Examples of the material of the reverse osmosis membrane include cellulose acetate, aromatic polyamide, polybenzimidazolone, polyacrylonitrile, polysulfone, and composite membranes thereof.
  • low-contamination membranes obtained by hydrophilizing the surface of these materials have also been developed and can be suitably used in the present invention.
  • the reverse osmosis membrane As the reverse osmosis membrane, a commercial product sold by Toray Industries, Inc., Nitto Denko Corporation, etc. can be used, and when the removal of chloride ions is used as an indicator, the blocking rate is 50% or more. 90% or more is more preferable and 99% or more is more preferable.
  • the operating pressure for reverse osmosis filtration is 0.
  • the pressure resistance of the device that IMPa or higher is preferred from the viewpoint of shortening the processing time for increasing the liquid permeation rate and reducing the membrane area. Is not required and lOMPa or less is preferred from the viewpoint of easy maintenance and maintenance. From these viewpoints, the operating pressure for performing reverse osmosis filtration is preferably 0.1 to: LOMPa is more preferably 0.5 to 5 MPa.
  • the filtration performance is affected by the pH of the water used for the filtration treatment.
  • the pH of the recovered water may be adjusted before the filtration treatment from the viewpoint of removing acidic substances in the recovered water with the reaction mixture force.
  • the pH of water recovered from the reaction mixture may be adjusted before or after the filtration treatment.
  • the pH of the water to be adjusted is 5 to 10 or more preferably 7 to 9.
  • the pH of water is adjusted using, for example, the above pH adjuster.
  • the separated and recovered water may be processed in series. It may be processed cyclically through a storage tank or the like.
  • a method of adding a neutralizing agent as described above to the separated and collected water to adjust to a desired pH can be mentioned.
  • the pH can be adjusted by these V methods, or any combination of these methods.
  • step (1) water is separated and recovered from the reaction mixture discharged from the reactor, as exemplified in Example 1 described later.
  • a series of water is passed through a column packed with the adsorbent and the like to adjust the pH of the water and supply it again through the circulation line to the reactor for use in further hydrolysis reactions.
  • a mode in which the operation is performed in the same apparatus is exemplified.
  • step (2) water is separated and recovered from the reaction mixture discharged from the reactor as illustrated in Example 3 described later, and then a reverse osmosis filter.
  • a mode in which a series of operations are performed in the same apparatus is performed by performing filtration treatment through the circulation line and supplying it to the reactor again for use in further hydrolysis reaction.
  • water is separated and recovered from the reaction mixture, for example, the recovered water A mode in which a series of operations are carried out by the same or different apparatus, including adjusting the pH of the water by adding the neutralizing agent to the reactor and supplying the water after the pH adjustment to the reactor.
  • the aspect of supplying recycled water to the reactor is not particularly limited, and may be supplied directly to the reactor, or may be mixed with the raw material and Z or externally supplied water and supplied to the reactor. ⁇ .
  • the reaction product glyceryl ether
  • glyceryl ether is obtained as a component other than water.
  • Ingredients other than water are normally available as glyceryl ether as they are.
  • a catalyst for example, by evaporation, distillation, extraction, microfiltration, adsorption, etc. according to known methods. It is preferable to purify glyceryl ether.
  • glyceryl ether is obtained. If the pH of the water collected as described above is not adjusted or filtered through a reverse osmosis membrane, the pH of the water used for the hydrolysis reaction of the raw material decreases with time, or the by-product As a result, decomposition and side reactions of glyceryl ether proceed, and depending on the reactor used, metal The resulting glyceryl ether has a poor hue and an irritating odor. According to the production method of the present invention, even when recycled water is used for a hydrolysis reaction for a long time, the occurrence of such various phenomena can be suppressed and a high-quality glyceryl ether can be obtained.
  • the hue of glyceryl ether is determined by the Gardner method (JIS K 0071).
  • the hue of glyceryl ether obtained by the production method of the present invention is preferably 4 or less, more preferably 3 or less.
  • the pH adjustment of the recovered water of the reaction mixture or the filtration treatment with a reverse osmosis membrane is colored glyceryl ether when viewed from the side of the glyceryl ether obtained by the intensive method. It can be regarded as a preventive measure. Therefore, as one embodiment of the present invention, the compound represented by the general formula (I) and water are supplied to a reactor, and the hydrolysis reaction of the compound is carried out under conditions where water becomes a subcritical state or a supercritical state.
  • a method for preventing coloring of glyceryl ether is provided, which includes a step (B-2) for supplying to the vessel. Regarding the operation of each step in the method, the step (B-1) may follow the step (1), and the step (B-2) may follow the step (2).
  • the reactor shown in Fig. 1 was used.
  • the apparatus shown in FIG. 1 includes a tubular reactor 1, a separation and recovery unit 2, a water supply unit 3, and a raw material supply unit 4.
  • the water supply unit 3 and the raw material supply unit 4 are connected to the tubular reactor 1, and the tubular reactor 1 is connected to the separation and recovery unit 2 via the water circulation line 5.
  • the separation and recovery unit 2 uses a stationary separator, and the water circulation line 5 is provided with a water treatment unit 6 and a water circulation pump 7.
  • 200 g of Kyoto 1510 [Kyowa Chemical Industry Co., Ltd. Hyde mouth talcite] as an inorganic ion adsorbent was packed in a SUS column and used.
  • the tubular reactor 1 was heated with a heater so that the temperature of the internal fluid (reaction temperature) was 275 ° C.
  • the pressure in the tubular reactor 1 (reaction pressure) was set to 8 MPa.
  • the raw material was subjected to the hydrolysis reaction under strong temperature and pressure conditions, that is, under conditions where water was in a subcritical state. In the steady state of the reaction, the amount of water relative to the raw material was 100 times its stoichiometric amount in terms of mole.
  • the reaction mixture was cooled by a cooling part (50 ° C.) and then reached the separation and recovery part 2.
  • the separation and recovery unit 2 the reaction mixture is separated and water is recovered as a lower layer.
  • the water is constantly passed through the water treatment unit 6 through the water circulation line 5 to adjust the pH of the water, and then the tubular reactor. 1 was fed.
  • Glyceryl ether was produced by the above operation.
  • the hydrolysis reaction was started by supplying glycidyl ether, and the reaction product was collected every 4 hours until 28 hours later.
  • Gas chromatogram force of the reaction product obtained while supplying 300 g of 2-ethyl-hexyl glycidyl ether to the tubular reactor 1 from the beginning of the recovery.
  • Calculated reaction selectivity and decomposition rate of glyceryl ether, and glyceryl The hue of ether is shown in Table 1.
  • Table 1 also shows the pH (measured by the glass electrode method at room temperature and normal pressure) of the water collected from the reaction mixture after passing through the water treatment section 6 while collecting the reaction product.
  • the reaction selectivity was calculated from the production rate of the produced glyceryl ether Z and the conversion rate X 100 of the supplied glycidyl ether.
  • the decomposition rate was calculated from the rate of formation of glyceryl ether decomposition products. Hue was measured by the Gardner method (based on JIS K 0071-2).
  • reaction pressure the pressure in the tubular reactor 1 (reaction pressure) was set to 8 MPa.
  • the raw material was subjected to hydrolysis under intensive temperature and pressure conditions, that is, under conditions where water was in a subcritical state.
  • the reaction mixture was cooled by a cooling part (50 ° C.) and then reached the separation and recovery part 2.
  • the separation and recovery unit 2 the reaction mixture was separated into layers, and water was recovered as a lower layer, which was always supplied to the tubular reactor 1 via the circulation line 5.
  • Glyceryl ether was produced by the above operation.
  • the hydrolysis reaction was started by supplying glycidyl ether, and the reaction product was collected every 4 hours until 16 hours later.
  • Gas chromatogram force of the reaction product obtained while supplying 300 g of 2-ethyl-hexyl glycidyl ether to the tubular reactor 1 from the beginning of the recovery.
  • Calculated reaction selectivity and decomposition rate of glyceryl ether, and glyceryl The hue of ether is shown in Table 1.
  • Table 1 also shows the pH of water recovered from the reaction mixture and in the lower layer of the separation and recovery unit 2.
  • reaction selectivity, decomposition rate, hue, and water pH of glyceryl ether were calculated or measured by the same method as in Example 1.
  • Example 1 an inorganic ion adsorbent was used as the water pH adjuster, and the pH of water recovered from the reaction mixture after the hydrolysis reaction was continuously adjusted and then circulated through the reactor. Hydrolysis reaction was performed. As a result, as shown in Table 1, even when the operation was performed for a long time, a high reaction selectivity of glyceryl ether was shown, and the degradation rate was low and the hue was not deteriorated.
  • Comparative Example 1 the hydrolysis reaction was carried out by directly circulating water recovered from the reaction mixture to the reactor without using a water pH adjuster.
  • the reaction selectivity tended to decrease with the lapse of operation time, and the decomposition rate was clearly higher than that of Example 1. Also, a noticeable bad hue was observed.
  • the reactor shown in Fig. 2 was used.
  • the apparatus shown in FIG. 2 includes a tubular reactor 1, a separation and recovery unit 2, a water supply unit 3, a raw material supply unit 4, and a back pressure valve 8.
  • the water supply unit 3 and the raw material supply unit 4 are connected to the tubular reactor 1, and the tubular reactor 1 is connected to the separation and recovery unit 2.
  • Separation and recovery unit 2 used a stationary separator.
  • the raw material was subjected to a hydrolysis reaction under such temperature and pressure conditions, that is, under conditions where water was in a subcritical state.
  • the amount of water relative to the raw material was 100 times its stoichiometric amount in terms of mole.
  • the reaction mixture was cooled by a cooling part (50 ° C.) and then reached the separation and recovery part 2.
  • the separation and recovery unit 2 the reaction mixture was separated, and the reaction product was obtained as the upper layer. The reaction product was recovered 2 hours after the reaction composition became steady by this operation.
  • the gas chromatogram force of the reaction product obtained while supplying 20 g of 2-ethylhexyl glycidyl ether from the beginning of the recovery was calculated to be 98.3%.
  • the decomposition rate of glyceryl ether was 0.7%.
  • Example 2 by adjusting the pH of the water separated and recovered after the hydrolysis reaction of Comparative Example 1, and using this in the hydrolysis reaction, a high reaction selectivity of glyceryl ether was obtained. The decomposition rate of ether was also kept low. In addition, no deterioration in hue was observed.
  • the reactor shown in Fig. 3 was used.
  • the apparatus shown in FIG. 3 includes a tubular reactor 9, a separation and recovery unit 10, a storage tank 11, a reverse osmosis filter 12, and a storage tank 13.
  • the reaction mixture was cooled by a cooling part (70 ° C.) and then reached the separation and recovery part 10.
  • the separation and recovery unit 10 the reaction mixture was separated by stationary separation, and the reaction product (glyceryl ether) was isolated from the upper oil phase.
  • the lower aqueous phase was recovered in storage tank 11 at 1.054 kgZmin.
  • reverse osmosis filter 12 manufactured by Nitto Denko Corporation, LF10—D2, aromatic polyamide hydrophilized reverse osmosis membrane, 1.8 m 2 , 2 inch spiral type, chloride ion blocking rate 99.5%
  • OMPa and a flow rate of 5.
  • Treated water filtered through a reverse osmosis membrane at a permeation rate of OOOkgZmin was continuously collected in the storage tank 13.
  • the chloride ion concentration at this time was 1.15 mmol Zkg for water before permeation, 0.00 ImmolZkg for treated water after permeation, and the rejection was 99.9%.
  • the concentrated water that did not pass through the reverse osmosis membrane was returned to the storage tank 11 again, and the storage tank 11 was controlled by discharging so that the liquid level was constant.
  • the treated water collected in storage tank 13 is used as recycled water. Instead of controlling the supply amount of ion exchange water to 0.075 kg / min, recycled water is added to the tubular reactor 9 in addition to OOOkgZmin. Supplied to.
  • Glyceryl ether was continuously produced by the above operation.
  • the pH of the recycled water 9 hours after the start of the hydrolysis reaction by supplying glycidyl ether was 4.2 in Example 3.
  • the acid ion concentration (total concentration of hydrochloric acid and formic acid) in the recycled water was 0.25 mmol / kg in Example 3 and 0.02 mmol Zkg in Example 4.
  • the Gardner hue of the reaction product was measured by the Gardner method (based on JIS K 0071-2). The results are shown in Table 2.
  • the reactor shown in Fig. 4 was used.
  • the apparatus shown in FIG. 4 includes a tubular reactor 9, a separation / recovery unit 10, and a storage tank 11.
  • the raw materials were reacted in the same manner as in Example 3, and the obtained reaction product was separated into an oil phase containing glyceryl ether and an aqueous phase by stationary separation in the separation and recovery unit 10.
  • the water phase is recovered in storage tank 11 and used as recycled water.
  • recycled water 1.
  • Supplementary supply of OOOkgZmin to tubular reactor 9 It was controlled by discharging so that the liquid level was constant.
  • V-glyceryl ether that can be used in solvents, emulsifiers, dispersants, detergents, foam-enhancing agents, and the like.
  • FIG. 1 is an apparatus schematic diagram showing an example of an apparatus suitably used for carrying out the production method of the present invention.
  • FIG. 2 is a schematic view of an apparatus showing an example of an apparatus suitably used for carrying out the production method of the present invention.
  • FIG. 3 is a schematic view of an apparatus used in Examples 3 and 4.
  • FIG. 4 is a schematic view of an apparatus used in Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

明 細 書
グリセリルエーテルの製造方法
技術分野
[0001] 本発明は、グリセリルエーテルの製造方法に関する。
背景技術
[0002] グリシジルエーテルを加水分解して得られるグリセリルエーテルは、例えば、溶剤、 乳化剤、分散剤、洗浄剤、増泡剤等として有用な化合物である。
[0003] 一般にグリセリルエーテルは触媒を用いて製造される力 無触媒でグリセリルエー テルを製造し得る方法として、たとえば、亜臨界状態の水でグリシジルエーテルをカロ 水分解する方法が知られて ヽる (特許文献 1)。
特許文献 1:特開 2002— 88000号公報
発明の要旨
[0004] 本発明は、一般式 (I) :
[化 1]
R— (OA)p-OCH2-CH-CH2 ( j )
O
(式中、 Rは一部もしくは全部の水素原子がフッ素原子で置換されていてもよい炭素 数 1〜20の炭化水素基を示し、 OAは同一でも異なって!/、てもよ!/、炭素数 2〜4のォ キシアルキレン基を示し、 pは 0〜20の数を示す。 )
で示される化合物と水を反応器に供給し、水が亜臨界状態又は超臨界状態となる条 件下に該化合物の加水分解反応を行うグリセリルエーテルの製造方法であって、加 水分解反応後の反応混合物から水を回収し、当該水の pHを 3. 5以上に調整して該 反応器に供給する工程(1)又は加水分解反応後の反応混合物から回収した水を逆 浸透膜により濾過処理し、得られた処理水をリサイクル水として該反応器に供給する 工程(2)を含む、グリセリルエーテルの製造方法;並びに、一般式 (I): R— (OA)p-OCH2-CH-CH2 ( j )
O
(式中、 Rは一部もしくは全部の水素原子がフッ素原子で置換されていてもよい炭素 数 1〜20の炭化水素基を示し、 OAは同一でも異なって!/、てもよ!/、炭素数 2〜4のォ キシアルキレン基を示し、 pは 0〜20の数を示す。 )
で示される化合物と水を反応器に供給し、水が亜臨界状態又は超臨界状態となる条 件下に該化合物の加水分解反応を行う工程 (A)、及び加水分解反応後の反応混合 物から水を回収し、該反応器に供給する工程 (B)を経て製造されるグリセリルエーテ ルの着色防止方法であって、前記工程 Bにおいて、水の pHを 3. 5以上に調整して 該反応器に供給する工程 (B— 1)又は水を逆浸透膜により濾過処理し、得られた処 理水をリサイクル水として該反応器に供給する工程 (B— 2)を含む、グリセリルエーテ ルの着色防止方法に関する。 発明の詳細な説明
[0005] しかし、上記の方法において、水の損失を減らしつつ多量の水を加水分解反応に 使用して反応選択率を高く維持する目的で、加水分解反応後に反応混合物から水 を回収し、加水分解反応が行われる反応器に供給し、カゝかる水をさらに加水分解反 応に使用した場合、経時的にグリセリルエーテル以外の副生成物の生成が増加し、 グリセリルエーテルの色相が悪ィ匕するなど、得られるグリセリルエーテルの品質が低 下する問題が認められた。
[0006] すなわち、本発明は、使用する水の損失を抑えることができ、しかも副生成物の生 成を抑制してグリセリルエーテルの色相の悪ィ匕を防ぐことができる、高品質なグリセリ ルエーテルの効率的な製造方法を提供することに関する。
[0007] 本発明者らは、上記のような副生成物の増加と、加水分解反応に用いる水の pHの 低下に相関があり、水の pHを調整することによって反応時の副生成物の生成を抑制 することが出来ることを、また、理由は不明なるも、反応混合物から回収した水を逆浸 透膜により濾過処理して得られた水を使用してグリシジルエーテルの加水分解反応 を繰り返しても、グリセリルエーテルの着色が低減され、高品質なグリセリルエーテル が得られることを見出し、本発明を完成した。
[0008] 本発明によれば、使用する水の損失を抑え、し力も副生成物の生成を抑制してダリ セリルエーテルの色相の悪ィ匕を防ぎ、高品質なグリセリルエーテルを効率的に製造 することができる。
[0009] 本発明は、所定のグリシジルエーテルを原料とし、当該原料と水を反応器に供給し
、水が亜臨界状態又は超臨界状態となる条件下に該原料の加水分解反応を行うダリ セリルエーテルの製造方法であり、
工程 (1) :加水分解反応後の反応混合物から水を回収し、当該水の pHを 3. 5以上に 調整して該反応器に供給する工程、又は
工程 (2) :加水分解反応後の反応混合物から回収した水を逆浸透膜により濾過処理 し、得られた処理水をリサイクル水として該反応器に供給する工程
を含むことを大きな特徴とする。
[0010] 本発明においては、原料の加水分解反応に使用されなかった未反応の水を分離 回収し、該水の少なくとも一部を反応器に供給 (リサイクル)するので使用する水の損 失が抑制される。また、力かる水は所定の pHに調整、又は逆浸透膜により濾過処理 されたものであることから、加水分解反応時にグリセリルエーテルの分解や副反応が グリセリルエーテルの品質上問題となる程度に進むことがなぐグリセリルエーテルの 色相の悪ィ匕を防ぐことができる。さらに、加水分解反応は水が亜臨界状態又は超臨 界状態となる条件下に行われることから、化学量論量に応じて用いた水が反応に有 効に寄与して該反応は無触媒下においても高い反応選択率で進行し、また、反応産 物からの触媒の除去操作を省略することができ、高品質なグリセリルエーテルを効率 的に製造することができる。
[0011] なお、以下において説明する成分等は、本発明の所望の効果の発現を阻害しない 限り、それぞれ単独で若しくは 2種以上を混合して用いることができる。
[0012] 本発明にお 、て原料として使用するグリシジルエーテルは、上記一般式 (I)で示さ れる化合物である。
[0013] 上記式中、 Rで示される一部もしくは全部の水素原子がフッ素原子で置換されてい てもよい炭素数 1〜20の炭化水素基としては、たとえば、炭素数 1〜20の直鎖又は 分岐鎖のアルキル基、炭素数 2〜20の直鎖又は分岐鎖のアルケニル基、炭素数 6 〜 14のァリール基等が挙げられる。
[0014] 当該炭化水素基として具体的には、たとえば、メチル基、ェチル基、 n—プロピル基 、 n—ブチル基、 n—ペンチル基、 n—へキシル基、 n—へプチル基、 n—ォクチル基 、 n—ノニル基、 n—デシル基、 n—ドデシル基、テトラデシル基、へキサデシル基、ォ クタデシル基、エイコシル基、 2—プロピル基、 2—ブチル基、 2—メチルー 2—プロピ ル基、 2—ペンチル基、 3—ペンチル基、 2—へキシル基、 3—へキシル基、 2—オタ チル基、 2—ェチルへキシル基、フエ-ル基、ベンジル基等が挙げられる。また、炭 化水素基の水素原子がフッ素原子に置換されたものとしては、たとえば、ナノフルォ 口へキシル基、へキサフルォ口へキシル基、トリデカフルォロォクチル基、ヘプタデカ フルォロォクチル基、ヘプタデカフルォロデシル基等のパーフルォロアルキル基等、 前記例示する炭化水素基の水素原子がフッ素原子に、置換度及び置換位置は特に 限定されず任意に置換されたものが挙げられる。
[0015] OAで示される炭素数 2〜4のォキシアルキレン基の具体例としては、ォキシェチレ ン基、ォキシトリメチレン基、ォキシプロピレン基、ォキシブチレン基等のアルキレンォ キサイドが挙げられる。
[0016] なお、 Rとして示される炭化水素基の炭素数としては、反応選択率を向上させる観 点から、好ましくは 1〜12である。また、 pとしては、好ましくは 0〜6、より好ましくは 0 である。
[0017] 原料として好適に使用されるグリシジルエーテルとしては、具体的には、たとえば、 n—ブチルダリシジルエーテル、 2—メチループ口ピルグリシジルエーテル、 n—ペン チルダリシジルエーテル、 2—メチループチルダリシジルエーテル、 n—へキシルグリ シジルエーテル、 2—メチルーペンチルグリシジルエーテル、フエ-ルグリシジルエー テル、 n—オタチルダリシジルエーテル、 2—ェチルーへキシルグリシジルエーテル、 n—ステアリルグリシジルエーテル等が挙げられる。
[0018] 本発明において、原料の加水分解反応に使用される水の種類は、本発明の所望 の効果の発現を阻害しない限り特に限定されるものではない。水としては、たとえば、 イオン交換水、蒸留水、逆浸透濾過処理水等が挙げられ、本発明の本質を損なわな 、範囲で、水道水のような塩類等を含有するものを使用しても差し支えな!/、。
[0019] また、本発明において原料の加水分解反応に使用される水として、その少なくとも 一部に、加水分解反応後の反応混合物 (その全部又は一部が加水分解反応に供さ れた後の反応混合物)力 分離回収され、後述のようにして pH調整又は逆浸透膜に より濾過処理された水(以下、リサイクル水という場合がある)が使用される。
[0020] 上記 pH調整された水の pHは 3. 5以上であり、通常、上限は 12程度である。副生 成物の生成をいつそう抑制する観点から、 pHとしては、 4〜9力 子ましく、 5〜8がより 好ましい。
[0021] 上記逆浸透膜により濾過処理された水の逆浸透膜の実効の指標として、反応混合 物から回収した水の酸イオン濃度に対するリサイクル水の酸イオン濃度の比(リサイク ル水中の酸イオン濃度 Z回収した水の酸イオン濃度)、即ち酸イオンの阻止率は 1Z 2以下が好ましぐ 1Z10以下がより好ましい。
[0022] なお、リサイクル水は、同一の反応系力 得られたものであっても、異なる反応系か ら得られたものであってもよい。後者の態様としては、たとえば、後述の実施例 2の態 様を挙げることができる。
[0023] 本発明において、リサイクル水の使用量としては、特に限定はないが、外部から新 規に反応器に供給される水 (外部供給水)の量に対するモル比(リサイクル水 Z外部 供給水)として、好ましくは 1以上、より好ましくは 10以上である。この比は水の損失の 減少の指標であるといえ、その値が高い程、概して製造工程における水の損失が少 ないと言える。なお、原料の加水分解反応に使用される水は全部がリサイクル水であ つてもよい。
[0024] リサイクル水を反応器に供給する態様としては特に限定されるものではなぐ直接 反応器に供給してもよぐ原料及び Z又は外部供給水と混合して反応器に供給して ちょい。
[0025] 本発明の製造方法では、上記のような原料及び水を反応器に供給し、原料の加水 分解反応を行ってグリセリルエーテルを製造する。本発明において、加水分解反応 は、原料と水との反応性を高める観点から、水が亜臨界状態又は超臨界状態となる 条件下にて行われる。なお、水が亜臨界状態となる条件とは、水の超臨界温度(374 °C)未満、かつ 200°C以上の高温な状態で、飽和蒸気圧以上の圧力を有する条件を さし、超臨界状態となる条件とは、水の超臨界温度(374°C)以上、超臨界圧(22MP a)以上の圧力を有する条件をいい、具体的には、好ましくは 200〜350°C、より好ま しくは 250〜300。Cの温度で、及び好ましくは 1. 5〜: LOOMPa、より好ましくは 4. 0 〜 15MPaの圧力下で、水を液体状に保持しうる条件が好まし!/、。
[0026] 加水分解反応は、本発明の製造方法の実施態様に応じて選択される反応器内に おいて行なわれる。当該反応器は、上記条件で加水分解反応を行うことができ、反 応産物を回収可能なものであれば特に限定されるものではないが、たとえば、回分 式にて実施する場合、オートクレープなどの槽型反応器が好適に使用される。一方、 連続式にて実施する場合、管型反応器、塔型反応器、スタティックミキサー型反応器 などの流通式管型形式のものと、連続式撹拌槽型反応器などの半回分形式のもの が好適に使用され、これらのうち、操作性や高圧反応時の耐圧性が良好であることか ら、管型反応器が特に好適に使用される。従って、本発明においては、管型反応器 を用いて連続的に加水分解反応を行うのが好ま ヽ。以上の反応器は!ヽずれも巿販 のものが入手可能である。また、反応器としては攪拌手段を有するものでも、有さない ものでもよいが、反応を均一に進行させる観点からは、攪拌手段を有するものが好ま しい。
[0027] 本発明に用いる反応器の材質は特に限定されず、一般的に化学反応に利用され る素材を任意に使用することができる。具体例としては、純鉄、炭素鋼、铸鉄、 -ッケ ル鋼等の鋼材、オーステナイト系ステンレス鋼、マルテンサイト系ステンレス鋼、フェラ イト系ステンレス鋼、 Fe— Cr—Ni合金、銅合金、アルミニウム合金、 Ni—Cr—Fe合 金、 Ni— Cu合金、 Ni— Mo— Fe— Cr合金、コバルト合金、チタン合金、ジルコユウ ム合金、モリブデン、クロム等の金属材料;硬質ガラス、石英ガラス、磁器、グラスライ ユング、合成樹脂、セラミック材料等が挙げられる。これらの中でも材質腐食が懸案さ れる亜臨界状態又は超臨界状態の温度条件で反応を行なう場合には、オーステナ イト系ステンレス鋼、 Ni—Cr— Fe合金、 Ni—Mo— Fe— Cr合金のような金属材料の 利用が好ましぐ Ni— Cr— Fe合金、 Ni— Mo— Fe— Cr合金がより好ましい。なお、 本発明の工程 (2)では原料中に含まれる、又は反応により副生する酸等の腐食物質 を逆浸透膜で濾過処理することにより、反応系内への蓄積を低減することができ、上 記材質への腐食を低減することができる。
[0028] また、加水分解反応時における原料に対する水の量は、特に限定されないがモル 換算で、その化学量論量の好ましくは 10〜1000倍であり、より好ましくは 20〜500 倍である。力かる範囲内において、原料としてのグリシジルエーテルと生成したグリセ リルエーテルとの二量ィ匕等の副反応の進行が抑制されてグリセリルエーテルの反応 選択率が高まる。また、本反応系特有の事象から、連続式の反応操作における効率 的な生産性の観点からは、 40〜200倍の条件範囲がさらに好ましい。ここで、水の量 とは、リサイクル水と外部供給水の総量を言う。リサイクル水の外部供給水に対する使 用量のモル比は、上記の通りに設定されるのが好まし 、。
[0029] 本発明の製造方法は、原料を 1バッチ当たりに要する量だけ供給し、単回で加水分 解反応を行なう回分式によっても、原料を連続的に供給して加水分解反応を行なう 連続式によっても実施することができる。特に、温度の昇降にかかる時間が短ぐ反 応条件の制御が容易であり、反応を効率的に進行させうる特性を有する連続式にて 実施するのが好ましい。
[0030] 本発明の方法を回分式にて実施する場合には、加水分解反応時における原料に 対する水の量が前記範囲内となるように原料と水を仕込むのが好ましぐ一方、連続 式にて実施する場合には、反応の定常状態 (すなわち、反応に関与する成分が一定 となった状態)において原料に対する水の量が前記範囲内となるようにするのが好ま しい。
[0031] 加水分解反応を行なう際には原料及び水は個別に及び Z又は予め混合して反応 器内に供給される。予め混合せずに反応器内に供給する場合は、反応器内におい て混合する。混合は、原料として使用するグリシジルエーテルの化学構造によっては 反応系が不均一であるため、剪断力の強い攪拌手段を用いて行なうのが好ましい。 当該攪拌手段としては、回分式では、たとえば、プロペラミキサー、アジホモミキサー 、ホモミキサーや、剪断性の高いディスクタービン型攪拌翼、傾斜パドル型攪拌翼、 パドル型攪拌翼等が好適に使用され、連続式では、たとえば、パイプラインミキサー、 ラインホモミキサー、スタティックミキサー、 I. S. G.ミキサー、超音波ミキサー、高圧 ホモジナイザー、剪断性の高い渦巻きポンプ等のポンプ類、ディスパ一等が好適に 使用される。また、加水分解反応もそれらの攪拌手段による混合条件下に進行させ るのが好ましい。
[0032] また、反応時間としては、反応温度や用いる原料の種類等により異なり一概には決 められないが、回分式の場合、原料等の仕込み終了から、一方、連続式の場合、反 応の定常状態に達してから、概ね 1分〜 10時間の範囲で選択される。たとえば、 200 °Cで反応を行なう場合、反応時間としては好ましくは 10分間程度である。なお、連続 式の反応器における反応時間とは、力かる反応器に反応液が滞留している時間を意 味し、反応器の容積を反応器に供給される単位時間あたりの原料流量で除した値を 示す。
[0033] 本発明にお 、ては、加水分解反応を水が亜臨界状態又は超臨界状態となる条件 下に行うため、無触媒下でも反応が進行するが、酸やアルカリの触媒を添加すること も可能である。本発明にお 、て使用される触媒としては特に限定されるものではな 、 力 例えば、一般に加水分解反応において使用される、酸、塩基、酸と塩基の併用 系などを挙げることができる。
[0034] 触媒を使用する場合、その使用量としては、所望の原料の加水分解反応効率が得 られれば特に限定されるものではないが、概ね原料 100重量部に対して、好ましくは 0. 01〜10重量部、より好ましくは 0. 1〜5重量部である。
[0035] 以上のようにして原料であるグリシジルエーテルの加水分解反応が行われる。加水 分解反応後の反応混合物力 の水の分離回収は、たとえば、以下のような分離回収 手段を使用して行うのが好適である。
[0036] 本発明に使用される分離回収手段とは、加水分解反応後の反応混合物から水以 外の成分と水の回収とを行い得る手段をいう。水以外の成分の回収と水の回収は、 それらを一体として行ってもよく(態様 1)、各々独立して行ってもよい (態様 2)。操作 の容易性の観点から、態様 1により水以外の成分と水の回収を行い得る分離回収手 段を使用するのが好ましい。
[0037] 本発明にお ヽて加水分解反応後の反応混合物は、原料として使用するグリシジル エーテルの化学構造によっては水以外の成分 (反応産物であるグリセリルエーテル を含む)と水とに分層する性状を有する。それゆえ、態様 1により水以外の成分と水の 回収を行い得る分離回収手段としては、たとえば、比重差分離、膜分離等が挙げら れる。比重差分離としては、 API式オイルセパレーター、 CPIオイルセパレーター、 P PIオイルセパレーター等の静置分離、シャープレス型、ドラバル型等の遠心分離、湿 式サイクロンなどが挙げられる。膜分離としては、精密濾過膜、限外濾過膜、ルー R O膜 (ルーズ逆浸透膜)、逆浸透膜等が挙げられる。これらの中でも静置分離は、反 応混合物を供給して静置するだけで、反応混合物は水以外の成分 (上層)と水 (下層 )とに分層するので、水を回収することで水以外の成分も回収され、水以外の成分の 回収と水の回収とを一体として行うことができるので好ましい。
[0038] 一方、態様 2により水以外の成分と水の回収を行い得る分離回収手段としては、た とえば、蒸発とリービッヒ凝縮とを組み合わせてなる手段が挙げられる。蒸発器に反 応混合物を供給した後、水の沸点以上で加熱すると水が蒸発し、蒸発器には水以外 の成分が残り回収される。蒸発した水はリービッヒ凝縮器で冷却され水として回収さ れる。また、蒸発操作の代わりに精留等の蒸留操作を用いて分離回収しても良い。
[0039] なお、水は、反応混合物から、その全部が回収される必要は必ずしもない。回収す る水量は適宜決定すればよぐ反応混合物中の少なくとも一部の水が回収されれば よい。
[0040] 次 、で、工程(1)では、回収された水は所定の値に pH調整された上で、加水分解 反応を行う反応器に供給される。リサイクル水の pHは経時的に低下するため、水の p H調整は、たとえば、以下のような pH調整剤を用いて行う。
[0041] 前記 pH調整剤としては、たとえば、無機系イオン吸着剤、イオン交換榭脂などのィ オン吸着剤、無機塩基、有機塩基などの中和剤が挙げられる。本発明の製造方法は 連続式にて実施するのが好適であるが、無機系イオン吸着剤やイオン交換榭脂によ れば、それらと水とを接触させることにより水の pHの低下を抑制させることが可能であ るので、本発明の製造方法を連続式にて実施する場合、 pH調整剤としては、それら の吸着剤等を使用するのが好まし 、。
[0042] 無機系イオン吸着剤としては、たとえば、ハイド口タルサイト、ゼォライト、珪酸マグネ シゥムなどの金属複合酸化物や、アルミナ、シリカ、酸化マグネシウム、酸化亜鉛、酸 化カルシウムなどの金属酸ィ匕物、活性炭、活性白土などが挙げられ、ハイド口タルサ イトが好ましい。イオン交換榭脂としては、たとえば、強塩基性陰イオン交換榭脂、弱 塩基性陰イオン交換榭脂、陰イオン交換膜、陰イオン交換繊維などが挙げられ、弱 塩基性陰イオン交換樹脂が好ましい。中でも、 pH調整能に優れることから、無機系ィ オン吸着剤が好適に使用される。なお、使用するイオン吸着剤の量は反応に用いる グリシジルエーテルの量により定めることができ、その使用量はグリシジルエーテル 1 00重量部に対して 0. 01〜20重量部が好ましぐ 0. 1〜10重量部がより好ましい。
[0043] 中和剤としては、たとえば、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸マ グネシゥム、炭酸水素ナトリウム、炭酸水素カリウムなどの金属炭酸塩、水酸化ナトリ ゥム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム などの金属水酸化物、燐酸カルシウム、燐酸水素カルシウムなどの金属燐酸塩など の無機塩基、及びアンモニア、ァ-リン、ェチルァミン、ジェチルァミン、トリェチルァ ミン、プチルァミン、ピリジン等の有機塩基が挙げられる。
[0044] pHの調整方法としては、たとえば、上記のような無機系イオン吸着剤やイオン交換 榭脂をカラムに充填し、該カラムに分離回収された水を通過させる方法が挙げられる 。尚、該カラムでの分離回収された水を処理する手段としては、連続式、回分式いず れで行っても何ら問題なぐ連続式では分離回収した水を直列的に処理してもよぐ 一且貯槽等を介して循環的に処理してもよい。また、たとえば、上記のような中和剤 を、分離回収された水に添加し、所望の pHに調整する方法が挙げられる。 pHの調 整は、これらいずれかの方法により行なってもこれらの方法を組み合わせて行っても よいが、本発明の製造方法を連続式にて実施する場合、水の pH調整が容易である ことから、吸着剤等を用いる前者の方法がより好適である。
[0045] なお、本発明にお 、て、水の pHは、常温'常圧下にて計測された値を示す。本 pH の測定方法は特に限定されないが、例えば指示薬法、水素電極、アンチモン電極等 の金属電極法、ガラス電極法が挙げられる。なお、温度'圧力変化にあわせ、常温- 常圧下での値に換算される数値範囲内で技術実施してもよい。
[0046] なお、前記態様 2により水以外の成分と水の回収を行い得る分離回収手段により水 を回収する場合、回収された水の pHは 3. 5以上である場合がある。工程(1)の適用 においては、かかる場合は、水の回収と水の pHの調整とは同時に行われたものとす る。また、たとえ回収された水の pHが既に 3. 5以上であったとしても、上記の通りの p H調整操作を経た場合、本発明にお ヽては pH調整が実施されたものとする。
[0047] 一方、工程(2)では、回収された水は逆浸透膜により濾過処理された上で、加水分 解反応を行う反応器に供給される。濾過処理は、たとえば、以下のような逆浸透膜を 用いて行う。
[0048] 逆浸透膜の材質としては、酢酸セルロース系、芳香族ポリアミド系、ポリベンツイミダ ゾロン系、ポリアクリロニトリル系、ポリスルホン系、及びこれらの複合膜等が挙げられ る。近年これらの素材表面を親水化処理した低汚染膜も開発されており、本発明に おいても好適に使用することができる。
[0049] 逆浸透膜の形状としては、スパイラル型、チューブラー型、キヤピラリー型、中空糸 型、平膜型等が実用化されており、本発明には何れのものでも使用することができる
[0050] 逆浸透膜としては、東レ (株)、日東電工 (株)等力 販売されて 、る市販品を使用 することができ、塩素イオンの除去を指標とした場合、阻止率 50%以上のものが好ま しぐ 90%以上のものがより好ましぐ 99%以上のものがさらに好ましい。
[0051] 逆浸透濾過を行なう操作圧力は、液の透過速度を早ぐ処理時間を短縮し、膜面 積をコンパクトにすることができる観点から、 0. IMPa以上が好ましぐ装置の耐圧性 が要求されず、維持管理及び保守が容易である観点から lOMPa以下が好ま 、。 これらの観点から、逆浸透濾過を行なう操作圧力は 0. 1〜: LOMPaが好ましぐ 0. 5 〜5MPaがより好ましい。
[0052] 逆浸透膜による濾過処理において、濾過性能は濾過処理に供する水の pHに影響 される。一般に、亜臨界水や超臨界水を用いた化学反応は酸性ィ匕する傾向がある。 よって、本発明では、反応混合物力 回収した水中の酸性物質を除去する観点から 、濾過処理の前に回収した水の pH調整を行ってもよい。また装置の腐食を防止する 観点から、濾過処理の前又は後に反応混合物から回収した水の pH調整を行っても よい。この場合、調整する水の pHは、 5〜10カ 子ましく、 7〜9がより好ましい。なお、 水の pH調整は、例えば上記の pH調整剤を用いて行なう。 [0053] pHの調整方法としては、たとえば、連続式、回分式、半回分式等の 、ずれで行つ ても何ら問題なぐ連続式では分離回収した水を直列的に処理してもよぐ一且貯槽 等を介して循環的に処理してもよい。また、たとえば、上記のような中和剤を、分離回 収された水に添加し、所望の pHに調整する方法が挙げられる。 pHの調整は、これら V、ずれかの方法により行なってもこれらの方法を組み合わせて行ってもょ 、。
[0054] 本発明の製造方法を工程(1)で連続式にて実施する場合としては、後述の実施例 1に例示されるように、反応器から排出される反応混合物から水を分離回収し、たとえ ば、前記吸着剤等を充填したカラムに水を通過させて水の pHを調整し、循環ライン を通して、更なる加水分解反応に使用するために再び反応器に供給するという、一 連の操作が同一装置内で行われる態様が挙げられる。また、工程 (2)で連続式にて 実施する場合としては、後述の実施例 3に例示されるように、反応器から排出される 反応混合物から水を分離回収し、その後、逆浸透濾過器により濾過処理を施し、循 環ラインを通して、更なる加水分解反応に使用するために再び反応器に供給すると いう、一連の操作が同一装置内で行われる態様が挙げられる。一方、本発明の製造 方法を工程(1)でバッチ式にて実施する場合としては、後述の実施例 2に例示される ように、反応混合物から水を分離回収し、たとえば、回収された水に前記中和剤を添 カロして水の pHを調整し、 pH調整後の水を反応器に供給するという、一連の操作が 同一若しくは異なる装置により行われる態様が挙げられる。なお、リサイクル水を反応 器に供給する態様としては特に限定されるものではなぐ直接反応器に供給してもよ く、原料及び Z又は外部供給水と混合して反応器に供給してもよ ヽ。
[0055] 反応産物であるグリセリルエーテルは、前記水以外の成分として得られる。水以外 の成分は、通常、そのままグリセリルエーテルとして使用可能である力 たとえば、触 媒を用いたような場合には、さらに、たとえば、公知の方法に従って蒸発、蒸留、抽出 、精密濾過、吸着等により、グリセリルエーテルを精製するのが好ましい。
[0056] 以上によりグリセリルエーテルが得られる。前記のようにして回収された水の pHを調 整しない又は逆浸透膜により濾過処理をしない場合、原料の加水分解反応に使用さ れる水の pHは経時的に低下したり、副生成物の生成が増加したりして、その結果、 グリセリルエーテルの分解や副反応が進行し、また、使用する反応器によっては金属 の溶出が生じ、得られるグリセリルエーテルは、色相が悪ィ匕したり、刺激臭を伴ったり するようになる。本発明の製造方法によれば、リサイクル水を長時間加水分解反応に 使用した際にも、そのような種々の現象の発生を抑えて、高品質なグリセリルエーテ ノレを得ることができる。
[0057] なお、本発明において、グリセリルエーテルの色相はガードナー法 (JIS K 0071
2に準拠)により測定される。本発明の製造方法により得られるグリセリルエーテル の色相としては、好ましくは 4以下であり、より好ましくは 3以下である。
[0058] また、本発明の製造方法における、反応混合物力 回収された水の pH調整又は 逆浸透膜による濾過処理は、力かる方法により得られるグリセリルエーテルの側から 見た場合、グリセリルエーテルの着色防止手段と捉えることができる。従って、本発明 の一態様として、前記一般式 (I)で示される化合物と水を反応器に供給し、水が亜臨 界状態又は超臨界状態となる条件下に該化合物の加水分解反応を行う工程 (A)、 及び加水分解反応後の反応混合物から水を回収し、該反応器に供給する工程 (B) を経て製造されるグリセリルエーテルの着色防止方法であって、前記工程 (B)におい て、水の pHを 3. 5以上に調整して該反応器に供給する工程 (B— 1)又は水を逆浸 透膜により濾過処理し、得られた処理水をリサイクル水として該反応器に供給するェ 程 (B— 2)を含む、グリセリルエーテルの着色防止方法が提供される。当該方法にお ける各工程の操作等については、工程 (B— 1)は前記工程(1)に、工程 (B— 2)は前 記工程(2)についての記載に従えばよい。
実施例
[0059] 実施例 1
図 1に示す反応装置を用いた。図 1に示す装置は、管型反応器 1、分離回収部 2、 水供給部 3及び原料供給部 4を備えて ヽる。水供給部 3と原料供給部 4はそれぞれ 管型反応器 1に、管型反応器 1は水循環ライン 5を介して分離回収部 2と接続されて いる。分離回収部 2には静置分離器を用い、水循環ライン 5には水処理部 6及び水 循環ポンプ 7を備え付けて 、る。水処理部 6では無機系イオン吸着剤としてキヨーヮ ード 1015〔協和化学工業 (株)製ハイド口タルサイト〕 200gを SUS製のカラムに充填 して用いた。 [0060] グリセリルエーテルの製造を開始するに際し、分離回収部 2にイオン交換水を 13kg 仕込んだ。原料として 2—ェチルーへキシルグリシジルエーテルを 50. lgZ分で、及 びイオン交換水(初期 PH6. 8)を 28. 6gZ分で、原料供給部 4及び水供給部 3から 、ならびに分離回収部 2の水を 464. 3gZ分で水循環ライン 5を介して、それぞれ管 型反応器 1 (管径: 16mm、管長: l lm、材質: SUS316)に連続的に供給し背圧弁 8 を通して反応混合物を分離回収部 2に導入した。管型反応器 1はヒーターにて内部 流体の温度 (反応温度)が 275°Cになるように加熱した。一方、管型反応器 1内の圧 力(反応圧力)は 8MPaとなるようにした。管型反応器 1では、力かる温度 ·圧力条件 下、すなわち、水が亜臨界状態となる条件下に原料の加水分解反応が行われた。な お、反応の定常状態において原料に対する水の量は、モル換算で、その化学量論 量の 100倍であった。加水分解反応後、反応混合物は冷却部(50°C)により冷却さ れた後、分離回収部 2に至った。分離回収部 2では反応混合物が分層し、水は下層 として回収され、常時、水循環ライン 5を介して水処理部 6に当該水を通過させて水 の pHを調整した後、管型反応器 1に供給した。
[0061] 以上の操作によりグリセリルエーテルを製造した。グリシジルエーテルを供給し加水 分解反応を開始して力も 4時間ごとに 28時間後までの反応産物を回収した。回収を 始めてから 300gの 2—ェチル—へキシルグリシジルエーテルを管型反応器 1に供給 する間に得られた反応産物のガスクロマトグラム力 算出された、グリセリルエーテル の反応選択率及び分解率、並びにグリセリルエーテルの色相を表 1に示す。また、反 応産物の回収を行っている間の水処理部 6通過後の、反応混合物から回収された水 の pH (常温'常圧下、ガラス電極法により測定)を表 1に併せて示す
[0062] なお、反応選択率は、生成したグリセリルエーテルの生成率 Z供給されたグリシジ ルエーテルの転ィ匕率 X 100により算出した。また、分解率はグリセリルエーテル分解 生成物の生成率により算出した。色相はガードナー法 (JIS K 0071— 2に準拠)に より測定した。
[0063] 比較例 1
図 1に示すものと同様の装置を用いたが、ここでは水処理部 6を設置せず、分離回 収部 2から回収された水が水循環ライン 5を介して直接、管型反応器 1に導入される ように設定した。
[0064] グリセリルエーテルの製造を開始するに際し、分離回収部 2にイオン交換水を 13kg 仕込んだ。原料として 2—ェチルーへキシルグリシジルエーテルを 50. lgZ分で、及 びイオン交換水(初期 PH6. 8)を 28. 6gZ分で、原料供給部 4及び水供給部 3から 、ならびに分離回収部 2の水を 464. 3gZ分で水循環ライン 5を介して、それぞれ管 型反応器 1に連続的に供給し背圧弁 8を通して反応混合物を分離回収部 2に導入し た。管型反応器 1はヒーターにて内部流体の温度 (反応温度)が 275°Cになるように 加熱した。一方、管型反応器 1内の圧力(反応圧力)は 8MPaとなるようにした。管型 反応器 1では、力かる温度,圧力条件下、すなわち、水が亜臨界状態となる条件下に 原料の加水分解反応が行われた。加水分解反応後、反応混合物は冷却部(50°C) により冷却された後、分離回収部 2に至った。分離回収部 2では反応混合物が分層し 、水は下層として回収され、常時、循環ライン 5を介して管型反応器 1に供給された。
[0065] 以上の操作によりグリセリルエーテルを製造した。グリシジルエーテルを供給し加水 分解反応を開始して力も 4時間ごとに 16時間後までの反応産物を回収した。回収を 始めてから 300gの 2—ェチル—へキシルグリシジルエーテルを管型反応器 1に供給 する間に得られた反応産物のガスクロマトグラム力 算出された、グリセリルエーテル の反応選択率及び分解率、並びにグリセリルエーテルの色相を表 1に示す。また、反 応混合物から回収され、分離回収部 2の下層にある状態の水の pHを表 1に併せて 示す。
[0066] なお、グリセリルエーテルの反応選択率、分解率、色相、並びに水の pHは、実施 例 1と同様の方法によって算出ないし測定した。
[0067] [表 1] 運転時間 (h) 水の pH 反応選択率 «) 分解率 tt) 色相 (G)
4 6. 2 97. 8 0. 6 2
8 5. 2 97. 6 0. 6 1
12 5. 0 97. 3 0. 6 2
施 16 5. 0 97. 8 0. 6 2 例
1 20 4. 9 98. 1 0. 6 2
2 5. 0 98. 2 0. 6 2
28 5. 0 97. 8 0. 6 2
4 3. 4 97. 6 2. 4 8
較 8 3. 3 97. 4 2. 6 9 例 1 2 3. 2 97. 2 2. 8 9
1
16 1 1 97. 1 3. 1 1 0
[0068] 実施例 1では、水の pH調整剤として無機系イオン吸着剤を用い、加水分解反応後 の反応混合物から回収される水の pHを連続的に調整した後、反応器に循環させて 加水分解反応を行った。その結果、表 1に示される通り、長時間の運転を行った際に も、高いグリセリルエーテルの反応選択率が示され、また、その分解率も低ぐ色相の 悪化も認められなかった。
[0069] 一方、比較例 1では、水の pH調整剤を使用せず、反応混合物から回収される水を 直接反応器に循環させて加水分解反応を行った。その結果、表 1に示される通り、運 転時間の経過とともに反応選択率は減少する傾向が見られ、分解率は実施例 1と比 較して明らかに高力つた。また、色相の顕著な悪ィ匕が認められた。
[0070] 実施例 2
図 2に示す反応装置を用いた。図 2に示す装置は、管型反応器 1、分離回収部 2、 水供給部 3、原料供給部 4、及び背圧弁 8を備えている。水供給部 3と原料供給部 4 はそれぞれ管型反応器 1に、管型反応器 1は分離回収部 2と接続されている。分離 回収部 2には静置分離器を用いた。
[0071] 比較例 1で、グリシジルエーテルを供給し加水分解反応を開始してから 20時間後 に分離回収された水 (PH3. 2)に、中和剤として水酸ィ匕ナトリウムを加え、 pHが 6. 0 になるように調整した。これを、水供給部 3より 15. 9mLZ分で、また、原料供給部 4 より 2 ェチル へキシルグリシジルエーテルを 1. 8mLZ分でそれぞれ連続的に管 型反応器 1へ供給し、背圧弁 8を通じて反応混合物を分離回収部 2に導入した。なお 、管型反応器 1内の内部流体の温度を、油浴により 280°Cに維持した。一方、管型反 応器 1内の圧力を、 8MPaとなるようにした。管型反応器 1では、かかる温度、圧力条 件下、すなわち水が亜臨界状態となる条件下に原料の加水分解反応が行われた。 なお、反応の定常状態において原料に対する水の量は、モル換算で、その化学量 論量の 100倍であった。加水分解反応後、反応混合物は冷却部(50°C)により冷却 された後、分離回収部 2に至った。分離回収部 2では反応混合物が分層し、反応産 物は上層として得られた。この操作により反応組成が定常になった 2時間後から反応 産物を回収した。回収を始めてから 20gの 2—ェチルーへキシルグリシジルエーテル を供給する間に得られた反応産物のガスクロマトグラム力 算出されたグリセリルエー テル選択率は 98. 3%であった。また、グリセリルエーテルの分解率は 0. 7%であつ た。
[0072] 実施例 2において、比較例 1の加水分解反応後に分離回収された水の pHを調整し 、これを加水分解反応に用いることにより、高いグリセリルエーテルの反応選択率が 得られ、またグリセリルエーテルの分解率も低く抑えられた。また、色相の悪化も認め られなかった。
[0073] 実施例 3及び 4
図 3に示す反応装置を用いた。図 3に示す装置は、管型反応器 9、分離回収部 10 、貯槽 11、逆浸透濾過器 12及び貯槽 13を備えている。
[0074] グリセリルエーテルの製造を開始するに際し、 2—ェチルへキシルグリシジルエーテ ル(純度 99. 8%以上)を 0. 108kgZmin、イオン交換水を 1. 075kgZminで管型 反応器 9に連続的に供給し、 270°Cにて連続的に反応させた。管型反応器 9内の圧 力(反応圧力)は 8. OMPaとなるようにした。管型反応器 9では、かかる温度'圧力条 件下、すなわち、水が亜臨界状態となる条件下にて原料の加水分解反応が行われ た。なお、反応の定常状態において原料に対する水の量は、モル換算で、その化学 量論量の 100倍であった。加水分解反応後、反応混合物は冷却部(70°C)により冷 却された後、分離回収部 10に至った。分離回収部 10では静置分離により反応混合 物が分層し、上層の油相から反応生成物(グリセリルエーテル)を単離した。一方、下 層の水相を 1. 054kgZminで貯槽 11に回収し、実施例 3はそのまま、実施例 4は p H9. 0に調整した後に、逆浸透濾過器 12 (日東電工 (株)製、 LF10— D2、芳香族 ポリアミド系親水化処理逆浸透膜、 1. 8m2、 2インチスパイラル型、塩素イオン阻止 率 99. 5%)に圧力 2. OMPa、流量 5. OLZminで供給し、 1. OOOkgZminの透過 速度で逆浸透膜により濾過処理された処理水を連続的に貯槽 13に回収した。この 際の塩素イオン濃度は、透過前の水が 1. 15mmolZkg、透過後の処理水が 0. 00 ImmolZkgで阻止率は 99. 9%であった。逆浸透膜を透過しなカゝつた濃縮水を再 び貯槽 11に戻し、液面が一定となるよう排出により貯槽 11を制御した。貯槽 13に回 収した処理水はリサイクル水として使用し、イオン交換水の供給量を 0. 075kg/mi nに制御する代わりにリサイクル水 1. OOOkgZminを補足的に管型反応器 9に連続 的に供給した。
[0075] 以上の操作により連続的にグリセリルエーテルを製造した。グリシジルエーテルを供 給し加水分解反応を開始してから 9時間後のリサイクル水の pHは、実施例 3では 4. 2であった。また、リサイクル水中の酸イオン濃度 (塩酸及びギ酸の総濃度)は実施例 3では 0. 25mmol/kg,実施例 4では 0. 02mmolZkgであった。さらに、反応生成 物のガードナー色相をガードナー法 (JIS K 0071— 2に準拠)により測定した。結 果を表 2に示す。
[0076] 比較例 2
図 4に示す反応装置を用いた。図 4に示す装置は、管型反応器 9、分離回収部 10 及び貯槽 11を備えている。
[0077] 実施例 3と同様に原料を反応させ、得られた反応物を分離回収部 10において静置 分離によりグリセリルエーテルを含む油相と水相に分離した。水相を貯槽 11に回収し リサイクル水として使用し、イオン交換水の供給量を 0. 075kgZminに制御する代 わりにリサイクル水 1. OOOkgZminを補足的に管型反応器 9に供給し、貯槽 11の液 面が一定となるよう排出により制御した。
[0078] グリシジルエーテルを供給し加水分解反応を開始してから 9時間後のリサイクル水 の pHは 3. 3であり、リサイクル水中の酸イオン濃度は 2. 72mmolZkgであった。反 応生成物のガードナー色相の結果を表 2に示す。
[0079] [表 2] 逆浸透膜濾過処理 反応生成物の力' ドナ-色相
実施例 3 1
実施例 4 有 1
比較例 2 12
[0080] 以上の結果より、反応生成物は、実施例 3及び 4では 1の色相を維持し変化を認め なかった。一方、逆浸透膜濾過処理をしない比較例 2では 12の褐色へ変化しており 、逆浸透膜による濾過処理により、良好な色相のグリセリルエーテルを効率よく得られ ることが分かる。なお、実施例 3 4及び比較例 2におけるグリセリルエーテルの収率 及び純度は同程度であり、各々収率は 99%、純度は 97%であった。
産業上の利用可能性
[0081] 本発明により、溶剤、乳化剤、分散剤、洗浄剤、増泡剤等に使用可能な品質の高 Vヽグリセリルエーテルを提供することができる。
図面の簡単な説明
[0082] [図 1]本発明の製造方法の実施に好適に使用される装置の一例を示す装置概略図 である。
[図 2]本発明の製造方法の実施に好適に使用される装置の一例を示す装置該略図 である。
[図 3]実施例 3及び 4に使用された装置の概略図である。
[図 4]比較例 2に使用された装置の該略図である。
符号の説明
[0083] 1 管型反応器
2 分離回収部
3 水供給部
4 原料供給部
5 水循環ライン
6 水処理部 水循環ポンプ 背圧弁 管型反応器 分離回収部 貯槽 逆浸透濾過器 貯槽

Claims

請求の範囲 [1] 一般式 (I) :
[化 1]
R- (OA)„-OCH2-CH-CH2 , 、
P \ / ( I )
o
(式中、 Rは一部もしくは全部の水素原子がフッ素原子で置換されていてもよい炭素 数 1〜20の炭化水素基を示し、 OAは同一でも異なって!/、てもよ!/、炭素数 2〜4のォ キシアルキレン基を示し、 pは 0〜20の数を示す。 )
で示される化合物と水を反応器に供給し、水が亜臨界状態又は超臨界状態となる条 件下に該化合物の加水分解反応を行うグリセリルエーテルの製造方法であって、加 水分解反応後の反応混合物から水を回収し、当該水の pHを 3. 5以上に調整して該 反応器に供給する工程(1)又は加水分解反応後の反応混合物から回収した水を逆 浸透膜により濾過処理し、得られた処理水をリサイクル水として該反応器に供給する 工程(2)を含む、グリセリルエーテルの製造方法。
[2] 水の pHの調整を無機系イオン吸着剤を用いて行う請求項 1記載の方法。
[3] リサイクル水中の酸イオン濃度を加水分解反応後の反応混合物から回収した水の 酸イオン濃度の 1Z2以下にする、請求項 1記載の製造方法。
[4] 前記工程(2)における濾過処理の前又は後に pH調整を行う請求項 1記載の製造 方法。
[5] 加水分解反応時における一般式 (I)で示される化合物に対する水の量が、モル換 算で、その化学量論量の 10〜: L000倍である請求項 1〜4いずれか記載の方法。
[6] 加水分解反応を 200〜350°Cの温度範囲で行う請求項 1〜4 、ずれか記載の方法
[7] 連続的に加水分解反応を行う請求項 1〜4いずれか記載の方法。
[8] 加水分解反応後の反応混合物を静置分離することにより水を回収する請求項 1〜
4 ヽずれか記載の製造方法。
[9] 一般式 (I) : [化 2]
R- (OA)p— OCH2 CH - CH2 (ェ)
O
(式中、 Rは一部もしくは全部の水素原子がフッ素原子で置換されていてもよい炭素 数 1〜20の炭化水素基を示し、 OAは同一でも異なって!/、てもよ!/、炭素数 2〜4のォ キシアルキレン基を示し、 pは 0〜20の数を示す。 )
で示される化合物と水を反応器に供給し、水が亜臨界状態又は超臨界状態となる条 件下に該化合物の加水分解反応を行う工程 (A)、及び加水分解反応後の反応混合 物から水を回収し、該反応器に供給する工程 (B)を経て製造されるグリセリルエーテ ルの着色防止方法であって、前記工程 Bにおいて、水の pHを 3. 5以上に調整して 該反応器に供給する工程 (B— 1)又は水を逆浸透膜により濾過処理し、得られた処 理水をリサイクル水として該反応器に供給する工程 (B— 2)を含む、グリセリルエーテ ルの着色防止方法。
PCT/JP2006/306878 2005-04-01 2006-03-31 グリセリルエーテルの製造方法 WO2006106940A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06730826A EP1880988B1 (en) 2005-04-01 2006-03-31 Process for producing glyceryl ether
US11/910,357 US20090275786A1 (en) 2005-04-01 2006-03-31 Process for producing glyceryl ether
CN200680010047XA CN101151235B (zh) 2005-04-01 2006-03-31 甘油醚的制造方法
ES06730826T ES2376886T3 (es) 2005-04-01 2006-03-31 Procedimiento para producir éter de glicerilo

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-106587 2005-04-01
JP2005106587A JP4587464B2 (ja) 2005-04-01 2005-04-01 グリセリルエーテルの製造方法
JP2005379439A JP4738169B2 (ja) 2005-12-28 2005-12-28 グリセリルエーテルの製造方法
JP2005-379439 2005-12-28

Publications (1)

Publication Number Publication Date
WO2006106940A1 true WO2006106940A1 (ja) 2006-10-12

Family

ID=37073491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306878 WO2006106940A1 (ja) 2005-04-01 2006-03-31 グリセリルエーテルの製造方法

Country Status (4)

Country Link
US (1) US20090275786A1 (ja)
EP (1) EP1880988B1 (ja)
ES (1) ES2376886T3 (ja)
WO (1) WO2006106940A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102399140B (zh) * 2010-09-17 2015-04-15 联仕(上海)电子化学材料有限公司 一种超纯电子级醋酸的生产方法
KR101878433B1 (ko) * 2018-01-23 2018-07-13 대달산업주식회사 알킬글리세릴 에테르의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088000A (ja) 2000-09-07 2002-03-27 Kao Corp ポリヒドロキシ化合物の製造法
JP2003267901A (ja) * 2002-03-14 2003-09-25 Kao Corp グリセリルエーテルの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969780B1 (en) * 2004-12-20 2005-11-29 Lyondell Chemical Technology, L.P. Production of butanediol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088000A (ja) 2000-09-07 2002-03-27 Kao Corp ポリヒドロキシ化合物の製造法
JP2003267901A (ja) * 2002-03-14 2003-09-25 Kao Corp グリセリルエーテルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1880988A4

Also Published As

Publication number Publication date
EP1880988A1 (en) 2008-01-23
ES2376886T3 (es) 2012-03-20
US20090275786A1 (en) 2009-11-05
EP1880988B1 (en) 2011-12-21
EP1880988A4 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
US7235694B2 (en) Process for preparing 4-aminodiphenylamine
JP6935399B2 (ja) イソプロピルアルコールの製造方法
JP5668319B2 (ja) 2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパンの製造方法
TW200914403A (en) Process for the purification of aromatic amines
CN103370291A (zh) 氢氯氟烃的选择性催化脱氯化氢
JP5571565B2 (ja) 高純度フェノール系グリコールエーテルの連続製造方法
CN111807929A (zh) 一种2-甲基-3-丁炔-2-醇的分离方法
EP3150572A1 (en) Production method for gamma, delta-unsaturated alcohols
WO2016194983A1 (ja) 共役ジエンの製造方法
CN109796300A (zh) 一种2,3,3,3-四氟丙烯的连续制备方法
WO2013146370A1 (ja) 3-アルコキシ-3-メチル-1-ブタノールの製造方法
WO2006106940A1 (ja) グリセリルエーテルの製造方法
EP3008046A1 (en) Process for the manufacture of epoxy-monomers and epoxides
JP4738169B2 (ja) グリセリルエーテルの製造方法
JP6458006B2 (ja) 断熱ニトロ化によるニトロベンゼン調製のためのプロセス
KR20150003818A (ko) 방향족 아민을 포함하는 물질 혼합물, 특히 미정제 아닐린의 물질 혼합물의 처리방법
JP4587464B2 (ja) グリセリルエーテルの製造方法
JP3977109B2 (ja) グリセリルエーテルの製造方法
JP5103547B2 (ja) エポキシ化合物の製造方法
CN114874083A (zh) 一种烯烃氢甲酰化方法和系统
EP1925608B1 (en) Process for producing hydrolyzate
JP7315790B2 (ja) 管型反応器及び撹拌タンク反応器を使用するリンゴ酸の製造
CN110139701A (zh) 经纯化的对苯二甲酸(pta)排气干燥机蒸气流出物处理
JP7390959B2 (ja) グリコール酸塩およびグリコール酸の製造方法
CN115417746A (zh) 由烯烃合成醇类的方法和设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010047.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11910357

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006730826

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730826

Country of ref document: EP