WO2006098513A1 - Heat treatment method and method for crystallizing semiconductor - Google Patents

Heat treatment method and method for crystallizing semiconductor Download PDF

Info

Publication number
WO2006098513A1
WO2006098513A1 PCT/JP2006/305884 JP2006305884W WO2006098513A1 WO 2006098513 A1 WO2006098513 A1 WO 2006098513A1 JP 2006305884 W JP2006305884 W JP 2006305884W WO 2006098513 A1 WO2006098513 A1 WO 2006098513A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carbon
heat
heat treatment
semiconductor
Prior art date
Application number
PCT/JP2006/305884
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Sameshima
Nobuyuki Andoh
Original Assignee
National University Corporation Tokyo University Of Agriculture And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Tokyo University Of Agriculture And Technology filed Critical National University Corporation Tokyo University Of Agriculture And Technology
Priority to JP2007508259A priority Critical patent/JPWO2006098513A1/en
Publication of WO2006098513A1 publication Critical patent/WO2006098513A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/326Application of electric currents or fields, e.g. for electroforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1281Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor by using structural features to control crystal growth, e.g. placement of grain filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate

Definitions

  • the present invention relates to a method for heat-treating a material to be processed, and particularly to a method for efficiently heat-treating a semiconductor material or a device in a short time and a method for crystallizing a semiconductor by the heat treatment.
  • Bipolar and MOS type transistors using single crystal silicon as elements constituting electronic devices, and polycrystalline silicon thin film transistors are widely used. Since transistor fabrication is formed on crystalline semiconductors, the formation of crystalline semiconductors is extremely important.
  • crystallization techniques are important for thin-film transistors formed on insulators and insulating film layers.
  • a method of heating at a high temperature of 60 to 100 ° C. for 2 to 20 hours using an electric furnace is known (for example, see Patent Document 1). .
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 4 — 2 2 2 4 3
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 4 — 3 1 1 6 1 5 Disclosure of Invention
  • An object of the present invention is to solve such a problem and to instantaneously and efficiently heat a minute portion of a material to be processed.
  • an instantaneous heat treatment that makes it possible to manufacture an electronic device such as a transistor having good characteristics. It is to provide a method and apparatus.
  • the present invention as set forth in claim 1 uses a carbon layer or a layer containing carbon as a thin film heating element, and the thin film heating element is directly or has a thickness of lOnn! It is formed on the material to be processed through a heat transfer layer of ⁇ 100 / zm, and is heated locally by applying pulse energy to the carbon layer or the layer containing carbon. It is characterized by heat-treating the semiconductor material that is the material to be treated from the surface side by heat transfer.
  • the thin-film heating element der Ru carbon layer also regions pulse width l of the municipal district from 10 ⁇ cm 2 in a layer containing a carbon to 10- 2 cm 2 ( and it is characterized in the this heating treatment the region defined in a short time Ri by the and this give T 7 s or more 10- 2 s following energy scratch.
  • the needle-shaped electrode by bringing the needle-shaped electrode into contact with the carbon layer that is the heat generation layer or the carbon-containing layer, only the needle-shaped electrode contact portion is used by using Joule heat generated by the current supplied from the needle-shaped electrode. Allows local heating.
  • the carbon layer or the layer containing a single bond is used as a thin film heating element, directly or with a thickness of ⁇ ! It is formed to overlap with an amorphous semiconductor material through a heat transfer layer of ⁇ 1 ⁇ ⁇ ⁇ , and gives a pulse-like energy to the carbon layer or the carbon-containing layer as the thin film heating element. It is characterized by a heat treatment method in which the amorphous semiconductor material is heated from the surface side by locally heating by heat transfer.
  • the carbon layer or the layer containing carbon is used as a thin film heating element, and impurities are introduced directly or through a heat transfer layer having a thickness of 10 nm to 100 / m.
  • the carbon layer, which is the thin-film heating element, or the carbon-containing layer is locally heated by applying pulsed energy to the amorphous semiconductor material containing the carbon. Impurities of the amorphous semiconductor material containing the impurities are activated by transmission, and the semiconductor layer is made into a conductor.
  • the invention described in claim 7 is characterized in that a semiconductor element including a plurality of layer structures is used as a material to be heated, and the semiconductor element is heated to improve electrical characteristics of the semiconductor element. Is.
  • the carbon layer or a layer containing carbon is formed on an amorphous semiconductor directly or via a heat transfer layer having a thickness of 10 nm to 100 / zm, and the carbon layer Or containing carbon
  • the layer is heated locally by applying pulsed energy locally to the part that functions as a transistor to heat the layer, and the amorphous semiconductor is heat-treated by the generated heat. This is a method for crystallizing a semiconductor characterized by this.
  • the amorphous semiconductor is limited as containing an impurity.
  • a crystalline semiconductor thin film can be formed.
  • an amorphous semiconductor as the material to be processed and performing the heat treatment by the heat treatment method of the present invention, the amorphous semiconductor can be melted and crystallized by heat.
  • FIG. 1 is an explanatory view of a method for heat-treating a material to be treated in the heat treatment method of the present invention.
  • FIG. 2 is an explanatory diagram when the heat treatment of the present invention is performed by a pulse laser.
  • Figure 3 is a graph showing the frequency characteristics of the light reflectance of a carbon film, which is a black body.
  • FIG. 4 is an explanatory diagram showing a heat treatment of the heat treatment of the present invention by excimer laser irradiation.
  • FIG. 5 is an explanatory diagram for performing heat treatment by excimer laser irradiation when the present invention is not used.
  • Figure 6 is a graph showing the results of crystallization accelerated by heating with laser irradiation.
  • FIG. 7 is an explanatory diagram when heating is performed by Joule heat generated by a pulse current.
  • FIG. 8 is an explanatory diagram of a method for performing local heating by Joule heat.
  • FIG. 9 is a diagram for explaining ion implantation in the pretreatment using the present invention. is there.
  • FIG. 10 is a diagram showing that a heat transfer layer and a carbon layer are deposited on the material layer to be processed after ion implantation.
  • FIG. 11 is an explanatory diagram of a method for activating impurities by heat treatment using light irradiation according to the present invention.
  • FIG. 12 is a conceptual diagram of a method for activating impurities by heat treatment using Joule heat according to the present invention.
  • Figure 1 3 is because a view showing a material to be treated was subjected to property modification of the insulating film and the semiconductor body surface is a layer structure by heat treating process of the present invention 0
  • Fig. 14 is a diagram showing that a force layer was formed on the material to be processed shown in Fig. 13.
  • FIG. 15 is a view showing a form in which the carbon layer is removed after the material to be treated shown in FIG. 14 is heat-treated.
  • FIG. 16 is an explanatory view of manufacturing a thin film transistor as a semiconductor element including a layer structure, and then performing heat treatment by light irradiation according to the method of the present invention.
  • FIG. 17 is an explanatory diagram of fabricating a thin film transistor as a semiconductor element including a layer structure and then performing a heating process by Joule heat according to the method of the present invention.
  • Figure 18 is a graph showing the degree of crystallization of silicon after heating by Joule heat. O o Best Mode for Carrying Out the Invention
  • FIG. 1 is a conceptual diagram of the heat treatment method of the present invention.
  • the principle of operation is that, for example, a glass substrate is used as the substrate 0 0 1, and a material layer 0 0 2 to be processed is formed thereon.
  • An example of the material layer to be processed is silicon.
  • a heat transfer layer 0 0 3 is formed thereon.
  • Heat transfer layer material An example is S i O 2.
  • a carbon film or a film containing carbon is formed as a thin film heating element 0 04 on the heat transfer layer of Si 0 2.
  • pulse energy is locally applied to the carbon film or the carbon-containing film as a thin film heating element to generate heat.
  • the material to be treated is heated by the generated heat.
  • the thickness of the heat transfer layer 0 3 should be 10 nm or more, and if it is 10 0 ⁇ or less, the heat quickly propagates through the heat transfer layer 0 3 and heats the material to be processed 0 0 2 can do.
  • the carbon layer as a thin film heating element or the layer containing carbon is heated by combining the heat transfer layer of 100 / zm or less and the material to be heated.
  • the thickness of the carbon layer or carbon-containing layer of the thin film heating element is large, the amount of heat required to heat the carbon layer or the carbon-containing layer itself to a high temperature is required, and the material to be heated is heated. The total amount of heat required to do so increases and heating efficiency deteriorates. Therefore, the thickness of the carbon layer, which is a thin-film heating element, or the layer containing carbon is preferably about 100 / m or less in order to sufficiently exert the heating effect.
  • FIG. 2 is an explanatory diagram when the heat treatment of the present invention is performed by a pulsed laser beam. 10- 7 s or more 10- 2 s pulse width less laser light 0 0 5 irradiating the heat generating layer 0 0 4. By irradiating the heat generation layer 0 0 4 with the laser light 0 0 5, the heat generation layer 0 4 4 absorbs the laser light and is converted into heat energy. The generated heat is transferred to the material to be processed 0 0 2 through the heat transfer layer 0 0 3. If only this preparative-out area of the irradiation light to 10- 1 0 cm 2 or more 10 2 cm 2, Ru can and this heat treatment is performed at an energy of small pulse light.
  • the force consisting of carbon or a layer containing carbon as a thin film heating element As shown in Fig. 3, the single layer has a light reflectance, and the wavelength of the laser beam is 0.
  • laser light with a single wavelength but also a wide range of light with a wavelength of 2 ⁇ m to 20 ⁇ m can be used efficiently as light for energy supply.
  • a xenon lamp can be used.
  • FIG. 4 shows an example in which the heat treatment of the present invention using pulsed laser light is applied to heat crystallization of a silicon film.
  • a 25 nm amorphous silicon film 0 02 as a material to be processed was formed on a glass substrate 0 1, and a 5 nm Si02 film 0 3 was formed thereon as a heat transfer layer.
  • a carbon layer having a thickness of lOO nm was formed thereon with a notch.
  • Fig. 5 shows an example of a sample made of silicon film only.
  • Fig. 6 is a graph showing the laser energy dependence of the crystallization rate of the silicon film when the carbon layer is irradiated with laser and when the silicon film is directly irradiated with laser. From Fig. 6, it can be seen that when the laser is irradiated on the carbon layer, a higher crystallization rate is obtained than when the silicon film is directly irradiated with the laser, and the bonding is performed with a small energy of 200 mJ / cm 2. It can be seen that a crystallization ratio of 0.8 was obtained.
  • the light reflectivity of carbon at a laser wavelength of 308 nm is 15%, which is small compared to the light reflectivity of 55% of the silicon film.
  • the carbon film absorbs laser light efficiently, and the underlying silicon film The silicon film is highly heated when heated to a higher temperature. This can also be understood from the fact that the crystallization rate is high.
  • FIG. 7 is an explanatory diagram when the heat treatment of the present invention is performed by Joule heat generated by a pulse current.
  • a glass substrate is used as the substrate 0 0 1, and a material layer 0 0 2 to be processed is formed thereon.
  • An example of the heat-treated material layer is silicon.
  • a heat transfer layer 0 0 3 is formed thereon.
  • An example of the heat transfer layer material is SiO2.
  • a carbon film or a film containing carbon is formed as the thin film heating element 0.
  • an electrode 0 0 6 and an electrode 0 0 7 are formed.
  • the electrodes 0 6 and 0 7 are preferably made of a material having a sufficiently low resistance value, and metal is suitable.
  • the above treatment can be applied to heat crystallization of a silicon film.
  • FIG. 8 is an example of a heating method applying the method of FIG. 7, and is an example suitable for performing local heating.
  • a glass substrate is used as the substrate 0 0 1, and a Si 0 2 film is formed as a heat transfer layer 0 0 3 on the silicon film that is the material layer 0 0 2 formed on the glass substrate.
  • a carbon film or a film containing carbon is formed on the thin film heat generating layer 0 4.
  • Electrodes 0 0 6 and 0 0 7 are formed to supply current. By making the electrode 06 very small, the current density in the vicinity of the electrode 06 becomes very large. Therefore, a large Joule heat density is generated, and efficient heating is possible with relatively little input energy.
  • a 25 nm thick amorphous amorphous silicon film was formed on a glass substrate 0 0 1 as a silicon film of the material to be processed 0 2.
  • a 5 nm Si02 heat transfer layer 0 3 was formed thereon.
  • a metal probe having a diameter of 100 ⁇ was used as electrodes 0 0 6 and 0 0 7, and was brought into contact with the carbon film 0 0 4.
  • the resistance between the electrodes was 600 ⁇ .
  • a voltage of 120V was applied between electrodes 0 0 6 and 0 0 7 for 2 ms. After voltage application, the silicon film under the probe electrode crystallized in the range of about 100 ⁇ m diameter.
  • Figure 18 shows the result.
  • Figure 18 shows the crystallized part and the Raman scattering spectrum of the initial film.
  • a very strong crystalline silicon TO phonon peak is observed at 516 cm-1, and a low-frequency broad peak in the initial film is observed. It can be seen that it became very small after crystallization. This result indicates that the silicon film was well crystallized by Joule heating using a carbon film.
  • the shape of the electrode 06 is a circle, but the shape is not limited to a circle and can be changed as appropriate.
  • the electrode contact area 10- 1 0 cm 2 or more 10- 2 cm 2 localized heating of the lower region of this and no electrodes to introduce a large amount of power if the following can be achieved.
  • the shape of the electrode 0 7 is shown to be rectangular and has a larger area than the electrode 0 6, but if necessary, the shape of both electrodes can be changed to, for example, the electrode 0 0 very small area cormorants yo of 6, for example, 10 1 is 0 cm possible two or more 10- 2 cm 2 or less and child.
  • FIG. 9 is a conceptual diagram of impurity activation by the heat treatment method of this heating.
  • a semiconductor film 0 1 1 is formed on a glass substrate of a substrate 0 0 1.
  • impurities are implanted by an ion implantation method.
  • the heat transfer layer 0 0 3 is formed on the semiconductor film 0 11 1 into which impurities are implanted, and the heat generation layer 0 0 4 is formed on the heat transfer layer 0 0 3. Then, a carbon layer or a layer containing carbon is formed.
  • pulse light is irradiated to generate 0 0 4 heat, and 0 1 1 is heat-treated for impurity activation treatment.
  • electrodes 0 0 6 and 0 0 7 for supplying current are formed on the heating layer 0 0 4 of FIG. 8 _ b as shown in FIG. Heat treatment is performed by applying a pulse current, and impurity activation processing is performed.
  • FIG. 13 shows a conceptual diagram of the method.
  • an oxide film 0 2 which is a material layer to be processed
  • a semiconductor surface which is a substrate 0 1 1
  • lattice defects 0 1 2 are generated at the interface.
  • a carbon layer thin film heating element is stacked on the oxide film 0 0 2, and the heat treatment method of the present invention is used.
  • heat treatment is performed at a short time, eg, 10 / zs.
  • defects 0 12 in the semiconductor interface and oxide film are reduced, and an interface having good electrical characteristics can be obtained.
  • the carbon layer is removed after the heat treatment.
  • the heat treatment method of the present invention can reduce defects and improve the interface of the semiconductor Z insulator.
  • the heat treatment method of the present invention is also effective for improving characteristics by heat treatment of MOSFETs, bipolar transistors, laser diodes and the like formed on a semiconductor substrate.
  • FIG. 1 6 is!
  • Semiconductors Bruno 3 comprises a layer structure, as a 'child to prepare a thin film preparative La Njisuta is the conceptual diagram applying by Ri heat treatment in the light irradiation by Method towards present invention thereafter .
  • a semiconductor layer 0 0 2 is formed on a substrate 0 0 1, a gate insulating film 0 0 9 is formed thereon, a gate electrode 0 1 3 is formed, and then a source region is formed by ion implantation or the like.
  • Impurities are implanted into 0 1 4 and the drain region 0 1 5. Further, a source electrode 0 1 6 and a drain electrode 0 1 7 are formed. After the passivation layer 0 18 is formed, a carbon layer or a layer containing a strong bond is formed as the heat generating layer 0 4, and the heat treatment method of the present invention is performed. 0
  • electrodes 0 06 and 0 07 are formed as shown in FIG.
  • a crystalline semiconductor thin film can be formed.
  • a crystalline thin film transistor can be fabricated using this crystalline semiconductor thin film as a channel layer.
  • An electronic device equipped with a plurality of thin-film transistors can be formed by using part or all of this crystalline thin-film transistor fabrication method.
  • An n-type or p-type semiconductor layer can be formed by heating a semiconductor layer containing an impurity using the heat treatment method of the present invention and activating the impurity. If an impurity that generates a hole carrier is mixed in a part of an n-type semiconductor, or an impurity that generates an electron carrier is mixed in a part of a p-type semiconductor, the present invention By heating the semiconductor layer containing impurities using this heat treatment method, the semiconductor P n junctions can be formed.
  • the insulating film can be modified by heat-treating the insulating film using the heat treatment method of the present invention.
  • the substrate surface can be protected with a good quality insulating film.
  • a field-effect transistor can be fabricated using a modified insulating film.
  • a semiconductor surface protective insulating film can be fabricated using the modified insulating film.
  • the interface characteristics can be improved by heat-treating the interface of the insulating film Z semiconductor using the heat treatment method of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

A crystal growing direction and crystal grain boundary formation of a semiconductor material are accurately controlled, defect density in a transistor is made uniform, and fluctuation in characteristics such as threshold, mobility and leak current is reduced. A heat transfer layer and a carbon layer as a heat generating body are stacked on the semiconductor material to be heat treated, a laser beam or a voltage is applied on the carbon layer to have the carbon layer generate heat, and the semiconductor material is heated through the heat transfer layer.

Description

明細書  Specification
熱処理方法及び半導体の結晶化方法 技術分野  Heat treatment method and semiconductor crystallization method
本発明は、 被処理材料を熱処理する方法に関し、 特に、 半導体 材料またはデバイ スなどを短時間に効率よ く 熱処理する方法とそ の熱処理によって半導体を結晶化する方法に関するものである。 背景技術  The present invention relates to a method for heat-treating a material to be processed, and particularly to a method for efficiently heat-treating a semiconductor material or a device in a short time and a method for crystallizing a semiconductor by the heat treatment. Background art
電子デバイスを構成する素子と して単結晶シ リ コ ンを用いたバ ィポーラおよび M O S型 卜ランジスタ、 さ らには、 多結晶シリ コ ン薄膜 トラ ンジスタが広く 用いられている。 ト ランジスタ作製は 結晶性半導体上に形成されるので、 結晶性半導体の形成は極めて 重要である。  Bipolar and MOS type transistors using single crystal silicon as elements constituting electronic devices, and polycrystalline silicon thin film transistors are widely used. Since transistor fabrication is formed on crystalline semiconductors, the formation of crystalline semiconductors is extremely important.
特に、 絶縁体および絶縁膜層上に形成される薄膜 ト ランジスタ にとつて結晶化技術は重要である。従来の薄膜結晶化技術と して、 電気炉を用いて 6 0 0〜 1 0 0 0 °Cの高温で 2〜 2 0 時間加熱す る方法が知られている (例えば、 特許文献 1 参照)。  In particular, crystallization techniques are important for thin-film transistors formed on insulators and insulating film layers. As a conventional thin film crystallization technique, a method of heating at a high temperature of 60 to 100 ° C. for 2 to 20 hours using an electric furnace is known (for example, see Patent Document 1). .
あるいは、 パルス レーザを用いて薄膜を短時間溶融して固化結 晶化する技術、 および半導体表面の リ ッジの形成を抑制しながら レーザァニールを行う技術が知られている (例えば、 特許文献 2 参照)。  Alternatively, a technique is known in which a thin film is melted for a short time using a pulsed laser to solidify and crystallize, and a technique in which laser annealing is performed while suppressing formation of a ridge on the semiconductor surface (see, for example, Patent Document 2). ).
しかしながら上述の結晶化技術は、 大面積にわたって良質の多 結晶シ リ コ ン膜の形成を実現するが、 結晶成長方向および結晶粒 界形成のコ ン ト ロールが困難であった。 それゆえ、 ト ランジスタ 内の欠陥密度にばらつきが生じ、 しきい値、 移動度、 リ ーク電流 等 ト ラ ンジス タ特性のばらつきを生じる欠点があった。さ らには、 特許文献 1 記載の技術では高温長時間の加熱を必要と し、 ェネル ギー消費が大きいとい う 問題もあった。 However, although the above-mentioned crystallization technique can form a high-quality polycrystalline silicon film over a large area, it has been difficult to control the crystal growth direction and the formation of crystal grain boundaries. For this reason, the defect density in the transistor varies, and there is a drawback that the transistor characteristics such as threshold value, mobility, and leakage current vary. Furthermore, the technology described in Patent Document 1 requires heating at a high temperature for a long time. There was also a problem that the energy consumption was large.
[特許文献 1 ] 特開 2 0 0 4 — 2 2 2 4 3号公報  [Patent Document 1] Japanese Patent Laid-Open No. 2 0 0 4 — 2 2 2 4 3
[特許文献 2 ] 特開 2 0 0 4 — 3 1 1 6 1 5号公報 発明の開示  [Patent Document 2] Japanese Patent Laid-Open No. 2 0 0 4 — 3 1 1 6 1 5 Disclosure of Invention
本発明の 目的は、 かかる問題を解決し、 被処理材料の微小部分 を瞬間的に効率よ く 熱処理する方法、 特に、 良好な特性の ト ラン ジスタ等電子デバイス作製を可能にする瞬間的熱処理の方法およ び装置を提供するこ とである。 特に、 従来の技術ではごく 限られ た領域に加熱を限定し、 局所的に加熱処理を行う こ とは困難であ つたが、 本発明の目的は、 かかる問題を解決する ものである。  An object of the present invention is to solve such a problem and to instantaneously and efficiently heat a minute portion of a material to be processed. In particular, an instantaneous heat treatment that makes it possible to manufacture an electronic device such as a transistor having good characteristics. It is to provide a method and apparatus. In particular, in the conventional technique, it is difficult to limit the heating to a very limited region and perform the heat treatment locally, but the object of the present invention is to solve such a problem.
上記の目的を達成するために、請求の範囲 1 に記載の本発明は、 カーボン層またはカーボンを含む層を薄膜発熱体と して用い、 該 薄膜発熱体を直接または厚さ lOnn!〜 1 0 0 /z mの伝熱層を介し て被処理材料に重ねて形成し、 前記カーボン層も しく はカーボン を含む層にパルス的なエネルギーを与える こ と によ り 局所的に加 熱し、 熱伝達によ り被処理材料である半導体材料をその表面側か ら加熱処理する こ と を特徴とする ものである。  In order to achieve the above object, the present invention as set forth in claim 1 uses a carbon layer or a layer containing carbon as a thin film heating element, and the thin film heating element is directly or has a thickness of lOnn! It is formed on the material to be processed through a heat transfer layer of ˜100 / zm, and is heated locally by applying pulse energy to the carbon layer or the layer containing carbon. It is characterized by heat-treating the semiconductor material that is the material to be treated from the surface side by heat transfer.
また、 請求の範囲 2 に記載の発明は、 さ らに、 薄膜発熱体であ るカーボン層も しく はカーボンを含む層において 10· cm2 から 10- 2 cm2 までの領域にパルス幅 l(T7s以上 10—2s以下のエネルギ 一を与える こ と によ り 短時間に限定された領域を加熱処理する こ と を特徴とする ものである。 Further, the invention according to claim 2, and La, the thin-film heating element der Ru carbon layer also regions pulse width l of the municipal district from 10 · cm 2 in a layer containing a carbon to 10- 2 cm 2 ( and it is characterized in the this heating treatment the region defined in a short time Ri by the and this give T 7 s or more 10- 2 s following energy scratch.
請求の範囲 3 の発明では、 さ らに、 10-7s 以上 10-2s 以下のパ ノレス幅を有し、 かつ波長 0. 2 ;i m以上 2 0 μ πι以下の電磁波を 薄膜発熱体.であるカーボン層も しく はカーボンを含む層に照射し、 当該層に電磁波を吸収させて電磁波のエネルギーを熱エネルギー に変換し、 発熱させるこ と を特徴とするものである。 また、 請求の範囲 4 に記載の発明では、 パルス幅 10- 7 s 以上 10- 2 s 以下のパルス電流を薄膜発熱体であるカーボン層も しぐは カーボンを含む層に流すこ とによ り 当該層に発生するジュール熱 を用いて加熱する こ と を特徴と している。 In the present invention in a third claims, it is La, 10- 7 s or more 10- 2 s have the following path Noresu width, and wavelength 0. 2; im more 2 0 μ πι following electromagnetic thin film heating element. The carbon layer or the layer containing carbon is irradiated, and the layer absorbs the electromagnetic wave, converts the electromagnetic wave energy into heat energy, and generates heat. Further, in the invention according to claim 4, carbon layers pulse width 10- 7 s or more 10- 2 s the following pulse current is a thin film heating element may Sig are shorted with a and this flow in the layer containing carbon It is characterized by heating using Joule heat generated in the layer.
特に針状の電極を発熱層であるカーボン層も しく はカーボンを 含む層に接触させる こ と によ り 、 針状の電極から供給される電流 によるジュール熱を用いて針状電極接触部分のみの局所的加熱を 可能にする。  In particular, by bringing the needle-shaped electrode into contact with the carbon layer that is the heat generation layer or the carbon-containing layer, only the needle-shaped electrode contact portion is used by using Joule heat generated by the current supplied from the needle-shaped electrode. Allows local heating.
さ らに請求の範囲 5 に記載の発明では、 カーボン層も しく は力 一ボンを含む層を薄膜発熱体と して、 直接または厚さ Ι Οηπ!〜 1 Ο Ο μ πιの伝熱層を介して非晶質半導体材料に重ねて形成し、 該 薄膜発熱体である前記カーボン層も しく はカーボンを含む層にパ ルス的なエネルギーを与えるこ とによ り 局所的に加熱し、 熱伝達 によ り 前記非晶質半導体材料をその表面側から加熱処理する熱処 理方法を特徴とする ものである。  Further, in the invention described in claim 5, the carbon layer or the layer containing a single bond is used as a thin film heating element, directly or with a thickness of ΙΙηπ! It is formed to overlap with an amorphous semiconductor material through a heat transfer layer of ˜1 Ο μ μπι, and gives a pulse-like energy to the carbon layer or the carbon-containing layer as the thin film heating element. It is characterized by a heat treatment method in which the amorphous semiconductor material is heated from the surface side by locally heating by heat transfer.
さ らに、 請求の範囲 6 に記載の発明では、 カーボン層も しく は カーボンを含む層を薄膜発熱体と して、 直接または厚さ 10nm〜 1 0 0 / mの伝熱層を介して不純物を含む非晶質半導体材料に重 ねて形成し、 該薄膜発熱体である前記カーボン層も しく はカーボ ンを含む層にパルス的なエネルギーを与える こ と によ り 局所的に 加熱し、 熱伝達によ り前記不純物を含む非晶質半導体材料の不純 物を活性化させ、前記半導体層を導電体にするこ と を特徴とする。  Further, in the invention described in claim 6, the carbon layer or the layer containing carbon is used as a thin film heating element, and impurities are introduced directly or through a heat transfer layer having a thickness of 10 nm to 100 / m. The carbon layer, which is the thin-film heating element, or the carbon-containing layer is locally heated by applying pulsed energy to the amorphous semiconductor material containing the carbon. Impurities of the amorphous semiconductor material containing the impurities are activated by transmission, and the semiconductor layer is made into a conductor.
また、 請求の範囲 7記載の発明は、 被加熱処理材料と して複数 の層構造を含む半導体素子を用い、 半導体素子を加熱し、 半導体 素子の電気的特性を改善するこ と を特徴とする ものである。  The invention described in claim 7 is characterized in that a semiconductor element including a plurality of layer structures is used as a material to be heated, and the semiconductor element is heated to improve electrical characteristics of the semiconductor element. Is.
さ らに、 請求の範囲 8記載の発明は、 カーボン層またはカーボ ンを含む層を直接または厚さ 10nm〜100 /z mの伝熱層を介して 非晶質半導体上に形成し、 上記カーボン層またはカーボンを含む 層に局所的に、 すなわち ト ラ ンジス タ と しての機能を有する部分 に局所的にパルス的エネルギーを与えて当該層を発熱させ、 この 発熱した熱によ り 上記非晶質半導体を加熱処理する こ と を特徴と する半導体の結晶化方法である。 Further, in the invention described in claim 8, the carbon layer or a layer containing carbon is formed on an amorphous semiconductor directly or via a heat transfer layer having a thickness of 10 nm to 100 / zm, and the carbon layer Or containing carbon The layer is heated locally by applying pulsed energy locally to the part that functions as a transistor to heat the layer, and the amorphous semiconductor is heat-treated by the generated heat. This is a method for crystallizing a semiconductor characterized by this.
さ らに、 請求の範囲 9 に記載の発明では、 上記非晶質半導体に ついて不純物を含むものと して限定したものである。  Further, in the invention described in claim 9, the amorphous semiconductor is limited as containing an impurity.
本発明の熱処理方法を用いる こ と によ り 、 結晶性半導体薄膜の 形成を行う こ とができ る。被処理材料と して非晶質半導体を用レ、、 本発明の熱処理方法によ り加熱処理を行う こ とによ り 当該非晶質 半導体は熱によ り 溶融結晶化させる こ とができる。 図面の簡単な説明  By using the heat treatment method of the present invention, a crystalline semiconductor thin film can be formed. By using an amorphous semiconductor as the material to be processed and performing the heat treatment by the heat treatment method of the present invention, the amorphous semiconductor can be melted and crystallized by heat. . Brief Description of Drawings
図 1 は、 本発明の熱処理方法において、 被処理材料を熱処理す る方法の説明図である。  FIG. 1 is an explanatory view of a method for heat-treating a material to be treated in the heat treatment method of the present invention.
図 2 は、 本発明の熱処理をパルス レーザによ り行う場合の説明 図である。  FIG. 2 is an explanatory diagram when the heat treatment of the present invention is performed by a pulse laser.
図 3 は、 黒色体であるカーボン膜の光反射率の周波数特性を示 すグラフである。  Figure 3 is a graph showing the frequency characteristics of the light reflectance of a carbon film, which is a black body.
図 4 は、 本発明の熱処理をエキシマ レーザ照射によ り加熱処理 を行う説明図である。  FIG. 4 is an explanatory diagram showing a heat treatment of the heat treatment of the present invention by excimer laser irradiation.
図 5 は、 本発明を使用 しない場合のエキシマ レーザ照射による 加熱処理を行う説明図である。  FIG. 5 is an explanatory diagram for performing heat treatment by excimer laser irradiation when the present invention is not used.
図 6 は、 レーザ照射の加熱によって結晶化が促進された結果を 示すグラフである。  Figure 6 is a graph showing the results of crystallization accelerated by heating with laser irradiation.
図 7 は、 パルス電流によ り発生するジュール熱によ り行う加熱 を行う場合の説明図である。  FIG. 7 is an explanatory diagram when heating is performed by Joule heat generated by a pulse current.
図 8 は、ジュール熱によ り局所加熱を行う方法の説明図である。 図 9 は、 本発明を用いる前処理で、 イオン注入を説明する図で ある。 FIG. 8 is an explanatory diagram of a method for performing local heating by Joule heat. FIG. 9 is a diagram for explaining ion implantation in the pretreatment using the present invention. is there.
図 1 0 は、 イ オン注入の後、 被処理材料層に伝熱層とカーボン 層を堆積させたこ と を示す図である。  FIG. 10 is a diagram showing that a heat transfer layer and a carbon layer are deposited on the material layer to be processed after ion implantation.
図 1 1 は、 本発明の光照射よる熱処理で、 不純物を活性化させ る方法の説明図である。  FIG. 11 is an explanatory diagram of a method for activating impurities by heat treatment using light irradiation according to the present invention.
図 1 2 は、 本発明のジュール熱による熱処理で、 不純物を活性 化させる方法の概念図である。  FIG. 12 is a conceptual diagram of a method for activating impurities by heat treatment using Joule heat according to the present invention.
図 1 3 は、 本発明の熱処理法による層構造である絶縁膜と半導 体界面の特性改質の対象と した被処理材料を示す図でめ 0 Figure 1 3 is because a view showing a material to be treated was subjected to property modification of the insulating film and the semiconductor body surface is a layer structure by heat treating process of the present invention 0
図 1 4 は、 図 1 3 で示す被処理材料の上に力一ボン層を作製し たこ と を示す図でめ 。  Fig. 14 is a diagram showing that a force layer was formed on the material to be processed shown in Fig. 13.
図 1 5 は、 図 1 4 で示す被処理材料を熱処理した後 、 カーボン 層を除去した形態を示す図である。  FIG. 15 is a view showing a form in which the carbon layer is removed after the material to be treated shown in FIG. 14 is heat-treated.
図 1 6 は、 層構造を含む半導体素子と して薄膜 トランジスタを 作製し、 しかる後に本発明の方法による光照射による加熱処理を 施す説明図である  FIG. 16 is an explanatory view of manufacturing a thin film transistor as a semiconductor element including a layer structure, and then performing heat treatment by light irradiation according to the method of the present invention.
図 1 7 は、 層構造を含む半導体素子と して薄膜 ト ラ ンジスタを 作製し、 しかる後に本発明の方法によ るジュール熱による加熱処 理を施す説明図でめ 。  FIG. 17 is an explanatory diagram of fabricating a thin film transistor as a semiconductor element including a layer structure and then performing a heating process by Joule heat according to the method of the present invention.
図 1 8 は、 ジュール熱による加熱後のシリ コ ンの結晶化の度合 いを示すグラフでめ O o 発明を実施するための最良の形態  Figure 18 is a graph showing the degree of crystallization of silicon after heating by Joule heat. O o Best Mode for Carrying Out the Invention
以下、 本発明の実施の形態について図面を参照しながら説明す る。 図 1 は、 本発明の熱処理方法の概念図である。 動作原理は、 基板 0 0 1 と して例えばガラス基板を用い、 その上に被処理材料 層 0 0 2 を形成する。 被処理材料層 と しては例えばシリ コンが挙 げられる。 そしてその上に伝熱層 0 0 3 を形成する。 伝熱層材料 と しては S i O 2 が例示でき る。 こ の S i 0 2 の伝熱層上に薄膜 発熱体 0 0 4 と してカーボン膜も しく はカーボンを含む膜を形成 する。 そして、 薄膜発熱体であるカーボン膜も しく はカーボンを 含む膜 0 0 4 にパルスエネルギーを局所的に与え、 発熱させる。 発熱した熱で被処理材料 0 0 2 を加熱する ものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram of the heat treatment method of the present invention. The principle of operation is that, for example, a glass substrate is used as the substrate 0 0 1, and a material layer 0 0 2 to be processed is formed thereon. An example of the material layer to be processed is silicon. A heat transfer layer 0 0 3 is formed thereon. Heat transfer layer material An example is S i O 2. A carbon film or a film containing carbon is formed as a thin film heating element 0 04 on the heat transfer layer of Si 0 2. Then, pulse energy is locally applied to the carbon film or the carbon-containing film as a thin film heating element to generate heat. The material to be treated is heated by the generated heat.
発熱体 0 0 4 と被処理材料 0 0 2 と を伝熱層 0 0 3 で隔てる こ とは、 加熱用薄膜発熱体 0 0 4 のカーボン等の汚染等の影響が被 処理材料 0 0 2 に及ぶのを抑制する上で好ま しい。 伝熱層 0 0 3 の厚さは 1 0 n m以上あればよ く 、 1 0 0 μ πι以下であれば熱は 速やかに伝熱層 0 0 3 を伝搬し、 被処理材料 0 0 2 を加熱するこ とができ る。 この場合は、 薄膜発熱体であるカーボン層も しく は カーボンを含む層は 1 0 0 /z m以下の伝熱層と被加熱材料を合わ せて加熱するこ と になる。 薄膜発熱体のカーボン層も しく はカー ボンを含む層の厚みが厚いと、 カーボン層も しく はカーボンを含 む層自身を高温に加熱するための熱量が必要とな り 、 被加熱材料 を加熱するのに要する総熱量が増え、 加熱効率が悪く なる。 した がって、 薄膜発熱体であるカーボン層も しぐはカーボンを含む層 の厚さは、 加熱効果を十分発揮するためには 1 0 0 / m程度以下 が好ま しい。  Separation of the heating element 0 0 4 and the material to be treated 0 0 2 by the heat transfer layer 0 0 3 means that the effect of the contamination of the heating thin film heating element 0 0 4 on the carbon to be treated 0 0 2 It is preferable to suppress the spread. The thickness of the heat transfer layer 0 3 should be 10 nm or more, and if it is 10 0 μμπι or less, the heat quickly propagates through the heat transfer layer 0 3 and heats the material to be processed 0 0 2 can do. In this case, the carbon layer as a thin film heating element or the layer containing carbon is heated by combining the heat transfer layer of 100 / zm or less and the material to be heated. If the thickness of the carbon layer or carbon-containing layer of the thin film heating element is large, the amount of heat required to heat the carbon layer or the carbon-containing layer itself to a high temperature is required, and the material to be heated is heated. The total amount of heat required to do so increases and heating efficiency deteriorates. Therefore, the thickness of the carbon layer, which is a thin-film heating element, or the layer containing carbon is preferably about 100 / m or less in order to sufficiently exert the heating effect.
図 2 は、 本発明の熱処理をパルス レーザ光によ り行う場合の説 明図である。 10— 7 s 以上 10— 2 s 以下のパルス幅のレーザ光 0 0 5 を発熱層 0 0 4 に照射する。 レーザ光 0 0 5 を発熱層 0 0 4 に照 射するこ と によ り 、 発熱層 0 0 4 はレーザ光を吸収し、 熱ェネル ギ一に変換される。 発生した熱は伝熱層 0 0 3 を介し、 被処理材 料 0 0 2 に伝熱される。 こ の と き照射光の面積を 10- 1 0 cm2 以上 10 2 cm2 に限定すれば、 小さいパルス光のエネルギーで加熱処理 を行う こ とができ る。 FIG. 2 is an explanatory diagram when the heat treatment of the present invention is performed by a pulsed laser beam. 10- 7 s or more 10- 2 s pulse width less laser light 0 0 5 irradiating the heat generating layer 0 0 4. By irradiating the heat generation layer 0 0 4 with the laser light 0 0 5, the heat generation layer 0 4 4 absorbs the laser light and is converted into heat energy. The generated heat is transferred to the material to be processed 0 0 2 through the heat transfer layer 0 0 3. If only this preparative-out area of the irradiation light to 10- 1 0 cm 2 or more 10 2 cm 2, Ru can and this heat treatment is performed at an energy of small pulse light.
薄膜発熱体であるカーボンまたはカーボンを含む層からなる力 一ボン層は図 3 に示すよ う に光反射率を、 レーザ光の波長が 0 .The force consisting of carbon or a layer containing carbon as a thin film heating element As shown in Fig. 3, the single layer has a light reflectance, and the wavelength of the laser beam is 0.
2 m以上 2 0 mの広範囲で極めて低く 且つ不透明の黒色体に 形成するこ とが可能である 。 従って レ一ザ光の波長が 0 • 2 μ m 以上 2 0 μ mの広範囲の光を効率よ く 吸収する こ とがでさ Ό It can be formed into a very low and opaque black body over a wide area of 2 m to 20 m. Therefore, it is possible to efficiently absorb a wide range of laser light with a wavelength of 0 • 2 μm or more and 20 μm.
また、 ェネルギー供給のための光と して単一波長のレ一ザ光の みならず、 波長 2 μ m以上 2 0 μ mの広範囲の光を効率よ く 用いる こ とができ る。 例えばキセノ ンランプを用いる こ とができ る。  In addition, not only laser light with a single wavelength but also a wide range of light with a wavelength of 2 μm to 20 μm can be used efficiently as light for energy supply. For example, a xenon lamp can be used.
上記の処理をシリ コン膜の加熱結晶化に適用する こ とができる。 図 4 は、 パルス レーザ光をもちいた本発明の熱処理をシ リ コ ン 膜の加熱結晶化に適用 した実施例である。 試料はガラス基板 0 0 1 上に被処理材料と しての 25 nmのアモルフ ァ スシリ コン膜 0 0 2 を形成し、 その上に伝熱層と して 5 nmの S i02膜 0 0 3 を形成 し、 その上に l O O nm 厚のカーボン層 0 0 4 をス ノ ッタで形成し た。 比較のために、 図 5 にシ リ コ ン膜のみの試料で作成した例を 示す。 これらの試料に波長 308 nm パルス幅 30 n s の Xe C lエキシ マ レーザ 0 0 5 を照射した。 レーザを照射した後、 図 4 に示す試 料については、 カーボン膜 0 0 4、 S i02膜 0 0 3 を除去してシリ コ ン表面の結晶化率を分光測定法によ り評価した。  The above treatment can be applied to heat crystallization of a silicon film. FIG. 4 shows an example in which the heat treatment of the present invention using pulsed laser light is applied to heat crystallization of a silicon film. As a sample, a 25 nm amorphous silicon film 0 02 as a material to be processed was formed on a glass substrate 0 1, and a 5 nm Si02 film 0 3 was formed thereon as a heat transfer layer. Then, a carbon layer having a thickness of lOO nm was formed thereon with a notch. For comparison, Fig. 5 shows an example of a sample made of silicon film only. These samples were irradiated with a Xe Cl excimer laser 0 0 5 with a wavelength of 308 nm and a pulse width of 30 ns. After the laser irradiation, for the sample shown in FIG. 4, the carbon film 04 and the Si02 film 03 were removed, and the crystallization rate on the silicon surface was evaluated by spectroscopic measurement.
図 6 は、 カーボン層にレーザを照射した場合とシ リ コ ン膜に直 接レーザ照射した場合の、 シ リ コ ン膜の結晶化率のレーザェネル ギ一依存性を示す図である。 図 6 から、 カーボン層にレーザを照 射した場合は、 シ リ コ ン膜に直接レーザ照射した場合に比べて高 い結晶化率が得られ、 また、 200 mJ/c m 2 の小さいエネルギーで結 晶化率 0.8 を得るこ とができたこ とがわかる。 レーザ波長 308 nm におけるカーボンの光反射率は 1 5 %と シリ コン膜の光反射率 55 % に比べて小さ く 、カーボン膜 0 0 4 はレーザ光を効率よ く 吸収し、 下層のシリ コン膜をよ り 高温に加熱したこ とが、 シリ コン膜が高 い結晶化率を示しているこ とからも理解でき る。 Fig. 6 is a graph showing the laser energy dependence of the crystallization rate of the silicon film when the carbon layer is irradiated with laser and when the silicon film is directly irradiated with laser. From Fig. 6, it can be seen that when the laser is irradiated on the carbon layer, a higher crystallization rate is obtained than when the silicon film is directly irradiated with the laser, and the bonding is performed with a small energy of 200 mJ / cm 2. It can be seen that a crystallization ratio of 0.8 was obtained. The light reflectivity of carbon at a laser wavelength of 308 nm is 15%, which is small compared to the light reflectivity of 55% of the silicon film. The carbon film absorbs laser light efficiently, and the underlying silicon film The silicon film is highly heated when heated to a higher temperature. This can also be understood from the fact that the crystallization rate is high.
図 7 は、 本発明の熱処理をパルス電流によ り発生するジュール 熱によ り行う場合の説明図である。 基板 0 0 1 と して例えばガラ ス基板を用い、 その上に被処理材料層 0 0 2 を形成する。 被熱処 理材料層と しては例えばシリ コ ンが挙げられる。 そしてその上に 伝熱層 0 0 3 を形成する。 伝熱層材料と しては S i O 2 が例示で きる。 その上に薄膜発熱体 0 0 4 と してカーボン膜も しく はカー ボンを含む膜を形成する。 電流を供給するため、 電極 0 0 6 と電 極 0 0 7 を形成する。 電極 0 0 6 と 0 0 7 はそれぞれ抵抗値が十 分低い材料ならよ く 、 金属が適している。  FIG. 7 is an explanatory diagram when the heat treatment of the present invention is performed by Joule heat generated by a pulse current. For example, a glass substrate is used as the substrate 0 0 1, and a material layer 0 0 2 to be processed is formed thereon. An example of the heat-treated material layer is silicon. A heat transfer layer 0 0 3 is formed thereon. An example of the heat transfer layer material is SiO2. On top of that, a carbon film or a film containing carbon is formed as the thin film heating element 0. In order to supply current, an electrode 0 0 6 and an electrode 0 0 7 are formed. The electrodes 0 6 and 0 7 are preferably made of a material having a sufficiently low resistance value, and metal is suitable.
上記の構造を有する試料の電極 0 0 6 と 0 0 7 間に 10- ? s以上 10- 2 s 以下のパルス幅の電圧を印加する。 電圧を印加する こ と に よ り発熱層 0 0 4 に電流が流れジュール熱が発生する。 発生した 熱は伝熱層 0 0 3 を介し、 被処理材料層 0 0 2 に伝熱される。 電 極間に電流が流れる実効的面積を 10· 1 0 c m 2 以上 10· 2 cm2 以下に すれば少ない電力で効率的にジュール熱加熱を行う こ とができ る。 Applying a voltage of the electrode 0 0 6 0 0 between 7 to 10-? S or 10- 2 s following the pulse width of the sample having the above structure. When voltage is applied, current flows in the heat generating layer 0 0 4 and Joule heat is generated. The generated heat is transferred to the material layer 0 0 2 through the heat transfer layer 0 0 3. If the effective area where current flows between the electrodes is 10 · 10 cm 2 or more and 10 · 2 cm 2 or less, Joule heating can be performed efficiently with low power.
上記のよ う な処理をシリ コン膜の加熱結晶化に適用する こ とが できる。  The above treatment can be applied to heat crystallization of a silicon film.
図 8 は、 図 7 の方法を応用 した加熱法の一例であり 、 局所的加 熱を行う に好適な例である。基板 0 0 1 と してガラス基板を用い、 その上に形成した被処理材料層 0 0 2 であるシリ コン膜上に伝熱 層 0 0 3 と して S i 0 2 膜を形成し、 その上に薄膜発熱層 0 0 4 と してカーボン膜も しく はカーボンを含む膜を形成する。 電流を 供給するため、 電極 0 0 6 と 0 0 7 を形成する。 電極 0 0 6 を非 常に小さい面積にする こ と によ り 電極 0 0 6付近は電流の密度が 非常に大き く なる。したがって、大きなジュール熱密度が発生し、 比較的少ない投入エネルギーで効率的な加熱が可能と なる。 FIG. 8 is an example of a heating method applying the method of FIG. 7, and is an example suitable for performing local heating. A glass substrate is used as the substrate 0 0 1, and a Si 0 2 film is formed as a heat transfer layer 0 0 3 on the silicon film that is the material layer 0 0 2 formed on the glass substrate. A carbon film or a film containing carbon is formed on the thin film heat generating layer 0 4. Electrodes 0 0 6 and 0 0 7 are formed to supply current. By making the electrode 06 very small, the current density in the vicinity of the electrode 06 becomes very large. Therefore, a large Joule heat density is generated, and efficient heating is possible with relatively little input energy.
この、ジュール加熱を用いてシ リ コ ン膜を結晶化した例を示す。 被処理材料 0 0 2 のシ リ コ ン膜と して 25nm厚非晶質ァモルファ ス シ リ コン膜をガラス基板 0 0 1 上に形成した。その上に 5nmの Si02伝熱層 0 0 3形成した。電極 0 0 6 と 0 0 7 と して直径 100 μ πι の金属プローブを用い、 カーボン膜 0 0 4 に接触させた。 電 極間の抵抗は 600 Ωであった。 電極 0 0 6 と 0 0 7 間に 120V の 電圧を 2ms印加した。 電圧印加後、 プローブ電極下のシリ コ ン膜 は約 100 μ m径の範囲で結晶化した。 An example of crystallizing a silicon film using Joule heating is shown. A 25 nm thick amorphous amorphous silicon film was formed on a glass substrate 0 0 1 as a silicon film of the material to be processed 0 2. A 5 nm Si02 heat transfer layer 0 3 was formed thereon. A metal probe having a diameter of 100 μπι was used as electrodes 0 0 6 and 0 0 7, and was brought into contact with the carbon film 0 0 4. The resistance between the electrodes was 600 Ω. A voltage of 120V was applied between electrodes 0 0 6 and 0 0 7 for 2 ms. After voltage application, the silicon film under the probe electrode crystallized in the range of about 100 μm diameter.
この結果を図 1 8 に示す。 図 1 8 には、 結晶化した部分と、 初 期膜のラマン散乱スペク トルが示されている。 すなわち、 ジユ ー ル熱を加えて結晶化した部分は、. 516cm- 1 に非常に強い結晶シリ コ ンの T O フオ ノ ンピークが観測され、 初期膜に見られる低波数 域のブロー ドなピークは、 結晶化後は非常に小さ く なったこ とが わかる。 この結果はカーボン膜を用いたジュール熱加熱によ り シ リ コ ン膜が良好に結晶化したこ と を示している ものである。  Figure 18 shows the result. Figure 18 shows the crystallized part and the Raman scattering spectrum of the initial film. In other words, in the portion crystallized by applying Diel heat, a very strong crystalline silicon TO phonon peak is observed at 516 cm-1, and a low-frequency broad peak in the initial film is observed. It can be seen that it became very small after crystallization. This result indicates that the silicon film was well crystallized by Joule heating using a carbon film.
なお、 図 8 では電極 0 0 6 の形状を円状にしてあるが、 形状は 円形に限定されず、 適宜変更するこ とができ る。 電極接触面積を 10- 1 0 cm2 以上 10- 2 cm2 以下にすれば大きな電力を投入する こ と なく 電極の下部領域の局所的加熱処理を達成できる。 In FIG. 8, the shape of the electrode 06 is a circle, but the shape is not limited to a circle and can be changed as appropriate. The electrode contact area 10- 1 0 cm 2 or more 10- 2 cm 2 localized heating of the lower region of this and no electrodes to introduce a large amount of power if the following can be achieved.
また図 8 では電極 0 0 7 の形状を長方形でかつ電極 0 0 6 よ り も大きな面積を有する よ う に表されているが、 必要に応じて、 両 方の電極の形状を、例えば電極 0 0 6 のよ う に非常に小さい面積、 例えば 10- 1 0 cm2 以上 10- 2 cm2 以下とするこ と は可能である。 Further, in FIG. 8, the shape of the electrode 0 7 is shown to be rectangular and has a larger area than the electrode 0 6, but if necessary, the shape of both electrodes can be changed to, for example, the electrode 0 0 very small area cormorants yo of 6, for example, 10 1 is 0 cm possible two or more 10- 2 cm 2 or less and child.
上記の よ う な構造を有する試料の電極 0 0 6 と 0 0 7 間に 10- 7 s以上 l (T 2 s 以下のパルス幅の電圧を印加する。 電圧を印加 する こ と によ り発熱層 0 0 4 に電流が流れジュール熱が発生する。 発生した熱は伝熱層 0 0 3 を介し、 被処理材料層 0 0 2 に伝熱さ れる。 Applying a voltage of the electrode 0 0 6 0 0 between 7 to 10- 7 s or l (T 2 s following the pulse width of the sample with Yo I Do structure described above. Heating Ri by the and this applying a voltage Current flows through the layer 0 0 4 and Joule heat is generated, and the generated heat is transferred to the material layer 0 0 2 through the heat transfer layer 0 0 3.
上記の処理をシ リ コ ン膜の加熱結晶化に適用するこ とができる。 本発明の熱処理方法は、 結晶化のみでなく 、 また不純物の活性 化にも用いる こ とができる。 図 9 は、 本加熱の熱処理方法による 不純物活性化の概念図である。 まず、 図 9 に示すよ う に、 基板 0 0 1 のガラ ス基板上に半導体膜 0 1 1 を形成する。 半導体膜 0 1 1 形成後、 イオン注入法で不純物を注入する。 The above treatment can be applied to heat crystallization of a silicon film. The heat treatment method of the present invention can be used not only for crystallization but also for activation of impurities. Figure 9 is a conceptual diagram of impurity activation by the heat treatment method of this heating. First, as shown in FIG. 9, a semiconductor film 0 1 1 is formed on a glass substrate of a substrate 0 0 1. After the semiconductor film 0 1 1 is formed, impurities are implanted by an ion implantation method.
次に、 図 1 0 に示すよ う に、 不純物が注入された半導体膜 0 1 1 上に伝熱層 0 0 3 を、 さ らに伝熱層 0 0 3 の上に発熱層 0 0 4 と してカーボン層も しく はカーボンを含む層を形成する。 ェネル ギー照射に光を使用する場合、 図 1 1 に示すよ う にパルス光を照 射して 0 0 4 を発熱させ、 0 1 1 を加熱処理し不純物活性化処理 を行う。  Next, as shown in FIG. 10, the heat transfer layer 0 0 3 is formed on the semiconductor film 0 11 1 into which impurities are implanted, and the heat generation layer 0 0 4 is formed on the heat transfer layer 0 0 3. Then, a carbon layer or a layer containing carbon is formed. When light is used for energy irradiation, as shown in Fig. 11, pulse light is irradiated to generate 0 0 4 heat, and 0 1 1 is heat-treated for impurity activation treatment.
熱処理にパルス電流によるジュール加熱を使用する場合、 図 1 2 に示すよ う に図 8 _ b の発熱層 0 0 4上に電流を供給するため の電極 0 0 6 、 0 0 7 を形成し、 パルス電流を流し加熱処理を行 い、 不純物活性化処理を行う。  When Joule heating by pulse current is used for heat treatment, electrodes 0 0 6 and 0 0 7 for supplying current are formed on the heating layer 0 0 4 of FIG. 8 _ b as shown in FIG. Heat treatment is performed by applying a pulse current, and impurity activation processing is performed.
本発明の熱処理方法を用いれば、 層構造をなす絶縁膜と半導体 界面の特性改質を実現するこ とができ る。 例えば、 図 1 3 は、 そ の方法の概念図である。 図 1 3 に示すよ う に、 基板 0 1 1 である 半導体表面に被処理材料層である酸化膜 0 0 2 を形成する と界面 に格子欠陥 0 1 2 が発生する。 こ の欠陥を低減するために、 酸化 膜 0 0 2 の上に、 図 1 4 に示すよ う に、 カーボン層の薄膜発熱体 を重ねて本発明の熱処理方法によ り 高温例えば 1 0 0 0度、 短時 間例えば 1 0 /z s の熱処理を行う。 これによ り 、 図 1 5 に示すよ う に、 半導体界面および酸化膜中の欠陥 0 1 2が低減し、 良好な 電気的特性を持つ界面を得るこ とができ る。 なお、 図 1 5 におい ては、 熱処理した後、 カーボン層を除去したものを示してある。  By using the heat treatment method of the present invention, it is possible to realize characteristic modification between the insulating film having a layer structure and the semiconductor interface. For example, Figure 13 shows a conceptual diagram of the method. As shown in FIG. 13, when an oxide film 0 2, which is a material layer to be processed, is formed on a semiconductor surface, which is a substrate 0 1 1, lattice defects 0 1 2 are generated at the interface. In order to reduce this defect, as shown in FIG. 14, a carbon layer thin film heating element is stacked on the oxide film 0 0 2, and the heat treatment method of the present invention is used. For example, heat treatment is performed at a short time, eg, 10 / zs. As a result, as shown in FIG. 15, defects 0 12 in the semiconductor interface and oxide film are reduced, and an interface having good electrical characteristics can be obtained. In FIG. 15, the carbon layer is removed after the heat treatment.
さ らに、 結晶性半導体膜を用いた場合、 本発明の熱処理方法に よ り、 欠陥の低減、 半導体 Z絶縁体界面の改質を実現できる。 さ らに、 本発明の熱処理方法は、 半導体基体上に形成された M O S F E T、 バイポーラ トラ ンジスタ、 レーザダイオー ドなどの熱処 理による特性向上にも有効である。 Furthermore, when a crystalline semiconductor film is used, the heat treatment method of the present invention can reduce defects and improve the interface of the semiconductor Z insulator. The Furthermore, the heat treatment method of the present invention is also effective for improving characteristics by heat treatment of MOSFETs, bipolar transistors, laser diodes and the like formed on a semiconductor substrate.
さ らに、 本発明の熱処理方法を用いれば、 被加熱処理材料と し て複数の層構造を含む半導体素子を加熱し、 半導体素子の電気的 特性を改善する こ とが可能である。 図 1 6 は、 層構造を含む半導 体ノ3 !、'子と して薄膜 ト ラ ンジスタを作製し、 しかる後に本発明の方 法による光照射によ り加熱処理を施す概念図である。 基板 0 0 1 上に半導体層 0 0 2 を形成し、 その上にグー ト絶縁膜 0 0 9 を形 成し 、 ゲー ト電極 0 1 3 を形成後、 イ オン注入方等でソース領域Furthermore, by using the heat treatment method of the present invention, it is possible to heat a semiconductor element including a plurality of layer structures as a material to be heated and improve the electrical characteristics of the semiconductor element. Figure 1 6 is! Semiconductors Bruno 3 comprises a layer structure, as a 'child to prepare a thin film preparative La Njisuta is the conceptual diagram applying by Ri heat treatment in the light irradiation by Method towards present invention thereafter . A semiconductor layer 0 0 2 is formed on a substrate 0 0 1, a gate insulating film 0 0 9 is formed thereon, a gate electrode 0 1 3 is formed, and then a source region is formed by ion implantation or the like.
0 1 4 と ド レイ ン領域 0 1 5 に不純物を注入する。 さ らに、 ソー ス電極 0 1 6 と ド レイ ン電極 0 1 7 を形成する。 パ ッ シベーシ ョ ン層 0 1 8 を形成後、 発熱層 0 0 4 と してカーボン層も しく は力 一ボンを含む層を形成し、 本発明の熱処理方法を行う。 なお、 0Impurities are implanted into 0 1 4 and the drain region 0 1 5. Further, a source electrode 0 1 6 and a drain electrode 0 1 7 are formed. After the passivation layer 0 18 is formed, a carbon layer or a layer containing a strong bond is formed as the heat generating layer 0 4, and the heat treatment method of the present invention is performed. 0
0 4 に流れる電流によ り発生するジュール熱を用いて加熱処理を 行 場合は、 図 1 7 のよ う に電極 0 0 6 、 0 0 7 を形成して加熱 処理を行う。 When heat treatment is performed using Joule heat generated by the current flowing in 04, electrodes 0 06 and 0 07 are formed as shown in FIG.
本発明の熱処理方法によれば、 結晶性半導体薄膜を形成するこ とができ る。 そ して、 この結晶性半導体薄膜を、 チャネル層に用 いて結晶性薄膜 ト ラ ンジス タを作製でき る。 この結晶性薄膜 トラ ンジス タ作製法を一部あるいは全部用いて複数個の薄膜 ト ラ ンジ スタを搭載した電子デバイスを形成でき る。  According to the heat treatment method of the present invention, a crystalline semiconductor thin film can be formed. A crystalline thin film transistor can be fabricated using this crystalline semiconductor thin film as a channel layer. An electronic device equipped with a plurality of thin-film transistors can be formed by using part or all of this crystalline thin-film transistor fabrication method.
本発明の熱処理方法を用いて不純物を含んだ半導体層を加熱し、 当該不純物を活性化して、 n型あるいは p型半導体層を形成する こ とができ る。 n型半導体の一部にホールキヤ リ ャを生成する不 純物を混入させた り 、 p型半導体の一部にエ レク ト ロ ンキヤ リ ャ を生成する不純物を混入させた りすれば、 本発明の熱処理方法を 用いて不純物を含んだ該半導体層を加熱する こ と によ り 半導体 P n接合を形成する こ とができる。 An n-type or p-type semiconductor layer can be formed by heating a semiconductor layer containing an impurity using the heat treatment method of the present invention and activating the impurity. If an impurity that generates a hole carrier is mixed in a part of an n-type semiconductor, or an impurity that generates an electron carrier is mixed in a part of a p-type semiconductor, the present invention By heating the semiconductor layer containing impurities using this heat treatment method, the semiconductor P n junctions can be formed.
さ らに、 本発明の熱処理方法を用いて絶縁膜を熱処理する こ と によ り 、 該絶縁膜を改質するこ とができ る。  Furthermore, the insulating film can be modified by heat-treating the insulating film using the heat treatment method of the present invention.
改質した絶縁膜を用いて基体表面を良質の絶縁膜で保護するこ とができ る。 改質した絶縁膜を用いて電界効果型 トラ ンジスタを 作製するこ とができ る。 また改質した絶縁膜を用いて半導体表面 保護絶縁膜を作製する こ とができ る。 本発明の熱処理方法を用い て絶縁膜 Z半導体界面を熱処理する こ と によ り 、 該界面特性を改 善するこ とができ る。  Using the modified insulating film, the substrate surface can be protected with a good quality insulating film. A field-effect transistor can be fabricated using a modified insulating film. In addition, a semiconductor surface protective insulating film can be fabricated using the modified insulating film. The interface characteristics can be improved by heat-treating the interface of the insulating film Z semiconductor using the heat treatment method of the present invention.
以上、 本発明の実施形態について図面を参照して詳述してきた が、 具体的な構成はこの実施形態に限られる ものではなく 、 本発 明の要旨を逸脱しない範囲の設計変更等も含まれる。  The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like within a scope not departing from the gist of the present invention. .

Claims

請求の範囲 The scope of the claims
1 . カーボン層またはカーボンを含む層を直接または厚さ 10nm 〜 100 mの伝熱層を介して被処理材料に形成し、 上記力一ボン 層またはカーボンを含む層に局所的にパルス的エネルギーを与え て上記カーボン層を発熱させ、 この発熱した熱によ り 上記被処理 材料を加熱処理するこ と を特徴とする熱処理方法。  1. A carbon layer or a carbon-containing layer is formed on the material to be treated directly or through a heat transfer layer having a thickness of 10 nm to 100 m, and the pulsed energy is locally applied to the force-bonded layer or the carbon-containing layer. And heat-treating the material to be treated with the generated heat.
2 . カーボン層も しく はカーボンを含む層にエネルギーを与える —回あたり の面積が 10— 1 0 cm2 以上 10· 2 cm2 以下であ り 、 一つの パルスエネルギー持続時間が 10- 7 s 以上、 10- 2 s 以下であるこ と を特徴とする請求の範囲第 1項に記載の熱処理方法。 . 2 carbon layer also properly gives energy to the layer containing carbon - area per gyrus 10 1 Ri 0 cm 2 or more 10 · 2 cm @ 2 der below, one pulse energy duration 10 7 s or more, the heat treatment method according to claim 1, wherein the this is not more than 10- 2 s.
3 . 上記カーボン層も しく はカーボンを含む層にエネルギーを与 える手段と して、波長 0.2 // Π1以上 20 μ ιη以下の電磁波を照射さ せて、 上記カーボン層も しく はカーボンを含む層に吸収させる こ と によ り発熱させる こ と を特徴とする請求の範囲第 1 項又は第 2 項に記載の熱処理方法。  3. As a means for applying energy to the carbon layer or the carbon-containing layer, the carbon layer or the carbon-containing layer is irradiated with an electromagnetic wave having a wavelength of 0.2 // Π1 or more and 20 μιη or less. 3. The heat treatment method according to claim 1 or 2, wherein heat is generated by absorbing the heat.
4 . 上記カーボン層も しく はカーボンを含む層に、 導電体を接触 させ、 パルス電流を流すこ とによ り 、 当該層にジュール熱を発生 させる こ と を特徴とする請求の範囲第 1 項又は第 2項に記載の熱 処理方法。  4. An electric conductor is brought into contact with the carbon layer or the layer containing carbon, and Joule heat is generated in the layer by causing a pulse current to flow. Alternatively, the heat treatment method according to item 2.
5 . 上記被処理材料と して非晶質半導体を用い、 この非晶質半導 体を結晶化させるこ と を特徴とする請求の範囲第 1 項〜第 4項の いずれかに記載の熱処理方法。 5. The heat treatment according to any one of claims 1 to 4, wherein an amorphous semiconductor is used as the material to be treated, and the amorphous semiconductor is crystallized. Method.
6 . 上記被処理材料は不純物を含む非晶質半導体であるこ と を特 徴とする請求の範囲第 1 項〜第 4項のいずれかに記載の熱処理方 法。  6. The heat treatment method according to any one of claims 1 to 4, wherein the material to be treated is an amorphous semiconductor containing impurities.
7 . 被処理材料と して複数の層構造を含む半導体素子を用い、 上 記半導体素子を加熱し、 上記半導体素子の電気的特性を改善する こ と を特徴とする請求の範囲第 1 項〜第 4項のいずれかに記載の 熱処理方法。 7. A semiconductor element including a plurality of layer structures is used as a material to be processed, and the semiconductor element is heated to improve the electrical characteristics of the semiconductor element. As described in any of paragraph 4 Heat treatment method.
8 . カーボン層またはカーボンを含む層を直接または厚さ 10nm 〜 100 μ πιの伝熱層を介して非晶質半導体上に形成し、 上記カー ボン層またはカーボンを含む層に局所的にパルス的エネルギーを 与えて当該層を発熱させ、 この発熱した熱によ り 上記非晶質半導 体を加熱処理するこ と を特徴とする半導体の結晶化方法。  8. Carbon layer or carbon-containing layer is formed on an amorphous semiconductor directly or through a heat transfer layer having a thickness of 10 nm to 100 μπιι, and is locally pulsed on the carbon layer or carbon-containing layer. A method for crystallizing a semiconductor, characterized in that energy is applied to cause the layer to generate heat, and the amorphous semiconductor is heated by the generated heat.
9 . 上記非晶質半導体は、 不純物を含むものであるこ と を特徴と する請求の範囲第 8項に記載の半導体の結晶化方法。  9. The method for crystallizing a semiconductor according to claim 8, wherein the amorphous semiconductor contains an impurity.
PCT/JP2006/305884 2005-03-18 2006-03-17 Heat treatment method and method for crystallizing semiconductor WO2006098513A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007508259A JPWO2006098513A1 (en) 2005-03-18 2006-03-17 Heat treatment method and semiconductor crystallization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-079925 2005-03-18
JP2005079925 2005-03-18

Publications (1)

Publication Number Publication Date
WO2006098513A1 true WO2006098513A1 (en) 2006-09-21

Family

ID=36991849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305884 WO2006098513A1 (en) 2005-03-18 2006-03-17 Heat treatment method and method for crystallizing semiconductor

Country Status (2)

Country Link
JP (1) JPWO2006098513A1 (en)
WO (1) WO2006098513A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114412A (en) * 2008-11-04 2010-05-20 Samsung Mobile Display Co Ltd Thin film transistor, method of manufacturing the same, and organic light emitting display device including the same
JP2010153847A (en) * 2008-11-28 2010-07-08 Sumitomo Chemical Co Ltd Method for producing semiconductor substrate, semiconductor substrate, method for manufacturing electronic device, and reaction apparatus
JP2011054788A (en) * 2009-09-02 2011-03-17 Toyota Motor Corp Semiconductor device, semiconductor module, and method of manufacturing them
JP2014042044A (en) * 2009-08-13 2014-03-06 Samsung Display Co Ltd Method for manufacturing thin-film transistor and method for manufacturing organic electroluminescent display device including the same
KR101905445B1 (en) * 2016-04-27 2018-10-10 한국과학기술원 Method for recovering damage of transistor and display apparatus using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221209A (en) * 1985-07-19 1987-01-29 Nec Corp High-frequency annealing method
JPH0677250A (en) * 1992-08-25 1994-03-18 Tdk Corp Manufacture of thin film transistor
JP2002289520A (en) * 2001-03-23 2002-10-04 Japan Science & Technology Corp Pulse energization thermal treatment method by thin film heat generator and thermal treatment device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715881B2 (en) * 1984-12-20 1995-02-22 ソニー株式会社 Heat treatment method for semiconductor thin film
JPS63297293A (en) * 1987-05-29 1988-12-05 Hitachi Ltd Method for growing crystal
JP3214931B2 (en) * 1992-10-22 2001-10-02 鐘淵化学工業株式会社 Polycrystalline silicon thin film and method for forming the same
JP3932445B2 (en) * 2000-05-31 2007-06-20 ソニー株式会社 Manufacturing method of semiconductor device
JP4627961B2 (en) * 2002-09-20 2011-02-09 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221209A (en) * 1985-07-19 1987-01-29 Nec Corp High-frequency annealing method
JPH0677250A (en) * 1992-08-25 1994-03-18 Tdk Corp Manufacture of thin film transistor
JP2002289520A (en) * 2001-03-23 2002-10-04 Japan Science & Technology Corp Pulse energization thermal treatment method by thin film heat generator and thermal treatment device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114412A (en) * 2008-11-04 2010-05-20 Samsung Mobile Display Co Ltd Thin film transistor, method of manufacturing the same, and organic light emitting display device including the same
JP2010153847A (en) * 2008-11-28 2010-07-08 Sumitomo Chemical Co Ltd Method for producing semiconductor substrate, semiconductor substrate, method for manufacturing electronic device, and reaction apparatus
US8709904B2 (en) 2008-11-28 2014-04-29 Sumitomo Chemical Company, Limited Method for producing semiconductor substrate, semiconductor substrate, method for manufacturing electronic device, and reaction apparatus
JP2014042044A (en) * 2009-08-13 2014-03-06 Samsung Display Co Ltd Method for manufacturing thin-film transistor and method for manufacturing organic electroluminescent display device including the same
US8871616B2 (en) 2009-08-13 2014-10-28 Samsung Display Co., Ltd. Methods of fabricating thin film transistor and organic light emitting diode display device having the same
JP2011054788A (en) * 2009-09-02 2011-03-17 Toyota Motor Corp Semiconductor device, semiconductor module, and method of manufacturing them
KR101905445B1 (en) * 2016-04-27 2018-10-10 한국과학기술원 Method for recovering damage of transistor and display apparatus using the same

Also Published As

Publication number Publication date
JPWO2006098513A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP5467238B2 (en) Semiconductor heat treatment method
JP6359484B2 (en) Method for providing lateral heat treatment of a thin film on a low temperature substrate
JP5576814B2 (en) Semiconductor device and manufacturing method thereof
WO2006098513A1 (en) Heat treatment method and method for crystallizing semiconductor
KR20090052628A (en) Fabricating method of polycrystalline silicon thin film, polycrystalline silicon thin film fabricated using the same, and thin film transistor comprising the same
JP2004363168A (en) Method of manufacturing semiconductor device
WO2003044867A1 (en) Thick-film semiconductor device and its manufacturing method
JP2002151410A (en) Method of manufacturing crystalline semiconductor material and semiconductor device
TW200939357A (en) Manufacturing method of thin film transistor and thin film transistor
JP2002289520A (en) Pulse energization thermal treatment method by thin film heat generator and thermal treatment device
WO2011078005A1 (en) Semiconductor device and process for production thereof, and display device
JP5051949B2 (en) Method for manufacturing semiconductor device
WO2001001464A1 (en) Polysilicon semiconductor thin film substrate, method for producing the same, semiconductor device, and electronic device
KR100413473B1 (en) Crystallization method for amorphous silicon using hydrogen plasma and electric field
JP2002110542A (en) Method for manufacturing silicon semiconductor thin film and thin film transistor
CN111095482A (en) Method for treating target material
KR20110009872A (en) Apparatus and method for converting the properties of thin film using irradiation of electron beam
JP3125982B2 (en) Insulated gate field effect semiconductor device
JP3125989B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JPH1197350A (en) Method of heat treating semiconductor film
JP2789170B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JP3125981B2 (en) Insulated gate field effect semiconductor device
JP2789171B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JP2996902B2 (en) Insulated gate field effect semiconductor device for liquid crystal display panel and method of manufacturing the same
JP2008258569A (en) Method of modifying insulating film, and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007508259

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729832

Country of ref document: EP

Kind code of ref document: A1