JP4285315B2 - Ru-MO powder, method for producing the same, and thick film resistor composition using the same - Google Patents

Ru-MO powder, method for producing the same, and thick film resistor composition using the same Download PDF

Info

Publication number
JP4285315B2
JP4285315B2 JP2004126998A JP2004126998A JP4285315B2 JP 4285315 B2 JP4285315 B2 JP 4285315B2 JP 2004126998 A JP2004126998 A JP 2004126998A JP 2004126998 A JP2004126998 A JP 2004126998A JP 4285315 B2 JP4285315 B2 JP 4285315B2
Authority
JP
Japan
Prior art keywords
compound
ruo
powder
fine powder
thick film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004126998A
Other languages
Japanese (ja)
Other versions
JP2005306677A (en
Inventor
勝弘 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004126998A priority Critical patent/JP4285315B2/en
Priority to CNB2005100631974A priority patent/CN100490024C/en
Publication of JP2005306677A publication Critical patent/JP2005306677A/en
Application granted granted Critical
Publication of JP4285315B2 publication Critical patent/JP4285315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Non-Adjustable Resistors (AREA)

Description

本発明は、Ru−M−O微粉末、その製造方法、及びそれを用いた厚膜抵抗体組成物に関し、さらに詳しくは、比抵抗が高く、かつ微細で粒径の揃った分散性に優れたRu−M−O微粉末、その製造方法、及びそれを用いた静電気放電の耐性に優れた厚膜抵抗体組成物に関する。   The present invention relates to a Ru-M-O fine powder, a method for producing the same, and a thick film resistor composition using the Ru-M-O powder. More specifically, the present invention relates to a high specific resistance, excellent fineness and uniform dispersibility. The present invention relates to a fine Ru-M-O powder, a method for producing the same, and a thick film resistor composition excellent in electrostatic discharge resistance using the same.

チップ抵抗器、厚膜ハイブリッドICや抵抗ネットワーク等の部品として、厚膜抵抗体が広く用いられている。近年、電子部品のサイズの極小化が進み、チップ抵抗器では主流となる大きさが、長さ1.6mm×幅0.8mmから、長さ1.0mm×幅0.5mmへと移行しつつある。それに伴い厚膜抵抗体のサイズも、長さ0.5mm×幅0.5mmから、長さ0.3mm×幅0.3mmに移行している。   Thick film resistors are widely used as components such as chip resistors, thick film hybrid ICs and resistor networks. In recent years, the miniaturization of electronic components has progressed, and the mainstream size of chip resistors is shifting from length 1.6 mm x width 0.8 mm to length 1.0 mm x width 0.5 mm. is there. Along with this, the size of the thick film resistor has also shifted from 0.5 mm length × 0.5 mm width to 0.3 mm length × 0.3 mm width.

抵抗体サイズが小さくなると、電気的な負荷による抵抗値変化が大きくなり、抵抗器の信頼性が懸念される。このため、一般的にはサイズが小さい抵抗器は、定格の電力を軽減するなどの考慮がなされるが、静電気やサージ電流等は、サイズが小さい抵抗器でも軽減されない。したがって、抵抗体のサイズが小さくても、静電気やサージ電流によって抵抗値変化が小さい厚膜抵抗体が望まれている。   When the resistor size is reduced, a change in resistance value due to an electrical load is increased, and there is a concern about the reliability of the resistor. For this reason, in general, a resistor having a small size is considered to reduce the rated power, but static electricity, surge current, etc. are not reduced even by a resistor having a small size. Therefore, even if the size of the resistor is small, a thick film resistor that has a small change in resistance value due to static electricity or surge current is desired.

厚膜抵抗体は、絶縁体基板の表面に形成された導電体回路パターン又は電極の上に厚膜抵抗体組成物を印刷し、これを焼成して製造される。
厚膜抵抗体組成物は、導電成分とガラス結合剤とを、ビヒクルと呼ばれる有機媒体中に分散させることにより製造している。このうち、導電成分は、厚膜抵抗体の電気的特性を決定する最も重要な役割を担い、Ru酸化物粉末が、厚膜抵抗体の導電成分として広く用いられている。RuOは、金属的な電気伝導性を有しており、その比抵抗は、およそ4×10−5Ω・cmとされている。
The thick film resistor is manufactured by printing a thick film resistor composition on a conductor circuit pattern or electrode formed on the surface of an insulator substrate and firing the composition.
The thick film resistor composition is manufactured by dispersing a conductive component and a glass binder in an organic medium called a vehicle. Of these, the conductive component plays the most important role in determining the electrical characteristics of the thick film resistor, and Ru oxide powder is widely used as the conductive component of the thick film resistor. RuO 2 has metallic electrical conductivity, and its specific resistance is about 4 × 10 −5 Ω · cm.

Ru酸化物粉末を導電成分として使用する厚膜抵抗体では、粒径が小さく、分散性が良好なRu酸化物粉末を用いることが重要である。このようなRu酸化物粉末を用いると、厚膜抵抗体の導電パスが微細で均一になり、静電気やサージ電流によって抵抗値変化が小さくなるためである。また、厚膜抵抗体の導電パスが多いほうが、静電気やサージ電流に対し抵抗値変化が小さくなり、負荷特性が向上する。そこで、厚膜抵抗体の導電パスを多くするため、導電成分の割合を多くしたい訳であるが、厚膜抵抗体の抵抗値が低くなるので、高抵抗領域の抵抗体には、導電成分を多く含有させられないのが現状である。   In a thick film resistor that uses Ru oxide powder as a conductive component, it is important to use Ru oxide powder that has a small particle size and good dispersibility. When such Ru oxide powder is used, the conductive path of the thick film resistor becomes fine and uniform, and the change in resistance value is reduced by static electricity or surge current. In addition, as the conductive path of the thick film resistor is larger, a change in resistance value with respect to static electricity or surge current becomes smaller, and load characteristics are improved. Therefore, in order to increase the conductive path of the thick film resistor, it is desired to increase the ratio of the conductive component, but since the resistance value of the thick film resistor is low, the conductive component is added to the resistor in the high resistance region. The current situation is that it cannot be contained in large quantities.

したがって、高抵抗領域の厚膜抵抗体の負荷特性を向上させるため、その導電成分のRu酸化物粉末としては、粒径が小さく、分散性が良好であるだけでなく、比抵抗が高いものが望まれている。   Therefore, in order to improve the load characteristics of the thick film resistor in the high resistance region, the Ru oxide powder of the conductive component has not only a small particle size and good dispersibility but also a high specific resistance. It is desired.

このような比抵抗が高いRu酸化物を用いた組成物として、RuとNbを含む酸化物からなる抵抗体組成物(特許文献1)、RuとNbの金属酸化物混合粉末にガラス粉末を含有させた抵抗ペースト(特許文献2)が提案されている。これら特許文献には、例えばRu酸化物とNb酸化物の原料粉末を1400℃もの高い温度で熱処理を行って、RuとNbを特定の原子比で含む酸化物を製造する方法が記載されている。   As a composition using a Ru oxide having a high specific resistance, a resistor composition composed of an oxide containing Ru and Nb (Patent Document 1), and a metal oxide mixed powder of Ru and Nb contains glass powder. A resistance paste (Patent Document 2) is proposed. In these patent documents, for example, a raw material powder of Ru oxide and Nb oxide is heat-treated at a temperature as high as 1400 ° C. to describe a method for producing an oxide containing Ru and Nb at a specific atomic ratio. .

これら特許文献が1000℃を超える温度で熱処理しているのは、温度が低いと生成物中に未反応のRuOとNbが残るため、Ru−Nb−O化合物が得られないためである。しかし、RuO粉末とNb粉末を混合し、1400℃もの高温で熱処理すると、RuO粒子が粗大化し、厚膜抵抗体に適した微細で分散性のよいRu−Nb−Oが得られない。また、Ru酸化物が高温でRuOあるいはRuOとなって、揮発してしまうという問題があった。 The reason why these patent documents are heat-treated at a temperature exceeding 1000 ° C. is that a Ru—Nb—O compound cannot be obtained because unreacted RuO 2 and Nb 2 O 5 remain in the product when the temperature is low. It is. However, when RuO 2 powder and Nb 2 O 5 powder are mixed and heat-treated at a high temperature of 1400 ° C., RuO 2 particles become coarse, and fine and highly dispersible Ru—Nb—O suitable for thick film resistors is obtained. I can't. Further, there is a problem that the Ru oxide becomes RuO 3 or RuO 4 at a high temperature and volatilizes.

このため、従来の方法では微細で分散性のよいRu−Nb−O微粉末は入手できず、厚膜抵抗体の導電成分として使用されていなかった。
以上の状況から、比抵抗が高く、粒径が小さく、分散性に優れたRu−Nb−O微粉末、その製造方法、及びそれを用いた、静電気放電に対する抵抗値変化が小さく、静電気放電の耐性に優れた厚膜抵抗体組成物が求められている。
特開昭48−82391号公報 特開昭55−117202号公報
For this reason, fine and highly dispersible Ru—Nb—O fine powders cannot be obtained by conventional methods, and have not been used as conductive components of thick film resistors.
From the above situation, Ru-Nb-O fine powder having a high specific resistance, a small particle size, and excellent dispersibility, a method for producing the same, and a resistance value change with respect to electrostatic discharge using the same are small. There is a need for thick film resistor compositions having excellent resistance.
JP-A-48-82391 JP 55-117202 A

本発明の目的は、上記の従来技術の問題点に鑑み、比抵抗が高く、かつ微細で粒径の揃った分散性に優れたRu−M−O微粉末、その製造方法、及びそれを用いた静電気放電の耐性に優れた厚膜抵抗体組成物を提供することにある。   In view of the above-mentioned problems of the prior art, an object of the present invention is a fine Ru-MO powder having a high specific resistance, fine particles and excellent dispersibility, a method for producing the same, and a method for using the same. An object of the present invention is to provide a thick film resistor composition having excellent resistance to electrostatic discharge.

本発明者は、上記目的を達成するために、Ru−M−O微粉末と、その製造方法について鋭意研究を重ねた結果、Ru化合物に特定量のNb化合物やTa化合物を配合し、これに十分な量のホウ素化合物を混合し、この混合粉末を特定の温度条件で熱処理することで、RuとNb、あるいはRuとTaとの固溶体と酸化ホウ素からなる熱処理物が形成され、こうして得られた熱処理物を溶剤処理して酸化ホウ素のみを溶解除去することにより微細で粒径の揃った分散性に優れた固溶体の微粉末が得られること、そして、これらの微粉末が厚膜抵抗体の導電成分として好適な性能を有することを見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventor conducted extensive research on Ru-M-O fine powder and its production method. As a result, a specific amount of Nb compound or Ta compound was added to the Ru compound. A sufficient amount of a boron compound was mixed, and the mixed powder was heat-treated at a specific temperature condition to form a heat-treated product composed of a solid solution of Ru and Nb or Ru and Ta and boron oxide, and thus obtained. By treating the heat-treated product with a solvent and dissolving and removing only boron oxide, it is possible to obtain fine, solid-solution fine powders with excellent dispersibility with uniform particle diameters. It has been found that it has suitable performance as a component, and the present invention has been completed.

すなわち、本発明の第1の発明によれば、Ru化合物(A)と、Nb又はTaの少なくとも一種から選ばれる5A族元素Mを含む5A族金属化合物(B)との固溶体でルチル型の結晶構造を有するRu−M−O微粉末を製造する方法であって、Ru化合物(A)に5A族金属化合物(B)を下記(i)又は(ii)の条件で配合した後、この配合物に酸化ホウ素又はホウ酸から選ばれるホウ素化合物(C)を下記(iii)の条件で混合する第1の工程、得られた混合物を500〜1000℃の温度で熱処理して、Ruと5A族金属Mとの固溶体、及び酸化ホウ素からなる熱処理物を形成させる第2の工程、及び得られた熱処理物に溶剤を加えて、酸化ホウ素を溶解させ除去する第3の工程を含むことを特徴とするRu−M−O微粉末の製造方法が提供される。
(i)MがNbである場合は、Ru化合物(A)に対する5A族金属化合物(B)の配合量が、RuO とNb に換算したモル比Nb /RuO で、0.01〜0.50である。
(ii)MがTaである場合は、Ru化合物(A)に対する5A族金属化合物(B)の配合量が、RuO とTa に換算したモル比Ta /RuO で、0.01〜0.10である。
(iii)ホウ素化合物(C)の混合量が、Ru化合物(A)と5A族金属化合物(B)の合計に対して、RuO 、Nb 又はTa 及びB に換算した重量比で、0.1〜10である。
That is, according to the first invention of the present invention, the rutile crystal is a solid solution of the Ru compound (A) and the 5A group metal compound (B) containing the 5A group element M selected from at least one of Nb and Ta. A method for producing a Ru-M-O fine powder having a structure, wherein a compound 5A is compounded with a Ru compound (A ) under the following conditions (i) or (ii) , and then the compound: First, a boron compound (C) selected from boron oxide or boric acid is mixed under the conditions of (iii) below , and the resulting mixture is heat-treated at a temperature of 500 to 1000 ° C. to obtain Ru and a group 5A metal. A second step of forming a heat-treated product composed of a solid solution with M and boron oxide; and a third step of adding a solvent to the obtained heat-treated product to dissolve and remove the boron oxide. Production of fine Ru-MO powder The law is provided.
(I) When M is Nb, the compounding amount of the group 5A metal compound (B) with respect to the Ru compound (A) is a molar ratio Nb 2 O 5 / RuO 2 converted to RuO 2 and Nb 2 O 5 , 0.01 to 0.50.
(Ii) When M is Ta, the blending amount of the Group 5A metal compound (B) with respect to the Ru compound (A) is a molar ratio Ta 2 O 5 / RuO 2 converted to RuO 2 and Ta 2 O 5 , 0.01 to 0.10.
(Iii) The mixing amount of the boron compound (C) is RuO 2 , Nb 2 O 5 or Ta 2 O 5 and B 2 O 3 with respect to the total of the Ru compound (A) and the group 5A metal compound (B). The converted weight ratio is 0.1 to 10.

また、本発明の第2の発明によれば、第1の発明において、Ru化合物(A)が、Ru酸化物の水和物であることを特徴とするRu−M−O微粉末の製造方法が提供される。   According to the second invention of the present invention, in the first invention, the Ru compound (A) is a Ru oxide hydrate, The method for producing a Ru-MO fine powder, characterized in that Is provided.

また、本発明の第3の発明によれば、第1の発明において、5A族金属化合物(B)が、Nbであることを特徴とするRu−M−O微粉末の製造方法が提供される。 According to a third aspect of the present invention, there is provided a process for producing a Ru-M-O fine powder characterized in that, in the first aspect, the Group 5A metal compound (B) is Nb 2 O 5. Provided.

また、本発明の第の発明によれば、第1の発明において、5A族金属化合物(B)が、Taであることを特徴とするRu−M−O微粉末の製造方法が提供される。 According to a fourth aspect of the present invention, there is provided a process for producing a Ru-MO fine powder characterized in that, in the first aspect, the Group 5A metal compound (B) is Ta 2 O 5. Provided.

さらに、本発明の第の発明によれば、第1の発明において、第2の工程における熱処理温度が、700〜1000℃であることを特徴とするRu−M−O微粉末の製造方法が提供される。 Furthermore, according to the fifth aspect of the present invention, there is provided a method for producing a Ru-MO fine powder characterized in that, in the first aspect, the heat treatment temperature in the second step is 700 to 1000 ° C. Provided.

一方、本発明の第の発明によれば、第1〜のいずれかの発明の製造方法により得られ、粒径が、1μm以下であることを特徴とするRu−M−O微粉末が提供される。 On the other hand, according to the sixth invention of the present invention, there is provided a Ru-MO fine powder obtained by the production method of any one of the first to fifth inventions and having a particle size of 1 μm or less. Provided.

さらに、本発明の第の発明によれば、第の発明に係るRu−M−O微粉末を導電成分として用いてなる厚膜抵抗体組成物が提供される。 Furthermore, according to the seventh aspect of the present invention, there is provided a thick film resistor composition comprising the Ru-M-O fine powder according to the sixth aspect as a conductive component.

本発明によれば、微細で粒径の揃い、分散性が良好で比抵抗が高いRu−M−O微粉末が得られ、これを用いれば、静電気放電による抵抗値変化が小さい厚膜抵抗体組成物が製造できる。しかも、得られた厚膜抵抗体組成物は、厚膜抵抗体及びそれを用いた電子部品の原料として有用であるから、その工業的価値は極めて大きい。   According to the present invention, fine Ru-MO powder having a uniform particle size, good dispersibility, and high specific resistance can be obtained. By using this, a thick film resistor having a small resistance change due to electrostatic discharge is obtained. A composition can be produced. And since the obtained thick film resistor composition is useful as a raw material of a thick film resistor and an electronic component using the same, its industrial value is very large.

以下、本発明のRu−M−O微粉末、その製造方法、及びそれを用いた厚膜抵抗体組成物を詳細に説明する。   Hereinafter, the Ru-M-O fine powder of the present invention, the production method thereof, and the thick film resistor composition using the same will be described in detail.

1.Ru−M−O微粉末の製造方法
本発明のRu−M−O微粉末は、Ruと5A族元素Mとの固溶体(酸化物)であって、比抵抗が高く、かつ微細で粒径の揃った分散性の良好な微粉末であり、このような微粉末は、(1)Ru化合物と5A族元素Mを含む5A族金属化合物を原料粉末とし、これにホウ素化合物を混合し、(2)この混合粉末を特定の温度条件で熱処理することで、RuとMとの固溶体及び酸化ホウ素からなる熱処理物を形成し、(3)こうして得られた熱処理物を溶剤処理して、RuとMとの固溶体から酸化ホウ素を溶解除去することにより製造される。
1. Manufacturing method of Ru-M-O fine powder The Ru-M-O fine powder of the present invention is a solid solution (oxide) of Ru and Group 5A element M, which has a high specific resistance and is fine and has a particle size. These fine powders having good dispersibility are prepared by using (1) a Group 5A metal compound containing a Ru compound and a Group 5A element M as a raw material powder, and a boron compound mixed therewith (2 ) This mixed powder is heat-treated at a specific temperature condition to form a heat-treated product composed of a solid solution of Ru and M and boron oxide. (3) The heat-treated product thus obtained is treated with a solvent, and Ru and M Boron oxide is dissolved and removed from the solid solution.

(1)第1の工程
本発明では、まず、原料粉末として、Ru化合物(A)に所定量の5A族元素Mを含む5A族金属化合物(B)を配合し、これに十分な量のホウ素化合物(C)を混合する。
(1) First Step In the present invention, first, as a raw material powder, a Ru compound (A) is mixed with a 5A group metal compound (B) containing a predetermined amount of 5A group element M, and a sufficient amount of boron Compound (C) is mixed.

(A)Ru化合物
本発明に用いるRu化合物としては、特に限定されるものではなく、例えば、ルテニウムの酸化物(RuO)、あるいはルテニウム酸鉛(PbRuOx;x=6〜7)、ルテニウム酸ビスマス(BiRuOx;x=6〜7)等のパイロクロア型酸化物、さらにはルテニウム酸バリウム(BaRuO)、ルテニウム酸カルシウム(CaRuO)、ルテニウム酸ストロンチウム(SrRuO)等のペロブスカイト型の複合酸化物を使用できる。これらの中でも、Ru以外の金属元素を含まず、結晶性が低く、5A族元素MのNb又はTaを固溶させやすいという面から、特にRu酸化物の水和物が好ましい。
(A) Ru Compound The Ru compound used in the present invention is not particularly limited. For example, ruthenium oxide (RuO 2 ) or lead ruthenate (Pb 2 Ru 2 Ox; x = 6 to 7) Pyrochlore oxides such as bismuth ruthenate (Bi 2 Ru 2 Ox; x = 6-7), barium ruthenate (BaRuO 3 ), calcium ruthenate (CaRuO 3 ), strontium ruthenate (SrRuO 3 ), etc. The perovskite type complex oxide can be used. Among these, a hydrate of Ru oxide is particularly preferable from the viewpoint that it contains no metal element other than Ru, has low crystallinity, and easily dissolves Nb or Ta of Group 5A element M.

Ru酸化物の水和物は、乾式法、湿式法のいずれでもよいが、特にRuを含む水溶液からの湿式合成法で得られるものが好ましい。種々の原料Ru水溶液を用いて製造することができ、この代表的な方法としては、KRuO水溶液にエタノールを加えて還元する方法、及びRuCl水溶液をKOH等で中和する方法が挙げられる。Ru酸化物の結晶水の数は、製法や条件によって異なり、一般に特定されない。
Ru化合物は、微細なもののほうが反応性の面で望ましく、その粒径は特に限定されるものではないが、特に1μm以下のものが好ましい。
The Ru oxide hydrate may be either a dry method or a wet method, but is particularly preferably obtained by a wet synthesis method from an aqueous solution containing Ru. Various raw material Ru aqueous solutions can be produced, and typical methods include a method of reducing ethanol by adding ethanol to a K 2 RuO 4 aqueous solution and a method of neutralizing a RuCl 3 aqueous solution with KOH or the like. It is done. The number of water crystals of Ru oxide varies depending on the production method and conditions and is not generally specified.
A fine Ru compound is desirable in terms of reactivity, and its particle size is not particularly limited, but is preferably 1 μm or less.

(B)5A族金属化合物
本発明のRu−M−O微粉末を製造するのに用いる5A族金属化合物Mは、Nb及び/又はTaを含む化合物である。
Nb化合物は、限定されるものではないが、特にNbが好ましい。また、Ta化合物も限定されるものではないが、特にTaが好ましい。
(B) Group 5A metal compound The group 5A metal compound M used for producing the Ru-M-O fine powder of the present invention is a compound containing Nb and / or Ta.
The Nb compound is not limited, but Nb 2 O 5 is particularly preferable. The Ta compound is not limited, but Ta 2 O 5 is particularly preferable.

Nb化合物又はTa化合物の粒径も特に限定されるものではないが、いずれも微細なもののほうが反応性の面で望ましく、特に1μm以下のものが好ましい。   The particle size of the Nb compound or Ta compound is not particularly limited, but a fine one is desirable in terms of reactivity, and particularly preferably 1 μm or less.

本発明において、5A族金属化合物Mの量は、特に限定されるものではないが、MがNbである場合、Ru化合物に対するNb化合物の量は、RuOとNbに換算したモル比で、0.01〜0.50、さらには0.01〜0.40、特に0.04〜0.35であることが好ましい。Nb化合物が過少、すなわちRuOとNbに換算したモル比が、0.01未満では比抵抗が高い微粉末が得られず、一方、Nb化合物が過剰、すなわち0.50を超えると、RuOとNbOが完全に固溶しないで、Ru−Nb−O固溶体とNbの混合物となるので好ましくない。 In the present invention, the amount of the group 5A metal compound M is not particularly limited, but when M is Nb, the amount of the Nb compound relative to the Ru compound is a molar ratio in terms of RuO 2 and Nb 2 O 5. And 0.01 to 0.50, more preferably 0.01 to 0.40, and particularly preferably 0.04 to 0.35. When the Nb compound is too small, that is, when the molar ratio converted to RuO 2 and Nb 2 O 5 is less than 0.01, a fine powder having a high specific resistance cannot be obtained. On the other hand, when the Nb compound is excessive, ie, more than 0.50 , RuO 2 and NbO 2 are not completely dissolved, and a mixture of Ru—Nb—O solid solution and Nb 2 O 5 is not preferable.

また、MがTaである場合、Ru化合物に対するTa化合物の量は、RuOとTaに換算したモル比で、0.01〜0.10、特に0.02〜0.08であることが好ましい。Ta化合物が過少、すなわちRuOとTaに換算したモル比が、0.01未満では比抵抗が高い微粉末が得られず、一方、Ta化合物が過剰、すなわち0.10を超えると、RuOとTaOが完全に固溶しないで、Ru−Ta−O固溶体とTaの混合物となるので好ましくない。 When M is Ta, the amount of the Ta compound relative to the Ru compound is 0.01 to 0.10, particularly 0.02 to 0.08, in terms of a molar ratio converted to RuO 2 and Ta 2 O 5. It is preferable. When the Ta compound is too small, that is, when the molar ratio converted to RuO 2 and Ta 2 O 5 is less than 0.01, a fine powder having a high specific resistance cannot be obtained. , RuO 2 and TaO 2 are not completely dissolved, and a mixture of Ru—Ta—O solid solution and Ta 2 O 5 is not preferable.

また、Nb化合物とTa化合物とは併用することもできる。併用する場合は、Ru化合物に対するNb化合物及びTa化合物の量が、RuOとNb及びTaに換算したモル比で、0.01〜0.50、さらには0.01〜0.40、特に0.04〜0.35であることが好ましい。 Further, the Nb compound and the Ta compound can be used in combination. When used, the amount of Nb compound and Ta compound to the Ru compound, the molar ratio in terms of RuO 2 and Nb 2 O 5 and Ta 2 O 5, 0.01 to 0.50, still more 0.01 It is preferably 0.40, particularly 0.04 to 0.35.

(C)ホウ素化合物
本発明においては、Ru化合物と5A族金属元素Mを含む金属化合物からなる原料粉末に対して、ホウ素化合物を混合することが重要である。ホウ素化合物としては、酸化ホウ素、ホウ酸などを用いることができる。酸化ホウ素として、三酸化二ホウ素の他に各種酸化物、及びその水和物が例示される。また、ホウ酸は、メタホウ酸、オルトホウ酸、四ホウ酸などが例示される。
(C) Boron compound In this invention, it is important to mix a boron compound with the raw material powder which consists of a Ru compound and the metal compound containing the 5A group metal element M. As the boron compound, boron oxide, boric acid, or the like can be used. Examples of boron oxide include various oxides and hydrates in addition to diboron trioxide. Examples of boric acid include metaboric acid, orthoboric acid, and tetraboric acid.

ホウ素化合物とRu化合物と5A族金属元素Mを含む金属化合物との混合物を熱処理すると、生成した微細なRu−M−Oの凝集をホウ素化合物が防止し、熱処理物中に微細なRu−M−Oが良好に分散する。ホウ素化合物は、溶融して酸化ホウ素となりRu−M−Oの良好な分散剤となる。   When a mixture of a boron compound, a Ru compound, and a metal compound containing a Group 5A metal element M is heat-treated, the boron compound prevents aggregation of the fine Ru-M-O produced, and fine Ru-M- O is well dispersed. The boron compound is melted to be boron oxide and a good dispersant for Ru-MO.

本発明において、ホウ素化合物の量、すなわちRu化合物と5A族金属化合物の合計に対するホウ素化合物の混合量は、特に限定されるものではないが、RuO、Nb(Ta)及びBに換算した重量比で0.1〜10、特に0.5〜10が好ましい。ホウ素化合物が過少、すなわち前記重量比が、0.1未満では完全なRu−M−O固溶体が生成せず、かつ熱処理によって生成するRu−M−O粉末の粒径が大きくなるため好ましくない。また、ホウ素化合物が過剰、すなわち前記重量比が、2.0を超えてもそれ以上の分散効果は得られないので経済的ではない。 In the present invention, the amount of the boron compound, that is, the mixed amount of the boron compound with respect to the total of the Ru compound and the 5A group metal compound is not particularly limited, but RuO 2 , Nb 2 O 5 (Ta 2 O 5 ) and The weight ratio in terms of B 2 O 3 is preferably 0.1 to 10, particularly preferably 0.5 to 10. When the boron compound is too small, that is, when the weight ratio is less than 0.1, a complete Ru-MO solid solution is not generated, and the particle size of the Ru-MO powder generated by heat treatment is not preferable. Further, if the boron compound is excessive, that is, the weight ratio exceeds 2.0, no further dispersion effect can be obtained, which is not economical.

本発明において、Ru化合物、5A族金属化合物、及びホウ素化合物の混合方法は、特に限定されるものではなく、ボールミル、ビーズミルやライカイ機等の市販の粉砕装置を用いればよい。   In the present invention, the mixing method of the Ru compound, the Group 5A metal compound, and the boron compound is not particularly limited, and a commercially available pulverizing apparatus such as a ball mill, a bead mill, or a reiki machine may be used.

(2)第2の工程
こうして得られた粉末混合物は、Ruと5A族金属元素Mがルチル型結晶構造の固溶体を形成する特定の条件で熱処理される。
(2) Second Step The powder mixture thus obtained is heat-treated under a specific condition in which Ru and the group 5A metal element M form a solid solution having a rutile crystal structure.

本発明において熱処理温度は、Ru化合物とNb化合物又はTa化合物の種類、ホウ素化合物との混合比、あるいは目的とする微粉末の粒径によって異なるが、500〜1000℃とする必要があり、700〜1000℃、特に700〜900℃の温度範囲とすることが好ましい。   In the present invention, the heat treatment temperature varies depending on the type of Ru compound and Nb compound or Ta compound, the mixing ratio of the boron compound, or the particle size of the target fine powder, but it is necessary to set the temperature to 500 to 1000 ° C. The temperature is preferably 1000 ° C., particularly 700 to 900 ° C.

熱処理温度が500℃未満では、RuOとNb又はTaとが固溶しないのでRu−M−O固溶体が形成されず、一方、1000℃を超えると、1μm以上の粗大粒子が生成するだけでなく、揮発性のRuO、RuOが生成してロスとなるので好ましくない。なお、熱処理温度が高くなるに伴ない、生成するRu−M−Oの粒径が大きくなる傾向があるので、熱処理温度の調節によって、Ru−M−Oの粒径を自在に制御することができる。 When the heat treatment temperature is less than 500 ° C., RuO 2 and Nb 2 O 5 or Ta 2 O 5 do not form a solid solution, so a Ru—MO solid solution is not formed. On the other hand, when the temperature exceeds 1000 ° C., coarse particles of 1 μm or more Is not preferable because volatile RuO 4 and RuO 3 are generated and become a loss. As the heat treatment temperature increases, the particle size of the generated Ru-MO tends to increase. Therefore, the particle size of Ru-MO can be freely controlled by adjusting the heat treatment temperature. it can.

また、熱処理時間は、特に制限されないが、あまり短時間であると、Nb又はTaとRuOとが十分に固溶せずRu−M−O固溶体が形成されない場合があり、少なくとも30分とすることが好ましい。 Also, the heat treatment time is not particularly limited, but if it is too short, Nb 2 O 5 or Ta 2 O 5 and RuO 2 may not be sufficiently dissolved, and a Ru-MO solid solution may not be formed. , Preferably at least 30 minutes.

本発明の熱処理においては、特に雰囲気が限定されるものではなく、大気中で行うことが可能である。   In the heat treatment of the present invention, the atmosphere is not particularly limited, and can be performed in the air.

これにより得られる熱処理物は、溶融した酸化ホウ素中に、Ru−M−O微粉末が分散した形態になる。言い換えれば、Ru−M−O微粉末が酸化ホウ素の溶融物中に分散した状態で合成されるので、粗大粒子の発生が無く、粒径がそろっており、凝集が少なく分散性に優れたものとなる。   The heat-treated product thus obtained is in a form in which Ru—M—O fine powder is dispersed in molten boron oxide. In other words, since the Ru-M-O fine powder is synthesized in a state of being dispersed in the boron oxide melt, there is no generation of coarse particles, the particle size is uniform, and there is little aggregation and excellent dispersibility It becomes.

こうした熱処理によってRu−M−Oが生成するメカニズムの詳細は明らかではないが、Ru化合物が熱処理をうけてRuO結晶になる過程において、融点が低いホウ素化合物(酸化ホウ素)が溶融し、後から溶融して生成するRuとMの物質移動を阻害し、RuOの結晶成長を抑制する一方で、M原子がRu原子に置き換わることにより、Ru−M−O結晶が生成するものと考えられる。 The details of the mechanism by which Ru—M—O is generated by such heat treatment are not clear, but in the process where the Ru compound is subjected to the heat treatment to become RuO 2 crystals, the boron compound (boron oxide) having a low melting point is melted and later It is considered that Ru—M—O crystals are formed by inhibiting the mass transfer of Ru and M generated by melting and suppressing the crystal growth of RuO 2 while replacing M atoms with Ru atoms.

(3)第3の工程
この工程は、得られたRu−M−Oを含む熱処理物に溶剤を作用させて酸化ホウ素を溶解除去し、Ru−M−O微粉末を回収する工程である。
(3) Third Step This step is a step of recovering Ru-MO fine powder by dissolving and removing boron oxide by applying a solvent to the heat-treated product containing Ru-MO.

本発明において、酸化ホウ素を溶解除去する方法は、特に限定されるものではなく、硝酸や蟻酸等の水溶液を用いて溶解する方法が簡便である。このうち、溶剤としては、入手しやすさ、取扱い性などから硝酸溶液が好ましい。溶解処理によって、微粉末中の酸化ホウ素を実質的完全に除去させることが望ましい。ただし、微量(例えば、1重量%まで)の酸化ホウ素が残存しても差し支えない。   In the present invention, the method of dissolving and removing boron oxide is not particularly limited, and a method of dissolving using an aqueous solution of nitric acid, formic acid or the like is simple. Among these, as the solvent, a nitric acid solution is preferable from the standpoint of availability and handleability. It is desirable to remove the boron oxide in the fine powder substantially completely by the dissolution treatment. However, a trace amount (for example, up to 1% by weight) of boron oxide may remain.

回収されたRu−M−O微粉末は、必要に応じて洗浄、乾燥される。乾燥条件としては、例えば80〜120℃、5〜20時間の範囲で適宜決定できる。   The collected Ru-M-O fine powder is washed and dried as necessary. As drying conditions, it can determine suitably in the range of 80-120 degreeC, for 5 to 20 hours, for example.

2.Ru−M−O微粉末
本発明のRu−M−O微粉末は、上記の方法により得られ、MがNb及び/又はTaであり、粒径が1μm以下の微細な粉末である。
(1)Ru−Nb−O微粉末
本発明のRu−Nb−O微粉末は、単一の相からなり、格子定数がRuOとNbOとの中間にあるルチル型の結晶構造で、RuO又はNbOのルチル構造のRuとNbが入れ替わった構造をしている。
2. Ru-M-O fine powder The Ru-M-O fine powder of the present invention is a fine powder obtained by the above method, wherein M is Nb and / or Ta, and the particle size is 1 μm or less.
(1) Ru-Nb-O fine powder The Ru-Nb-O fine powder of the present invention comprises a single phase, and has a rutile crystal structure having a lattice constant between RuO 2 and NbO 2. The rutile structure of 2 or NbO 2 has a structure in which Ru and Nb are interchanged.

格子定数と結晶子径は、X線回折で測定することができる。格子定数は、X線回折によって得られたルチル構造の(110)(101)(211)(301)(321)面のピークをKα1、Kα2に波形分離した後、Kα1のピークを用い、最小二乗法によって算出される。   The lattice constant and crystallite diameter can be measured by X-ray diffraction. The lattice constant is obtained by separating the peaks of the (110), (101), (211), (301), and (321) planes of the rutile structure obtained by X-ray diffraction into Kα1 and Kα2, and then using the Kα1 peak. Calculated by multiplication.

本発明のRu−Nb−O微粉末の格子定数(nm)は、aが0.45〜0.46、cが0.306〜0.311である。参考までにRuO、NbOの格子定数(nm)を示すと、RuOの格子定数(nm)は、a=0.4499、c=0.31071であり、NbOの格子定数(nm)は、a=0.477、c=0.296である。これにより、RuOのルチル構造のRuとNbが部分的に入れ替わった構造をしていることが分かる。 As for the lattice constant (nm) of the Ru—Nb—O fine powder of the present invention, a is 0.45 to 0.46, and c is 0.306 to 0.311. For reference, the lattice constant (nm) of RuO 2 and NbO 2 is shown as follows: RuO 2 has a lattice constant (nm) of a = 0.4499 and c = 0.31071, and the lattice constant (nm) of NbO 2. Are a = 0.477 and c = 0.296. Thus, it can be seen that Ru and Nb in the rutile structure of RuO 2 have a partially replaced structure.

本発明のRu−Nb−O微粉末は、このような構造と性状を有することから、RuOよりも比抵抗が高い厚膜抵抗体組成物の原料として好適である。また、粗大粒子が無く、粒径がそろっており、凝集が少なく分散性にも優れている。 Since the Ru—Nb—O fine powder of the present invention has such a structure and properties, it is suitable as a raw material for a thick film resistor composition having a higher specific resistance than RuO 2 . Further, there are no coarse particles, the particle diameters are uniform, there is little aggregation, and the dispersibility is excellent.

(2)Ru−Ta−O微粉末
本発明のRu−Ta−O微粉末は、単一の相からなり、RuOとTaOの中間の格子定数であるルチル型の結晶構造で、RuO又はTaOのルチル構造のRuとTaが入れ替わった構造をしている。
(2) Ru-Ta-O fine powder The Ru-Ta-O fine powder of the present invention comprises a single phase, and has a rutile crystal structure that is an intermediate lattice constant between RuO 2 and TaO 2 , and RuO 2 Alternatively, the rutile structure of TaO 2 has a structure in which Ru and Ta are interchanged.

格子定数と結晶子径は、X線回折で測定することができる。格子定数は、X線回折によって得られたルチル構造の(110)(101)(211)(301)(321)面のピークをKα1、Kα2に波形分離した後、Kα1のピークを用い、最小二乗法によって算出される。   The lattice constant and crystallite diameter can be measured by X-ray diffraction. The lattice constant is obtained by separating the peaks of the (110), (101), (211), (301), and (321) planes of the rutile structure obtained by X-ray diffraction into Kα1 and Kα2, and then using the Kα1 peak. Calculated by multiplication.

Ru−Ta−O微粉末の格子定数(nm)は、aが0.450〜0.453、cが0.309〜0.311である。参考までにRuO、TaOの格子定数(nm)を示すと、RuOの格子定数(nm)は、a=0.4499、c=0.31071であり、TaOの格子定数(nm)は、a=0.4709、c=0.3065である。これにより、RuOのルチル構造のRuとTaが入れ替わった構造をしていることが分かる。 The lattice constant (nm) of the Ru—Ta—O fine powder is such that a is 0.450 to 0.453 and c is 0.309 to 0.311. For reference, the lattice constant (nm) of RuO 2 and TaO 2 is shown as follows: RuO 2 has a lattice constant (nm) of a = 0.4499 and c = 0.31071, and the lattice constant of TaO 2 (nm) Are a = 0.709 and c = 0.3065. This shows that Ru and Ta in the rutile structure of RuO 2 are replaced with each other.

本発明のRu−Ta−O微粉末は、このような構造と性状を有することから、RuOよりも比抵抗が高い厚膜抵抗体組成物の原料として好適である。また、粗大粒子が無く、粒径がそろっており、凝集が少なく分散性にも優れている。 Since the Ru—Ta—O fine powder of the present invention has such a structure and properties, it is suitable as a raw material for a thick film resistor composition having a higher specific resistance than RuO 2 . Further, there are no coarse particles, the particle diameters are uniform, there is little aggregation, and the dispersibility is excellent.

また、5A族金属化合物は、Nb化合物、又はTa化合物のいずれかを単独で用いるが、両者を併用することもできる。併用した場合は、Nb化合物及びTa化合物の使用量に見合ったRu−M−O微粉末となる。その構造は、NbとTaが共存していることを除けば、上記Ru−Nb−O微粉末又はRu−Ta−O微粉末と同様に、単一の相からなっており、RuOとNbO、RuOとTaOの中間の格子定数であるルチル型の結晶構造となる。 Moreover, although 5A group metal compound uses either Nb compound or Ta compound independently, both can also be used together. When used in combination, the Ru-MO powder is commensurate with the amount of Nb compound and Ta compound used. The structure is composed of a single phase, like Ru-Nb-O fine powder or Ru-Ta-O fine powder, except that Nb and Ta coexist, and RuO 2 and NbO. 2 , a rutile-type crystal structure which is an intermediate lattice constant between RuO 2 and TaO 2 .

3.厚膜抵抗体組成物
本発明の厚膜抵抗体組成物は、Ru−M−O微粉末を導電成分として用いたものである。
3. Thick film resistor composition The thick film resistor composition of the present invention uses Ru-MO powder as a conductive component.

導電成分としては、通常、Ru−Nb−O微粉末又はRu−Ta−O微粉末のいずれかを用いればよいが、両者を混合して用いても良い。   As the conductive component, either Ru-Nb-O fine powder or Ru-Ta-O fine powder is usually used, but both may be mixed and used.

厚膜抵抗体組成物を構成する成分としては、導電成分の他にガラス結合体がある。使用しうるガラス結合体は、厚膜抵抗体組成物の対象部品、使用条件などによって選定されるので限定されないが、例えば、PbO、SiO、B、Al、CaOを含むガラスフリットが用いられる。
また、その他の成分として使用しうる有機ビヒクルも、厚膜抵抗体組成物の対象部品、使用条件などによって選定されるので限定されないが、例えば、セルロース系樹脂等の有機バインダーをタピネオール等の溶剤に溶解させたものが用いられる。
As a component constituting the thick film resistor composition, there is a glass bonded body in addition to the conductive component. The glass binder that can be used is not limited because it is selected depending on the target part of the thick film resistor composition, the use conditions, and the like, but includes, for example, PbO, SiO 2 , B 2 O 3 , Al 2 O 3 , and CaO. Glass frit is used.
Also, the organic vehicle that can be used as other components is not limited because it is selected depending on the target part of the thick film resistor composition, the use conditions, etc., but for example, an organic binder such as a cellulose resin is used as a solvent such as tapineol. What was dissolved is used.

厚膜抵抗体組成物は、Ru−M−O微粉末とガラス結合剤及び有機ビヒクル、あるいはRu−M−O微粉末と熱硬化性樹脂や熱可塑性樹脂を混合した後、スリーロールミル等によって混練、分散して得られる。混合方法は、特に制限されず、例えば、ガラス粉末と導電性微粉末、及び有機ビヒクルを3本ロール等で混練すればよい。   Thick film resistor composition is prepared by mixing Ru-MO powder and glass binder and organic vehicle, or Ru-MO powder and thermosetting resin or thermoplastic resin, and then kneading them with a three roll mill. Obtained in a dispersed manner. The mixing method is not particularly limited, and for example, glass powder, conductive fine powder, and organic vehicle may be kneaded with three rolls or the like.

また、本発明の厚膜抵抗体組成物には、本発明の目的を損なわない範囲で、必要に応じて、潤滑剤、酸化防止剤、粘度調整剤、消泡剤等を添加することができる。   In addition, a lubricant, an antioxidant, a viscosity modifier, an antifoaming agent, and the like can be added to the thick film resistor composition of the present invention as necessary within a range that does not impair the purpose of the present invention. .

このようなRu−M−O微粉末を含有する厚膜抵抗体組成物を使用すると、従来のRuO粉末を導電成分として用いる厚膜抵抗体に比べて、静電気放電に対する抵抗値変化が小さい、即ち静電気放電の耐性が高い厚膜抵抗体が得られる。 When a thick film resistor composition containing such a Ru-M-O fine powder is used, the resistance value change with respect to electrostatic discharge is small as compared with a thick film resistor using a conventional RuO 2 powder as a conductive component. That is, a thick film resistor having high resistance to electrostatic discharge can be obtained.

以下に、実施例および比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
なお、実施例および比較例で用いた微粉末の分析方法、格子定数、結晶子径及び比表面積の測定方法、並びに厚膜抵抗体の抵抗値変化率(静電気放電後)の測定方法は、以下の通りである。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
The fine powder analysis method, lattice constant, crystallite diameter and specific surface area measurement method used in the examples and comparative examples, and the resistance value change rate of the thick film resistor (after electrostatic discharge) are as follows. It is as follows.

(1)金属の分析:得られた微粉末を過酸化ソーダと炭酸ソーダでアルカリ融解し、溶融物を塩酸で溶液にして、ICP発光分析法で金属を分析した。
(2)格子定数と結晶子径の測定:X線回折で測定した。
格子定数測定は、X線回折によって得られたルチル構造の(110)(101)(211)(301)(321)面のピークをKα1、Kα2に波形分離した後、Kα1のピークを用い、最小二乗法によって算出した。
また、結晶子径は、X線回折によって得られたルチル構造のピークをKα1、Kα2に波形分離した後、Kα1のピークの広がりとして半価幅を測定し、Scherrerの式より算出した。
(3)比表面積の測定:B.E.T法で測定した。
(4)静電気放電(ESD)後の抵抗値変化率(以下、ESD変化率と呼称することがある。)の測定:形成した抵抗体にレーザトリミングを施し、200pFのコンデンサに1kV、2kVで充電した静電気を2回放電し、抵抗値変化を測定した。レーザトリミング条件は、焼成後の抵抗値の1.5倍を目標値に、シングルカット、パワー2W、Qレート6kHz、ビームの移動スピードは20mm/sとした。
(1) Analysis of metal: The obtained fine powder was alkali-melted with sodium peroxide and sodium carbonate, the melt was made into a solution with hydrochloric acid, and the metal was analyzed by ICP emission spectrometry.
(2) Measurement of lattice constant and crystallite diameter: It was measured by X-ray diffraction.
For the lattice constant measurement, the peaks of the (110), (101), (211), (301), and (321) planes of the rutile structure obtained by X-ray diffraction are waveform-separated into Kα1 and Kα2, and then the Kα1 peak is used. Calculated by the square method.
The crystallite size was calculated from the Scherrer equation after separating the rutile structure peak obtained by X-ray diffraction into Kα1 and Kα2 and then measuring the half width as the broadening of the Kα1 peak.
(3) Measurement of specific surface area: B. E. Measured by T method.
(4) Measurement of resistance value change rate after electrostatic discharge (ESD) (hereinafter sometimes referred to as ESD change rate): Laser trimming is performed on the formed resistor, and a 200 pF capacitor is charged at 1 kV and 2 kV. The discharged static electricity was discharged twice and the change in resistance value was measured. Laser trimming conditions were set to a target value of 1.5 times the resistance value after firing, single cut, power 2 W, Q rate 6 kHz, and beam moving speed 20 mm / s.

(実施例1)
次に示す要領で、まず、Ru粉末からRu酸化物の水和物を合成し、これにホウ素化合物を混合して熱処理し、最後に熱処理物から酸化ホウ素を溶出することにより、本発明のRu−Nb−O微粉末を製造した。
(1)Ru酸化物の水和物の合成
Ru粉末100g、KOH(800g)及びKNO(100g)を混合した後、該混合物を銀坩堝中に入れて、700℃で3時間溶融処理して、ルテニウム酸カリウム(KRuO)を得た。このルテニウム酸カリウムを純水に溶解した後、エタノール100mLを加えて加水分解して沈殿物を得た。この沈殿物を、水洗、乾燥して、Ru酸化物の水和物を得た。
(2)Ru−Nb−O微粉末の製造
このRu酸化物の水和物に、Nb粉末11.1g(RuOとNbのモル比Nb/RuOが0.042)と、酸化ホウ素143g(RuOとNbの合計に対する酸化ホウ素の混合量が、重量比で1.0)を加え、ライカイ機を用いて30分混合し、混合物を得た。この混合物をアルミナ坩堝に入れて、空気中、800℃で2時間熱処理を行った。得られたRu−Nb−Oと酸化ホウ素を含む熱処理物を、純水4.5Lと硝酸500mLの混合溶液に入れて、酸化ホウ素を溶解し、除去した。得られた粉末を、純水5Lを用いて撹拌洗浄、ろ過を3回繰り返し行った後、110℃で10時間乾燥して、微粉末を得た。
得られた粉末は、1μm以上の粗大粒子がない、微細で粒径の揃った分散性の良好な粉末であった。得られたRu−Nb−O微粉末を分析し、格子定数、結晶子径、比表面積を測定した。結果を表1に示す。
Example 1
In the following manner, first, a Ru oxide hydrate is synthesized from Ru powder, mixed with a boron compound and heat-treated, and finally boron oxide is eluted from the heat-treated product. -Nb-O fine powder was produced.
(1) Synthesis of Ru oxide hydrate After mixing 100 g of Ru powder, KOH (800 g) and KNO 3 (100 g), the mixture was placed in a silver crucible and melted at 700 ° C. for 3 hours. , Potassium ruthenate (K 2 RuO 4 ) was obtained. After dissolving this potassium ruthenate in pure water, 100 mL of ethanol was added and hydrolyzed to obtain a precipitate. This precipitate was washed with water and dried to obtain a Ru oxide hydrate.
(2) Production of Ru-Nb-O fine powder In this Ru oxide hydrate, 11.1 g of Nb 2 O 5 powder (RuO 2 and Nb 2 O 5 molar ratio Nb 2 O 5 / RuO 2 was 0 0.042) and 143 g of boron oxide (the mixing amount of boron oxide with respect to the total of RuO 2 and Nb 2 O 5 is 1.0 by weight) and mixed for 30 minutes using a lykai machine to obtain a mixture . This mixture was put in an alumina crucible and heat-treated in air at 800 ° C. for 2 hours. The obtained heat-treated product containing Ru—Nb—O and boron oxide was put into a mixed solution of 4.5 L of pure water and 500 mL of nitric acid to dissolve and remove boron oxide. The obtained powder was stirred and washed with 5 L of pure water three times and then dried three times, and then dried at 110 ° C. for 10 hours to obtain a fine powder.
The obtained powder was a fine powder having good dispersibility having a uniform particle size without coarse particles of 1 μm or more. The obtained Ru—Nb—O fine powder was analyzed, and the lattice constant, crystallite diameter, and specific surface area were measured. The results are shown in Table 1.

(実施例2)
Nb粉末を21.8g(RuOとNbのモル比Nb/RuOが0.083)とし、酸化ホウ素を154gにした以外は、実施例1と同様にして、本発明のRu−Nb−O微粉末を製造した。
得られた粉末は、1μm以上の粗大粒子がない、微細で粒径の揃った分散性の良好な粉末であった。得られたRu−Nb−O微粉末を分析し、格子定数、結晶子径、比表面積を測定した。結果を表1に示す。
(Example 2)
Except that Nb 2 O 5 powder was 21.8 g (RuO 2 and Nb 2 O 5 molar ratio Nb 2 O 5 / RuO 2 was 0.083) and boron oxide was 154 g, the same as Example 1 The Ru—Nb—O fine powder of the present invention was produced.
The obtained powder was a fine powder having good dispersibility having a uniform particle size without coarse particles of 1 μm or more. The obtained Ru—Nb—O fine powder was analyzed, and the lattice constant, crystallite diameter, and specific surface area were measured. The results are shown in Table 1.

(実施例3)
Nb粉末を44.7g(RuOとNbのモル比Nb/RuOが0.17)とし、酸化ホウ素を177gにした以外は、実施例1と同様にしてRu−Nb−O微粉末を製造した。
得られた粉末は、1μm以上の粗大粒子がない、微細で粒径の揃った分散性の良好な粉末であった。得られたRu−Nb−O微粉末を分析し、格子定数、結晶子径、比表面積を測定した。結果を表1に示す。
(Example 3)
Except that the Nb 2 O 5 powder was 44.7 g (RuO 2 and Nb 2 O 5 molar ratio Nb 2 O 5 / RuO 2 was 0.17) and boron oxide was changed to 177 g, the same as in Example 1. Ru-Nb-O fine powder was produced.
The obtained powder was a fine powder having good dispersibility having a uniform particle size without coarse particles of 1 μm or more. The obtained Ru—Nb—O fine powder was analyzed, and the lattice constant, crystallite diameter, and specific surface area were measured. The results are shown in Table 1.

(実施例4)
Nb粉末を89.5g(RuOとNbのモル比Nb/RuOが0.34)とし、酸化ホウ素を2.22kg(RuOとNbの合計に対する酸化ホウ素の混合量が、重量比で10.0)にした以外は、実施例1と同様にして、Ru−Nb−O微粉末を製造した。
得られた粉末は、1μm以上の粗大粒子がない、微細で粒径の揃った分散性の良好な粉末であった。得られたRu−Nb−O微粉末を分析し、格子定数、結晶子径、比表面積を測定した。結果を表1に示す。
(Example 4)
89.5 g of Nb 2 O 5 powder (Molar ratio of RuO 2 and Nb 2 O 5 Nb 2 O 5 / RuO 2 is 0.34) and boron oxide 2.22 kg (total of RuO 2 and Nb 2 O 5 Ru-Nb-O fine powder was produced in the same manner as in Example 1 except that the mixing amount of boron oxide with respect to the weight was 10.0).
The obtained powder was a fine powder having good dispersibility having a uniform particle size without coarse particles of 1 μm or more. The obtained Ru—Nb—O fine powder was analyzed, and the lattice constant, crystallite diameter, and specific surface area were measured. The results are shown in Table 1.

(実施例5)
Nb粉末を105.3g(RuOとNbのモル比Nb/RuOが0.4)とし、酸化ホウ素を2.37kg(RuOとNbの合計に対する酸化ホウ素の混合量が、重量比で10.0)にした以外は、実施例1と同様にして、Ru−Nb−O微粉末を製造した。
得られた粉末は、1μm以上の粗大粒子がない、微細で粒径の揃った分散性の良好な粉末であった。得られたRu−Nb−O微粉末を分析し、格子定数、結晶子径、比表面積を測定した。結果を表1に示す。
(Example 5)
The Nb 2 O 5 powder was 105.3 g (RuO 2 and Nb 2 O 5 molar ratio Nb 2 O 5 / RuO 2 was 0.4), and boron oxide was 2.37 kg (total of RuO 2 and Nb 2 O 5 Ru-Nb-O fine powder was produced in the same manner as in Example 1 except that the mixing amount of boron oxide with respect to the weight was 10.0).
The obtained powder was a fine powder having good dispersibility having a uniform particle size without coarse particles of 1 μm or more. The obtained Ru—Nb—O fine powder was analyzed, and the lattice constant, crystallite diameter, and specific surface area were measured. The results are shown in Table 1.

(実施例6)
Nb粉末を11.1gとし、酸化ホウ素を14.3g(RuOとNbの合計に対する酸化ホウ素の混合量が、重量比で0.1)にした以外は、実施例1と同様にして、Ru−Nb−O微粉末を製造した。
得られた粉末は、1μm以上の粗大粒子がない、微細で粒径の揃った分散性の良好な粉末であった。得られたRu−Nb−O微粉末を分析し、格子定数、結晶子径、比表面積を測定した。結果を表1に示す。
(Example 6)
Example 1 except that 11.1 g of Nb 2 O 5 powder and 14.3 g of boron oxide (the mixing amount of boron oxide with respect to the total of RuO 2 and Nb 2 O 5 was 0.1 by weight) In the same manner, Ru-Nb-O fine powder was produced.
The obtained powder was a fine powder having good dispersibility having a uniform particle size without coarse particles of 1 μm or more. The obtained Ru—Nb—O fine powder was analyzed, and the lattice constant, crystallite diameter, and specific surface area were measured. The results are shown in Table 1.

(実施例7)
Nbの代わりにTa粉末を用い、Ta粉末を13.1g(RuOとTaのモル比Ta/RuOが0.03)、酸化ホウ素を145g(RuOとTaの合計に対する酸化ホウ素の混合量が、重量比で1.0)にして、実施例1に記載したと同様の方法で本発明のRu−Ta−O微粉末を製造した。
得られた粉末は、1μm以上の粗大粒子がない、微細で粒径の揃った分散性の良好な粉末であった。得られたRu−Ta−O微粉末を分析し、格子定数、結晶子径、比表面積を測定した。結果を表2に示す。
(Example 7)
Ta 2 O 5 powder is used in place of Nb 2 O 5 , and Ta 2 O 5 powder is 13.1 g (RuO 2 and Ta 2 O 5 molar ratio Ta 2 O 5 / RuO 2 is 0.03), boron oxide 145 g (the mixing amount of boron oxide with respect to the total of RuO 2 and Ta 2 O 5 is 1.0 by weight), and the Ru—Ta—O fine particles of the present invention were prepared in the same manner as described in Example 1. A powder was produced.
The obtained powder was a fine powder having good dispersibility having a uniform particle size without coarse particles of 1 μm or more. The obtained Ru—Ta—O fine powder was analyzed, and the lattice constant, crystallite diameter, and specific surface area were measured. The results are shown in Table 2.

(実施例8)
Ta粉末を30.6g(RuOとTaのモル比Ta/RuOが0.07)とし、酸化ホウ素を163g(RuOとTaの合計に対する酸化ホウ素の混合量が、重量比で1.0)にした以外は、実施例7と同様にして、Ru−Ta−O微粉末を製造した。
得られた粉末は、1μm以上の粗大粒子がない、微細で粒径の揃った分散性の良好な粉末であった。得られたRu−Ta−O微粉末を分析し、格子定数、結晶子径、比表面積を測定をした。結果を表2に示す。
(Example 8)
30.6 g of Ta 2 O 5 powder (Molar ratio of RuO 2 and Ta 2 O 5 Ta 2 O 5 / RuO 2 is 0.07), oxidation of boron oxide to 163 g (RuO 2 and Ta 2 O 5 in total) Ru-Ta-O fine powder was produced in the same manner as in Example 7, except that the mixing amount of boron was 1.0).
The obtained powder was a fine powder having good dispersibility having a uniform particle size without coarse particles of 1 μm or more. The obtained Ru—Ta—O fine powder was analyzed, and the lattice constant, crystallite diameter, and specific surface area were measured. The results are shown in Table 2.

(実施例9)
Ta粉末を43.7g(RuOとTaのモル比Ta/RuOが0.1)とし、酸化ホウ素を1.76kg(RuOとTaの合計に対する酸化ホウ素の混合量が、重量比で10.0)にした以外は、実施例7と同様にして、Ru−Ta−O微粉末を製造した。
得られた粉末は、1μm以上の粗大粒子がない、微細で粒径の揃った分散性の良好な粉末であった。得られたRu−Ta−O微粉末を分析し、格子定数、結晶子径、比表面積を測定した。結果を表2に示す。
Example 9
43.7 g of Ta 2 O 5 powder (RuO 2 and Ta 2 O 5 molar ratio Ta 2 O 5 / RuO 2 is 0.1), boron oxide 1.76 kg (total of RuO 2 and Ta 2 O 5 Ru-Ta-O fine powder was produced in the same manner as in Example 7 except that the mixing amount of boron oxide with respect to the weight was 10.0).
The obtained powder was a fine powder having good dispersibility having a uniform particle size without coarse particles of 1 μm or more. The obtained Ru—Ta—O fine powder was analyzed, and the lattice constant, crystallite diameter, and specific surface area were measured. The results are shown in Table 2.

(実施例10)
上記の方法で得られたRu−Nb−O微粉末を用いて、次に示す要領で本発明の厚膜抵抗体組成物を製造した。
実施例2で得られたRu−Nb−O粉末15.0gに、化学組成がPbO(55重量%)、SiO(30重量%)、B(10重量%)、Al(5重量%)であるガラスフリット45.0g、及びエチルセルロースをターピネオールに溶解した有機ビヒクル40.0gを混合し、これを3本ロールミルによって混練し、本発明の厚膜抵抗体組成物を得た。
得られた厚膜抵抗体組成物を、アルミナ基板に印刷し、ピーク温度850℃、ピーク時間9分のベルト焼成炉によって焼成し、厚膜抵抗体を形成した。なお、アルミナ基板として、予めAg/Pdぺースト(Ag/Pd重量比=98.5/1.5)によって電極を形成したものを用いた。
前記抵抗体サイズは、幅0.3mm、電極間0.3mmとした。得られた厚膜抵抗体の焼成膜厚、面積抵抗値(静電気放電前の抵抗値)、ESD変化率を測定した。結果を表3に示す。
(Example 10)
Using the Ru—Nb—O fine powder obtained by the above method, the thick film resistor composition of the present invention was produced in the following manner.
The chemical composition of PbO (55 wt%), SiO 2 (30 wt%), B 2 O 3 (10 wt%), Al 2 O 3 was added to 15.0 g of the Ru—Nb—O powder obtained in Example 2. 45.0 g of glass frit (5% by weight) and 40.0 g of an organic vehicle obtained by dissolving ethyl cellulose in terpineol were mixed and kneaded by a three-roll mill to obtain a thick film resistor composition of the present invention. .
The obtained thick film resistor composition was printed on an alumina substrate and fired in a belt firing furnace having a peak temperature of 850 ° C. and a peak time of 9 minutes to form a thick film resistor. In addition, as an alumina substrate, an electrode in which an electrode was previously formed by Ag / Pd paste (Ag / Pd weight ratio = 98.5 / 1.5) was used.
The resistor size was 0.3 mm wide and 0.3 mm between electrodes. The fired film thickness, sheet resistance value (resistance value before electrostatic discharge), and ESD change rate of the obtained thick film resistor were measured. The results are shown in Table 3.

(実施例11)
実施例8で得られたRu−Ta−O粉末14.0gに、化学組成がPbO(55重量%)、SiO(30重量%)、B(10重量%)、Al(5重量%)であるガラスフリット46.0g、及びエチルセルロースをターピネオールに溶解した有機ビヒクル40.0gを混合し、3本ロールミルによって混練し、本発明の厚膜抵抗体組成物を得た。
得られた厚膜抵抗体組成物を、実施例9と同様にアルミナ基板に印刷し、ピーク温度850℃、ピーク時間9分のベルト焼成炉によって焼成し厚膜抵抗体を形成した。
前記抵抗体サイズは、幅0.3mm、電極間0.3mmとした。得られた厚膜抵抗体の焼成膜厚、面積抵抗値(静電気放電前の抵抗値)、ESD変化率を測定した。結果を表3に示す。
(Example 11)
To 14.0 g of the Ru—Ta—O powder obtained in Example 8, the chemical composition was PbO (55 wt%), SiO 2 (30 wt%), B 2 O 3 (10 wt%), Al 2 O 3. 45.0 g of glass frit (5% by weight) and 40.0 g of an organic vehicle in which ethylcellulose was dissolved in terpineol were mixed and kneaded by a three-roll mill to obtain a thick film resistor composition of the present invention.
The obtained thick film resistor composition was printed on an alumina substrate in the same manner as in Example 9, and fired in a belt firing furnace having a peak temperature of 850 ° C. and a peak time of 9 minutes to form a thick film resistor.
The resistor size was 0.3 mm wide and 0.3 mm between electrodes. The fired film thickness, sheet resistance value (resistance value before electrostatic discharge), and ESD change rate of the obtained thick film resistor were measured. The results are shown in Table 3.

(比較例1)
次に示す要領で、実施例1と同様にしてRu粉末からRu酸化物の水和物を合成した後、これにホウ素化合物を混合することなく熱処理し、比較用のRu−Nb−O微粉末を製造した。
Ru酸化物の水和物に、Nb粉末を21.8g加え、酸化ホウ素を加えることなく、ライカイ機を用いて30分混合した後、アルミナ坩堝に入れて、900℃で2時間熱処理を行った。得られた粉末を用いて、X線回折を行った。
この結果から、得られた粉末は、RuO(ルチル型)とNbの混合物であるが、RuOとNbOが固溶したRu−Nb−Oではないこと、1μm以上の粗大粒子があることが分かった。
(Comparative Example 1)
In the following manner, a Ru oxide hydrate was synthesized from Ru powder in the same manner as in Example 1, and then heat-treated without mixing a boron compound thereto, and a Ru-Nb-O fine powder for comparison was used. Manufactured.
Add 21.8 g of Nb 2 O 5 powder to the hydrate of Ru oxide, mix for 30 minutes using a lyi machine without adding boron oxide, and then heat-treat at 900 ° C. for 2 hours. Went. X-ray diffraction was performed using the obtained powder.
From this result, the obtained powder is a mixture of RuO 2 (rutile type) and Nb 2 O 5 , but is not Ru—Nb—O in which RuO 2 and NbO 2 are solid solution, and coarse particles of 1 μm or more. I found out that

(比較例2)
実施例1と同じRu酸化物の水和物に、Nb粉末の代わりにTa粉末を30.6g加えた以外は比較例1と同様にして、酸化ホウ素を加えることなく、ライカイ機を用いて30分混合した後、アルミナ坩堝に入れて、900℃で2時間熱処理を行った。得られた粉末を用いて、X線回折を行った。
この結果から、得られた粉末は、RuO(ルチル型)とTaの混合物であるが、RuOとTaOが固溶したRu−Ta−Oではないこと、1μm以上の粗大粒子があることが分かった。
(Comparative Example 2)
In the same manner as in Comparative Example 1 except that 30.6 g of Ta 2 O 5 powder was added instead of Nb 2 O 5 powder to the same Ru oxide hydrate as in Example 1, without adding boron oxide, After mixing for 30 minutes using a reika machine, the mixture was placed in an alumina crucible and heat treated at 900 ° C. for 2 hours. X-ray diffraction was performed using the obtained powder.
From this result, the obtained powder is a mixture of RuO 2 (rutile type) and Ta 2 O 5 , but is not Ru—Ta—O in which RuO 2 and TaO 2 are solid solution, coarse particles of 1 μm or more I found out that

(比較例3)
実施例1と同様にして、原料粉末のRu化合物、Nb化合物を用意し、これに酸化ホウ素を加えて、ライカイ機で30分混合した後、アルミナ坩堝に入れて、1200℃で2時間熱処理を行い、硝酸水溶液で酸化ホウ素を溶解・除去したのち乾燥した。得られた粉末を用いて、X線回折を行った。
この結果から、得られた粉末は、熱処理温度が高すぎたために、RuO粒子が粗大化し、3μm以上の粗大粒子があることが分かった。
(Comparative Example 3)
In the same manner as in Example 1, a raw material Ru compound and an Nb compound were prepared, boron oxide was added thereto, mixed with a laika machine for 30 minutes, then placed in an alumina crucible and heat treated at 1200 ° C. for 2 hours. Then, boron oxide was dissolved and removed with an aqueous nitric acid solution and then dried. X-ray diffraction was performed using the obtained powder.
From this result, it was found that the obtained powder had a heat treatment temperature that was too high, resulting in coarser RuO 2 particles and coarse particles of 3 μm or more.

(比較例4)
実施例1と同様にして、原料粉末のRu化合物、Nb化合物を用意し、これに酸化ホウ素を加えて、ライカイ機で30分混合した後、アルミナ坩堝に入れて、400℃で2時間熱処理を行い、硝酸水溶液で酸化ホウ素を溶解・除去したのち乾燥した。得られた粉末を用いて、X線回折を行った。
この結果から、得られた粉末は、熱処理温度が低かったために、RuOとNbの固溶体が形成されていないことが分かった。
(Comparative Example 4)
In the same manner as in Example 1, a raw material Ru compound and an Nb compound were prepared, boron oxide was added thereto, mixed with a laika machine for 30 minutes, then placed in an alumina crucible, and heat treated at 400 ° C. for 2 hours. Then, boron oxide was dissolved and removed with an aqueous nitric acid solution and then dried. X-ray diffraction was performed using the obtained powder.
From this result, it was found that the solid powder of RuO 2 and Nb 2 O 5 was not formed because the obtained powder had a low heat treatment temperature.

(比較例5)
Ru−Nb−O微粉末のかわりに、結晶子径10.4nmのRuO粉末8.5gを用い、ガラスフリット51.5gを混合した以外は、実施例10と同様にして比較用の厚膜抵抗体を製造した。
得られた厚膜抵抗体の焼成膜厚、面積抵抗値(静電気放電前の抵抗値)、ESD変化率を測定した。結果を表3に示す。
(Comparative Example 5)
A thick film for comparison similar to Example 10 except that 8.5 g of RuO 2 powder having a crystallite diameter of 10.4 nm was used in place of the Ru—Nb—O fine powder and 51.5 g of glass frit was mixed. A resistor was manufactured.
The fired film thickness, sheet resistance value (resistance value before electrostatic discharge), and ESD change rate of the obtained thick film resistor were measured. The results are shown in Table 3.

(比較例6)
Ru−Nb−O微粉末のかわりに、結晶子径10.4nmのRuO粉末23.4g、Nb(1.6g)を用い、ガラスフリットの量を35.0gとした以外は、実施例10と同様にして比較用の厚膜抵抗体を製造した。なお、RuOとNbの比が実施例10と同じとなるように配合した。
得られた厚膜抵抗体の焼成膜厚、面積抵抗値(静電気放電前の抵抗値)、ESD変化率を測定した。結果を表3に示す。
(Comparative Example 6)
Instead of the Ru-Nb-O fine powder, 23.4 g of RuO 2 powder having a crystallite diameter of 10.4 nm and Nb 2 O 5 (1.6 g) were used, and the amount of glass frit was 35.0 g. A comparative thick film resistor was manufactured in the same manner as in Example 10. The ratio of RuO 2 and Nb 2 O 5 were blended so that the same as in Example 10.
The fired film thickness, sheet resistance value (resistance value before electrostatic discharge), and ESD change rate of the obtained thick film resistor were measured. The results are shown in Table 3.

(比較例7)
Ru−Ta−O微粉末のかわりに、結晶子径10.4nmのRuO粉末20.6g、Ta(1.4g)を用い、ガラスフリットの量を38.0gとした以外は、実施例10と同様にして比較用の厚膜抵抗体を製造した。なお、RuOとTaの比が実施例10と同じとなるように配合した。
得られた厚膜抵抗体の焼成膜厚、面積抵抗値(静電気放電前の抵抗値)、ESD変化率を測定した。結果を表3に示す。
(Comparative Example 7)
Instead of the Ru-Ta-O fine powder, 20.6 g of RuO 2 powder having a crystallite diameter of 10.4 nm and Ta 2 O 5 (1.4 g) were used, and the amount of glass frit was 38.0 g. A comparative thick film resistor was manufactured in the same manner as in Example 10. The ratio of RuO 2 and Ta 2 O 5 were blended so that the same as in Example 10.
The fired film thickness, sheet resistance value (resistance value before electrostatic discharge), and ESD change rate of the obtained thick film resistor were measured. The results are shown in Table 3.

Figure 0004285315
Figure 0004285315

Figure 0004285315
Figure 0004285315

表1、2より、実施例1〜9で得られた本発明の粉末は、いずれもルチル構造の回折パターンを示し、RuOとNbOあるいはTaOの中間の格子定数をもつRu−Nb−O粉末あるいはRu−Ta−O粉末である。これら粉末は、単一の相からなっており、ルチル構造のRuとNbあるいはTaが入れ替わった構造をしている事が分かる。但し、実施例5のX線回折の結果では、ルチル構造のほかにNbのピークが、実施例9のX線回折の結果では、ルチル構造のほかにTaのピークが、それぞれ僅かに検出された。 From Tables 1 and 2, the powders of the present invention obtained in Examples 1 to 9 all show a rutile diffraction pattern, and Ru—Nb— having an intermediate lattice constant between RuO 2 and NbO 2 or TaO 2. O powder or Ru-Ta-O powder. It can be seen that these powders are composed of a single phase and have a structure in which rutile Ru and Nb or Ta are interchanged. However, in the result of X-ray diffraction of Example 5, the peak of Nb 2 O 5 in addition to the rutile structure, and in the result of X-ray diffraction of Example 9, the peak of Ta 2 O 5 in addition to the rutile structure, Each was detected slightly.

以上、実施例1〜9では、本発明の方法によって微粉末を製造したので、比抵抗が高い厚膜抵抗体組成物用に好適な、微細で粒径の揃った分散性の良好なRu−Nb−O微粉末あるいはRu−Ta−O微粉末が得られている。これに対して、比較例1〜4では、製造工程が本発明とは異なり、あるいはその条件から外れていたので、RuO(ルチル型)にNbあるいはTaが混在するか、粗大化した粉末が生成してしまい、これを用いても厚膜抵抗体組成物用として満足すべき結果が得られなかった。 As mentioned above, in Examples 1-9, since fine powder was manufactured by the method of this invention, it is suitable for the thick film resistor composition with a high specific resistance, and it is suitable for Ru- with good dispersibility with fine and uniform particle size. Nb-O fine powder or Ru-Ta-O fine powder is obtained. On the other hand, in Comparative Examples 1 to 4, the manufacturing process is different from that of the present invention or is out of the conditions, so whether Nb 2 O 5 or Ta 2 O 5 is mixed in RuO 2 (rutile type). As a result, coarse powder was produced, and even when this powder was used, satisfactory results were not obtained for the thick film resistor composition.

Figure 0004285315
Figure 0004285315

表3より、実施例10で得られた厚膜抵抗体は、Ru−Nb−O微粉末を含む厚膜抵抗体組成物を用いたので、比較例5に示すRuOを導電成分にした厚膜抵抗体に比べてESD変化率が小さくなった。また、導電成分の含有率を高めて同じ抵抗値が得られているので、Ru−Nb−Oの方がRuOより比抵抗が高いことが分かる。また、実施例10で得られた厚膜抵抗体は、RuOとNbを併用した比較例6の厚膜抵抗体と比べてもESD変化率が小さくなっている。 From Table 3, since the thick film resistor obtained in Example 10 uses a thick film resistor composition containing Ru-Nb-O fine powder, the thickness obtained by using RuO 2 shown in Comparative Example 5 as a conductive component. The ESD change rate was smaller than that of the film resistor. In addition, since the same resistance value is obtained by increasing the content of the conductive component, it can be seen that Ru—Nb—O has a higher specific resistance than RuO 2 . The thick film resistor obtained in Example 10 has a smaller ESD change rate than the thick film resistor of Comparative Example 6 in which RuO 2 and Nb 2 O 5 are used in combination.

また、実施例11で得られた厚膜抵抗体は、Ru−Ta−O微粉末を用いた厚膜抵抗体組成物であるので、比較例5で得られたRuOを導電成分にした厚膜抵抗体に比べてESD変化率が小さい。また、導電成分の含有率を高めて同じ抵抗値が得られているので、Ru−Ta−Oの方がRuOより比抵抗が高いことが分かる。また、実施例11で得られた厚膜抵抗体は、RuOとTaを併用した比較例7の厚膜抵抗体と比べてもESD変化率が小さかった。 Moreover, since the thick film resistor obtained in Example 11 is a thick film resistor composition using Ru-Ta-O fine powder, the thickness obtained by using RuO 2 obtained in Comparative Example 5 as a conductive component was used. ESD change rate is smaller than that of the film resistor. Moreover, since the same resistance value is obtained by increasing the content of the conductive component, it can be seen that Ru—Ta—O has a higher specific resistance than RuO 2 . Further, the thick film resistor obtained in Example 11 had a smaller ESD change rate than the thick film resistor of Comparative Example 7 in which RuO 2 and Ta 2 O 5 were used in combination.

さらに、実施例10、11の抵抗体膜では、2kVの静電気放電しても、トリミング先端部分にクラックは確認されなかったが、比較例6、7では、トリミング先端部分にクラックが入っていた。   Furthermore, in the resistor films of Examples 10 and 11, no crack was confirmed at the trimming tip even after electrostatic discharge of 2 kV, but in Comparative Examples 6 and 7, there was a crack at the trimming tip.

以上、実施例10、11では、本発明の方法に従ってRu−Nb−O微粉末あるいはRu−Ta−O微粉末を製造し、この微粉末が配合された厚膜抵抗体組成物を使用しているので、静電気放電の耐性が高い厚膜抵抗体が得られた。これに対して、比較例5〜7では、本発明以外の導電成分を用いたので、静電気放電の耐性において、厚膜抵抗体として満足すべき結果が得られなかった。   As described above, in Examples 10 and 11, Ru-Nb-O fine powder or Ru-Ta-O fine powder was produced according to the method of the present invention, and a thick film resistor composition containing this fine powder was used. Therefore, a thick film resistor having high resistance to electrostatic discharge was obtained. On the other hand, in Comparative Examples 5-7, since the conductive component other than the present invention was used, a satisfactory result as a thick film resistor was not obtained in the resistance to electrostatic discharge.

Claims (7)

Ru化合物(A)と、Nb又はTaの少なくとも一種から選ばれる5A族元素Mを含む5A族金属化合物(B)との固溶体でルチル型の結晶構造を有するRu−M−O微粉末を製造する方法であって、
Ru化合物(A)に5A族金属化合物(B)を下記(i)又は(ii)の条件で配合した後、この配合物に酸化ホウ素又はホウ酸から選ばれるホウ素化合物(C)を下記(iii)の条件で混合する第1の工程、得られた混合物を500〜1000℃の温度で熱処理して、Ruと5A族金属Mとの固溶体、及び酸化ホウ素からなる熱処理物を形成させる第2の工程、及び得られた熱処理物に溶剤を加えて、酸化ホウ素を溶解させ除去する第3の工程を含むことを特徴とするRu−M−O微粉末の製造方法。
(i)MがNbである場合は、Ru化合物(A)に対する5A族金属化合物(B)の配合量が、RuO とNb に換算したモル比Nb /RuO で、0.01〜0.50である。
(ii)MがTaである場合は、Ru化合物(A)に対する5A族金属化合物(B)の配合量が、RuO とTa に換算したモル比Ta /RuO で、0.01〜0.10である。
(iii)ホウ素化合物(C)の混合量が、Ru化合物(A)と5A族金属化合物(B)の合計に対して、RuO 、Nb 又はTa 及びB に換算した重量比で、0.1〜10である。
A Ru-MO powder having a rutile crystal structure is produced as a solid solution of a Ru compound (A) and a Group 5A metal compound (B) containing a Group 5A element M selected from at least one of Nb and Ta. A method,
After compounding Group 5A metal compound (B) with Ru compound (A) under the following conditions (i) or (ii), boron compound (C) selected from boron oxide or boric acid is added to this compound (iii ) The first step of mixing under the conditions of (2) , the resulting mixture is heat-treated at a temperature of 500 to 1000 ° C. to form a second heat-treated product comprising a solid solution of Ru and Group 5A metal M and boron oxide. A process for producing a fine Ru-M-O powder comprising a step and a third step of dissolving and removing boron oxide by adding a solvent to the obtained heat-treated product.
(I) When M is Nb, the compounding amount of the group 5A metal compound (B) with respect to the Ru compound (A) is a molar ratio Nb 2 O 5 / RuO 2 converted to RuO 2 and Nb 2 O 5 , 0.01 to 0.50.
(Ii) When M is Ta, the blending amount of the Group 5A metal compound (B) with respect to the Ru compound (A) is a molar ratio Ta 2 O 5 / RuO 2 converted to RuO 2 and Ta 2 O 5 , 0.01 to 0.10.
(Iii) The mixing amount of the boron compound (C) is RuO 2 , Nb 2 O 5 or Ta 2 O 5 and B 2 O 3 with respect to the total of the Ru compound (A) and the group 5A metal compound (B). The converted weight ratio is 0.1 to 10.
Ru化合物(A)が、Ru酸化物の水和物であることを特徴とする請求項1に記載のRu−M−O微粉末の製造方法。   The Ru-M-O fine powder production method according to claim 1, wherein the Ru compound (A) is a hydrate of Ru oxide. 5A族金属化合物(B)が、Nbであることを特徴とする請求項1に記載のRu−M−O微粉末の製造方法。 5A group metal compound (B), Ru-M-O method for producing a fine powder according to claim 1, characterized in that the Nb 2 O 5. 5A族金属化合物(B)が、Taであることを特徴とする請求項1に記載のRu−M−O微粉末の製造方法。 5A group metal compound (B), Ru-M-O method for producing a fine powder according to claim 1, characterized in that the Ta 2 O 5. 第2の工程における熱処理温度が、700〜1000℃であることを特徴とする請求項1に記載のRu−M−O微粉末の製造方法。   The method for producing a Ru-M-O fine powder according to claim 1, wherein the heat treatment temperature in the second step is 700 to 1000C. 請求項1〜のいずれかに記載の製造方法により得られ、粒径が、1μm以下であることを特徴とするRu−M−O微粉末。 A Ru-M-O fine powder obtained by the production method according to any one of claims 1 to 5 and having a particle size of 1 µm or less . 導電成分として、請求項に記載のRu−M−O微粉末を用いてなる厚膜抵抗体組成物。 A thick film resistor composition using the Ru-M-O fine powder according to claim 6 as a conductive component.
JP2004126998A 2004-04-22 2004-04-22 Ru-MO powder, method for producing the same, and thick film resistor composition using the same Expired - Lifetime JP4285315B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004126998A JP4285315B2 (en) 2004-04-22 2004-04-22 Ru-MO powder, method for producing the same, and thick film resistor composition using the same
CNB2005100631974A CN100490024C (en) 2004-04-22 2005-04-06 Ru-M-O micropowder, its production method, thick film resistor composition using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126998A JP4285315B2 (en) 2004-04-22 2004-04-22 Ru-MO powder, method for producing the same, and thick film resistor composition using the same

Publications (2)

Publication Number Publication Date
JP2005306677A JP2005306677A (en) 2005-11-04
JP4285315B2 true JP4285315B2 (en) 2009-06-24

Family

ID=35346566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126998A Expired - Lifetime JP4285315B2 (en) 2004-04-22 2004-04-22 Ru-MO powder, method for producing the same, and thick film resistor composition using the same

Country Status (2)

Country Link
JP (1) JP4285315B2 (en)
CN (1) CN100490024C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101958496B1 (en) * 2011-06-21 2019-03-14 스미토모 긴조쿠 고잔 가부시키가이샤 Ruthenium Oxide Powder, Composition for Thick film Resistor Elements Using Same, and Thick film Resistor Element
CN104409133A (en) * 2014-12-26 2015-03-11 常熟联茂电子科技有限公司 Inorganic resistance paste
CN104464876A (en) * 2014-12-26 2015-03-25 常熟联茂电子科技有限公司 Thick film resistor paste
JP7215334B2 (en) * 2019-05-30 2023-01-31 住友金属鉱山株式会社 Method for producing lead ruthenate powder
JP7568393B2 (en) * 2019-09-27 2024-10-16 住友金属鉱山株式会社 Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP7568392B2 (en) * 2019-09-27 2024-10-16 住友金属鉱山株式会社 Composition for thick film resistor, paste for thick film resistor, and thick film resistor

Also Published As

Publication number Publication date
CN100490024C (en) 2009-05-20
CN1691216A (en) 2005-11-02
JP2005306677A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP6256636B2 (en) Method for producing ruthenium oxide powder
JP6965543B2 (en) Compositions for thick film resistors, pastes for thick film resistors, and thick film resistors
JP5831055B2 (en) Plate-like ruthenium oxide powder and method for producing the same, and thick film resistor composition using the same
JP2007103594A (en) Resistor composition and thick film resistor
KR100791877B1 (en) Resistance paste and resistor
WO2018150890A1 (en) Resistor composition, resistor paste containing same, and thick-film resistor using same
CN100490024C (en) Ru-M-O micropowder, its production method, thick film resistor composition using same
WO2021221173A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP4111000B2 (en) Ru-Ti-O fine powder, method for producing the same, and thick film resistor composition using the same
JP4692028B2 (en) Ru-Mn-O fine powder, method for producing the same, and thick film resistor composition using the same
JP6754430B2 (en) Lead-free thick film resistor composition, lead-free thick film resistor, and method for producing the same.
TWI803673B (en) Composition for thick film resistors, paste for thick film resistors, and thick film resistors
JP7139691B2 (en) Composition for thick film resistor, thick film resistor paste and thick film resistor
JP7390103B2 (en) Resistor compositions, resistance pastes, thick film resistors
JP7279551B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP7183507B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP7279492B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
WO2021221172A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP2020198403A (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
TW201942265A (en) Composition for thick-film resistor, paste for thick-film resistor and thick-film resistor forming a thick film resistor with excellent resistance temperature coefficient and containing no lead component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4285315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

EXPY Cancellation because of completion of term