WO2006098160A1 - Conductive paste and glass structure - Google Patents

Conductive paste and glass structure Download PDF

Info

Publication number
WO2006098160A1
WO2006098160A1 PCT/JP2006/303959 JP2006303959W WO2006098160A1 WO 2006098160 A1 WO2006098160 A1 WO 2006098160A1 JP 2006303959 W JP2006303959 W JP 2006303959W WO 2006098160 A1 WO2006098160 A1 WO 2006098160A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
glass
conductive paste
weight
conductor
Prior art date
Application number
PCT/JP2006/303959
Other languages
French (fr)
Japanese (ja)
Inventor
Fumiya Adachi
Takuma Miyake
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2007508064A priority Critical patent/JPWO2006098160A1/en
Publication of WO2006098160A1 publication Critical patent/WO2006098160A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • C03C17/04Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/34Masking

Definitions

  • the present invention relates to a conductive paste and a glass structure used for an antifogging conductor formed on the surface of a window glass of an automobile, for example.
  • a conductor for preventing fogging (hereinafter referred to as “anti-fogging”) called “defroster” is formed on the surface of a window glass of an automobile.
  • anti-fogging By passing an electric current through the anti-fogging conductor to heat the conductor and keeping the surface temperature of the glass temperature above the dew point, fogging of the window glass is prevented.
  • This anti-fogging conductor is formed by baking a conductive paste mainly composed of silver on a glass substrate. Further, glass frit is added to the conductive paste to increase the bonding strength with the glass substrate.
  • soda-lime glass for a glass substrate for automobiles, and this glass contains Na.
  • a conductive paste composed mainly of silver is baked on a glass substrate, silver dissolves in the glass frit and silver ions are generated. This silver ion and Na ions in the glass substrate undergo ion exchange. Silver ions diffuse into the glass substrate. Silver ions are reduced in the glass substrate to form silver colloid, and due to the presence of this silver colloid, the interface between the conductor and the glass substrate is colored yellow or brown.
  • Patent Document 1 V, Mn, Fe, Co and the like are included in the conductive paste. It has been proposed to add these oxides.
  • Patent Document 2 proposes adding Rh, Cr, Cu, etc. to the conductive paste. In Patent Document 1 and Patent Document 2, the additive promotes the ion exchange reaction, thereby promoting the formation of silver colloid.
  • Patent Document 1 JP-A-5-290623
  • Patent Document 2 JP-A-9-92028
  • Patent Document 1 and Patent Document 2 reduces the amount of silver powder by colloiding it at the same time, and at the same time it remains as an oxide after baking. There was a problem that the specific resistance increased.
  • Rh The resistivity is very high, and it is difficult to control the added amount. Expensive.
  • Patent Document 1 and Patent Document 2 are not preferable in terms of environmental problems because Pb is contained in the glass.
  • the present invention solves the above-mentioned problems, and has as its main object to provide a conductive paste and a glass structure that can form a conductor that is environmentally friendly, can be darkened, and has a low specific resistance.
  • the conductive paste according to the present invention comprises silver powder, at least one silver oxide selected from the group consisting of silver vanadate, silver molybdate, and silver tungstate, and glass frit.
  • the silver oxide is contained at a ratio of 0.5 to 7 parts by weight with respect to 100 parts by weight of the silver powder. It is particularly preferable that it is contained in a proportion of 0.5 to 5 parts by weight.
  • the glass frit is preferably contained in a ratio of 3 to 10 parts by weight with respect to 100 parts by weight of the silver powder.
  • the glass frit is composed of 2 to 13 wt% SiO, 2 to B
  • the glass frit preferably further contains ZnO in a proportion of 13 wt% or less.
  • the conductive paste according to the present invention is preferably used as an antifogging conductor in the automotive window glass as the glass substrate.
  • a glass structure according to the present invention comprises a glass substrate and an anti-fogging conductor formed on the surface of the glass substrate and formed by baking a conductive paste configured according to the present invention. To do.
  • the glass structure is not particularly limited, and preferably includes a glass structure in which the antifogging conductor is formed on the surface of an automobile window glass as a glass substrate.
  • the conductive paste according to the present invention When the conductive paste according to the present invention is baked, at least one silver oxide selected from the group consisting of silver vanadate, silver molybdate, and silver tungstate is dissolved in the glass frit to form silver ions. These silver ions diffuse into the substrate and become silver colloids, contributing to color development. Therefore, it is possible to suppress an increase in the specific resistance of the conductor that does not require a large amount of colloidal silver powder.
  • molybdenum when silver molybdate is added, molybdenum reacts with the glass frit component during baking to form a stable complex salt with Bi. (The same reaction occurs when silver vanadate or silver tandastate is added.) This reaction facilitates the release of silver ions from the silver oxide, promotes the diffusion of silver ions, and darkens the conductor. Promote
  • the conductive paste according to the present invention has a small load on the environment.
  • FIG. 1 is a front view schematically showing a rear window of an automobile to which a conductive paste according to the present invention can be advantageously applied.
  • FIG. 2 is an enlarged sectional view taken along line II II in FIG.
  • the conductive paste according to the present invention contains silver powder, silver oxide, glass frit, and an organic vehicle.
  • the silver powder it is preferable to use a silver powder having an average particle size of 0.:! To 20 ⁇ m in consideration of the printability of the conductive paste.
  • silver powder having a different average particle size can be used to accurately control printability and sinterability.
  • the silver powder is not limited to spherical powder, and flake powder or a mixture of spherical powder and flake powder can be used.
  • the silver oxide is at least one selected from the group consisting of silver vanadate, silver molybdate, and silver tungstate, and contributes to darkening of the conductor as a color former.
  • Silver vanadate is synonymous with silver metavanadate.
  • As the silver oxide it is preferable to use a powder having an average particle size of 0.5 to ⁇ ⁇ ⁇ m.
  • the silver oxide is preferably contained in a proportion of 0.5 to 7 parts by weight with respect to 100 parts by weight of the silver powder. When the content ratio of the silver oxide is 0.5 parts by weight or more, the effect of adding the silver oxide can be sufficiently exhibited. If the content of silver oxide is more than 7 parts by weight, the specific resistance of the antifogging conductor may become too high. Further, when the content ratio of the silver oxide is 5 parts by weight or less, it is particularly preferable because various properties of the antifogging conductor are stabilized.
  • silver vanadate and silver molybdate in particular have a high coloration effect at low temperatures. Specifically, the effect of darkening can be obtained sufficiently even at a temperature 40 ° C lower than the firing temperature of the conventional conductive paste. As a result, when the conductive paste is baked onto the glass substrate, it is possible to achieve darkening without generating unnecessary thermal stress on the glass substrate.
  • the glass frit it is preferable to use a glass that starts softening flow at a temperature lower than a softening point (about 730 ° C) of soda lime glass generally used as a glass substrate.
  • a glass that starts softening flow at a temperature lower than a softening point (about 730 ° C) of soda lime glass generally used as a glass substrate Specific examples include PbO—B 2 O—Si 0 series, Bi 0 1 B 2 O—SiO series, Si 0 1 B 0 series low melting point glass, and the like. Considering the environmental impact, a glass frit containing no Pb is preferred.
  • the glass frit is preferably contained in a ratio of 3 to 10 parts by weight with respect to 100 parts by weight of the silver powder. If the glass frit content is less than 3 parts by weight, the bonding strength between the substrate and the conductor may decrease, and the color developability may decrease. If the glass frit content is greater than 10 parts by weight, the glass may float on the surface of the conductor after firing, solder wettability may be reduced, and the bonding strength between the substrate and the conductor may be reduced. As the glass frit, it is preferable to use one having an average particle diameter of 0.5 to 5.0 / im.
  • ZnO is preferably contained in a proportion of 13% by weight or less.
  • SiO is a network-forming oxide of glass and contributes to improvement of chemical, thermal and mechanical properties. If the SiO content is less than 2% by weight, chemical durability may be reduced. If the SiO content is more than 13% by weight, the softening point of the glass may become too high.
  • BO is a network-forming oxide of glass and functions as a flux component. If the BO content is less than 2% by weight, the glass softening point may be too high. If the BO content exceeds 10% by weight, chemical durability may be reduced.
  • BiO functions as a flux component. If the content ratio of Bi 2 O is less than 60% by weight, the softening point of the glass becomes too high, and the fluidity of the glass is lowered, and the bondability between the antifogging conductor and the glass substrate may be lowered. When the content ratio of BiO is more than 85% by weight, the glass is easily crystallized at the baking temperature, and the fluidity of the glass is lowered, and the bonding property between the antifogging conductor and the glass substrate may be lowered. At the same time, chemical durability may decrease.
  • A10 contributes to the improvement of chemical durability, and particularly shows strong durability against attacks of salt ions. Since glass frit containing BiO is easily corroded by salt water or the like, it can be prevented by including forces S and A10 that may deteriorate the antifogging conductor. If the Al 2 O content is less than 3% by weight, the effect of improving chemical durability is poor. If the content of A10 is greater than 7% by weight, the soft spot of the glass becomes too high.
  • ZnO is contained as necessary and functions as a flux component. If ZnO is more than 15% by weight, chemical durability may be reduced.
  • the organic vehicle contains an organic binder and a solvent.
  • the organic binder one or more kinds of resins selected from the group consisting of ethyl cellulose resin, nitrocellulose resin, alkyd resin, acrylic resin, styrene resin and phenol resin can be used.
  • the solvent one or more solvents selected from the group consisting of a-terbineol, butyl carbitol, butyl carbitol acetate, diacetone alcohol and methyl isobutyl ketone can be used.
  • the organic vehicle is preferably contained in a proportion of 10 to 40 parts by weight with respect to 100 parts by weight of the silver powder. If the content of the organic vehicle is less than 10 parts by weight, the organic vehicle may not be sufficiently wetted with the solid content in the conductive paste, and the viscosity of the conductive paste may become too high. If the organic vehicle content is greater than 40 parts by weight, it will become conductive. The viscosity of the paste becomes too low, or residual charcoal tends to be generated during firing, which may reduce the sinterability of the conductor.
  • Ni powder or the like may be added to the conductive paste.
  • the resistivity of the conductor can be increased by adding Ni powder.
  • amorphous silica may be added as a color former for the purpose of adjusting the hue.
  • the amount of amorphous silica added is preferably 0.5 to 5.0% by weight with respect to 100 parts by weight of glass. 5. If the content exceeds 0% by weight, the specific resistance of the conductor may become too high.
  • FIG. 1 is a front view schematically showing the rear window
  • FIG. 2 is an enlarged sectional view taken along line II-II in FIG.
  • the rear window 1 includes a glass substrate 2 and a conductor circuit including a defogging conductor 3 formed on the glass substrate 2.
  • the antifogging conductor 3 includes a plurality of wires 4 and bus bars 5 connected to both ends of each wire 4.
  • the antifogging conductor 3 is formed by applying and baking the conductive paste according to the present invention on the glass substrate 2 by printing or the like in a predetermined pattern.
  • each bus bar 5 is attached with a metal terminal 7 for connecting a lead terminal via solder 6.
  • a voltage is applied between the metal terminals 7, a current flows through the conductor circuit including the antifogging conductor 3 and the metal terminal 7, and the antifogging conductor 3 (particularly the wire 4) generates heat. This heat generation keeps the surface temperature of the rear window 1 above the dew point and prevents fogging.
  • a film made of a black color ceramic which is a mixture of glass and ceramic, is baked on the glass substrate 2 where the bus bar 5 is formed.
  • the bus bar 5 may be formed on the film made of the color ceramic.
  • the conductive paste according to the present invention can also be used when forming an anti-fogging conductor on the windshield of an automobile.
  • Samples A to J of silver powder, silver vanadate, silver molybdate, silver tungstate, chromium oxide, glass frit and organic vehicle were mixed by a three roll mill in the ratio shown in Table 2 below, and shown in Table 2.
  • Samples 1 to 26 of the conductive paste were produced. Samples marked with * in Table 2 are comparative examples.
  • the average particle size for silver vanadate is 2.6 ⁇ m
  • the average particle size for silver molybdate is 1.3 ⁇
  • the average particle size for silver tungstate is 1.8 ⁇
  • the average particle size for chromium oxide was used.
  • ethyl cellulose is used as the organic binder in the organic vehicle. And a mixture of alkyd resins. Further, as a solvent in the organic vehicle, a mixture of butyl carbitol, butyl carbitol acetate and tervineol was used.
  • Samples of conductive paste:! -26 were printed by screen printing on a slide glass substrate (soda lime glass, dimensions 260 mm X 760 mm X I. 4 mm) having a tin coating formed on the surface.
  • the printed shape was a rectangle with a long side of 20 mm and a short side of 10 mm.
  • the target thickness is 10 to 15 zm in terms of the thickness of the conductive paste after drying, and 7 to 4 in the thickness of the conductor after firing.
  • each printed sample was dried at 150 ° C for 10 minutes, and then fired at a peak temperature in the atmosphere of 600 ° C for 2 minutes (5 minutes before entering the furnace and then exiting) to form a thick film A conductor was formed.
  • L * (brightness) was obtained by irradiating the back surface of the thick film conductor with light having a wavelength of 300 to 800 nm through a glass substrate and measuring the reflected light.
  • UV-2400U manufactured by Shimadzu Corporation
  • a product with an L * force of 3 ⁇ 40 or less was regarded as a non-defective product.
  • conductive paste samples:! -26 were printed on a slide glass substrate (soda lime glass, dimensions 260 mm X 760 mm X I. 4 mm) having a tin coating formed on the surface.
  • the printed shape was a rectangle with a long side of 200 mm and a short side of 0.4 mm.
  • the target thickness was 10 to 15 / im in terms of the thickness of the conductive paste after drying, and 4 to 8 ⁇ in terms of the thickness of the conductor after firing.
  • each printed sample was dried at 150 ° C for 10 minutes and then calcined at an atmospheric peak temperature of 600 ° C for 2 minutes (5 minutes before entering the furnace and 5 minutes). A thick film conductor was formed.
  • Specific resistance value resistance value X film thickness X short side length of pattern ⁇ long side length of pattern
  • the resistance value was measured using a multimeter (manufactured by HIOKI) as a resistance measuring device.
  • the film thickness is a contact-type film thickness measurement system Surfcom (TOKYO SEIMITSU ). For the resistance value and film thickness to be substituted into the above formula, the average value of the measured values measured five times for each sample was used.
  • the printed shape was a square with a side of 2 mm.
  • the target thickness was 10-15 ⁇ m for the conductive paste thickness after drying, and 4-8 ⁇ m for the conductor thickness after firing.
  • Thick film conductors were formed by firing at 0 ° C for 2 minutes (5 minutes from entering the furnace until exiting).
  • the slide glass substrate on which the thick film conductor was formed was placed on a plate heated to 150 ° C., and a lead terminal was soldered on the thick film conductor.
  • a lead terminal As the lead terminal, an L-shaped solder bow I copper wire with a diameter of 0.6 mm was used.
  • solder Sn—Pb—Ag solder was used, and a flux in which rosin was dissolved in isopropyl alcohol was used.
  • the lead terminal was pulled, and the strength at which the lead terminal was peeled off from the thick film conductor was determined as the joint strength of the terminal.
  • the bonding strength of this terminal is 10N or more.
  • the obtained glass was pulverized using zirconia balls to prepare a glass frit.
  • the average particle size of the glass frit was 1 ⁇ 0 / m.
  • Silver powder, silver vanadate, silver molybdate, silver tungstate, chromium oxide, glass frit and organic vehicle were mixed by a three-roll mill at the ratio shown in Table 3 below, and the conductive paste samples shown in Table 3 were mixed. 4:! -53 were produced. Samples marked with * in Table 3 are comparative examples.
  • silver powder 50% by weight of spherical powder having an average particle diameter of 1.3 ⁇ m and 50% by weight of amorphous powder having an average particle diameter of 0.8 ⁇ m were used.
  • L * (brightness) of samples 41-46 is L * (brightness) of samples 50-53, even at a baking temperature 40 ° C lower than that of samples 50-53. ) Or less.
  • the effect of darkening can be sufficiently obtained even at a low baking temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Glass Compositions (AREA)
  • Conductive Materials (AREA)

Abstract

Disclosed is an environment-friendly conductive paste which is capable of forming a conductor on a glass substrate of window glass for automobiles. The conductor is able to have a dark color while having a low resistivity. Specifically disclosed is a conductive paste containing a silver powder, a glass frit, an organic vehicle, and at least one silver oxide selected from the group consisting of silver vanadate, silver molybdate and silver tungstate. The conductive paste is used for an antifog conductor (3) formed on the surface of a glass substrate (2).

Description

明 細 書  Specification
導電性ペーストおよびガラス構造体  Conductive paste and glass structure
技術分野  Technical field
[0001] 本発明は、例えば、 自動車の窓ガラス表面に形成された防曇用導体に用いられる 導電性ペーストおよびガラス構造体に関するものである。  [0001] The present invention relates to a conductive paste and a glass structure used for an antifogging conductor formed on the surface of a window glass of an automobile, for example.
背景技術  Background art
[0002] 自動車の窓ガラス表面には、「デフロスター」と呼ばれる曇り防止(以下、「防曇」と言 う。)用の導体が形成されている。この防曇用導体に電流を流して導体を発熱させ、 ガラス温度の表面温度を露点以上に保つことにより、窓ガラスの曇りが防止される。こ の防曇用導体は、ガラス基板上に銀を主成分とする導電性ペーストを焼き付けること により形成される。また、導電性ペーストには、ガラス基板との接合力を高めるために ガラスフリットが添加されてレ、る。  A conductor for preventing fogging (hereinafter referred to as “anti-fogging”) called “defroster” is formed on the surface of a window glass of an automobile. By passing an electric current through the anti-fogging conductor to heat the conductor and keeping the surface temperature of the glass temperature above the dew point, fogging of the window glass is prevented. This anti-fogging conductor is formed by baking a conductive paste mainly composed of silver on a glass substrate. Further, glass frit is added to the conductive paste to increase the bonding strength with the glass substrate.
[0003] 自動車用ガラス基板にはソーダライムガラスを用いることが一般的であり、このガラ スには Naが含まれてレ、る。ガラス基板上に銀を主成分とする導電性ペーストを焼き 付けると、銀がガラスフリットに溶解して銀イオンが生成され、この銀イオンとガラス基 板中の Naイオンとがイオン交換することにより銀イオンがガラス基板に拡散する。銀 イオンはガラス基板中で還元されて銀コロイドとなり、この銀コロイドの存在により、導 体とガラス基板との界面が黄色または茶色に呈色する。  [0003] It is common to use soda-lime glass for a glass substrate for automobiles, and this glass contains Na. When a conductive paste composed mainly of silver is baked on a glass substrate, silver dissolves in the glass frit and silver ions are generated. This silver ion and Na ions in the glass substrate undergo ion exchange. Silver ions diffuse into the glass substrate. Silver ions are reduced in the glass substrate to form silver colloid, and due to the presence of this silver colloid, the interface between the conductor and the glass substrate is colored yellow or brown.
[0004] また、 自動車用ガラス基板は、通常、フロートガラス工法により作製されるため、一 方の面には薄いスズ(Sn)が拡散し、スズの薄い層が形成されている。このスズ層が 形成された面に導電性ペーストを焼き付けると、 Snイオン (Π)により上記銀コロイドの 生成が促進され、導体とガラス基板との界面がより濃い茶色に呈色する。  [0004] Further, since an automotive glass substrate is usually manufactured by a float glass method, thin tin (Sn) is diffused on one surface to form a thin layer of tin. When the conductive paste is baked on the surface on which the tin layer is formed, the formation of the silver colloid is promoted by Sn ions (Π), and the interface between the conductor and the glass substrate is colored darker brown.
[0005] しかし、近年では、デザイン的観点から防曇用導体を目立たなくすることが望まれて おり、防曇用導体を暗色化する技術が求められている。このように防曇用導体を暗色 化するためには、防曇用導体とガラス基板との界面に析出する銀コロイド量をさらに 増やす必要がある。  [0005] However, in recent years, it has been desired to make the antifogging conductor inconspicuous from the viewpoint of design, and a technique for darkening the antifogging conductor is required. Thus, in order to darken the antifogging conductor, it is necessary to further increase the amount of silver colloid deposited on the interface between the antifogging conductor and the glass substrate.
[0006] これを受けて、特許文献 1では、導電性ペースト中に V、 Mn、 Fe、 Coおよびそれら の酸化物を添加することが提案されている。また、特許文献 2では、導電性ペースト 中に Rh、 Cr、 Cuなどを添加することが提案されている。特許文献 1や特許文献 2で は、添加物が上記イオン交換反応を促進することにより、銀コロイドの生成を促進して いる。 [0006] In response to this, in Patent Document 1, V, Mn, Fe, Co and the like are included in the conductive paste. It has been proposed to add these oxides. Patent Document 2 proposes adding Rh, Cr, Cu, etc. to the conductive paste. In Patent Document 1 and Patent Document 2, the additive promotes the ion exchange reaction, thereby promoting the formation of silver colloid.
特許文献 1 :特開平 5— 290623号公報  Patent Document 1: JP-A-5-290623
特許文献 2:特開平 9一 92028号公報  Patent Document 2: JP-A-9-92028
発明の開示  Disclosure of the invention
[0007] しかし、特許文献 1および特許文献 2に開示された添加物は、銀粉末を多量にコロ イド化させて減少させると同時に、それ自体は焼き付け後に酸化物として残留するた め、導体の比抵抗が上がってしまうという問題があった。  [0007] However, the additive disclosed in Patent Document 1 and Patent Document 2 reduces the amount of silver powder by colloiding it at the same time, and at the same time it remains as an oxide after baking. There was a problem that the specific resistance increased.
[0008] また、各添加物には、以下のような問題点がある。  [0008] Each additive has the following problems.
V …単体で添加すると、発色ムラが出る。  V: When added alone, uneven coloring occurs.
Mn, Fe, Co…単体で所望の発色を得るためには添力卩量を多くする必要があり、導 体が高抵抗化してしまう。  Mn, Fe, Co: In order to obtain a desired color with a simple substance, it is necessary to increase the amount of applied force, and the resistance of the conductor increases.
Rh…非常に比抵抗が高ぐ添加量の制御が困難である。高価である。  Rh: The resistivity is very high, and it is difficult to control the added amount. Expensive.
Cr- · ·環境問題上好ましくなレ、。  Cr- · · · Environmentally favorable.
Cu-■ ·単体で所望の発色を得るためには過剰添加量を必要とし、高抵抗化してしまう  Cu- ■ · In order to obtain the desired color by itself, excessive addition amount is required, resulting in high resistance
[0009] さらに、特許文献 1および特許文献 2に開示された導電性ペーストにおいては、ガラ ス中に Pbが含まれるため、環境問題上好ましくない。 [0009] Further, the conductive pastes disclosed in Patent Document 1 and Patent Document 2 are not preferable in terms of environmental problems because Pb is contained in the glass.
[0010] 本発明は、上記課題を解決すものであり、環境に優しく暗色化可能かつ低比抵抗 な導体を形成できる導電性ペーストおよびガラス構造体を提供することを主たる目的 とする。 [0010] The present invention solves the above-mentioned problems, and has as its main object to provide a conductive paste and a glass structure that can form a conductor that is environmentally friendly, can be darkened, and has a low specific resistance.
[0011] 本発明に係る導電性ペーストは、銀粉末と、バナジン酸銀、モリブデン酸銀および タングステン酸銀からなる群から選ばれる少なくとも 1種の銀酸化物と、ガラスフリットと [0011] The conductive paste according to the present invention comprises silver powder, at least one silver oxide selected from the group consisting of silver vanadate, silver molybdate, and silver tungstate, and glass frit.
、有機ビヒクルとを含有し、ガラス基板表面に形成された防曇用導体に用いられること を特徴とする。 And an organic vehicle and used for an anti-fogging conductor formed on the surface of a glass substrate.
[0012] 前記銀酸化物は、前記銀粉末 100重量部に対して 0. 5〜7重量部の割合で含有さ れることが好ましぐ 0. 5〜5重量部の割合で含有されることが特に好ましい。 [0012] The silver oxide is contained at a ratio of 0.5 to 7 parts by weight with respect to 100 parts by weight of the silver powder. It is particularly preferable that it is contained in a proportion of 0.5 to 5 parts by weight.
[0013] 前記ガラスフリットは、前記銀粉末 100重量部に対して 3〜: 10重量部の割合で含有 されることが好ましい。また、前記ガラスフリットは、 SiOを 2〜: 13重量%、 B〇を 2〜[0013] The glass frit is preferably contained in a ratio of 3 to 10 parts by weight with respect to 100 parts by weight of the silver powder. The glass frit is composed of 2 to 13 wt% SiO, 2 to B
10重量%、 Bi Oを 60〜85重量%、 A1〇を 3〜7重量%、の割合で含有することが 好ましレ、。また、前記ガラスフリットは、 Zn〇を 13重量%以下の割合でさらに含有する ことが好ましい。 10% by weight, 60 to 85% by weight of BiO, 3 to 7% by weight of A10 are preferable. The glass frit preferably further contains ZnO in a proportion of 13 wt% or less.
[0014] また、本発明に係る導電性ペーストは、好ましくは、上記ガラス基板としての自動車 用窓ガラスに好適に防曇用導体として用レ、られる。  [0014] The conductive paste according to the present invention is preferably used as an antifogging conductor in the automotive window glass as the glass substrate.
本発明に係るガラス構造体は、ガラス基板と、ガラス基板表面に形成されており、本 発明に従って構成された導電性ペーストを焼き付けることにより形成された防曇用導 体とを備えることを特徴とする。上記ガラス構造体としては、特に限定されないが、好 ましくは、ガラス基板としての自動車の窓ガラスの表面に上記防曇用導体が形成され ているガラス構造体が挙げられる。  A glass structure according to the present invention comprises a glass substrate and an anti-fogging conductor formed on the surface of the glass substrate and formed by baking a conductive paste configured according to the present invention. To do. The glass structure is not particularly limited, and preferably includes a glass structure in which the antifogging conductor is formed on the surface of an automobile window glass as a glass substrate.
(発明の効果)  (The invention's effect)
[0015] 本発明に係る導電性ペーストを焼き付けた場合、バナジン酸銀、モリブデン酸銀お よびタングステン酸銀からなる群から選ばれる少なくとも 1種の銀酸化物がガラスフリ ットに溶解して銀イオンが生成され、この銀イオンが基板に拡散して銀コロイドとなり 発色に寄与する。したがって、銀粉末を多量にコロイド化させる必要がなぐ導体の 比抵抗の上昇を抑えることができる。  [0015] When the conductive paste according to the present invention is baked, at least one silver oxide selected from the group consisting of silver vanadate, silver molybdate, and silver tungstate is dissolved in the glass frit to form silver ions. These silver ions diffuse into the substrate and become silver colloids, contributing to color development. Therefore, it is possible to suppress an increase in the specific resistance of the conductor that does not require a large amount of colloidal silver powder.
[0016] また、例えば、モリブデン酸銀を添加した場合、焼き付け時にモリブデンがガラスフ リットの成分と反応し、安定した Biとの複合塩を生成する。 (バナジン酸銀やタンダス テン酸銀を添加した場合も、同様の反応が起こる。)この反応により、銀酸化物から銀 イオンが遊離しやすい状態となり、銀イオンの拡散を促進し、導体の暗色化を促進す る。  [0016] Further, for example, when silver molybdate is added, molybdenum reacts with the glass frit component during baking to form a stable complex salt with Bi. (The same reaction occurs when silver vanadate or silver tandastate is added.) This reaction facilitates the release of silver ions from the silver oxide, promotes the diffusion of silver ions, and darkens the conductor. Promote
[0017] 以上のように、本発明に係る導電性ペーストを用いれば、導体の暗色化を促進する ことができると同時に、導体の低抵抗化を実現することができる。また、添加物が少量 であっても、従来と同等またはそれ以上の暗色化効果、および従来と同等またはそ れ以下の比抵抗を実現することができる。また、添加物が少量で済むため、導体の半 田濡れ性の低下を防ぐことができる。 [0017] As described above, when the conductive paste according to the present invention is used, darkening of the conductor can be promoted, and at the same time, the resistance of the conductor can be reduced. Further, even with a small amount of additive, it is possible to achieve a darkening effect equivalent to or higher than that of the conventional one and a specific resistance equivalent to or lower than that of the conventional one. Also, since only a small amount of additive is required, the conductor half A decrease in wettability of the rice field can be prevented.
[0018] また、上記銀酸化物を添加した場合、発色ムラも発生しにくい。これは、銀イオンの 供給が安定していることに起因すると推測される。  [0018] Further, when the above-mentioned silver oxide is added, uneven coloring is unlikely to occur. This is presumably due to the stable supply of silver ions.
[0019] さらに、上記銀酸化物は無害であるため、本発明に係る導電性ペーストは、環境に 与える負荷も少ない。 [0019] Furthermore, since the silver oxide is harmless, the conductive paste according to the present invention has a small load on the environment.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]図 1は本発明に係る導電性ペーストが有利に適用され得る自動車のリアウィンド ゥを図解的に示す正面図である。  FIG. 1 is a front view schematically showing a rear window of an automobile to which a conductive paste according to the present invention can be advantageously applied.
[図 2]図 2は図 1の線 II IIに沿つた拡大断面図である。  [FIG. 2] FIG. 2 is an enlarged sectional view taken along line II II in FIG.
符号の説明  Explanation of symbols
[0021] 1…リアウィンドウ [0021] 1 ... Rear window
2…ガラス基板  2 ... Glass substrate
3…防曇用導体  3… Anti-fogging conductor
4…線条  4 ... Lines
5…バスバー  5 ... Bus bar
6…半田  6 ... Solder
7 · · ·金属端子  7 · · · Metal terminals
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 本発明に係る導電性ペーストは、銀粉末と、銀酸化物と、ガラスフリットと、有機ビヒ クルと、を含有する。 [0022] The conductive paste according to the present invention contains silver powder, silver oxide, glass frit, and an organic vehicle.
[0023] 銀粉末としては、導電性ペーストの印刷性を考慮して、平均粒径 0.:!〜 20 μ mの ものを用いることが好ましい。また、印刷性や焼結性を精度よくコントロールするため に、平均粒径の異なる銀粉末を用レ、ることができる。また、銀粉末としては、球状粉に 限らずフレーク粉または球状粉とフレーク粉とを混合したものを用いることができる。  [0023] As the silver powder, it is preferable to use a silver powder having an average particle size of 0.:! To 20 μm in consideration of the printability of the conductive paste. In addition, silver powder having a different average particle size can be used to accurately control printability and sinterability. The silver powder is not limited to spherical powder, and flake powder or a mixture of spherical powder and flake powder can be used.
[0024] 銀酸化物は、バナジン酸銀、モリブデン酸銀およびタングステン酸銀からなる群か ら選ばれる少なくとも 1種であり、発色剤として導体の暗色化に寄与する。なお、バナ ジン酸銀は、メタバナジン酸銀と同義である。銀酸化物としては、平均粒径が 0. 5〜 Ι ΟΟ μ mの粉末を用レ、ることが好ましレ、。 [0025] 銀酸化物は、銀粉末 100重量部に対して 0. 5〜7重量部の割合で含有されること が好ましい。銀酸化物の含有割合が 0. 5重量部以上であれば、銀酸化物添加の効 果を十分発現させることができる。銀酸化物の含有割合が 7重量部より多いと、防曇 用導体の比抵抗が高くなりすぎることがある。また、銀酸化物の含有割合が 5重量部 以下の場合、防曇用導体の諸特性が安定するため特に好ましい。 [0024] The silver oxide is at least one selected from the group consisting of silver vanadate, silver molybdate, and silver tungstate, and contributes to darkening of the conductor as a color former. Silver vanadate is synonymous with silver metavanadate. As the silver oxide, it is preferable to use a powder having an average particle size of 0.5 to ΟΟ ΟΟ μm. [0025] The silver oxide is preferably contained in a proportion of 0.5 to 7 parts by weight with respect to 100 parts by weight of the silver powder. When the content ratio of the silver oxide is 0.5 parts by weight or more, the effect of adding the silver oxide can be sufficiently exhibited. If the content of silver oxide is more than 7 parts by weight, the specific resistance of the antifogging conductor may become too high. Further, when the content ratio of the silver oxide is 5 parts by weight or less, it is particularly preferable because various properties of the antifogging conductor are stabilized.
[0026] 上記銀酸化物の中でも、特にバナジン酸銀およびモリブデン酸銀は、低温での喑 色化効果が高い。具体的には、従来の導電性ペーストの焼成温度より 40°C低い温 度でも、十分に暗色化の効果が得られる。これにより、導電性ペーストをガラス基板に 焼き付けた場合、ガラス基板に不要な熱応力をカ卩えることなぐ暗色化を達成すること が可能となる。  [0026] Among the silver oxides, silver vanadate and silver molybdate in particular have a high coloration effect at low temperatures. Specifically, the effect of darkening can be obtained sufficiently even at a temperature 40 ° C lower than the firing temperature of the conventional conductive paste. As a result, when the conductive paste is baked onto the glass substrate, it is possible to achieve darkening without generating unnecessary thermal stress on the glass substrate.
[0027] ガラスフリットとしては、ガラス基板として一般に用いられているソーダライムガラスの 軟化点(約 730°C)より低い温度で軟化流動を開始するガラスを使用することが好ま しい。具体的には、 PbO-B O— Si〇系、 Bi〇一 B O— SiO系、 Si〇一 B O系 の低融点ガラス等が挙げられる。環境に与える影響を考慮すると、 Pbを含まないガラ スフリットが好ましい。  [0027] As the glass frit, it is preferable to use a glass that starts softening flow at a temperature lower than a softening point (about 730 ° C) of soda lime glass generally used as a glass substrate. Specific examples include PbO—B 2 O—Si 0 series, Bi 0 1 B 2 O—SiO series, Si 0 1 B 0 series low melting point glass, and the like. Considering the environmental impact, a glass frit containing no Pb is preferred.
[0028] ガラスフリットは、銀粉末 100重量部に対して 3〜: 10重量部の割合で含有されること が好ましい。ガラスフリットの含有割合が 3重量部より少ないと、基板と導体との接合 強度が低下したり、発色性が低下することがある。ガラスフリットの含有割合が 10重量 部より多いと、焼成後の導体表面にガラスが浮き上がり、半田濡れ性が低下し、基板 と導体との接合強度が低下することがある。ガラスフリットとしては、平均粒径が 0. 5 〜5. 0 /i mのものを用いることが好ましい。  [0028] The glass frit is preferably contained in a ratio of 3 to 10 parts by weight with respect to 100 parts by weight of the silver powder. If the glass frit content is less than 3 parts by weight, the bonding strength between the substrate and the conductor may decrease, and the color developability may decrease. If the glass frit content is greater than 10 parts by weight, the glass may float on the surface of the conductor after firing, solder wettability may be reduced, and the bonding strength between the substrate and the conductor may be reduced. As the glass frit, it is preferable to use one having an average particle diameter of 0.5 to 5.0 / im.
[0029] ガラスフリットは、 SiOを 2〜: 13重量0 /0、 B〇を 2〜: 10重量0 /0、 Bi〇を 60〜85重 量%、 A1〇を 3〜7重量%、の割合で含有することが好ましい。また、ガラスフリットは[0029] The glass frit 2 a SiO: 13 wt 0/0, 2 and B_〇: 10 weight 0/0, Bi_〇 60 to 85 by weight%, A1_rei a 3-7%, of the It is preferable to contain by a ratio. Glass frit is
、 Zn〇を 13重量%以下の割合で含有することが好ましい。 ZnO is preferably contained in a proportion of 13% by weight or less.
[0030] SiOは、ガラスの網目形成酸化物であり、化学的、熱的、機械的特性の向上に寄 与する。 SiOの含有割合が 2重量%より少ないと、化学的耐久性が低下することがあ る。 SiOの含有割合が 13重量%より多いと、ガラスの軟化点が高くなりすぎることが ある。 [0031] B Oは、ガラスの網目形成酸化物であり、フラックス成分として機能する。 B Oの含 有割合が 2重量%より少ないと、ガラスの軟ィ匕点が高くなりすぎることがある。 B Oの 含有割合が 10重量%より多いと、化学的耐久性が低下することがある。 [0030] SiO is a network-forming oxide of glass and contributes to improvement of chemical, thermal and mechanical properties. If the SiO content is less than 2% by weight, chemical durability may be reduced. If the SiO content is more than 13% by weight, the softening point of the glass may become too high. [0031] BO is a network-forming oxide of glass and functions as a flux component. If the BO content is less than 2% by weight, the glass softening point may be too high. If the BO content exceeds 10% by weight, chemical durability may be reduced.
[0032] Bi Oは、フラックス成分として機能する。 Bi Oの含有割合が 60重量%より少なレヽ と、ガラスの軟化点が高くなりすぎてガラスの流動性が低下して、防曇用導体とガラス 基板との接合性が低下することがある。 Bi Oの含有割合が 85重量%より多いと、焼 き付け温度でガラスが結晶化しやすくなり、ガラスの流動性が低下して防曇用導体と ガラス基板との接合性が低下することがあるとともに、化学的耐久性が低下することが ある。 [0032] BiO functions as a flux component. If the content ratio of Bi 2 O is less than 60% by weight, the softening point of the glass becomes too high, and the fluidity of the glass is lowered, and the bondability between the antifogging conductor and the glass substrate may be lowered. When the content ratio of BiO is more than 85% by weight, the glass is easily crystallized at the baking temperature, and the fluidity of the glass is lowered, and the bonding property between the antifogging conductor and the glass substrate may be lowered. At the same time, chemical durability may decrease.
[0033] A1〇は、化学的耐久性の向上に寄与し、特に塩ィ匕物イオンのアタックに対して強 い耐久性を示す。 Bi〇を含むガラスフリットは塩水等により腐食されやすいため、防 曇用導体が劣化するおそれがある力 S、 A1〇が含まれることにより、これを防止するこ とができる。 Al Oの含有割合が 3重量%より少ないと、化学的耐久性を向上させる効 果が乏しい。 A1〇の含有割合が 7重量%より多いと、ガラスの軟ィ匕点が高くなりすぎ る  [0033] A10 contributes to the improvement of chemical durability, and particularly shows strong durability against attacks of salt ions. Since glass frit containing BiO is easily corroded by salt water or the like, it can be prevented by including forces S and A10 that may deteriorate the antifogging conductor. If the Al 2 O content is less than 3% by weight, the effect of improving chemical durability is poor. If the content of A10 is greater than 7% by weight, the soft spot of the glass becomes too high.
こと力ある。  There is power.
[0034] Zn〇は、必要に応じて含有されるものであり、フラックス成分として機能する。 ZnO が 15重量%より多いと、化学的耐久性が低下することがある。  [0034] ZnO is contained as necessary and functions as a flux component. If ZnO is more than 15% by weight, chemical durability may be reduced.
[0035] 有機ビヒクルは、有機バインダおよび溶媒を含有する。有機バインダとしては、ェチ ルセルロース樹脂、ニトロセルロース樹脂、アルキド榭脂、アクリル樹脂、スチレン樹 脂およびフエノール樹脂からなる群から選ばれた 1種以上の樹脂を用いることができ る。溶媒としては、 a—テルビネオール、ブチルカルビトール、ブチルカルビトールァ セテート、ジアセトンアルコールおよびメチルイソブチルケトンからなる群から選ばれ た 1種以上の溶媒を用いることができる。  [0035] The organic vehicle contains an organic binder and a solvent. As the organic binder, one or more kinds of resins selected from the group consisting of ethyl cellulose resin, nitrocellulose resin, alkyd resin, acrylic resin, styrene resin and phenol resin can be used. As the solvent, one or more solvents selected from the group consisting of a-terbineol, butyl carbitol, butyl carbitol acetate, diacetone alcohol and methyl isobutyl ketone can be used.
[0036] 有機ビヒクルは、銀粉末 100重量部に対して 10〜40重量部の割合で含有されるこ とが好ましい。有機ビヒクルの含有割合が 10重量部より少ないと、導電性ペースト中 の固形分に対する有機ビヒクルの濡れが不十分となり、導電性ペーストの粘度が高く なりすぎてしまうことがある。有機ビヒクルの含有割合が 40重量部より多いと、導電性 ペーストの粘度が低くなりすぎたり、焼成時に残炭が生じやすく導体の焼結性が低下 することがある。 [0036] The organic vehicle is preferably contained in a proportion of 10 to 40 parts by weight with respect to 100 parts by weight of the silver powder. If the content of the organic vehicle is less than 10 parts by weight, the organic vehicle may not be sufficiently wetted with the solid content in the conductive paste, and the viscosity of the conductive paste may become too high. If the organic vehicle content is greater than 40 parts by weight, it will become conductive. The viscosity of the paste becomes too low, or residual charcoal tends to be generated during firing, which may reduce the sinterability of the conductor.
[0037] また、抵抗値調整の目的で、導電性ペースト中に Ni粉末などを添加してもよい。 Ni 粉末を添加することにより、導体の比抵抗を上げることができる。  [0037] For the purpose of adjusting the resistance value, Ni powder or the like may be added to the conductive paste. The resistivity of the conductor can be increased by adding Ni powder.
[0038] さらに、色合いの調整の目的で、発色剤としてアモルファスシリカを添加してもよい。  [0038] Further, amorphous silica may be added as a color former for the purpose of adjusting the hue.
アモルファスシリカの添加量は、ガラス 100重量部に対して 0. 5〜5. 0重量%である ことが好ましい。 5. 0重量%を超えると導体の比抵抗が高くなりすぎることがある。  The amount of amorphous silica added is preferably 0.5 to 5.0% by weight with respect to 100 parts by weight of glass. 5. If the content exceeds 0% by weight, the specific resistance of the conductor may become too high.
[0039] 次に、本発明に係る導電性ペーストが有利に適用される自動車のリアウィンドウを 例に挙げて説明する。図 1は、リアウィンドウを図解的に示す正面図であり、図 2は、 図 1の線 II - IIに沿う拡大断面図である。  [0039] Next, the rear window of an automobile to which the conductive paste according to the present invention is advantageously applied will be described as an example. FIG. 1 is a front view schematically showing the rear window, and FIG. 2 is an enlarged sectional view taken along line II-II in FIG.
[0040] 図 1に示すように、リアウィンドウ 1は、ガラス基板 2と、ガラス基板 2上に形成された 防曇用導体 3を含む導体回路と、を備える。防曇用導体 3は、複数本の線条 4および 各線条 4の両端にそれぞれ接続されるバスバー 5からなる。防曇用導体 3は、本発明 に係る導電性ペーストを印刷等によってガラス基板 2上に所定のパターンで塗布し、 焼き付けることにより形成されたものである。  As shown in FIG. 1, the rear window 1 includes a glass substrate 2 and a conductor circuit including a defogging conductor 3 formed on the glass substrate 2. The antifogging conductor 3 includes a plurality of wires 4 and bus bars 5 connected to both ends of each wire 4. The antifogging conductor 3 is formed by applying and baking the conductive paste according to the present invention on the glass substrate 2 by printing or the like in a predetermined pattern.
[0041] 図 2に示すように、各バスバー 5は、半田 6を介して、リード端子を接続するための金 属端子 7が取り付けられている。金属端子 7間に電圧が印加されることにより、防曇用 導体 3および金属端子 7を含む導体回路に電流が流れ、防曇用導体 3 (特に線条 4) が発熱する。この発熱により、リアウィンドウ 1の表面温度が露点以上に保たれ、曇り が防止される。  As shown in FIG. 2, each bus bar 5 is attached with a metal terminal 7 for connecting a lead terminal via solder 6. When a voltage is applied between the metal terminals 7, a current flows through the conductor circuit including the antifogging conductor 3 and the metal terminal 7, and the antifogging conductor 3 (particularly the wire 4) generates heat. This heat generation keeps the surface temperature of the rear window 1 above the dew point and prevents fogging.
[0042] なお、図示しなレ、が、ガラス基板 2上であって、バスバー 5が形成される領域に、ガ ラスとセラミックとの混合物である黒色カラーセラミックからなる膜が焼き付けられ、この 黒色カラーセラミックからなる膜の上にバスバー 5が形成されることもある。また、自動 車のフロントガラスに防曇用導体を形成する場合にも、本発明に係る導電性ペースト を用いることができるのは言うまでもない。  [0042] Note that a film made of a black color ceramic, which is a mixture of glass and ceramic, is baked on the glass substrate 2 where the bus bar 5 is formed. The bus bar 5 may be formed on the film made of the color ceramic. Needless to say, the conductive paste according to the present invention can also be used when forming an anti-fogging conductor on the windshield of an automobile.
実験例 1  Experimental example 1
[0043] 1.ガラスフリットの準備 [0043] 1. Preparation of glass frit
出発原料として、 Si〇、 H BO、 Bi O、 Al(OH)および Zn〇を準備し、これらを下 記表 1に示す組成比率が得られるように配合し、アルミナるつぼに入れて 1200°Cの 温度で溶融させた後、急冷してガラス化した。その後、得られたガラスを、ジルコユア ボールを用いて粉碎して、表 1に示すガラスフリットの試料 A〜Jを作製した。各ガラス フリットの平均粒径は 1. O z mであった。 Prepare SiO, HBO, BiO, Al (OH) and ZnO as starting materials. They were blended so that the composition ratio shown in Table 1 was obtained, put in an alumina crucible and melted at a temperature of 1200 ° C., and then rapidly cooled to vitrify. Thereafter, the obtained glass was pulverized using a zircoyour ball to prepare glass frit samples A to J shown in Table 1. The average particle size of each glass frit was 1. O zm.
Figure imgf000010_0001
Figure imgf000010_0001
[0045] 2.導電性ペーストの調製 [0045] 2. Preparation of conductive paste
銀粉末、バナジン酸銀、モリブデン酸銀、タングステン酸銀、酸化クロム、ガラスフリ ットの試料 A〜Jおよび有機ビヒクルを、下記表 2に示した割合で 3本ロールミルにより 混合し、表 2に示す導電性ペーストの試料 1〜26を作製した。なお、表 2において * 印が付された試料は比較例である。  Samples A to J of silver powder, silver vanadate, silver molybdate, silver tungstate, chromium oxide, glass frit and organic vehicle were mixed by a three roll mill in the ratio shown in Table 2 below, and shown in Table 2. Samples 1 to 26 of the conductive paste were produced. Samples marked with * in Table 2 are comparative examples.
[0046] [表 2]
Figure imgf000011_0001
[0046] [Table 2]
Figure imgf000011_0001
[0047] 表 2に示す試料:!〜 12、 14〜: 16については、平均粒径 1 / mの球状粉を 60重量 %、長径 3〜5 μ mのフレーク粉を 40重量%の割合で配合した銀粉末を用いた。試 料 13については、平均粒径 l z mの球状粉を 70重量%、平均粒径 0. l x mの球状 粉を 30重量%の割合で配合した銀粉末を用いた。試料 17〜26については、平均 粒径 2 μ mの球状粉を 70重量%、平均粒径 1 μ mの不定形粉を 30重量%の割合で 配合した銀粉末を用いた。  [0047] For the samples shown in Table 2:! ~ 12, 14 ~: 16, 60% by weight of spherical powder with an average particle size of 1 / m and 40% by weight of flake powder with a major axis of 3-5 μm Blended silver powder was used. For Sample 13, silver powder was used in which spherical powder with an average particle size of l z m was blended at a ratio of 70% by weight and spherical powder with an average particle size of 0.1 × m at 30% by weight. For Samples 17 to 26, silver powder containing spherical powder having an average particle diameter of 2 μm and 70% by weight of amorphous powder having an average particle diameter of 1 μm and 30% by weight was used.
[0048] バナジン酸銀については平均粒径 2. 6 μ m、モリブデン酸銀については平均粒径 1. 3 μ πι、タングステン酸銀については平均粒径 1. 8 μ πι、酸化クロムについては平 均粒径 1. 5 μ mの粉末をそれぞれ用いた。  [0048] The average particle size for silver vanadate is 2.6 μm, the average particle size for silver molybdate is 1.3 μπι, the average particle size for silver tungstate is 1.8 μπι, and the average particle size for chromium oxide. A powder having a uniform particle size of 1.5 μm was used.
[0049] また、各試料において、有機ビヒクル中の有機バインダとしては、ェチルセルロース およびアルキド樹脂を混合したものを用いた。また、有機ビヒクル中の溶媒としては、 ブチルカルビトール、ブチルカルビトールアセテートおよびタービネオールを混合し たものを用いた。 [0049] In each sample, as the organic binder in the organic vehicle, ethyl cellulose is used. And a mixture of alkyd resins. Further, as a solvent in the organic vehicle, a mixture of butyl carbitol, butyl carbitol acetate and tervineol was used.
[0050] 3.導電性ペーストの評価  [0050] 3. Evaluation of conductive paste
試料:!〜 26について、下記の通りに特性を評価した。その結果を表 2に示す。  The characteristics of samples:! -26 were evaluated as follows. The results are shown in Table 2.
[0051] (1)喑色化の評価 [0051] (1) Evaluation of fading
スクリーン印刷により、表面にスズ被膜が形成されているスライドガラス基板(ソーダ ライムガラス、寸法 260mm X 760mm X I . 4mm)上に、導電性ペーストの試料:!〜 26を印刷した。印刷形状は、長辺が 20mm、短辺が 10mmの長方形であった。 目標 厚みは、乾燥後の導電性ペーストの厚みで 10〜: 15 z m、焼成後の導体の厚みで 4 〜8 μ mとし 7こ。  Samples of conductive paste:! -26 were printed by screen printing on a slide glass substrate (soda lime glass, dimensions 260 mm X 760 mm X I. 4 mm) having a tin coating formed on the surface. The printed shape was a rectangle with a long side of 20 mm and a short side of 10 mm. The target thickness is 10 to 15 zm in terms of the thickness of the conductive paste after drying, and 7 to 4 in the thickness of the conductor after firing.
[0052] 次に、印刷された各試料を 150°Cで 10分間乾燥させた後、大気中ピーク温度 600 °Cで 2分間(炉に入ってから出るまでは 5分間)焼成して厚膜導体を形成した。  [0052] Next, each printed sample was dried at 150 ° C for 10 minutes, and then fired at a peak temperature in the atmosphere of 600 ° C for 2 minutes (5 minutes before entering the furnace and then exiting) to form a thick film A conductor was formed.
[0053] 次に、ガラス基板を介して、厚膜導体裏面に波長 300〜800nmの光を照射し、反 射光を測定することにより L * (明度)を求めた。 L *の測定には、 UV— 2400U (島 津製作所製)を用いた。そして、 L *力 ¾0以下のものを良品とした。  [0053] Next, L * (brightness) was obtained by irradiating the back surface of the thick film conductor with light having a wavelength of 300 to 800 nm through a glass substrate and measuring the reflected light. For measurement of L *, UV-2400U (manufactured by Shimadzu Corporation) was used. A product with an L * force of ¾0 or less was regarded as a non-defective product.
[0054] (2)比抵抗値の評価  [0054] (2) Evaluation of specific resistance value
スクリーン印刷により、表面にスズ被膜が形成されているスライドガラス基板(ソーダ ライムガラス、寸法 260mm X 760mm X I . 4mm)上に、導電性ペーストの試料:!〜 26を印刷した。印刷形状は、長辺が 200mm、短辺が 0. 4mmの長方形であった。 目標厚みは、乾燥後の導電性ペーストの厚みで 10〜: 15 /i m、焼成後の導体の厚み で 4〜8 μ πιとした。  By screen printing, conductive paste samples:! -26 were printed on a slide glass substrate (soda lime glass, dimensions 260 mm X 760 mm X I. 4 mm) having a tin coating formed on the surface. The printed shape was a rectangle with a long side of 200 mm and a short side of 0.4 mm. The target thickness was 10 to 15 / im in terms of the thickness of the conductive paste after drying, and 4 to 8 μπι in terms of the thickness of the conductor after firing.
[0055] 次に、印刷された各試料を、 150°Cで 10分間乾燥させた後、大気中ピーク温度 60 0°Cで 2分間(炉に入ってから出るまでは 5分間)焼成して厚膜導体を形成した。  [0055] Next, each printed sample was dried at 150 ° C for 10 minutes and then calcined at an atmospheric peak temperature of 600 ° C for 2 minutes (5 minutes before entering the furnace and 5 minutes). A thick film conductor was formed.
[0056] 次に、厚膜導体の抵抗値および膜厚を測定し、次式により比抵抗値を測定した。  Next, the resistance value and film thickness of the thick film conductor were measured, and the specific resistance value was measured by the following equation.
式:比抵抗値 =抵抗値 X膜厚 Xパターンの短辺長 ÷パターンの長辺長  Formula: Specific resistance value = resistance value X film thickness X short side length of pattern ÷ long side length of pattern
なお、抵抗値は、抵抗測定装置としてマルチメーター(HIOKI社製)を用いて測定し た。膜厚は、膜厚測定装置として接触式膜厚測定系 Surfcom (TOKYO SEIMITSU社 製)を用いて測定した。また、上記計算式に代入する抵抗値および膜厚については、 各試料ごとに 5回測定した測定値の平均値を用いた。 The resistance value was measured using a multimeter (manufactured by HIOKI) as a resistance measuring device. The film thickness is a contact-type film thickness measurement system Surfcom (TOKYO SEIMITSU ). For the resistance value and film thickness to be substituted into the above formula, the average value of the measured values measured five times for each sample was used.
[0057] (3)端子強度の測定方法 [0057] (3) Measuring method of terminal strength
スクリーン印刷により、表面にスズ被膜が形成されているスライドガラス基板(ソーダ ライムガラス、寸法 260mm X 760mm X I . 4mm)上に、導電性ペーストの試料:!〜 Sample of conductive paste on a slide glass substrate (soda lime glass, dimensions 260mm X 760mm X I .4mm) with a tin coating formed on the surface by screen printing:! ~
26を印刷した。印刷形状は、 1辺が 2mmの正方形であった。 目標厚みは、乾燥後の 導電性ペーストの厚みで 10〜15 μ m、焼成後の導体の厚みで 4〜8 μ mとした。 26 was printed. The printed shape was a square with a side of 2 mm. The target thickness was 10-15 μm for the conductive paste thickness after drying, and 4-8 μm for the conductor thickness after firing.
[0058] 次に、印刷された各試料を、 150°Cで 10分間乾燥させた後、大気中ピーク温度 60[0058] Next, after each printed sample was dried at 150 ° C for 10 minutes, the atmospheric peak temperature 60
0°Cで 2分間(炉に入ってから出るまでは 5分間)焼成して厚膜導体を形成した。 Thick film conductors were formed by firing at 0 ° C for 2 minutes (5 minutes from entering the furnace until exiting).
[0059] 次に、厚膜導体が形成されたスライドガラス基板を 150°Cに加熱したプレート上に 載置し、厚膜導体上にリード端子を半田付けした。リード端子としては、直径が 0. 6m mの L字型半田弓 Iき銅線を使用した。 Next, the slide glass substrate on which the thick film conductor was formed was placed on a plate heated to 150 ° C., and a lead terminal was soldered on the thick film conductor. As the lead terminal, an L-shaped solder bow I copper wire with a diameter of 0.6 mm was used.
[0060] 半田は、 Sn—Pb—Ag系の半田を用い、フラックスとして、ロジンをイソプロピルアル コールに溶解したフラックスを用いた。 As the solder, Sn—Pb—Ag solder was used, and a flux in which rosin was dissolved in isopropyl alcohol was used.
[0061] そして、リード端子を引っ張り、厚膜導体から剥離する強度を端子の接合強度として 求めた。この端子の接合強度は、 10N以上が実用強度である。 [0061] Then, the lead terminal was pulled, and the strength at which the lead terminal was peeled off from the thick film conductor was determined as the joint strength of the terminal. The bonding strength of this terminal is 10N or more.
[0062] 4.評価結果 [0062] 4. Evaluation results
表 2から、銀酸化物が添加された試料:!〜 12、 17〜26は、何も添加されていない 試料 14と比較して、厚膜導体の L * (明度)が低くなつていることがわかる。また、酸 化クロムを添加した試料 15, 16と比較した場合、添加量が同等またはそれ以下であ るにも関わらず、低い L * (明度)および低い比抵抗値を達成していることがわかる。 さらに、少量の添加量であるにもかかわらず、低い L * (明度)、低比抵抗および高い 端子強度を達成してレ、ることがわかる。  From Table 2, samples with silver oxide added:! ~ 12, 17 ~ 26 have lower L * (brightness) of thick film conductors compared to sample 14 without any addition I understand. In addition, when compared to Samples 15 and 16 to which chromium oxide was added, the low L * (brightness) and low specific resistance values were achieved even though the amount added was equal or less. Recognize. It can also be seen that despite the addition of a small amount, low L * (lightness), low specific resistance and high terminal strength are achieved.
実験例 2  Experimental example 2
[0063] 1.ガラスフリットの準備 [0063] 1. Preparation of glass frit
出発原料として、 Si〇、 H BO、 Bi O、 Al(OH)を準備し、 Si〇力 重量0 /0、 B O 力 重量%、 Bi O力 ¾1重量%、 Al O力 ¾重量%という組成比率となるように配合しAs a starting material, Si_〇, H BO, Bi O, and prepared Al (OH), Si_〇 force weight 0/0, BO force wt%, Bi O force ¾1 wt%, the composition of Al O force ¾ wt% ratio So that
、アルミナるつぼに入れて 1200°Cの温度で溶融させた後、急冷してガラス化した。そ の後、得られたガラスを、ジルコニァボールを用いて粉碎して、ガラスフリットを作製し た。ガラスフリットの平均粒径は 1 · 0 / mであった。 After being put in an alumina crucible and melted at a temperature of 1200 ° C., it was rapidly cooled to be vitrified. So Thereafter, the obtained glass was pulverized using zirconia balls to prepare a glass frit. The average particle size of the glass frit was 1 · 0 / m.
[0064] 2.導電性ペーストの調製 [0064] 2. Preparation of conductive paste
銀粉末、バナジン酸銀、モリブデン酸銀、タングステン酸銀、酸化クロム、ガラスフリ ットおよび有機ビヒクルを、下記表 3に示した割合で 3本ロールミルにより混合し、表 3 に示す導電性ペーストの試料 4:!〜 53を作製した。なお、表 3において *印が付され た試料は比較例である。  Silver powder, silver vanadate, silver molybdate, silver tungstate, chromium oxide, glass frit and organic vehicle were mixed by a three-roll mill at the ratio shown in Table 3 below, and the conductive paste samples shown in Table 3 were mixed. 4:! -53 were produced. Samples marked with * in Table 3 are comparative examples.
[0065] [表 3] [0065] [Table 3]
Figure imgf000014_0001
Figure imgf000014_0001
[0066] 銀粉末としては、平均粒径 1. 3 μ mの球状粉を 50重量%、平均粒径 0. 8 μ mの不 定形粉を 50重量%の割合で配合したものを用いた。 [0066] As the silver powder, 50% by weight of spherical powder having an average particle diameter of 1.3 μm and 50% by weight of amorphous powder having an average particle diameter of 0.8 μm were used.
[0067] バナジン酸銀については平均粒径 2. 6 μ m、モリブデン酸銀については平均粒径[0067] Average grain size for silver vanadate 2.6 μm, average grain size for silver molybdate
1. 3 /i m、タングステン酸銀については平均粒径 1 · 8 μ ΐη、酸化クロムについては平 均粒径 1. 5 β mの粉末をそれぞれ用いた。 For 1.3 / im, silver tungstate, powder with an average particle size of 1 · 8 μΐη and for chromium oxide with an average particle size of 1.5 β m were used.
[0068] また、各試料において、有機ビヒクル中の有機バインダとしては、ェチルセルロース およびアルキド樹脂を混合したものを用いた。また、有機ビヒクル中の溶媒としては、 ブチルカルビトール、ブチルカルビトールアセテートおよびターピネオ—ルを混合し たものを用いた。 [0068] In each sample, as the organic binder in the organic vehicle, a mixture of ethyl cellulose and alkyd resin was used. As a solvent in the organic vehicle, a mixture of butyl carbitol, butyl carbitol acetate and terpineol was used.
[0069] 3.導電性ペーストの評価 試料 41〜53について、実験例 1と同様にして特性を評価した。その結果を表 3に 示す。 [0069] 3. Evaluation of conductive paste The characteristics of Samples 41 to 53 were evaluated in the same manner as in Experimental Example 1. The results are shown in Table 3.
[0070] 表 3からわかるように、試料 50〜53の焼成温度よりも 40°C低い焼成温度であっても 、試料 41〜46の L * (明度)は試料 50〜53の L * (明度)と同等あるいはそれ以下と なっている。つまり、バナジン酸銀やモリブデン酸銀を添加した場合は、低い焼成温 度でも十分に暗色化の効果が得られることがわかる。  [0070] As can be seen from Table 3, L * (brightness) of samples 41-46 is L * (brightness) of samples 50-53, even at a baking temperature 40 ° C lower than that of samples 50-53. ) Or less. In other words, it can be seen that when silver vanadate or silver molybdate is added, the effect of darkening can be sufficiently obtained even at a low baking temperature.
[0071] なお、タングステン酸銀が添加された試料 47〜49については、低温における喑色 化の効果はそれほど顕著ではなレ、が、比較例である試料 50〜53よりも優れているこ とは明らかである。  [0071] It should be noted that the samples 47 to 49 to which silver tungstate was added had a noticeable effect of fading at low temperatures, but were superior to the comparative samples 50 to 53. Is clear.

Claims

請求の範囲 The scope of the claims
銀粉末と、  Silver powder,
バナジン酸銀、モリブデン酸銀およびタングステン酸銀からなる群から選ばれる少 なくとも 1種の銀酸化物と、  At least one silver oxide selected from the group consisting of silver vanadate, silver molybdate and silver tungstate;
ガラスフリットと、  Glass frit,
有機ビヒクルとを含有し、  Containing an organic vehicle,
ガラス基板表面に形成された防曇用導体に用いられることを特徴とする導電性べ 一スト。  A conductive base characterized in that it is used for an anti-fogging conductor formed on the surface of a glass substrate.
前記銀酸化物は、前記銀粉末 100重量部に対して 0. 5〜7重量部の割合で含有さ れていることを特徴とする、請求項 1に記載の導電性ペースト。  2. The conductive paste according to claim 1, wherein the silver oxide is contained in a ratio of 0.5 to 7 parts by weight with respect to 100 parts by weight of the silver powder.
前記銀酸化物は、前記銀粉末 100重量部に対して 0. 5〜5重量部の割合で含有さ れていることを特徴とする、請求項 1または請求項 2に記載の導電性ペースト。  3. The conductive paste according to claim 1, wherein the silver oxide is contained in a ratio of 0.5 to 5 parts by weight with respect to 100 parts by weight of the silver powder.
前記ガラスフリットは、前記銀粉末 100重量部に対して 3〜: 10重量部の割合で含有 されていることを特徴とする、請求項 1〜3のいずれ力 1項に記載の導電性ペースト 前記ガラスフリットは、  The conductive paste according to any one of claims 1 to 3, wherein the glass frit is contained in a ratio of 3 to 10 parts by weight with respect to 100 parts by weight of the silver powder. Glass frit
SiOを 2〜: 13重量%、  SiO2: 13% by weight,
B〇を 2〜: 10重量%、  B〇 2 ~: 10% by weight,
Bi Oを 60〜85重量%、  Bi-O 60-85% by weight,
A1〇 3〜7重量%、  A10 3-7% by weight,
の割合で含有することを特徴とする、請求項 1〜4のいずれ力、 1項に記載の導電性ぺ 一スト。 The conductive paste according to any one of claims 1 to 4, wherein the conductive paste is contained at a ratio of
前記ガラスフリットは、 Zn〇を 13重量%以下の割合でさらに含有することを特徴とす る、請求項 5に記載の導電性ペースト。  6. The conductive paste according to claim 5, wherein the glass frit further contains ZnO at a ratio of 13 wt% or less.
前記ガラス基板は自動車の窓ガラスであることを特徴とする、請求項 1〜6のいずれ 力 1項に記載の導電性ペースト。  The conductive paste according to claim 1, wherein the glass substrate is a window glass of an automobile.
ガラス基板と、  A glass substrate;
前記ガラス基板表面に形成されており、請求項:!〜 7のいずれか 1項に記載の導電 性ペーストを焼き付けることにより形成されている防曇用導体とを備えることを特徴と する、ガラス構造体。 The conductive substrate according to any one of claims 7 to 7, wherein the conductive substrate is formed on the surface of the glass substrate. A glass structure comprising an anti-fogging conductor formed by baking a conductive paste.
前記ガラス構造体が、自動車の窓ガラスである、請求項 8に記載のガラス構造体。  The glass structure according to claim 8, wherein the glass structure is a window glass of an automobile.
PCT/JP2006/303959 2005-03-14 2006-03-02 Conductive paste and glass structure WO2006098160A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007508064A JPWO2006098160A1 (en) 2005-03-14 2006-03-02 Conductive paste and glass structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-071726 2005-03-14
JP2005071726 2005-03-14
JP2005-132505 2005-04-28
JP2005132505 2005-04-28

Publications (1)

Publication Number Publication Date
WO2006098160A1 true WO2006098160A1 (en) 2006-09-21

Family

ID=36991510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303959 WO2006098160A1 (en) 2005-03-14 2006-03-02 Conductive paste and glass structure

Country Status (2)

Country Link
JP (1) JPWO2006098160A1 (en)
WO (1) WO2006098160A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109016A (en) * 2006-10-27 2008-05-08 Kyocera Corp Silver paste for solar battery element and method of manufacturing solar battery element using the same
JP2013521207A (en) * 2010-03-02 2013-06-10 サン−ゴバン グラス フランス Window glass with electrical connection elements
JP5278627B2 (en) * 2011-06-21 2013-09-04 住友金属鉱山株式会社 Silver powder and method for producing the same
EP2853567A1 (en) * 2013-09-27 2015-04-01 Heraeus Precious Metals GmbH & Co. KG Solar cells produced from high ohmic wafers and paste comprising Ag metal-oxide additive
WO2016017240A1 (en) * 2014-07-28 2016-02-04 株式会社村田製作所 Electrically conductive paste, and glass article
WO2016017239A1 (en) * 2014-07-28 2016-02-04 株式会社村田製作所 Electrically conductive paste, and glass article
US9496632B2 (en) 2012-06-06 2016-11-15 Saint-Gobain Glass France Disk having an electrical connection element
WO2017006714A1 (en) * 2015-07-03 2017-01-12 株式会社村田製作所 Electroconductive paste, and glass article
US9837727B2 (en) 2012-09-14 2017-12-05 Saint-Gobain Glass France Pane having an electrical connection element
US9967967B2 (en) 2012-09-14 2018-05-08 Saint-Gobain Glass France Pane having an electrical connection element
US10305239B2 (en) 2011-05-10 2019-05-28 Saint-Gobain Glass France Pane comprising an electrical connection element
US10355378B2 (en) 2011-05-10 2019-07-16 Saint-Gobain Glass France Pane having an electrical connection element
US11217907B2 (en) 2011-05-10 2022-01-04 Saint-Gobain Glass France Disk having an electric connecting element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5814204B2 (en) * 2012-09-10 2015-11-17 京都エレックス株式会社 LED ceramic package paste

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545166A1 (en) * 1991-12-03 1993-06-09 E.I. Du Pont De Nemours And Company Automotive glass thick film conductor paste
JPH0992028A (en) * 1995-09-22 1997-04-04 Murata Mfg Co Ltd Conductive composition
JPH10326522A (en) * 1997-03-24 1998-12-08 Murata Mfg Co Ltd Conductive composition for solar battery
EP0974558A2 (en) * 1998-07-24 2000-01-26 Murata Manufacturing Co., Ltd. Electrically conductive paste and glass substrate having a circuit thereon
JP2000123958A (en) * 1998-10-12 2000-04-28 Mitsubishi Electric Corp Corrosion preventing method for oxide semiconductor, and defogging-defrosting heater
JP2003128433A (en) * 2001-10-23 2003-05-08 Murata Mfg Co Ltd Conductive paste
JP2004327356A (en) * 2003-04-28 2004-11-18 Murata Mfg Co Ltd Conductive paste and glass circuit structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545166A1 (en) * 1991-12-03 1993-06-09 E.I. Du Pont De Nemours And Company Automotive glass thick film conductor paste
JPH0992028A (en) * 1995-09-22 1997-04-04 Murata Mfg Co Ltd Conductive composition
JPH10326522A (en) * 1997-03-24 1998-12-08 Murata Mfg Co Ltd Conductive composition for solar battery
EP0974558A2 (en) * 1998-07-24 2000-01-26 Murata Manufacturing Co., Ltd. Electrically conductive paste and glass substrate having a circuit thereon
JP2000123958A (en) * 1998-10-12 2000-04-28 Mitsubishi Electric Corp Corrosion preventing method for oxide semiconductor, and defogging-defrosting heater
JP2003128433A (en) * 2001-10-23 2003-05-08 Murata Mfg Co Ltd Conductive paste
JP2004327356A (en) * 2003-04-28 2004-11-18 Murata Mfg Co Ltd Conductive paste and glass circuit structure

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109016A (en) * 2006-10-27 2008-05-08 Kyocera Corp Silver paste for solar battery element and method of manufacturing solar battery element using the same
JP2013521207A (en) * 2010-03-02 2013-06-10 サン−ゴバン グラス フランス Window glass with electrical connection elements
JP2013521180A (en) * 2010-03-02 2013-06-10 サン−ゴバン グラス フランス Window glass with electrical connection elements
US10305239B2 (en) 2011-05-10 2019-05-28 Saint-Gobain Glass France Pane comprising an electrical connection element
US10355378B2 (en) 2011-05-10 2019-07-16 Saint-Gobain Glass France Pane having an electrical connection element
US11217907B2 (en) 2011-05-10 2022-01-04 Saint-Gobain Glass France Disk having an electric connecting element
US11456546B2 (en) 2011-05-10 2022-09-27 Saint-Gobain Glass France Pane having an electrical connection element
JP5278627B2 (en) * 2011-06-21 2013-09-04 住友金属鉱山株式会社 Silver powder and method for producing the same
JPWO2012176831A1 (en) * 2011-06-21 2015-02-23 住友金属鉱山株式会社 Silver powder and method for producing the same
US9496632B2 (en) 2012-06-06 2016-11-15 Saint-Gobain Glass France Disk having an electrical connection element
US9837727B2 (en) 2012-09-14 2017-12-05 Saint-Gobain Glass France Pane having an electrical connection element
US9967967B2 (en) 2012-09-14 2018-05-08 Saint-Gobain Glass France Pane having an electrical connection element
JP2015109259A (en) * 2013-09-27 2015-06-11 ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー HIGH RESISTANCE WAFER CONTAINING Ag METAL OXIDE ADDITIVE AND SOLAR CELL MANUFACTURED FROM PASTE
EP2853567A1 (en) * 2013-09-27 2015-04-01 Heraeus Precious Metals GmbH & Co. KG Solar cells produced from high ohmic wafers and paste comprising Ag metal-oxide additive
WO2016017239A1 (en) * 2014-07-28 2016-02-04 株式会社村田製作所 Electrically conductive paste, and glass article
WO2016017240A1 (en) * 2014-07-28 2016-02-04 株式会社村田製作所 Electrically conductive paste, and glass article
CN107615400A (en) * 2015-07-03 2018-01-19 株式会社村田制作所 Conductive paste and glass article
WO2017006714A1 (en) * 2015-07-03 2017-01-12 株式会社村田製作所 Electroconductive paste, and glass article

Also Published As

Publication number Publication date
JPWO2006098160A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
WO2006098160A1 (en) Conductive paste and glass structure
US4446059A (en) Conductor compositions
KR100482787B1 (en) Ceramic coloring composition and method for bending flat glass
EP0545166B1 (en) Automotive glass thick film conductor paste
US7267713B2 (en) Conductive paste and glass circuit structure
JP2006016298A (en) Thick-film conductive paste
EP1506944B1 (en) Thick-film conductor paste for automotive glass
KR100506034B1 (en) Conductive paste
JP4586184B2 (en) Glass powder for ceramic color and ceramic color composition
JP3484983B2 (en) Conductive paste and glass circuit board
JP5429463B2 (en) Conductive paste
JP2003338218A (en) Conductive paste
US5972485A (en) Electroconductive composition for glass substrate and anti-fog window glass for automobiles
JPH11306862A (en) Conductor paste
EP1218891B1 (en) Conductor composition
WO2015194290A1 (en) Conductive paste and glass article
JPH11322361A (en) Electroconductive paste and glass plate having electric conductor
JPH11292569A (en) Conductive paste and glass plate with conductor
JP3964342B2 (en) Conductive paste
TWI796400B (en) Powder composition for forming thick film conductor and paste for forming thick film conductor
JP3926142B2 (en) Conductor paste
JP2022089460A (en) Thick film conductor, composition for formation thereof and thick film conductor paste containing the composition for formation thereof
JP2000348535A (en) Conductive composition and glass plate with conductor
JPH11322371A (en) Glass plate having electrically conductive layer, its production, electrically conductive paste, and automotive window

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007508064

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715068

Country of ref document: EP

Kind code of ref document: A1