WO2016017239A1 - Electrically conductive paste, and glass article - Google Patents

Electrically conductive paste, and glass article Download PDF

Info

Publication number
WO2016017239A1
WO2016017239A1 PCT/JP2015/064064 JP2015064064W WO2016017239A1 WO 2016017239 A1 WO2016017239 A1 WO 2016017239A1 JP 2015064064 W JP2015064064 W JP 2015064064W WO 2016017239 A1 WO2016017239 A1 WO 2016017239A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
conductive
glass
component
electrically conductive
Prior art date
Application number
PCT/JP2015/064064
Other languages
French (fr)
Japanese (ja)
Inventor
正道 竹井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016017239A1 publication Critical patent/WO2016017239A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Definitions

  • the present invention relates to a conductive paste and a glass article. More specifically, the present invention relates to a conductive paste for forming a conductive pattern for anti-fogging or antenna, etc. on a vehicle window glass such as an automobile, and the conductive paste. The present invention relates to a glass article such as an anti-fogging glass.
  • glass articles such as a glass antenna that receives radio waves from the outside of a vehicle and an antifogging glass provided with a heat ray for antifogging are used for a window glass of a vehicle such as an automobile.
  • a conductive paste having a predetermined pattern is usually formed by applying a conductive paste in a line on a glass substrate as a raw material and baking it.
  • Various types of conductive pastes of this type have been developed and proposed.
  • Patent Document 1 discloses a conductive composition for a glass substrate containing a conductive powder, a glass frit, and an organic vehicle, the glass frit comprising a homogeneous glass component and a silica component, and the homogeneous
  • the glass component comprises a composition range of B 2 O 3 of 0 to 30 mol%, SiO 2 of 10 to 30 mol%, and Bi 2 O 3 of 5 to 35 mol% of the total 100 mol% of the glass frit, and
  • a conductive composition for glass substrates has been proposed in which the silica component is in the range of 35 to 85 mol% out of a total of 100 mol% of the glass frit.
  • Patent Document 1 the B 2 O 3 —SiO 2 —Bi 2 O 3 glass compounded at a predetermined ratio is contained in the conductive composition, so that the adhesive strength is reduced even if the plating treatment is performed after low-temperature firing.
  • Patent Document 1 when the conductive film on the glass substrate is in contact with a corrosive gas that can exist in the atmosphere, such as SO 2 and H 2 S, for a long time, the conductive film is sulfided and corrosion progresses. There is a problem in that the electrical resistance of the conductive film increases and the conductivity decreases.
  • a corrosive gas that can exist in the atmosphere such as SO 2 and H 2 S
  • An object of the present invention is to provide a conductive paste and a glass article such as an antifogging glass using the conductive paste.
  • the present inventor conducted intensive research to achieve the above object, and as a result, the conductive film contained SO 2 or H 2 by containing a tungsten component (hereinafter referred to as “W component”) in the conductive paste. It has been found that even when a corrosive gas such as S is contacted for a long time, it is possible to suppress an increase in electrical resistance.
  • W component tungsten component
  • the conductive paste according to the present invention is a conductive paste for forming a conductive pattern on a glass substrate, and includes at least conductive powder and glass frit. And an organic vehicle, and a W component is included.
  • the content of the W component is preferably 0.5 parts by weight or more with respect to 100 parts by weight of the conductive powder in terms of elements.
  • the content of the W component is preferably 2.5 to 6.0 parts by weight with respect to 100 parts by weight of the conductive powder in terms of elements.
  • the W component is preferably contained in any form of W metal and W compound.
  • the W compound preferably contains any one or more of oxides, carbides, borides, silicides, and organometallic compounds.
  • the glass frit content is preferably 0.1 to 5 wt%.
  • the content of the conductive powder is preferably 55 to 95 wt%.
  • the conductive powder is preferably composed mainly of Ag.
  • the glass article according to the present invention is a glass article in which a conductive film having a predetermined pattern is formed on the surface of a glass substrate, and the conductive film is formed by sintering the conductive paste as described above. It is characterized by that.
  • a conductive paste for forming a conductive pattern on a glass substrate which contains at least conductive powder, glass frit, and an organic vehicle, and contains a W component. Since it is also in contact long time corrosive gases such as sO 2 and H 2 S, it is possible to obtain a conductive paste capable of suppressing the electrical resistance increases.
  • a conductive film having a predetermined pattern is formed on a glass substrate, and the conductive film is formed by sintering the conductive paste according to any one of the above. Even if the film is in contact with a corrosive gas such as SO 2 or H 2 S for a long time, it is possible to suppress an increase in electrical resistance, and a glass article such as anti-fogging glass having good reliability can be obtained.
  • a corrosive gas such as SO 2 or H 2 S
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
  • FIG. 1 is a front view showing an embodiment of an anti-fogging glass as a glass article manufactured using the conductive paste according to the present invention
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is.
  • a plurality of line-shaped conductive films 2 are formed in parallel on the surface of the glass substrate 1 so as to be thinned and thinned at predetermined intervals. Further, bus bar electrodes 3a and 3b are formed at both ends of the conductive film 2, and the bus bar electrodes 3a and 3b are connected to a power supply terminal (not shown) via solder.
  • this anti-fogging glass is obtained by applying a conductive paste in a line shape on the glass substrate 1 and then baking it at a temperature of 500 to 800 ° C. to sinter inorganic components in the conductive paste.
  • a conductive film 2 having a pattern is formed, whereby the conductive film 2 is fixed on the glass substrate 1. Both ends of the conductive film 2 are electrically connected via bus bar electrodes 3a and 3b, and the bus bar electrodes 3a and 3b are soldered and connected to power supply terminals (not shown).
  • the antifogging glass formed in this way is equipped as a windshield or rear glass of a vehicle such as an automobile, for example, and is fed to the conductive film 2 from the power feeding terminal via the bus bar electrodes 3a and 3b to generate heat, thereby generating the window glass. Anti-fogging can be performed.
  • the conductive paste contains at least conductive powder, glass frit, and an organic vehicle.
  • the conductive paste further contains a W component as an additive, so that even if the conductive film 2 is in contact with a corrosive gas such as SO 2 or H 2 S for a long time, An increase in electrical resistance can be suppressed, and desired good conductivity can be ensured. That is, it is considered that the reaction product produced by the reaction of the conductive film 2 with a corrosive gas such as SO 2 or H 2 S increases the electrical resistance.
  • the increase in electrical resistance can be suppressed because a desulfurization action or the like occurs due to the catalytic effect of the W component, and the corrosive gas component in the reaction product is removed.
  • the discoloration can be suppressed in addition to the suppression of the deterioration of the electrical resistance.
  • the content of the W component is not particularly limited, but is preferably 0.5 to 6 parts by weight per 100 parts by weight of the conductive powder in terms of elements. Even if the content of the W component is less than 0.5 parts by weight with respect to 100 parts by weight of the conductive powder in terms of element, the increase in electrical resistance can be suppressed to some extent, but a sufficient suppression effect is obtained. Absent. On the other hand, if the content of the W component exceeds 6 parts by weight in terms of elements with respect to 100 parts by weight of the conductive powder, the content of the W component increases and the content of the conductive powder relatively decreases. Therefore, the electrical resistance of the conductive film 2 tends to increase.
  • the content of the W component is 2.5 to 6 parts by weight in terms of element with respect to 100 parts by weight of the conductive powder
  • the resistance change of the conductive film 2 can be sufficiently suppressed, and H 2 S or Better corrosion resistance can be ensured against corrosive gases such as SO 2 .
  • the chemical form of tungsten is not particularly limited, and may be a W metal form or a W compound form.
  • W oxide such as WO 3 (tungsten trioxide), W carbide such as WC (tungsten carbide), W boride such as WB (tungsten boride), W silicide such as WSi 2 (tungsten silicide), W W organometallic compounds such as (OC 2 H 5 ) 2 (tungsten diethoxide) can be used.
  • WB and WSi 2 have a high sulfur suppression effect, and the reason is considered to be due to a difference in catalytic action.
  • the physical form of the W component in the conductive paste is preferably in the form of a powder or dissolved in an organic solvent as a W organometallic compound, like other inorganic components.
  • the average particle diameter D 50 of the W component powder is not particularly limited, but the average particle diameter D 50 is preferably 0.1 ⁇ m or more and 10 ⁇ m or less in terms of spherical powder. If it is smaller than this, uniform dispersion in the paste becomes difficult, and if it is larger, the catalytic action is reduced due to a decrease in the surface profile, and the effect of suppressing sulfidation of the conductive film tends to be insufficient.
  • composition of the glass frit is not particularly limited, and for example, a composition system containing Bi 2 O 3 , B 2 O 3 , SiO 2 , PbO or the like can be used.
  • Alkali metals such as Na, K, alkaline earth metals such as Mg, Ca, Sr, Ba, Zn, Al, Ti, Zr, P, Ce, Cr, Mn, Co, Ni, Cu, Nb, Ta, Pd , Ag, Ru, Sn, In, Y, Dy, La, and other various oxides can be contained.
  • the content of the glass frit in the conductive paste is not particularly limited, but is preferably 0.1 to 5 wt% in consideration of the fixing property to the glass substrate 1 and the soldering property to the power supply terminal. .
  • the average particle diameter D 50 (median diameter) of the glass frit is not particularly limited, but from the viewpoint of the adhesion between the glass substrate 1 and the conductive film 2 and the sinterability of the conductive paste. 0.1 ⁇ m or more and 5.0 ⁇ m or less is preferable.
  • the content of the conductive powder in the conductive paste is not particularly limited, but is preferably 55.0 wt% or more and 95.0 wt% or less.
  • the content of the conductive powder is less than 55.0 wt%, the content of the glass frit is relatively increased. Therefore, particularly when the conductive film 2 is thinned and thinned, the electric resistance may be increased. Also, solder erosion is likely to occur during soldering, and there is a risk that the adhesion to the substrate will also be reduced.
  • the content of the conductive powder exceeds 95.0 wt%, the conductive powder becomes excessive and it may be difficult to form a paste.
  • the content of the conductive powder is preferably 55.0 wt% or more and 95.0 wt% or less, more preferably 75.0 wt% or more in consideration of pasting as a conductive paste or lowering of electric resistance. It is 95.0 wt% or less.
  • the conductive powder is not particularly limited as long as it is a metal powder having good conductivity, but good conductivity without being oxidized even when the baking treatment is performed in the air.
  • Ag powder that can maintain the viscosity can be preferably used.
  • Ag powder may be the main component, and various metal powders such as Pd, Pt, Cu, and Ni may be included as subcomponents.
  • the shape of the conductive powder is not particularly limited, and may be, for example, a spherical shape, a flat shape, an irregular shape, or a mixed powder thereof.
  • the average particle diameter D 50 of the conductive powder is not particularly limited, but from the viewpoint of obtaining a desired low resistance, the average particle diameter D 50 is preferably 0.05 ⁇ m or more and 2 ⁇ m or less in terms of spherical powder.
  • the average particle diameter D 50 of the conductive powder is less than 0.05 ⁇ m, pasting becomes difficult.
  • the average particle diameter D 50 of the conductive powder exceeds 2 ⁇ m, the electric resistance tends to increase.
  • the organic vehicle is prepared such that the binder resin and the organic solvent are in a volume ratio of 1 to 3: 7 to 9, for example.
  • the binder resin is not particularly limited, and for example, ethyl cellulose resin, nitrocellulose resin, acrylic resin, alkyd resin, or a combination thereof can be used.
  • the organic solvent is not particularly limited, and ⁇ -terpineol, xylene, toluene, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, etc. alone or in combination thereof Can be used.
  • this conductive paste is obtained by weighing and mixing conductive powder, glass frit, W metal and / or W compound, and organic vehicle so as to have a predetermined mixing ratio, and using a three-roll mill or the like to disperse / It can be easily manufactured by kneading.
  • the conductive powder such as Ag powder, the glass frit, and the organic vehicle are contained, and the W component is contained. Therefore, the corrosive gas such as SO 2 and H 2 S is added to the corrosive gas. It is possible to obtain a conductive paste with good conductivity in which the resistance change of the conductive film 2 is suppressed even after being in contact for a long time and having good corrosion resistance.
  • the conductive paste only needs to contain at least a conductive powder, glass frit, and an organic vehicle, and can contain various inorganic components as necessary within a range that does not affect the properties.
  • the form of inclusion is not particularly limited, and an oxide, hydroxide, peroxide, halide, carbonate, nitrate, phosphate, sulfate, fluoride, organometallic compound, etc., should be selected as appropriate. Can do.
  • plasticizers such as di-2-ethylhexyl phthalate and dibutyl phthalate
  • a rheology modifier such as a fatty acid amide or a fatty acid, and a thixotropic agent, a thickener, a dispersant, etc. may be added.
  • anti-fog glass was illustrated as a glass article
  • the electrically conductive paste of this invention is applicable also to conductive pattern formation of other glass articles, such as a glass antenna.
  • the average particle size D 50 of the glass frit was 2.0 ⁇ m as measured using a particle size analyzer (manufactured by Nikkiso Co., Ltd., Microtrac HRA).
  • the organic cellulose was prepared by mixing the ethyl cellulose resin and texanol so that the binder resin was 10 wt% ethyl cellulose resin and the organic solvent was 90 wt% texanol.
  • Ag powder is prepared as the conductive powder, the Ag powder is 85 wt%, the glass frit is 3 wt%, the content of the additive is the content shown in Table 1, and the balance is an organic vehicle.
  • Ag powder, glass frit, the above additives, and an organic vehicle were blended, mixed with a planetary mixer, and then kneaded with a three-roll mill, thereby producing conductive pastes of sample numbers 1 to 11.
  • the average particle diameter D 50 of Ag powder, similar to the glass frit, was confirmed was measured by using the above particle size analyzer, the average particle diameter D 50 was 1 [mu] m.
  • Example evaluation First, a slide glass having a length of 26.0 mm, a width of 76.0 mm, and a thickness of 1.4 mm was prepared. Using conductive pastes of sample numbers 1 to 11, a conductive pattern having a line total length L: 200 mm and a line width W: 1.0 mm was printed on a slide glass. Next, this was dried at a temperature of 150 ° C. for 10 minutes, and then subjected to a baking treatment at a maximum baking temperature: 600 ° C. for 5 minutes, thereby preparing samples Nos. 1 to 11.
  • the samples Nos. 1 to 11 were placed in a mixed gas environment in which the ambient temperature was 25 ° C., the relative humidity was 75%, the H 2 S concentration was adjusted to 0.1 ppm, and the SO 2 concentration was adjusted to 0.5 ppm.
  • the sulfidation resistance test was performed by leaving for 72 hours.
  • ⁇ R ⁇ (R′ ⁇ R) / R ⁇ ⁇ 100 (1)
  • Table 1 shows the composition of each glass frit of sample Nos. 1 to 11 and the molar content (mol%), pre-test resistance R ( ⁇ ), post-test resistance R ′ ( ⁇ ), and resistance change rate ⁇ R (%). Show.
  • the W content is the same as the molecular weight and molecular weight of each W compound when the W component is contained in the conductive paste in the form of a compound as in sample numbers 3 to 8. It was calculated based on the element ratio of W and the content of the W compound in the conductive paste.
  • Sample No. 9 contained no W component in the conductive paste and contained V 2 O 5 instead of the W component, so the resistance change rate ⁇ R was as large as 9.5%. This is probably because V 2 O 5 did not produce a sufficient desulfurization action and could not remove the S component.
  • Sample No. 10 contains no W component in the conductive paste, and contains Cr 2 O 3 instead of these W components. Therefore, for the same reason as Sample No. 9, the rate of change in resistance ⁇ R Increased to 13.2%.
  • Sample No. 11 also did not contain the W component, so that sulfidation of the conductive film could not be suppressed, and the resistance change rate ⁇ R was further increased to 17.4%.
  • Sample Nos. 1 to 8 which are the samples of the present invention, can contain the W component in the form of W metal or W compound, so that the sulfidation of the conductive film can be effectively suppressed.
  • the resistance change rate ⁇ R of the resistance was 4% or less, and it was found that the resistance change rate ⁇ R can be significantly reduced.
  • Sample Nos. 2 to 8 have a W component content in a preferable range of 2.5 to 6.0 parts by weight with respect to 100 parts by weight of Ag in terms of elements. It was found that the rate ⁇ R was 2.3% or less, and the change in electrical resistance could be further suppressed.
  • WC containing 2.5 parts by weight of W with respect to 100 parts by weight of Ag has no change in electrical resistance before and after the sulfidation resistance test, such as H 2 S and SO 2 . It was found to be hardly affected by corrosive gas.
  • a conductive paste capable of maintaining good conductivity without increasing the electrical resistance can be realized, and the anti-fogging glass of an automobile or the like can be electrically conductive. It can be used as a conductive paste suitable for film formation.

Abstract

In the present invention, an electrically conductive paste contains at least an electrically conductive powder of Ag or the like, a glass frit and an organic vehicle, and contains a tungsten (W) component. The content of the W component is 0.5 parts by weight or more, and preferably 2.5-6.0 parts by weight, in terms of element relative to 100 parts by weight of the electrically conductive powder. The W component is contained either as W metal or as a W compound (an oxide, carbide, boride, silicide, organometallic compound, or the like). A linear electrically conductive film 2 is formed on a glass substrate 1 using this electrically conductive paste. In this way, it is possible to obtain an electrically conductive paste which can suppress an increase in electrical resistance even when in contact with a corrosive gas such as SO2 or H2S for a long period of time and which can ensure good reliability; and a glass article, such as an anti-fogging glass, that uses this electrically conductive paste.

Description

導電性ペースト、及びガラス物品Conductive paste and glass article
 本発明は、導電性ペースト、及びガラス物品に関し、より詳しくは自動車等の車両用窓ガラスに防曇用やアンテナ用等の導電パターンを形成するための導電性ペースト、及びこの導電性ぺ-ストを使用した防曇ガラス等のガラス物品に関する。 The present invention relates to a conductive paste and a glass article. More specifically, the present invention relates to a conductive paste for forming a conductive pattern for anti-fogging or antenna, etc. on a vehicle window glass such as an automobile, and the conductive paste. The present invention relates to a glass article such as an anti-fogging glass.
 従来より、自動車等の車両の窓ガラスには、防曇用の熱線を配した防曇ガラスや車外からの電波を受信するガラスアンテナ等のガラス物品が使用されている。これらのガラス物品、例えば防曇ガラスでは、通常、素材となるガラス基体上に導電性ペーストをライン状に塗布して焼成し、所定パターンの導電膜を形成している。そして、従来より、この種の導電性ペーストも各種開発され、提案されている。 Conventionally, glass articles such as a glass antenna that receives radio waves from the outside of a vehicle and an antifogging glass provided with a heat ray for antifogging are used for a window glass of a vehicle such as an automobile. In these glass articles, for example, anti-fogging glass, a conductive paste having a predetermined pattern is usually formed by applying a conductive paste in a line on a glass substrate as a raw material and baking it. Various types of conductive pastes of this type have been developed and proposed.
 例えば、特許文献1には、導電粉末と、ガラスフリットと、有機ビヒクルとを含有するガラス基板用導電性組成物であって、前記ガラスフリットは、均質なガラス成分およびシリカ成分からなり、前記均質なガラス成分は、前記ガラスフリットの合計100mol%のうち、Bが0~30mol%、SiOが10~30mol%、Biが5~35mol%の組成範囲内からなり、かつ、前記シリカ成分は、前記ガラスフリットの合計100mol%のうち35~85mol%の範囲内からなるガラス基板用導電性組成物が提案されている。 For example, Patent Document 1 discloses a conductive composition for a glass substrate containing a conductive powder, a glass frit, and an organic vehicle, the glass frit comprising a homogeneous glass component and a silica component, and the homogeneous The glass component comprises a composition range of B 2 O 3 of 0 to 30 mol%, SiO 2 of 10 to 30 mol%, and Bi 2 O 3 of 5 to 35 mol% of the total 100 mol% of the glass frit, and In addition, a conductive composition for glass substrates has been proposed in which the silica component is in the range of 35 to 85 mol% out of a total of 100 mol% of the glass frit.
 特許文献1では、所定割合に配合されたB-SiO-Bi系ガラスを導電性組成物中に含有させることにより、低温焼成後にめっき処理を行なっても接着強度の低下を抑制できる耐湿性や耐酸性が良好な防曇ガラスを得ようとしている。 In Patent Document 1, the B 2 O 3 —SiO 2 —Bi 2 O 3 glass compounded at a predetermined ratio is contained in the conductive composition, so that the adhesive strength is reduced even if the plating treatment is performed after low-temperature firing. We are trying to obtain anti-fogging glass with good moisture resistance and acid resistance.
特開平11-130459号公報(請求項1、段落番号〔0029〕等)Japanese Patent Laid-Open No. 11-130459 (Claim 1, paragraph number [0029], etc.)
 しかしながら、特許文献1では、ガラス基体上の導電膜がSOやHS等の大気中に存在し得る腐食性ガスに長時間接すると、導電膜が硫化して腐食が進行し、その結果、導電膜の電気抵抗が高くなり、導電性が低下するという問題があった。 However, in Patent Document 1, when the conductive film on the glass substrate is in contact with a corrosive gas that can exist in the atmosphere, such as SO 2 and H 2 S, for a long time, the conductive film is sulfided and corrosion progresses. There is a problem in that the electrical resistance of the conductive film increases and the conductivity decreases.
 特に、車両用窓ガラスに使用されるガラス物品では、近年、導電膜の細線化・薄膜化が要請されている。 Especially for glass articles used for window glass for vehicles, thinning and thinning of conductive films have recently been required.
したがって、導電膜が細線化・薄膜化されても所望の性能を確保するためには導電膜の電気抵抗が高くなるのを抑制する必要がある。 Therefore, it is necessary to suppress an increase in the electrical resistance of the conductive film in order to ensure the desired performance even if the conductive film is thinned or thinned.
 本発明はこのような事情に鑑みなされたものであって、SOやHS等の腐食性ガスに長時間接しても電気抵抗が高くなるのを抑制でき、良好な信頼性を確保できる導電性ペースト、及びこの導電性ペーストを使用した防曇ガラス等のガラス物品を提供することを目的とする。 The present invention has been made in view of such circumstances, and even if it is in contact with corrosive gases such as SO 2 and H 2 S for a long time, it is possible to suppress an increase in electrical resistance and to ensure good reliability. An object of the present invention is to provide a conductive paste and a glass article such as an antifogging glass using the conductive paste.
 本発明者は、上記目的を達成するために鋭意研究を行ったところ、導電性ペースト中にタングステン成分(以下、「W成分」という。)を含有させることにより、導電膜がSOやHS等の腐食性ガスに長時間接しても、電気抵抗が高くなるのを抑制できるという知見を得た。 The present inventor conducted intensive research to achieve the above object, and as a result, the conductive film contained SO 2 or H 2 by containing a tungsten component (hereinafter referred to as “W component”) in the conductive paste. It has been found that even when a corrosive gas such as S is contacted for a long time, it is possible to suppress an increase in electrical resistance.
 本発明はこのような知見に基づきなされたものであって、本発明に係る導電性ペーストは、ガラス基体上に導電パターンを形成するための導電性ペーストであって、少なくとも導電性粉末とガラスフリットと有機ビヒクルとを含有し、かつ、W成分が含まれていることを特徴としている。 The present invention has been made based on such knowledge, and the conductive paste according to the present invention is a conductive paste for forming a conductive pattern on a glass substrate, and includes at least conductive powder and glass frit. And an organic vehicle, and a W component is included.
 また、本発明の導電性ペーストは、前記W成分の含有量が、元素換算で、前記導電性粉末100重量部に対し0.5重量部以上であるのが好ましい。 In the conductive paste of the present invention, the content of the W component is preferably 0.5 parts by weight or more with respect to 100 parts by weight of the conductive powder in terms of elements.
 さらに、本発明の導電性ペーストは、前記W成分の含有量が、元素換算で、前記導電性粉末100重量部に対し2.5~6.0重量部であるのが好ましい。 Furthermore, in the conductive paste of the present invention, the content of the W component is preferably 2.5 to 6.0 parts by weight with respect to 100 parts by weight of the conductive powder in terms of elements.
 これにより、導電膜がSOやHS等の腐食性ガスに長時間接しても、導電膜の劣化をより効果的に抑制できる耐食性の良好な導電性ペーストを得ることができる。 Thereby, even when the conductive film is in contact with a corrosive gas such as SO 2 or H 2 S for a long time, a conductive paste with good corrosion resistance that can more effectively suppress deterioration of the conductive film can be obtained.
 また、本発明の導電性ペーストは、前記W成分が、W金属及びW化合物のうちのいずれかの形態で含有されているのが好ましい。 In the conductive paste of the present invention, the W component is preferably contained in any form of W metal and W compound.
 また、本発明の導電性ペーストは、前記W化合物が、酸化物、炭化物、ホウ化物、ケイ化物、及び有機金属化合物のうちのいずれか1種以上を含むのが好ましい。 In the conductive paste of the present invention, the W compound preferably contains any one or more of oxides, carbides, borides, silicides, and organometallic compounds.
 また、本発明の導電性ペーストは、前記ガラスフリットの含有量は、0.1~5wt%であるのが好ましい。 In the conductive paste of the present invention, the glass frit content is preferably 0.1 to 5 wt%.
 さらに、本発明の導電性ペーストは、前記導電性粉末の含有量は、55~95wt%であるのが好ましい。 Furthermore, in the conductive paste of the present invention, the content of the conductive powder is preferably 55 to 95 wt%.
 また、本発明の導電性ペーストは、前記導電性粉末が、Agを主成分としているのが好ましい。 In the conductive paste of the present invention, the conductive powder is preferably composed mainly of Ag.
 また、本発明に係るガラス物品は、ガラス基体の表面に所定パターンの導電膜が形成されたガラス物品であって、前記導電膜は、上記ずれかに記載の導電性ペーストが焼結されてなることを特徴としている。 Moreover, the glass article according to the present invention is a glass article in which a conductive film having a predetermined pattern is formed on the surface of a glass substrate, and the conductive film is formed by sintering the conductive paste as described above. It is characterized by that.
 本発明の導電性ペーストによれば、ガラス基体上に導電パターンを形成するための導電性ペーストであって、少なくとも導電性粉末とガラスフリットと有機ビヒクルとを含有し、かつ、W成分が含まれているので、SOやHS等の腐食性ガスに長時間接しても、電気抵抗が高くなるのを抑制できる導電性ペーストを得ることができる。 According to the conductive paste of the present invention, a conductive paste for forming a conductive pattern on a glass substrate, which contains at least conductive powder, glass frit, and an organic vehicle, and contains a W component. since it is also in contact long time corrosive gases such as sO 2 and H 2 S, it is possible to obtain a conductive paste capable of suppressing the electrical resistance increases.
 本発明のガラス物品によれば、ガラス基体上に所定パターンの導電膜が形成されたガラス物品であって、前記導電膜は、上記いずれかに記載の導電性ペーストが焼結されてなので、導電膜がSOやHS等の腐食性ガスに長時間接しても、電気抵抗が高くなるのを抑制でき、良好な信頼性を有する防曇ガラス等のガラス物品を得ることができる。 According to the glass article of the present invention, a conductive film having a predetermined pattern is formed on a glass substrate, and the conductive film is formed by sintering the conductive paste according to any one of the above. Even if the film is in contact with a corrosive gas such as SO 2 or H 2 S for a long time, it is possible to suppress an increase in electrical resistance, and a glass article such as anti-fogging glass having good reliability can be obtained.
本発明の導電性ペーストを使用して製造されたガラス物品としての防曇ガラスの一実施の形態を示す断面図である。It is sectional drawing which shows one Embodiment of the anti-fog glass as a glass article manufactured using the electrically conductive paste of this invention. 図1のA-A矢視断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
 次に、本発明の実施の形態を詳説する。 Next, an embodiment of the present invention will be described in detail.
 図1は、本発明に係る導電性ペーストを使用して製造されたガラス物品としての防曇ガラスの一実施の形態を示す正面図であり、図2は図1のA-A矢視断面図である。 FIG. 1 is a front view showing an embodiment of an anti-fogging glass as a glass article manufactured using the conductive paste according to the present invention, and FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is.
 この防曇ガラスは、ガラス基体1の表面に所定間隔を有して細線化・薄膜化されたライン状の導電膜2が平行状に複数形成されている。また、導電膜2の両端部にはバスバー電極3a、3bが形成され、バスバー電極3a、3bははんだを介して不図示の給電端子に接続されている。 In this antifogging glass, a plurality of line-shaped conductive films 2 are formed in parallel on the surface of the glass substrate 1 so as to be thinned and thinned at predetermined intervals. Further, bus bar electrodes 3a and 3b are formed at both ends of the conductive film 2, and the bus bar electrodes 3a and 3b are connected to a power supply terminal (not shown) via solder.
 すなわち、この防曇ガラスは、ガラス基体1上に導電性ペーストをライン状に塗布した後、500~800℃の温度で焼成処理し、導電性ペースト中の無機成分を焼結させることにより、所定パターンの導電膜2を形成し、これにより前記導電膜2がガラス基体1上に固着される。そして、導電膜2の両端はバスバー電極3a、3bを介して電気的に接続され、該バスバー電極3a、3bははんだ付けされて給電端子(不図示)に接続されている。 That is, this anti-fogging glass is obtained by applying a conductive paste in a line shape on the glass substrate 1 and then baking it at a temperature of 500 to 800 ° C. to sinter inorganic components in the conductive paste. A conductive film 2 having a pattern is formed, whereby the conductive film 2 is fixed on the glass substrate 1. Both ends of the conductive film 2 are electrically connected via bus bar electrodes 3a and 3b, and the bus bar electrodes 3a and 3b are soldered and connected to power supply terminals (not shown).
 このように形成された防曇ガラスは、例えば自動車等の車両のフロントガラスやリアガラスとして装備され、バスバー電極3a、3bを介して給電端子から導電膜2に給電され、発熱させることによって窓ガラスの曇り止めを行うことができる。 The antifogging glass formed in this way is equipped as a windshield or rear glass of a vehicle such as an automobile, for example, and is fed to the conductive film 2 from the power feeding terminal via the bus bar electrodes 3a and 3b to generate heat, thereby generating the window glass. Anti-fogging can be performed.
 次に、上述した導電膜2を形成するための導電性ペーストについて詳述する。 Next, the conductive paste for forming the conductive film 2 will be described in detail.
 本導電性ペーストは、少なくとも導電性粉末と、ガラスフリットと、有機ビヒクルとを含有している。 The conductive paste contains at least conductive powder, glass frit, and an organic vehicle.
 さらに、本導電性ペーストは、さらに添加剤として、W成分を含有しており、これにより、導電膜2が長時間に亙ってSOやHS等の腐食性ガスと接しても、電気抵抗が増大するのを抑制することができ、所望の良導電性を確保することができる。すなわち、導電膜2がSOやHS等の腐食性ガスと反応して生成する反応生成物が電気抵抗を増大させる原因と考えられている。そして、電気抵抗の増大を抑制できるのは、W成分の触媒効果により脱硫作用等が生じ、前記反応生成物中の腐食性ガス成分が除去されるためと考えられる。また、導電膜2の硫化を防ぐことができるので、電気抵抗の劣化の抑制に加え、その変色も抑制することができる。 Further, the conductive paste further contains a W component as an additive, so that even if the conductive film 2 is in contact with a corrosive gas such as SO 2 or H 2 S for a long time, An increase in electrical resistance can be suppressed, and desired good conductivity can be ensured. That is, it is considered that the reaction product produced by the reaction of the conductive film 2 with a corrosive gas such as SO 2 or H 2 S increases the electrical resistance. The increase in electrical resistance can be suppressed because a desulfurization action or the like occurs due to the catalytic effect of the W component, and the corrosive gas component in the reaction product is removed. Moreover, since the sulfidation of the conductive film 2 can be prevented, the discoloration can be suppressed in addition to the suppression of the deterioration of the electrical resistance.
 ここで、W成分の含有量は特に限定されるものではないが、元素換算で、導電性粉末100重量部に対し0.5~6重量部が好ましい。W成分の含有量が、元素換算で導電性粉末100重量部に対し0.5重量部未満であっても、電気抵抗が高くなるのを或る程度抑制できるが、十分な抑制効果は得られない。一方、W成分の含有量が、元素換算で、導電性粉末100重量部に対し6重量部を超えると、W成分の含有量が多くなって導電性粉末の含有量が相対的に少なくなることから、導電膜2の電気抵抗が高くなる傾向にある。 Here, the content of the W component is not particularly limited, but is preferably 0.5 to 6 parts by weight per 100 parts by weight of the conductive powder in terms of elements. Even if the content of the W component is less than 0.5 parts by weight with respect to 100 parts by weight of the conductive powder in terms of element, the increase in electrical resistance can be suppressed to some extent, but a sufficient suppression effect is obtained. Absent. On the other hand, if the content of the W component exceeds 6 parts by weight in terms of elements with respect to 100 parts by weight of the conductive powder, the content of the W component increases and the content of the conductive powder relatively decreases. Therefore, the electrical resistance of the conductive film 2 tends to increase.
 特に、W成分の含有量が、元素換算で導電性粉末100重量部に対し2.5~6重量部の場合は、導電膜2の抵抗変化を十分に抑制することができ、HSやSO等の腐食性ガスに対し、より良好な耐食性を確保することができる。 In particular, when the content of the W component is 2.5 to 6 parts by weight in terms of element with respect to 100 parts by weight of the conductive powder, the resistance change of the conductive film 2 can be sufficiently suppressed, and H 2 S or Better corrosion resistance can be ensured against corrosive gases such as SO 2 .
 タングステンの化学形態としては、特に限定されるものではなく、W金属の形態でもよく、W化合物の形態でもよい。 The chemical form of tungsten is not particularly limited, and may be a W metal form or a W compound form.
 例えばWO(三酸化タングステン)等のW酸化物、WC(炭化タングステン)等のW炭化物、WB(ホウ化タングステン)等のWホウ化物、WSi(ケイ化タングステン)等のWケイ化物、W(OC(タングステンジエトキシド)等のW有機金属化合物等を使用することができる。特にWB、WSiは硫化抑制効果が高く、その理由は触媒作用の違いによるものと考えられる。 For example, W oxide such as WO 3 (tungsten trioxide), W carbide such as WC (tungsten carbide), W boride such as WB (tungsten boride), W silicide such as WSi 2 (tungsten silicide), W W organometallic compounds such as (OC 2 H 5 ) 2 (tungsten diethoxide) can be used. In particular, WB and WSi 2 have a high sulfur suppression effect, and the reason is considered to be due to a difference in catalytic action.
 そして、導電性ペースト中におけるW成分の物理形態としては、他の無機成分と同様、粉末状であるか、W有機金属化合物として有機溶剤に溶解した形態であることが好ましい。 The physical form of the W component in the conductive paste is preferably in the form of a powder or dissolved in an organic solvent as a W organometallic compound, like other inorganic components.
 W成分粉末の平均粒径D50も、特に限定されるものではないが、平均粒径D50は球形粉換算で、0.1μm以上10μm以下が好ましい。これよりも小さいと、ペースト中での均一な分散が困難となり、大きいと表面籍の減少により触媒作用が低下して、導電膜の硫化抑制効果が不十分となる傾向にある。 The average particle diameter D 50 of the W component powder is not particularly limited, but the average particle diameter D 50 is preferably 0.1 μm or more and 10 μm or less in terms of spherical powder. If it is smaller than this, uniform dispersion in the paste becomes difficult, and if it is larger, the catalytic action is reduced due to a decrease in the surface profile, and the effect of suppressing sulfidation of the conductive film tends to be insufficient.
 また、ガラスフリットの組成も、特に限定されるものではなく、例えば、Bi、B、SiO、PbO等を含有した組成系を使用することができ、必要に応じてLi、Na、K等のアルカリ金属、Mg、Ca、Sr、Ba等のアルカリ土類金属、Zn、Al、Ti、Zr、P、Ce、Cr、Mn、Co、Ni、Cu、Nb、Ta、Pd、Ag、Ru、Sn、In、Y、Dy、La等の各種酸化物を含有させることができる。 Further, the composition of the glass frit is not particularly limited, and for example, a composition system containing Bi 2 O 3 , B 2 O 3 , SiO 2 , PbO or the like can be used. Alkali metals such as Na, K, alkaline earth metals such as Mg, Ca, Sr, Ba, Zn, Al, Ti, Zr, P, Ce, Cr, Mn, Co, Ni, Cu, Nb, Ta, Pd , Ag, Ru, Sn, In, Y, Dy, La, and other various oxides can be contained.
 また、導電性ペースト中のガラスフリットの含有量も特に限定されるものではないが、ガラス基体1との固着性や給電端子とのはんだ付け性等を考慮すると、0.1~5wt%が好ましい。 Further, the content of the glass frit in the conductive paste is not particularly limited, but is preferably 0.1 to 5 wt% in consideration of the fixing property to the glass substrate 1 and the soldering property to the power supply terminal. .
 また、ガラスフリットの平均粒径D50(メジアン径)も、特に限定されるものではないが、ガラス基体1と導電膜2との間の固着性や導電性ペーストの焼結性の観点からは、0.1μm以上5.0μm以下が好ましい。 Further, the average particle diameter D 50 (median diameter) of the glass frit is not particularly limited, but from the viewpoint of the adhesion between the glass substrate 1 and the conductive film 2 and the sinterability of the conductive paste. 0.1 μm or more and 5.0 μm or less is preferable.
 また、導電性ペースト中の導電性粉末の含有量は、特に限定されるものではないが、55.0wt%以上95.0wt%以下が好ましい。導電性粉末の含有量が55.0wt%未満になるとガラスフリットの含有量が相対的に増加することから、特に導電膜2が細線化・薄膜化してくると電気抵抗が高くなるおそれがある。また、はんだ付け時にはんだ食われが生じ易く、更には基板への固着性も低下するおそれがある。一方、導電性粉末の含有量が95.0wt%を超えると、導電性粉末が過剰となってペースト化が困難になるおそれがある。このように導電性粉末の含有量は、導電性ペーストとしてのペースト化や電気抵抗の低抵抗化を考慮すると、55.0wt%以上95.0wt%以下が好ましく、より好ましくは75.0wt%以上95.0wt%以下である。 The content of the conductive powder in the conductive paste is not particularly limited, but is preferably 55.0 wt% or more and 95.0 wt% or less. When the content of the conductive powder is less than 55.0 wt%, the content of the glass frit is relatively increased. Therefore, particularly when the conductive film 2 is thinned and thinned, the electric resistance may be increased. Also, solder erosion is likely to occur during soldering, and there is a risk that the adhesion to the substrate will also be reduced. On the other hand, when the content of the conductive powder exceeds 95.0 wt%, the conductive powder becomes excessive and it may be difficult to form a paste. In this way, the content of the conductive powder is preferably 55.0 wt% or more and 95.0 wt% or less, more preferably 75.0 wt% or more in consideration of pasting as a conductive paste or lowering of electric resistance. It is 95.0 wt% or less.
 また、導電性粉末としては、良好な導電性を有する金属粉であれば特に限定されるものではないが、焼成処理を大気中で行った場合であっても酸化されることなく良好な導電性を維持することができるAg粉末を好んで使用することができる。また、Ag粉末を主成分としPd、Pt、Cu、Ni等の各種金属粉末を副成分として含有させてもよい。 In addition, the conductive powder is not particularly limited as long as it is a metal powder having good conductivity, but good conductivity without being oxidized even when the baking treatment is performed in the air. Ag powder that can maintain the viscosity can be preferably used. Further, Ag powder may be the main component, and various metal powders such as Pd, Pt, Cu, and Ni may be included as subcomponents.
 導電性粉末の形状も、特に限定されるものではなく、例えば、球形状、扁平状、不定形形状、或いはこれらの混合粉であってもよい。 The shape of the conductive powder is not particularly limited, and may be, for example, a spherical shape, a flat shape, an irregular shape, or a mixed powder thereof.
 導電性粉末の平均粒径D50も、特に限定されるものではないが、所望の低抵抗を得る観点からは、平均粒径D50は球形粉換算で、0.05μm以上2μm以下が好ましい。導電性粉末の平均粒径D50が、0.05μm未満になるとペースト化が困難となり、一方導電性粉末の平均粒径D50が2μmを超えると、電気抵抗が大きくなる傾向にある。 The average particle diameter D 50 of the conductive powder is not particularly limited, but from the viewpoint of obtaining a desired low resistance, the average particle diameter D 50 is preferably 0.05 μm or more and 2 μm or less in terms of spherical powder. When the average particle diameter D 50 of the conductive powder is less than 0.05 μm, pasting becomes difficult. On the other hand, when the average particle diameter D 50 of the conductive powder exceeds 2 μm, the electric resistance tends to increase.
 有機ビヒクルは、バインダ樹脂と有機溶剤とが、例えば体積比率で、1~3:7~9となるように調製されている。尚、バインダ樹脂としては、特に限定されるものではなく、例えば、エチルセルロース樹脂、ニトロセルロース樹脂、アクリル樹脂、アルキド樹脂、又はこれらの組み合わせを使用することができる。また、有機溶剤についても特に限定されるものではなく、α―テルピネオール、キシレン、トルエン、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート等を単独、或いはこれらを組み合わせて使用することができる。 The organic vehicle is prepared such that the binder resin and the organic solvent are in a volume ratio of 1 to 3: 7 to 9, for example. The binder resin is not particularly limited, and for example, ethyl cellulose resin, nitrocellulose resin, acrylic resin, alkyd resin, or a combination thereof can be used. Also, the organic solvent is not particularly limited, and α-terpineol, xylene, toluene, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, etc. alone or in combination thereof Can be used.
 そして、この導電性ペーストは、導電性粉末、ガラスフリット、W金属及び/又はW化合物、有機ビヒクルを所定の混合比率となるように秤量して混合し、三本ロールミル等を使用して分散・混練することにより、容易に製造することができる。 Then, this conductive paste is obtained by weighing and mixing conductive powder, glass frit, W metal and / or W compound, and organic vehicle so as to have a predetermined mixing ratio, and using a three-roll mill or the like to disperse / It can be easily manufactured by kneading.
 このように本実施の形態では、Ag粉末等の導電性粉末と、ガラスフリットと、有機ビヒクルとを含有し、W成分が含まれているので、SOやHS等の腐食性ガスに長時間接しても導電膜2の抵抗変化が抑制された良導電性を有する耐食性の良好な導電性ペーストを得ることができる。 As described above, in the present embodiment, the conductive powder such as Ag powder, the glass frit, and the organic vehicle are contained, and the W component is contained. Therefore, the corrosive gas such as SO 2 and H 2 S is added to the corrosive gas. It is possible to obtain a conductive paste with good conductivity in which the resistance change of the conductive film 2 is suppressed even after being in contact for a long time and having good corrosion resistance.
 尚、本発明は上記実施の形態に限定されるものではない。例えば、本導電性ペーストは、少なくとも導電性粉末、ガラスフリット、有機ビヒクルを含有していればよく、特性に影響を与えない範囲で、必要に応じ各種無機成分を含有させることができ、また、含有形態についても特に限定されるものではなく、酸化物、水酸化物、過酸化物、ハロゲン化物、炭酸塩、硝酸塩、リン酸塩、硫酸塩、フッ化物、有機金属化合物等、適宜選択することができる。 The present invention is not limited to the above embodiment. For example, the conductive paste only needs to contain at least a conductive powder, glass frit, and an organic vehicle, and can contain various inorganic components as necessary within a range that does not affect the properties. The form of inclusion is not particularly limited, and an oxide, hydroxide, peroxide, halide, carbonate, nitrate, phosphate, sulfate, fluoride, organometallic compound, etc., should be selected as appropriate. Can do.
 また、本導電性ペーストには、必要に応じて、フタル酸ジ2-エチルヘキシル、フタル酸ジブチル等の可塑剤を1種又はこれらの組み合わせを添加するのも好ましい。また、脂肪酸アマイドや脂肪酸等のレオロジー調整剤を添加するのも好ましく、さらにはチクソトロピック剤、増粘剤、分散剤などを添加してもよい。 In addition, it is also preferable to add one or a combination of plasticizers such as di-2-ethylhexyl phthalate and dibutyl phthalate to the conductive paste as necessary. It is also preferable to add a rheology modifier such as a fatty acid amide or a fatty acid, and a thixotropic agent, a thickener, a dispersant, etc. may be added.
 さらに、上記実施の形態では、ガラス物品として防曇ガラスを例示したが、本発明の導電性ペーストはガラスアンテナ等の他のガラス物品の導電パターン形成にも適用可能である。 Furthermore, in the said embodiment, although anti-fog glass was illustrated as a glass article, the electrically conductive paste of this invention is applicable also to conductive pattern formation of other glass articles, such as a glass antenna.
 次に、本発明の実施例を具体的に説明する。 Next, specific examples of the present invention will be described.
〔試料の作製〕
 導電性ペースト中に含有される添加剤として、W金属、WO、WC、WB、WSi、W(OC、V、Crを用意した。
[Sample preparation]
As additives contained in the conductive paste, W metal, WO 3 , WC, WB, WSi 2 , W (OC 2 H 5 ) 2 , V 2 O 5 , Cr 2 O 3 were prepared.
 また、ガラス素原料としてBi、B、SiO、Alを含有したガラスフリットを用意した。 It was also prepared Bi 2 O 3, B 2 O 3, glass frit containing SiO 2, Al 2 O 3 as glass raw materials.
 尚、ガラスフリットの平均粒径D50は、粒度分析計(日機装社製、マイクロトラックHRA)を使用して測定したところ、2.0μmであった。 The average particle size D 50 of the glass frit was 2.0 μm as measured using a particle size analyzer (manufactured by Nikkiso Co., Ltd., Microtrac HRA).
 次いで、有機ビヒクルを作製した。すなわち、バインダ樹脂としてエチルセルロース樹脂10wt%、有機溶剤としてテキサノール90wt%となるようにエチルセルロース樹脂とテキサノールとを混合し、有機ビヒクルを作製した。 Next, an organic vehicle was produced. That is, the organic cellulose was prepared by mixing the ethyl cellulose resin and texanol so that the binder resin was 10 wt% ethyl cellulose resin and the organic solvent was 90 wt% texanol.
 次に、導電性粉末としてAg粉末を用意し、Ag粉末が85wt%、ガラスフリットが3wt%、上記添加剤の含有量が表1に示す含有量であり、残部が有機ビヒクルとなるように、Ag粉末、ガラスフリット、上記添加剤、及び有機ビヒクルを配合し、プラネタリーミキサーで混合した後に、三本ロールミルで混練し、これにより試料番号1~11の導電性ペーストを作製した。 Next, Ag powder is prepared as the conductive powder, the Ag powder is 85 wt%, the glass frit is 3 wt%, the content of the additive is the content shown in Table 1, and the balance is an organic vehicle. Ag powder, glass frit, the above additives, and an organic vehicle were blended, mixed with a planetary mixer, and then kneaded with a three-roll mill, thereby producing conductive pastes of sample numbers 1 to 11.
 尚、Ag粉末の平均粒径D50も、ガラスフリットと同様、上記粒度分析計を使用して測定し確認したところ、平均粒径D50は1μmであった。 Incidentally, the average particle diameter D 50 of Ag powder, similar to the glass frit, was confirmed was measured by using the above particle size analyzer, the average particle diameter D 50 was 1 [mu] m.
〔試料の評価〕
 まず、縦:26.0mm、横:76.0mm、厚み:1.4mmのスライドガラスを用意した。そして、試料番号1~11の導電性ペーストを使用し、ライン全長L:200mm、ライン幅W:1.0mmの導電パターンをスライドガラス上に印刷形成した。次いで、これを150℃の温度で10分間乾燥した後、最高焼成温度:600℃で5分間焼成処理を行い、試料番号1~11の試料を作製した。
[Sample evaluation]
First, a slide glass having a length of 26.0 mm, a width of 76.0 mm, and a thickness of 1.4 mm was prepared. Using conductive pastes of sample numbers 1 to 11, a conductive pattern having a line total length L: 200 mm and a line width W: 1.0 mm was printed on a slide glass. Next, this was dried at a temperature of 150 ° C. for 10 minutes, and then subjected to a baking treatment at a maximum baking temperature: 600 ° C. for 5 minutes, thereby preparing samples Nos. 1 to 11.
 次に、マルチメータ(ヒューレット・パッカード社製、3458A)を使用し、試料番号1~11の各試料の試験前抵抗Rを測定した。 Next, using a multimeter (manufactured by Hewlett-Packard Company, 3458A), the pre-test resistance R of each of the sample numbers 1 to 11 was measured.
 次いで、試料番号1~11の各試料を、雰囲気温度25℃、相対湿度75%、HSの濃度が0.1ppm及びSOの濃度が0.5ppmに調整された混合ガスの環境下に72時間放置し、耐硫化試験を行った。 Next, the samples Nos. 1 to 11 were placed in a mixed gas environment in which the ambient temperature was 25 ° C., the relative humidity was 75%, the H 2 S concentration was adjusted to 0.1 ppm, and the SO 2 concentration was adjusted to 0.5 ppm. The sulfidation resistance test was performed by leaving for 72 hours.
 そして、72時間後に各試料の抵抗、すなわち試験後抵抗R′を測定し、数式(1)に従って基づいて抵抗変化率ΔRを算出した。 Then, after 72 hours, the resistance of each sample, that is, the resistance R ′ after the test was measured, and the resistance change rate ΔR was calculated based on the formula (1).
 ΔR={(R′-R)/R}×100 ...(1) ΔR = {(R′−R) / R} × 100 (1)
 表1は、試料番号1~11の各ガラスフリットの組成とその含有モル量(mol%)、試験前抵抗R(Ω)と試験後抵抗R′(Ω)及び抵抗変化率ΔR(%)を示している。 Table 1 shows the composition of each glass frit of sample Nos. 1 to 11 and the molar content (mol%), pre-test resistance R (Ω), post-test resistance R ′ (Ω), and resistance change rate ΔR (%). Show.
 尚、表1中、Ag100重量部に対するW含有量は、試料番号3~8のように、W成分が化合物形態で導電性ペースト中に含有されている場合は、各W化合物の分子量、分子量中のWの元素比率、及び導電性ペースト中のW化合物の含有量に基づいて算出した。 In Table 1, with respect to 100 parts by weight of Ag, the W content is the same as the molecular weight and molecular weight of each W compound when the W component is contained in the conductive paste in the form of a compound as in sample numbers 3 to 8. It was calculated based on the element ratio of W and the content of the W compound in the conductive paste.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試料番号9は、導電性ペースト中にW成分が含まれておらず、W成分の代わりにVを含んでいるため、抵抗変化率ΔRは9.5%と大きくなった。これは、Vでは、十分な脱硫作用が生じず、S成分を除去できなかったものと考えられる。 Sample No. 9 contained no W component in the conductive paste and contained V 2 O 5 instead of the W component, so the resistance change rate ΔR was as large as 9.5%. This is probably because V 2 O 5 did not produce a sufficient desulfurization action and could not remove the S component.
 また、試料番号10は、導電性ペースト中にW成分が含まれておらず、これらW成分の代わりにCrを含んでいるため、試料番号9と同様の理由から、抵抗変化率ΔRは13.2%と大きくなった。 Sample No. 10 contains no W component in the conductive paste, and contains Cr 2 O 3 instead of these W components. Therefore, for the same reason as Sample No. 9, the rate of change in resistance ΔR Increased to 13.2%.
 また、試料番号11も、W成分が含まれていないため、導電膜の硫化を抑制することができず、抵抗変化率ΔRは17.4%と更に大きくなった。 In addition, Sample No. 11 also did not contain the W component, so that sulfidation of the conductive film could not be suppressed, and the resistance change rate ΔR was further increased to 17.4%.
 これに対し本発明試料である試料番号1~8は、W成分がW金属又はW化合物の形態で含まれているので、導電膜の硫化を効果的に抑制することができ、その結果、電気抵抗の抵抗変化率ΔRは4%以下となり、抵抗変化率ΔRを大幅に低減できることが分かった。 On the other hand, Sample Nos. 1 to 8, which are the samples of the present invention, can contain the W component in the form of W metal or W compound, so that the sulfidation of the conductive film can be effectively suppressed. The resistance change rate ΔR of the resistance was 4% or less, and it was found that the resistance change rate ΔR can be significantly reduced.
 特に、これらの本発明試料のうち、試料番号2~8は、W成分の含有量が、元素換算でAg100重量部に対し2.5~6.0重量部と好ましい範囲にあるので、抵抗変化率ΔRは2.3%以下となって電気抵抗の変化をより一層抑制することができることが分かった。 In particular, among these samples of the present invention, Sample Nos. 2 to 8 have a W component content in a preferable range of 2.5 to 6.0 parts by weight with respect to 100 parts by weight of Ag in terms of elements. It was found that the rate ΔR was 2.3% or less, and the change in electrical resistance could be further suppressed.
 さらに、試料番号5から明らかなように、Ag100重量部に対し2.5重量部のWを含有したWCは、耐硫化試験の前後で電気抵抗に変化はなく、HSやSO等の腐食性ガスの影響を殆ど受けないことが分かった。 Further, as apparent from Sample No. 5, WC containing 2.5 parts by weight of W with respect to 100 parts by weight of Ag has no change in electrical resistance before and after the sulfidation resistance test, such as H 2 S and SO 2 . It was found to be hardly affected by corrosive gas.
 SOやHS等のび腐食性ガスに長時間接しても、電気抵抗が増大することなく、良導電性を維持できる導電性ペーストを実現することができ、自動車等の防曇ガラスの導電膜形成に適した導電性ペーストに利用できる。 Even when exposed to corrosive gases such as SO 2 and H 2 S for a long time, a conductive paste capable of maintaining good conductivity without increasing the electrical resistance can be realized, and the anti-fogging glass of an automobile or the like can be electrically conductive. It can be used as a conductive paste suitable for film formation.
1 ガラス基体
2 導電膜
1 Glass substrate 2 Conductive film

Claims (9)

  1.  ガラス基体上に導電パターンを形成するための導電性ペーストであって、
     少なくとも導電性粉末とガラスフリットと有機ビヒクルとを含有し、
     かつ、タングステン成分が含まれていることを特徴とする導電性ペースト。
    A conductive paste for forming a conductive pattern on a glass substrate,
    Contains at least conductive powder, glass frit and organic vehicle,
    A conductive paste containing a tungsten component.
  2.  前記タングステン成分の含有量は、元素換算で、前記導電性粉末100重量部に対し0.5重量部以上であることを特徴とする請求項1記載の導電性ペースト。 2. The conductive paste according to claim 1, wherein the content of the tungsten component is 0.5 parts by weight or more with respect to 100 parts by weight of the conductive powder in terms of elements.
  3.  前記タングステン成分の含有量は、元素換算で、前記導電性粉末100重量部に対し2.5~6.0重量部であることを特徴とする請求項1又は請求項2記載の導電性ペースト。 3. The conductive paste according to claim 1, wherein the content of the tungsten component is 2.5 to 6.0 parts by weight with respect to 100 parts by weight of the conductive powder in terms of elements.
  4.  前記タングステン成分は、タングステン金属及びタングステン化合物のうちのいずれかの形態で含有されていることを特徴とする請求項1乃至請求項3のいずれかに載の導電性ペースト。 The conductive paste according to any one of claims 1 to 3, wherein the tungsten component is contained in any form of tungsten metal and a tungsten compound.
  5.  前記タングステン化合物は、酸化物、炭化物、ホウ化物、ケイ化物、及び有機金属化合物のうちのいずれか1種以上を含むことを特徴とする請求項4記載の導電性ペースト。 5. The conductive paste according to claim 4, wherein the tungsten compound contains one or more of oxides, carbides, borides, silicides, and organometallic compounds.
  6.  前記ガラスフリットの含有量は、0.1~5wt%であることを特徴とする請求項1乃至請求項5のいずれかに記載の導電性ペースト。 6. The conductive paste according to claim 1, wherein the content of the glass frit is 0.1 to 5 wt%.
  7.  前記導電性粉末の含有量は、55~95wt%であることを特徴とする請求項1乃至請求項6のいずれかに記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 6, wherein the content of the conductive powder is 55 to 95 wt%.
  8.  前記導電性粉末は、Agを主成分としていることを特徴とする請求項1乃至請求項7のいずれかに記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 7, wherein the conductive powder contains Ag as a main component.
  9.  ガラス基体の表面に所定パターンの導電膜が形成されたガラス物品であって、
     前記導電膜は、請求項1乃至請求項8のいずれかに記載の導電性ペーストが焼結されてなることを特徴とするガラス物品。
    A glass article in which a conductive film having a predetermined pattern is formed on the surface of a glass substrate,
    The said electrically conductive film is a glass article characterized by sintering the electrically conductive paste in any one of Claims 1 thru | or 8.
PCT/JP2015/064064 2014-07-28 2015-05-15 Electrically conductive paste, and glass article WO2016017239A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-153132 2014-07-28
JP2014153132 2014-07-28

Publications (1)

Publication Number Publication Date
WO2016017239A1 true WO2016017239A1 (en) 2016-02-04

Family

ID=55217143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064064 WO2016017239A1 (en) 2014-07-28 2015-05-15 Electrically conductive paste, and glass article

Country Status (1)

Country Link
WO (1) WO2016017239A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290634A (en) * 1993-03-31 1994-10-18 Miyoshi Denshi Kk Low temperature baked copper composite
JPH0778506A (en) * 1993-09-08 1995-03-20 Murata Mfg Co Ltd Conductive paste
JPH0794306A (en) * 1993-07-07 1995-04-07 Natl Starch & Chem Investment Holding Corp Paste resistant to power surge
WO2006098160A1 (en) * 2005-03-14 2006-09-21 Murata Manufacturing Co., Ltd. Conductive paste and glass structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290634A (en) * 1993-03-31 1994-10-18 Miyoshi Denshi Kk Low temperature baked copper composite
JPH0794306A (en) * 1993-07-07 1995-04-07 Natl Starch & Chem Investment Holding Corp Paste resistant to power surge
JPH0778506A (en) * 1993-09-08 1995-03-20 Murata Mfg Co Ltd Conductive paste
WO2006098160A1 (en) * 2005-03-14 2006-09-21 Murata Manufacturing Co., Ltd. Conductive paste and glass structure

Similar Documents

Publication Publication Date Title
JP4885781B2 (en) Conductive paste
JP4600282B2 (en) Conductive paste
WO2017033911A1 (en) Metal paste having excellent low-temperature sinterability and method for producing the metal paste
KR102488165B1 (en) Conductive composition, method for producing a conductor, and method for forming wiring of electronic parts
US11174193B2 (en) Conductive composition and method for producing terminal electrode
EP1703526B1 (en) Resistance paste and process for manufacturing a resistor from this resistance paste
US10052690B2 (en) Conductive paste and glass article
JP6623919B2 (en) Conductive composition, method for producing conductor, and method for forming wiring of electronic component
JP5754090B2 (en) Glass frit, conductive paste using the same, and electronic device
JP5730562B2 (en) Cuprous oxide particle dispersion
WO2016017239A1 (en) Electrically conductive paste, and glass article
JP6260882B2 (en) Conductive paste and glass article
US10833209B2 (en) Conductive paste, method for producing same, and method for producing solar cell
KR20180008390A (en) Cu paste composition for thick film conductor formation and thick film conductor
WO2016017240A1 (en) Electrically conductive paste, and glass article
JP6754430B2 (en) Lead-free thick film resistor composition, lead-free thick film resistor, and method for producing the same.
JP6623920B2 (en) Method for producing conductive composition and terminal electrode
WO2017159055A1 (en) Conductive paste, method for forming conductive pattern, and glass article
JP4760836B2 (en) Conductive paste and glass circuit structure
WO2017006714A1 (en) Electroconductive paste, and glass article
JP4285315B2 (en) Ru-MO powder, method for producing the same, and thick film resistor composition using the same
WO2019064738A1 (en) Conductive paste, glass article, and method for producing glass article
JP4630616B2 (en) Pb-free conductive composition
JP3926142B2 (en) Conductor paste
JP2021197224A (en) Platinum paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15827883

Country of ref document: EP

Kind code of ref document: A1