WO2006095904A1 - 再送方法、無線受信装置、およびマルチアンテナ無線通信システム - Google Patents

再送方法、無線受信装置、およびマルチアンテナ無線通信システム Download PDF

Info

Publication number
WO2006095904A1
WO2006095904A1 PCT/JP2006/304899 JP2006304899W WO2006095904A1 WO 2006095904 A1 WO2006095904 A1 WO 2006095904A1 JP 2006304899 W JP2006304899 W JP 2006304899W WO 2006095904 A1 WO2006095904 A1 WO 2006095904A1
Authority
WO
WIPO (PCT)
Prior art keywords
retransmission
substream
retransmitted
signal
needs
Prior art date
Application number
PCT/JP2006/304899
Other languages
English (en)
French (fr)
Inventor
Xiaoming She
Jifeng Li
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/817,952 priority Critical patent/US20090044065A1/en
Priority to JP2007507225A priority patent/JPWO2006095904A1/ja
Priority to CNA2006800079303A priority patent/CN101138184A/zh
Priority to EP06715622A priority patent/EP1852992A1/en
Publication of WO2006095904A1 publication Critical patent/WO2006095904A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity

Definitions

  • the present invention relates to an automatic retransmission technique in a multi-antenna wireless communication system, and more particularly to a retransmission method, a wireless reception device, and a multi-antenna wireless communication system that can improve the throughput of the multi-antenna communication system.
  • MIMO Multi-input 'multi-output
  • the transmission side divides transmission data into a plurality of substreams, transmits the plurality of substreams using a plurality of transmission antennas, and the reception side uses the plurality of reception antennas to transmit the plurality of substreams.
  • a spatially multiplexed signal including a substream is received.
  • MIMO technology significantly improves the channel capacity and improves the information transmission rate.
  • a conventional MIMO system performs cyclic redundancy check (CRC) coding on the transmission side so that it can be detected whether there is an error in the received substream on the reception side.
  • CRC encoding refers to a process of attaching several CRC bits to the end of a substream to be transmitted on the transmission side.
  • the receiving side performs CRC decoding, and detects whether or not the received substream contains error bits using the CRC bits attached to the end of the substream.
  • the CRC code process and the CRC decoding process cannot detect the number of error bits and the specific position of the error bits in the substream. Therefore, in a conventional MIMO system, if a substream still contains error bits after reception processing, the data of all the substreams are retransmitted once more. Disclosure of the invention
  • An object of the present invention has been made in view of the strong point, and when it is detected that there is an error bit in the received substream, it is possible to avoid retransmitting all the substreams uniformly.
  • Another object of the present invention is to provide a retransmission method, a wireless receiver, and a multi-antenna wireless communication system that can improve the system throughput.
  • the multi-antenna wireless communication system of the present invention includes a wireless transmission device that transmits a plurality of substreams using a plurality of transmission antennas, and a wireless reception that receives the plurality of substreams using a plurality of reception antennas.
  • the wireless reception device includes: a detecting unit that detects a substream that needs to be retransmitted among the plurality of received substreams; and a substream that requires the retransmission.
  • a comparison means that compares the SINR of a substream and a predetermined threshold, and if the SINR of a substream that needs to be retransmitted is lower than a predetermined threshold, determines a method for retransmitting all of the substreams that need to be retransmitted If the SINR of the substream that needs to be retransmitted is greater than or equal to a predetermined threshold value, redundancy is increased for the substream that needs to be retransmitted.
  • a determination means for determining a retransmission method; and a notification means for notifying the wireless transmission device of information relating to the determined retransmission method, wherein the wireless transmission device is notified by the wireless reception device. Based on the information regarding the above, a configuration is adopted in which retransmission means is provided that adaptively retransmits all or part of the substreams that need to be retransmitted.
  • a key for retransmitting all the substreams or an error bit is detected. A part of the data can be retransmitted to improve the system throughput.
  • FIG. 1 is a diagram showing a configuration of a MIMO wireless communication system 100 according to an embodiment of the present invention. Illustration
  • FIG. 2 is a block diagram showing a detailed configuration of a retransmission method Z retransmission parameter determination unit according to an embodiment of the present invention.
  • FIG. 3 is a flowchart showing processing of a retransmission method according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing a correspondence relationship between SINR intervals and the number of retransmission bits according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing a performance comparison between a retransmission method according to the present invention and a conventional retransmission method.
  • FIG. 1 is a block diagram showing a configuration of MIMO radio communication system 100 according to an embodiment of the present invention.
  • MIMO wireless communication system 100 is an example of a multi-antenna wireless communication system according to the present invention.
  • a MIMO wireless communication system 100 transmits data using n transmission antennas.
  • Wireless transmission device 150 that performs reception and a wireless reception device that performs reception using n reception antennas.
  • the wireless transmission device 150 includes a data resource unit 101, a division unit 102, a CRC encoding unit 103-1 to 103-n, and a channel encoding Z modulation unit 104-1 to 104.
  • CRC code key sections 103-1 to 103-n of wireless transmission device 150 are converted to CRC.
  • Encoding unit 103 and channel code Z modulation units 104-1 to 104-n are connected to channel code
  • the modulation unit 104 and the transmission antennas 105-1 to 105-n are abbreviated as the transmission antenna 105.
  • the receiving antennas 106-1 to 106-n of the wireless receiver 160 are connected to the receiving antenna 10
  • CRC decoding unit 108 6 and CRC decoding units 108-1 to 108-n may be abbreviated as CRC decoding unit 108 in some cases.
  • data resource unit 101 is a source for providing transmission data transmitted by radio transmitting apparatus 150 and outputs the transmission data to dividing unit 102.
  • the data resource unit 101 determines transmission data to be output to the division unit 102 with reference to feedback information regarding retransmission that is fed back from the radio reception device 160.
  • Dividing section 102 converts transmission data input from data resource section 101 into n sub-streams.
  • a substream corresponds to one transmit antenna 105.
  • Division section 102 refers to the feedback information regarding retransmission fed back from radio reception apparatus 160, and associates the retransmission antenna with the substream.
  • Cyclic redundancy check (CRC) code key sections 103-1 to 103-n are input from division section 102
  • Each substream is subjected to CRC coding and output to each of the channel coding Z modulation units 104-1-104-n.
  • CRC encoding is a number at the end of each transmitted data
  • Radio receiving apparatus 160 that receives a substream to which a CRC bit is attached detects whether or not there is an error in the substream based on the CRC bit.
  • Channel code ⁇ Z modulators 104-1 to 104-n are respectively provided for each substream.
  • n receiving antennas 106 receive spatially multiplexed signals.
  • the channel estimation unit 110 performs channel estimation based on a pilot signal in the received signal or using another method to obtain a channel estimation matrix H (for MIMO systems, the channel characteristics can be represented by one matrix). obtain.
  • Channel estimation section 110 outputs the obtained channel estimation matrix H to MIMO detection Z retransmission signal combining section 107 and retransmission method Z retransmission parameter determining section 201.
  • MIMO detection / retransmission signal combining section 107 performs MIMO detection processing on the signal received by receiving antenna 106 using channel estimation matrix H obtained by channel estimation section 110, and also receives the same signal. The composition process is performed for different versions retransmitted several times. That is, MIMO detection Z retransmission signal synthesis section 107 performs MIMO detection and retransmission signal synthesis! / ⁇ ⁇ Has two functions. Specifically, MIMO detection Z retransmission signal combining section 107 first determines whether or not the received signal is retransmission data, and then performs the following processing (1) or (2).
  • the MIMO detection / retransmission signal combining unit 107 outputs Only MIMO detection processing is performed.
  • MIMO detection processing MIMO detection processing
  • ZF Zero Ford ng
  • MMSE Minimum Mean Square Error
  • Successive Interference Cancellation SIMO detection, first, using the detection method as described above, the received signal is transmitted to each transmitting antenna 105-1 to 105-n of radio transmitting apparatus 150.
  • MIMO detection Z retransmission signal synthesis Unit 107 performs MIMO detection processing on the received signal, and also performs synthesis processing on the retransmitted substream with the previously transmitted version of the signal.
  • the signals after the substream is transmitted up to N times and MIMO-detected are respectively r, r, ⁇ , indicated as r r is MIMO detected when substream s is transmitted for the first time.
  • R, ..., r is MIMO detected by retransmitting substream s
  • the signal r after the substream s is transmitted N times and MIMO detected, and the signal r of each version obtained in the previous N—up to 1 reception processing.
  • Retransmission signal combining section 107 demodulates and decodes the obtained r, and then outputs each of CRC decoding sections 108-1 to 108-n and retransmission method Z retransmission parameter determination section 201.
  • Each CRC decoding unit 108-1 to 108-n is input from MIMO detection Z retransmission signal synthesis unit 107.
  • each of the CRC decoding units 108-1 to 108-n determines whether or not an error bit is included in each substream.
  • ACK positive
  • NAK negative
  • the retransmission response signals ACK and NAK indicate two cases, respectively, when the substream includes an error bit and when the substream does not include an error bit.
  • a substream including error bits is referred to as a retransmission substream.
  • Each CRC decoding unit 108 generates the generated retransmission
  • the response signal (ACK or NAK) is output to retransmission method Z retransmission parameter determination section 201 and transmission data combining section 109, and is fed back to radio transmission apparatus 150 through feedback channel 111 via retransmission method Z retransmission parameter determination section 201.
  • the retransmission response signal fed back from CRC decoding section 108 is used for performing a retransmission operation in radio transmitting apparatus 150. If it is ACK, the substream is correctly received, and the next time In the transmission process, the next new sub-stream can be transmitted. On the other hand, if the retransmission response signal is NAK, it indicates that the substream has been received correctly, so that the substream will be transmitted once again in the next transmission process.
  • the radio transmission apparatus 150 retransmits the substream, the transmission antenna may be changed by controlling the division unit 102 that may use the original transmission antenna.
  • the CRC decoding unit 108 removes the CRC bit attached to the end of the information bit of the CRC-decoded substream, and transmits Output to the data combination unit 109.
  • Transmission data combining section 109 combines the plurality of substreams from which CRC bits have been removed by CRC decoding section 108 to obtain received data (Rx data).
  • Retransmission method Z retransmission parameter determination section 201 includes channel estimation matrix H estimated by channel estimation section 110, and a retransmission response signal input from CRC decoding sections 108-1 to 108-n.
  • the retransmission method according to the present invention is different from the conventional MIMO retransmission method in that different retransmission methods and retransmission parameters are adaptively determined for each retransmission substream.
  • the different retransmission methods include two types: 1) a method for retransmitting all of the retransmission substreams, and 2) an incremental redundancy retransmission method.
  • the first type of retransmission method is the same as the retransmission method used in the conventional MIMO system.
  • the second type of redundant increase retransmission method is a method of retransmitting partial bits in the substream every time an error bit is detected in the substream.
  • the retransmission parameter is a parameter indicating the number of information bits to be retransmitted each time and specifically which bits are retransmitted when the redundancy increasing retransmission method is used for substream retransmission.
  • Retransmission method Z retransmission parameter determination section 201 uses the output of channel estimation section 110, that is, channel estimation matrix H, in the retransmission substream retransmission method and retransmission parameter selection.
  • Retransmission method Z retransmission parameter determination section 201 feeds back the determined retransmission method and retransmission parameters of each substream to radio transmission apparatus 150 through feedback channel 111 and performs MIMO detection Z retransmission signal synthesis for the next reception processing. Output to part 107.
  • the feedback information related to retransmission generated in radio receiving apparatus 160 refers to retransmission response signal (ACK or NAK), retransmission antenna selection result, retransmission method, retransmission parameter determination result, and the like.
  • the determination result of the substream may be included.
  • FIG. 2 is a block diagram showing a detailed configuration of retransmission method Z retransmission parameter determination section 201 according to the present embodiment.
  • Retransmission method Z retransmission parameter determination section 201 includes retransmission substream set S determination section 301,
  • a post-MIMO detection SINR calculation unit 302, a retransmission method determination unit 303, and a retransmission bit determination unit 304 are included.
  • Retransmission substream set S determination section 301 performs MIMO detection.
  • SINR calculation section 302 performs retransmission substream set S determination section 30.
  • SINR ⁇ SINR, SINR, ... ⁇ .
  • retransmission method determining section 303 performs output SINR and SINR calculation section 302 after MIMO detection.
  • the retransmission method is determined every time. Specifically, for retransmission substreams whose SINR value is lower than a predetermined SINR threshold, the first type of retransmission method, that is, the retransmission substream is used. It is determined that the method of retransmitting all is used, and the second type of retransmission method, that is, the redundancy increasing retransmission method is used for the retransmission substream when the SINR value is higher than a predetermined SINR threshold. This way of determination comes from the following considerations. Substreams with lower SINR values contain more error bits.
  • Retransmission method determination section 303 feeds back the information indicating the determined retransmission method to radio transmission apparatus 150 using feedback channel 111 and outputs it to MIMO detection Z retransmission signal synthesis section 107.
  • retransmission bit determining section 304 determines bits to be retransmitted specifically for the substream determined to use the redundancy increasing retransmission method. Specifically, retransmission bit determining section 304 first determines the number of retransmission information bits based on the SINR value of the substream.
  • the predetermined SINR is divided into a plurality of sections in advance, and different numbers of retransmission bits are associated with different SINR sections. The number of retransmission bits corresponding to a section with a higher SINR value is smaller. The number of retransmission bits corresponding to a section with a lower SINR value is larger.
  • retransmission bit determining section 304 specifically determines the bits to be retransmitted based on the reliability of each bit in the substream. As a method for determining the retransmission bits, first, the reliability of each information bit in the substream is estimated, and the determined number of information bits is selected from the one with the lowest reliability.
  • FIG. 3 is a flowchart showing a retransmission method process in retransmission method Z retransmission parameter determination section 201 according to the present embodiment.
  • step 401 retransmission substream set S determination section 301 determines transmission substream k.
  • one of the retransmission substreams is taken as an example and kl k2
  • MIMO post-MIMO detection SINR calculation section 302 calculates an equivalent SINR after performing MIMO detection of retransmission substream S, and describes it as SINR.
  • the equivalent SINR is not limited to MIMO detection processing.
  • step 403 retransmission method determination section 303 performs retransmission substream S.
  • the retransmission method determination unit 303 Determines the corresponding retransmission method based on SINR. Specifically, the retransmission method determination unit 303
  • SINR is compared with the predetermined SINR threshold SINR 0. . Otherwise, the second type, that is, the redundant increase retransmission method is selected, and the process proceeds to Step 405.
  • step 404 If SINR is lower than SINR 0, in step 404, retransmission method determining section 303 performs retransmission.
  • the result is output to MIMO detection Z retransmission signal combining section 107.
  • retransmission bit determination section 304 determines the number of information bits to be retransmitted next time based on SINR.
  • the predetermined SINR is divided into multiple sections in advance.
  • SINR sections are associated with different numbers of retransmission information bits. If SINR value SINR of retransmission substream S is included in any SINR section,
  • the corresponding number of retransmission information bits is used as the number of information bits for the next retransmission of retransmission substream s.
  • the retransmission bit determination unit 304 performs the SIN shown in FIG.
  • step 407 retransmission bit determination section 304 performs retransmission substream S.
  • retransmission bit determination section 304 sequentially performs the following processes (a) and (b).
  • A is the reliability after receiving the first information bit in the substream S
  • the reliability ⁇ of each information bit can be expressed by the following equation (1).
  • the reliability ⁇ of each information bit can be expressed by the absolute value of the log likelihood ratio (LLR) of the bit.
  • LLR log likelihood ratio
  • retransmission bit determination section 304 uses the absolute value of the soft decision of the decoder directly as the reliability ⁇ value of each bit.
  • the retransmission bit determination unit 304 has a lower reliability N in the retransmission substream S.
  • Radio transmitting apparatus 150 retransmits the selected NUM information bits in the next transmission. Then re
  • the transmission method determination unit 303 uses the redundant increase retransmission method for the retransmission substream S.
  • the decision result and specific retransmission parameters are fed back to radio transmission apparatus 150 to request redundant increased retransmission for retransmission substream S, and MIMO detection
  • FIG. 3 a retransmission method and a specific example for one retransmission substream S are shown.
  • retransmission method Z retransmission parameter determination section 201 After determining the retransmission method and retransmission parameters for the substream, the determination result may be fed back to radio transmitting apparatus 150 and output to MIMO detection Z retransmission signal combining section 10 7.
  • each bit that needs to be retransmitted is included in the retransmission data substream S in the feedback information.
  • FIG. 5 is a diagram showing a performance comparison between the adaptive retransmission method according to the present invention and the conventional retransmission method.
  • the graph indicated by “ ⁇ ” indicates the frequency utilization efficiency obtained in each SNR when the conventional retransmission method is used
  • the graph indicated by “ ⁇ ” indicates the adaptive retransmission method according to the present invention. When used, shows the frequency utilization efficiency obtained for each SNR.
  • the number of transmitting antennas 105 and receiving antennas 106 is both four, the channel uses a flat attenuation channel, the modulation method uses QPSK modulation, and one substream is It contains 1000 modulation symbols and the MIMO detection method uses ZF detection.
  • the SINR threshold used to determine the retransmission method in the simulation is 5 dB, and redundant increase retransmission includes only one type of feedback procedure 40 bits. As shown in FIG. 5, as compared with the conventional method, better frequency utilization efficiency can be obtained by using the method proposed in this application as compared with the conventional method.
  • the substream is retransmitted as a substream.
  • the SINR of the retransmission substream is compared with a predetermined threshold.
  • the SINR of the retransmission substream is equal to or greater than a predetermined threshold, the number of error bits included in the retransmission substream is small. Therefore, the redundancy increasing retransmission method is determined, the number of partial information bits to be retransmitted, and the The specific position in the stream is determined and fed back to the wireless transmitter.
  • the wireless transmission device Based on the feedback information, the wireless transmission device retransmits a part including information bits that could not be received correctly by the wireless reception device, and can reduce redundant retransmission of correctly received information bits.
  • the system throughput from the receiver to the receiver can be improved.
  • the retransmission substream When the SINR of a system is lower than a predetermined threshold, there are many error bits included in the retransmission substream, so by determining how to retransmit all of the retransmission substreams, a large amount of information regarding a large number of error bits is fed back. Can be avoided, and the throughput of the system can be improved.
  • the retransmission method and the radio reception apparatus in the multi-antenna radio communication system according to the present invention are not limited to the above embodiments, and can be implemented with various modifications.
  • the radio reception apparatus can be mounted on a communication terminal apparatus and a base station apparatus in a multi-antenna radio communication system, and thereby a communication terminal apparatus and a base having the same operational effects as described above. It is possible to provide a station apparatus and a mobile communication system.
  • the present invention can also be realized by software.
  • the algorithm of the retransmission method according to the present invention in a programming language, storing the program in a memory, and executing it by an information processing means, the same function as the wireless receiver according to the present invention is realized. can do.
  • Another aspect of the present invention proposes an adaptive retransmission method and equipment in a multi-antenna communication system, and can further improve retransmission performance in multi-antenna transmission.
  • Another aspect of the present invention is an adaptive retransmission method and equipment in a multi-antenna communication system.
  • adaptive retransmission is performed based on the SINR of a substream that needs to be retransmitted. Select method and retransmission parameters.
  • Another aspect of the present invention is that in the above aspect, adaptive selection is performed for a retransmission method and retransmission parameters to be used based on channel characteristics of retransmission substreams.
  • Another aspect of the present invention is an adaptive retransmission method in a multi-antenna communication system.
  • a receiving apparatus detects whether or not a received substream has an error and needs to be retransmitted. And a substream marker that needs to be retransmitted as described above.
  • Multi-input 'Comparison of the signal-to-interference and noise ratio after the multi-output detection is compared with the signal-to-interference and noise ratio of the substream that needs to be retransmitted and a predetermined threshold value.
  • the required signal-to-interference noise ratio of the substream is lower than a predetermined threshold value, all of the substreams that need to be retransmitted are retransmitted, and the signal-to-interference noise ratio of the substream that needs to be retransmitted is predetermined. If it is equal to or greater than the threshold value, a step of performing redundant increase retransmission processing for the substream that needs to be retransmitted is executed.
  • the redundant increase retransmission process includes the steps of setting a number of retransmission bits corresponding to a signal-to-interference noise ratio, and a substream that needs to be retransmitted.
  • Feedback information including a step for determining the position of a correct bit and information regarding the determined bit position that needs to be retransmitted is fed back to the transmitter.
  • the transmitting device receives information on the position of a bit that needs to be retransmitted included in feedback information transmitted from the receiving device. And a step of performing redundant increase retransmission processing of the substream based on the position of the bit that needs to be retransmitted.
  • Another aspect of the present invention is that, in the above aspect, when the substream is a first transmission, the equivalent signal to interference noise ratio is a signal to interference noise ratio after the current MIMO detection.
  • the equivalent signal-to-interference / noise ratio is a signal-to-interference / noise ratio after being subjected to retransmission synthesis.
  • the step of setting the number of retransmission bits corresponding to the signal-to-interference noise ratio includes the step of setting the signal-to-interference noise ratio to a plurality of signal-to-interference noise ratio sections.
  • the signal-to-interference noise ratio interval is associated with a different number of retransmission information bits, and the higher the signal-to-interference noise ratio, the smaller the number of retransmission information bits.
  • Another aspect of the present invention is that in the above aspect, based on the reception reliability of each bit in the substream and the determined number of retransmission information bits, the number of bits that need to be retransmitted is determined.
  • the step of determining the position uses the absolute value of the decoder's soft output directly as the reliability value of each bit of the substream that needs to be retransmitted, with the lowest reliability value from among the entire substream.
  • the number of information bits is equal to the determined number of retransmission information bits.
  • Another aspect of the present invention is a receiving-side facility that performs adaptive retransmission in a multi-antenna communication system.
  • the channel estimation block that performs channel estimation and the signal received by each antenna are obtained as a result of channel estimation.
  • the multi-input multi-output detection and retransmission synthesis block that sends the result signal to the CRC decoding block and the received sub-block are combined with the version in which the same signal is retransmitted several times.
  • a CRC decoding block for detecting whether there is an error bit in the stream and it is necessary to retransmit, and comparing the signal-to-interference noise ratio of the substream that needs to be retransmitted with a predetermined threshold, If the signal-to-interference and noise ratio of a substream that requires transmission is lower than a predetermined threshold, all the substreams that require retransmission are retransmitted. If SINR of retransmissions required sub streams is higher than the predetermined threshold comprises a retransmission method and retransmission parameter determining block performs redundancy increases retransmission respect retransmissions substring over arm necessary, the.
  • Another aspect of the present invention is that, in the above aspect, the retransmission method and retransmission parameter determination block are based on an output of a CRC decoding block and a determination block that determines a substream that needs to be retransmitted this time.
  • Multi-input of the substream that needs to be retransmitted a calculation block for calculating an equivalent signal-to-interference noise ratio after detection of the multi-loop, a signal-to-interference noise ratio of the sub-stream that needs to be retransmitted, and a predetermined threshold If the signal-to-interference and noise ratio of the substream that needs to be retransmitted is lower than a predetermined threshold, all the substreams that need to be retransmitted are retransmitted, and the substream that needs to be retransmitted A retransmission method selection block that performs redundant increase retransmission for a substream that needs to be retransmitted when the signal-to-interference noise ratio of the signal is higher than a predetermined threshold
  • the reception-side equipment is configured such that the substream that needs to be retransmitted is based on a signal-to-interference noise ratio of the substream that needs to be retransmitted. Determines the number of bits that need to be retransmitted, and receives each bit in the substream A retransmission bit decision block that determines the position of a bit that needs to be retransmitted based on the frequency and the determined number of retransmission bits and feeds back feedback information including information on the determined bit position that needs to be retransmitted to the transmitter are further provided.
  • the retransmission bit determination block uses the absolute value of the soft output of the decoder directly as the reliability value of each bit of the substream that needs to be retransmitted. Then, the position of the information bit whose number is equal to the determined number of retransmission bits is selected from the one with the lowest reliability value among the entire substreams.
  • the retransmission method, radio receiving apparatus, and multi-antenna radio communication system according to the present invention can be applied to uses such as retransmission in a multi-antenna radio communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本発明はシステムのスループットを向上することができる再送方法、無線受信装置、およびマルチアンテナ通信システムを開示する。この方法において、受信装置は受信したサブストリームに誤りがあって再送する必要があるか否かを検出し(401)、上記の再送が必要なサブストリームのマルチインプット・マルチアウトプット検出後の信号対干渉雑音比を算出し(402)、上記の再送が必要なサブストリームの信号対干渉雑音比と所定の閾値とを比較し(403)、上記の再送が必要なサブストリームの信号対干渉雑音比が所定の閾値より低い場合は上記再送が必要なサブストリームに対して全部再送を行い(404)、上記の再送が必要なサブストリームの信号対干渉雑音比が所定の閾値より高い場合は再送が必要なサブストリームに対して冗長増加再送を行う(405、406、407)。

Description

明 細 書
再送方法、無線受信装置、およびマルチアンテナ無線通信システム 技術分野
[0001] 本発明は、マルチアンテナ無線通信システムにおける自動再送技術に関し、具体 的にはマルチアンテナ通信システムのスループットを向上することができる再送方法 、無線受信装置、およびマルチアンテナ無線通信システムに関する。
背景技術
[0002] 高まり続ける情報伝送レートへの要求は、将来無線通信システムが直面する主要 な問題の 1つである。限られた周波数リソースを用いてより高い情報伝送レートを実現 するために、マルチインプット 'マルチアウトプット(MIMO)技術はすでに、将来無線 通信システムにおいて採用される不可欠の手段の 1つになっている。 MIMOシステ ムにおいて、送信側は送信データを複数のサブストリームに分割して、複数の送信ァ ンテナを用いて上記複数のサブストリームを送信し、受信側は複数の受信アンテナを 用いて上記複数のサブストリームを含む空間多重信号を受信する。従来のシングル アンテナ伝送方法に比べ、 MIMO技術ではチャネル容量が著しく向上され、情報伝 送レートを向上することができる。
[0003] 従来の MIMOシステムは、受信側において受信したサブストリームに誤りがあるか 否かを検出することができるように、送信側にお ヽて巡回冗長検査 (CRC)符号化を 行う。 CRC符号化とは、送信側において伝送するサブストリームの末尾に数ビットの CRCビットを添附する処理を言う。受信側は CRC復号を行い、サブストリームの末尾 に添附された CRCビットにより、受信サブストリームに誤りビットが含まれている力否か を検出する。ただし、 CRC符号ィ匕および CRC復号の処理は、誤りビットの個数およ び誤りビットの当該サブストリームにおける具体的な位置を検出することはできない。 したがって、従来の MIMOシステムでは、あるサブストリームが受信処理の後に依然 として誤りビットを含む場合、当該サブストリーム全部のデータをもう 1回再送する。 発明の開示
[0004] しかし、実際には、受信側においてサブストリームに誤りがあると検出される場合、 サブストリーム中の誤りビットの数は少ない場合が多ぐ特にチャネル特性が良い時 はなおさらである。よって、上述の MIMOシステムにおいて誤りビットを含むサブストリ ームのデータ全部をもう 1回再送する方法は、当該サブストリーム中の、正しく受信さ れた数多くのビットももう 1回再送することとなり、システムスループットの損失をもたら すという問題がある。
[0005] 本発明の目的は、力かる点に鑑みてなされたものであり、受信されたサブストリーム に誤りビットがあると検出される場合、当該サブストリームを一律に全部再送するのを 回避し、システムのスループットを向上することができる再送方法、無線受信装置、マ ルチアンテナ無線通信システムを提供することである。
[0006] 本発明のマルチアンテナ無線通信システムは、複数のサブストリームを複数の送信 アンテナを用いて送信する無線送信装置と、前記複数のサブストリームを複数の受 信アンテナを用いて受信する無線受信装置と、を具備するマルチアンテナ無線通信 システムにおいて、前記無線受信装置は、受信された前記複数のサブストリームのう ち再送が必要なサブストリームを検出する検出手段と、前記再送が必要なサブストリ ームの SINRと所定の閾値とを比較する比較手段と、前記再送が必要なサブストリー ムの SINRが所定の閾値より低い場合は、前記再送が必要なサブストリームに対して 全部再送する方法を決定し、前記再送が必要なサブストリームの SINRが所定の閾 値以上である場合は、前記再送が必要なサブストリームに対して冗長増加再送方法 を決定する決定手段と、前記決定された再送方法に関する情報を前記無線送信装 置に通知する通知手段と、を具備し、前記無線送信装置は、前記無線受信装置から 通知される再送方法に関する情報に基づき、適応的に前記再送が必要なサブストリ ームの全部または一部を再送する再送手段、を具備する、構成を採る。
[0007] 本発明によれば、マルチアンテナ無線通信システムの受信側にぉ 、て誤りビットが 含まれるサブストリームが検出される場合、当該サブストリームを全部再送するカゝ、ま たは誤りビットがあった一部を再送し、システムのスループットを向上することができる 図面の簡単な説明
[0008] [図 1]本発明の一実施の形態に係る MIMO無線通信システム 100の構成を示すプロ ック図
[図 2]本発明の一実施の形態に係る再送方法 Z再送パラメータ決定部の詳細な構成 を示すブロック図
[図 3]本発明の一実施の形態に係る再送方法の処理を示すフロー図
[図 4]本発明の一実施の形態に係る SINR区間と再送ビット数との対応関係を示す図
[図 5]本発明にかかる再送方法と従来の再送方法との性能比較を示す図
発明を実施するための最良の形態
[0009] 以下、本発明の最良の実施の形態について、添付図面を参照しながら詳細に説明 する。
[0010] 図 1は、本発明の一実施の形態に係る MIMO無線通信システム 100の構成を示す ブロック図である。 MIMO無線通信システム 100は、本発明に係るマルチアンテナ無 線通信システムの一例である。
[0011] 図 1において、 MIMO無線通信システム 100は、 n本の送信アンテナを用いて送
T
信を行う無線送信装置 150と、 n本の受信アンテナを用いて受信を行う無線受信装
R
置 160とを備えて構成される。無線送信装置 150は、データリソース部 101、分割部 102、 CRC符号化部 103— 1〜103— n、チャネル符号化 Z変調部 104— 1〜 104
T
— n、および送信アンテナ 105— 1〜105— nを備え、無線受信装置 160は、受信
T T
アンテナ 106— l〜106—n、 MIMO検出
R Z再送信号合成部 107、 CRC復号部 10
8— 1〜108— n 、チャネル推定部 110、および再送方法 Z再送パラメータ決定部 2
R
01を備える。以下、無線送信装置 150の CRC符号ィ匕部 103— 1〜103— nを CRC
T
符号化部 103と、チャネル符号ィ匕 Z変調部 104— 1〜104— nをチャネル符号ィ匕
T Z
変調部 104と、送信アンテナ 105— 1〜105— nを送信アンテナ 105と略称する場
T
合があり、無線受信装置 160の受信アンテナ 106— 1〜106— nを受信アンテナ 10
R
6と、 CRC復号部 108— 1〜108— nを CRC復号部 108と略称する場合がある。
R
[0012] 無線送信装置 150において、データリソース部 101は、無線送信装置 150により送 信される送信データの提供源であり、送信データを分割部 102に出力する。データリ ソース部 101は、無線受信装置 160からフィードバックされる再送に関するフィードバ ック情報を参照して、分割部 102に出力する送信データを決める。 [0013] 分割部 102は、データリソース部 101から入力される送信データを n個のサブストリ
T
ームに分割し、 CRC符号ィ匕部 103— 1〜103— nそれぞれに出力する。得られた各
T
サブストリームは、 1つの送信アンテナ 105に対応する。分割部 102は、無線受信装 置 160からフィードバックされる再送に関するフィードバック情報を参照して、上記再 送アンテナとサブストリームとの対応づける。
[0014] 巡回冗長検査 (CRC)符号ィ匕部 103— 1〜103— nは分割部 102から入力される
T
各サブストリームに対して、それぞれ CRC符号化を行い、チャネル符号化 Z変調部 1 04— 1〜104— nそれぞれに出力する。 CRC符号化とは各送信データの末尾に数
T
ビットの CRCビットを添附する処理である。 CRCビットが添附されたサブストリームを 受信する無線受信装置 160は、 CRCビットに基づき当該サブストリームに誤りがある か否かを検出する。
[0015] チャネル符号ィ匕 Z変調部 104— 1〜104— nそれぞれは、各サブストリームに対し
T
てチャネル符号ィ匕および変調を行い、送信アンテナ 105— 1〜105— nそれぞれに
T
出力する。
[0016] 無線受信装置 160において、 n本の受信アンテナ 106は、空間多重信号を受信す
R
る。チャネル推定部 110は、受信信号中のパイロット信号に基づき、または他の方法 を用いてチャネル推定を行ってチャネル推定行列 H (MIMOシステムにとって、チヤ ネル特性は 1つの行列で表すことができる)を得る。チャネル推定部 110は、得られた チャネル推定行列 Hを MIMO検出 Z再送信号合成部 107および再送方法 Z再送 ノ ラメータ決定部 201に出力する。
[0017] MIMO検出/再送信号合成部 107は、チャネル推定部 110で得られたチャネル 推定行列 Hを用いて受信アンテナ 106が受信した信号に対して MIMO検出処理を 行うほか、また同一の信号が数回再送された異なるバージョンに対して合成処理を行 う。すなわち、 MIMO検出 Z再送信号合成部 107は MIMO検出、および再送信号 の合成と!/ヽぅ 2つの機能を有する。具体的に MIMO検出 Z再送信号合成部 107は、 まず受信信号が再送データである力否かを判定し、次 、で下記の(1)または(2)の 処理を行う。(1)受信サブストリーム力 再送データでなぐすなわち、初めて伝送さ れたデータである場合、 MIMO検出/再送信号合成部 107は当該サブストリームに 対して MIMO検出処理のみを行う。ここで、 MIMO検出処理に用いられる方法(Ml MO検出方法)として多数の方法があって、例えば一般的に使われる ZF (Zero Ford ng;方法、 MMSE (Minimum Mean Square Error)方法、 s丄し (Successive Interferenc e Cancellation)方法などがある。 MIMO検出において、まず上記のような検出方法 を用いて受信信号から、無線送信装置 150の各送信アンテナ 105— 1〜105— nに
T
より送信された各サブストリームを分離し、次いで各サブストリームに用いられた AMC ノ メータに基づき、各サブストリームに対して復調及び復号処理を行う。(2)受信信 号が再送のサブストリームを含む場合、すなわち受信信号が、以前にすでに受信し たことがあるが正しく受信できな力つた場合当該サブストリームを含む場合、 MIMO 検出 Z再送信号合成部 107は、受信信号に対して MIMO検出処理を行うほか、再 送されたサブストリームに対して以前に伝送されたバージョンの信号との合成処理を 行う。具体的には、例えば、受信信号のうちサブストリーム sが N回目の伝送である場 合、当該サブストリームが N回までに伝送されて MIMO検出された後の信号をそれ ぞれ r、 r、 · ··、 rと示す。 rは、サブストリーム sがー回目に伝送されて MIMO検出さ
1 2 N 1
れた後の信号であって、 r、 · ··、 rはサブストリーム sが再送されて MIMO検出された
2 N
後の信号である。受信側では、サブストリーム sが第 N回伝送され MIMO検出された 後の信号 rと、前の N— 1回までの受信処理において得られた各バージョンの信号 r
N 1
、 r、 · ··、 r とを合成し、 r= (r +r十… +r ) * IZNを得る。次いで MIMO検出 Z
2 N- l 1 2 N
再送信号合成部 107は、得られた rに対して復調および復号を行ってから、 CRC復 号部 108— l〜108—nそれぞれと、再送方法 Z再送パラメータ決定部 201に出力
T
する。
各 CRC復号部 108— 1〜108— nは、 MIMO検出 Z再送信号合成部 107から入
T
力される各サブストリームそれぞれに対して、 CRC復号を行う。すなわち、各 CRC復 号部 108— 1〜108— nは、各サブストリームの中に誤りビットが含まれているか否か
T
を検出し、再送応答信号として肯定 (ACK)または否定 (NAK)の信号を生成する。 再送応答信号 ACKおよび NAKは、当該サブストリームが誤りビットを含む場合、お よび誤りビットを含まない場合の 2つの場合をそれぞれ示す。以下、誤りビットを含む サブストリームを再送サブストリームと称す。各 CRC復号部 108は、生成された再送 応答信号 (ACKまたは NAK)を、再送方法 Z再送パラメータ決定部 201および送信 データ結合部 109に出力するとともに、再送方法 Z再送パラメータ決定部 201を介し フィードバックチャネル 111を通じて無線送信装置 150にフィードバックする。
[0019] CRC復号部 108からフィードバックされる再送応答信号は、無線送信装置 150に おいて再送動作を行うのに用いられ、 ACKである場合は、当該サブストリームが正し く受信され、次回の送信処理にぉ 、て次の新 、サブストリームを送信して良 、こと を示す。一方、再送応答信号が NAKである場合は、当該サブストリームが正しく受 信されなかったため、次回の送信処理において当該サブストリームをもう 1回送信す ることを示す。無線送信装置 150がサブストリームを再送する際において、元の送信 アンテナを用いても良ぐ分割部 102に対する制御により送信アンテナを変更しても 良い。
[0020] なお、 CRC復号部 108は、 CRC復号されたサブストリームが誤りビットを含まない場 合、 CRC復号されたサブストリームの情報ビットの末尾に添附されて 、る CRCビット を除去し、送信データ結合部 109に出力する。
[0021] 送信データ結合部 109は、 CRC復号部 108で CRCビットが除去された複数のサブ ストリームを結合して受信データ (Rx データ)を得る。
[0022] 再送方法 Z再送パラメータ決定部 201は、チャネル推定部 110で推定されたチヤ ネル推定行列 Hと、 CRC復号部 108— 1〜108— nから入力される再送応答信号と
R
を用いて、 MIMO検出 Z再送信号合成部 107から入力される各サブストリームのうち 、再送が必要な各サブストリーム (再送サブストリーム)の再送に用いられる再送方法 および再送パラメータを決定する。本発明に係る再送方法は、各再送サブストリーム に対して、異なる再送方法および再送パラメータを適応的に決定する点にお ヽて従 来の MIMO再送方法と相違する。上記異なる再送方法とは 1)当該再送サブストリー ムを全部再送する方法と、 2)冗長増加(Incremental Redundancy)再送方法という 2 種類を含む。第 1種類の再送方法は従来の MIMOシステムにお 、て用いる再送方 法と同様で、サブストリームに誤りビットが検出された場合、当該サブストリームを全部 もう 1回再送する。第 2種類の冗長増加再送方法とは、サブストリームに誤りビットが検 出された場合、毎回当該サブストリームの中の部分的なビットを再送する方法である 。再送パラメータとは、サブストリームの再送に冗長増加再送方法を用いる場合、毎 回再送すれる情報ビットの数および具体的にどれらのビットを再送するかを示すパラ メータである。再送方法 Z再送パラメータ決定部 201は、再送サブストリームの再送 方法および再送パラメータの選択においてチャネル推定部 110の出力、すなわちチ ャネル推定行列 Hを用いる。再送方法 Z再送パラメータ決定部 201は、決定された 各サブストリームの再送方法及び再送パラメータをフィードバックチャネル 111を通じ て無線送信装置 150にフィードバックするとともに、次回の受信処理用に MIMO検 出 Z再送信号合成部 107に出力する。
[0023] 上記のように、無線受信装置 160において生成される再送に関するフィードバック 情報は、再送応答信号 (ACKまたは NAK)、再送アンテナの選択結果、再送方法 および再送パラメータの決定結果などを指し、再送サブストリームの決定結果を含め ても良い。
[0024] 図 2は、本実施の形態に係る再送方法 Z再送パラメータ決定部 201の詳細な構成 を示すブロック図である。
[0025] 再送方法 Z再送パラメータ決定部 201は、再送サブストリーム集合 S決定部 301、
k
MIMO検出後 SINR算出部 302、再送方法決定部 303、および再送ビット決定部 3 04を含む。
[0026] 再送サブストリーム集合 S決定部 301は、 MIMO検出
k Z再送信号合成部 107から 入力される各サブストリームに対して、 CRC復号部 108の処理結果に基づき、再送 が必要なサブストリーム (再送サブストリーム)の集合 S = {S 、S 、···}を決定する。
k kl k2
[0027] 次いで、 MIMO検出後 SINR算出部 302は、再送サブストリーム集合 S決定部 30
k
1で決定された再送サブストリーム集合 Sの中の各サブストリームの MIMO検出およ
k
び送信データ合成後の SINR値を、チャネル推定行列 Hに基づき算出する。すなわ ち SINR = {SINR 、 SINR 、 ···}を得る。
k kl k2
[0028] 次いで、再送方法決定部 303は MIMO検出後 SINR算出部 302の出力 SINRお
k よび所定の SINR閾値に基づき、再送サブストリーム集合 Sの中の各サブストリーム
k
毎に再送方法を決定する。具体的には、 SINR値が所定の SINR閾値より低い再送 サブストリームに対しては、第 1種類の再送方法、すなわち当該再送サブストリームを 全部再送する方法を用 、ると決定し、 SINR値が所定の SINR閾値より高 、再送サブ ストリームに対しては、第 2種類の再送方法、すなわち冗長増加再送方法を用いる。 このような決定の仕方は以下のような考慮から出されたものである。 SINR値がより低 いサブストリームは、その中に含む誤りビットの数がより多い。かかる場合、もし冗長増 加再送方法を用いれば、信頼度がとても低く再送の必要がある数多くのビットの位置 に関する情報を無線送信装置 150にフィードバックする必要がある力 そのフィード ノ ックの情報量が大きいため実際のシステムにおいて実現が困難である。一方、 SI NR値がより高いサブストリームは、その中に含む誤りビットがより少ない。かかる場合 、第 1種類の再送方法、すなわち当該サブストリーム全部を再送する方法を用いれば 、システムスループットの浪費をもたらす。再送方法決定部 303は、決定された再送 方法を示す情報をフィードバックチャネル 111を用いて無線送信装置 150にフィード ノックするとともに、 MIMO検出 Z再送信号合成部 107へ出力する。
[0029] 次 、で、再送ビット決定部 304は、冗長増加再送方法を用いると決定されたサブス トリームに対して具体的に、再送を行うビットを決定する。具体的に、再送ビット決定 部 304はまず再送情報ビットの数を当該サブストリームの SINR値に基づき決定する 。本発明の再送方法において、所定の SINRは予め複数の区間に分けられ、異なる SINR区間に異なる再送ビット数を対応つけられる。 SINR値がより高い区間に対応 する再送ビット数はより少なぐ SINR値がより低い区間に対応する再送ビット数はより 多い。再送する情報ビット数が決まると、再送ビット決定部 304は具体的に再送を行う ビットを、当該サブストリームの中の各ビットの信頼度に基づき決定する。再送ビットの 決定方法として、まず当該サブストリームの中の各情報ビットの信頼度を推定し、信 頼度が最も低い方から、決定された数の情報ビットを選択して、決定する。
[0030] 図 3は、本実施の形態に係る再送方法 Z再送パラメータ決定部 201における再送 方法の処理を示すフロー図である。ここでは、 MIMO無線通信システム 100の無線 送信装置 150の n個の送信アンテナから送信される送信サブストリーム集合が S = {
T
S 、 S 、 · ··、 S }であるとして説明する。
1 2 nT
[0031] ステップ 401において、再送サブストリーム集合 S決定部 301は、送信サブストリー k
ム集合 Sの各サブストリームの CRC復号結果に基づき、再送サブストリーム集合 S = {S 、S 、···}が決定する。ここでは、そのうちの 1つの再送サブストリームを例にと kl k2
り、 S で示す。
kk
[0032] 次いで、ステップ 402において、 MIMO検出後 SINR算出部 302は、再送サブスト リーム S の MIMO検出を経た後の等価 SINRを算出し、 SINR と記す。等価 SINR kk kk
の算出はチャネル推定で得られたチャネル推定行列 Hおよび MIMO検出 Z再送信 号合成部 107で用いられる MIMO検出方法に基づき、理論上で算出することもでき るし、実際に MIMO検出後の信号に対して測定を行って得ることもできる。再送サブ ストリーム S が初回伝送でない場合は、等価 SINRは MIMO検出処理だけでなくさ
kk
らに再送信号合成処理を経た後の数値とする。
[0033] 次いで、ステップ 403において、再送方法決定部 303は、再送サブストリーム S に
kk 対応する再送方法を SINR に基づき決定する。具体的に、再送方法決定部 303は
kk
, SINR と予め決められた SINR閾値 SINR 0とを比較して、 SINR が SINR 0より kk kk 低い場合は第 1種類、すなわち当該再送サブストリームを全部再送する方法を決定 し、ステップ 404に移行する。そうでない場合は第 2種類、すなわち冗長増加再送方 法が選択され、ステップ 405に移行する。
[0034] SINR が SINR 0より低い場合ステップ 404において、再送方法決定部 303は再
kk
送サブストリーム s に対して全部再送方法を用いるという決定結果を、無線送信装
kk
置 150にフィードバックして、再送サブストリーム S に対する全部再送を要求するとと
kk
もに、 MIMO検出 Z再送信号合成部 107に出力する。
[0035] 一方 SINR が SINR 0以上である場合ステップ 405において、再送方法決定部 3
kk
03は、再送サブストリーム S に対して冗長増加再送方法を用いると決定する。
kk
[0036] 次 、で、ステップ 406にお 、て、再送ビット決定部 304は、次回に再送する情報ビッ トの数を SINR に基づき決定する。かかる場合、所定の SINRは予め複数の区間に
kk
分けられ、異なる SINR区間には異なる再送情報ビット数が対応づけられる。再送サ ブストリーム S の SINR値 SINR がどの SINR区間に含まれると、その SINR区間に
kk kk
対応する再送情報ビット数を再送サブストリーム s の次回再送の情報ビット数として
kk
選択して、ここでは NUM と記す。例えば再送ビット決定部 304は、図 4に示す SIN
kk
R区間と再送情報ビット数 NUMとの対応関係を参照し、再送情報ビット数 NUM を
kk 決める。
[0037] 次いで、ステップ 407において、再送ビット決定部 304は、再送サブストリーム S に
kk 対応する具体的な再送ビットを選択する。具体的に再送ビット決定部 304は、以下の (a)および (b)の処理を順次に行う。
[0038] (a)再送ビット決定部 304は、再送サブストリーム S の中の各情報ビットの受信後
kk
の信頼度 α (1= 1、 · · ·、 L)を推定する。ここで Lは当該サブストリームの中の情報ビッ
1
トの数を示し、 aは当該サブストリーム S の中の第 1個の情報ビットの受信後の信頼
1 kk
度を示す。理論上で言うと、各情報ビットの信頼度 αは、下記の式(1)で表すことが できる。
[数 1]
Figure imgf000012_0001
すなわち、各情報ビットの信頼度 αは、当該ビットの対数尤度比 (LLR)の絶対値で 表すことができる。実際のシステムにおいて再送ビット決定部 304は、復号器の軟判 定の絶対値を直接、各ビットの信頼度 α値として使用する。
[0039] (b)再送ビット決定部 304は、再送サブストリーム S の中で信頼度が低い方力 N
kk
UM 個の情報ビットを決定して、決定結果に関する情報を、フィードバックチャネル kk
11 1を用いて無線送信装置 150にフィードバックする。無線送信装置 150は、次回の 送信においてこの選択された NUM 個の情報ビットに対して再送を行う。次いで、再
kk
送方法決定部 303は再送サブストリーム S に対して冗長増加再送方法を用いるとい
kk
う決定結果および具体的な再送パラメータを、無線送信装置 150にフィードバックし て、再送サブストリーム S に対する冗長増加再送を要求するとともに、 MIMO検出
kk
Z再送信号合成部 107に出力する。
[0040] このように図 3では、 1つの再送サブストリーム S に対して再送方法および具体的な
kk
再送ビットを決定する処理を示している。再送方法 Z再送パラメータ決定部 201は、 図 3に示す処理を繰り返すことにより、再送サブストリーム集合 S = { S , S , ···}に
k kl k2 含まれているすべての再送サブストリームに対して再送方法および具体的な再送パ ラメータを決定する。なお、再送方法 Z再送パラメータ決定部 201は、すべての再送 サブストリームに対して再送方法および再送パラメータを決定してから、決定結果を 無線送信装置 150にフィードバックするとともに、 MIMO検出 Z再送信号合成部 10 7に出力しても良い。ここで、冗長増加再送方法を用いると決定した場合は、当該フィ ードバック情報の中には再送が必要な各ビットが再送データサブストリーム S の中に
kk おける位置に関する情報を含む。
[0041] 図 5は、本発明に係る適応再送方法と従来の再送方法との性能比較を示す図であ る。この図において、「參」を用いて示すグラフは従来の再送方法を用いる場合、各 S NRにおいて得られる周波数利用効率を示し、「〇」を用いて示すグラフは本発明に 係る適応再送方法を用いる場合、各 SNRにお ヽて得られる周波数利用効率を示す
[0042] この性能比較のためのシミュレーションにおいて、送信アンテナ 105と受信アンテナ 106の本数は両方とも 4本であり、チャネルは平坦減衰チャネルを用い、変調方式は QPSK変調を用い、 1つのサブストリームは 1000個の変調シンボルを含み、 MIMO 検出方法は ZF検出を用いる。シミュレーションにおいて再送方法を決定するために 用いる SINR閾値は 5dBであって、冗長増加再送はにおいてはフィードバック手順 4 0ビットの 1種の場合のみを含む。図 5に示す結果力 分力るように、従来方法と比べ 、本願において提案した方法を用いれば、より良い周波数利用効率を得ることができ る。
[0043] このように、本実施の形態によれば、マルチアンテナ無線通信システムにお ヽて無 線受信装置は受信したサブストリームに誤りがあると検出する場合、当該サブストリー ムを再送サブストリームと判定し、当該再送サブストリームの SINRを所定の閾値と比 較する。当該再送サブストリームの SINRが所定の閾値以上である場合、当該再送サ ブストリームが含む誤りビットが少ないため、冗長増加再送の方法を決定して、再送 する一部の情報ビットの数と当該サブストリームの中における具体的な位置を決定し て無線送信装置にフィードバックする。無線送信装置はフィードバックされた情報に 基づき、無線受信装置で正しく受信できなかった情報ビットを含む一部を再送し、正 しく受信された情報ビットの重複な再送を減少することができるため、送信側から受信 側へのシステムのスループットを向上することができる。一方、当該再送サブストリー ムの SINRが所定の閾値より低い場合は、当該再送サブストリームが含む誤りビットが 多いため、当該再送サブストリームを全部再送する方法を決定することにより、数多 い誤りビットに関する膨大な情報をフィードバックすることを回避することができ、シス テムのスループットを向上することができる。
[0044] 本発明に係るマルチアンテナ無線通信システムにおける再送方法および無線受信 装置は、上記各実施の形態に限定されず、種々変更して実施することが可能である
[0045] 本発明に係る無線受信装置は、マルチアンテナ無線通信システムにおける通信端 末装置および基地局装置に搭載することが可能であり、これにより上記と同様の作用 効果を有する通信端末装置、基地局装置、および移動体通信システムを提供するこ とがでさる。
[0046] なお、ここでは、本発明をノヽードウエアで構成する場合を例にとって説明したが、本 発明をソフトウェアで実現することも可能である。例えば、本発明に係る再送方法のァ ルゴリズムをプログラミング言語によって記述し、このプログラムをメモリに記憶してお いて情報処理手段によって実行させることにより、本発明に係る無線受信装置と同様 の機能を実現することができる。
[0047] 本発明のもう 1つの態様は、マルチアンテナ通信システムにおける適応再送方法お よび設備を提案し、マルチアンテナ伝送における再送性能をさらに向上することがで きる。
[0048] 本発明のもう 1つの態様は、マルチアンテナ通信システムにおける適応再送方法お よび設備であって、これらの適応再送方法および設備において、再送が必要なサブ ストリームの SINRに基づき適応的に再送方法および再送パラメータを選択する。
[0049] 本発明のもう 1つの態様は、上記の態様において、再送サブストリームのチャネル 特性に基づき、用いる再送方法および再送パラメータに対して適応的な選択を行う。
[0050] 本発明のもう 1つの態様は、マルチアンテナ通信システムにおける適応再送方法で あって、この方法において受信装置は、受信したサブストリームに誤りがあって再送 の必要がある力否かを検出するステップと、上記の再送が必要なサブストリームのマ ルチインプット 'マルチアウトプット検出後の等価信号対干渉雑音比を算出するステツ プと、上記の再送が必要なサブストリームの信号対干渉雑音比と所定の閾値とを比 較し、上記の再送が必要なサブストリームの信号対干渉雑音比が所定の閾値より低 い場合は再送が必要なサブストリームに対して全部再送を行い、上記の再送が必要 なサブストリームの信号対干渉雑音比が所定の閾値以上である場合は再送が必要 なサブストリームに対して冗長増加再送処理を行うステップと、を実行する。
[0051] 本発明のもう 1つの態様は、上記の態様において、前記の冗長増加再送処理は、 信号対干渉雑音比に対応する再送ビット数を設定するステップと、前記再送が必要 なサブストリームの信号対干渉雑音比に基づき前記再送サブストリーム中に再送が 必要なビットの数を決定するステップと、サブストリーム中の各ビットの受信信頼度お よび決定された再送ビット数に基づき、再送が必要なビットの位置を決定するステツ プと、決定された再送が必要なビットの位置に関する情報を含むフィードバック情報 を送信装置にフィードバックする。
[0052] 本発明のもう 1つの態様は、上記の態様において、送信装置は、受信装置から送ら れるフィードバック情報の中に含まれて 、る、再送が必要なビットの位置に関する情 報を受信して取得するステップと、前記再送が必要なビットの位置に基づき、前記サ ブストリームの冗長増加再送処理を行うステップと、を実行する。
[0053] 本発明のもう 1つの態様は、上記の態様において、前記サブストリームが一回目の 伝送である場合、前記等価信号対干渉雑音比は今回の MIMO検出後の信号対干 渉雑音比であって、前記サブストリームが再送サブストリームである場合、前記等価 信号対干渉雑音比は再送合成を経た後の信号対干渉雑音比である。
[0054] 本発明のもう 1つの態様は、上記の態様において、前記信号対干渉雑音比に対応 する再送ビット数を設定するステップは、信号対干渉雑音比を複数の信号対干渉雑 音比区間に分け、前記各信号対干渉雑音比区間をそれぞれ異なる再送情報ビット 数に対応付け、かつ信号対干渉雑音比が高いほど、再送情報ビット数はより少なく設 定する。
[0055] 本発明のもう 1つの態様は、上記の態様において、サブストリーム中の各ビットの受 信信頼度および前記決定された再送情報ビット数に基づき、再送が必要なビットの 位置を決定するステップは、復号器の軟出力の絶対値を直接、再送が必要なサブス トリームの各ビットの信頼度値として使用し、サブストリーム全体の中から信頼度値が 最も低 ヽ方から、数は前記決定された再送情報ビット数と等 ヽ情報ビットの位置を 選択する。
[0056] 本発明のもう 1つの態様は、マルチアンテナ通信システムにおいて適応再送を行う 受信側設備であって、チャネル推定を行うチャネル推定ブロックと、各アンテナが受 信した信号を、チャネル推定の結果を用いて検出し、同一の信号が数回再送された バージョンに対して合成処理を行 、、結果信号を CRC復号ブロックに送るマルチイ ンプット ·マルチアウトプット検出および再送合成ブロックと、受信されたサブストリーム 中に誤りビットがあって再送する必要がある力否かを検出する CRC復号ブロックと、 前記の再送が必要のサブストリームの信号対干渉雑音比と所定の閾値とを比較し、 前記の再送が必要なサブストリームの信号対干渉雑音比が所定の閾値より低い場合 は再送が必要なサブストリームに対して全部再送を行 、、上記の再送が必要なサブ ストリームの信号対干渉雑音比が所定の閾値より高い場合は再送が必要なサブストリ ームに対して冗長増加再送を行う再送方法および再送パラメータ決定ブロックと、を 具備する。
[0057] 本発明のもう 1つの態様は、上記の態様において、前記再送方法および再送パラメ ータ決定ブロックは、 CRC復号ブロックの出力に基づき、今回再送が必要なサブスト リームを決定する決定ブロックと、前記再送が必要なサブストリームのマルチインプッ ト 'マルチァ外プ検出後の等価信号対干渉雑音比を算出する算出ブロックと、前記 再送が必要なサブストリームの信号対干渉雑音比と所定の閾値とを比較し、前記の 再送が必要のサブストリームの信号対干渉雑音比が所定の閾値より低い場合は再送 が必要なサブストリームに対して全部再送を行 、、上記の再送が必要なサブストリー ムの信号対干渉雑音比が所定の閾値より高い場合は再送が必要なサブストリームに 対して冗長増加再送を行う再送方法選択ブロックと、を具備する。
[0058] 本発明のもう 1つの態様は、上記の態様にぉ 、て、前記受信側設備は、前記再送 が必要なサブストリームの信号対干渉雑音比に基づき、前記再送が必要なサブストリ ームにおいて再送が必要なビット数を決定し、サブストリーム中の各ビットの受信信頼 度および決定された再送ビット数に基づき、再送が必要なビットの位置を決定し、決 定された再送が必要なビットの位置に関する情報を含むフィードバック情報を送信装 置にフィードバックする再送ビット決定ブロック、をさらに具備する。
[0059] 本発明のもう 1つの態様は、上記の態様において、前記再送ビット決定ブロックは、 復号器の軟出力の絶対値を直接、再送が必要なサブストリームの各ビットの信頼度 値として使用し、サブストリーム全体の中から信頼度値が最も低い方から、数は前記 決定された再送ビット数と等しい情報ビットの位置を選択する。
[0060] 本明細書は、 2005年 3月 11日出願の中国特許出願第 200510054755. 0号に 基づく。この内容はすべてここに含めておく。
産業上の利用可能性
[0061] 本発明に係る再送方法、無線受信装置、およびマルチアンテナ無線通信システム は、マルチアンテナ無線通信システムにおける再送等の用途に適用することができる

Claims

請求の範囲
[1] 受信したサブストリームの中の誤りを検出し、前記サブストリームに誤りがある場合、 再送が必要なサブストリームと決定する決定ステップと、
前記再送が必要なサブストリームのマルチインプット 'マルチアウトプット検出後の信 号対干渉雑音比を算出する算出ステップと、
算出された前記再送が必要なサブストリームの信号対干渉雑音比と所定の閾値と を比較し、前記再送が必要なサブストリームの信号対干渉雑音比が所定の閾値より 低 、場合は、前記再送が必要なサブストリームに対して全部再送を送信側に要求し 、前記再送が必要なサブストリームの信号対干渉雑音比が所定の閾値より高い場合 は、再送が必要なサブストリームに対して冗長増加再送を送信側に要求する要求ス テツプと、
を有する再送方法。
[2] 前記要求ステップにおいて、冗長増加再送の再送方法を要求する場合、
所定の信号対干渉雑音比と再送ビット数とが対応づけられた情報、および前記再 送が必要なサブストリームの信号対干渉雑音比に基づき、前記再送サブストリーム中 に再送が必要なビットの数を再送ビット数と決定するステップと、
前記再送が必要なサブストリーム中の各ビットの受信信頼度を算出し、算出された 前記各ビットの受信信頼度と、前記決定された再送ビット数とに基づき、再送が必要 なビットの位置を決定するステップと、
決定された再送が必要なビットの位置に関する情報を含むフィードバック情報を送 信装置にフィードバックするステップと、
を有する請求項 1記載の再送方法。
[3] 前記フィードバックされたフィードバック情報の中に含まれる、前記再送が必要なビ ットの位置に関する情報を受信して取得するステップと、
前記再送が必要なビットの位置に関する情報に基づき、前記再送が必要なサブスト リームの冗長増加再送処理を行うステップと、を有する、
請求項 1記載の再送方法。
[4] 前記再送が必要なサブストリームのマルチインプット 'マルチアウトプット検出後の信 号対干渉雑音比を算出するステップにおいて、
前記再送が必要なサブストリームが一回目の伝送である場合、前記信号対干渉雑 音比は MIMO検出後の信号対干渉雑音比であって、前記再送が必要なサブストリ ームが再送サブストリームである場合、前記信号対干渉雑音比は再送信号合成を経 た後の信号対干渉雑音比である、
請求項 1記載の再送方法。
[5] 前記冗長増加再送の再送方法を決定するステップにお!、て、
前記所定の信号対干渉雑音比と再送ビット数とが対応づけられた情報は、所定の 信号対干渉雑音比が複数の信号対干渉雑音比区間に分けられ、かつ信号対干渉 雑音比が高いほど、再送が必要な情報ビット数をより少なぐ前記各信号対干渉雑音 比区間にそれぞれ異なる再送情報ビット数を対応づけられた情報である、
請求項 2記載の再送方法。
[6] 前記再送が必要なサブストリーム中の各ビットの受信信頼度を算出し、算出された 前記各ビットの受信信頼度と、前記決定された再送ビット数とに基づき、再送が必要 なビットの位置を決定するステップは、
復号器の軟判定の絶対値を直接、前記再送が必要なサブストリームの各ビットの信 頼度値として使用し、前記再送が必要なサブストリーム全体の中から信頼度値が最も 低 、方から、数が前記の決定された再送ビット数と等し 、情報ビットの位置を決定す る、
請求項 2記載の再送方法。
[7] マルチアンテナ通信システムにおいて使用される無線受信装置であって、 チヤネ ル推定を行うチャネル推定ブロックと、
各アンテナが受信した信号力ゝら各サブストリームを、前記チャネル推定の結果を用 いて検出し、同一の信号が数回再送されたバージョンに対して合成処理を行うマル チインプット 'マルチアウトプット検出および再送信号合成ブロックと、
前記検出された各サブストリーム中の誤りビットを検出し、誤りビットが検出されたサ ブストリームを再送が必要なサブストリームと決定する CRC復号ブロックと、
前記再送が必要なサブストリームの信号対干渉雑音比を算出して、所定の閾値と 比較し、前記再送が必要なサブストリームの信号対干渉雑音比が所定の閾値より低 V、場合は前記再送が必要なサブストリームに対して全部再送を送信側に要求し、前 記再送が必要なサブストリームの信号対干渉雑音比が所定の閾値より高い場合は再 送が必要なサブストリームに対して冗長増加再送を送信側に要求する再送方法 Z再 送パラメータ決定ブロックと、
を具備する無線受信装置。
[8] 前記再送方法 Z再送パラメータ決定ブロックは、
前記再送が必要なサブストリームのマルチインプット 'マルチアウトプット検出後の信 号対干渉雑音比を算出する算出ブロックと、
算出された前記再送が必要なサブストリームの信号対干渉雑音比と所定の閾値と を比較し、前記再送が必要なサブストリームの信号対干渉雑音比が所定の閾値より 低い場合は前記再送が必要なサブストリームに対して全部再送を送信側に要求し、 前記再送が必要なサブストリームの信号対干渉雑音比が所定の閾値より高い場合は 前記再送が必要のサブストリームに対して冗長増加再送を送信側に要求する再送方 法決定ブロックと、
を具備する請求項 7記載の無線受信装置。
[9] 前記再送が必要なサブストリームの信号対干渉雑音比に基づき、前記再送が必要 なサブストリームにお 、て再送が必要なビット数を再送ビット数と決定し、前記再送が 必要なサブストリーム中の各ビットの受信信頼度を算出し、算出された前記各ビットの 受信信頼度と、前記決定された再送ビット数とに基づき、再送が必要なビットの位置 を決定し、決定された再送が必要なビットの位置に関する情報を含むフィードバック 情報を無線送信装置にフィードバックする再送ビット決定ブロック、
をさらに具備する請求項 8記載の無線受信装置。
[10] 前記再送ビット決定ブロックは、
復号器の軟判定の絶対値を直接、前記再送が必要なサブストリームの各ビットの信 頼度値として使用し、前記再送が必要なサブストリーム全体の中から信頼度値が最も 低 、方から、数が前記決定された再送ビット数と等し 、情報ビットの位置を決定する、 請求項 9記載の無線受信装置。 複数のサブストリームを複数の送信アンテナを用いて送信する無線送信装置と、前 記複数のサブストリームを複数の受信アンテナを用いて受信する無線受信装置と、を 具備するマルチアンテナ無線通信システムにお 、て、
前記無線受信装置は、
受信された前記複数のサブストリームのうち再送が必要なサブストリームを検出する 検出手段と、
前記再送が必要なサブストリームの SINRと所定の閾値とを比較する比較手段と、 前記再送が必要なサブストリームの SINRが所定の閾値より低い場合は、前記再送 が必要なサブストリームに対して全部再送する方法を決定し、前記再送が必要なサ ブストリームの SINRが所定の閾値以上である場合は、前記再送が必要なサブストリ ームに対して冗長増加再送方法を決定する決定手段と、
前記決定された再送方法に関する情報を前記無線送信装置に通知する通知手段 と、
を具備し、
前記無線送信装置は、
前記無線受信装置から通知される再送方法に関する情報に基づき、適応的に前 記再送が必要なサブストリームの全部または一部を再送する再送手段、
を具備する、
マルチアンテナ無線通信システム。
PCT/JP2006/304899 2005-03-11 2006-03-13 再送方法、無線受信装置、およびマルチアンテナ無線通信システム WO2006095904A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/817,952 US20090044065A1 (en) 2005-03-11 2006-03-13 Retransmitting method, radio receiving apparatus, and multiantenna radio communication system
JP2007507225A JPWO2006095904A1 (ja) 2005-03-11 2006-03-13 再送方法、無線受信装置、およびマルチアンテナ無線通信システム
CNA2006800079303A CN101138184A (zh) 2005-03-11 2006-03-13 重传方法、无线接收装置、及多天线无线通信系统
EP06715622A EP1852992A1 (en) 2005-03-11 2006-03-13 Retransmitting method, radio receiving apparatus, and multiantenna radio communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2005100547550A CN1832391A (zh) 2005-03-11 2005-03-11 多天线通信系统中的自适应重传方法和设备
CN200510054755.0 2005-03-11

Publications (1)

Publication Number Publication Date
WO2006095904A1 true WO2006095904A1 (ja) 2006-09-14

Family

ID=36953488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304899 WO2006095904A1 (ja) 2005-03-11 2006-03-13 再送方法、無線受信装置、およびマルチアンテナ無線通信システム

Country Status (5)

Country Link
US (1) US20090044065A1 (ja)
EP (1) EP1852992A1 (ja)
JP (1) JPWO2006095904A1 (ja)
CN (2) CN1832391A (ja)
WO (1) WO2006095904A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126422A1 (ja) * 2007-04-11 2008-10-23 Panasonic Corporation 再送方法、通信システム、および送信装置
JP2016171574A (ja) * 2015-03-12 2016-09-23 株式会社Nttドコモ データ再送方法および装置
CN115865281A (zh) * 2022-11-17 2023-03-28 重庆川仪自动化股份有限公司 工业仪表通信数据丢包处理方法、系统、设备及存储介质

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1999878B1 (en) * 2006-03-24 2016-10-12 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement in a telecommunication system
CN101154974B (zh) * 2006-09-28 2011-08-10 中兴通讯股份有限公司 一种基于基站的多天线模式控制方法
CN101155012B (zh) * 2006-09-28 2013-05-01 中兴通讯股份有限公司 一种基于终端的多天线模式控制方法
KR101009417B1 (ko) * 2007-06-14 2011-01-19 한국전자통신연구원 다중사용자 다중안테나 송수신 시스템 제어를 위한송신기/수신기 및 그 제어 방법
US20100325510A1 (en) * 2008-02-21 2010-12-23 Toshizo Nogami Transmission device, reception device, communication system, and communication method
CN101621364B (zh) * 2008-06-30 2013-01-30 富士通株式会社 自动重传控制器和重传块重组装置
US8185798B2 (en) * 2008-06-30 2012-05-22 Freescale Semiconductor, Inc. Techniques for reducing joint detection complexity in a channel-coded multiple-input multiple-output communication system
CN101924619B (zh) * 2009-06-16 2015-02-25 中兴通讯股份有限公司 一种多天线lte系统中的混合自动重传方法和装置
CN101938299B (zh) * 2009-06-29 2013-04-24 华为技术有限公司 一种确定联合传输小区的方法和装置
CN101938342B (zh) * 2009-07-01 2015-07-22 中兴通讯股份有限公司 一种基于混合自动重发请求的数据传输方法及装置
US20110004810A1 (en) * 2009-07-06 2011-01-06 Himax Media Solutions, Inc. Method and System of Receiving Data with Enhanced Error Correction
US8539297B1 (en) * 2011-02-01 2013-09-17 Sprint Communications Company L.P. Determining whether a wireless access node should retransmit data packets based on the condition of a reverse wireless link
CN103516447B (zh) * 2013-09-24 2016-03-30 上海华为技术有限公司 一种多天线信号合并方法和网络侧设备
US9014309B1 (en) * 2013-11-19 2015-04-21 Sprint Spectrum L.P. Adaptive per-antenna rate control based on network conditions
US10069691B2 (en) * 2013-11-26 2018-09-04 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for anomaly detection in a network
CN105337705B (zh) * 2014-08-06 2020-06-23 中兴通讯股份有限公司 数据发送反馈、数据发送方法及装置
EP3291507B1 (en) * 2015-04-27 2023-12-13 Sony Group Corporation Information processing device, communication system, information processing method and program
CN105721115B (zh) * 2016-04-26 2019-06-14 浙江科技学院 一种无需差错校验码的自动重传请求方法
CN107708178B (zh) * 2017-09-08 2020-07-07 中国联合网络通信集团有限公司 信息重传方法和基站
CN109120357B (zh) * 2018-08-27 2021-08-24 京信网络系统股份有限公司 信号搜索检测方法、装置、终端及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124915A (ja) * 2001-09-28 2003-04-25 Lucent Technol Inc 情報ブロックを処理する方法
JP2003143645A (ja) * 2001-10-19 2003-05-16 Lucent Technol Inc 無線通信システムの通信チャネルで情報を再送信する方法。
JP2004135304A (ja) * 2002-09-30 2004-04-30 Lucent Technol Inc 無線通信システムのためのmimoharqスキームでの信号および制御メカニズム
WO2004038986A2 (en) * 2002-10-25 2004-05-06 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
JP2004253828A (ja) * 2002-12-24 2004-09-09 Matsushita Electric Ind Co Ltd 無線送信装置及び無線送信方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US76783A (en) * 1868-04-14 Island
US203456A (en) * 1878-05-07 Improvement in carbureting attachments for gas-burners
US57530A (en) * 1866-08-28 Improvement in railroad wedge-rails
US62221A (en) * 1867-02-19 philippi
US66004A (en) * 1867-06-25 deavs
US213184A (en) * 1879-03-11 Improvement in candlesticks
US5574979A (en) * 1994-06-03 1996-11-12 Norand Corporation Periodic interference avoidance in a wireless radio frequency communication system
US5844918A (en) * 1995-11-28 1998-12-01 Sanyo Electric Co., Ltd. Digital transmission/receiving method, digital communications method, and data receiving apparatus
US6700867B2 (en) * 2001-12-20 2004-03-02 Motorola, Inc. Method and system for reduced memory hybrid automatic repeat request
CA2366397A1 (en) * 2001-12-31 2003-06-30 Tropic Networks Inc. An interface for data transfer between integrated circuits
US7295624B2 (en) * 2002-03-06 2007-11-13 Texas Instruments Incorporated Wireless system with hybrid automatic retransmission request in interference-limited communications
US7397864B2 (en) * 2002-09-20 2008-07-08 Nortel Networks Limited Incremental redundancy with space-time codes
US7231183B2 (en) * 2003-04-29 2007-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Quality determination for a wireless communications link
KR100918763B1 (ko) * 2003-11-14 2009-09-24 삼성전자주식회사 병렬 연접 저밀도 패리티 검사 부호를 사용하는 채널 부호화/복호 장치 및 방법
US7720042B2 (en) * 2004-04-02 2010-05-18 Lg Electronics Inc. Method for transmitting and receiving data signal in MIMO system
US8661322B2 (en) * 2004-12-22 2014-02-25 Qualcomm Incorporated Apparatus and method for selective response to incremental redundancy transmissions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124915A (ja) * 2001-09-28 2003-04-25 Lucent Technol Inc 情報ブロックを処理する方法
JP2003143645A (ja) * 2001-10-19 2003-05-16 Lucent Technol Inc 無線通信システムの通信チャネルで情報を再送信する方法。
JP2004135304A (ja) * 2002-09-30 2004-04-30 Lucent Technol Inc 無線通信システムのためのmimoharqスキームでの信号および制御メカニズム
WO2004038986A2 (en) * 2002-10-25 2004-05-06 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
JP2004253828A (ja) * 2002-12-24 2004-09-09 Matsushita Electric Ind Co Ltd 無線送信装置及び無線送信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAL FRENGER ET AL.: "Performance comparison of HARQ with Chase combining and incremental redundancy for HSDPA", VEHICULAR TECHNOLOGY CONFERENCE 2001 FALL, vol. 3, October 2001 (2001-10-01), pages 1829 - 1833, XP010562280 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126422A1 (ja) * 2007-04-11 2008-10-23 Panasonic Corporation 再送方法、通信システム、および送信装置
JP2016171574A (ja) * 2015-03-12 2016-09-23 株式会社Nttドコモ データ再送方法および装置
CN115865281A (zh) * 2022-11-17 2023-03-28 重庆川仪自动化股份有限公司 工业仪表通信数据丢包处理方法、系统、设备及存储介质

Also Published As

Publication number Publication date
US20090044065A1 (en) 2009-02-12
JPWO2006095904A1 (ja) 2008-08-21
EP1852992A1 (en) 2007-11-07
CN101138184A (zh) 2008-03-05
CN1832391A (zh) 2006-09-13

Similar Documents

Publication Publication Date Title
WO2006095904A1 (ja) 再送方法、無線受信装置、およびマルチアンテナ無線通信システム
US7826557B2 (en) Retransmitting method and transmitting method in multi-antenna transmission
US9967063B2 (en) Methods and systems for codeword to layer mapping
US7860184B2 (en) Multi-antenna communication method and multi-antenna communicaton apparatus
US8134932B2 (en) Method and arrangement in a telecommunication system
US8817905B2 (en) Retransmission method for HARQ in MIMO systems
US7826871B2 (en) Transmission apparatus and transmission method
EP1855408A1 (en) Mimo communication apparatus and data retransmission method
US20130163405A1 (en) Method for selecting pmi for non-adaptive harq operation in a mimo wireless communication system
WO2009088167A1 (en) Method for retransmitting signals in mimo system employing harq scheme
CN101810046A (zh) 移动通信系统中的基站装置、基站装置所使用的方法、信道质量指示符校正表生成方法和装置
KR100790365B1 (ko) Mimo 시스템에서의 패킷 재전송 방법
WO2009096145A1 (ja) 無線通信装置、無線通信システム及び無線通信方法
WO2006095741A1 (ja) マルチアンテナ無線通信システム、無線受信装置、および再送方法
CN101080893B (zh) 用于多天线传输的重传方法及发送装置
US9042485B2 (en) Method and device for retransmitting data under antenna gain imbalance
Kim et al. Impact of the antenna shuffling in V-BLAST system using NAK for H-ARQ in correlated fading channels
WO2017215750A1 (en) Transmitting device, receiving device and methods thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680007930.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507225

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006715622

Country of ref document: EP

Ref document number: 11817952

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006715622

Country of ref document: EP