WO2006097500A1 - Metallocene compounds - Google Patents
Metallocene compounds Download PDFInfo
- Publication number
- WO2006097500A1 WO2006097500A1 PCT/EP2006/060772 EP2006060772W WO2006097500A1 WO 2006097500 A1 WO2006097500 A1 WO 2006097500A1 EP 2006060772 W EP2006060772 W EP 2006060772W WO 2006097500 A1 WO2006097500 A1 WO 2006097500A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- group
- atom
- groups
- metallocene compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 CCCCCC(*)*C1C(*)C(*2CC2)C2C=C(*C)C(C*)C2C1* Chemical compound CCCCCC(*)*C1C(*)C(*2CC2)C2C=C(*C)C(C*)C2C1* 0.000 description 3
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/0803—Compounds with Si-C or Si-Si linkages
- C07F7/081—Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
- C07F7/0812—Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D317/00—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D317/08—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
- C07D317/44—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D317/70—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with ring systems containing two or more relevant rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F17/00—Metallocenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/04—Monomers containing three or four carbon atoms
- C08F210/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S526/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S526/941—Synthetic resins or natural rubbers -- part of the class 520 series having the transition metal bonded directly to carbon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S526/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S526/943—Polymerization with metallocene catalysts
Definitions
- the present invention relates to a class of bridged bis indenyl metallocene compounds, wherein the indenyl moieties are, in particular, substituted in position 4 by an aromatic moiety and they are further substituted in positions 5 and 6 by a condensed ring, wherein this ring contains at least one or two oxygen or sulfur atoms.
- the present invention further relates to the catalyst system thereof and the polymerization process therefrom.
- Metallocene compounds are well known in the art as catalyst components for the polymerization of olefins.
- WO 03/050131 relates to a class of bis indenyl metallocene compounds wherein the indenyl moieties are at least substituted in position 4 and 5.
- WO 03/050131 does not report that the substituents on positions 5 and 6 can form a condensed ring.
- PCT/EP03/12236 relates to a bis indenyl metallocene compound substituted at least in positions 2 5 and 6, wherein the substituents in positions 5 and 6 form a condensed ring.
- the substituent in position 4 is defined only in a generic way and in the compounds exemplified in the examples it is always a hydrogen atom.
- PCT/EP2004/013827 a class of bis indenyl metallocene compounds wherein the indenyl moieties are substituted in position 5 and 6 by a condensed ring is disclosed.
- PCT/EP2004/013827 is mainly focused on structures wherein the position 1 of the two indenyl moieties are different, in particular one is branched in alpha position.
- An object of the present invention is a bridged metallocene compound of formula (I)
- M is an atom of a transition metal selected from those belonging to group 3, 4, or to the lanthanide or actinide groups in the Periodic Table of the Elements; preferably M is zirconium, titanium or hafnium;
- X is a hydrogen atom, a halogen atom, a R, OR, OSOiCF 3 , OCOR, SR, NR 2 or PR 2 group wherein R is a linear or branched, cyclic or acyclic, Ci-Gr ⁇ -alkyl, C 2 -C 40 alkenyl, C 2 -C 40 alkynyl, C 6 -C 40 -aryl, C 7 -C 40 -alkylaryl or C 7 -C 40 -arylalkyl radical; optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two X groups can be joined to forma a OR'O group wherein R' is a Ci-Cio-alkylidene, C 6 -C 20 -arylidene, C 7 -C 20 -alkylarylidene, or C 7 -C 20 -arylalkylidene radical; preferably X is
- R 11 is a linear or branched, cyclic or acyclic, Ci-Gr ⁇ -alkyl, C 2 -C 40 alkenyl, C 2 -C 40 alkynyl, C 6 -C 40 -aryl, C 7 -C 40 -alkylaryl or C 7 -C 40 -arylalkyl radical ; more preferably L is Si(CH 3 ) 2 or SiPh 2 ; R 1 is a linear C 1 -C 40 hydrocarbon radical optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements such as methyl or ethyl radical or an alpha branched aryl or arylalkyl radical containing from 2 to 20 carbon atoms optionally containing O, N, S, P and Se atoms, in particular O, N and S atoms such as 2(5-Me-thiophenyl) or 2(5-Me-furanyl) radicals; preferably R 1 is
- T 1 and T 2 are an oxygen or suliur atom or a C(R 18 )2 group, with the proviso that at least one group between T 1 and T 2 is an oxygen or a sulfur atom; preferably T 1 is an oxygen or a sulfur atom, more preferably T 1 and T 2 are oxygen atoms; wherein R 18 , equal to or different from each other, are hydrogen atoms or a C 1 -C 40 hydrocarbon radical optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; preferably R 18 is a hydrogen atom or a linear or branched, cyclic or acyclic, Ci-Gr ⁇ -alkyl, C 2 -C 40 alkenyl, C 2 -C 40 alkynyl, C 6 -C 40 -aryl, C 7 -C 40 -alkylaryl or C 7 -C 40 -arylalkyl radical, optionally containing one or more
- T 3 and T 4 equal to or different from each other, are an oxygen or sulfur atom or a C(R 18 ) 2 group, wherein R 18 has been described above
- R 4 is a hydrogen atom or a C 1 -C 40 hydrocarbon radical optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; preferably R 4 is a hydrogen atom or a linear or branched, cyclic or acyclic, Ci-Gr ⁇ -alkyl, C 2 -C 40 alkenyl, C 2 -C 40 alkynyl , C 6 -C 40 -aryl, C 7 -C 40 -alkylaryl or C 7 -C 40 -arylalkyl radical optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; preferably R 4 is a hydrogen atom a Ci-Cio-alkyl or a C 6 -C 40 -aryl radical;
- W is an aromatic 5 or 6 membered ring that can contain heteroatoms belonging to groups 15-16 of the Periodic Table of the Elements; the valence of each atom of said ring is substituted with hydrogen atom or it can optionally be substituted with R 5 groups, wherein R 5 , equal to or different from each other, are C 1 -C 40 hydrocarbon radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; preferably R 5 , are linear or branched, cyclic or acyclic, Ci-Gr ⁇ -alkyl, C 2 -C 40 alkenyl, C 2 -C 40 alkynyl, C 6 -C 40 -aryl, C 7 -C 40 -alkylaryl or C 7 -C 40 -arylalkyl radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;
- W is selected from the group comprising the following moieties of formula (Wa), (Wb) and (Wc):
- R 6 , R 7 , R 8 , R 9 and R 10 are hydrogen atoms or C 1 -C 40 hydrocarbon radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; preferably R 6 , R 7 , R 8 , R 9 and R 10 , are hydrogen atoms or linear or branched, cyclic or acyclic, Ci-Gr ⁇ -alkyl, C 2 -C 40 alkenyl, C 2 -C 40 alkynyl, C 6 -C 40 -aryl, C 7 -C 40 -alkylaryl or C 7 -C 40 -arylalkyl radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;
- Z 1 is a nitrogen atom or a CR 10 group
- Z 2 is a nitrogen atom or a CR 6 group
- Z 3 is a nitrogen atom or a CR 7 group
- Z 4 is a nitrogen atom or a CR 8 group
- Z 5 is a nitrogen atom or a CR 9 group; provided that no more than 2 groups among Z 1 , Z 2 , Z 3 , Z 4 and Z 5 are nitrogen atoms, preferably no more than one group among Z 1 , Z 2 , Z 3 , Z 4 and Z 5 is a nitrogen atom;
- Z 6 is an oxygen atom, a sulfur atom, a NR 13 group or a CR 13 group
- Z 7 is an oxygen atom, a sulfur atom, a NR 14 group or a CR 14 group
- Z 8 is an oxygen atom, a suliur atom, a NR 15 group or a
- Z is an oxygen atom, a sulfur atom, a NR 16 group or a CR , 16 g. roup;
- Z 10 is a nitrogen atom or a carbon atom that bonds the indenyl moiety of the structure of formula (I); with the proviso that not more than 1 group among Z 6 , Z 7 , Z 8 , Z 9 or Z 10 is a suliur atom, an oxygen atom or a nitrogen-containing group atom selected from NR 13 , NR 14 , NR 15 , NR 16 , and a nitrogen atom;
- R 13 , R 14 , R 15 and R 16 are hydrogen atoms or C 1 -C 40 hydrocarbon radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic
- R 13 , R 14 , R 15 and R 16 are hydrogen atoms or linear or branched, cyclic or acyclic, Ci-Gr ⁇ -alkyl, C 2 -C 40 alkenyl, C 2 -C 40 alkynyl, C 6 -C 40 -aryl,
- R 13 , R 14 , R 15 and R 16 are hydrogen atoms, Ci-Gr ⁇ -alkyl or C 6 -C 40 -aryl radicals;
- R 7 is a Ci-Gr ⁇ -alkyl radical, preferably a branched Ci-Gr ⁇ -alkyl radical, more preferably R 7 is a branched Ci-Gr ⁇ -alkyl radical wherein the carbon atom in position alpha is a tertiary carbon atom such as a tertbutyl radical, and R 6 , R 8 , R 9 and R 10 are hydrogen atoms;
- R 10 and R 8 are Ci-Gr ⁇ -alkyl radicals, preferably they are linear
- C 1 -C 40 alkyl radicals such as methyl radicals and R 7 , R 8 and R 9 are hydrogen radicals:
- R 6 , R 7 and R 8 are linear or branched Ci-Gr ⁇ -alkyl radicals such as methyl or tertbutyl radicals and R 10 and R 9 are hydrogen atoms.
- R 6 , R 7 , R 8 , R 9 and R 10 are hydrogen atoms
- Z 1 is a nitrogen atom and Z 2 , Z 3 , Z 4 and Z 5 are respectively CR 6 , CR 7 , CR 8 and CR 9 wherein the meaning of R 6 , R 7 , R 8 , and R 9 is described above;
- Z 3 is a nitrogen atom and Z 1 , Z 2 , Z 4 and Z 5 are respectively CR 10 , CR 6 , CR 8 and CR 9 wherein the meaning of R 10 , R 6 , R 8 , and R 9 is described above;
- Z 2 is a nitrogen atom and Z 1 , Z 3 , Z 4 and Z 5 are respectively CR 10 , CR 7 , CR 8 and CR 9 wherein the meaning of R 10 , R 7 , R 8 , and R 9 is described above;
- Z 6 is an oxygen atom, a sulfur atom, a
- NR 16 group preferably it is a sulfur atom or a NR 16 ; wherein R 16 is preferably a Ci-Gr ⁇ -alkyl radical; more preferably Z 6 is a sulfur atom; and Z 7 , Z 8 , Z 9 and Z 10 are respectively a CR 14 , CR 15 , CR 16 and a carbon atom, wherein R 14 is a hydrogen atom or a Ci-Gr ⁇ -alkyl radical such as methyl or ethyl; and R 15 and R 16 are hydrogen atoms or Ci-Gr ⁇ -alkyl radicals.
- T 1 , T 2 , T 3 and T 4 are oxygen or sulfur atoms, preferably they are oxygen atoms; n is 1 or 2; preferably n is 1 ;
- M, L, X, W, R 1 , R 4 and R 18 have the above described meaning.
- n is 1 or 2; preferably n is 1;
- metallocene compounds object of the present invention are in their racemic(rac) or racemic like form.
- racemic(rac) form means that the same substituents on the two cyclopentadienyl moieties are on the opposite side with respect to the plane containing the zirconium and the centre of the said cyclopentadienyl moieties
- racemic- like form means that the bulkier substituents of the two cyclopentadienyl moieties on the metallocene compound are on the opposite side with respect to the plane containing the zirconium and the centre of the said cyclopentadienyl moieties as shown in the following compound:
- a further object of the present invention is a catalyst system for the polymerization of olefin obtainable by contacting: a) a metallocene compound of formula (I); b) at least an alumoxane or a compound able to form an alkylmetallocene cation; and c) optionally an organo aluminum compound.
- the metallocene compounds have formulas selected from (Ia), (Ib), (Ic), (Ha) or (lib).
- Alumoxanes used as component b) in the catalyst system according to the present invention can be obtained by reacting water with an organo-aluminium compound of formula H j AlU 3- J or H j AIiU 6- J, where the U substituents, same or different, are hydrogen atoms, halogen atoms, Q-C ⁇ o-alkyl, C 3 - C2o-cyclalkyl, C 6 -C2o-aryl, C 7 -C2o-alkylaryl or C 7 -C2o-arylalkyl radicals, optionally containing silicon or germanium atoms, with the proviso that at least one U is different from halogen, and j ranges from 0 to 1, being also a non-integer number.
- the molar ratio of Al/water is preferably comprised between 1:1 and 100:1.
- alumoxanes used in the catalyst system according to the invention are considered to be linear, branched or cyclic compounds containing at least one group of the type:
- n 1 is 0 or an integer of from 1 to 40 and the substituents U are defined as above; or alumoxanes of the formula:
- alumoxanes suitable for use according to the present invention are methylalumoxane (MAO), tetra-(isobutyl)alumoxane (TIBAO), tetra-(2,4,4-trimethyl- pentyl)alumoxane (TIOAO), tetra-(2,3-dimethylbutyl)alumoxane (TDMBAO) and tetra-(2,3,3- trimethylbutyl)alumoxane (TTMBAO).
- MAO methylalumoxane
- TIBAO tetra-(isobutyl)alumoxane
- TIOAO tetra-(2,4,4-trimethyl- pentyl)alumoxane
- TDMBAO tetra-(2,3-dimethylbutyl)alumoxane
- TTMBAO tetra-(2,3,3- trimethylbutyl)alumox
- Non-limiting examples of aluminium compounds that can be reacted with water to give suitable alumoxanes (b), described in WO 99/21899 and WO01/21674, are: tris(2,3,3-trimethyl-butyl)aluminium, tris(2,3-dimethyl-hexyl)aluminium, tris(2,3-dimethyl- butyl)aluminium, tris(2,3-dimethyl-pentyl)aluminium, tris(2,3-dimethyl-heptyl)aluminium, tris(2-methyl-3-ethyl-pentyl)aluminium, tris(2-methyl-3-ethyl-hexyl)aluminium, tris(2-methyl-3- ethyl-heptyl)aluminium, tris(2-methyl-3-propyl-hexyl)aluminium, tris(2-ethyl-3-methyl-butyl)aluminium,
- TMA trimethylaluminium
- TIBA triisobutylaluminium
- TIOA tris(2,4,4-trimethyl-pentyl)aluminium
- TDMBA tris(2,3-dimethylbutyl)aluminium
- TTMBA tris(2,3,3-trimethylbutyl)aluminium
- Non-limiting examples of compounds able to form an alkylmetallocene cation are compounds of formula D + E " , wherein D + is a Br ⁇ nsted acid, able to donate a proton and to react irreversibly with a substituent X of the metallocene of formula (I) and E " is a compatible anion, which is able to stabilize the active catalytic species originating from the reaction of the two compounds, and which is sufficiently labile to be removed by an olefinic monomer.
- the anion E " comprises one or more boron atoms.
- the anion E " is an anion of the formula BAr J ⁇ ⁇ wherein the substituents Ar which can be identical or different are aryl radicals such as phenyl, pentafluorophenyl or bis(trifluoromethyl)phenyl. Tetrakis-pentafluorophenyl borate is particularly preferred compound, as described in WO 91/02012.
- compounds of formula BAr 3 can be conveniently used. Compounds of this type are described, for example, in the International patent application WO 92/00333. Other examples of compounds able to form an alkylmetallocene cation are compounds of formula BAr 3 P wherein P is a substituted or unsubstituted pyrrol radical.
- Non limiting examples of compounds of formula D + E " are:
- Organic aluminum compounds used as compound c) are those of formula H j AlU 3- J or H j AIiU 6- J as described above.
- the catalysts of the present invention can also be supported on an inert carrier. This is achieved by depositing the metallocene compound a) or the product of the reaction thereof with the component b), or the component b) and then the metallocene compound a) on an inert support.
- the support can be a porous solid such as talc, a sheet silicate, an inorganic oxide or a finely divided polymer powder (e.g. polyolefin). Suitable inorganic oxides may be found among the oxides of elements of groups 2, 3, 4, 5, 13, 14, 15 and 16 of the Periodic Table of the Elements.
- oxides preferred as supports include silicon dioxide, aluminum oxide, and also mixed oxides of the elements calcium, aluminum, silicon, magnesium or titanium and also corresponding oxide mixtures, magnesium halides, styrene/divinylbenzene copolymers, polyethylene or polypropylene.
- inorganic oxides which can be used alone or in combination with the abovementioned preferred oxidic supports are, for example, MgO, ZrO 2 , TiO 2 or B 2 O 3 .
- a suitable class of supports which can be used is that constituted by porous organic supports functionalized with groups having active hydrogen atoms. Particularly suitable are those in which the organic support is a partially crosslinked styrene polymer. Supports of this type are described in
- inert supports particularly suitable for use according to the invention is that of polyolefin porous prepolymers, particularly polyethylene.
- a further suitable class of inert supports for use according to the invention is that of porous magnesium halides such as those described in International application WO 95/32995.
- the support materials used preferably have a specific surface area in the range from 10 to
- a pore volume in the range from 0.5 to 3.5 ml/g and a mean particle size in the range from 5 to 350 ⁇ m Particular preference is given to supports having a specific surface area in the range from 200 to 400 m 2 /g, a pore volume in the range from 0.8 to 3.0 ml/g and a mean particle size of from 10 to 300 ⁇ m.
- the inorganic support can be subjected to a thermal treatment, e.g. to remove adsorbed water.
- a thermal treatment is generally carried out at from 80 to 300°C, preferably from 100 to 200°C, with drying at from 100 to 200°C preferably being carried out under reduced pressure and/or a blanket of inert gas (e.g. nitrogen), or the inorganic support can be calcined at from 200 to 1 000°C to produce the desired structure of the solid and/or set the desired OH concentration on the surface.
- the support can also be treated chemically using customary desiccants such as metal alkyls, preferably aluminum alkyls, chlorosilanes or SiCl 4 , or else methylaluminoxane.
- the inorganic support material can also be chemically modified.
- treatment of silica gel with (NH 4 )2SiF 6 leads to fluorination of the silica gel surface
- treatment of silica gels with silanes containing nitrogen-, fluorine- or sulfur-containing groups leads to correspondingly modified silica gel surfaces.
- Organic support materials such as finely divided polyolefin powders (e.g. polyethylene, polypropylene or polystyrene) can also be used and are preferably likewise freed of adhering moisture, solvent residues or other impurities by means of appropriate purification and drying operations before use. It is also possible to use functionalized polymer supports, e.g. supports based on polystyrene, via whose functional groups, for example ammonium or hydroxy groups, at least one of the catalyst components can be immobilized.
- functionalized polymer supports e.g. supports based on polystyrene, via whose functional groups, for example ammonium or hydroxy groups, at least one of the catalyst components can be immobilized.
- the solid compound obtained by supporting the catalyst system object of the present invention on a carrier in combination with the further addition of the alkylaluminium compound either as such or prereacted with water if necessary, can be usefully employed in the gas-phase or slurry polymerization.
- the catalyst system of the present invention can be used also in a solution polymerization process.
- solution polymerization means preferably that the polymer is fully soluble in the polymerization medium at the polymerization temperature used, and in a concentration range of at least 5% by weight; more preferably from 5 to 50 % by weight.
- an inert solvent can be used.
- This solvent can be an aliphatic or cycloaliphatic hydrocarbon such as butane, hexane, heptane isooctane, cyclohexane and methylcyclohexane. It is also possible to use mineral spirit or a hydrogenated diesel oil fraction. Also aromatic hydrocarbons can be used such as toluene. Preferred solvents to be used are cyclohexane and methylcyclohexane.
- the propylene content in the liquid phase of the polymerization medium preferably ranges from 5% to 60% by weight; more preferably from 20% to 50% by weight.
- the metallocene compounds of formula (I) object of the present invention are particularly suitable for the homo and copolymerization of propylene.
- the metallocene-based catalyst system of the present invention when used for homo or copolymerizing propylene are able to give polymers having a high molecular weight in high yields also at high temperatures rendering thus possible to use it in the industrial plants that use polymerization temperatures higher than 50°C and that can be comprised between 60° and 200°C, preferably between 60°C and 120°C.
- the content of alpha-olefins derived units in the propylene copolymer object of the present invention ranges from 0.1 to 90% by mol; preferably it ranges from 5% by mol to 70% by mol; more preferably it ranges from 10% by mol to 60% by mol.
- the metallocene compounds of the present invention are also particularly suitable for the preparation of copolymers of ethylene and higher alpha olefins, such as propylene, 1-butene, 1- hexene, 1-octene.
- the copolymers have a comonomer content ranging from 5 to 50% by mol.
- ethylene/1 -butene copolymer having a content of 1-butene derive units ranging from 5 to 50% by mol.
- Said copolymers can be obtained in high yields by using a gas phase process such a fluidized bed or stirred bed reactor.
- the process for the polymerization of olefins according to the invention can be carried out in the liquid phase in the presence or absence of an inert hydrocarbon solvent, such as in in slurry, or in the gas phase.
- the hydrocarbon solvent can either be aromatic such as toluene, or aliphatic such as propane, hexane, heptane, isobutane or cyclohexane.
- the polymerization temperature is generally comprised between -100°C and
- the polymerization pressure is generally comprised between 0,5 and 100 bar.
- the polymerization yields depend on the purity of the metallocene compound of the catalyst.
- the metallocene compounds obtained by the process of the invention can therefore be used as such or can be subjected to purification treatments.
- the catalyst system based on the metallocene compounds object of the present invention can be used in a multistage process for preparing heterophasic propylene copolymers.
- Said hydrocarbon solvent can be either aromatic (such as toluene) or aliphatic (such as propane, hexane, heptane, isobutane, cyclohexane and 2,2,4-trimethylpentane).
- Step a) can be carried out in the presence of hydrogen.
- the amount of hydrogen present during the polymerization reaction is preferably more than 1 ppm; more preferably from 5 to 2000 ppm; even more preferably from 6 to 500 ppm with respect to the propylene present in the reactor.
- Hydrogen can be added either at the beginning of the polymerization reaction or it can also be added at a later stage after a prepolymerization step has been carried out.
- Preferred comonomers are ethylene or 1-butene.
- a propylene homopolymer is produced.
- the content of the polymer obtained in step a) preferably ranges from 5% to 90% by weight of the polymer produced in the whole process, more preferably it ranges from 10% to 70% by weight and still more preferably from 25% to 65% by weight of the total polymer produced in the whole process.
- Step b) can be carried out in liquid phase, in which the polymerization medium can be an inert hydrocarbon solvent or the polymerization medium can be liquid propylene optionally in the presence of an inert hydrocarbon solvent, and of ethylene or one or more comonomer of formula
- step a) can be carried out in a gas phase.
- step b) is carried out in a gas phase, preferably in a fluidized or stirred bed reactor.
- the polymerization temperature is generally comprised between -100°C and +200°C, and, preferably, between 10°C and +90°C.
- the polymerization pressure is generally comprised between 0,5 and 100 bar.
- step b) a propylene copolymer containing from 5% to 90% by mol, preferably from 10% to
- 1-tetradecene, 1 -hexadecene, 1-octadecene and 1-eicosene Preferred comonomers are ethylene or 1 -butene.
- the content of polymer obtained in step b) preferably ranges from 10 to 95% by weight of the polymer produced in the whole process, preferably it ranges from 30% to 90% by weight and more preferably from 35% to 75% by weight.
- the polymer obtained in step b) can optionally contains up to 20% by mol of a non conjugated diene.
- Non conjugated dienes can be a straight chain, branched chain or cyclic hydrocarbon diene having from 6 to 20 carbon atoms. Examples of suitable non-conjugated dienes are:
- branched chain acyclic dienes such as 5-methyl- 1,4-hexadiene, 3,7-dimethyl-l,6-octadiene, 3,7-dimethyl-l,7-octadiene and mixed isomers of dihydro myricene and dihydroocinene;
- - single ring alicyclic dienes such as 1,3-cyclopentadiene, 1,4-cyclohexadiene, 1,5- cyclooctadiene and 1,5-cyclododecadiene
- - multi-ring alicyclic fused and bridged ring dienes such as tetrahydroindene, methyl tetrahydroindene, dicyclopentadiene, bicyclo-(2,2,l)-hepta-2, 5-diene
- alkenyl, alkylidene, cycloalkenyl and cycloalkylidene norbornenes such as 5-methylene-2- norbornene (MNB), 5-propenyl-2-norbornene, 5-isopropylidene-2-norbornene,5-(4- cyclopentenyl)-2-norbornene, 5-cyclohexylidene-2-norbornene, 5-vinyl-2-norbornene and norbornadiene.
- MNB 5-methylene-2- norbornene
- NNB 5-propenyl-2-norbornene
- 5-isopropylidene-2-norbornene 5-isopropylidene-2-norbornene
- 5-(4- cyclopentenyl)-2-norbornene 5-cyclohexylidene-2-norbornene
- 5-vinyl-2-norbornene and norbornadiene norbornadiene
- Preferred dienes are 1,4-hexadiene (HD), 5-ethylidene-2-norbornene (ENB), 5-vinylidene-2- norbornene (VNB), 5-methylene-2-norbornene (MNB) and dicyclopentadiene (DCPD).
- HD 1,4-hexadiene
- ENB 5-ethylidene-2-norbornene
- VNB 5-vinylidene-2- norbornene
- MNB 5-methylene-2-norbornene
- DCPD dicyclopentadiene
- dienes are 5-ethylidene-2-norbornene (ENB) and 1,4-hexadiene (HD).
- non-conjugated dienes are preferably incorporated into the polymer in an amount from 0.1% to about 20% by mol, preferably from 0.5% to 15% by mol, and more preferably from 0.5% to 7% by mol. If desired, more than one diene may be incorporated simultaneously, for example HD and ENB, with total diene incorporation within the limits specified above.
- Step al) can be carried out in liquid phase, in which the polymerization medium can be an inert hydrocarbon solvent or the polymerization medium can be liquid propylene optionally in the presence of an inert hydrocarbon solvent, and ethylene or one or more comonomer of formula
- Said hydrocarbon solvent can be either aromatic (such as toluene) or aliphatic (such as propane, hexane, heptane, isobutane, cyclohexane and 2,2,4-trimethylpentane).
- the polymerization medium is liquid propylene. It can optionally contains minor amounts (up to 20% by weight, preferably up to 10% by weight, more preferably up to 5% by weight) of an inert hydrocarbon solvent or of ethylene or one or more comonomer of formula
- Step al) can be carried out in the presence of hydrogen.
- the amount of hydrogen present during the polymerization reaction is preferably more than 1 ppm; more preferably from 5 to 2000 ppm; even more preferably from 6 to 500 ppm with respect to the propylene present in the reactor.
- Hydrogen can be added either at the beginning of the polymerization reaction or it can also be added at a later stage after a prepolymerization step has been carried out.
- the propylene polymer obtained in step al) is a propylene homopolymer or a propylene copolymer containing up to 20% by mol preferably from 0.1 to 10% by mol, more preferably from 1% to 5% by mol of derived units of ethylene or one or more alpha olefins of formula
- CH 2 CHA 1 .
- Preferred comonomers are ethylene or 1-butene.
- a propylene homopolymer is produced.
- the content of the polymer obtained in step al) preferably ranges from 5% to 90% by weight of the polymer produced in the whole process, more preferably it ranges from 10% to 70% by weight and still more preferably from 25% to 65% by weight of the total polymer produced in the whole process.
- step bl) is carried out in a gas phase, preferably in a fluidized or stirred bed reactor.
- the polymerization temperature is generally comprised between -100°C and +200°C, and, preferably, between 10°C and +90°C.
- the polymerization pressure is generally comprised between 0,5 and 100 bar.
- step bl an ethylene copolymer containing from 5% to 90% by mol, preferably from 10% to
- 1-tetradecene, 1 -hexadecene, 1-octadecene and 1-eicosene Preferred comonomers are propylene or 1 -butene.
- the content of polymer obtained in step bl) preferably ranges from 10 to 95% by weight of the polymer produced in the whole process, preferably it ranges from 30% to 90% by weight and more preferably from 35% to 75% by weight.
- the polymer obtained in step bl) can optionally contains up to 20% by mol of a non conjugated diene.
- Non conjugated dienes can be a straight chain, branched chain or cyclic hydrocarbon diene having from 6 to 20 carbon atoms. Examples of suitable non-conjugated dienes are:
- branched chain acyclic dienes such as 5-methyl- 1,4-hexadiene, 3,7-dimethyl-l,6-octadiene, 3,7-dimethyl-l,7-octadiene and mixed isomers of dihydro myricene and dihydroocinene;
- - single ring alicyclic dienes such as 1,3-cyclopentadiene, 1,4-cyclohexadiene, 1,5- cyclooctadiene and 1,5-cyclododecadiene;
- - multi-ring alicyclic fused and bridged ring dienes such as tetrahydroindene, methyl tetrahydroindene, dicyclopentadiene, bicyclo-(2,2,l)-hepta-2, 5 -diene; and
- alkenyl, alkylidene, cycloalkenyl and cycloalkylidene norbornenes such as 5-methylene-2- norbornene (MNB), 5-propenyl-2-norbornene, 5-isopropylidene-2-norbornene,5-(4- cyclopentenyl)-2-norbornene, 5-cyclohexylidene-2-norbornene, 5-vinyl-2-norbornene and norbornadiene.
- MNB 5-methylene-2- norbornene
- NNB 5-propenyl-2-norbornene
- 5-isopropylidene-2-norbornene 5-isopropylidene-2-norbornene
- 5-(4- cyclopentenyl)-2-norbornene 5-cyclohexylidene-2-norbornene
- 5-vinyl-2-norbornene and norbornadiene norbornadiene
- Preferred dienes are 1,4-hexadiene (HD), 5-ethylidene-2-norbornene (ENB), 5-vinylidene-2- norbornene (VNB), 5-methylene-2-norbornene (MNB) and dicyclopentadiene (DCPD).
- Particularly preferred dienes are 5-ethylidene-2-norbornene (ENB) and 1,4-hexadiene (HD).
- the non-conjugated dienes are preferably incorporated into the polymer in an amount from 0.1% to about 20% by mol, preferably from 0.5% to 15% by mol, and more preferably from 0.5% to 7% by mol. If desired, more than one diene may be incorporated simultaneously, for example HD and ENB, with total diene incorporation within the limits specified above.
- the processes of the present invention can be carried out in one reactor or in two or more reactors in series.
- Preferred ligands have formulas (Ilia), (HIb), (HIc) or (HId):
- the metallocene compounds of formula (I) can be obtained with a process comprising the steps of reacting the dianion with a suitable transition metal source such as metal tetrahalide as for example zirconium tetrachloride.
- a suitable transition metal source such as metal tetrahalide as for example zirconium tetrachloride.
- the dianion can be obtained for example by the deprotonation of the ligand of formula (III), for example by using an organolithium compound such as buthyl or methyl lithium.
- the ligand of formula (III) can be easily prepared starting from the cyclopentadienyl moieties of formulas (IV) and (V)
- T 1 , T 2 , T 3 , T 4 , R 1 , R 4 , R 18 and W have the meaning described above with a process comprising the following steps: a) Contacting the compound of formula (IV) and/or its double bond isomers with a base selected from T 5 j B, T 5 MgT 6 , sodium and potassium hydride, metallic sodium and potassium; wherein T 5 , j, B and T 6 are defined as above, and wherein the molar ratio between said base and the compound of the formula (IV) is at least 1:1; excess of said base can be used; b) contacting the anionic compound obtained in step a) with a compound of formula LY 2 wherein L is defined as above and Y is chlorine, bromine and iodine, preferably Y is chlorine or bromine; to form a compound of formula (IVa)
- aprotic solvent is preferably an aromatic or aliphatic hydrocarbon, optionally halogenated, or an ether; more preferably it is selected from benzene, toluene, pentane, hexane, heptane, cyclohexane, dichloromethane, diethylether, tetrahydrofurane and mixtures thereof.
- the above process is carried out at a temperature ranging from -100°C to +80°C, more preferably from - 20°C to +70°C.
- the chemical composition and comonomer distribution of the copolymers were investigated by 13 C-NMR analysis with a Bruker DPX400 spectrometer operating at 100.61 MHz.
- the samples were measured as 8%(w/v) solutions of 1,12,2-tetrachloroethane, the 13C-NMR spectra were recorded at 120 °C with a 90 degree pulse, 12s of delay between pulses and CPD to remove IH- 13C coupling.
- About IK of transients were stored in 32K data points using a spectral window of 6000Hz.
- the S ⁇ peak at 29.9 ppm (nomenclature according to reference 1) was used as internal reference.
- the product of reactivity ratios rlxr2 was calculated from the triads according to reference 1.
- the copolymer compositions and triad distributions were determined according to reference 2.
- reference 1 Carman, C. J.; Harrington, R. A.; Wilkes, C. E. Macromolecules 1977, 10, 563 reference 2: Kakugo, M.; Naito, Y,; Mizunuma, K. Macromolecules 1982, 15, 1150.
- Methylalumoxane was received from Albemarle as a 30% wt/V toluene solution and used as such and the silica was received from ESfEOS ( ES70Y, ioo microns).
- Piperonyl alcohol (45.64 g, 300 mmol) was dissolved in 340 ml of dry benzene, and SOCl 2 (37 ml) was added dropwise with stirring. The solution was refluxed for 1 h, cooled and evaporated on the rotary evaporator (bath temperature less than 50 0 C!). The resulting dark green residue was used without further purification.
- rac-Dimethylsilylbis(2-methyl-4-phenyl-indenyl)zirconiumdichloride (C-I) was prepared according to EP 576970 rac-dimethylsilylbis(2-methyl-4-(pflra-tert-butylphenyl)-indenyl)-zirconium dichloride (rac-Me 2 Si(2-Me-4(4tBuPh)Ind) 2 ZrCl 2 ) (C-2) was prepared according to WO 98/40331 (example 65).
- the pressure into the autoclave was decreased until 20 bar, the bottom discharge valve was opened and the copolymer was discharged into a heated steel tank containing water at 70°C.
- the tank heating was switched off and a flow of nitrogen at 0.5 bar-g was fed.
- the steel tank was opened and the wet polymer collected. The wet polymer was dried in an oven under reduced pressure at 70°C.
- a mixture of ethylene/propylene 17/83 %wt was continuously fed for 30 minutes to maintain the pressure of 32 bar-g: 12.2 g of ethylene and 58.2 g of propylene were consumed.
- the copolymer was discharged according to the procedure described in the comparative example
- the copolymer was discharged according to the procedure described in the comparative example
- a mixture of ethylene/propylene 25/75 %wt was continuously fed for 30 minutes to maintain the pressure of 32 barg: 17.2 g of ethylene and 52.3 g of propylene were consumed.
- the copolymer was discharged according to the procedure described in the comparative example
- a mixture of ethylene/propylene 10/90 %wt was continuously fed for 30 minutes to maintain the pressure of 28 bar-g: 9.4 g of ethylene and 86 g of propylene were consumed.
- the copolymer was discharged according to the procedure described in the comparative example
- the procedure of comparative example 1 was repeated feeding 731 g of c-hexane, 73 g of ethylene and 622 g of propylene in order to obtain a liquid composition at 90°C, 32 bar-g, corresponding to a liquid composition of 9/91 %wt ethylene/propylene.
- 1 mL of the catalyst system CA-I containing the catalyst/cocatalyst mixture (1.9 mg metallocene/mL solution) was injected in the autoclave by means of 4 mL of cyclohexane through the stainless-steel vial.
- a mixture of ethylene/propylene 17/83 %wt was continuously fed for 30 minutes to maintain the pressure of 32 bar-g: 7.8 g of ethylene and 37.3 g of propylene were consumed.
- the copolymer was discharged according to the procedure described in the comparative example
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008501311A JP2008536813A (ja) | 2005-03-18 | 2006-03-15 | メタロセン化合物 |
| EP06743207.0A EP1858934B1 (en) | 2005-03-18 | 2006-03-15 | Metallocene compounds |
| US11/886,617 US7803887B2 (en) | 2005-03-18 | 2006-03-15 | Metallocene compounds |
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP05102189.7 | 2005-03-18 | ||
| EP05102189 | 2005-03-18 | ||
| EP05107248 | 2005-08-05 | ||
| EP05107248.6 | 2005-08-05 | ||
| US71029305P | 2005-08-22 | 2005-08-22 | |
| US60/710,293 | 2005-08-22 | ||
| EP05112766 | 2005-12-22 | ||
| EP05112766.0 | 2005-12-22 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2006097500A1 true WO2006097500A1 (en) | 2006-09-21 |
Family
ID=36677094
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2006/060772 Ceased WO2006097500A1 (en) | 2005-03-18 | 2006-03-15 | Metallocene compounds |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US7803887B2 (enExample) |
| EP (1) | EP1858934B1 (enExample) |
| JP (1) | JP2008536813A (enExample) |
| WO (1) | WO2006097500A1 (enExample) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7728086B2 (en) | 2005-03-23 | 2010-06-01 | Basell Polyolefine Gmbh | Process for the polymerization of olefins |
| US7799880B2 (en) | 2005-03-23 | 2010-09-21 | Basell Polyolefine Gmbh | Process for the polymerization of olefins |
| US7812104B2 (en) | 2008-01-18 | 2010-10-12 | Exxonmobil Chemical Patents Inc. | Production of propylene-based polymers |
| US7834205B2 (en) | 2006-04-12 | 2010-11-16 | Basell Polyolifine GmbH | Metallocene compounds |
| US7842764B2 (en) | 2005-03-18 | 2010-11-30 | Basell Poliolefine Italia S.R.L. | Metallocene compounds |
| US7858717B2 (en) | 2006-03-17 | 2010-12-28 | Basell Polyolefine Gmbh | Metallocene compounds |
| US7868197B2 (en) | 2005-12-14 | 2011-01-11 | Exxonmobil Chemical Patents Inc. | Halogen substituted heteroatom-containing metallocene compounds for olefin polymerization |
| US7964679B2 (en) | 2005-05-03 | 2011-06-21 | Basell Poliolefine Italia S.R.L. | Process for the polymerization of alpha olefins |
| WO2011076780A1 (en) * | 2009-12-22 | 2011-06-30 | Borealis Ag | Catalysts |
| US7985799B2 (en) | 2005-05-11 | 2011-07-26 | Basell Poliolefine Italia S.R.L. | Polymerization process for preparing polyolefin blends |
| US8178636B2 (en) | 2004-05-04 | 2012-05-15 | Basell Polyolefine Gmbh | Process for the preparation of atactic 1-butene polymers |
| US8742042B2 (en) | 2006-04-21 | 2014-06-03 | Basell Polyolefine Gmbh | Process for the preparation of ethylene copolymers |
| US8785575B2 (en) | 2006-04-21 | 2014-07-22 | Basell Polyolefine Gmbh | Process for the preparation of ethylene propylene copolymers |
| EP2813517B1 (en) | 2013-06-10 | 2016-08-10 | Borealis AG | Process for the preparation of a propylene polymer |
| WO2025016570A1 (en) * | 2023-07-14 | 2025-01-23 | Borealis Ag | Catalysts for olefin polymerization |
| WO2025016564A1 (en) | 2023-07-14 | 2025-01-23 | Borealis Ag | Metallocenes for the manufacture of polypropylene |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2341087B1 (en) * | 2009-12-30 | 2014-04-09 | Borealis AG | New way to produce polypropylene grade in a sequential process |
| JP7555972B2 (ja) * | 2019-05-29 | 2024-09-25 | ボレアリス エージー | 触媒系 |
| WO2025190884A1 (en) * | 2024-03-13 | 2025-09-18 | Borealis Gmbh | Metallocenes for the manufacture of propylene copolymers |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0416851A (ja) * | 1990-05-11 | 1992-01-21 | Citizen Watch Co Ltd | 電子写真用感光体 |
| JPH0416853A (ja) * | 1990-05-11 | 1992-01-21 | Citizen Watch Co Ltd | 電子写真用感光体 |
| JPH0416854A (ja) * | 1990-05-11 | 1992-01-21 | Citizen Watch Co Ltd | 電子写真用感光体 |
| JPH0431868A (ja) * | 1990-05-29 | 1992-02-04 | Citizen Watch Co Ltd | 電子写真用感光体 |
| WO2004050724A1 (en) * | 2002-12-04 | 2004-06-17 | Basell Polyolefine Gmbh | Process for preparing 1-butene polymers |
| WO2005058916A2 (en) * | 2003-12-10 | 2005-06-30 | Basell Polyolefine Gmbh | Organometallic transition metal compound, biscyclopentadienyl ligand system, catalyst system and preparation of polyolefins |
| WO2005118654A1 (en) * | 2004-06-04 | 2005-12-15 | Basell Polyolefine Gmbh | Transition metal compound, ligand system, catalyst system and process for preparing polyolefins |
Family Cites Families (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4178272A (en) * | 1977-03-02 | 1979-12-11 | Eastman Kodak Company | Hot-melt adhesvies for bonding polyethylene |
| ATE38044T1 (de) | 1984-08-30 | 1988-11-15 | Mitsui Petrochemical Ind | Buten-1-polymer und seine verwendung. |
| WO1991002012A1 (en) | 1989-08-03 | 1991-02-21 | Exxon Chemical Patents Inc. | Very high molecular weight polyethylene |
| ATE147761T1 (de) | 1990-06-22 | 1997-02-15 | Exxon Chemical Patents Inc | Aluminiumfreie monocyclopentadienyl- metallocenkatalysatoren für olefinpolymerisation |
| TW294669B (enExample) | 1992-06-27 | 1997-01-01 | Hoechst Ag | |
| IT1264680B1 (it) | 1993-07-07 | 1996-10-04 | Spherilene Srl | Catalizzatori supportati per la polimerizzazione delle olefine |
| IT1269837B (it) * | 1994-05-26 | 1997-04-15 | Spherilene Srl | Componenti e catalizzatori per la polimerizzazione delle olefine |
| EP0707016B1 (en) * | 1994-10-13 | 1997-09-24 | Japan Polyolefins Co., Ltd. | Catalyst component for producing polyolefin, catalyst for producing polyolefin comprising the catalyst component, and process for producing polyolefin in the presence of the catalyst |
| US6399533B2 (en) * | 1995-05-25 | 2002-06-04 | Basell Technology Company Bv | Compounds and catalysts for the polymerization of olefins |
| DE69617371T2 (de) | 1995-06-08 | 2002-08-08 | Showa Denko K.K., Tokio/Tokyo | Ionische Verbindungen und Katalysator für die Olefinpolymerisation, der die Verbindungen verwendet |
| KR100536794B1 (ko) | 1996-11-15 | 2005-12-14 | 바셀 테크놀로지 캄파니 비이브이 | 복소환 메탈로센 및 중합 촉매 |
| KR100624632B1 (ko) | 1997-03-07 | 2006-09-15 | 타고르 게엠베하 | 메탈로센 및 그의 제조 방법 |
| US6559252B1 (en) * | 1997-10-29 | 2003-05-06 | Basell Technology Company Bv | Catalysts and processes for the polymerization of olefins |
| CA2289026C (en) * | 1998-03-05 | 2008-11-18 | Montell Technology Company B.V. | Polybutene-1 (co)polymers and process for their preparation |
| JP4031868B2 (ja) | 1998-06-19 | 2008-01-09 | 株式会社日立コミュニケーションテクノロジー | 通信装置、基地局および通信方法 |
| CN100340568C (zh) * | 1998-11-25 | 2007-10-03 | 塔戈尔股份有限公司 | 茂金属一卤化物 |
| DE19917985A1 (de) | 1999-04-21 | 2000-10-26 | Targor Gmbh | Katalysatorsystem |
| US7141527B1 (en) | 1999-09-22 | 2006-11-28 | Basell Polyolefine Gmbh | Catalyst system and process for the polymerization of olefins |
| US6444833B1 (en) * | 1999-12-15 | 2002-09-03 | Basell Technology Company Bv | Metallocene compounds, process for their preparation and their use in catalytic systems for the polymerization of olefins |
| US7342078B2 (en) | 1999-12-23 | 2008-03-11 | Basell Polyolefine Gmbh | Transition metal compound, ligand system, catalyst system and the use of the latter for polymerisation and copolymerisation of olefins |
| DE19962910A1 (de) | 1999-12-23 | 2001-07-05 | Targor Gmbh | Chemische Verbindung, Verfahren zu deren Herstellung und deren Verwendung in Katalysatorsystemen zur Herstellung von Polyolefinen |
| DE19962814A1 (de) | 1999-12-23 | 2001-06-28 | Targor Gmbh | Neues Katalysatorsystem und dessen Verwendung |
| ATE508135T1 (de) * | 1999-12-28 | 2011-05-15 | Basell Polyolefine Gmbh | Heterocyclische metallocene und ihre verwendung in katalysatorsystemen zur herstellung von olefin polymeren |
| JP2003524013A (ja) * | 2000-02-24 | 2003-08-12 | バセル テクノロジー カンパニー ビー.ブイ. | オレフィン重合用助触媒として有用な有機金属化合物 |
| DE60202524T2 (de) * | 2001-05-21 | 2005-06-30 | Basell Polyolefine Gmbh | Katalysatorsystem für die polymerisierung von olefinen |
| ES2268126T3 (es) * | 2001-11-30 | 2007-03-16 | Basell Polyolefine Gmbh | Compuestos de metaloceno y procedimiento para la preparacion de polimeros de propileno. |
| AU2002230934A1 (en) | 2001-12-10 | 2003-06-23 | Exxonmobil Chemical Patents Inc. | Metallocenes and catalyst compositions derived therefrom |
| EP1611167A2 (en) | 2002-07-09 | 2006-01-04 | Basell Polyolefine GmbH | Catalyst system for the polymerization of olefins |
| US7589160B2 (en) * | 2002-12-04 | 2009-09-15 | Basell Polyolefine Gmbh | Process for preparing 1-butene polymers |
| JP4016851B2 (ja) | 2003-02-20 | 2007-12-05 | 株式会社村田製作所 | モジュール部品 |
| JP4016853B2 (ja) | 2003-02-28 | 2007-12-05 | サクサ株式会社 | ボタン電話システム、ボタン電話装置およびプログラム |
| JP4016854B2 (ja) | 2003-03-04 | 2007-12-05 | 株式会社デンソー | 演算増幅回路を有する半導体装置 |
| US7390862B2 (en) * | 2003-05-12 | 2008-06-24 | Basell Polyolefine Gmbh | Process for polymerizing 1-butene |
| WO2005023889A1 (en) | 2003-09-11 | 2005-03-17 | Basell Polyolefine Gmbh | Multistep process for preparing heterophasic propylene copolymers |
| EP1727836A2 (en) | 2004-03-12 | 2006-12-06 | Basell Polyolefine GmbH | Catalyst system for the polymerization of olefin |
| WO2005095474A1 (en) | 2004-03-12 | 2005-10-13 | Basell Polyolefine Gmbh | Process for polymerizing 1-hexene or higher alpha-olefins |
| WO2005095473A1 (en) | 2004-03-12 | 2005-10-13 | Basell Polyolefine Gmbh | Process for polymerizing 1-hexene or higher alpha-olefins |
| JP2008501659A (ja) * | 2004-06-04 | 2008-01-24 | バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング | 遷移金属化合物、リガンド、触媒組成物及びポリオレフィンを製造する方法 |
| US7557171B2 (en) * | 2004-12-16 | 2009-07-07 | Exxonmobil Chemical Patents Inc. | Halogen substituted metallocene compounds for olefin polymerization |
| US7842764B2 (en) | 2005-03-18 | 2010-11-30 | Basell Poliolefine Italia S.R.L. | Metallocene compounds |
| JP2008534705A (ja) | 2005-03-23 | 2008-08-28 | バーゼル・ポリオレフィン・ゲーエムベーハー | オレフィン類の重合法 |
| JP5294842B2 (ja) | 2005-03-23 | 2013-09-18 | バーゼル・ポリオレフィン・ゲーエムベーハー | オレフィンの重合プロセス |
| JP2008540714A (ja) | 2005-05-03 | 2008-11-20 | バーゼル・ポリオレフィン・ゲーエムベーハー | α−オレフィンの重合方法 |
| JP2008540752A (ja) | 2005-05-11 | 2008-11-20 | バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ | ポリオレフィンブレンドを製造するための重合方法 |
-
2006
- 2006-03-15 WO PCT/EP2006/060772 patent/WO2006097500A1/en not_active Ceased
- 2006-03-15 US US11/886,617 patent/US7803887B2/en active Active
- 2006-03-15 JP JP2008501311A patent/JP2008536813A/ja not_active Withdrawn
- 2006-03-15 EP EP06743207.0A patent/EP1858934B1/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0416851A (ja) * | 1990-05-11 | 1992-01-21 | Citizen Watch Co Ltd | 電子写真用感光体 |
| JPH0416853A (ja) * | 1990-05-11 | 1992-01-21 | Citizen Watch Co Ltd | 電子写真用感光体 |
| JPH0416854A (ja) * | 1990-05-11 | 1992-01-21 | Citizen Watch Co Ltd | 電子写真用感光体 |
| JPH0431868A (ja) * | 1990-05-29 | 1992-02-04 | Citizen Watch Co Ltd | 電子写真用感光体 |
| WO2004050724A1 (en) * | 2002-12-04 | 2004-06-17 | Basell Polyolefine Gmbh | Process for preparing 1-butene polymers |
| WO2005058916A2 (en) * | 2003-12-10 | 2005-06-30 | Basell Polyolefine Gmbh | Organometallic transition metal compound, biscyclopentadienyl ligand system, catalyst system and preparation of polyolefins |
| WO2005118654A1 (en) * | 2004-06-04 | 2005-12-15 | Basell Polyolefine Gmbh | Transition metal compound, ligand system, catalyst system and process for preparing polyolefins |
Non-Patent Citations (4)
| Title |
|---|
| DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 1992, AKAO, YUJI ET AL: "Electrophotographic photoreceptor containing squarylium dye", XP002391977, retrieved from STN Database accession no. 1992:623016 * |
| DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 1992, AKAO, YUJI ET AL: "Electrophotographic photoreceptor containing squarylium pigment", XP002391978, retrieved from STN Database accession no. 1992:436570 * |
| DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 1992, AKAO, YUJI ET AL: "Electrophotographic photoreceptor containing squarylium pigment", XP002391979, retrieved from STN Database accession no. 1992:436569 * |
| DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 1992, AKAO, YUJI ET AL: "Electrophotographic photoreceptor containing squarylium pigment", XP002391980, retrieved from STN Database accession no. 1992:436567 * |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8178636B2 (en) | 2004-05-04 | 2012-05-15 | Basell Polyolefine Gmbh | Process for the preparation of atactic 1-butene polymers |
| US7842764B2 (en) | 2005-03-18 | 2010-11-30 | Basell Poliolefine Italia S.R.L. | Metallocene compounds |
| US7799880B2 (en) | 2005-03-23 | 2010-09-21 | Basell Polyolefine Gmbh | Process for the polymerization of olefins |
| US7728086B2 (en) | 2005-03-23 | 2010-06-01 | Basell Polyolefine Gmbh | Process for the polymerization of olefins |
| US7964679B2 (en) | 2005-05-03 | 2011-06-21 | Basell Poliolefine Italia S.R.L. | Process for the polymerization of alpha olefins |
| US7985799B2 (en) | 2005-05-11 | 2011-07-26 | Basell Poliolefine Italia S.R.L. | Polymerization process for preparing polyolefin blends |
| US8546595B2 (en) | 2005-12-14 | 2013-10-01 | Exxonmobil Chemical Patents Inc. | Halogen substituted heteroatom-containing metallocene compounds for olefin polymerization |
| US7868197B2 (en) | 2005-12-14 | 2011-01-11 | Exxonmobil Chemical Patents Inc. | Halogen substituted heteroatom-containing metallocene compounds for olefin polymerization |
| US8173828B2 (en) | 2005-12-14 | 2012-05-08 | Exxonmobil Chemical Patents Inc. | Halogen substituted heteroatom-containing metallocene compounds for olefin polymerization |
| US7858717B2 (en) | 2006-03-17 | 2010-12-28 | Basell Polyolefine Gmbh | Metallocene compounds |
| US7834205B2 (en) | 2006-04-12 | 2010-11-16 | Basell Polyolifine GmbH | Metallocene compounds |
| US8742042B2 (en) | 2006-04-21 | 2014-06-03 | Basell Polyolefine Gmbh | Process for the preparation of ethylene copolymers |
| US8785575B2 (en) | 2006-04-21 | 2014-07-22 | Basell Polyolefine Gmbh | Process for the preparation of ethylene propylene copolymers |
| US7812104B2 (en) | 2008-01-18 | 2010-10-12 | Exxonmobil Chemical Patents Inc. | Production of propylene-based polymers |
| WO2011076780A1 (en) * | 2009-12-22 | 2011-06-30 | Borealis Ag | Catalysts |
| CN102666605A (zh) * | 2009-12-22 | 2012-09-12 | 博里利斯股份公司 | 催化剂 |
| CN102666605B (zh) * | 2009-12-22 | 2014-08-06 | 博里利斯股份公司 | 催化剂 |
| US9029284B2 (en) | 2009-12-22 | 2015-05-12 | Borealis Ag | Catalysts |
| EP2813517B1 (en) | 2013-06-10 | 2016-08-10 | Borealis AG | Process for the preparation of a propylene polymer |
| US10287375B2 (en) | 2013-06-10 | 2019-05-14 | Borealis Ag | Process for the preparation of a propylene polymer |
| WO2025016570A1 (en) * | 2023-07-14 | 2025-01-23 | Borealis Ag | Catalysts for olefin polymerization |
| WO2025016564A1 (en) | 2023-07-14 | 2025-01-23 | Borealis Ag | Metallocenes for the manufacture of polypropylene |
Also Published As
| Publication number | Publication date |
|---|---|
| US20090221772A1 (en) | 2009-09-03 |
| EP1858934B1 (en) | 2013-04-24 |
| JP2008536813A (ja) | 2008-09-11 |
| US7803887B2 (en) | 2010-09-28 |
| EP1858934A1 (en) | 2007-11-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7834205B2 (en) | Metallocene compounds | |
| AU2006224576B2 (en) | Metallocene compounds | |
| EP1448578B1 (en) | Metallocene compounds and process for the preparation of propylene polymers | |
| US7858717B2 (en) | Metallocene compounds | |
| US7803887B2 (en) | Metallocene compounds | |
| US8742042B2 (en) | Process for the preparation of ethylene copolymers | |
| US20090023873A1 (en) | Process for the polymerization of olefins | |
| WO2006100269A1 (en) | Process for the polymerizatio of olefins | |
| US8785575B2 (en) | Process for the preparation of ethylene propylene copolymers | |
| EP1891123B1 (en) | Process for the copolymerization of propylene | |
| EP1902062B1 (en) | Metallocene compounds |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2006743207 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 11886617 Country of ref document: US Ref document number: 2008501311 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| NENP | Non-entry into the national phase |
Ref country code: RU |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: RU |
|
| WWP | Wipo information: published in national office |
Ref document number: 2006743207 Country of ref document: EP |