JP2000123958A - Corrosion preventing method for oxide semiconductor, and defogging-defrosting heater - Google Patents

Corrosion preventing method for oxide semiconductor, and defogging-defrosting heater

Info

Publication number
JP2000123958A
JP2000123958A JP10288997A JP28899798A JP2000123958A JP 2000123958 A JP2000123958 A JP 2000123958A JP 10288997 A JP10288997 A JP 10288997A JP 28899798 A JP28899798 A JP 28899798A JP 2000123958 A JP2000123958 A JP 2000123958A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
metal film
film
exchange material
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10288997A
Other languages
Japanese (ja)
Inventor
Hisakatsu Kawarai
久勝 瓦井
Tadao Nishimori
忠雄 西森
Kiichi Yoshiara
喜市 吉新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10288997A priority Critical patent/JP2000123958A/en
Publication of JP2000123958A publication Critical patent/JP2000123958A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent corrosion of an oxide semiconductor even in the case of an electrolytic solution being formed on the surface of the oxide semiconductor due to deliquescence of dew drops and salt by using a metal film containing ion exchangeable material, as a metal film. SOLUTION: Ion exchangeable material is contained in a metal film provided at a part of the surface of an oxide semiconductor. Even in the case of an electrolytic solution being formed by deliquescence of dew drops and salt in environment of high humidity, environment with the sharp change of temperature, environment with attachment of dust containing sea salt grains and salt, or the like, electrolyte is captured by the ion exchange material to make the electrolytic solution low in conductivity. A current flowing to the oxide semiconductor with voltage applied thereto does not therefore flow in and out of the electrolytic solution, so that the semiconductor is not reduced nor corroded. Inorganic ion exchangeable material excellent in heat resistance is used as the ion exchangeable material, preferably such as hydrous antimony oxide, zirconium phosphate, hydrotalite or hydroxyapatite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は防曇防霜用ヒータに
使用されるITO(Indium Tin OXide)等の酸化物半導
体について、高湿度の環境、温度変化の激しい環境、海
塩粒子や塩を含むほこりが付着する環境等で結露や塩の
潮解によって酸化物半導体の表面に電解液が形成して
も、酸化物半導体が腐食して抵抗増加や断線するのを防
止する方法および当該方法を使用した防曇防霜用ヒータ
ーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide semiconductor such as ITO (Indium Tin OXide) used for an anti-fogging and defrosting heater. Even if an electrolytic solution is formed on the surface of the oxide semiconductor due to dew condensation or salt deliquescence in an environment where dusts are contained, etc., a method for preventing the oxide semiconductor from corroding and increasing the resistance and disconnection is used. The present invention relates to an anti-fog and frost heater.

【0002】[0002]

【従来の技術】酸化物半導体はその名の通り、酸化物で
あるため、化学的に安定と考えられるが、大気環境で腐
食することが知られている。たとえば、液晶表示装置の
電極に使用されているITO(Indium Tin Oxide)が腐
食して断線事故を引き起こす(特開昭58−17832
5号公報)。しかし、この腐食メカニズムについては明
らかでなかった。
2. Description of the Related Art As the name suggests, an oxide semiconductor is an oxide, and is therefore considered to be chemically stable, but is known to corrode in an atmospheric environment. For example, ITO (Indium Tin Oxide) used for an electrode of a liquid crystal display device corrodes and causes a disconnection accident (Japanese Patent Application Laid-Open No. 58-17832).
No. 5). However, this corrosion mechanism was not clear.

【0003】発明者は電圧が印加されている酸化物半導
体が電解液と接している場合、酸化物半導体を流れる電
流が電解液に流出入し、電解液から酸化物半導体に電流
が流入する箇所(カソード部)で、電気化学反応によっ
て還元・腐食することを明らかにした(第42回腐食防
食討論会講演集[腐食防食協会編](D−203S)。
[0003] The inventor has found that when an oxide semiconductor to which a voltage is applied is in contact with an electrolyte, a current flowing through the oxide semiconductor flows into and out of the electrolyte, and a current flows from the electrolyte to the oxide semiconductor. (Cathode), it was clarified that reduction and corrosion occur due to electrochemical reaction (Corrosion and Corrosion Prevention Association) (D-203S).

【0004】以下に、電圧を印加したATO(Antimony
doped Tin Oxide)の表面に電解液(0.1mol−N
2SO4水溶液)を滴下した場合のATOの腐食メカニ
ズムについて、図5を用いて説明する。この図は、AT
Oの腐食挙動を模式的に示しており、図中の15は電
源、16はAg陽極、17はAg陰極、18はATO、
19はガラス基板、20は液滴(0.1N−Na2SO4
水溶液)、21は電流、22はアノード部、23はカソ
ード部、24は液滴の移動、25はATOの腐食箇所で
ある。また、図中の(a)が第1ステップ、(b)が第
2ステップ、(c)が第3ステップを表わす。なお、
[1]第1ステップ、[2]第2ステップおよび[3]
第3ステップに記載の液滴は誇張して描いており、実際
の液滴の大きさは約3mm程度である。[2]第2ステ
ップおよび[3]第3ステップの図は、[1]第1ステ
ップと同様に電圧が印加されたままである。
A voltage-applied ATO (Antimony
Electrolyte solution (0.1mol-N) on the surface of doped Tin Oxide
The corrosion mechanism of ATO when (a 2 SO 4 aqueous solution) is dropped will be described with reference to FIG. This figure shows the AT
The corrosion behavior of O is schematically shown, in the figure, 15 is a power supply, 16 is an Ag anode, 17 is an Ag cathode, 18 is ATO,
19 is a glass substrate, 20 is a droplet (0.1N-Na 2 SO 4)
Aqueous solution), 21 is an electric current, 22 is an anode portion, 23 is a cathode portion, 24 is the movement of droplets, and 25 is a corroded portion of ATO. In the figure, (a) represents the first step, (b) represents the second step, and (c) represents the third step. In addition,
[1] First step, [2] Second step and [3]
The droplets described in the third step are exaggerated, and the actual size of the droplets is about 3 mm. In the diagrams of [2] the second step and [3] the third step, the voltage is still applied as in [1] the first step.

【0005】[1]第1ステップ Ag電極間に電圧を印加すると、陰極のAg電極に対向
する液滴先端部が陰極のAg電極に向かって移動し、半
楕円状の液滴が歪む。
[1] First step When a voltage is applied between Ag electrodes, the tip of the droplet facing the Ag electrode of the cathode moves toward the Ag electrode of the cathode, and the semi-elliptical droplet is distorted.

【0006】[2]第2ステップ Ag陰極に対向する歪んだ液滴先端部のATOが還元さ
れて腐食する。またこの時、Ag陰極に対向する液滴先
端部と、Ag陽極に対向する液滴先端部から、それぞれ
気泡が発生する。これらの現象は陽極のAg電極に対向
する液滴先端部のATOがアノード、陰極のAg電極に
対向する液滴先端部のATOがカソードとなり、下記
〜式の電気化学反応によって生じたものと考えられ
る。
[2] Second Step ATO at the tip of the distorted droplet facing the Ag cathode is reduced and corroded. At this time, air bubbles are generated from the leading end of the droplet facing the Ag cathode and the leading end of the droplet facing the Ag anode. These phenomena are thought to be caused by the electrochemical reaction of the following formulas (1) to (4), where ATO at the tip of the droplet facing the Ag electrode on the anode becomes the anode, and ATO at the tip of the droplet facing the Ag electrode on the cathode becomes the cathode. Can be

【0007】 アノード部(Ag陽極に対向する液滴先端部のATO) 2H2O→O2+4H++4e-(水の電気分解によるO2の発生)‥‥‥ カソード部(Ag陰極に対向する液滴先端部のATO) 2H2O+2e→H2+2OH-(水の電気分解によるH2の発生)‥‥ SnO2+4H++2e→Sn2++2H2O(ATOの還元、腐食)‥‥ [3]第3ステップ ATOが腐食して下地のガラスが液滴と接触する状態に
なると、液滴がATO上よりも漏れやすいATOの腐食
箇所(下地のガラスが露出)に広がる結果、Ag陰極に
対向する液滴先端部のATOが腐食し、腐食領域が広が
る。なお、酸化物半導体の下地がプラスチックの場合、
液滴の広がりはガラスの場合よりも少ないが、ATOが
腐食する現象は同じである。
Anode (ATO at the tip of the droplet facing the Ag anode) 2H 2 O → O 2 + 4H + + 4e (generation of O 2 by electrolysis of water) ‥‥‥ Cathode (facing the Ag cathode) (ATO at the tip of the droplet) 2H 2 O + 2e → H 2 + 2OH (generation of H 2 by electrolysis of water) ‥‥ SnO 2 + 4H + + 2e → Sn 2+ + 2H 2 O (reduction and corrosion of ATO) ‥‥ [ 3] Third Step When the ATO is corroded and the underlying glass comes into contact with the droplet, the droplet spreads to a corroded portion of the ATO (exposed underlying glass), which is more likely to leak than on the ATO, and as a result, the Ag cathode becomes The ATO at the tip of the opposing droplet corrodes, and the corroded area expands. Note that when the base of the oxide semiconductor is plastic,
Although the spread of the droplets is smaller than in the case of glass, the phenomenon of corrosion of ATO is the same.

【0008】ITOの腐食挙動についても上記のATO
の腐食挙動と同様であり、つぎの、式に示す電気化
学反応により、ITOが還元・腐食する。
[0008] Regarding the corrosion behavior of ITO,
The ITO is reduced and corroded by the following electrochemical reaction shown in the equation.

【0009】 In23+6H++4e-→2In++3H2O‥‥‥ SnO2+4H++2e-→Sn2++2H2O‥‥‥ 上記の腐食メカニズムにより、大気環境における酸化物
半導体の腐食挙動を説明することができる。一方、電圧
が印加されていない場合、電解液と接触していても酸化
物半導体は還元・腐食しない。
In 2 O 3 + 6H + + 4e → 2In + + 3H 2 O ‥‥‥ SnO 2 + 4H + + 2e → Sn 2+ + 2H 2 O ‥‥‥ Corrosion of an oxide semiconductor in an atmospheric environment by the above corrosion mechanism. Explain the behavior. On the other hand, when no voltage is applied, the oxide semiconductor does not reduce or corrode even when in contact with the electrolytic solution.

【0010】発明者はさらに実験を進め、電解液が付着
し、かつ電圧が印加されている酸化物半導体の腐食条件
を下記(1)、(2)のように明らかにした。
The inventor further proceeded with experiments and clarified the corrosion conditions of the oxide semiconductor to which the electrolytic solution was attached and to which voltage was applied as shown in the following (1) and (2).

【0011】(1)電解液のpHに関わらず、腐食す
る。ただし、電解液が強酸性や強アルカリ性の場合、電
圧が印加されていなくても、酸化物半導体は化学反応に
より腐食する。たとえば、強酸性水溶液中におけるIT
Oの腐食はつぎの、式に示す化学反応によって生ず
る。
(1) Corrosion occurs regardless of the pH of the electrolytic solution. Note that when the electrolyte is strongly acidic or strongly alkaline, the oxide semiconductor is corroded by a chemical reaction even when a voltage is not applied. For example, IT in a strongly acidic aqueous solution
O corrosion is caused by the following chemical reaction shown in the following equation.

【0012】 In23+6H++4e-→2In++3H2O‥‥‥ SnO2+4H+→Sn4++2H2O‥‥‥‥‥‥ (2)電解液の導電率が大きい場合、腐食する。逆に電
解液の導電率が小さいと腐食しない。これは酸化物半導
体に流れる電流が電解液に流出入しないため、電気化学
反応が生じないからである。
In 2 O 3 + 6H + + 4e → 2In + + 3H 2 O ‥‥‥ SnO 2 + 4H + → Sn 4+ + 2H 2 O ‥‥‥‥‥‥ (2) Corrosion when the conductivity of the electrolyte is large I do. Conversely, if the conductivity of the electrolyte is low, it does not corrode. This is because the current flowing through the oxide semiconductor does not flow into and out of the electrolytic solution, so that an electrochemical reaction does not occur.

【0013】たとえば、導電率が10μS/cm(25
℃)の水が付着しても酸化物半導体は腐食しない。
For example, if the conductivity is 10 μS / cm (25
° C) does not corrode the oxide semiconductor.

【0014】一般に大気中に酸化物半導体が曝される
と、海塩粒子や塩を含むほこり等が付着する。これらの
塩が潮解や結露によって電解液を形成すると、酸化物半
導体に電圧が印加されている場合、酸化物半導体が還元
されて腐食する。
In general, when an oxide semiconductor is exposed to the air, sea salt particles, dust containing salt, and the like adhere. When these salts form an electrolytic solution due to deliquescence or condensation, the oxide semiconductor is reduced and corroded when a voltage is applied to the oxide semiconductor.

【0015】防曇防霜用ヒータの断面を図3に示す。図
3において、1は基板、2は酸化物半導体からなる透明
導電膜、3は金属膜である。2つの金属膜間に電圧を印
加させて酸化物半導体上に付着した水滴を除去する。こ
の場合、酸化物半導体上に高濃度の塩分を含んだ水滴が
付着すると2つの金属膜間の電圧印加によって酸化物半
導体が腐食する恐れがある。特に金属膜に存在するピン
ホールや金属膜/酸化物半導体の隙間部では毛管凝縮現
象により結露し易いため、塩分を含んだ高濃度の電解液
を形成して酸化物半導体が腐食する。
FIG. 3 shows a cross section of the heater for anti-fog and frost. In FIG. 3, 1 is a substrate, 2 is a transparent conductive film made of an oxide semiconductor, and 3 is a metal film. A voltage is applied between the two metal films to remove water droplets attached to the oxide semiconductor. In this case, when a water droplet containing a high concentration of salt adheres to the oxide semiconductor, the oxide semiconductor may be corroded by applying a voltage between the two metal films. In particular, in a pinhole existing in the metal film or in a gap between the metal film and the oxide semiconductor, condensation easily occurs due to a capillary condensation phenomenon, so that a high-concentration electrolyte solution containing salt is formed and the oxide semiconductor is corroded.

【0016】酸化物半導体を防食するために、ポリエス
テル等の透明フィルムを酸化物半導体および金属膜の表
面に貼り付けることがなされている。しかし、透明フィ
ルムを密着性良く貼り付けないと酸化物半導体および金
属膜の間に隙間が生じて結露し易い状況となって酸化物
半導体の腐食が懸念される。
In order to prevent the oxide semiconductor from corroding, a transparent film such as polyester is attached to the surface of the oxide semiconductor and the metal film. However, if the transparent film is not adhered with good adhesiveness, a gap is formed between the oxide semiconductor and the metal film, so that dew condensation is likely to occur.

【0017】また酸化物半導体を防食するために、酸化
物半導体の表面を絶縁膜で被覆することが提案されてい
る。図4は特開昭58−178325号公報に記載の液
晶表示装置の断面図で、図中の5は上板、5′は下板、
6はシール部、7は配向膜、8は絶縁膜、9は液晶、1
0は上板偏光板、10′は下板偏光板、11は透明導電
膜、12は導電性ゴム、13は液晶表示素子駆動用回路
基板、14は導電性パターンである。この特許は外部環
境に露出している11の透明導電膜、たとえばITOの
表面を絶縁膜、たとえばSiO2で被覆するものであ
る。しかし、絶縁膜にピンホール等の酸化物半導体まで
達する通路が存在すると、その通路を介して電解液が浸
入して酸化物半導体が腐食する問題がある。
Further, in order to prevent corrosion of the oxide semiconductor, it has been proposed to cover the surface of the oxide semiconductor with an insulating film. FIG. 4 is a cross-sectional view of a liquid crystal display device described in JP-A-58-178325, in which 5 is an upper plate, 5 'is a lower plate,
6 is a sealing portion, 7 is an alignment film, 8 is an insulating film, 9 is a liquid crystal,
Reference numeral 0 denotes an upper polarizing plate, 10 'denotes a lower polarizing plate, 11 denotes a transparent conductive film, 12 denotes conductive rubber, 13 denotes a liquid crystal display element driving circuit board, and 14 denotes a conductive pattern. This patent covers the surface of 11 transparent conductive films, such as ITO, exposed to the external environment with an insulating film, such as SiO 2 . However, when a path such as a pinhole that reaches the oxide semiconductor exists in the insulating film, there is a problem that the electrolyte enters and penetrates the oxide semiconductor through the path.

【0018】[0018]

【発明が解決しようとする課題】本発明はこのような問
題点を解決するためになされたもので、高湿度の環境、
温度変化の激しい環境、海塩粒子や塩を含むほこりが付
着する環境等において、結露や塩の潮解によって酸化物
半導体の表面に電解液が形成した場合、酸化物半導体の
腐食を防止することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and has been made in an environment of high humidity,
In an environment where temperature changes drastically or in an environment where dust containing sea salt particles or salt adheres, when an electrolyte is formed on the surface of the oxide semiconductor due to dew condensation or salt deliquescence, it is necessary to prevent corrosion of the oxide semiconductor. Aim.

【0019】[0019]

【課題を解決するための手段】電圧の印加されている酸
化物半導体が電解液と接している場合、酸化物半導体が
腐食する理由は、上記の通り、酸化物半導体を流れる電
流が電解液に流出入するからである。したがって、電解
液を介して電流が流出入することを防ぐことが酸化物半
導体の腐食防止法となる。そのために、(1)酸化物半
導体と電解液との接触を防止する、(2)電解液の導電
率を低下させる、すなわち電解質を除去する、必要があ
る。その方法として、本発明は(1)金属膜が存在しな
い酸化物半導体の表面に撥水性膜を設けるものであり、
(2)金属膜にイオン交換性材料を含有させるものであ
る。
When an oxide semiconductor to which a voltage is applied is in contact with an electrolytic solution, the oxide semiconductor is corroded as described above because a current flowing through the oxide semiconductor is applied to the electrolytic solution. This is because they flow in and out. Therefore, preventing current from flowing in and out through the electrolytic solution is a method for preventing corrosion of the oxide semiconductor. Therefore, it is necessary to (1) prevent contact between the oxide semiconductor and the electrolyte, and (2) reduce the conductivity of the electrolyte, that is, remove the electrolyte. As a method therefor, the present invention (1) provides a water-repellent film on the surface of an oxide semiconductor having no metal film,
(2) An ion exchange material is contained in the metal film.

【0020】請求項1にかかわる発明は、酸化物半導体
の表面の一部に金属膜を積層させた構造物において、前
記金属膜としてイオン交換性材料を含有させた金属膜を
用いたことを特徴とする酸化物半導体の腐食防止法であ
る。
The invention according to claim 1 is characterized in that in a structure in which a metal film is laminated on a part of the surface of an oxide semiconductor, a metal film containing an ion-exchange material is used as the metal film. This is a method for preventing corrosion of an oxide semiconductor.

【0021】請求項2にかかわる発明は、酸化物半導体
の表面の一部に金属膜を積層させた構造物が、上部に金
属膜が存在しない酸化物半導体の表面に撥水性膜を積層
させたものである請求項1記載の腐食防止法である。
According to a second aspect of the present invention, there is provided a structure in which a metal film is laminated on a part of the surface of an oxide semiconductor, and a water-repellent film is laminated on a surface of the oxide semiconductor on which no metal film exists. The method for preventing corrosion according to claim 1, which is a method for preventing corrosion.

【0022】請求項3にかかわる発明は、撥水性膜がS
iOFである請求項2記載の腐食防止法である。
According to a third aspect of the present invention, the water repellent film is made of S
3. The method according to claim 2, wherein the method is iOF.

【0023】請求項4にかかわる発明は、イオン交換性
材料が、無機イオン交換性材料である請求項1または2
記載の腐食防止法である。
According to a fourth aspect of the present invention, the ion exchange material is an inorganic ion exchange material.
It is the corrosion prevention method described.

【0024】請求項5にかかわる発明は、無機イオン交
換性材料が、含水酸化アンチモン、リン酸ジルコニウ
ム、ハイドロタルサイトおよびヒドロキシアパタイトよ
りなる群から選ばれた少なくとも1つである請求項4記
載の腐食防止法である。
According to a fifth aspect of the present invention, the inorganic ion exchange material is at least one selected from the group consisting of hydrous antimony oxide, zirconium phosphate, hydrotalcite and hydroxyapatite. It is a prevention law.

【0025】請求項6にかかわる発明は、酸化物半導体
の表面の一部に、イオン交換性材料を含有させた金属膜
を積層させたことを特徴とする防曇防霜用ヒーターであ
る。
According to a sixth aspect of the present invention, there is provided a heater for anti-fog and defrost, wherein a metal film containing an ion-exchange material is laminated on a part of the surface of the oxide semiconductor.

【0026】請求項7にかかわる発明は、酸化物半導体
が、上部に金属膜が存在しない酸化物半導体の表面にS
iOF膜を積層したものである請求項6記載の防曇防霜
用ヒーターである。
According to a seventh aspect of the present invention, there is provided the semiconductor device according to the first aspect, wherein the oxide semiconductor has an S
The anti-fogging and defrosting heater according to claim 6, wherein the iOF film is laminated.

【0027】[0027]

【発明の実施の形態】本発明は上部に金属膜が存在しな
い酸化物半導体の表面に撥水性膜を設けるものである。
これにより、高湿度の環境、温度変化の激しい環境、海
塩粒子や塩を含むほこりが付着する環境等において、結
露や塩の潮解によって電解液を形成しても、撥水性膜が
酸化物半導体と電解液との接触を遮断するため、酸化物
半導体は腐食しない。また、撥水性膜にピンホール等の
酸化物半導体まで達する通路が存在しても、電解液が酸
化物半導体に接しない。これによって電圧の印加されて
いる酸化物半導体に流れる電流が電解液に流出入しない
ため、酸化物半導体は還元・腐食しない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a water-repellent film is provided on the surface of an oxide semiconductor having no metal film thereon.
As a result, even in a high humidity environment, an environment in which temperature changes drastically, or an environment where dust containing sea salt particles or salt adheres, even if an electrolyte is formed by dew condensation or salt deliquescence, the water-repellent film is an oxide semiconductor. The oxide semiconductor is not corroded because the contact between the oxide semiconductor and the electrolyte is interrupted. In addition, even when the water-repellent film has a passage such as a pinhole reaching the oxide semiconductor, the electrolyte does not contact the oxide semiconductor. Accordingly, current flowing through the oxide semiconductor to which a voltage is applied does not flow into or out of the electrolytic solution, and thus the oxide semiconductor is not reduced or corroded.

【0028】また本発明は酸化物半導体の表面の一部に
設けた金属膜にイオン交換性材料を含有させるものであ
る。これにより、高湿度の環境、温度変化の激しい環
境、海塩粒子や塩を含むほこりが付着する環境等におい
て、結露や塩の潮解によって電解液を形成しても、金属
膜中のイオン交換性材料によって電解質が捕捉されて導
電率の低い液となる。これによって電圧の印加されてい
る酸化物半導体に流れる電流が電解液に流出入しないた
め、酸化物半導体は還元・腐食しない。
Further, in the present invention, a metal film provided on a part of the surface of an oxide semiconductor contains an ion-exchange material. As a result, even if the electrolyte is formed by condensation or deliquescence of salt in environments with high humidity, environments with drastic temperature changes, or environments where dust containing sea salt particles or salt adheres, the ion exchange properties in the metal film can be reduced. The electrolyte is trapped by the material to form a liquid with low conductivity. Accordingly, current flowing through the oxide semiconductor to which a voltage is applied does not flow into or out of the electrolytic solution, and thus the oxide semiconductor is not reduced or corroded.

【0029】本発明の対象となる酸化物半導体は、電気
化学的に還元されて腐食しうるものであって、たとえば
ITO(錫をドープした酸化インジウム)、ATO(ア
ンチモンをドープした酸化錫)、AZO(アルミニウム
をドープした酸化亜鉛)、In23、SnO2、Zn
O、CdO、TiO2、CdIn24、Cd2SnO4
Zn2SnO4などがあげられる。酸化物半導体の形状は
特に限定されないが、たとえば蒸着、スパッタ、スプレ
ー方式で作製した膜である。
The oxide semiconductor that is the object of the present invention can be corroded by being electrochemically reduced, such as ITO (indium oxide doped with tin), ATO (tin oxide doped with antimony), AZO (zinc oxide doped with aluminum), In 2 O 3 , SnO 2 , Zn
O, CdO, TiO 2 , CdIn 2 O 4 , Cd 2 SnO 4 ,
Zn 2 SnO 4 and the like can be mentioned. The shape of the oxide semiconductor is not particularly limited, and is, for example, a film formed by evaporation, sputtering, or a spray method.

【0030】本発明は、上部に金属膜が存在しない酸
化物半導体の表面に撥水性膜を積層させず、イオン交換
性材料を混合させた金属膜を設置した場合、上部に金
属膜が存在しない酸化物半導体の表面に撥水性膜を積層
させてかつ、イオン交換性材料を混合させた金属膜を設
置した場合の2つのケースがある。上記は海塩粒子や
塩を含むほこりの付着が軽微な場合に、また上記は海
塩粒子や塩を含むほこりの付着が激しい場合にそれぞれ
用いる。
According to the present invention, when a water-repellent film is not laminated on the surface of an oxide semiconductor having no metal film thereon and a metal film mixed with an ion exchange material is provided, the metal film does not exist on the upper portion. There are two cases in which a water-repellent film is stacked over the surface of an oxide semiconductor and a metal film in which an ion exchange material is mixed is provided. The above is used when the adhesion of dust containing sea salt particles or salt is slight, and the above is used when the adhesion of dust containing sea salt particles or salt is severe.

【0031】撥水性膜は、酸化物半導体が電解液と接触
するのを防止する役割を果たす。撥水性膜としては耐熱
性に優れた無機材料を用いる。具体的にはSiOF膜が
あげられ、プラズマCVDによって作製する。撥水性膜
の膜厚は撥水性を維持できれば特に限定されないが、防
食性能および製造コストの点から100〜1000Åが
好ましい。
The water-repellent film plays a role in preventing the oxide semiconductor from coming into contact with the electrolytic solution. As the water-repellent film, an inorganic material having excellent heat resistance is used. A specific example is an SiOF film, which is manufactured by plasma CVD. The thickness of the water-repellent film is not particularly limited as long as the water-repellency can be maintained, but is preferably 100 to 1000 ° from the viewpoint of anticorrosion performance and production cost.

【0032】ここで、撥水性とは、水を近づけない、ま
たは水をはじくことであり、本発明における撥水性は、
塗膜のうえに水滴をのせたときの水滴と撥水性膜表面が
つくる角度(水接触角)を用いて評価することができ
る。この角度が大きいほど撥水性が高く、この角度は9
0度をこすことが好ましい(土居、春田、”はっ水性塗
料”、工業材料1996年4月臨時増刊号、Vol.44,No5,p46
(1996))。
Here, the water repellency refers to keeping water away or repelling water.
The evaluation can be made using an angle (water contact angle) formed between the water droplet when the water droplet is put on the coating film and the surface of the water-repellent film. The larger this angle is, the higher the water repellency is, and this angle is 9
It is preferable to rub 0 degrees (Doi, Haruta, "Water-repellent paint", Industrial Materials April 1996 extra edition, Vol.44, No5, p46)
(1996)).

【0033】金属粒子としては特に制限されないが、導
電性に優れた銀またはこれを主成分とする合金が用いら
れる。また、粒径は特に制限されないが、作業性の点か
ら1〜数千μmの範囲が適当であろう。また金属膜の膜
厚は特に制限されないが、導電性確保の点から数μm〜
数mmの範囲が適当であろう。
The metal particles are not particularly limited, but silver having excellent conductivity or an alloy mainly containing silver is used. Although the particle size is not particularly limited, a range of 1 to several thousand μm is appropriate from the viewpoint of workability. The thickness of the metal film is not particularly limited, but is several μm to secure conductivity.
A range of a few mm would be appropriate.

【0034】イオン交換性材料は耐熱性に優れた無機イ
オン交換性材料を用いる。無機イオン交換性材料には陽
イオン交換性物質と陰イオン交換性物質がある。
As the ion exchange material, an inorganic ion exchange material having excellent heat resistance is used. Inorganic ion exchange materials include cation exchange materials and anion exchange materials.

【0035】ここで、陽イオン性交換物質は電解質イオ
ンが陽イオン(たとえばNa、K、Liなどのアルカリ
金属イオン;Ag、Cu、Fe、Pb、Sn、Zn、M
g、Caなどの他の金属イオン;テトラメチルアンモニ
ウムイオン、トリメチルアンモニウムイオンなどのアン
モニウムイオン)の場合に、陰イオン性交換物質は、電
解質イオンが陰イオン(たとえばCl、Br、Iなどの
ハロゲンイオン;SO4、NO3、NO2などの酸化物イ
オン;ギ酸、酢酸、フタル酸などの有機酸イオン)の場
合に用いることができる、もちろん、両方のイオン交換
性物質を併用することもできる。
Here, the cation exchange material is such that the electrolyte ion is a cation (eg, an alkali metal ion such as Na, K, and Li; Ag, Cu, Fe, Pb, Sn, Zn, M
In the case of other metal ions such as g and Ca; ammonium ions such as tetramethylammonium ion and trimethylammonium ion, the anionic exchange material is such that the electrolyte ion is an anion (eg, a halogen ion such as Cl, Br, I, etc.). Oxide ions such as SO 4 , NO 3 , and NO 2 ; organic acid ions such as formic acid, acetic acid, and phthalic acid). Of course, both ion-exchange substances can be used in combination.

【0036】陽イオン交換性無機物質としては、たとえ
ばゼオライト、アンチモン酸、スズ酸、チタン酸、ニオ
ブ酸、マンガン酸などの多価金属酸またはその塩;リン
酸ジルコニウム、リン酸チタン、リン酸スズ、リン酸セ
リウム、ヒ酸スズ、ヒ酸チタンなどの多価金属多塩基酸
塩;モリブデン酸、タングステン酸等のヘテロポリ酸な
どがあげられる。
Examples of the cation-exchangeable inorganic substance include polyvalent metal acids such as zeolite, antimonic acid, stannic acid, titanic acid, niobic acid, and manganic acid and salts thereof; zirconium phosphate, titanium phosphate, tin phosphate And polybasic metal salts such as cerium phosphate, tin arsenate and titanium arsenate; and heteropoly acids such as molybdic acid and tungstic acid.

【0037】陰イオン交換性無機物質としては、たとえ
ばハイドロタルサイト、ヒドロキシアパタイト、含水酸
化アンチモン、含水酸化鉄、含水酸化ジルコニウム、含
水酸化ビスマスなどの含水酸化物などがあげられる。
Examples of the anion exchangeable inorganic substance include hydrotalcite, hydroxyapatite, hydrated antimony, hydrated iron, hydrated oxide such as hydrated zirconium and hydrated bismuth.

【0038】これらイオン交換性物質の中では、含水酸
化アンチモン、リン酸ジルコニウム、ハイドロタルサイ
ト、ヒドロキシアパタイトが好ましい。また、これらの
イオン交換性物質は1種だけでなく、2種以上を混合し
て使用することもできる。
Among these ion-exchange materials, hydrous antimony, zirconium phosphate, hydrotalcite and hydroxyapatite are preferred. Further, these ion exchange substances can be used alone or in combination of two or more.

【0039】これらの陽イオン交換性材料と陰イオン交
換性材料を混合して使用する場合の使用比率は、たとえ
ば陽イオン交換性材料/陰イオン交換性材料が重量比で
約9/1〜1/9、好ましくは約2/1〜1/2の範囲
とするのがいかなる電解質に対しても対応できる点で好
ましい。
When the cation-exchange material and the anion-exchange material are used as a mixture, for example, the weight ratio of the cation-exchange material / anion-exchange material is about 9/1 to 1/1. / 9, preferably in the range of about 2/1 to 1/2 is preferable in that it can correspond to any electrolyte.

【0040】金属粒子と混合するイオン交換性材料は、
粒状、繊維状、鱗片状、ペレット状などの形で使用でき
るが、粒状であることが分散性の点から好ましい。その
場合、粒径は特に制限されないが、分散の均一性と塗布
の容易性、比表面積などの点から平均粒径は約1000
μm以下のものが好ましく、1〜1000μmのものが
より好ましい。
The ion exchange material mixed with the metal particles is as follows:
Although it can be used in the form of granules, fibers, scales, pellets, etc., it is preferable that the particles be granular in terms of dispersibility. In this case, the particle size is not particularly limited, but the average particle size is about 1000 in terms of uniformity of dispersion, easiness of application, and specific surface area.
μm or less is preferable, and 1 to 1000 μm is more preferable.

【0041】イオン交換性材料の使用量は、使用環境の
腐食性によって決められるものであるが、導電性確保の
点から金属膜の0.1〜50重量%の範囲で用いる。
The amount of the ion exchange material used is determined by the corrosiveness of the use environment, but is used in the range of 0.1 to 50% by weight of the metal film from the viewpoint of ensuring conductivity.

【0042】金属膜は焼き付けにより酸化物半導体の表
面に形成する。金属粉末、無機イオン交換性材料、有機
バインダ、溶剤を混合し、酸化物半導体の表面に塗布し
た後、高温(たとえば、300℃)に保持することによ
り焼き付ける。有機バインダと溶剤の割合は特に制限さ
れないが、たとえば金属粉末と無機イオン交換性材料の
総計80重量%に対してそれぞれ10重量%ずつであ
る。
[0042] The metal film is formed on the surface of the oxide semiconductor by baking. A metal powder, an inorganic ion exchange material, an organic binder, and a solvent are mixed, applied to the surface of the oxide semiconductor, and then baked by maintaining the temperature at a high temperature (for example, 300 ° C.). The ratio between the organic binder and the solvent is not particularly limited, but is, for example, 10% by weight with respect to the total of 80% by weight of the metal powder and the inorganic ion exchange material.

【0043】本発明を防曇防霜用ヒーターに適用した例
を下記に述べる。
An example in which the present invention is applied to an anti-fog and frost heater will be described below.

【0044】実施例1 図1は防曇防霜用ヒーターの断面図を示す。図中の1は
防曇防霜用ヒーターの基板(ガラス)、2は透明導電膜
(ITO)、3は金属膜(Ag)である。1つのガラス
基板上にスパッタ法によりITOを成膜した後、Ag膜
を焼き付ける。Ag金属膜の膜厚は1mmである。Ag
粒子、水酸化アンチモン、有機バインダ、溶剤を下記の
割合で配合してITO上に塗布した後、300℃×30
分間焼き付けた。
Embodiment 1 FIG. 1 is a sectional view of a heater for anti-fog and defrost. In the figure, 1 is a substrate (glass) of a heater for anti-fog and frost, 2 is a transparent conductive film (ITO), and 3 is a metal film (Ag). After an ITO film is formed on one glass substrate by a sputtering method, an Ag film is baked. The thickness of the Ag metal film is 1 mm. Ag
After blending the particles, antimony hydroxide, an organic binder, and a solvent in the following proportions and applying the mixture on ITO, 300 ° C. × 30
Bake for a minute.

【0045】 配合比 金属‥‥‥ Ag粒子(平均粒径=10μm) 60重量% 無機イオン交換性材料‥‥‥含水酸化アンチモン 20重量% (平均粒径=10μm) 有機バインダ‥‥‥ ポリビニルアルコール 10重量% 溶剤‥‥‥ イソプロピルアルコール 10重量% Ag膜/ITOの界面に0.1N−NaCl水溶液を滴
下した後、50Vの電圧を印加させたところ、ITOは
腐食しなかった。
Mixing ratio Metal {Ag particles (average particle size = 10 μm) 60% by weight Inorganic ion-exchange material {hydrated antimony hydroxide 20% by weight (average particle size = 10 μm) Organic binder} Polyvinyl alcohol 10 Wt% Solvent ‥‥‥ Isopropyl alcohol 10 wt% A 0.1N-NaCl aqueous solution was dropped on the interface between the Ag film and the ITO, and a voltage of 50 V was applied. As a result, the ITO did not corrode.

【0046】比較例1 実施例1と同様にして、無機イオン交換性材料を含有し
ないAg膜を成膜し、Ag膜/ITOの界面に0.1N
−NaCl水溶液を滴下した後、50Vの電圧を印加さ
せたところ、ITOは腐食した。
Comparative Example 1 An Ag film containing no inorganic ion-exchange material was formed in the same manner as in Example 1, and a 0.1N film was formed on the Ag film / ITO interface.
When a voltage of 50 V was applied after the dropwise addition of the -NaCl aqueous solution, the ITO was corroded.

【0047】実施例2 図2は防曇防霜用ヒーターの断面図を示す。図中の1は
防曇防霜用ヒーターの基板(ガラス)、2は透明導電膜
(ITO)、3は金属膜(Ag)、4は撥水性膜(Si
OF)である。金属膜の膜厚は1mm、撥水性膜の膜厚
は500Åである。1のガラス基板上にスパッタ法によ
りITOを成膜した後、プラズマCVD法によりSiO
Fを成膜する。さらにSiOF膜の存在しないITO上
にAg膜を焼き付ける。なお、Ag膜の作製条件は実施
の形態1で述べたものと同じである。
Embodiment 2 FIG. 2 is a sectional view of a heater for anti-fog and defrost. In the figure, 1 is a substrate (glass) of a heater for anti-fog and frost, 2 is a transparent conductive film (ITO), 3 is a metal film (Ag), and 4 is a water-repellent film (Si).
OF). The thickness of the metal film is 1 mm, and the thickness of the water-repellent film is 500 °. After a film of ITO was formed on the glass substrate 1 by sputtering, SiO 2 was formed by plasma CVD.
F is deposited. Further, an Ag film is baked on ITO having no SiOF film. Note that the conditions for forming the Ag film are the same as those described in Embodiment 1.

【0048】Ag膜/SiOFの界面およびSiOFの
上に0.1N−NaCl水溶液を滴下した後、50Vの
電圧を印加させたところ、ITOは腐食しなかった。
After a 0.1N-NaCl aqueous solution was dropped on the Ag film / SiOF interface and on the SiOF, and a voltage of 50 V was applied, the ITO did not corrode.

【0049】比較例2 実施例2と同様にして、無機イオン交換性材料を含有し
ないAg膜を成膜した。ITOの上にSiOFが存在し
ない場合も、Ag膜/ITOの界面およびITOの表面
に0.1N−NaCl水溶液を滴下した後、50Vの電
圧を印加させたところ、ITOは腐食した。
Comparative Example 2 In the same manner as in Example 2, an Ag film containing no inorganic ion exchange material was formed. Even when SiOF was not present on the ITO, a 0.1N-NaCl aqueous solution was dropped on the interface between the Ag film and the ITO and on the surface of the ITO, and when a voltage of 50 V was applied, the ITO was corroded.

【0050】[0050]

【発明の効果】本発明は、酸化物半導体の表面に撥水性
膜を積層させるため、電解液と酸化物半導体は接触しな
い。これにより、酸化物半導体は腐食しない。また、酸
化物半導体の一部の表面に積層した金属膜にイオン交換
性材料を含有させるため、金属膜を介して電解液が付着
しても電解質がイオン交換性材料によって捕捉される。
これにより、金属膜間に電圧を印加しても電流が電解液
に流出入しないため、酸化物半導体は腐食しない。
According to the present invention, since the water-repellent film is laminated on the surface of the oxide semiconductor, the electrolyte does not come into contact with the oxide semiconductor. Thus, the oxide semiconductor does not corrode. In addition, since the ion-exchange material is contained in the metal film stacked over part of the surface of the oxide semiconductor, the electrolyte is trapped by the ion-exchange material even if an electrolyte is attached through the metal film.
Thus, even when a voltage is applied between the metal films, the current does not flow into and out of the electrolytic solution, so that the oxide semiconductor does not corrode.

【0051】請求項1記載の発明によれば、酸化物半導
体表面の一部にイオン交換性材料を含有させた金属膜を
用いるため、金属膜/酸化物半導体の界面における酸化
物半導体の腐食を防止できる効果を奏する。
According to the first aspect of the present invention, since a metal film containing an ion-exchange material on a part of the surface of the oxide semiconductor is used, corrosion of the oxide semiconductor at the interface between the metal film and the oxide semiconductor is prevented. It has an effect that can be prevented.

【0052】請求項2記載の発明によれば、酸化物半導
体の表面の一部に積層させた構造物が、上部に金属膜が
存在しない酸化物半導体の表面に撥水性膜を積層させて
いるため、海塩粒子や塩を含む埃が付着して潮解や結露
によって電解液を形成しても酸化物半導体と接触しな
い。これにより、酸化物半導体の腐食を防止できる効果
を奏する。
According to the second aspect of the present invention, the structure laminated on a part of the surface of the oxide semiconductor has the water-repellent film laminated on the surface of the oxide semiconductor having no metal film on the upper part. Therefore, even when sea salt particles or dust containing salt is attached and an electrolyte is formed by deliquescence or dew condensation, the electrolyte does not contact the oxide semiconductor. Thus, an effect of preventing corrosion of the oxide semiconductor can be obtained.

【0053】請求項3記載の発明によれば、撥水性膜が
SiOFなので、電解液と酸化物半導体の接触を防止す
るとともに、耐熱性に優れる効果を奏する。
According to the third aspect of the present invention, since the water-repellent film is SiOF, the contact between the electrolytic solution and the oxide semiconductor can be prevented, and the effect of excellent heat resistance can be obtained.

【0054】請求項4記載の発明によれば、イオン交換
性材料が無機イオン交換性材料なので、金属膜を成膜す
る場合に昇温によってイオン交換性材料が劣化しない効
果を奏する。
According to the fourth aspect of the present invention, since the ion-exchange material is an inorganic ion-exchange material, there is an effect that the ion-exchange material is not deteriorated by increasing the temperature when forming a metal film.

【0055】請求項5記載の発明によれば、容易に入手
できる無機イオン交換性材料をイオン交換性材料として
使用するので、簡単に金属膜に含有させることができる
効果を奏する。
According to the fifth aspect of the invention, since an easily available inorganic ion-exchange material is used as the ion-exchange material, there is an effect that the metal film can be easily contained.

【0056】請求項6記載の発明によれば、酸化物半導
体の表面の一部に、イオン交換性材料を含有させた金属
膜を積層させた防曇防霜用ヒーターなので、金属膜/酸
化物半導体の界面における酸化物半導体の腐食を防止で
きる。これにより防曇防霜用ヒーターの抵抗増加や断線
不良を防止できる効果を奏する。
According to the sixth aspect of the present invention, since the heater for fogging and frost is formed by laminating a metal film containing an ion exchange material on a part of the surface of the oxide semiconductor, the metal film / oxide Corrosion of the oxide semiconductor at the interface of the semiconductor can be prevented. This has the effect of preventing an increase in the resistance of the heater for anti-fog and frost and a failure in disconnection.

【0057】請求項7記載の発明によれば、上部に金属
膜が存在しない酸化物半導体の表面にSiOF膜を積層
しているため、海塩粒子や塩を含む埃が付着して潮解や
結露によって電解液を形成しても酸化物半導体と接触し
ない。これにより酸化物半導体の腐食を防止でき、防曇
防霜用ヒーターの抵抗増加や断線不良を防止できる効果
を奏する。
According to the seventh aspect of the present invention, since the SiOF film is laminated on the surface of the oxide semiconductor having no metal film thereon, sea salt particles and dust containing salt adhere to the surface to cause deliquescence and dew condensation. Does not make contact with the oxide semiconductor even when the electrolyte is formed. Accordingly, corrosion of the oxide semiconductor can be prevented, and an effect of preventing an increase in resistance and disconnection failure of the heater for anti-fog and frost can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1による防曇防霜用ヒーター
の断面図である。
FIG. 1 is a cross-sectional view of a heater for anti-fog and defrost according to Embodiment 1 of the present invention.

【図2】 本発明の実施例2による防曇防霜用ヒーター
の断面図である。
FIG. 2 is a cross-sectional view of an anti-fog and frost heater according to Embodiment 2 of the present invention.

【図3】 従来の防曇防霜用ヒーターの断面図である。FIG. 3 is a cross-sectional view of a conventional heater for anti-fog and defrost.

【図4】 従来の液晶表示装置の断面図である。FIG. 4 is a cross-sectional view of a conventional liquid crystal display device.

【図5】 ATO(Antimony doped Tin Oxide)の腐食
挙動(模式図)を示す図である。
FIG. 5 is a diagram showing the corrosion behavior (schematic diagram) of ATO (Antimony doped Tin Oxide).

【符号の説明】[Explanation of symbols]

1 基板、2 透明導電膜、3 金属膜(イオン交換性
材料含有)、4 撥水性膜、5 上板、5′ 下板、6
シール部、7 配向膜、8 絶縁膜、9 液晶、10
上板偏光板、10′ 下板偏光板、11 透明導電
膜、12 導電性ゴム、13 液晶表示素子駆動用回路
基板、14 導電性パターン、15 電源、16 Ag
陽極、17 Ag陰極、18 ATO、19 ガラス基
板、20液滴、21 電流、22 アノード部、23
カソード部、24 液滴の移動、25 ATOの腐食箇
所。
1 substrate, 2 transparent conductive film, 3 metal film (containing ion exchange material), 4 water repellent film, 5 upper plate, 5 'lower plate, 6
Seal part, 7 alignment film, 8 insulating film, 9 liquid crystal, 10
Upper polarizer, 10 'Lower polarizer, 11 transparent conductive film, 12 conductive rubber, 13 liquid crystal display element driving circuit board, 14 conductive pattern, 15 power supply, 16 Ag
Anode, 17 Ag cathode, 18 ATO, 19 glass substrate, 20 droplets, 21 current, 22 anode, 23
Cathode, 24 Droplet movement, 25 ATO erosion.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉新 喜市 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3K092 PP20 QA05 QB01 QB04 QB31 QB58 QB61 QB65 QB66 QB69 QC07 QC20 QC25 QC49 RF03 RF12 RF17 RF22 TT31 VV10 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoshishin Kiyoshi 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation F-term (reference) 3K092 PP20 QA05 QB01 QB04 QB31 QB58 QB61 QB65 QB66 QB69 QC07 QC20 QC25 QC49 RF03 RF12 RF17 RF22 TT31 VV10

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 酸化物半導体の表面の一部に金属膜を積
層させた構造物において、前記金属膜としてイオン交換
性材料を含有させた金属膜を用いたことを特徴とする酸
化物半導体の腐食防止法。
1. A structure in which a metal film is stacked over part of a surface of an oxide semiconductor, wherein a metal film containing an ion-exchange material is used as the metal film. Corrosion prevention law.
【請求項2】 酸化物半導体の表面の一部に金属膜を積
層させた構造物が、上部に金属膜が存在しない酸化物半
導体の表面に撥水性膜を積層させたものである請求項1
記載の腐食防止法。
2. A structure in which a metal film is stacked on a part of the surface of an oxide semiconductor, in which a water-repellent film is stacked on a surface of the oxide semiconductor on which no metal film exists.
Corrosion prevention method as described.
【請求項3】 撥水性膜がSiOFである請求項2記載
の腐食防止法。
3. The method according to claim 2, wherein the water-repellent film is SiOF.
【請求項4】 イオン交換性材料が、無機イオン交換性
材料である請求項1または2記載の腐食防止法。
4. The method according to claim 1, wherein the ion exchange material is an inorganic ion exchange material.
【請求項5】 無機イオン交換性材料が、含水酸化アン
チモン、リン酸ジルコニウム、ハイドロタルサイトおよ
びヒドロキシアパタイトよりなる群から選ばれた少なく
とも1つである請求項4記載の腐食防止法。
5. The method according to claim 4, wherein the inorganic ion exchangeable material is at least one selected from the group consisting of antimony hydroxide, zirconium phosphate, hydrotalcite and hydroxyapatite.
【請求項6】 酸化物半導体の表面の一部に、イオン交
換性材料を含有させた金属膜を積層させたことを特徴と
する防曇防霜用ヒーター。
6. A heater for fogging and frost, wherein a metal film containing an ion-exchange material is laminated on part of the surface of an oxide semiconductor.
【請求項7】 酸化物半導体が、上部に金属膜が存在し
ない酸化物半導体の表面にSiOF膜を積層したもので
ある請求項6記載の防曇防霜用ヒーター。
7. The heater for fogging and defrost according to claim 6, wherein the oxide semiconductor is formed by laminating a SiOF film on the surface of the oxide semiconductor having no metal film on the upper surface.
JP10288997A 1998-10-12 1998-10-12 Corrosion preventing method for oxide semiconductor, and defogging-defrosting heater Pending JP2000123958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10288997A JP2000123958A (en) 1998-10-12 1998-10-12 Corrosion preventing method for oxide semiconductor, and defogging-defrosting heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10288997A JP2000123958A (en) 1998-10-12 1998-10-12 Corrosion preventing method for oxide semiconductor, and defogging-defrosting heater

Publications (1)

Publication Number Publication Date
JP2000123958A true JP2000123958A (en) 2000-04-28

Family

ID=17737518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10288997A Pending JP2000123958A (en) 1998-10-12 1998-10-12 Corrosion preventing method for oxide semiconductor, and defogging-defrosting heater

Country Status (1)

Country Link
JP (1) JP2000123958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098160A1 (en) * 2005-03-14 2006-09-21 Murata Manufacturing Co., Ltd. Conductive paste and glass structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098160A1 (en) * 2005-03-14 2006-09-21 Murata Manufacturing Co., Ltd. Conductive paste and glass structure

Similar Documents

Publication Publication Date Title
US5911899A (en) Corrosion-proof transparent heater panels and preparation process thereof
US8274730B2 (en) Glass type electrochemical/electrically controllable device with variable optical and/or energetic characteristic
EP0265830A2 (en) Electrochromic display device
PT1115670E (en) LAYER THAT CONSTITUTES A BARRIER DEFLECTING ALKALINE METALS
US7297206B2 (en) Coating material composition having photocatalytic activity
JPH1051214A (en) Antenna with anti-attachment property against ice and snow
KR20100050431A (en) Electro chromic transparent plate and method of manufacturing the same
EP1210469A2 (en) Arrangement for decreasing galvanic corrosion between metal components
JP2000123958A (en) Corrosion preventing method for oxide semiconductor, and defogging-defrosting heater
JPH11286628A (en) Method for preventing corrosion of oxide semiconductor
JP4363939B2 (en) Electrochromic mirror
JPH11323205A (en) Coating for prevention of corrosion of oxide semiconductor, liquid crystal display device and heater for prevension of fogging and frosting coated with the same
JP5612003B2 (en) Electrochromic mirror
CN1248038C (en) Solid type electrochromic glare-proof mirror
US4449790A (en) Electrochromic layer system
JP3868405B2 (en) Anti-fouling sheet for tents with excellent anti-fouling properties
US9273401B2 (en) Galvanic corrosion mitigation with metallic polymer matrix paste
JPS6125139B2 (en)
TWI237145B (en) Liquid crystal display cell and sealing agent for sealing liquid crystal display cell
JP2732129B2 (en) Superhydrophobic composite material, method for producing the same, and optical functional material
JP3871662B2 (en) Anti-fouling sheet for tents with excellent anti-fouling properties
JPH09272823A (en) Insulating coating material, printed-circuit board having coating film of the same coating material, prevention of lowering of insulating property using the same coating material and recovery of insulating property
JP2530651B2 (en) Membrane type touch panel
JP3868394B2 (en) Anti-fouling sheet for tents with excellent anti-fouling properties
JP2659541B2 (en) Transparent electrode for transparent tablet