WO2016017240A1 - Electrically conductive paste, and glass article - Google Patents

Electrically conductive paste, and glass article Download PDF

Info

Publication number
WO2016017240A1
WO2016017240A1 PCT/JP2015/064065 JP2015064065W WO2016017240A1 WO 2016017240 A1 WO2016017240 A1 WO 2016017240A1 JP 2015064065 W JP2015064065 W JP 2015064065W WO 2016017240 A1 WO2016017240 A1 WO 2016017240A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
conductive paste
conductive
glass frit
electrically conductive
Prior art date
Application number
PCT/JP2015/064065
Other languages
French (fr)
Japanese (ja)
Inventor
正道 竹井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016017240A1 publication Critical patent/WO2016017240A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Definitions

  • the present invention relates to a conductive paste and a glass article. More specifically, the present invention uses a conductive paste for forming a conductive pattern for anti-fogging or antenna on a window glass for a vehicle such as an automobile, and uses this conductive paste. The present invention relates to a glass article such as an anti-fogging glass.
  • glass articles such as a glass antenna that receives radio waves from the outside of a vehicle and an antifogging glass provided with a heat ray for antifogging are used for a window glass of a vehicle such as an automobile.
  • a conductive paste having a predetermined pattern is usually formed by applying a conductive paste in a line on a glass substrate as a raw material and baking it.
  • Various types of conductive pastes of this type have been developed and proposed.
  • Patent Document 1 discloses a conductive composition for a glass substrate containing a conductive powder, a glass frit, and an organic vehicle, the glass frit comprising a homogeneous glass component and a silica component, and the homogeneous
  • the glass component comprises a composition range of B 2 O 3 of 0 to 30 mol%, SiO 2 of 10 to 30 mol%, and Bi 2 O 3 of 5 to 35 mol% of the total 100 mol% of the glass frit, and
  • a conductive composition for glass substrates has been proposed in which the silica component is in the range of 35 to 85 mol% out of a total of 100 mol% of the glass frit.
  • Patent Document 1 the B 2 O 3 —SiO 2 —Bi 2 O 3 glass compounded at a predetermined ratio is contained in the conductive composition, so that the adhesive strength is reduced even if the plating treatment is performed after low-temperature firing.
  • Patent Document 1 when the conductive film on the glass substrate is in contact with a corrosive gas that can exist in the atmosphere such as SO 2 and H 2 S for a long time, the conductive film is sulfided and corrosion proceeds. There was a problem that the electrical resistance of the conductive film was increased and the conductivity was lowered.
  • the present invention has been made in view of such circumstances, and can suppress an increase in electrical resistance even when contacted with a corrosive gas such as SO 2 or H 2 S for a long time, and has good reliability. It is an object to provide a conductive paste capable of ensuring the resistance and a glass article such as an antifogging glass using the conductive paste.
  • the glass frit contains at least one of vanadium (V), molybdenum (Mo), and tungsten (W). It has been found that even when the conductive film is in contact with a corrosive gas such as SO 2 or H 2 S for a long time, the increase in electrical resistance can be suppressed.
  • a corrosive gas such as SO 2 or H 2 S for a long time
  • the conductive paste according to the present invention is a conductive paste for forming a conductive pattern on a glass substrate, and includes at least conductive powder and glass frit. And the organic vehicle, and the glass frit includes one or more specific elements selected from V, Mo, and W.
  • the content of the specific element in the glass frit is preferably 0.5 mol% or more and 10 mol% or less in total in terms of oxide.
  • the glass frit contains components of Bi, B, and M (where M represents at least one of Si, Al, and Zn). preferable.
  • the glass frit content is preferably 0.1 to 10 wt%.
  • the content of the conductive powder is preferably 55 to 95 wt%.
  • the conductive powder is preferably composed mainly of Ag.
  • the glass article according to the present invention is a glass article in which a conductive film having a predetermined pattern is formed on a glass substrate, and the conductive film is formed by sintering any of the conductive pastes described above. It is characterized by.
  • a conductive paste for forming a conductive pattern on a glass substrate comprising at least a conductive powder, a glass frit, and an organic vehicle, the glass frit being V, Since it contains one or more specific elements selected from Mo and W, it is a conductive material that can suppress an increase in electrical resistance even when it is in contact with corrosive gases such as SO 2 and H 2 S for a long time. Sex paste can be obtained.
  • the glass article of the present invention is a glass article in which a conductive film having a predetermined pattern is formed on a glass substrate, and the conductive film is formed by sintering the conductive paste according to any of the above, Even if the conductive film is in contact with a corrosive gas such as SO 2 or H 2 S for a long time, it is possible to suppress an increase in electrical resistance, and a glass article such as anti-fogging glass having good reliability can be obtained.
  • a corrosive gas such as SO 2 or H 2 S
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
  • FIG. 1 is a front view showing an embodiment of an anti-fogging glass as a glass article manufactured using the conductive paste according to the present invention
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is.
  • a plurality of line-shaped conductive films 2 are formed in parallel on the surface of the glass substrate 1 so as to be thinned and thinned at predetermined intervals. Further, bus bar electrodes 3a and 3b are formed at both ends of the conductive film 2, and the bus bar electrodes 3a and 3b are connected to a power supply terminal (not shown) via solder.
  • this anti-fogging glass is obtained by applying a conductive paste in a line shape on the glass substrate 1 and then baking it at a temperature of 500 to 800 ° C. to sinter inorganic components in the conductive paste.
  • a conductive film 2 having a pattern is formed, whereby the conductive film 2 is fixed on the glass substrate 1. Both ends of the conductive film 2 are electrically connected via bus bar electrodes 3a and 3b, and the bus bar electrodes 3a and 3b are soldered and connected to power supply terminals (not shown).
  • the antifogging glass formed in this way is equipped as a windshield or rear glass of a vehicle such as an automobile, for example, and is fed to the conductive film 2 from the power feeding terminal via the bus bar electrodes 3a and 3b, and generates heat to generate heat from the window glass. Anti-fogging can be performed.
  • the conductive paste contains at least conductive powder, glass frit, and an organic vehicle.
  • the glass frit contains one or more specific elements selected from V, Mo, and W. By containing these specific elements in the glass frit, even if the conductive film 2 is in contact with a corrosive gas such as SO 2 or H 2 S for a long time, it is possible to suppress an increase in electrical resistance. The desired good conductivity can be ensured. It is considered that the reaction product produced by the reaction of the conductive film 2 with a corrosive gas such as SO 2 or H 2 S increases the electrical resistance. The increase in electrical resistance can be suppressed because a desulfurization action or the like occurs due to the catalytic effect of the specific element described above, and the corrosive gas component in the reaction product is removed. Moreover, since the sulfidation of the conductive film 2 can be prevented, the discoloration can be suppressed in addition to the suppression of the deterioration of the electrical resistance.
  • the content of the specific element in the glass frit is not particularly limited, but is preferably 0.5 mol% or more and 10 mol% or less in total in terms of oxides of V, Mo, and W. Even if the total amount of the specific elements is less than 0.5 mol%, the increase in electrical resistance can be suppressed to some extent, but a sufficient suppression effect cannot be obtained. On the other hand, if the total amount of the specific elements exceeds 10 mol%, the content of the network oxide forming the glass is relatively reduced, and thus vitrification may be difficult.
  • composition system of the glass frit is not particularly limited as long as it contains the above-mentioned specific element.
  • Bi-B-Si system Bi-B-Al-Si system, Bi-B-Zn system, etc.
  • alkali metals such as Li, Na, K
  • alkaline earth metals such as Mg, Ca, Sr, Ba, Ti, Zr, P, Ce, Cr, Mn, Co, Ni
  • oxides such as Cu, Nb, Ta, Pd, Ag, Ru, Sn, In, Y, Dy, and La may be contained.
  • the content of the glass frit in the conductive paste is not particularly limited, but is preferably 0.1 to 10 wt% in consideration of the fixing property to the glass substrate 1 and the soldering property to the power supply terminal. .
  • the average particle diameter D 50 (median diameter) of the glass frit is not particularly limited, but from the viewpoint of the adhesion between the glass substrate 1 and the conductive film 2 and the sinterability of the conductive paste. 0.1 to 5.0 ⁇ m is preferable.
  • the content of the conductive powder in the conductive paste is not particularly limited, but 55.0 to 95.0 wt% is preferable.
  • the content of the conductive powder is less than 55.0 wt%, the content of the glass frit is relatively increased. Therefore, particularly when the conductive film 2 is thinned and thinned, the electric resistance may be increased. Also, solder erosion is likely to occur during soldering, and there is a risk that the adhesion to the substrate will also be reduced.
  • the content of the conductive powder exceeds 95.0 wt%, the conductive powder becomes excessive and it may be difficult to form a paste.
  • the content of the conductive powder is preferably 55.0 to 95.0 wt%, more preferably 75.0 to 95.0 wt% in consideration of pasting as a conductive paste and low line resistance. is there.
  • the conductive powder is not particularly limited as long as it is a metal powder having good conductivity, but good conductivity without being oxidized even when the baking treatment is performed in the air.
  • Ag powder that can maintain the viscosity can be preferably used.
  • Ag powder may be the main component, and various metal powders such as Pd, Pt, Cu, and Ni may be included as subcomponents.
  • the shape of the conductive powder is not particularly limited, and may be, for example, a spherical shape, a flat shape, an irregular shape, or a mixed powder thereof.
  • the average particle diameter D 50 of the conductive powder is not particularly limited, but from the viewpoint of obtaining a desired low line resistance, the average particle diameter D 50 is preferably 0.05 to 2 ⁇ m in terms of spherical powder.
  • the average particle diameter D 50 of the conductive powder is less than 0.05 ⁇ m, pasting becomes difficult.
  • the average particle diameter D 50 of the conductive powder exceeds 2 ⁇ m, the electric resistance tends to increase.
  • the organic vehicle is prepared such that the binder resin and the organic solvent are in a volume ratio of 1 to 3: 7 to 9, for example.
  • the binder resin is not particularly limited, and for example, ethyl cellulose resin, nitrocellulose resin, acrylic resin, alkyd resin, or a combination thereof can be used.
  • the organic solvent is not particularly limited, and ⁇ -terpineol, xylene, toluene, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, etc. alone or in combination thereof Can be used.
  • This conductive paste is prepared by weighing and mixing a conductive powder, a glass frit containing at least one of the specific elements (V, Mo, W) and an organic vehicle so as to have a predetermined mixing ratio. And it can manufacture easily by disperse
  • the conductive powder such as Ag powder, the glass frit, and the organic vehicle are contained, and the glass frit includes at least one selected from V, Mo, and W. Therefore, it is possible to suppress a change in the electrical resistance of the conductive film 2 even if it is in contact with a corrosive gas such as SO 2 or H 2 S for a long time, and to provide a conductive paste having desired good conductivity and good corrosion resistance. Obtainable.
  • the conductive paste only needs to contain at least a conductive powder, glass frit, and an organic vehicle, and can contain various inorganic components as necessary within a range that does not affect the properties.
  • the form of inclusion is not particularly limited, and an oxide, hydroxide, peroxide, halide, carbonate, nitrate, phosphate, sulfate, fluoride, organometallic compound, etc., should be selected as appropriate. Can do.
  • plasticizers such as di-2-ethylhexyl phthalate and dibutyl phthalate
  • a rheology modifier such as a fatty acid amide or a fatty acid, and a thixotropic agent, a thickener, a dispersant, etc. may be added.
  • anti-fog glass was illustrated as a glass article
  • the electrically conductive paste of this invention is applicable also to conductive pattern formation of other glass articles, such as a glass antenna.
  • this glass composition was put into a ball mill together with PSZ (partially stabilized zirconia) and pulverized, thereby producing glass frit of sample numbers 1 to 9.
  • PSZ partially stabilized zirconia
  • the average particle size D 50 of the glass frit was 2.0 ⁇ m as measured using a particle size analyzer (manufactured by Nikkiso Co., Ltd., Microtrac HRA).
  • the organic cellulose was prepared by mixing the ethyl cellulose resin and texanol so that the binder resin was 10 wt% ethyl cellulose resin and the organic solvent was 90 wt% texanol.
  • Ag powder is prepared as a conductive powder, and Ag powder, glass frit, and organic vehicle are blended so that the Ag powder is 85 wt%, the glass frit is 3 wt%, and the balance is an organic vehicle. After mixing with a mixer, the mixture was kneaded with a three-roll mill, whereby conductive pastes of sample numbers 1 to 9 were produced.
  • the average particle diameter D 50 of Ag powder, similar to the glass frit, was confirmed was measured by using the above particle size analyzer, the average particle diameter D 50 was 1 [mu] m.
  • Example evaluation First, a slide glass having a length of 26.0 mm, a width of 76.0 mm, and a thickness of 1.4 mm was prepared. Using conductive pastes of sample numbers 1 to 9, a conductive pattern having a line total length L: 200 mm and a line width W: 1.0 mm was printed on a slide glass. Next, this was dried at a temperature of 150 ° C. for 10 minutes, and then subjected to a baking treatment at a maximum baking temperature of 600 ° C. for 5 minutes, thereby preparing samples Nos. 1 to 9.
  • each sample Nos. 1 to 9 was placed in a mixed gas environment in which the ambient temperature was 25 ° C., the relative humidity was 75%, the H 2 S concentration was adjusted to 0.1 ppm, and the SO 2 concentration was adjusted to 0.5 ppm.
  • the sulfidation resistance test was conducted by leaving it for 72 hours.
  • ⁇ R ⁇ (R′ ⁇ R) / R ⁇ ⁇ 100 (1)
  • Table 1 shows the composition of each glass frit of Sample Nos. 1 to 9 and the molar content (mol%), pre-test resistance R ( ⁇ ), post-test resistance R ′ ( ⁇ ), and resistance change rate ⁇ R (%). Show.
  • Sample No. 8 does not contain any specific element oxides of V 2 O 5 , MoO 3 , and WO 3 in the glass frit, and contains Cr 2 O 3 instead of these specific element oxides. Therefore, the resistance change rate ⁇ R was as large as 10.4%. This is presumably because Cr 2 O 3 did not produce a sufficient desulfurization action and could not remove the S component.
  • Sample Nos. 1 to 7 contain one or two of V 2 O 5 , MoO 3 , and WO 3 which are specific elements within the scope of the present invention. It can be suppressed, and the resistance change rate ⁇ R is 3.7% or less, which indicates that the resistance change rate can be significantly reduced.
  • Sample No. 4 containing 10 mol% V 2 O 5 in a glass frit has almost no effect on corrosive gases such as H 2 S and SO 2 without any change in electrical resistance before and after the test of the sulfidation test. I knew I would n’t.
  • a conductive paste that can maintain good conductivity without increasing resistance even when exposed to corrosive gases such as SO 2 and H 2 S for a long time can be realized. It can utilize for the conductive paste suitable for formation.

Abstract

In the present invention, an electrically conductive paste contains at least an electrically conductive powder, a glass frit and an organic vehicle. In addition, the glass frit contains at least one specific element selected from among vanadium, molybdenum and tungsten. The total content of the specific elements in the glass frit is preferably 0.5-10 mol.% in terms of oxide. A linear electrically conductive film 2 is formed on a glass substrate 1 using this electrically conductive paste. Due to this configuration, it is possible to obtain the following: an electrically conductive paste which can suppress an increase in electrical resistance even when in contact with a corrosive gas such as SO2 or H2S for a long period of time and which can ensure good reliability; and a glass article, such as an anti-fogging glass, that uses this electrically conductive paste.

Description

導電性ペースト、及びガラス物品Conductive paste and glass article
 本発明は、導電性ペースト、及びガラス物品に関し、より詳しくは自動車等の車両用窓ガラスに防曇用やアンテナ用等の導電パターンを形成するための導電性ペースト、及びこの導電性ペーストを使用した防曇ガラス等のガラス物品に関する。 The present invention relates to a conductive paste and a glass article. More specifically, the present invention uses a conductive paste for forming a conductive pattern for anti-fogging or antenna on a window glass for a vehicle such as an automobile, and uses this conductive paste. The present invention relates to a glass article such as an anti-fogging glass.
 従来より、自動車等の車両の窓ガラスには、防曇用の熱線を配した防曇ガラスや車外からの電波を受信するガラスアンテナ等のガラス物品が使用されている。これらのガラス物品、例えば防曇ガラスでは、通常、素材となるガラス基体上に導電性ペーストをライン状に塗布して焼成し、所定パターンの導電膜を形成している。そして、従来より、この種の導電性ペーストも各種開発され、提案されている。 Conventionally, glass articles such as a glass antenna that receives radio waves from the outside of a vehicle and an antifogging glass provided with a heat ray for antifogging are used for a window glass of a vehicle such as an automobile. In these glass articles, for example, anti-fogging glass, a conductive paste having a predetermined pattern is usually formed by applying a conductive paste in a line on a glass substrate as a raw material and baking it. Various types of conductive pastes of this type have been developed and proposed.
 例えば、特許文献1には、導電粉末と、ガラスフリットと、有機ビヒクルとを含有するガラス基板用導電性組成物であって、前記ガラスフリットは、均質なガラス成分およびシリカ成分からなり、前記均質なガラス成分は、前記ガラスフリットの合計100mol%のうち、Bが0~30mol%、SiOが10~30mol%、Biが5~35mol%の組成範囲内からなり、かつ、前記シリカ成分は、前記ガラスフリットの合計100mol%のうち35~85mol%の範囲内からなるガラス基板用導電性組成物が提案されている。 For example, Patent Document 1 discloses a conductive composition for a glass substrate containing a conductive powder, a glass frit, and an organic vehicle, the glass frit comprising a homogeneous glass component and a silica component, and the homogeneous The glass component comprises a composition range of B 2 O 3 of 0 to 30 mol%, SiO 2 of 10 to 30 mol%, and Bi 2 O 3 of 5 to 35 mol% of the total 100 mol% of the glass frit, and In addition, a conductive composition for glass substrates has been proposed in which the silica component is in the range of 35 to 85 mol% out of a total of 100 mol% of the glass frit.
 特許文献1では、所定割合に配合されたB-SiO-Bi系ガラスを導電性組成物中に含有させることにより、低温焼成後にめっき処理を行なっても接着強度の低下を抑制できる耐湿性や耐酸性が良好な防曇ガラスを得ようとしている。 In Patent Document 1, the B 2 O 3 —SiO 2 —Bi 2 O 3 glass compounded at a predetermined ratio is contained in the conductive composition, so that the adhesive strength is reduced even if the plating treatment is performed after low-temperature firing. We are trying to obtain anti-fogging glass with good moisture resistance and acid resistance.
特開平11-130459号公報(請求項1、段落番号〔0029〕等)Japanese Patent Laid-Open No. 11-130459 (Claim 1, paragraph number [0029], etc.)
 しかしながら、特許文献1では、ガラス基体上の導電膜がSOやHS等の大気中に存在し得る腐食性ガスに長時間接すると、導電膜が硫化して腐食が進行し、このため導電膜の電気抵抗が高くなり、導電性が低下するという問題があった。 However, in Patent Document 1, when the conductive film on the glass substrate is in contact with a corrosive gas that can exist in the atmosphere such as SO 2 and H 2 S for a long time, the conductive film is sulfided and corrosion proceeds. There was a problem that the electrical resistance of the conductive film was increased and the conductivity was lowered.
 特に、車両用窓ガラスに使用されるガラス物品では、近年、導電膜の細線化・薄膜化が要請されている。したがって、導電膜が細線化・薄膜化されても所望の性能を確保するためには導電膜のライン抵抗が高くなるのを抑制する必要がある。 Especially for glass articles used for window glass for vehicles, thinning and thinning of conductive films have recently been required. Therefore, it is necessary to suppress an increase in the line resistance of the conductive film in order to ensure the desired performance even if the conductive film is thinned or thinned.
 本発明はこのような事情に鑑みなされたものであって、SOやHS等の腐食性ガスに長時間接しても電気抵抗が高くなるのを抑制することができ、良好な信頼性を確保できる導電性ペースト、及びこの導電性ペーストを使用した防曇ガラス等のガラス物品を提供することを目的とする。 The present invention has been made in view of such circumstances, and can suppress an increase in electrical resistance even when contacted with a corrosive gas such as SO 2 or H 2 S for a long time, and has good reliability. It is an object to provide a conductive paste capable of ensuring the resistance and a glass article such as an antifogging glass using the conductive paste.
 本発明者は、上記目的を達成するために鋭意研究を行ったところ、ガラスフリット中にバナジウム(V)、モリブデン(Mo)、及びタングステン(W)のうちの少なくとも1種以上を含有させることにより、導電膜がSOやHS等の腐食性ガスに長時間接しても、電気抵抗が高くなるのを抑制できるという知見を得た。 The present inventor conducted intensive research to achieve the above object, and as a result, the glass frit contains at least one of vanadium (V), molybdenum (Mo), and tungsten (W). It has been found that even when the conductive film is in contact with a corrosive gas such as SO 2 or H 2 S for a long time, the increase in electrical resistance can be suppressed.
 本発明はこのような知見に基づきなされたものであって、本発明に係る導電性ペーストは、ガラス基体上に導電パターンを形成するための導電性ペーストであって、少なくとも導電性粉末とガラスフリットと有機ビヒクルとを含有し、前記ガラスフリットは、V、Mo、及びWの中から選択された1種以上の特定元素を含んでいることを特徴としている。 The present invention has been made based on such knowledge, and the conductive paste according to the present invention is a conductive paste for forming a conductive pattern on a glass substrate, and includes at least conductive powder and glass frit. And the organic vehicle, and the glass frit includes one or more specific elements selected from V, Mo, and W.
 また、本発明の導電性ペーストは、前記ガラスフリット中の前記特定元素の含有量が、酸化物に換算し、総計で0.5mol%以上10mol%以下であるのが好ましい。 In the conductive paste of the present invention, the content of the specific element in the glass frit is preferably 0.5 mol% or more and 10 mol% or less in total in terms of oxide.
 これにより腐食性ガスに長時間接しても電気抵抗が高くなるのを効果的に抑制できる導電性ペーストを得ることができる。 This makes it possible to obtain a conductive paste that can effectively suppress an increase in electrical resistance even when it is in contact with corrosive gas for a long time.
 また、本発明の導電性ペーストは、前記ガラスフリットが、Bi、B、及びM(ただし、MはSi、Al及びZnのうちの少なくとも一種を示す。)の各成分を含有しているのが好ましい。 In the conductive paste of the present invention, the glass frit contains components of Bi, B, and M (where M represents at least one of Si, Al, and Zn). preferable.
 さらに、本発明の導電性ペーストは、前記ガラスフリットの含有量が、0.1~10wt%であるのが好ましい。 Furthermore, in the conductive paste of the present invention, the glass frit content is preferably 0.1 to 10 wt%.
 また、本発明の導電性ペーストは、前記導電性粉末の含有量が、55~95wt%であるのが好ましい。 In the conductive paste of the present invention, the content of the conductive powder is preferably 55 to 95 wt%.
 また、本発明の導電性ペーストは、前記導電性粉末が、Agを主成分としているのが好ましい。 In the conductive paste of the present invention, the conductive powder is preferably composed mainly of Ag.
 また、本発明に係るガラス物品は、ガラス基体上に所定パターンの導電膜が形成されたガラス物品であって、前記導電膜は、上記いずれかに記載の導電性ペーストが焼結されてなることを特徴としている。 Moreover, the glass article according to the present invention is a glass article in which a conductive film having a predetermined pattern is formed on a glass substrate, and the conductive film is formed by sintering any of the conductive pastes described above. It is characterized by.
 本発明の導電性ペーストによれば、ガラス基体上に導電パターンを形成するための導電性ペーストであって、少なくとも導電性粉末とガラスフリットと有機ビヒクルとを含有し、前記ガラスフリットは、V、Mo、及びWの中から選択された1種以上の特定元素を含んでいるので、SOやHS等の腐食性ガスに長時間接しても、電気抵抗が高くなるのを抑制できる導電性ペーストを得ることができる。 According to the conductive paste of the present invention, a conductive paste for forming a conductive pattern on a glass substrate, comprising at least a conductive powder, a glass frit, and an organic vehicle, the glass frit being V, Since it contains one or more specific elements selected from Mo and W, it is a conductive material that can suppress an increase in electrical resistance even when it is in contact with corrosive gases such as SO 2 and H 2 S for a long time. Sex paste can be obtained.
 本発明のガラス物品によれば、ガラス基体上に所定パターンの導電膜が形成されたガラス物品であって、前記導電膜が、上記いずれかに記載の導電性ペーストが焼結されてなるので、導電膜がSOやHS等の腐食性ガスに長時間接しても電気抵抗が高くなるのを抑制でき、良好な信頼性を有する防曇ガラス等のガラス物品を得ることができる。 According to the glass article of the present invention is a glass article in which a conductive film having a predetermined pattern is formed on a glass substrate, and the conductive film is formed by sintering the conductive paste according to any of the above, Even if the conductive film is in contact with a corrosive gas such as SO 2 or H 2 S for a long time, it is possible to suppress an increase in electrical resistance, and a glass article such as anti-fogging glass having good reliability can be obtained.
本発明の導電性ペーストを使用して製造されたガラス物品としての防曇ガラスの一実施の形態を示す断面図である。It is sectional drawing which shows one Embodiment of the anti-fog glass as a glass article manufactured using the electrically conductive paste of this invention. 図1のA-A矢視断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
 次に、本発明の実施の形態を詳説する。 Next, an embodiment of the present invention will be described in detail.
 図1は、本発明に係る導電性ペーストを使用して製造されたガラス物品としての防曇ガラスの一実施の形態を示す正面図であり、図2は図1のA-A矢視断面図である。 FIG. 1 is a front view showing an embodiment of an anti-fogging glass as a glass article manufactured using the conductive paste according to the present invention, and FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is.
 この防曇ガラスは、ガラス基体1の表面に所定間隔を有して細線化・薄膜化されたライン状の導電膜2が平行状に複数形成されている。また、導電膜2の両端部にはバスバー電極3a、3bが形成され、バスバー電極3a、3bははんだを介して不図示の給電端子に接続されている。 In this antifogging glass, a plurality of line-shaped conductive films 2 are formed in parallel on the surface of the glass substrate 1 so as to be thinned and thinned at predetermined intervals. Further, bus bar electrodes 3a and 3b are formed at both ends of the conductive film 2, and the bus bar electrodes 3a and 3b are connected to a power supply terminal (not shown) via solder.
 すなわち、この防曇ガラスは、ガラス基体1上に導電性ペーストをライン状に塗布した後、500~800℃の温度で焼成処理し、導電性ペースト中の無機成分を焼結させることにより、所定パターンの導電膜2を形成し、これにより導電膜2がガラス基体1上に固着される。そして、導電膜2の両端はバスバー電極3a、3bを介して電気的に接続され、該バスバー電極3a、3bははんだ付けされて給電端子(不図示)に接続されている。 That is, this anti-fogging glass is obtained by applying a conductive paste in a line shape on the glass substrate 1 and then baking it at a temperature of 500 to 800 ° C. to sinter inorganic components in the conductive paste. A conductive film 2 having a pattern is formed, whereby the conductive film 2 is fixed on the glass substrate 1. Both ends of the conductive film 2 are electrically connected via bus bar electrodes 3a and 3b, and the bus bar electrodes 3a and 3b are soldered and connected to power supply terminals (not shown).
 このように形成された防曇ガラスは、例えば自動車等の車両のフロントガラスやリアガラスとして装備され、バスバー電極3a、3bを介して給電端子から導電膜2に給電され、発熱させることによって窓ガラスの曇り止めを行うことができる。 The antifogging glass formed in this way is equipped as a windshield or rear glass of a vehicle such as an automobile, for example, and is fed to the conductive film 2 from the power feeding terminal via the bus bar electrodes 3a and 3b, and generates heat to generate heat from the window glass. Anti-fogging can be performed.
 次に、上述した導電膜2を形成するための導電性ペーストについて詳述する。 Next, the conductive paste for forming the conductive film 2 will be described in detail.
 本導電性ペーストは、少なくとも導電性粉末と、ガラスフリットと、有機ビヒクルとを含有している。 The conductive paste contains at least conductive powder, glass frit, and an organic vehicle.
 そして、上記ガラスフリットは、V、Mo、Wの中から選択された1種以上の特定元素を含んでいる。そして、これらの特定元素をガラスフリット中に含有することにより、導電膜2が長時間、SOやHS等の腐食性ガスと接しても、電気抵抗が高くなるのを抑制することができ、所望の良導電性を確保することができる。導電膜2がSOやHS等の腐食性ガスと反応して生成する反応生成物が電気抵抗を増大させる原因と考えられている。そして、電気抵抗の増大を抑制できるのは、上述した特定元素の触媒効果により脱硫作用等が生じ、前記反応生成物中の腐食性ガス成分が除去されるためと考えられる。また、導電膜2の硫化を防ぐことができるので、電気抵抗の劣化の抑制に加え、その変色も抑制することができる。 The glass frit contains one or more specific elements selected from V, Mo, and W. By containing these specific elements in the glass frit, even if the conductive film 2 is in contact with a corrosive gas such as SO 2 or H 2 S for a long time, it is possible to suppress an increase in electrical resistance. The desired good conductivity can be ensured. It is considered that the reaction product produced by the reaction of the conductive film 2 with a corrosive gas such as SO 2 or H 2 S increases the electrical resistance. The increase in electrical resistance can be suppressed because a desulfurization action or the like occurs due to the catalytic effect of the specific element described above, and the corrosive gas component in the reaction product is removed. Moreover, since the sulfidation of the conductive film 2 can be prevented, the discoloration can be suppressed in addition to the suppression of the deterioration of the electrical resistance.
 ここで、前記特定元素のガラスフリット中の含有量は特に限定されるものではないが、V、Mo、Wのそれぞれの酸化物に換算し、総計で0.5mol%以上10mol%以下が好ましい。特定元素の総計が0.5mol%未満であっても、電気抵抗が高くなるのを或る程度抑制できるが、十分な抑制効果が得られない。一方、特定元素が総計10mol%を超えると、ガラスを形成する網目状酸化物の含有モル量が相対的に減少することから、ガラス化が困難になるおそれがある。 Here, the content of the specific element in the glass frit is not particularly limited, but is preferably 0.5 mol% or more and 10 mol% or less in total in terms of oxides of V, Mo, and W. Even if the total amount of the specific elements is less than 0.5 mol%, the increase in electrical resistance can be suppressed to some extent, but a sufficient suppression effect cannot be obtained. On the other hand, if the total amount of the specific elements exceeds 10 mol%, the content of the network oxide forming the glass is relatively reduced, and thus vitrification may be difficult.
 また、ガラスフリットの組成系は、上記特定元素が含有されていれば、特に限定されるものではなく、Bi-B-Si系、Bi-B-Al-Si系、Bi-B-Zn系等を使用することができ、必要に応じてLi、Na、K等のアルカリ金属、Mg、Ca、Sr、Ba等のアルカリ土類金属、Ti、Zr、P、Ce、Cr、Mn、Co、Ni、Cu、Nb、Ta、Pd、Ag、Ru、Sn、In、Y、Dy、La等の各種酸化物を含有させてもよい。 The composition system of the glass frit is not particularly limited as long as it contains the above-mentioned specific element. Bi-B-Si system, Bi-B-Al-Si system, Bi-B-Zn system, etc. If necessary, alkali metals such as Li, Na, K, alkaline earth metals such as Mg, Ca, Sr, Ba, Ti, Zr, P, Ce, Cr, Mn, Co, Ni Various oxides such as Cu, Nb, Ta, Pd, Ag, Ru, Sn, In, Y, Dy, and La may be contained.
 また、導電性ペースト中のガラスフリットの含有量も特に限定されるものではないが、ガラス基体1との固着性や給電端子とのはんだ付け性等を考慮すると、0.1~10wt%が好ましい。 Further, the content of the glass frit in the conductive paste is not particularly limited, but is preferably 0.1 to 10 wt% in consideration of the fixing property to the glass substrate 1 and the soldering property to the power supply terminal. .
 また、ガラスフリットの平均粒径D50(メジアン径)は、特に限定されるものではないが、ガラス基体1と導電膜2との間の固着性や導電性ペーストの焼結性の観点からは、0.1~5.0μmが好ましい。 Further, the average particle diameter D 50 (median diameter) of the glass frit is not particularly limited, but from the viewpoint of the adhesion between the glass substrate 1 and the conductive film 2 and the sinterability of the conductive paste. 0.1 to 5.0 μm is preferable.
 また、導電性ペースト中の導電性粉末の含有量は、特に限定されるものではないが、55.0~95.0wt%が好ましい。導電性粉末の含有量が55.0wt%未満になるとガラスフリットの含有量が相対的に増加することから、特に導電膜2が細線化・薄膜化してくると電気抵抗が高くなるおそれがある。また、はんだ付け時にはんだ食われが生じ易く、更には基板への固着性も低下するおそれがある。一方、導電性粉末の含有量が95.0wt%を超えると、導電性粉末が過剰となってペースト化が困難になるおそれがある。このように導電性粉末の含有量は、導電性ペーストとしてのペースト化や低ライン抵抗化を考慮すると、55.0~95.0wt%が好ましく、より好ましくは75.0~95.0wt%である。 Further, the content of the conductive powder in the conductive paste is not particularly limited, but 55.0 to 95.0 wt% is preferable. When the content of the conductive powder is less than 55.0 wt%, the content of the glass frit is relatively increased. Therefore, particularly when the conductive film 2 is thinned and thinned, the electric resistance may be increased. Also, solder erosion is likely to occur during soldering, and there is a risk that the adhesion to the substrate will also be reduced. On the other hand, when the content of the conductive powder exceeds 95.0 wt%, the conductive powder becomes excessive and it may be difficult to form a paste. As described above, the content of the conductive powder is preferably 55.0 to 95.0 wt%, more preferably 75.0 to 95.0 wt% in consideration of pasting as a conductive paste and low line resistance. is there.
 また、導電性粉末としては、良好な導電性を有する金属粉であれば特に限定されるものではないが、焼成処理を大気中で行った場合であっても酸化されることなく良好な導電性を維持することができるAg粉末を好んで使用することができる。また、Ag粉末を主成分としPd、Pt、Cu、Ni等の各種金属粉末を副成分として含有させてもよい。 In addition, the conductive powder is not particularly limited as long as it is a metal powder having good conductivity, but good conductivity without being oxidized even when the baking treatment is performed in the air. Ag powder that can maintain the viscosity can be preferably used. Further, Ag powder may be the main component, and various metal powders such as Pd, Pt, Cu, and Ni may be included as subcomponents.
 導電性粉末の形状も、特に限定されるものではなく、例えば、球形状、扁平状、不定形形状、或いはこれらの混合粉であってもよい。 The shape of the conductive powder is not particularly limited, and may be, for example, a spherical shape, a flat shape, an irregular shape, or a mixed powder thereof.
 導電性粉末の平均粒径D50も、特に限定されるものではないが、所望の低ライン抵抗を得る観点からは、平均粒径D50は球形粉換算で、0.05~2μmが好ましい。導電性粉末の平均粒径D50が、0.05μm未満になるとペースト化が困難となり、一方導電性粉末の平均粒径D50が2μmを超えると、電気抵抗が大きくなる傾向にある。 The average particle diameter D 50 of the conductive powder is not particularly limited, but from the viewpoint of obtaining a desired low line resistance, the average particle diameter D 50 is preferably 0.05 to 2 μm in terms of spherical powder. When the average particle diameter D 50 of the conductive powder is less than 0.05 μm, pasting becomes difficult. On the other hand, when the average particle diameter D 50 of the conductive powder exceeds 2 μm, the electric resistance tends to increase.
 有機ビヒクルは、バインダ樹脂と有機溶剤とが、例えば体積比率で、1~3:7~9となるように調製されている。尚、バインダ樹脂としては、特に限定されるものではなく、例えば、エチルセルロース樹脂、ニトロセルロース樹脂、アクリル樹脂、アルキド樹脂、又はこれらの組み合わせを使用することができる。また、有機溶剤についても特に限定されるものではなく、α―テルピネオール、キシレン、トルエン、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート等を単独、或いはこれらを組み合わせて使用することができる。 The organic vehicle is prepared such that the binder resin and the organic solvent are in a volume ratio of 1 to 3: 7 to 9, for example. The binder resin is not particularly limited, and for example, ethyl cellulose resin, nitrocellulose resin, acrylic resin, alkyd resin, or a combination thereof can be used. Also, the organic solvent is not particularly limited, and α-terpineol, xylene, toluene, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, etc. alone or in combination thereof Can be used.
 そして、この導電性ペーストは、導電性粉末、上記特定元素(V、Mo、Wのうちの少なくとも1種以上)を含有したガラスフリット、有機ビヒクルを所定の混合比率となるように秤量して混合し、三本ロールミル等を使用して分散・混練することにより、容易に製造することができる。 This conductive paste is prepared by weighing and mixing a conductive powder, a glass frit containing at least one of the specific elements (V, Mo, W) and an organic vehicle so as to have a predetermined mixing ratio. And it can manufacture easily by disperse | distributing and kneading | mixing using a three roll mill etc.
 このように本実施の形態では、Ag粉末等の導電性粉末と、ガラスフリットと、有機ビヒクルとを含有し、ガラスフリットが、V、Mo、及びWの中から選択された少なくとも1種以上を含むので、SOやHS等の腐食性ガスに長時間接しても導電膜2の電気抵抗の変化を抑制することができ、所望の良導電性を有する耐食性が良好な導電性ペーストを得ることができる。 As described above, in this embodiment, the conductive powder such as Ag powder, the glass frit, and the organic vehicle are contained, and the glass frit includes at least one selected from V, Mo, and W. Therefore, it is possible to suppress a change in the electrical resistance of the conductive film 2 even if it is in contact with a corrosive gas such as SO 2 or H 2 S for a long time, and to provide a conductive paste having desired good conductivity and good corrosion resistance. Obtainable.
 尚、本発明は上記実施の形態に限定されるものではない。例えば、本導電性ペーストは、少なくとも導電性粉末、ガラスフリット、有機ビヒクルを含有していればよく、特性に影響を与えない範囲で、必要に応じ各種無機成分を含有させることができ、また、含有形態についても特に限定されるものではなく、酸化物、水酸化物、過酸化物、ハロゲン化物、炭酸塩、硝酸塩、リン酸塩、硫酸塩、フッ化物、有機金属化合物等、適宜選択することができる。 The present invention is not limited to the above embodiment. For example, the conductive paste only needs to contain at least a conductive powder, glass frit, and an organic vehicle, and can contain various inorganic components as necessary within a range that does not affect the properties. The form of inclusion is not particularly limited, and an oxide, hydroxide, peroxide, halide, carbonate, nitrate, phosphate, sulfate, fluoride, organometallic compound, etc., should be selected as appropriate. Can do.
 また、本導電性ペーストには、必要に応じて、フタル酸ジ2-エチルヘキシル、フタル酸ジブチル等の可塑剤を1種又はこれらの組み合わせを添加するのも好ましい。また、脂肪酸アマイドや脂肪酸等のレオロジー調整剤を添加するのも好ましく、さらにはチクソトロピック剤、増粘剤、分散剤などを添加してもよい。 In addition, it is also preferable to add one or a combination of plasticizers such as di-2-ethylhexyl phthalate and dibutyl phthalate to the conductive paste as necessary. It is also preferable to add a rheology modifier such as a fatty acid amide or a fatty acid, and a thixotropic agent, a thickener, a dispersant, etc. may be added.
 さらに、上記実施の形態では、ガラス物品として防曇ガラスを例示したが、本発明の導電性ペーストはガラスアンテナ等の他のガラス物品の導電パターン形成にも適用可能である。 Furthermore, in the said embodiment, although anti-fog glass was illustrated as a glass article, the electrically conductive paste of this invention is applicable also to conductive pattern formation of other glass articles, such as a glass antenna.
 次に、本発明の実施例を具体的に説明する。 Next, specific examples of the present invention will be described.
〔試料の作製〕
 ガラス素原料としてBi、B、SiO、Al、ZnO、V、MoO、WO、及びCrを用意した。これらガラス素原料を表1に示す含有モル量となるように秤量し、混合した後、混合物を白金坩堝に投入し、約1300℃の温度に加熱して溶融させた後、急冷し、ガラス化し、ガラス組成物を得た。
[Sample preparation]
Bi 2 O 3 , B 2 O 3 , SiO 2 , Al 2 O 3 , ZnO, V 2 O 5 , MoO 3 , WO 3 , and Cr 2 O 3 were prepared as glass raw materials. These glass raw materials are weighed and mixed so as to have a molar content shown in Table 1, and then the mixture is put into a platinum crucible, heated to a temperature of about 1300 ° C. and melted, rapidly cooled, and vitrified. A glass composition was obtained.
 次いで、このガラス組成物をPSZ(部分安定化ジルコニア)と共に、ボールミルに投入し、粉砕し、これにより試料番号1~9のガラスフリットを作製した。 Next, this glass composition was put into a ball mill together with PSZ (partially stabilized zirconia) and pulverized, thereby producing glass frit of sample numbers 1 to 9.
 尚、ガラスフリットの平均粒径D50は、粒度分析計(日機装社製、マイクロトラックHRA)を使用して測定したところ、2.0μmであった。 The average particle size D 50 of the glass frit was 2.0 μm as measured using a particle size analyzer (manufactured by Nikkiso Co., Ltd., Microtrac HRA).
 次いで、有機ビヒクルを作製した。すなわち、バインダ樹脂としてエチルセルロース樹脂10wt%、有機溶剤としてテキサノール90wt%となるようにエチルセルロース樹脂とテキサノールとを混合し、有機ビヒクルを作製した。 Next, an organic vehicle was produced. That is, the organic cellulose was prepared by mixing the ethyl cellulose resin and texanol so that the binder resin was 10 wt% ethyl cellulose resin and the organic solvent was 90 wt% texanol.
 次に、導電性粉末としてAg粉末を用意し、Ag粉末が85wt%、ガラスフリットが3wt%、残部が有機ビヒクルとなるように、Ag粉末、及びガラスフリット、及び有機ビヒクルを配合し、プラネタリーミキサーで混合した後に、三本ロールミルで混練し、これにより試料番号1~9の導電性ペーストを作製した。 Next, Ag powder is prepared as a conductive powder, and Ag powder, glass frit, and organic vehicle are blended so that the Ag powder is 85 wt%, the glass frit is 3 wt%, and the balance is an organic vehicle. After mixing with a mixer, the mixture was kneaded with a three-roll mill, whereby conductive pastes of sample numbers 1 to 9 were produced.
 尚、Ag粉末の平均粒径D50も、ガラスフリットと同様、上記粒度分析計を使用して測定し確認したところ、平均粒径D50は1μmであった。 Incidentally, the average particle diameter D 50 of Ag powder, similar to the glass frit, was confirmed was measured by using the above particle size analyzer, the average particle diameter D 50 was 1 [mu] m.
〔試料の評価〕
 まず、縦:26.0mm、横:76.0mm、厚み:1.4mmのスライドガラスを用意した。そして、試料番号1~9の導電性ペーストを使用し、ライン全長L:200mm、ライン幅W:1.0mmの導電パターンをスライドガラス上に印刷形成した。次いで、これを150℃の温度で10分間乾燥した後、最高焼成温度600℃で5分間焼成処理を行い、試料番号1~9の試料を作製した。
[Sample evaluation]
First, a slide glass having a length of 26.0 mm, a width of 76.0 mm, and a thickness of 1.4 mm was prepared. Using conductive pastes of sample numbers 1 to 9, a conductive pattern having a line total length L: 200 mm and a line width W: 1.0 mm was printed on a slide glass. Next, this was dried at a temperature of 150 ° C. for 10 minutes, and then subjected to a baking treatment at a maximum baking temperature of 600 ° C. for 5 minutes, thereby preparing samples Nos. 1 to 9.
 次に、マルチメータ(ヒューレット・パッカード社製、3458A)を使用し、試料番号1~9の各試料の試験前抵抗Rを測定した。 Next, using a multimeter (manufactured by Hewlett-Packard, 3458A), the pre-test resistance R of each of the sample numbers 1 to 9 was measured.
 次いで、試料番号1~9の各試料を、雰囲気温度25℃、相対湿度75%、HSの濃度が0.1ppm及びSOの濃度が0.5ppmに調整された混合ガスの環境下に72時間放置し、耐硫化試験を行った。 Next, each sample Nos. 1 to 9 was placed in a mixed gas environment in which the ambient temperature was 25 ° C., the relative humidity was 75%, the H 2 S concentration was adjusted to 0.1 ppm, and the SO 2 concentration was adjusted to 0.5 ppm. The sulfidation resistance test was conducted by leaving it for 72 hours.
 そして、72時間後に各試料の抵抗、すなわち試験後抵抗R′を測定し、数式(1)に従って基づいて抵抗変化率ΔRを算出した。 Then, after 72 hours, the resistance of each sample, that is, the resistance R ′ after the test was measured, and the resistance change rate ΔR was calculated based on the formula (1).
 ΔR={(R′-R)/R}×100 ...(1) ΔR = {(R′−R) / R} × 100 (1)
 表1は、試料番号1~9の各ガラスフリットの組成とその含有モル量(mol%)、試験前抵抗R(Ω)と試験後抵抗R′(Ω)及び抵抗変化率ΔR(%)を示している。 Table 1 shows the composition of each glass frit of Sample Nos. 1 to 9 and the molar content (mol%), pre-test resistance R (Ω), post-test resistance R ′ (Ω), and resistance change rate ΔR (%). Show.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試料番号8は、ガラスフリット中にはV、MoO、及びWOのいずれの特定元素酸化物も含まれておらず、これら特定元素酸化物の代わりにCrが含まれているため、抵抗変化率ΔRは10.4%と大きくなった。これは、Crでは、十分な脱硫作用が生じず、S成分を除去できなかったものと考えられる。 Sample No. 8 does not contain any specific element oxides of V 2 O 5 , MoO 3 , and WO 3 in the glass frit, and contains Cr 2 O 3 instead of these specific element oxides. Therefore, the resistance change rate ΔR was as large as 10.4%. This is presumably because Cr 2 O 3 did not produce a sufficient desulfurization action and could not remove the S component.
 また、試料番号9は、V、MoO、及びWOのいずれの特定元素酸化物も含まれておらず、ガラスフリットがBi、B、SiO、Alのみで形成されているため、導電膜の硫化を抑制することができず、この場合も抵抗変化率ΔRは9.1%と大きくなった。 Further, Sample No. 9, V 2 O 5, MoO 3 , and any particular element oxides of WO 3 also not included and the glass frit is Bi 2 O 3, B 2 O 3, SiO 2, Al 2 Since it is formed of only O 3 , sulfidation of the conductive film cannot be suppressed, and in this case, the resistance change rate ΔR is as large as 9.1%.
 これに対し試料番号1~7は、本発明範囲内の特定元素であるV、MoO、及びWOのうちの1種又は2種が含まれているので、導電膜の硫化を抑制することができ、抵抗変化率ΔRは3.7%以下となり、抵抗変化率を大幅に低減できることが分かった。 In contrast, Sample Nos. 1 to 7 contain one or two of V 2 O 5 , MoO 3 , and WO 3 which are specific elements within the scope of the present invention. It can be suppressed, and the resistance change rate ΔR is 3.7% or less, which indicates that the resistance change rate can be significantly reduced.
 特に、ガラスフリット中に10mol%のVを含有した試料番号4は、耐硫化試験の試験前後で電気抵抗に変化はなく、HSやSO等の腐食性ガスの影響を殆ど受けないことが分かった。 In particular, Sample No. 4 containing 10 mol% V 2 O 5 in a glass frit has almost no effect on corrosive gases such as H 2 S and SO 2 without any change in electrical resistance before and after the test of the sulfidation test. I knew I would n’t.
 SOやHS等のび腐食性ガスに長時間接しても、抵抗が増大することなく、良導電性を維持できる導電性ペーストを実現することができ、自動車等の防曇ガラスの導電膜形成に適した導電性ペーストに利用できる。 A conductive paste that can maintain good conductivity without increasing resistance even when exposed to corrosive gases such as SO 2 and H 2 S for a long time can be realized. It can utilize for the conductive paste suitable for formation.
1 ガラス基体
2 導電膜
1 Glass substrate 2 Conductive film

Claims (7)

  1.  ガラス基体上に導電パターンを形成するための導電性ペーストであって、
     少なくとも導電性粉末とガラスフリットと有機ビヒクルとを含有し、
     前記ガラスフリットは、バナジウム、モリブデン、及びタングステンの中から選択された1種以上の特定元素を含んでいることを特徴とする導電性ペースト。
    A conductive paste for forming a conductive pattern on a glass substrate,
    Contains at least conductive powder, glass frit and organic vehicle,
    The conductive paste characterized in that the glass frit contains one or more specific elements selected from vanadium, molybdenum, and tungsten.
  2.  前記ガラスフリット中の前記特定元素の含有量は、酸化物に換算し、総計で0.5mol%以上10mol%以下であることを特徴とする請求項1記載の導電性ペースト。 The conductive paste according to claim 1, wherein the content of the specific element in the glass frit is 0.5 mol% or more and 10 mol% or less in total in terms of oxide.
  3.  前記ガラスフリットは、Bi、B、及びM(ただし、MはSi、Al及びZnのうちの少なくとも一種を示す。)の各成分を含有していることを特徴とする請求項1又は請求項2記載の導電性ペースト。 The said glass frit contains each component of Bi, B, and M (however, M shows at least 1 type of Si, Al, and Zn), The Claim 1 or Claim 2 characterized by the above-mentioned. The conductive paste as described.
  4.  前記ガラスフリットの含有量は、0.1~10wt%であることを特徴とする請求項1乃至請求項3のいずれかに記載の導電性ペースト。 4. The conductive paste according to claim 1, wherein the content of the glass frit is 0.1 to 10 wt%.
  5.  前記導電性粉末の含有量は、55~95wt%であることを特徴とする請求項1乃至請求項4のいずれかに記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 4, wherein the content of the conductive powder is 55 to 95 wt%.
  6.  前記導電性粉末は、Agを主成分としていることを特徴とする請求項1乃至請求項5のいずれかに記載の導電性ペースト。 6. The conductive paste according to claim 1, wherein the conductive powder contains Ag as a main component.
  7.  ガラス基体の表面に所定パターンの導電膜が形成されたガラス物品であって、
     前記導電膜は、請求項1乃至請求項6のいずれかに記載の導電性ペーストが焼結されてなることを特徴とするガラス物品。
    A glass article in which a conductive film having a predetermined pattern is formed on the surface of a glass substrate,
    The said electrically conductive film is a glass article characterized by sintering the electrically conductive paste in any one of Claims 1 thru | or 6.
PCT/JP2015/064065 2014-07-28 2015-05-15 Electrically conductive paste, and glass article WO2016017240A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-153133 2014-07-28
JP2014153133 2014-07-28

Publications (1)

Publication Number Publication Date
WO2016017240A1 true WO2016017240A1 (en) 2016-02-04

Family

ID=55217144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064065 WO2016017240A1 (en) 2014-07-28 2015-05-15 Electrically conductive paste, and glass article

Country Status (1)

Country Link
WO (1) WO2016017240A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306236A (en) * 1996-05-09 1997-11-28 Shoei Chem Ind Co Conductive paste
JPH11120818A (en) * 1997-10-16 1999-04-30 Tdk Corp Conductive paste and irreversible circuit element using this paste
WO2006098160A1 (en) * 2005-03-14 2006-09-21 Murata Manufacturing Co., Ltd. Conductive paste and glass structure
WO2010109905A1 (en) * 2009-03-27 2010-09-30 日立粉末冶金株式会社 Glass composition, electrically conductive paste composition comprising same, electrode wiring member, and electronic component
WO2012020694A1 (en) * 2010-08-11 2012-02-16 株式会社日立製作所 Glass composition for electrode, paste for electrode using said glass composition, and electronic component using said paste
WO2013100084A1 (en) * 2011-12-27 2013-07-04 京セラ株式会社 Conductive paste for electrode, solar cell and method for manufacturing solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306236A (en) * 1996-05-09 1997-11-28 Shoei Chem Ind Co Conductive paste
JPH11120818A (en) * 1997-10-16 1999-04-30 Tdk Corp Conductive paste and irreversible circuit element using this paste
WO2006098160A1 (en) * 2005-03-14 2006-09-21 Murata Manufacturing Co., Ltd. Conductive paste and glass structure
WO2010109905A1 (en) * 2009-03-27 2010-09-30 日立粉末冶金株式会社 Glass composition, electrically conductive paste composition comprising same, electrode wiring member, and electronic component
WO2012020694A1 (en) * 2010-08-11 2012-02-16 株式会社日立製作所 Glass composition for electrode, paste for electrode using said glass composition, and electronic component using said paste
WO2013100084A1 (en) * 2011-12-27 2013-07-04 京セラ株式会社 Conductive paste for electrode, solar cell and method for manufacturing solar cell

Similar Documents

Publication Publication Date Title
JP4885781B2 (en) Conductive paste
KR102488165B1 (en) Conductive composition, method for producing a conductor, and method for forming wiring of electronic parts
JP6184731B2 (en) Silver-bismuth powder, conductive paste and conductive film
TWI590417B (en) Thick film resistor and manufacturing method thereof
KR102488162B1 (en) Manufacturing method of conductive composition and terminal electrode
TWI587320B (en) Resistance composition
KR100791877B1 (en) Resistance paste and resistor
TW201823380A (en) Resistive paste and resistor produced by firing same
US10052690B2 (en) Conductive paste and glass article
JP6623919B2 (en) Conductive composition, method for producing conductor, and method for forming wiring of electronic component
JP2014154547A (en) Copper paste composition and its use in method for forming copper conductors on substrates
JP5754090B2 (en) Glass frit, conductive paste using the same, and electronic device
JP6260882B2 (en) Conductive paste and glass article
WO2016017240A1 (en) Electrically conductive paste, and glass article
JP6623920B2 (en) Method for producing conductive composition and terminal electrode
KR101739744B1 (en) Lead-free thick film resistor composition, resistor and method thereof
JP2010010405A (en) Resistor paste, thick film resistor and method of manufacturing thick film substrate
WO2016017239A1 (en) Electrically conductive paste, and glass article
JP2018049900A (en) Resistance paste and resistor produced by firing the same
WO2017006714A1 (en) Electroconductive paste, and glass article
JP4760836B2 (en) Conductive paste and glass circuit structure
JP2007227114A (en) Resistor paste and thick membrane resistor using it
WO2019064738A1 (en) Conductive paste, glass article, and method for producing glass article
JP2018049901A (en) Resistance paste and resistor produced by firing the same
JP2004199941A (en) Conductive paste composition, and circuit board using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15827907

Country of ref document: EP

Kind code of ref document: A1