WO2006106848A1 - 基板の貼り合わせ方法、チップ形成方法及びチップ - Google Patents

基板の貼り合わせ方法、チップ形成方法及びチップ Download PDF

Info

Publication number
WO2006106848A1
WO2006106848A1 PCT/JP2006/306708 JP2006306708W WO2006106848A1 WO 2006106848 A1 WO2006106848 A1 WO 2006106848A1 JP 2006306708 W JP2006306708 W JP 2006306708W WO 2006106848 A1 WO2006106848 A1 WO 2006106848A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
thermoplastic resin
bonding
chip
Prior art date
Application number
PCT/JP2006/306708
Other languages
English (en)
French (fr)
Inventor
Takaaki Shimasaki
Original Assignee
Rohm Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd filed Critical Rohm Co., Ltd
Priority to EP06730656A priority Critical patent/EP1864784A1/en
Priority to US11/817,944 priority patent/US20090060782A1/en
Publication of WO2006106848A1 publication Critical patent/WO2006106848A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1435Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1496Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/1683Laser beams making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1696Laser beams making use of masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/004Preventing sticking together, e.g. of some areas of the parts to be joined
    • B29C66/0042Preventing sticking together, e.g. of some areas of the parts to be joined of the joining tool and the parts to be joined
    • B29C66/0044Preventing sticking together, e.g. of some areas of the parts to be joined of the joining tool and the parts to be joined using a separating sheet, e.g. fixed on the joining tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/541Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles a substantially flat extra element being placed between and clamped by the joined hollow-preforms
    • B29C66/5412Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles a substantially flat extra element being placed between and clamped by the joined hollow-preforms said substantially flat extra element being flexible, e.g. a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73115Melting point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81266Optical properties, e.g. transparency, reflectivity
    • B29C66/81267Transparent to electromagnetic radiation, e.g. to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1406Ultraviolet [UV] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1454Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1477Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier
    • B29C65/1483Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1606Ultraviolet [UV] radiation, e.g. by ultraviolet excimer lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7332General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73361General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being opaque to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73365General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8122General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • B29K2021/003Thermoplastic elastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/083EVA, i.e. ethylene vinyl acetate copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2909/00Use of inorganic materials not provided for in groups B29K2803/00 - B29K2807/00, as mould material
    • B29K2909/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • B29K2995/0027Transparent for light outside the visible spectrum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/06Bio-MEMS

Definitions

  • the present invention relates to a substrate bonding method, a chip forming method, and a chip.
  • a hot-melt adhesive is a linear polymer copolymer mainly composed of an ethylene vinyl acetate copolymer (EVA: Ethylene Vinyl Acetate). EVA softens at 80 ° to: L 10 ° and has fluidity that allows adhesion at 160 ° to 180 °. Therefore, the substrates can be bonded to each other by applying a hot melt adhesive heated and melted at about 180 ° to the bonding surface of the substrates and cooling.
  • EVA ethylene vinyl acetate copolymer
  • a UV adhesive contains a photopolymerization initiator, an acrylic oligomer, an acrylic monomer, and the like, and is an adhesive in which polymers constituting the UV adhesive are radically polymerized by irradiation with UV light.
  • a UV adhesive is applied to the bonding surface of the two substrates, and the wavelength is 150 ⁇ from the outside of the substrate while being heated by 40 ° to 80 °! Irradiate UV light of ⁇ 410nm.
  • the acrylic oligomer and the acrylic monomer are polymerized by radicals generated from the photopolymerization initiator to form a polymer, thereby bonding the substrates to each other.
  • first substrate and the second substrate face each other and are pressed while applying ultrasonic waves, thereby Ultrasonic welding that bonds the craftsmen is also being considered!
  • an object of the present invention is to provide a bonding method capable of bonding substrates without damaging the substrates.
  • the first invention of the present application is a method for bonding a first substrate and a second substrate in order to solve the above-mentioned problems, and comprising at least one main body of the first substrate and the second substrate.
  • bonding the first substrate and the second substrate by irradiating light onto the light absorbing material of the bonding surface through the light transmitting substrate.
  • the first substrate is formed of a light-transmitting material that transmits light !
  • the first substrate and the second substrate are brought into contact with each other and light is irradiated from the upper force of the first substrate. .
  • This light passes through the first substrate and reaches the light absorbing material formed on at least a part of the bonding surface of the first substrate and the second substrate.
  • the thermoplastic resin containing the light absorbing material is heated and melted.
  • the molten thermoplastic resin is cooled and hardened to bond the first substrate and the second substrate.
  • the patterns such as the reagent storage section and the flow path formed in the substrate are prevented from being collapsed or deformed by the strong press. be able to.
  • the substrate itself can be prevented from collapsing or deforming due to strong pressing.
  • a second invention of the present application is the first invention, wherein a detection substance for detecting a measurement target substance is arranged on the first substrate and the Z or second substrate, and the wavelength of the light is from 400 nm to 2.5.
  • a bonding method in the range of ⁇ m is provided.
  • the substance to be measured examples include various substances such as glucose and cholesterol in blood.
  • the detection substance is a substance that reacts with the substance to be measured, and examples thereof include biological substances such as enzymes, proteins, antigens, antibodies, bacteria, yeasts, and microorganisms, and chemical substances.
  • short-wavelength light such as UV light has high energy, and there is a risk of breaking the covalent bond of these detection substances and deactivating them.
  • the energy of light with a wavelength in the range of 400 nm force of 2.5 ⁇ m is less than the bond dissociation energy of the detection substance, so that deactivation of the detection substance can be prevented.
  • the first substrate and Z or the second substrate are formed on a fixed place of a fixed sensing substance, or formed on the first substrate, Z or the second substrate.
  • a bonding method in which a mask for blocking the light is arranged at a portion corresponding to a place where the pattern is formed, and the upper force of the mask is irradiated with light on the light-absorbing substance on the bonding surface provide.
  • a fourth invention of the present application is the bonding according to the third invention, wherein the first substrate and the second substrate are thermoplastic resin substrates, and the melting points of the first substrate and the second substrate are substantially the same. Provide a method.
  • the first substrate of both substrates is formed of a thermoplastic resin substrate made of a light transmissive material.
  • the second substrate is formed of a thermoplastic resin substrate in which a light-absorbing substance is contained on the bonding surface with the first substrate.
  • a fifth invention of the present application is a method of forming a chip formed by bonding a first substrate and a second substrate, wherein at least one of the first substrate and the second substrate is subjected to light And forming at least a part of the bonding surface of the first substrate and the second substrate with a thermoplastic resin containing a light absorbing material that absorbs light.
  • This chip forming method has the same effects as the first invention of the present application.
  • the sixth invention of the present application is the fifth invention, wherein carbon black is used as the light absorbing material, and the carbon black content in the layer containing carbon black is 0.01 vol% or more, 0.025 volume.
  • a method for forming a chip with a% or less is provided.
  • the carbon black content By setting the carbon black content to 0.01 vol% or more and 0.025 vol% or less, elution of carbon black into the solution can be suppressed. Therefore, the biochemical reaction can be normally performed in the solution in the flow path formed in the chip, and the sample etc. Can be accurately quantified. In addition, when the content is within this range, it is possible to sufficiently secure the bonding strength between the substrates without causing uneven color on the substrates. Thus, by setting the content of the strong bon black within the above-mentioned range, it can be used efficiently while utilizing the characteristics of the carbon black.
  • the seventh invention of the present application provides the method for forming a chip according to the sixth invention, wherein the layer containing carbon black is formed by injection molding.
  • injection molding is a simple manufacturing method generally used for molding a substrate, it is suitable for injection molding in the case of the above-mentioned content. Excellent cost.
  • the bonding surface in at least one of the first substrate and the second substrate Provided is a method for forming a chip in which the first substrate and the second substrate are bonded to each other by receiving a transparent glass plate force pressurizing through different transparent surfaces having a rough surface.
  • a principal surface different from the bonding surface in contact with the transparent plate is treated with a solvent!
  • a method for forming a chip is provided.
  • a surface treatment such as a surface coating or other solvent treatment is performed for cleaning and sterilization.
  • the main surface different from the above-described bonded surface may be treated so as to have elasticity.
  • the tenth aspect of the present invention is the bonding according to the fifth aspect, wherein in the step of bonding the first substrate and the second substrate, the bonding is performed on at least one of the first substrate and the second substrate.
  • the main surface different from the surface receives pressure from the transparent glass plate
  • the first substrate and the second substrate are bonded to each other, and the main surface is different from the bonded surface.
  • a method for forming a chip in which a transparent resin film is formed on the main surface of the transparent glass plate is provided. If the transparent resin film of the present invention is used, the same effect as that of the eighth invention can be obtained.
  • the eleventh invention of the present application provides the method of forming a chip according to the tenth invention, wherein a main surface different from the bonding surface in contact with the transparent resin film of the transparent glass plate is treated with a solvent. . If the configuration of the present invention is used, the same effect as that of the ninth invention can be obtained.
  • the twelfth invention of the present application includes a first substrate formed of a thermoplastic resin, a second substrate bonded to face the first substrate, the first substrate and Z or the second substrate. And at least one main body of the first substrate and the second substrate is a light-transmitting material that transmits light, and the first substrate and the second substrate At least a part of the bonding surface of the first substrate contains a light-absorbing substance that absorbs light, and the bonding surface of the first substrate or the second substrate facing the channel so as to cover the flow path transmits the light.
  • a chip that is bonded by irradiating light onto the light-absorbing material on the bonded surface through a transparent substrate.
  • a thirteenth invention of the present application provides the chip according to the twelfth invention, wherein a detection substance for detecting the substance to be measured is fixed in the flow path.
  • the substance to be measured examples include various substances such as glucose and cholesterol in blood.
  • the detection substance is a substance that reacts with the substance to be measured, and examples thereof include biological substances such as enzymes, proteins, antigens, antibodies, bacteria, yeasts, and microorganisms, and chemical substances.
  • the bonded surfaces including the light absorbing material are locally heated to bond the substrates together, so that heat is not applied to the entire substrate during chip formation. Therefore, the detection substance fixed to the flow path can be prevented from being deactivated.
  • the fourteenth invention of the present application provides the chip according to the thirteenth invention, wherein the detection substance is fixed at a distance of 100 m or more from a position where the light absorbing substance is introduced.
  • the light absorbing material generates heat by absorbing the irradiated light. This light absorbing material force By disposing the detection substance apart from each other, it is possible to prevent the detection substance from being deactivated due to heat generated when the substrates are bonded together.
  • the fifteenth invention of the present application provides the chip according to the twelfth invention, wherein the light absorbing / absorbing substance is a pigment.
  • Examples of the dye include carbon black.
  • the sixteenth invention of the present application provides the chip according to the twelfth invention, wherein the light absorbing / absorbing substance is a dye having a different color for each substance to be measured.
  • Various substances to be measured include, for example, glucose and cholesterol. Therefore, by using a dye having a different color for each substance to be measured, the measurer can easily confirm the chip used for the measurement. Therefore, it is possible to prevent the chip from being mistaken at the time of measurement.
  • carbon black is used as the light absorbing material, and the carbon black content in the layer containing carbon black is 0.01 vol% or more, 0.025 vol%
  • the carbon black content in the layer containing carbon black is 0.01 vol% or more, 0.025 vol%
  • the carbon black content By setting the carbon black content to 0.01 vol% or more and 0.025 vol% or less, elution of carbon black into the solution can be suppressed. Therefore, the biochemical reaction can be normally performed in the solution in the channel formed in the chip, and the sample or the like can be accurately quantified. In addition, when the content is within this range, it is possible to sufficiently secure the bonding strength between the substrates without causing uneven color on the substrates. Thus, by setting the content of the strong bon black within the above-mentioned range, it can be used efficiently while utilizing the characteristics of the carbon black.
  • the eighteenth invention of the present application provides the chip according to the seventeenth invention, wherein the layer containing carbon black is formed by injection molding.
  • injection molding is a simple manufacturing method generally used for molding a substrate, it is suitable for injection molding in the case of the above-mentioned content. Excellent cost.
  • the flow in the flow path does not damage the substrate, such as deformation of the pattern in the substrate due to the outflow of adhesive. Body flow is not hindered.
  • FIG. 1 (a) A plan view of a chip according to a first embodiment of the present invention. (B) Sectional view along line AA in Figure 1 (a).
  • FIG. 2 (a) A cross-sectional view (1) showing a method of bonding the first thermoplastic resin substrate 10 and the second thermoplastic resin substrate 20 together. (b) Sectional view (2) showing a method for bonding the first thermoplastic resin substrate 10 and the second thermoplastic resin substrate 20 together.
  • FIG. 3 is a cross-sectional view showing a method for bonding substrates by partial irradiation using a mask.
  • FIG. 4 Cross-sectional view of chip with detection substance immobilized on the surface of second thermoplastic resin substrate
  • FIG. 5 (a) is a cross-sectional view (1) showing a chip bonding method according to the first embodiment of the present invention.
  • Sectional drawing (2) which shows the chip
  • FIG. 6 (a) is a plan view of a chip according to a second embodiment of the present invention.
  • FIG. 7 (a) is a cross-sectional view of a substrate having a partial light absorption layer.
  • FIG. 8 (a) is a cross-sectional view (1) showing a chip bonding method according to a second embodiment of the present invention.
  • FIG. 9 (a) is a plan view of a chip according to a third embodiment of the present invention.
  • FIG. 10 (a) A cross-sectional view (1) showing a method for attaching the biochip 180 shown in FIG. (b) Sectional drawing (2) which shows the bonding method of the biochip 180 shown in FIG. (c) Sectional view (3) showing a method of attaching the nanochip 180 shown in FIG. (d) Sectional view (4) showing a method for attaching the biochip 180 shown in FIG.
  • FIG. L l A plan view of a chip 100 according to a fourth embodiment of the present invention.
  • B Sectional view taken along line EE ′ in FIG. 11 (a).
  • Chip 100 Explains the movement of chip 100 when pressure is applied from the outside to the inside.
  • Explanatory diagram (1) The explanatory view (2) for explaining the movement of the chip 100 to which pressure from the outside to the inside is applied.
  • FIG. 14 is an explanatory view showing a manufacturing process when a transparent plate having an uneven surface is interposed between the first thermoplastic resin substrate 10 and the quartz glass 40.
  • At least one main body of the first substrate and the second substrate is formed of a light transmissive material that transmits light. Further, at least a part of the bonding surface of the first substrate and the second substrate is formed of a thermoplastic resin containing a light absorbing material that absorbs light.
  • a thermoplastic resin containing a light absorbing material that absorbs light.
  • the microfluidic chip as described above does not use an adhesive for bonding, it suppresses damage to the substrate such as deformation of the pattern in the substrate due to the outflow of the adhesive. be able to. For this reason, a microfluidic chip with good flow controllability can be produced without obstructing the flow of fluid in the flow path. Further, since the bonding surface locally generates heat due to the light absorbing material located on the bonding surface, it is possible to prevent the substrate itself from being deformed or deformed by heat and the inactivation of the biological material in the substrate.
  • FIG. 1 (a) is a plan view of a chip according to a first embodiment of the present invention
  • FIG. 1 (b) is a cross-sectional view taken along the line AA ′ of FIG. 1 (a).
  • the chip 100 includes a first thermoplastic resin substrate 10 and a second thermoplastic resin substrate 20 that are made of a thermoplastic resin, and the substrates are bonded to each other through a bonding surface 24.
  • the bonding surface 24a of the first thermoplastic resin substrate 10 and the bonding surface 24b of the second thermoplastic resin substrate 20 are bonded together.
  • thermoplastic resins examples include polyethylene terephthalate (PET), polyethylene, polypropylene, polystyrene, polycarbonate, PMMA (Poly Methyl Methacrylate), ABS (Acrylonitrile). — Butadiene— styrene), Utsuzuki, poly- / seta, polyoxymethylene, and polyamide.
  • Carbon black is dispersed in the second thermoplastic resin substrate 20 as a light absorbing agent that absorbs light. Carbon black is a graphite particle with a particle system of about 20 nm and absorbs a single laser beam.
  • the second thermoplastic resin substrate 20 is formed by patterning a thermoplastic resin kneaded with carbon black.
  • the first thermoplastic resin substrate 10 does not contain a light absorber so as to transmit light. Further, by removing a part of the main surface of the first thermoplastic resin substrate 10, the reagent storage unit 13 and the flow path 15 are formed.
  • the reagent storage unit 13 stores a reagent used for detecting a measurement target substance that is a measurement target.
  • the flow path 15 is formed with a groove formed in the first thermoplastic resin substrate 10 and a main surface of the second thermoplastic resin substrate 20 as side walls, and the substance to be measured passes therethrough.
  • the bottom of the flow path 15 at the desired position of the chip 100 The detection substance 19 for detecting the substance to be measured may be fixed.
  • the detection substance 19 and the reagent include enzymes such as peroxidase, cholesterol oxidase, and cholesterol esterase, proteins, antigens, antibodies, biological substances such as bacteria, yeast, and microorganisms, and chemical substances.
  • the measurement target substance include various kinds of glucose in blood and cholesterol.
  • FIGS. 2A and 2B are cross-sectional views showing a method for bonding the first thermoplastic resin substrate 10 and the second thermoplastic resin substrate 20 together.
  • the main surface of the first thermoplastic resin substrate 10 on which the flow path 15 is formed is opposed to the second thermoplastic resin substrate 20. That is, the bonding surface 24a of the first thermoplastic resin substrate 10 is opposed to the bonding surface 24b of the second thermoplastic resin substrate 20 (see FIG. 2 (a)).
  • a laser beam is applied from above the first thermoplastic resin substrate 10 facing the bonding surface 24 of the first and second thermoplastic resin substrates 10 and 20 (bonding surface 24a and bonding surface 24b). Irradiate toward. (See Figure 2 (b)).
  • the first thermoplastic resin substrate 10 does not contain carbon black, and the irradiated laser light passes through the first thermoplastic resin substrate 10.
  • the laser light transmitted through the first thermoplastic resin substrate 10 is bonded to the second thermoplastic resin substrate 20 and the first thermoplastic resin substrate 10 formed by kneading carbon black. To reach.
  • the laser beam is coherent light, it is possible to locally irradiate the vicinity of the bonding surface 24 that is a focal point.
  • the laser light reaching the bonding surface 24 is absorbed by the carbon black located near the bonding surface 24 in the second thermoplastic resin substrate 20 and converted into heat.
  • thermoplastic resin substrate 10 and Z or the second thermoplastic resin substrate 20 When this heat exceeds the melting point of the first thermoplastic resin substrate 10 and Z or the second thermoplastic resin substrate 20 near the bonding surface 24, the first thermoplastic resin substrate 10 and Z or the second thermoplastic resin The resin substrate 20 melts. Then, the molten thermoplastic resin is cooled and hardened, so that the first thermoplastic resin substrate 10 and the second thermoplastic resin substrate 20 are bonded together. I will.
  • FIG. 3 is a cross-sectional view showing a method of bonding substrates by partial irradiation using a mask.
  • a mask 41 for blocking the laser beam is disposed in a corresponding portion of the flow path 15 to which the detection substance 19 is fixed.
  • the detection substance 19 immobilized in the flow path 15 is not irradiated with laser light, the detection substance 19 can be prevented from being deactivated. Further, since the ⁇ portion is not irradiated with the laser beam, heat is not generated on the surface of the second thermoplastic resin substrate 20 in the ⁇ portion, and the substrate does not melt. Thereby, deformation of the flow path 15 due to melting of the substrate can be prevented, and the flow of the fluid in the flow path 15 is not hindered.
  • the detection substance 19 can be fixed on the surface of the second thermoplastic resin substrate 20 as shown in FIG.
  • FIG. 4 is an explanatory diagram showing a case where the detection substance 19 is fixed on the surface of the second thermoplastic resin substrate 20 and the fixing position of the detection substance 19 is different from that in FIG.
  • the detection substance 19 is preferably fixed to the first thermoplastic resin substrate 10 instead of the surface of the second thermoplastic resin substrate 20. This is because the surface of the second thermoplastic resin substrate 20 forming the flow path 15, that is, the bonded surface 24, generates heat due to laser light irradiation, and the detection substance 19 may be deactivated. Therefore, in FIGS.
  • the detection substance 19 is fixed to the flow path 15 in the first thermoplastic resin substrate 10.
  • the mask 41 when the mask 41 is used to irradiate laser light, heat generation on the surface of the second thermoplastic resin substrate 20 can be prevented. Therefore, deactivation of the detection substance 19 can be prevented while fixing the detection substance 19 on the surface of the second thermoplastic resin substrate 20. Therefore, there is a degree of freedom regarding the fixed position of the detection substance 19.
  • the laser light irradiated to the substrate is, for example, a laser oscillator using a semiconductor laser Is generated by
  • the type of oscillator is not limited as long as the wavelength and power can be set appropriately.
  • the wavelength of the laser beam to be irradiated depends on the light transmittance of the first thermoplastic resin substrate 10, the nature of the light absorbent in the second thermoplastic resin substrate 20, and the reagent in the reagent storage unit 13. Select according to the nature and the nature of the detection substance 19 in the flow path 15.
  • the first thermoplastic resin substrate 10 transmits laser light having a wavelength in the range of about 300 nm to 2.
  • the detection substance 19 is a biological substance composed of a polymer, it is necessary to prevent the detection substance 19 from being decomposed and deactivated by a photochemical reaction by laser light.
  • short-wavelength light such as UV light has high energy, and there is a possibility that the covalent bond of these detection substances is cut and deactivated.
  • bond dissociation energies such as C—C bond, C—N bond, and C—O bond constituting the polymer are about 300 kjZmol or more.
  • the wavelength of the laser light to be irradiated is selected from wavelengths of about 400 nm to 2.5 ⁇ m, which are suitable for various resin materials.
  • the generated heat can be localized on the bonding surface.
  • the light transmitted through the first thermoplastic resin substrate 10 is absorbed by a single bon black located in the vicinity of the bonding surface 24, whereby the bonding surface 24 locally generates heat. That is, the thermoplastic resin on the bonding surface 24 is melted by the local heat generation without applying heat to the entire first and second thermoplastic resin substrates 10 and 20, and the substrates are bonded to each other. Therefore, the whole substrate can be prevented from being deformed or deformed due to heat generation, and further, the deactivation of the detection substance 19 disposed in the flow path 15 of the first thermoplastic resin substrate 10 can be prevented. Reagents It is possible to prevent the side wall of the storage part 13 and the flow path 15 from melting and inhibiting the reaction of the detection substance 19.
  • the pattern of the reagent reservoir 13 formed in the first thermoplastic resin substrate 10 or the flow path 15 is broken by the press. It can be prevented from being deformed. In addition, the collapse and deformation of the substrate itself due to pressing can be prevented.
  • FIGS. 5A and 5B are cross-sectional views showing a method for bonding the first thermoplastic resin substrate 10 and the second thermoplastic resin substrate 20 together.
  • first thermoplastic resin substrate 10 and the second thermoplastic resin substrate 20 polyethylene terephthalate (PET) having a thickness of 1 mm, a length of 25 mm and a width of 25 mm is used.
  • PET polyethylene terephthalate
  • the second thermoplastic resin substrate 20 used was PET in which carbon black was dispersed. PET has a melting point of 245 ° C. and a tensile modulus of 421 kgfZmm 2 .
  • a flow path 15 having a width of 100 / ⁇ ⁇ and a depth of 200 / zm is formed on the main surface of the first thermoplastic resin substrate 10. Further, in order to control the flow of fluid, acetate cellulose was applied to a part of the flow path 15 by a casting method, and polystyrene was applied to another part and dried. Further, as shown in FIGS. 5 (a) and 5 (b), an antibody that reacts with a protein was immobilized on a part of the flow path 15 as a detection substance 19 on the first thermoplastic resin substrate 10. The detection substance 19 was fixed in the first thermoplastic resin substrate 10 so as to be separated from the position where the force bon black was introduced by 100 ⁇ m or more. That is, the detection substance 19 is separated from the bonding surface 24 of the first and second thermoplastic resin substrates 10 and 20 in order to protect the influence of heat generated when the substrates are bonded.
  • FIG. 5 (a) the main surface of the first thermoplastic resin substrate 10 on which the flow path 15 is formed is opposed to the second thermoplastic resin substrate 20.
  • the bonding surface 24a of the first thermoplastic resin substrate 10 and the bonding surface 24b of the second thermoplastic resin substrate 20 are opposed to each other.
  • FIG. 5 (b) the upper surface force of the first thermoplastic resin substrate 10 is also pressurized through the quartz glass 40 by 0.3 MPa, so that the first and second thermoplastic resins The fat substrates 10 and 20 were brought into close contact with each other. If excessive pressure is applied, the flow path 15 Therefore, the pressure is applied according to the strength of the substrate.
  • the first thermoplastic resin substrate 10 was irradiated with a laser beam having a wavelength of 940 ⁇ m and a power of 30 W through the quartz glass 40. Irradiation was performed with a laser spot size of 5 mm in diameter and a scanning speed of 20 mm / s. At this time, the irradiation time at a certain point was 0.25 seconds.
  • the bonding surface 24 of the first and second thermoplastic resin substrates 10 and 20 reaches the melting point 245 ° C of PET by the irradiated laser light, the bonding surface 24 is dissolved and the substrate He joined together.
  • the heat distribution is limited to a local range within 100 m from the bonding surface.
  • the irradiation time was as short as 0.25 seconds, diffusion of heat generated on the bonded surface could be prevented.
  • the detection substance 19 is fixed at a position separated from the bonding surface by 100 m or more, the detection substance 19 can be prevented from being deactivated by the heat generated on the bonding surface.
  • high flow controllability in the channel 15 could be realized by the cellulose acetate and polystyrene applied to the channel 15. This is because the flow in the flow path 15 is controlled by applying cellulose acetate, which is a hydrophilic polymer film, to one part of the flow path 15 and applying polystyrene, which is a hydrophobic polymer, to another part. You can do it.
  • FIG. 6 (a) is a plan view of a chip according to the second embodiment of the present invention
  • FIG. 6 (b) is a cross-sectional view taken along line BB ′ of FIG. 6 (a)
  • FIG. It is sectional drawing which shows the formation method of an absorption layer.
  • the chip 100 includes a first thermoplastic resin substrate 10 and a second thermoplastic resin substrate 20 that are made of a thermoplastic resin, and the substrates are bonded to each other through a bonding surface 24. .
  • the second thermoplastic resin substrate 20 has a light absorption layer 27 containing carbon black as a light absorber 23 for absorbing light.
  • the light absorption layer 27 is formed by spin-coating a solution containing, for example, carbon black over the entire surface of the second thermoplastic resin substrate 20, as shown in FIG. 6 (c).
  • the first and second thermoplastic resin substrates 10 and 20 are provided via a bonding surface 24 between the light absorbing layer 27 of the second thermoplastic resin substrate 20 and the first thermoplastic resin substrate 10. Are bonded to each other.
  • the first thermoplastic resin substrate 10 does not contain a light absorber so as to transmit light, and the reagent storage unit 13 and the flow path 15 formed by removing a part of the main surface. have.
  • the flow path 15 is formed with a groove formed in the first thermoplastic resin substrate 10 and a main surface of the second thermoplastic resin substrate 20 as side walls, through which the substance to be measured passes.
  • a detection substance 19 for detecting a substance to be measured may be fixed to the bottom of the flow path 15 at a desired position of the chip 100 as shown in FIG. 6 (a).
  • FIGS. 6 (a) to (c) the light absorption layer 27 is provided on the entire surface of the second thermoplastic resin substrate 20, but a partial light absorption layer 28 may be provided as shown below.
  • FIG. 7A is a cross-sectional view of a substrate having a partial light absorption layer 28, and FIG. 7B is a cross-sectional view showing a method for forming the partial light absorption layer 28.
  • the partial light absorption layer 28 is provided with a mask 43 at a portion
  • the first and second thermoplastic resin substrates 10 and 20 pass through the bonding surface 24 between the partial light absorption layer 28 of the second thermoplastic resin substrate 20 and the first thermoplastic resin substrate 10. Are adhered to each other.
  • the light absorption layer containing the light absorber 23 is not in contact with the wall surface of the flow path 15.
  • the detection substance 19 can be fixed to the surface of the second thermoplastic resin substrate 20 that constitutes a part of the wall surface of the flow path 15.
  • FIGS. 8A and 8B are cross-sectional views showing a method for bonding the first thermoplastic resin substrate 10 and the second thermoplastic resin substrate 20 together.
  • the laser beam that has passed through the first thermoplastic resin substrate 10 is bonded to the light absorption layer 27 of the second thermoplastic resin substrate 20 and the first thermoplastic resin substrate 10.
  • the carbon black in the light absorption layer 27 generates heat, and the first thermoplastic resin substrate 10 and the Z or second thermoplastic resin substrate 20 on the bonding surface 24 are melted and bonded to each other. .
  • bonding by partial irradiation may be performed. That is, when the substrates are bonded to each other by irradiating the laser beam, the mask 41 that blocks the laser beam is disposed in the corresponding portion of the flow path 15 to which the detection substance 19 is fixed. As a result, the light absorption layer 27 corresponding to the flow path 15 is not irradiated with laser light, so that the deformation of the flow path 15 due to melting can be prevented, and the flow of fluid in the flow path 15 is inhibited. There is no. Furthermore, since the light absorption layer 27 forming the flow path 15 does not generate heat, even when the detection substance 19 is fixed on the light absorption layer 27, deactivation can be prevented. Therefore, there is a degree of freedom regarding the fixed position of the detection substance 19.
  • the heat generating portion can be held on the substrate surface and can be made more local. Therefore, it is possible to further prevent deformation of the substrate due to heat generation of the entire substrate and deformation of patterns such as flow paths formed in the substrate.
  • the detection substance 19 disposed in the flow path 15 of the first thermoplastic resin substrate 10 can be prevented from being deactivated by heat. Furthermore, it is possible to prevent the side walls of the reagent storage unit 13 and the flow path 15 from melting due to heat generation and inhibiting the reaction of the detection substance 19.
  • the second thermoplastic resin substrate 20 as a whole contains a light absorber, it is necessary to set the time for laser light irradiation to a short time to suppress the spread of heat generation.
  • the light absorption layer 27 only on the surface of the second thermoplastic resin substrate 20, it is possible to irradiate laser light. The spread of heat generation can be suppressed without performing control by time.
  • the amount of the light absorber such as carbon black can be suppressed to a small amount.
  • the following effects can be obtained as in the first embodiment.
  • the bonding method of the second embodiment the deformation of the pattern in the substrate due to the outflow of the adhesive and the flow of the fluid in the flow path 15 are not hindered.
  • it is not necessary to strongly press the substrates together at the time of bonding it is possible to prevent a turn in the substrates due to the pressing, or a collapse and deformation of the substrate itself.
  • FIG. 9A is a plan view of a chip according to a third embodiment of the present invention
  • FIG. 9B is a cross-sectional view taken along the line CC ′ of FIG. 9A.
  • a light absorbing substrate 29 is sandwiched between a first thermoplastic resin substrate 10 and a second thermoplastic resin substrate 20 which are made of thermoplastic resin.
  • a thermoplastic elastomer containing carbon black as the light absorbing agent 23 is used as the light absorbing substrate 29 .
  • the thermoplastic elastomer include polymer materials such as styrene, olefin, vinyl chloride, urethane, ester, and amide.
  • the first and second first thermoplastic resin substrates 10, 20 do not contain a light absorber so as to transmit light. Further, the first thermoplastic resin substrate 10 is formed with a reagent storage unit 13 and a flow path 15 by removing a part of the main surface. Further, the flow path 15 is formed with the grooves formed in the first thermoplastic resin substrate 10 and the main surface of the light absorption substrate 29 as side walls, and the substance to be measured passes therethrough.
  • a detection substance 19 for detecting a measurement target substance may be fixed to the bottom of the flow path 15 at a desired position of the chip 100 as shown in FIG. 9 (a). Examples of the detection substance 19 and the reagent include enzymes such as peroxidase, cholesterol oxidase and cholesterol esterase, proteins, antigens, antibodies, biological substances such as bacteria, yeasts and microorganisms, and chemical substances.
  • FIGS. 10 (a) to 10 (d) are cross-sectional views showing a method for bonding the first thermoplastic resin substrate 10 and the second thermoplastic resin substrate 20 with the light absorbing substrate 29 interposed therebetween.
  • the second thermoplastic resin substrate 20 and the light absorption substrate 29 are opposed to each other.
  • an adhesive 21 is applied to the opposite surface (see FIG. 10 (a)).
  • the second thermoplastic resin substrate 20 and the light absorption substrate 29 are attached by pressing with the horn 45 from the upper side of the light absorption substrate 29 (see FIG. 10B).
  • the main surface of the first thermoplastic resin substrate 10 on which the flow path 15 is formed is opposed to the light absorption substrate 29.
  • the bonding surface 24a of the first thermoplastic resin substrate 10 and the bonding surface 24b of the light absorption substrate 29 are opposed to each other (see FIG. 10 (c)).
  • laser light is directed from the upper part of the first thermoplastic resin substrate 10 toward the bonding surfaces 24 (bonding surface 24a and bonding surface 24b) of the first and second thermoplastic resin substrates 10 and the light absorption substrate 29. Irradiate. (See Figure 10 (d)).
  • the first thermoplastic resin substrate 10 does not contain carbon black, and the irradiated laser light is transmitted to the first thermoplastic resin substrate 10. Further, the laser light transmitted through the first thermoplastic resin substrate 10 reaches the bonding surface 24 between the light absorbing substrate 29 containing carbon black and the first thermoplastic resin substrate 10. As a result, the carbon black in the light absorption substrate 29 generates heat, and the first thermoplastic resin substrate 10 and Z or the light absorption substrate 29 on the bonding surface 24 are melted and bonded together.
  • the light absorbing substrate 29 described above is not limited to a thermoplastic elastomer, and may be, for example, a thermoplastic resin made of the same material as the substrate.
  • the light absorbing substrate 29 is formed of a thermoplastic elastomer, water tightness can be improved. This is because the thermoplastic elastomer has the properties of rubber elasticity as well as thermoplasticity, so that the adhesion between the first and second thermoplastic resin substrates 10 and 20 can be enhanced. In particular, even when the chip area is large, water tightness can be maintained.
  • the following effects can be obtained as in the first embodiment.
  • the deformation of the pattern in the substrate due to the outflow of the adhesive and the flow of the fluid in the flow path 15 are not hindered.
  • the pattern inside the substrate and the substrate itself due to pressing can be prevented from being deformed or deformed. Togashi.
  • FIG. 11 (a) is a plan view of a chip 100 according to a fourth embodiment of the present invention
  • FIG. 11 (b) is a cross-sectional view taken along the line EE ′ of FIG. 11 (a).
  • a light absorbing substrate 29 is sandwiched between the first thermoplastic resin substrate 10 and the second thermoplastic resin substrate 20.
  • the first thermoplastic resin substrate 10 and the second thermoplastic resin substrate 20 are made of a thermoplastic resin.
  • the light absorbing substrate 29 is a thermoplastic elastomer containing carbon black as the light absorbing agent 23.
  • thermoplastic resin substrate 10 On the main surface of the first thermoplastic resin substrate 10, a first opening 80a, a second opening 80b, a first flow path 70 connecting the first opening 80a and the second opening 80b, and A second flow path 75 connecting the second opening 80b and the outside of the chip 100 is provided.
  • the second thermoplastic resin substrate 20 is provided with a third flow path 90 to which pressure is applied to the outside or the inside of the chip 100. As shown in FIG.1Kb), the portion where the third flow path 90 opens in the main surface of the second thermoplastic resin substrate 20 corresponds to the first flow path 70 of the first thermoplastic resin substrate 10. .
  • the chip 100 is formed as follows by irradiation with laser light.
  • the first thermoplastic resin substrate 10 does not contain carbon black, and the irradiated laser light is transmitted through the first thermoplastic resin substrate 10.
  • the laser light transmitted through the first thermoplastic resin substrate 10 reaches the bonding surface 24 between the light absorbing substrate 29 containing carbon black and the first thermoplastic resin substrate 10.
  • the carbon black in the light absorption substrate 29 generates heat, and the first thermoplastic resin substrate 10 and Z or the light absorption substrate 29 on the bonding surface 24 are melted and bonded together. Therefore, it is possible to prevent pattern collapse and the like of the first and second openings 80a and 80b, the first, second and third flow paths 70, 75 and 90.
  • the light absorption substrate 29 has the property of rubber elasticity as well as thermoplasticity, it is possible to improve the adhesion of the first and second thermoplastic resin substrates 10 and 20 and to improve the water tightness and the air tightness.
  • FIG. 12 (a) and 12 (b) are explanatory diagrams for explaining the movement of the chip 100 to which pressure is applied from the outside to the inside of the chip 100
  • FIG. 12 (c) is a diagram from the inside of the chip 100 to the outside.
  • FIG. 6 is an explanatory diagram for explaining the movement of the chip 100 to which pressure is applied.
  • the chip 100 external force is also applied to the third flow path 90
  • the second thermoplastic resin group in the third flow path 90 is applied.
  • the light absorbing substrate 29 in the opening portion in the main surface of the plate 20 receives pressure. At this time, the light absorption substrate 29 extends so that the passage of the first flow path 70 connecting the first opening 80a and the second opening 80b becomes narrow.
  • the fluid in the first and second openings 80a and 80b is led out of the chip 100 through the second flow path 75 (see FIG. 12 (a)).
  • the chip 100 external force also applies an internal pressure to the third flow path 90
  • the light absorption substrate 29 expands so as to block the first flow path 70. Therefore, the fluid flow between the first opening 80a and the second opening 80b stops (see FIG. 12 (b)).
  • the light-absorbing substrate 29 becomes the second thermoplastic resin substrate 20 Stretch so that it is pulled in the direction. Therefore, for example, the fluid is taken into the chip 100 through the second flow path 75.
  • the light-absorbing substrate 29 having rubber elasticity can be used as a valve or a pump for opening and closing the first opening 80a and the second opening 80b.
  • the light absorbing agent near the bonding surfaces of the substrates is irradiated with light, so that the bonding surfaces of both substrates are melted almost simultaneously and the substrates are bonded to each other. Easy.
  • the power of using carbon black as a light absorber and other color pigments may be used.
  • a dye having a different color for each substance to be measured so that the measurer can easily confirm the chip used for the measurement. For example, when measuring various substances to be measured, such as glucose or cholesterol, it is possible to prevent the chip from being mixed up.
  • the reagent reservoir 13 formed in the substrate 13 has a flow path 15 depending on the nature of the fluid passing through the interior, the nature of the stored reagent, the nature of the detection substance 19 to be fixed, and the like.
  • a polymer film may be disposed on the surface.
  • blood having a viscosity of about 4 to 15 is used as a substance to be measured, and the viscosity of a reagent or the like inside the chip is 1.
  • the viscosity is Fluid control is difficult when mixing, reacting, and detecting very different solutions in a single chip.
  • a highly viscous solution or a solution with a large surface tension may cause the solution to stagnate due to its viscosity, or the solution to be repelled by the surface tension and difficult to flow.
  • a solution having a low viscosity flows through the flow path 15 without receiving resistance.
  • the surface of one part such as a flow path is subjected to a hydrophilic treatment, and the surface of another part is subjected to a hydrophobic treatment to control the fluid in the flow path.
  • hydrophilic polymer film examples include acetic acid cellulose, polybulal alcohol (PVA), polybulurpyrrolidone (PVP), and the like.
  • hydrophobic polymer examples include polystyrene (PS), polyethylene (PE), Teflon (registered trademark), silicon and the like.
  • the detection substance is fixed at a distance of 100 m or more from the introduction position of the light absorption substance.
  • the light absorbing material generates heat by absorbing the irradiated light.
  • the bonding surface of the first and second thermoplastic resin substrates 10 and 20 can be irradiated with light.
  • the bonding surface can be irradiated with light.
  • both the substrates to be bonded are formed of thermoplastic resin, but at least one of them may be thermoplastic resin.
  • one may be a thermoplastic resin substrate and the other may be a metal, glass, or the like.
  • the flow path 15 is formed in the first thermoplastic resin substrate 10 in the above, the flow path may be formed in the second thermoplastic resin substrate 20. Further, the flow path 15 is formed by combining the groove formed in the first thermoplastic resin substrate 10 and the groove formed in the second thermoplastic resin substrate 20. It may be formed.
  • the second thermoplastic resin substrate 20 of the first embodiment is formed by kneading carbon black, but the carbon black content of the second thermoplastic resin substrate 20 is 0.01 volume% or more. And 0.025% by volume or less is preferable.
  • a solution such as blood or a reagent, which is a sample, is introduced into the flow path 15 or the like in FIG. 2, and a biochemical reaction is performed.
  • a part of the flow path 15 is formed by the second thermoplastic resin substrate 20, and the solution introduced into the flow path 15 and the second thermoplastic resin substrate 20 are in contact with each other.
  • carbon black as a light-absorbing substance is excessively contained in the second thermoplastic resin substrate 20, the carbon black is eluted from the second thermoplastic resin substrate 20 into the solution in the channel 15. Resulting in.
  • the content of carbon black is in the range of 0.05% by volume or more and 0.1% by volume or less, but in this range, the carbon black with a large content is the second thermoplastic resin substrate 20 Elutes into the solution in the flow path 15. Therefore, the eluted carbon black may interfere with the biochemical reaction in the channel 15.
  • a spectroscopic method such as irradiating light to the flow path 15 into which the solution has been introduced and measuring the intensity of transmitted light, the intensity of transmitted light, the intensity of scattered light, etc.
  • Carbon black works as an inhibitor, such as absorbing transmitted light. Therefore, the sample cannot be accurately quantified such as quantification of the product produced by biochemical reaction or the like.
  • the content of carbon black in the second thermoplastic resin substrate 20 is small, the light absorption is not sufficiently performed and the substrates are not sufficiently bonded to each other.
  • the content of carbon black as a pigment is small, color unevenness occurs on the substrate, which also causes insufficient bonding of the substrates.
  • FIG. 13 shows the experimental results indicating the light absorption characteristics of each manufactured substrate when the carbon black content and the substrate manufacturing method were changed.
  • the content 0.0125% by volume of carbon black formed by injection molding, 0.01 6 vol 0 /. , 0.025 volume 0/0, and the substrate 0.05% by volume were prepared and content 0.05 vol% of the substrate car carbon black formed by extrusion molding. After these substrates were immersed in pure water, the degree of carbon black elution was detected with an ultraviolet spectrometer. . Since carbon black specifically absorbs light with a wavelength of around 270 nm, it can be confirmed that there is a strong bon black. As shown in FIG.
  • the carbon black content in the second thermoplastic resin substrate 20 is set to 0.025 vol% or less as in the present invention, the dissolution of carbon black into the solution can be suppressed. Therefore, the biochemical reaction can be normally performed in the solution in the flow path 15, and the sample or the like can be accurately quantified.
  • the carbon black content is 0.01 volume% or more, sufficient bonding strength between the substrates can be secured without causing color unevenness on the substrates. Since injection molding is a simple manufacturing method generally used for substrate molding, it is suitable for injection molding in the case of the above-mentioned content. Excellent cost. Thus, by making the content of carbon black in the above-mentioned range, it can be used efficiently while utilizing the characteristics of carbon black.
  • the content of carbon black as described above is the same as that of the light absorption layer 27 and the partial light absorption layer 28 including the carbon black of the second embodiment, and the third and fourth embodiments. It can also be applied to the light absorption substrate 29 and the like.
  • the first thermoplastic resin substrate 10 in order to prevent lifting between the first thermoplastic resin substrate 10 and the second thermoplastic resin substrate 20, as shown in FIG.
  • the first thermoplastic resin substrate 10 is uniformly pressed through the quartz glass 40 having excellent rigidity.
  • a transparent plate having an uneven surface is preferably interposed between the first thermoplastic resin substrate 10 and the quartz glass 40.
  • the first thermoplastic resin substrate 10 is a resin, it is formed so as to be relatively rougher than the quartz glass 40 so that its surface has irregularities.
  • the surface of the quartz glass 40 is flat and smooth. Therefore, when the first thermoplastic resin substrate 10 and the quartz glass 40 are brought into contact with each other, the unevenness of the first thermoplastic resin substrate 10 plays the role of a suction cup.
  • the quartz glass 40 is adsorbed on the first thermoplastic resin substrate 10. Once the vacuum state is adsorbed, the quartz glass 40 cannot be removed from the first thermoplastic resin substrate force, and the chip cannot be taken out of the pressurizing device.
  • the quartz glass 40 is pulled with a strong force and peeled off from the first thermoplastic resin substrate 10, the adhesion between the first thermoplastic resin substrate 10 and the second thermoplastic resin substrate 20 will be peeled off.
  • the surface of the first thermoplastic resin substrate 10 when the first thermoplastic resin substrate 10 is subjected to a solvent treatment for surface modification such as surface coating, cleaning, or other sterilization. are formed so as to have elasticity, and the above-mentioned problems become remarkable.
  • FIG. 14 is an explanatory diagram showing a manufacturing process in the case where a transparent plate having an uneven surface is interposed between the first thermoplastic resin substrate 10 and the quartz glass 40.
  • a transparent plate 50 having an uneven surface is interposed between the first thermoplastic resin substrate 10 and the quartz glass 40, so that the first thermoplastic resin substrate 10 and the uneven surface are disposed. Adsorption with the transparent plate 50 can be prevented. This is because the surface of the transparent plate 50 is rough and uneven, and the surface of the first thermoplastic resin substrate 10 that is in contact with the transparent plate 50 is also rough. This is because no occurs. Thereby, adsorption of the first thermoplastic resin substrate 10 and the quartz glass 40 can be prevented.
  • the transparent plate 50 having a concavo-convex surface for example, PMMA, APO (amorphous polyolefin), polycarbonate, poly-4-methylpentene 1, etc. can be used.
  • these materials which are not in the thick transparent plate 50, may be used after being processed into a sheet-like thin film such as transparent polyamide (nylon).
  • the quartz glass 40 having high rigidity In order to apply pressure uniformly to the bonding surfaces of the substrates at the time of pressing, it is optimal to combine the quartz glass 40 having high rigidity with the transparent plate 50 having minute irregularities.
  • the minute unevenness means, for example, an unevenness of about 0.1 m to about 1.0 m or more.
  • a transparent resin plate having high rigidity may be used instead of the combination of the quartz glass 40 and the transparent plate 50.
  • the same effect can be obtained even if quartz glass 40 in which a transparent resin film such as fluorine resin or silicon resin is coated on the contact surface side with the first thermoplastic resin substrate 10 is used. it can.
  • the transparent plate 50 having irregularities is arranged on the side in contact with the first thermoplastic resin substrate 10, but the contact surface between the second thermoplastic resin substrate 20 and the pressure device is arranged.
  • the transparent plate 50 may be provided, or may be provided on both.
  • the combination of the unevenness of the transparent plate 50 and the unevenness of the first thermoplastic resin substrate 10 is such that the transparent plate 50 and the first thermoplastic resin substrate 10 do not adsorb each other. If it is a combination, it is not limited! ,.
  • thermoplastic resin substrate bonded using the present invention can prevent the substrate from being deformed or deformed by heat. Therefore, in order to measure biological materials and chemical substances such as DNA, enzymes, proteins, antigens, retreats, viruses and cells, biochips and microchemical chips etc. in which flow passages and reagent storage parts are formed inside the substrate Applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Measuring Cells (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

 本発明は、基板を損傷することなく基板を貼り合わせることができる貼り合わせ方法を提供することを目的とする。第1基板10と第2基板20との貼り合わせ方法であって、前記第1基板10及び前記第2基板20の少なくとも一方の主体を、光を透過する光透過性材質で形成するステップと、前記第1基板10及び前記第2基板20の貼り合わせ面のうち少なくとも一部を、光を吸収する光吸収剤23を含む熱可塑性樹脂で形成するステップと、前記光を透過する基板を介して前記貼り合わせ面の光吸収剤23に光を照射することにより、前記第1基板10と前記第2基板20とを貼り合わせるステップとを含む貼り合わせ方法を提供する。                                                                                 

Description

明 細 書
基板の貼り合わせ方法、チップ形成方法及びチップ
技術分野
[0001] 本発明は、基板の貼り合わせ方法及びチップ形成方法及びチップに関するもので ある。
背景技術
[0002] 近年、医療、健康、食品及び製薬などの分野にお!、て、 DNA (Deoxyribo Nucleic Add)、酵素、蛋白質、抗原、抗体、ウィルス及び細胞等の生体物質及び化学物質を 検知、検出及び定量する重要性が増力!]している。そして、それらを簡便に測定可能 な様々なバイオチップ及びマイクロ化学チップなどが提案されて 、る。これらのチップ は、数百/ z mの幅を持つ流路の中に微量な試料や検体を流し込むことで短時間に 反応を終了させることができる特徴がある。これらのチップの作成は 2枚の基板を貼り 合わせることにより行われており、この基板同士を貼り合わせる技術が特に重要であ る。基板の張り合わせには、例えばホットメルト型接着剤や UV (Ultra Violet)接着剤 などの接着剤が用いられて 、る。
[0003] ホットメルト型接着剤は、エチレン酢酸ビニル共重合体(EVA: Ethylene Vinyl Acet ate)を主成分とする線状高分子の共重合体である。 EVAは、 80° 〜: L 10° で軟ィ匕 し、 160° 〜180° で接着可能な流動性を持つ。よって、 180° 程度で加熱溶融し たホットメルト型接着剤を基板の貼り合わせ面に塗布し、冷却することで基板同士を 接着可能である。
[0004] UV接着剤は、光重合開始剤、アクリルオリゴマー及びアクリルモノマーなどを含み 、UV光の照射により UV接着剤を構成するポリマー同士がラジカル重合する接着剤 である。 2枚の基板の貼り合わせ面に UV接着剤を塗布し、 40° 〜80° 〖こ加熱しつ つ基板外部から波長 150ηπ!〜 410nmの UV光を照射する。このとき、光重合開始 剤から発生するラジカルによりアクリルオリゴマーとアクリルモノマーとが重合してポリ マーを形成することで基板同士の接着が行われる。
[0005] また、第 1基板と第 2基板を対向させて超音波をかけながら押圧することで、基板同 士を貼り合わせる超音波溶着も検討されて!ヽる。
[0006] しかし、ホットメルト型接着剤や UV接着剤などの接着剤を使用する場合は、溶融し た接着剤が流路ゃ試薬貯蔵部などに流れ込むことによってパターン崩れが発生し、 流路内の流体の流れが阻害される。また、流路に流れこんだ接着剤によって生体物 質や化学物質の反応が妨げられる。特に、ホットメルト型接着剤を用いる方法では、 1 60° 〜180° 程度に加熱した接着剤を使用するため、接着剤が塗布された基板全 体が高温になる。よって、基板に形成された流路ゃ試薬貯蔵部などのパターン崩れ 力生じる。さらに、流路ゃ試薬貯蔵部などに生体物質や化学物質が固定されている 場合には、基板が高温になることによりそれらが失活してしまう。また、超音波溶着を 用いる方法では、第 1基板及び第 2基板の押圧により基板内の流路等ゃ基板自体に 歪みや崩れが生じる場合がある。
発明の開示
[0007] そこで、本発明は、基板を損傷することなく基板を貼り合わせることができる貼り合 わせ方法を提供することを目的とする。
[0008] 本願第 1発明は、上記の課題を解決するために、第 1基板と第 2基板との貼り合わ せ方法であって、前記第 1基板及び前記第 2基板の少なくとも一方の主体を、光を透 過する光透過性材質で形成するステップと、前記第 1基板及び前記第 2基板の貼り 合わせ面のうち少なくとも一部を、光を吸収する光吸収物質を含む熱可塑性榭脂で 形成するステップと、前記光を透過する基板を介して前記貼り合わせ面の光吸収物 質に光を照射することにより、前記第 1基板と前記第 2基板とを貼り合わせるステップ とを含む貼り合わせ方法を提供する。
[0009] 例えば、第 1基板が光を透過する光透過性材質で形成されて!、る場合、第 1基板と 第 2基板とを接触させて第 1基板の上部力ゝら光を照射する。この光は、第 1基板を透 過して第 1基板と第 2基板との貼り合わせ面の少なくとも一部に形成された光吸収物 質に到達する。そして、光吸収物質が光を吸収することで光吸収物質を含む熱可塑 性榭脂が加熱され溶融する。溶融した熱可塑性榭脂が冷却されて硬化することによ り、第 1基板と第 2基板が貼り合わされる。
[0010] この貼り合わせ方法によれば、基板の貼り合わせに接着剤を用いる必要がない。よ つて、接着剤の流出によって基板内のパターンに変形が生じるなどの基板の損傷や 、流路内の流体の流れが阻害されるのを防止することができる。
[0011] また、基板を透過した光が貼り合わせ面に位置する光吸収物質により吸収されるこ とで、貼り合わせ面が局所的に発熱する。つまり、第 1基板と第 2基板全体に熱を加 えることなぐ局所的な発熱により貼り合わせ面の熱可塑性榭脂が溶融して基板同士 を接着する。よって、熱による基板全体の崩れや変形を防止することができる。また、 貼り合わせの際に既に生体物質などの検知物質が基板内に配置されている場合に おいても、基板全体が発熱することにより検知物質が失活するのを防止することがで きる。さらに、基板内の流路等の側壁が溶融して検知物質の反応を阻害することを防 止することちでさる。
[0012] また、貼り合わせの際に基板同士を強く押圧する必要がないため、基板内に形成さ れた試薬貯蔵部ゃ流路などのパターンが強い押圧により崩れたり変形したりするのを 防ぐことができる。また、強い押圧による基板自体の崩れや変形も防止することができ る。
[0013] 本願第 2発明は、第 1発明において、前記第 1基板及び Zまたは第 2基板には測定 対象物質を検知する検知物質が配置されており、前記光の波長は 400nmから 2. 5 μ mの範囲である貼り合わせ方法を提供する。
[0014] 測定対象物質としては、例えば血液中のグルコースやコレステロールなど種々挙げ られる。また、検知物質は測定対象物質と反応する物質であり、例えば酵素、蛋白質 、抗原、抗体、細菌、酵母、微生物等の生体物質及び化学物質等が用いられる。ここ で、 UV光などの短波長の光はエネルギーが高いため、これらの検知物質の共有結 合を切って失活させるおそれがある。一方、 400nm力 2. 5 μ mの範囲の波長の光 のエネルギーは検知物質の結合解離エネルギー以下であるため、検知物質の失活 を防ぐことができる。
[0015] 本願第 3発明は、第 1発明において、前記第 1基板及び Zまたは前記第 2基板は固 定された検知物質の固定場所、または前記第 1基板及び Zまたは第 2基板に形成さ れたパターンの形成場所に対応する部分に前記光を遮断するマスクを配置し、前記 マスクの上部力 前記貼り合わせ面の光吸収物質に光を照射する貼り合わせ方法を 提供する。
[0016] 検知物質や基板内のパターンに対応して配置されたマスクの上部から光を照射す ることで、検知物質ゃ流路などのパターンへの光の照射を防ぐことができる。よって、 発熱による検知物質の失活ゃ流路などの変形を防ぐことができる。
[0017] 本願第 4発明は、第 3発明において、前記第 1基板及び前記第 2基板は熱可塑性 榭脂基板であり、前記第 1基板及び前記第 2基板の融点は概ね同一である貼り合わ せ方法を提供する。
[0018] 例えば両基板のうち第 1基板を光透過性材質の熱可塑性榭脂基板で形成する。ま た、第 2基板を、第 1基板との貼り合わせ面に光吸収物質が含まれる熱可塑性榭脂 基板で形成する。このとき、第 1基板と第 2基板の融点が概ね同一の熱可塑性榭脂 基板で形成すると、光吸収物質に光が照射されることで第 1基板と第 2基板の貼り合 わせ面がほぼ同時に溶融し基板同士が接着し易い。
[0019] 本願第 5発明は、第 1基板と第 2基板とを貼り合わせることにより形成されるチップの 形成方法であって、前記第 1基板及び前記第 2基板の少なくとも一方の主体を、光を 透過する光透過性材質で形成するステップと、前記第 1基板及び前記第 2基板の貼 り合わせ面のうち少なくとも一部を、光を吸収する光吸収物質を含む熱可塑性榭脂 で形成するステップと、前記第 1基板及び Zまたは前記第 2基板の主面に流路を形 成するステップと、前記流路を覆うように前記第 1基板と前記第 2基板とを対向させ、 前記光を透過する基板を介して前記貼り合わせ面の光吸収物質に光を照射すること により、前記第 1基板と前記第 2基板とを貼り合わせるステップと、を含むチップの形 成方法を提供する。
[0020] このチップの形成方法は、本願第 1発明と同様の作用効果を奏する。
[0021] 本願第 6発明は、第 5発明において、前記光吸収物質としてはカーボンブラックを 用い、前記カーボンブラックを含有する層におけるカーボンブラックの含有量を 0. 01 体積%以上、 0. 025体積%以下とするチップの形成方法を提供する。
[0022] カーボンブラックの含有量を 0. 01体積%以上、 0. 025体積%以下とすることで、 カーボンブラックの溶液への溶出を抑制することができる。よって、チップ内に形成さ れた流路内の溶液中において生化学反応を正常に行わせることができ、また試料等 を正確に定量することができる。また、この範囲の含有量であれば、基板に色むらを 発生させることなぐ基板同士の貼り合わせ強度を十分に確保できる。このように、力 一ボンブラックの含有量を前述の範囲とすることで、カーボンブラックの特性を活かし つつ、効率良く利用することができる。
[0023] 本願第 7発明は、第 6発明において、前記カーボンブラックを含有する層は、射出 成形により形成されるチップの形成方法を提供する。
[0024] 射出成形は基板の成形に一般的に用いられる簡単な製造方法であるため、前述 の含有量の場合に射出成形に適していることは、カーボンブラックを含有する基板の 生産性や生産コスト面に優れる。
[0025] 本願第 8発明は、第 5発明において、前記第 1基板と前記第 2基板とを貼り合わせる ステップでは、前記第 1基板及び前記第 2基板の少なくともいずれかにおける、前記 貼り合わせ面と異なる主面が、凹凸の表面を有する透明板を介して透明ガラス板力 加圧を受けることにより、前記第 1基板と前記第 2基板とが貼り合わせされるチップの 形成方法を提供する。
[0026] 前述のように、第 1基板及び Z又は第 2基板と透明ガラス板との間に、凹凸表面を 有する透明板を介在させることで、第 1基板及び Z又は第 2基板と透明ガラス板との 吸着を防ぐことができる。
[0027] 本願第 9発明は、第 8発明において、前記透明板と接する前記貼り合わせ面と異な る主面が、溶剤処理されて!ヽるチップの形成方法を提供する。
[0028] 表面改質ゃ表面コートなどの表面処理、その他洗浄や殺菌のために溶剤処理が 行われる。溶剤処理を施した場合には、前述の貼り合わせ面と異なる主面が弾性を 有するように処理される場合がある。第 1基板及び Z又は第 2基板と透明ガラス板と の間に、凹凸表面を有する透明板を介在させることで、これらの吸着を防ぐことができ る。
[0029] 本願第 10発明は、第 5発明において、前記第 1基板と前記第 2基板とを貼り合わせ るステップでは、前記第 1基板及び前記第 2基板の少なくともいずれかにおける、前 記貼り合わせ面と異なる主面が、透明ガラス板から加圧を受けることにより、前記第 1 基板と前記第 2基板とが貼り合わされており、前記貼り合わせ面と異なる主面と接す る前記透明ガラス板の主面に、透明榭脂膜が形成されているチップの形成方法を提 供する。本発明の透明榭脂膜を用いれば、第 8発明と同様の効果を得ることができる
[0030] 本願第 11発明は、第 10発明において、前記透明ガラス板の透明榭脂膜と接する 前記貼り合わせ面と異なる主面が、溶剤処理されて!ヽるチップの形成方法を提供す る。本発明の構成を用いれば、第 9発明と同様の効果を得ることができる。
[0031] 本願第 12発明は、熱可塑性榭脂で形成される第 1基板と、前記第 1基板と対向し て貼り合わされている第 2基板と、前記第 1基板及び Zまたは前記第 2基板の主面に 形成されている流路とを含み、前記第 1基板及び前記第 2基板の少なくとも一方の主 体が光を透過する光透過性材質であり、前記第 1基板及び前記第 2基板の貼り合わ せ面のうち少なくとも一部を、光を吸収する光吸収物質を含み、前記流路を覆うよう に対向している前記第 1基板又は第 2基板の貼り合わせ面が、前記光を透過する基 板を介して前記貼り合わせ面の光吸収物質に光を照射することにより貼り合わされて いるチップを提供する。
[0032] このように形成されたチップは、本願第 1発明と同様の作用効果を奏する。
[0033] 本願第 13発明は、第 12発明において、前記流路に測定対象物質を検知する検知 物質が固定されているチップを提供する。
[0034] 測定対象物質としては、例えば血液中のグルコースやコレステロールなど種々挙げ られる。また、検知物質は測定対象物質と反応する物質であり、例えば酵素、蛋白質 、抗原、抗体、細菌、酵母、微生物等の生体物質及び化学物質等が用いられる。流 路に検知物質を固定することで、流路を通過した溶液中から検知物質と反応する測 定対象物質を検出することができる。
[0035] ここで、本願の貼り合わせ方法によれば、光吸収物質を含む貼り合わせ面を局所 的に発熱させて基板同士を接着するため、チップ形成時に基板全体に熱が加わらな い。よって、流路に固定された検知物質の失活を防ぐことができる。
[0036] 本願第 14発明は、第 13発明において、前記検知物質は前記光吸収物質の導入 位置から 100 m以上離隔して固定されている、チップを提供する。
[0037] 光吸収物質は、照射された光を吸収して発熱する。この光吸収物質力 所定の距 離分だけ離隔して検知物質を配置することで、基板貼り合わせ時の発熱による検知 物質の失活を防ぐことができる。
[0038] 本願第 15発明は、第 12発明において、前記光吸吸収物質は色素であるチップを 提供する。
[0039] 色素としては、例えばカーボンブラックなどが挙げられる。
[0040] 本願第 16発明は、第 12発明において、前記光吸吸収物質は、測定対象物質ごと に異なる色を有する色素であるチップを提供する。
[0041] 測定対象物質は、例えばグルコースやコレステロールなど種々挙げられる。よって、 測定対象物質ごとに異なる色を有する色素を用いることで、測定者は測定に用いる チップを容易に確認することができる。よって、測定時のチップの取り違えを防止する ことができる。
[0042] 本願第 17発明は、第 12発明において、前記光吸収物質としてはカーボンブラック を用い、前記カーボンブラックを含有する層におけるカーボンブラック含有量を 0. 01 体積%以上、 0. 025体積%以下とするチップを提供する。
[0043] カーボンブラックの含有量を 0. 01体積%以上、 0. 025体積%以下とすることで、 カーボンブラックの溶液への溶出を抑制することができる。よって、チップ内に形成さ れた流路内の溶液中において生化学反応を正常に行わせることができ、また試料等 を正確に定量することができる。また、この範囲の含有量であれば、基板に色むらを 発生させることなぐ基板同士の貼り合わせ強度を十分に確保できる。このように、力 一ボンブラックの含有量を前述の範囲とすることで、カーボンブラックの特性を活かし つつ、効率良く利用することができる。
[0044] 本願第 18発明は、第 17発明において、前記カーボンブラックを含有する層は、射 出成形により形成されて ヽるチップを提供する。
[0045] 射出成形は基板の成形に一般的に用いられる簡単な製造方法であるため、前述 の含有量の場合に射出成形に適していることは、カーボンブラックを含有する基板の 生産性や生産コスト面に優れる。
[0046] 本発明によると、基板の貼り合わせに接着剤を用いる必要がない。よって、接着剤 の流出による基板内のパターンに変形が生じるなど基板の損傷が無ぐ流路内の流 体の流れが阻害されることがない。
図面の簡単な説明
[図 l] (a) 本発明の第 1実施形態例に係るチップの平面図。(b) 図 1 (a)の A— A, 線における断面図。
[図 2] (a) 第 1熱可塑性榭脂基板 10及び第 2熱可塑性榭脂基板 20の貼り合わせ方 法を示す断面図(1)。 (b) 第 1熱可塑性榭脂基板 10及び第 2熱可塑性榭脂基板 2 0の貼り合わせ方法を示す断面図(2)。
[図 3]マスクを用いた部分照射による基板の張り合わせ方法を示す断面図。
[図 4]第 2熱可塑性榭脂基板の表面に検知物質が固定化されているチップの断面図
[図 5] (a) 本発明の第 1実施例に係るチップの貼り合わせ方法を示す断面図(1)。 ( b) 本発明の第 1実施例に係るチップの貼り合わせ方法を示す断面図(2)。
[図 6] (a) 本発明の第 2実施形態例に係るチップの平面図。(b) 図 6 (a)の B— B, 線における断面図。 (c) 光吸収層の形成方法を示す断面図。
[図 7] (a) 部分的な光吸収層を有する基板の断面図。(b) 部分的な光吸収層 28の 形成方法を示す断面図。
[図 8] (a) 本発明の第 2実施形態例に係るチップの貼り合わせ方法を示す断面図(1 )。(b) 本発明の第 2実施形態例に係るチップの貼り合わせ方法を示す断面図(2)
[図 9] (a) 本発明の第 3実施形態例に係るチップの平面図。(b) 図 9 (a)の C C, 線における断面図。
[図 10] (a) 図 9に示すバイオチップ 180の貼り合わせ方法を示す断面図(1)。 (b) 図 9に示すバイオチップ 180の貼り合わせ方法を示す断面図(2)。 (c) 図 9に示す ノィォチップ 180の貼り合わせ方法を示す断面図(3)。 (d) 図 9に示すバイオチッ プ 180の貼り合わせ方法を示す断面図 (4)。
[図 l l] (a) 本発明の第 4実施形態例に係るチップ 100の平面図。(b) 図 11 (a)の E— E'線における断面図。
[図 12] (a) チップ 100外部から内部への圧力が印加されるチップ 100の動きを説明 する説明図(1)。 (b) チップ 100外部から内部への圧力が印加されるチップ 100の 動きを説明する説明図(2)。 (c) チップ 100内部力も外部への圧力が印加されるチ ップ 100の動きを説明する説明図。
[図 13]カーボンブラックの含有量及び基板の製造方法を変えた場合において、製造 されたそれぞれの基板での光の吸収特性を示す実験結果。
[図 14]第 1熱可塑性榭脂基板 10と石英ガラス 40との間に、凹凸表面を有する透明板 を介在させた場合の製造工程を示す説明図。
符号の説明
[0048] 10:第 1熱可塑性榭脂基板
15 :流路
19 :検知物質
20 :第 2熱可塑性榭脂基板
23 :光吸収剤
27 :光吸収層
28 :部分的な光吸収層
29 :光吸収基板
発明を実施するための最良の形態
[0049] <発明の概要 >
第 1基板及び第 2基板を貼り合わせることにより形成されるマイクロ流体チップにお いて、第 1基板及び第 2基板の少なくとも一方の主体を、光を透過する光透過性材質 で形成する。また、第 1基板及び第 2基板の貼り合わせ面のうち少なくとも一部を、光 を吸収する光吸収物質を含む熱可塑性榭脂で形成する。ここで、光を透過する基板 の上部から光を照射すると、光は前記貼り合わせ面の光吸収物質に到達する。この 光吸収物質が光を吸収することで、光吸収物質を含む熱可塑性榭脂が加熱され溶 融する。そして、溶融した熱可塑性榭脂が冷却されて硬化することにより、第 1及び第 2基板が貼り合わされる。
[0050] 以上のようなマイクロ流体チップは、その貼り合わせに接着剤を用いないため、接 着剤の流出によって基板内のパターンに変形が生じるなどの基板の損傷を抑制する ことができる。そのため、流路内の流体の流れが阻害されることが無ぐ流れ制御性 の良いマイクロ流体チップを作成することができる。また、貼り合わせ面に位置する光 吸収物質により貼り合わせ面が局所的に発熱するため、熱による基板自体の崩れや 変形、基板内の生体物質の失活を防止することができる。
[0051] また、基板同士の貼り合わせの際に基板同士を強く押圧する必要がないため、基 板内のパターンや基板自体の損傷を防止することができる。
[0052] <第 1実施形態例 >
{チップ構成 }
図 1 (a)は、本発明の第 1実施形態例に係るチップの平面図、図 1 (b)は図 1 (a)の A—A'線における断面図である。チップ 100は、材質が熱可塑性榭脂である第 1熱 可塑性榭脂基板 10及び第 2熱可塑性榭脂基板 20を含み、各基板が貼り合わせ面 2 4を介して互いに接着されている。ここで、第 1熱可塑性榭脂基板 10の貼り合わせ面 24aと第 2熱可塑性榭脂基板 20の貼り合わせ面 24bとを貼り合わせる。熱可塑性榭 脂としては、例えばポリエチレンテレフタラート(PET: Poly Ethylene Terephtalate)、 ポリエチレン(Polyethylene)、ポリプロピレン(Polypropylene)、ポリスチレン(Polystyre nes)、ポリカーボネート (Polycarbonate)、 PMMA (Poly Methyl Methacrylate)、 ABS (Acrylonitrile— butadiene— styrene)榭月旨、ポリ-/セタ ~~ノレ (polyoxymethylene)、ポリア ミド(polyamide)等が挙げられる。
[0053] 第 2熱可塑性榭脂基板 20には、光を吸収する光吸収剤としてカーボンブラックが分 散されている。カーボンブラックは、粒子系が約 20nmの黒鉛の微粒子でありレーザ 一光を吸収する。ここで、第 2熱可塑性榭脂基板 20は、カーボンブラックを練り込ん だ熱可塑性榭脂をパターンユングすることにより作成する。一方、第 1熱可塑性榭脂 基板 10は、光を透過可能なように光吸収剤を含んでいない。また、第 1熱可塑性榭 脂基板 10の主面の一部を除去することにより試薬貯蔵部 13及び流路 15が形成され ている。試薬貯蔵部 13には、測定対象である測定対象物質の検出などに用いる試 薬が貯蔵されている。また、流路 15は、第 1熱可塑性榭脂基板 10に形成された溝及 び第 2熱可塑性榭脂基板 20の主面を側壁として形成されており、測定対象物質が通 過する。チップ 100の所望の位置における流路 15の底部には、図 1 (a)に示すように 測定対象物質を検知するための検知物質 19を固定しても良い。検知物質 19や試薬 は、例えばペルォキシダーゼ、コレステロールォキシダーゼ及びコレステロールエス テラーゼ等の酵素、蛋白質、抗原、抗体、細菌、酵母、微生物等の生体物質及びィ匕 学物質等である。また、測定対象物質としては、血液中のグルコースゃコレステロ一 ルなど種々挙げられる。
[0054] {基板の貼り合わせ方法 }
(1)全面照射による貼り合わせ
次に、図 2 (a)、(b)を用いて図 1に示すチップ 100の第 1熱可塑性榭脂基板 10及 び第 2熱可塑性榭脂基板 20の貼り合わせ方法について説明する。図 2 (a)、(b)は、 第 1熱可塑性榭脂基板 10及び第 2熱可塑性榭脂基板 20の貼り合わせ方法を示す 断面図である。
[0055] まず、第 1熱可塑性榭脂基板 10の流路 15が形成された主面を第 2熱可塑性榭脂 基板 20に対向させる。つまり、第 1熱可塑性榭脂基板 10の貼り合わせ面 24aと第 2 熱可塑性榭脂基板 20の貼り合わせ面 24bとを対向させる(図 2 (a)参照)。そして、対 向している第 1熱可塑性榭脂基板 10の上部からレーザー光を第 1及び第 2熱可塑性 榭脂基板 10、 20の貼り合わせ面 24 (貼り合わせ面 24aび貼り合わせ面 24b)に向け て照射する。(図 2 (b)参照)。
[0056] ここで、第 1熱可塑性榭脂基板 10はカーボンブラックを含んでおらず、照射された レーザー光は第 1熱可塑性榭脂基板 10を透過する。また、第 1熱可塑性榭脂基板 1 0を透過したレーザー光は、カーボンブラックを練り込んで形成された第 2熱可塑性 榭脂基板 20と第 1熱可塑性榭脂基板 10との貼り合わせ面 24に到達する。特に、レ 一ザ一光はコヒーレント光であるため、焦点である貼り合わせ面 24付近を局所的に 照射可能である。貼り合わせ面 24に到達したレーザー光は、第 2熱可塑性榭脂基板 20内の貼り合わせ面 24付近に位置するカーボンブラックに吸収され熱に変換される 。この熱が貼り合わせ面 24付近の第 1熱可塑性榭脂基板 10及び Zまたは第 2熱可 塑性榭脂基板 20の融点以上になると、第 1熱可塑性榭脂基板 10及び Zまたは第 2 熱可塑性榭脂基板 20が溶融する。そして、溶融した熱可塑性榭脂が冷却されて硬 化することにより、第 1熱可塑性榭脂基板 10及び第 2熱可塑性榭脂基板 20が貼り合 わされる。
[0057] (2)部分照射による貼り合わせ
上記では、第 1熱可塑性榭脂基板 10にレーザー光を全面照射しているが、次に示 すようにマスクを用いてレーザー光を部分照射することもできる。図 3は、マスクを用い た部分照射による基板の張り合わせ方法を示す断面図である。図 3に示すように、検 知物質 19が固定された流路 15の対応する部分に、レーザー光を遮断するマスク 41 を配置する。マスク 41の上部から第 1熱可塑性榭脂基板 10にレーザー光を照射した 場合、マスク 41に対応する図中 α部分にはレーザー光が照射されない。よって、流 路 15内に固定化された検知物質 19にレーザー光が照射されないため、検知物質 1 9の失活を防止することができる。また、 α部分にレーザー光が照射されないため、 α部分の第 2熱可塑性榭脂基板 20の表面における発熱が生じず基板が溶融しない 。これにより、基板の溶融による流路 15の変形を防止することができ、流路 15内の流 体の流れが阻害されることがない。
[0058] また、マスク 41を用いた場合には、図 4に示すように第 2熱可塑性榭脂基板 20の表 面に検知物質 19を固定ィ匕することができる。図 4は、第 2熱可塑性榭脂基板 20の表 面に検知物質 19が固定化されており、図 3とは検知物質 19の固定位置が異なる場 合を示す説明図である。前記の図 2に示す全面照射により貼り合わせを行う場合に は、検知物質 19は第 2熱可塑性榭脂基板 20の表面ではなく第 1熱可塑性榭脂基板 10に固定ィ匕する方が好ましい。これは、流路 15を形成する第 2熱可塑性榭脂基板 2 0の表面、つまり貼り合わせ面 24がレーザー光の照射により発熱して、検知物質 19 が失活する場合があるからである。よって、図 1や図 2においては、第 1熱可塑性榭脂 基板 10内の流路 15に検知物質 19を固定している。しかし、図 3及び図 4に示すよう にマスク 41を用いてレーザー光を照射する場合には、第 2熱可塑性榭脂基板 20の 表面の発熱を防止することができる。そのため、第 2熱可塑性榭脂基板 20の表面に 検知物質 19を固定ィ匕しつつ、検知物質 19の失活を防止することができる。よって、 検知物質 19の固定位置に関して自由度がある。
[0059] (3)レーザー光について
基板に照射されるレーザー光は、例えば半導体レーザーを用いたレーザー発振器 により生成される。ただし、発振器の種類は、波長とパワーが適切に設定できれば限 定されない。
[0060] また、照射するレーザー光の波長は、第 1熱可塑性榭脂基板 10に対する光透過性 、第 2熱可塑性榭脂基板 20内の光吸収剤の性質、試薬貯蔵部 13内の試薬の性質、 流路 15内の検知物質 19の性質等に応じて選択する。
[0061] 例えば、カーボンブラックは波長に反比例して光を吸収するため、短波長ほど効率 よく光を吸収して発熱する。第 1熱可塑性榭脂基板 10は、約 300nm〜2. の 範囲内の波長を有するレーザー光を透過する。また、検知物質 19が高分子で構成 される生体物質である場合は、レーザー光による光化学反応により分解され失活しな いようにする必要がある。例えば、 UV光などの短波長の光はエネルギーが高いため 、これらの検知物質の共有結合を切って失活させるおそれがある。ここで、高分子を 構成する C— C結合、 C— N結合、 C— O結合などの結合解離エネルギーは約 300k jZmol以上である。よって、検知物質 19が失活しないように、波長が約 400nm以上 のレーザー光を選択する必要がある。以上を考慮して、照射するレーザー光の波長 として例えば約 400nm以上〜 2. 5 μ m以下の範囲で種々の榭脂材料に適合した波 長を選択する。
[0062] なお、レーザー光の照射時間を短時間に制御することで、発生する熱を貼り合わせ 面に局在化させることができる。
[0063] {作用効果)
この貼り合わせ方法によれば、基板の貼り合わせに接着剤を用いる必要がない。よ つて、接着剤の流出によって基板内のパターンに変形が生じるなどの基板の損傷が 無ぐ流路 15内の流体の流れが阻害されることがない。
[0064] また、第 1熱可塑性榭脂基板 10を透過した光が貼り合わせ面 24付近に位置する力 一ボンブラックにより吸収されることで、貼り合わせ面 24が局所的に発熱する。つまり 第 1及び第 2熱可塑性榭脂基板 10、 20全体に熱を加えることなぐ局所的な発熱に より貼り合わせ面 24の熱可塑性榭脂が溶融して基板同士が接着する。よって、基板 全体が発熱することによる基板全体の崩れや変形、さらには第 1熱可塑性榭脂基板 10の流路 15内に配置された検知物質 19の失活を防止することができる。また、試薬 貯蔵部 13ゃ流路 15の側壁が溶融して検知物質 19の反応を阻害することを防止す ることがでさる。
[0065] また、貼り合わせの際に基板同士を押圧する必要がないため、第 1熱可塑性榭脂 基板 10内に形成された試薬貯蔵部 13ゃ流路 15などのパターンが押圧により崩れた り変形したりするのを防ぐことができる。また、押圧による基板自体の崩れや変形も防 止することができる。
[0066] <第 1実施例 >
前記第 1実施形態例に係るチップ 100の貼り合わせ方法にっ 、て図 5 (a)、 (b)を 用いて説明する。図 5 (a)、 (b)は、第 1熱可塑性榭脂基板 10及び第 2熱可塑性榭脂 基板 20の貼り合わせ方法を示す断面図である。第 1熱可塑性榭脂基板 10及び第 2 熱可塑性榭脂基板 20として、厚さ lmm、縦 25mm X横 25mmのポリエチレンテレフ タラート (PET)を用いる。なお、第 2熱可塑性榭脂基板 20は、カーボンブラックを分散 させた PETを用いた。 PETは、融点が 245°Cであり、引張弾性率が 421KgfZmm2 である。第 1熱可塑性榭脂基板 10の主面には、幅 100 /ζ πι、深さ 200 /z mの流路 15 が形成されている。また、流体の流れを制御するために、流路 15の一部に酢酸セル ロールをキャスト法により塗布し、別の部分にはポリスチレンを塗布して乾燥させた。 また、第 1熱可塑性榭脂基板 10には、図 5 (a)、 (b)に示すように、検知物質 19として 流路 15の一部にタンパク質と反応する抗体を固定ィ匕した。なお、検知物質 19は、力 一ボンブラックの導入されている位置から 100 μ m以上離隔するように、第 1熱可塑 性榭脂基板 10内に固定ィ匕した。つまり、基板の貼り合わせの際に発生する熱の影響 力も保護するため、第 1及び第 2熱可塑性榭脂基板 10、 20の貼り合わせ面 24から検 知物質 19を離隔させた。
[0067] 具体的に貼り合わせ方法について説明する。まず、図 5 (a)に示すように、第 1熱可 塑性榭脂基板 10の流路 15が形成された主面を第 2熱可塑性榭脂基板 20に対向さ せる。ここで、第 1熱可塑性榭脂基板 10の貼り合わせ面 24aと第 2熱可塑性榭脂基 板 20の貼り合わせ面 24bとを対向させる。次に、図 5 (b)に示すように、石英ガラス 40 を介して第 1熱可塑性榭脂基板 10の全面上力も 0. 3MPaの加圧を行うことで、第 1 及び第 2熱可塑性榭脂基板 10、 20を密着させた。なお、過度の加圧を行うと流路 15 等のパターンが崩れてしまうため、基板の強度に応じて加圧を行う。
[0068] 次に、図 5 (b)に示すように、波長 940 μ m、パワー 30Wのレーザー光を石英ガラス 40を介して第 1熱可塑性榭脂基板 10に照射した。レーザー光のスポットサイズの直 径は 5mm、スキャンスピードは 20mm/sで照射を行った。このとき、あるポイントでの 照射時間は 0. 25秒であった。
[0069] 照射されたレーザー光によって、第 1及び第 2熱可塑性榭脂基板 10、 20の貼り合 わせ面 24の温度が PETの融点 245°Cになると、貼り合わせ面 24が溶解して基板同 士が張り合わさった。ここで、熱分布は貼り合わせ面から 100 m以内の局所的な範 囲に限られることを発見した。また、照射時間は 0. 25秒と短時間であるため貼り合わ せ面に発生した熱の拡散も防止できた。そして、貼り合わせ面から 100 m以上離隔 した位置に検知物質 19を固定ィ匕したので、貼り合わせ面に発生した熱による検知物 質 19の失活を防止することができた。さらに、流路 15に塗布した酢酸セルロース及 びポリスチレンにより、流路 15内における高い流れ制御性を実現することができた。 これは、流路 15の有る部分に親水性高分子膜である酢酸セルロースを塗布し、別の 部分に疎水性高分子であるポリスチレンを塗布することで、流路 15内での流れを制 御することができるカゝらである。
[0070] <第 2実施形態例 >
{チップ構成 }
(1)全面的な光吸収層
図 6 (a)は、本発明の第 2実施形態例に係るチップの平面図、図 6 (b)は図 6 (a)の B— B'線における断面図、図 6 (c)は光吸収層の形成方法を示す断面図である。チ ップ 100は、材質が熱可塑性榭脂である第 1熱可塑性榭脂基板 10及び第 2熱可塑 性榭脂基板 20を含み、各基板が貼り合わせ面 24を介して互いに接着されている。
[0071] 第 2熱可塑性榭脂基板 20は、光を吸収する光吸収剤 23としてカーボンブラックを 含む光吸収層 27を有している。ここで、光吸収層 27は、図 6 (c)に示すように第 2熱 可塑性榭脂基板 20の全表面に例えばカーボンブラックを含有する溶液をスピンコー トすることにより形成される。第 1及び第 2熱可塑性榭脂基板 10、 20は、第 2熱可塑 性榭脂基板 20の光吸収層 27と第 1熱可塑性榭脂基板 10との貼り合わせ面 24を介 して互いに接着している。一方、第 1熱可塑性榭脂基板 10は、光を透過可能なように 光吸収剤を含んでおらず、主面の一部を除去することにより形成された試薬貯蔵部 1 3及び流路 15を有している。また、流路 15は、第 1熱可塑性榭脂基板 10に形成され た溝及び第 2熱可塑性榭脂基板 20の主面を側壁として形成されており、測定対象物 質が通過する。チップ 100の所望の位置における流路 15の底部には、図 6 (a)に示 すように測定対象物質を検知するための検知物質 19を固定しても良い。
[0072] (2)部分的な光吸収層
上記図 6 (a)〜 (c)では、第 2熱可塑性榭脂基板 20の全面に光吸収層 27を設けて いるが、次に示すように部分的な光吸収層 28を設けることもできる。図 7 (a)は部分的 な光吸収層 28を有する基板の断面図、図 7 (b)は部分的な光吸収層 28の形成方法 を示す断面図である。
[0073] 部分的な光吸収層 28は、図 7 (b)に示すように、流路 15に対応する図中 |8部分に マスク 43配置し、このマスク 43を介して第 2熱可塑性榭脂基板 20の表面に光吸収剤 23を注入することにより形成される。そして、第 1及び第 2熱可塑性榭脂基板 10、 20 は、第 2熱可塑性榭脂基板 20の部分的な光吸収層 28と第 1熱可塑性榭脂基板 10と の貼り合わせ面 24を介して互いに接着している。このとき、図 7 (a)に示すように流路 15の壁面に光吸収剤 23を含む光吸収層が接していない。よって、第 1熱可塑性榭 脂基板 10の上部力もレーザー光を照射した場合であっても、レーザー光は第 2熱可 塑性榭脂基板 20の |8部分を通過する。そのため、 j8部分に位置する流路 15の壁面 が発熱して溶融しない。これにより、流路 15の壁面の一部を構成する第 2熱可塑性 榭脂基板 20の表面にも検知物質 19を固定できるなど、検知物質 19の固定位置に 関して自由度がある。
[0074] {基板の貼り合わせ方法)
次に、図 8 (a)、(b)を用いて図 6 (a)、(b)に示すチップ 100の第 1熱可塑性榭脂基 板 10及び第 2熱可塑性榭脂基板 20の貼り合わせ方法にっ 、て説明する。図 8 (a)、 (b)は、第 1熱可塑性榭脂基板 10及び第 2熱可塑性榭脂基板 20の貼り合わせ方法 を示す断面図である。
[0075] まず、第 1熱可塑性榭脂基板 10の流路 15が形成された主面と、第 2熱可塑性榭脂 基板 20の光吸収層 27と対向させる。このとき、光吸収層 27が形成されていない |8部 分と第 1熱可塑性榭脂基板 10の流路 15とが対応するように対向させる(図 8 (a)参照 )。そして、対向している第 1熱可塑性榭脂基板 10の上部力もレーザー光を第 1及び 第 2熱可塑性榭脂基板 10、 20の貼り合わせ面 24に向けて照射する。(図 8 (b)参照
) o
[0076] ここで、第 1熱可塑性榭脂基板 10を透過したレーザー光は、第 2熱可塑性榭脂基 板 20の光吸収層 27と第 1熱可塑性榭脂基板 10との貼り合わせ面 24に到達する。こ れにより、光吸収層 27内のカーボンブラックが熱を発生し、貼り合わせ面 24の第 1熱 可塑性榭脂基板 10及び Zまたは第 2熱可塑性榭脂基板 20が溶融して互いに貼り 合わされる。
[0077] なお、第 1実施形態例の図 3に示すように、部分照射による貼り合わせを行っても良 い。つまり、レーザー光を照射して基板同士の貼り合わせを行う場合に、検知物質 19 が固定された流路 15の対応する部分に、レーザー光を遮断するマスク 41を配置す る。これにより、流路 15に対応する光吸収層 27にはレーザー光が照射されないため 、溶融による流路 15の変形を防止することができ、また流路 15内の流体の流れが阻 害されることがない。さらに、流路 15を形成する光吸収層 27が発熱しないため、光吸 収層 27上に検知物質 19を固定した場合でも失活を防止することができる。よって、 検知物質 19の固定位置に関して自由度がある。
[0078] {作用効果)
第 2熱可塑性榭脂基板 20の表面に光吸収層 27を設けることで発熱部分を基板表 面に留め、より局所的にすることができる。よって、基板全体が発熱することによる基 板の変形や基板内に形成された流路などのパターンの変形をより防止することがで きる。また、第 1熱可塑性榭脂基板 10の流路 15内に配置された検知物質 19の熱に よる失活を防止することができる。さらに、試薬貯蔵部 13ゃ流路 15の側壁が発熱に より溶融して検知物質 19の反応を阻害することを防止することができる。
[0079] また、第 2熱可塑性榭脂基板 20全体が光吸収剤を含んで ヽる場合、レーザー光を 照射する時間を短時間に設定して発熱の広がりを抑制する必要がある。しかし、第 2 熱可塑性榭脂基板 20の表面のみに光吸収層 27を設けることで、レーザー光の照射 時間による制御を行うことなく発熱の広がりを抑制することができる。
[0080] さらに、基板表面に光吸収層 27を設けるため、カーボンブラックなどの光吸収剤の 量を少量に抑えることができる。
[0081] また、第 1実施形態例と同様に次のような効果を得ることができる。第 2実施形態例 の貼り合わせ方法によれば、接着剤の流出による基板内のパターンの変形や、流路 15内の流体の流れが阻害されることがない。さらに、貼り合わせの際に基板同士を 強く押圧する必要がないため、押圧による基板内のノターンや基板自体の崩れ及び 変形なども防止することができる。
[0082] <第 3実施形態例 >
{チップ構成 }
図 9 (a)は、本発明の第 3実施形態例に係るチップの平面図、図 9 (b)は図 9 (a)の C— C'線における断面図である。チップ 100は、材質が熱可塑性榭脂である第 1熱 可塑性榭脂基板 10及び第 2熱可塑性榭脂基板 20の間に光吸収基板 29が挟持され ている。ここでは、光吸収基板 29として、光吸収剤 23としてカーボンブラックを含む 熱可塑性エラストマ一を用いる。熱可塑性エラストマ一としては、例えばスチレン系、 ォレフィン系、塩化ビニル系、ウレタン系、エステル系、アミド系等の重合材料である。
[0083] 第 1及び第 2第 1熱可塑性榭脂基板 10、 20は、光を透過可能なように光吸収剤を 含んでいない。また、第 1熱可塑性榭脂基板 10には、主面の一部を除去することに より試薬貯蔵部 13及び流路 15が形成されている。また、流路 15は、第 1熱可塑性榭 脂基板 10に形成された溝及び光吸収基板 29の主面を側壁として形成されており、 測定対象物質が通過する。チップ 100の所望の位置における流路 15の底部には、 図 9 (a)に示すように測定対象物質を検知するための検知物質 19を固定しても良い 。検知物質 19や試薬は、例えばペルォキシダーゼ、コレステロールォキシダーゼ及 びコレステロールエステラーゼ等の酵素、蛋白質、抗原、抗体、細菌、酵母、微生物 等の生体物質及び化学物質等である。
[0084] {基板の貼り合わせ方法)
次に、図 10 (a)〜(d)を用いて図 9 (a)、(b)に示すチップ 100の光吸収基板 29を 介した第 1熱可塑性榭脂基板 10及び第 2熱可塑性榭脂基板 20の貼り合わせ方法に ついて説明する。図 10 (a)〜(d)は、光吸収基板 29を介した第 1熱可塑性榭脂基板 10及び第 2熱可塑性榭脂基板 20の貼り合わせ方法を示す断面図である。
[0085] まず、第 2熱可塑性榭脂基板 20及び光吸収基板 29を対向させる。このとき、対向 面には接着剤 21が塗布されている(図 10 (a)参照)。そして、光吸収基板 29の上部 カゝらホーン 45により押圧し、第 2熱可塑性榭脂基板 20及び光吸収基板 29を貼り付 ける(図 10 (b)参照)。さらに、第 1熱可塑性榭脂基板 10の流路 15が形成された主 面を光吸収基板 29に対向させる。ここで、第 1熱可塑性榭脂基板 10の貼り合わせ面 24aと光吸収基板 29の貼り合わせ面 24bとを対向させる(図 10 (c)参照)。そして第 1 熱可塑性榭脂基板 10の上部からレーザー光を第 1及び第 2熱可塑性榭脂基板 10 及び光吸収基板 29の貼り合わせ面 24 (貼り合わせ面 24a及び貼り合わせ面 24b)に 向けて照射する。(図 10 (d)参照)。
[0086] ここで、第 1熱可塑性榭脂基板 10はカーボンブラックを含んでおらず、照射された レーザー光は第 1熱可塑性榭脂基板 10に透過する。また、第 1熱可塑性榭脂基板 1 0を透過したレーザー光は、カーボンブラックを含む光吸収基板 29と第 1熱可塑性榭 脂基板 10との貼り合わせ面 24に到達する。これにより、光吸収基板 29内のカーボン ブラックが熱を発生し、貼り合わせ面 24の第 1熱可塑性榭脂基板 10及び Zまたは光 吸収基板 29が溶融して互いに貼り合わされる。
[0087] {作用効果)
上述の光吸収基板 29は、熱可塑性エラストマ一に限定されず、例えば基板と同じ 材質の熱可塑性榭脂であっても良い。ただし、光吸収基板 29を熱可塑性エラストマ 一で形成すると、水密性ゃ気密性を高めることができる。これは、熱可塑性エラストマ 一が熱可塑性とともにゴム弾性の性質を有するため、第 1及び第 2熱可塑性榭脂基 板 10、 20の密着性を高めることができるからである。特に、チップ面積が大きい場合 であっても水密性ゃ気密性を保つことができる。
[0088] さらに、第 3実施形態例では、第 1実施形態例と同様に次のような効果を得ることが できる。接着剤の流出による基板内のパターンの変形や、流路 15内の流体の流れが 阻害されることがない。さらに、貼り合わせの際に基板同士を強く押圧する必要がな V、ため、押圧による基板内のパターンや基板自体の崩れ及び変形なども防止するこ とがでさる。
[0089] <第 4実施形態例 >
図 11 (a)は、本発明の第 4実施形態例に係るチップ 100の平面図、図 11 (b)は図 1 1 (a)の E—E'線における断面図である。
[0090] チップ 100は、第 1熱可塑性榭脂基板 10及び第 2熱可塑性榭脂基板 20の間に光 吸収基板 29が挟持されている。ここで、第 1熱可塑性榭脂基板 10及び第 2熱可塑性 榭脂基板 20は、材質が熱可塑性榭脂である。また、光吸収基板 29は、光吸収剤 23 としてカーボンブラックを含む熱可塑性エラストマ一である。
[0091] 第 1熱可塑性榭脂基板 10の主面には、第 1開口部 80a、第 2開口部 80b、第 1開口 部 80aと第 2開口部 80bとを接続する第 1流路 70及び第 2開口部 80bとチップ 100外 部とを接続する第 2流路 75が設けられている。また、第 2熱可塑性榭脂基板 20には 、チップ 100外部又は内部への圧力が印加される第 3流路 90が設けられている。図 1Kb)に示すように、第 3流路 90が第 2熱可塑性榭脂基板 20の主面において開口 する部分は、第 1熱可塑性榭脂基板 10の第 1流路 70と対応している。
[0092] チップ 100は、レーザー光の照射により次のように形成されている。第 1熱可塑性榭 脂基板 10はカーボンブラックを含んでおらず、照射されたレーザー光は第 1熱可塑 性榭脂基板 10に透過する。また、第 1熱可塑性榭脂基板 10を透過したレーザー光 は、カーボンブラックを含む光吸収基板 29と第 1熱可塑性榭脂基板 10との貼り合わ せ面 24に到達する。これにより、光吸収基板 29内のカーボンブラックが熱を発生し、 貼り合わせ面 24の第 1熱可塑性榭脂基板 10及び Zまたは光吸収基板 29が溶融し て互いに貼り合わされる。よって、第 1、第 2開口部 80a、 80b、第 1、第 2及び第 3流 路 70、 75、 90等のパターン崩れ等を防止できる。また、光吸収基板 29は、熱可塑性 とともにゴム弾性の性質を有するため、第 1及び第 2熱可塑性榭脂基板 10、 20の密 着性を高め、水密性ゃ気密性を高めることができる。
[0093] 図 12 (a)及び(b)は、チップ 100外部から内部への圧力が印加されるチップ 100の 動きを説明する説明図、図 12 (c)は、チップ 100内部から外部への圧力が印加され るチップ 100の動きを説明する説明図である。図 12 (a)に示すように、第 3流路 90に チップ 100外部力も内部への圧力を印加すると、第 3流路 90の第 2熱可塑性榭脂基 板 20の主面において開口する部分の光吸収基板 29が圧力を受ける。このとき、光 吸収基板 29は、第 1開口部 80aと第 2開口部 80bとを接続する第 1流路 70の通路が 狭くなるように伸張する。よって、第 1、第 2開口部 80a、 80b内の流体が第 2流路 75 を介してチップ 100外部に導出される(図 12 (a)参照)。次に、さらに第 3流路 90にチ ップ 100外部力も内部への圧力を印加すると、光吸収基板 29が第 1流路 70を塞ぐよ うに伸張する。よって、第 1開口部 80a及び第 2開口部 80b間の流体の流れが停止す る(図 12 (b)参照)。
[0094] 次に、図 12 (c)に示すように、第 3流路 90にチップ 100内部力も外部への圧力を印 加すると、光吸収基板 29は、第 2熱可塑性榭脂基板 20の方へ引っ張られるように伸 張する。よって、例えば第 2流路 75を介して流体をチップ 100内部に取り込む。この ように、ゴム弾性を有する光吸収基板 29は、第 1開口部 80a及び第 2開口部 80bの 開閉を行うバルブやポンプとして用いることができる。
[0095] <その他の実施形態例 >
(1)
上記において、貼り合わせる基板同士の融点を同程度にすると、基板同士の貼り 合わせ面付近の光吸収剤に光が照射されることで両基板の貼り合わせ面がほぼ同 時に溶融し基板同士が接着し易 、。
[0096] (2)
上記では、光吸収剤としてカーボンブラックを用いている力 その他の色の色素で あっても良い。また、測定対象物質ごとに異なる色を有する色素を用いると、測定者 は測定に用いるチップを容易に確認することができ好ま 、。例えばグルコースゃコ レステロールなど種々の測定対象物質を測定する際に、チップの取り違えを防止す ることがでさる。
[0097] (3)
上述において、基板内に形成された試薬貯蔵部 13ゃ流路 15には、その内部を通 過する流体の性質、貯蔵される試薬の性質、固定される検知物質 19の性質などに 応じてその表面に高分子膜を配置しても良い。例えば、粘度が約 4〜15である血液 を測定対象物質とし、チップ内部の試薬等の粘度が 1であるとする。このように粘度が 大きく異なる溶液を 1つのチップ内で混合、反応、検出する場合には、流体の制御が 難しい。例えば、粘性が高い溶液や表面張力が大きい溶液は、その粘性により溶液 が停滞したり、表面張力により溶液がはじかれて流れ難くなるおそれがある。一方、 粘性が小さい溶液は、流路 15内を抵抗を受けることなく流れる。このように、粘度が 異なると混合や反応が不完全となり、正確な検査対象物質の検出が困難である。そ こで、流路等のある部分の表面に親水性処理を施し、別の部分の表面に疎水性処 理を施して流路内の流体を制御する。親水性高分子膜としては、例えば酢酸セル口 ース、ポリビュルアルコール(PVA)、ポリビュルピロリドン(PVP)等が挙げられる。疎 水性高分子としては、例えばポリスチレン (PS)、ポリエチレン (PE)、テフロン (登録 商標)、シリコン等が挙げられる。
[0098] (4)
上述において、検知物質を光吸収物質の導入位置から 100 m以上離隔して固 定すると好ましい。光吸収物質は、照射された光を吸収して発熱する。この光吸収物 質から所定の距離分だけ離隔して検知物質を配置することで、基板貼り合わせ時の 発熱による検知物質の失活を防ぐことができる。
[0099] (5)
上記では、コヒーレント光であるレーザー光を用いて第 1及び第 2熱可塑性榭脂基 板 10、 20の貼り合わせ面にレーザー光を照射している力 貼り合わせ面に光を照射 することができれば良くレーザー光に限定されない。
[0100] (6)
上記では、貼り合わせる両基板をともに熱可塑性榭脂で形成したが、少なくとも一 方が熱可塑性榭脂で有れば良い。例えば、一方が熱可塑性榭脂基板で、もう一方が 金属、ガラスなどであっても良い。このとき、金属やガラスなどと比較して加工が容易 な熱可塑性榭脂基板に試薬貯蔵部ゃ流路などのパターンを形成すると好ましい。
[0101] (7)
上記では第 1熱可塑性榭脂基板 10に流路 15を形成しているが、第 2熱可塑性榭 脂基板 20に流路を形成しても良い。また、第 1熱可塑性榭脂基板 10内に形成した 溝と第 2熱可塑性榭脂基板 20内に形成した溝とを組み合わせることにより流路 15を 形成しても良い。
[0102] (8)
上記第 1実施形態例の第 2熱可塑性榭脂基板 20はカーボンブラックを練り込んで 形成されているが、第 2熱可塑性榭脂基板 20のカーボンブラックの含有量は、 0. 01 体積%以上、 0. 025体積%以下であるのが好ましい。
[0103] 上述の通り、図 2の流路 15等には、試料である血液や試薬などの溶液が導入され 、生化学反応が行われる。流路 15の一部は、第 2熱可塑性榭脂基板 20により形成さ れており、流路 15に導入された溶液と第 2熱可塑性榭脂基板 20とは接触する。この とき、光吸収物質としてのカーボンブラックが第 2熱可塑性榭脂基板 20に過剰に含 有されていると、カーボンブラックが第 2熱可塑性榭脂基板 20から流路 15内の溶液 中に溶出してしまう。例えば、従来、カーボンブラックの含有量は、 0. 05体積%以上 、 0. 1体積%以下の範囲内であるが、この範囲では含有量が多ぐカーボンブラック は第 2熱可塑性榭脂基板 20から流路 15内の溶液中に溶出する。そのため、溶出し たカーボンブラックにより、流路 15内での生化学反応等が妨害される可能性がある。 また、溶液が導入された流路 15に光を照射し、通過した透過光の強度、透過光のス ベクトル、散乱光の強度を測定するなどの分光法を用いる場合、流路 15に溶出した カーボンブラックが透過光を吸収するなど阻害物質として働く。よって、生化学反応 等により生成された生成物の定量など試料の定量が正確に行えなくなる。一方、第 2 熱可塑性榭脂基板 20におけるカーボンブラックの含有量が少な 、場合には、光吸 収が十分に行われず基板の貼り合わせが不十分となる。また、色素としてのカーボン ブラックの含有量が少な 、ために基板に色むらが発生し、これによつても基板の貼り 合わせが不十分となる。
[0104] 図 13は、カーボンブラックの含有量及び基板の製造方法を変えた場合において、 製造されたそれぞれの基板での光の吸収特性を示す実験結果である。ここで、基板 としては、射出成形により形成したカーボンブラックの含有量 0. 0125体積%、 0. 01 6体積0 /。、 0. 025体積0 /0、 0. 05体積%の基板と、押し出し成形により形成したカー ボンブラックの含有量 0. 05体積%の基板とを準備した。そして、これらの基板を純粋 に浸漬した後、紫外線分光測定器にてカーボンブラックの溶出の度合いを検出した 。カーボンブラックは、波長 270nm付近の光を特異的に吸収するため、溶出した力 一ボンブラックの存在を確認できる。図 13に示すように、従来のカーボンブラックの含 有量 0. 05体積%では、最も吸光度が最も大きくカーボンブラックの溶出が最も著し いことが分かる。しかし、本発明のように含有量を 0. 025体積%以下とすることで、力 一ボンブラックの溶出が抑制されていることが分かる。
[0105] 本発明のように、第 2熱可塑性榭脂基板 20におけるカーボンブラックの含有量を 0 . 025体積%以下にすれば、カーボンブラックの溶液への溶出を抑制することができ る。よって、流路 15内の溶液中において生化学反応を正常に行わせることができ、ま た試料等を正確に定量することができる。また、カーボンブラックの含有量を 0. 01体 積%以上にすれば、基板に色むらを発生させることなぐ基板同士の貼り合わせ強度 を十分に確保できる。なお、射出成形は基板の成形に一般的に用いられる簡単な製 造方法であるため、前述の含有量の場合に射出成形に適していることは、カーボン ブラックを含有する基板の生産性や生産コスト面に優れる。このように、カーボンブラ ックの含有量を前述の範囲とすることで、カーボンブラックの特性を活かしつつ、効率 良く利用することができる。
[0106] なお、前述のようなカーボンブラックの含有量は、第 2実施形態例のカーボンブラッ クを含む光吸収層 27及び部分的な光吸収層 28や、第 3及び第 4実施形態例の光吸 収基板 29等にも適用可能である。
[0107] (9)
第 1実施形態例においては、第 1熱可塑性榭脂基板 10と第 2熱可塑性榭脂基板 2 0との間の浮き上がりを防止するために、図 5 (b)等に示すように、平坦性及び剛性に 優れる石英ガラス 40を介して第 1熱可塑性榭脂基板 10上を均一に加圧している。こ こで、第 1熱可塑性榭脂基板 10と石英ガラス 40との間に、凹凸表面を有する透明板 を介在させると好ましい。
[0108] ここで、第 1熱可塑性榭脂基板 10は榭脂であるため、石英ガラス 40よりも比較的そ の表面が凹凸を有するように粗く形成されている。一方で、前述のように石英ガラス 4 0の表面は、平坦であり平滑に形成されている。よって、第 1熱可塑性榭脂基板 10と 石英ガラス 40とを接触させると、第 1熱可塑性榭脂基板 10の凹凸が吸盤の役割を果 たし、石英ガラス 40が第 1熱可塑性榭脂基板 10に吸着してしまう。そして、一旦、真 空状態となって吸着すると、石英ガラス 40を第 1熱可塑性榭脂基板力 取り外せなく なり、チップを加圧装置の外へ取り出せなくなる。また、石英ガラス 40を強い力で引つ 張り、第 1熱可塑性榭脂基板 10から剥がすと、第 1熱可塑性榭脂基板 10と第 2熱可 塑性榭脂基板 20との接着が剥がれてしまう場合がある。特に、表面改質ゃ表面コー トなどの表面処理、その他洗浄や殺菌のために、第 1熱可塑性榭脂基板 10に溶剤 処理を施した場合には、第 1熱可塑性榭脂基板 10の表面が弾性を有するように形成 され、上述のような問題が顕著となる。
[0109] 図 14は、第 1熱可塑性榭脂基板 10と石英ガラス 40との間に、凹凸表面を有する透 明板を介在させた場合の製造工程を示す説明図である。図 14に示すように、第 1熱 可塑性榭脂基板 10と石英ガラス 40との間に、凹凸表面を有する透明板 50を介在さ せることで、第 1熱可塑性榭脂基板 10と凹凸表面を有する透明板 50との吸着を防ぐ ことができる。これは、透明板 50の表面が凹凸を有して粗く形成されており、また透明 板 50に接する第 1熱可塑性榭脂基板 10の表面もまた粗く形成されているため、前述 のような吸着が生じないためである。これにより、第 1熱可塑性榭脂基板 10と石英ガ ラス 40との吸着を防止することができる。
[0110] また、凹凸表面を有する透明板 50としては、例えば PMMA、 APO (非晶質ポリオ レフイン)、ポリカーボネート、ポリ 4メチルペンテン 1等を使用可能である。また、厚 みのある透明板 50ではなぐこれらの材料を、透明ポリアミド (ナイロン)のようなシート 状薄膜に加工して用いても良 、。
[0111] また、加圧時に、基板どうしの貼り合わせ面に圧力を均一にかけるためには、剛性 が大きな石英ガラス 40と微少な凹凸を有する透明板 50とを組み合わせるのが最適 である。微少な凹凸とは、例えば約 0. 1 m〜約 1. 0 m以上の凹凸を言う。なお、 石英ガラス 40と透明板 50との組み合わせの代わりに、剛性が大きな透明榭脂板を用 いても良い。
[0112] さらに、第 1熱可塑性榭脂基板 10との接触面側にフッ素榭脂ゃシリコン榭脂などの 透明榭脂膜がコーティングされた石英ガラス 40を用いても同様の効果を得ることがで きる。 [0113] また、上記では第 1熱可塑性榭脂基板 10と接触する側に凹凸を有する透明板 50 を配置しているが、第 2熱可塑性榭脂基板 20と加圧装置との接触面にも透明板 50を 設けても良いし、両方に設けても良い。
[0114] なお、透明板 50の凹凸の大きさと第 1熱可塑性榭脂基板 10の凹凸の大きさの組み 合わせとしては、透明板 50と第 1熱可塑性榭脂基板 10とが互いに吸着しない程度の 組み合わせであれば限定されな!、。
産業上の利用可能性
[0115] 本発明を用いて貼り合わせが行われた熱可塑性榭脂基板は、熱による基板の崩れ や変形を防止することができる。よって、 DNA、酵素、蛋白質、抗原、後退、ウィルス 及び細胞等の生体物資及び化学物質を測定するために基板内部に流路ゃ試薬貯 蔵部などが形成されるバイオチップ及びマイクロ化学チップなどに適用可能である。

Claims

請求の範囲
[1] 第 1基板と第 2基板との貼り合わせ方法であって、
前記第 1基板及び前記第 2基板の少なくとも一方の主体を、光を透過する光透過 性材質で形成するステップと、
前記第 1基板及び前記第 2基板の貼り合わせ面のうち少なくとも一部を、光を吸収 する光吸収物質を含む熱可塑性榭脂で形成するステップと、
前記光を透過する基板を介して前記貼り合わせ面の光吸収物質に光を照射するこ とにより、前記第 1基板と前記第 2基板とを貼り合わせるステップと、
を含む貼り合わせ方法。
[2] 前記第 1基板及び Zまたは第 2基板には測定対象物質を検知する検知物質が配 置されており、前記光の波長は 400nmから 2. 5 mの範囲である、請求項 1に記載 の貼り合わせ方法。
[3] 前記第 1基板及び Zまたは前記第 2基板は固定された検知物質の固定場所、また は前記第 1基板及び Zまたは第 2基板に形成されたパターンの形成場所に対応する 部分に前記光を遮断するマスクを配置し、前記マスクの上部から前記貼り合わせ面 の光吸収物質に光を照射する、請求項 1に記載の貼り合わせ方法。
[4] 前記第 1基板及び前記第 2基板は熱可塑性榭脂基板であり、前記第 1基板及び前 記第 2基板の融点は概ね同一である、請求項 3に記載の貼り合わせ方法。
[5] 第 1基板と第 2基板とを貼り合わせることにより形成されるチップの形成方法であつ て、
前記第 1基板及び前記第 2基板の少なくとも一方の主体を、光を透過する光透過 性材質で形成するステップと、
前記第 1基板及び前記第 2基板の貼り合わせ面のうち少なくとも一部を、光を吸収 する光吸収物質を含む熱可塑性榭脂で形成するステップと、
前記第 1基板及び Zまたは前記第 2基板の主面に流路を形成するステップと、 前記流路を覆うように前記第 1基板と前記第 2基板とを対向させ、前記光を透過す る基板を介して前記貼り合わせ面の光吸収物質に光を照射することにより、前記第 1 基板と前記第 2基板とを貼り合わせるステップと、 を含むチップの形成方法。
[6] 前記光吸収物質としてはカーボンブラックを用い、前記カーボンブラックを含有する 層におけるカーボンブラックの含有量を 0. 01体積%以上、 0. 025体積%以下とす る、請求項 5に記載のチップの形成方法。
[7] 前記カーボンブラックを含有する層は、射出成形により形成される、請求項 6に記載 のチップの形成方法。
[8] 前記第 1基板と前記第 2基板とを貼り合わせるステップでは、
前記第 1基板及び前記第 2基板の少なくともいずれかにおける、前記貼り合わせ面 と異なる主面が、凹凸の表面を有する透明板を介して透明ガラス板から加圧を受ける ことにより、前記第 1基板と前記第 2基板とが貼り合わせされる、請求項 5に記載のチ ップの形成方法。
[9] 前記透明板と接する前記貼り合わせ面と異なる主面が、溶剤処理されている、請求 項 8に記載のチップの形成方法。
[10] 前記第 1基板と前記第 2基板とを貼り合わせるステップでは、
前記第 1基板及び前記第 2基板の少なくともいずれかにおける、前記貼り合わせ面 と異なる主面が、透明ガラス板から加圧を受けることにより、前記第 1基板と前記第 2 基板とが貼り合わされており、
前記貼り合わせ面と異なる主面と接する前記透明ガラス板の主面に、透明榭脂膜 が形成されて!、る、請求項 5に記載のチップの形成方法。
[11] 前記透明ガラス板の透明榭脂膜と接する前記貼り合わせ面と異なる主面が、溶剤 処理されて!、る、請求項 10に記載のチップの形成方法。
[12] 熱可塑性榭脂で形成される第 1基板と、
前記第 1基板と対向して貼り合わされている第 2基板と、
前記第 1基板及び Zまたは前記第 2基板の主面に形成されている流路とを含み、 前記第 1基板及び前記第 2基板の少なくとも一方の主体が光を透過する光透過性 材質であり、
前記第 1基板及び前記第 2基板の貼り合わせ面のうち少なくとも一部を、光を吸収 する光吸収物質を含み、 前記流路を覆うように対向している前記第 1基板又は第 2基板の貼り合わせ面が、 前記光を透過する基板を介して前記貼り合わせ面の光吸収物質に光を照射すること により貼り合わされて 、るチップ。
[13] 前記流路に測定対象物質を検知する検知物質が固定されている、請求項 12に記 載のチップ。
[14] 前記検知物質は前記光吸収物質の導入位置から 100 μ m以上離隔して固定され ている、請求項 13に記載のチップ。
[15] 前記光吸吸収物質は色素である、請求項 12に記載のチップ。
[16] 前記光吸吸収物質は、測定対象物質ごとに異なる色を有する色素である、請求項
12に記載のチップ。
[17] 前記光吸収物質としてはカーボンブラックを用い、前記カーボンブラックを含有する 層におけるカーボンブラック含有量を 0. 01体積%以上、 0. 025体積%以下とする、 請求項 12に記載のチップ。
[18] 前記カーボンブラックを含有する層は、射出成形により形成されている、請求項 17 に記載のチップ。
PCT/JP2006/306708 2005-03-31 2006-03-30 基板の貼り合わせ方法、チップ形成方法及びチップ WO2006106848A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06730656A EP1864784A1 (en) 2005-03-31 2006-03-30 Method for bonding substrates, method for forming chip, and chip
US11/817,944 US20090060782A1 (en) 2005-03-31 2006-03-30 Method for bonding substrates, method for forming chip, and chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005101076 2005-03-31
JP2005-101076 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006106848A1 true WO2006106848A1 (ja) 2006-10-12

Family

ID=37073404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306708 WO2006106848A1 (ja) 2005-03-31 2006-03-30 基板の貼り合わせ方法、チップ形成方法及びチップ

Country Status (3)

Country Link
US (1) US20090060782A1 (ja)
EP (1) EP1864784A1 (ja)
WO (1) WO2006106848A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102126700A (zh) * 2009-10-23 2011-07-20 优志旺电机株式会社 工件的贴合装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008036467A1 (de) * 2008-08-05 2010-02-11 Fresenius Medical Care Deutschland Gmbh Verfahren zur Herstellung eines Verbundteils durch Durchstrahllaserschweißen
US20100314149A1 (en) 2009-06-10 2010-12-16 Medtronic, Inc. Hermetically-sealed electrical circuit apparatus
US8666505B2 (en) 2010-10-26 2014-03-04 Medtronic, Inc. Wafer-scale package including power source
US9171721B2 (en) 2010-10-26 2015-10-27 Medtronic, Inc. Laser assisted direct bonding
US8796109B2 (en) 2010-12-23 2014-08-05 Medtronic, Inc. Techniques for bonding substrates using an intermediate layer
US8424388B2 (en) 2011-01-28 2013-04-23 Medtronic, Inc. Implantable capacitive pressure sensor apparatus and methods regarding same
EP3074204B1 (en) 2013-11-27 2017-12-27 Roche Diabetes Care GmbH A method for laser welding a disposable test-unit
US9968794B2 (en) 2014-12-24 2018-05-15 Medtronic, Inc. Implantable medical device system including feedthrough assembly and method of forming same
US10136535B2 (en) 2014-12-24 2018-11-20 Medtronic, Inc. Hermetically-sealed packages including feedthrough assemblies
US9865533B2 (en) 2014-12-24 2018-01-09 Medtronic, Inc. Feedthrough assemblies
US10124559B2 (en) 2014-12-24 2018-11-13 Medtronic, Inc. Kinetically limited nano-scale diffusion bond structures and methods
US10098589B2 (en) 2015-12-21 2018-10-16 Medtronic, Inc. Sealed package and method of forming same
CN109153020A (zh) * 2016-04-28 2019-01-04 沙特基础工业全球技术公司 微流体器件
EP3448650A1 (en) * 2016-04-28 2019-03-06 SABIC Global Technologies B.V. Manufacturing of microfluidic device in multi-step method using hesitation injection moulding
JP6966860B2 (ja) 2017-04-07 2021-11-17 リンテック株式会社 検査用カバーフィルム、検査部材、および検査用カバーフィルムの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218698A (ja) * 1999-01-28 2000-08-08 Leister Process Technologies レ―ザ―による樹脂の接合方法及びその装置
JP2001334578A (ja) * 2000-05-26 2001-12-04 Matsushita Electric Works Ltd レーザによる樹脂の溶着加工方法
JP2002139419A (ja) * 2000-10-31 2002-05-17 Nippon Sheet Glass Co Ltd 微小流路素子及びその製造方法
JP2005007415A (ja) * 2003-06-17 2005-01-13 Hamamatsu Photonics Kk レーザ溶接における品質管理方法
JP2005074775A (ja) * 2003-08-29 2005-03-24 Sumitomo Bakelite Co Ltd プラスチック基板の接合方法および接合基板
JP2005077239A (ja) * 2003-08-29 2005-03-24 Sumitomo Bakelite Co Ltd マイクロチップ基板の接合方法およびマイクロチップ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560291A (en) * 1964-03-27 1971-02-02 Mobil Oil Corp Bonding thermoplastic resin films by means of radiation from a laser source
US5591400A (en) * 1994-10-31 1997-01-07 Minnesota Mining And Manufacturing Company Method for producing an ionic sensor
US20080047836A1 (en) * 2002-12-05 2008-02-28 David Strand Configurable Microfluidic Substrate Assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218698A (ja) * 1999-01-28 2000-08-08 Leister Process Technologies レ―ザ―による樹脂の接合方法及びその装置
JP2001334578A (ja) * 2000-05-26 2001-12-04 Matsushita Electric Works Ltd レーザによる樹脂の溶着加工方法
JP2002139419A (ja) * 2000-10-31 2002-05-17 Nippon Sheet Glass Co Ltd 微小流路素子及びその製造方法
JP2005007415A (ja) * 2003-06-17 2005-01-13 Hamamatsu Photonics Kk レーザ溶接における品質管理方法
JP2005074775A (ja) * 2003-08-29 2005-03-24 Sumitomo Bakelite Co Ltd プラスチック基板の接合方法および接合基板
JP2005077239A (ja) * 2003-08-29 2005-03-24 Sumitomo Bakelite Co Ltd マイクロチップ基板の接合方法およびマイクロチップ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102126700A (zh) * 2009-10-23 2011-07-20 优志旺电机株式会社 工件的贴合装置

Also Published As

Publication number Publication date
US20090060782A1 (en) 2009-03-05
EP1864784A1 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
WO2006106848A1 (ja) 基板の貼り合わせ方法、チップ形成方法及びチップ
JP4998462B2 (ja) 樹脂複合成形体の製造方法
US8377393B2 (en) Microchip
JP4969449B2 (ja) 二つのプレートから構成される流体容器
Agha et al. A review of cyclic olefin copolymer applications in microfluidics and microdevices
JP5576040B2 (ja) 樹脂物品の剥離方法およびマイクロチップの剥離方法
JPWO2008087800A1 (ja) マイクロチップの製造方法、及びマイクロチップ
EP1697745A1 (en) Method for bonding plastic micro chip
JP2008008880A (ja) プラスチック製マイクロチップ、及びその製造方法、並びにそれを利用したバイオチップ又はマイクロ分析チップ
JP4072175B2 (ja) 基板の貼り合わせ方法、チップ形成方法及びチップ
JP2010043928A (ja) バイオチップの製造方法およびバイオチップ
JP2008175795A (ja) プラスチック製マイクロチップ、及びその製造方法、並びにそれを利用したバイオチップ又はマイクロ分析チップ
JP2014102217A (ja) 測定システム
JPWO2007055151A1 (ja) マイクロリアクタおよびマイクロ分析システム
JP2008157644A (ja) プラスチック製マイクロチップ、及びそれを利用したバイオチップ又はマイクロ分析チップ。
JP2008203186A (ja) 基板の貼り合わせ方法、マイクロチップの製造方法およびマイクロチップ
WO2022045355A1 (ja) 液体試料分析用マイクロチップの製造方法
US20090263282A1 (en) Microchip
US20210268748A1 (en) Method for increasing the dosing precision of microfluidic pumps or valves, and welding apparatus and tensioning apparatus for carrying out the method
JP5196132B2 (ja) マイクロチップ
JP4752364B2 (ja) プラスチックの接合方法、及びその方法を利用して製造されたバイオチップ又はマイクロ分析チップ
JP2008076208A (ja) プラスチック製マイクロチップ、及びそれを利用したバイオチップ又はマイクロ分析チップ。
JP2004058214A (ja) 流路接続方法、流路接続用部材、マイクロ流体デバイス及びマイクロ流体デバイスの接続構造
JP2006076246A (ja) 基板の貼り合わせ方法、その貼り合わせ方法を用いたチップ形成方法及びチップ
JP2008232939A (ja) マイクロチップ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11817944

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006730656

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730656

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP