WO2006095751A1 - A/d変換装置およびa/d変換装置を使用したデータ伝送装置 - Google Patents

A/d変換装置およびa/d変換装置を使用したデータ伝送装置 Download PDF

Info

Publication number
WO2006095751A1
WO2006095751A1 PCT/JP2006/304427 JP2006304427W WO2006095751A1 WO 2006095751 A1 WO2006095751 A1 WO 2006095751A1 JP 2006304427 W JP2006304427 W JP 2006304427W WO 2006095751 A1 WO2006095751 A1 WO 2006095751A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
signal
azd conversion
azd
circuit
Prior art date
Application number
PCT/JP2006/304427
Other languages
English (en)
French (fr)
Inventor
Yuji Kasai
Keiichi Ito
Takashi Kamata
Masatoshi Sato
Original Assignee
Evolvable Systems Research Institute Inc.
The Tokyo Electoric Power Company, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evolvable Systems Research Institute Inc., The Tokyo Electoric Power Company, Incorporated filed Critical Evolvable Systems Research Institute Inc.
Priority to JP2007507137A priority Critical patent/JPWO2006095751A1/ja
Publication of WO2006095751A1 publication Critical patent/WO2006095751A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1033Calibration over the full range of the converter, e.g. for correcting differential non-linearity
    • H03M1/1038Calibration over the full range of the converter, e.g. for correcting differential non-linearity by storing corrected or correction values in one or more digital look-up tables
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters

Definitions

  • the present invention relates to an AZD conversion device and a data transmission device using the AZD conversion device, and in particular, an A ZD conversion device and an AZD conversion device that can be used up to a high frequency and can be adjusted online.
  • Patent Document 1 discloses an example of a flash-type AZD converter. This full flash AZD converter is supplied with the upper reference voltage VRT and the lower reference voltage VRB. A resistor group is connected between the upper reference voltage VRT and the lower reference voltage VRB, and the voltage between the upper reference voltage VRT and the lower reference voltage VRB is divided at equal intervals. .
  • the voltage from the resistor group becomes the comparison reference voltage of the comparator group.
  • 256 comparators numbered 1 to 256 in the comparator group compare the comparison reference voltage with the analog input signal VIN. And 0 or 1 is output.
  • the output of the comparator group (comparison result) is input to the encoder, and the encoder outputs, for example, an 8-bit digital signal DOUT converted into a binary code.
  • Patent Document 1 JP-A-10-108041
  • the THP (Tomlinson Harashima Precoding) method has recently attracted attention as a signal method used in high-speed wired transmission devices such as a 10-giga LAN transmission device.
  • This THP method is an improvement of the pre-emphasis method.
  • a modulo arithmetic circuit By inserting a modulo arithmetic circuit in the middle of the pre-emphasis circuit using a FIR filter that simulates the transmission path, the amplitude of the output signal falls within a predetermined range. It is a method to suppress to.
  • Non-Patent Document 1 below includes the THP method.
  • the waveform adjustment technique is disclosed.
  • Non-Patent Document 1 “Matched-Transmission Technique for Channels With Intersymbol Int erferenceJ IEEE TRANSACTIONS ON COMMUNICATIONS, VOL.COM-20, NO.4 A UGUST 1972, pages 774-780.
  • the signal level is suppressed within a predetermined width at the transmitting end.
  • the signal received via the transmission line is attenuated in absolute value, but can take the signal value.
  • the value spreads and spreads to more than several times the signal width on the transmission side. Therefore, when this signal is converted into a digital signal by the AD converter, it is necessary to convert the widened signal width with a predetermined resolution, and a highly accurate AD converter is required.
  • An object of the present invention is to solve the above-described problems, and to provide an AZD conversion device that can be used up to a high frequency and that can be adjusted online, and a data transmission device that uses the AZD conversion device.
  • the cause of the slight timing shift is presumed to be due to, for example, a signal delay based on the circuit configuration in the IC and the wiring arrangement.
  • a signal delay based on the circuit configuration in the IC and the wiring arrangement.
  • deviations may occur due to aging and operating environment. Therefore, in the present invention, based on the differential value of the input signal.
  • the AZD converter converts an input analog signal into a digital signal.
  • the storage means stores a correction value of a digital signal output from the main AZD conversion means
  • the AZD conversion device further includes the storage means described above.
  • an addition means for adding the correction value output from the digital signal output from the main AZD conversion means is provided.
  • a data transmission device using the AZD conversion device of the present invention includes at least the AZD conversion device based on the AZD conversion device, evaluation information generating means for generating evaluation information of a received signal, and the evaluation information.
  • the main feature is the provision of adjustment means for adjustment.
  • the adjustment unit is characterized in that adjustment is performed using a genetic algorithm.
  • the adjustment means is characterized in that the AZD conversion device and the equalizer means are adjusted simultaneously based on the evaluation information.
  • the adjustment means adjusts the AZD conversion apparatus, the equalizer means, and the THP precoder at the same time based on the evaluation information.
  • the AZD conversion device of the present invention has the following effects by the above configuration.
  • a high-precision AZD converter that can operate at ultra-high speeds can be provided.
  • the data transmission device using the AZD conversion device of the present invention has the following effects due to the above configuration.
  • the state of the transmission equipment can always be kept at the optimum level.
  • Calibration can be performed by correcting the correction values stored in the storage means of the AZD converter in response to changes over time.
  • FIG. 1 is a block diagram showing the configuration of the entire high-speed digital data transmission apparatus including the AZD conversion apparatus of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the AZD modification 32 of the present invention.
  • FIG. 3 is a block diagram showing a configuration example of the differentiation circuit 41.
  • FIG. 4 is a block diagram showing a configuration example of the main AZD transformation 40.
  • FIG. 5 is a block diagram showing a configuration of the equalizer circuit 34.
  • FIG. 6 is a block diagram showing the configuration of the level determination circuit 35.
  • FIG. 7 is a block diagram showing a configuration of the reception side adjustment control circuit 38.
  • FIG. 8 is a flowchart showing the processing contents of the adjustment system according to the present invention. Explanation of symbols
  • the AZD conversion device of the present invention was developed on the premise that it is used for an ultrahigh-speed digital data transmission device (LAN) of several gigabps or more using a balanced cable represented by a twisted pair cable or a coaxial cable. Is.
  • LAN ultrahigh-speed digital data transmission device
  • the AZD conversion device of the present invention is not limited to this, and can be applied to AZD conversion of arbitrary signals. Example 1 will be described below.
  • FIG. 1 is a block diagram showing a configuration of the entire high-speed digital data transmission apparatus including the AZD conversion apparatus of the present invention.
  • This embodiment also has the power of a full-duplex data transmitter / receiver having the same configuration connected to both ends of the transmission cable 21.
  • a full-duplex data transmitter / receiver having the same configuration connected to both ends of the transmission cable 21.
  • 10 Gigabit Ethernet registered trademark
  • four sets of transmission equipment shown in Fig. 1 are used.
  • the transmission circuit 10 includes a code converter 11, a PN signal generation circuit 12, a switch 13, a THP precoder 14, a DZA converter 15, an amplifier 16, and a transmission side adjustment control circuit 17.
  • the code converter 11 divides transmission data into predetermined bits and outputs one of a plurality of signal levels (voltage values) corresponding to the value of the bit string.
  • the THP precoder 14 includes, for example, an adder, a modulo arithmetic unit, and an FIR filter.
  • the input signal is input to the adder, and the adder subtracts the output of the input signal force FIR filter and outputs it to the modulo calculator.
  • the output signal of the modulo calculator is input to the FIR filter, and the output of the FIR filter is output to the adder.
  • the FIR filter is set with the impulse response coefficient of the transmission path including the equalizer circuit!
  • the output of the THP precoder 14 is converted into an analog signal by the DAC 15 and transmitted through the amplifier 16, the analog circuit 20, and the inverted circuit 20.
  • the transmission side training control circuit 17 is, for example, Switch 13 is switched to PN signal generator circuit 12 when the device is turned on, etc., sending a torrent signal to the transmission line, calculating an appropriate THP coefficient in the receiver circuit, and returning it from the receiver side
  • the THP coefficient data is received and set in the THP precoder 14. You can also adjust the coefficient of THP precoder 14 based on the signal evaluation result on the receiving circuit side during signal transmission!
  • the reception circuit 30 includes a variable gain amplifier 31, an AZD converter 32 according to the present invention, a symbol synchronization circuit 33, an equalizer circuit 34, a level determination circuit 35, a THP decoder 36, a sign reverse conversion circuit 37, a reception side adjustment control circuit 38, and the like. Become.
  • the variable gain amplifier 31 amplifies the received signal so that the level of the output signal of the AZD converter 32 becomes the same signal level as the input signal of the DAC 15 of the transmission circuit.
  • the symbol synchronizing circuit 33 reproduces the synchronizing signal as well as the received signal power, and the AZD converter 32 of the present invention performs AZD conversion on the received signal.
  • the equalizer circuit 34 is a known FIR digital filter circuit.
  • the level determination circuit 35 is a circuit that determines in which multi-valued area the received signal is, and the THP decoder 36 is a modulo arithmetic circuit having the same characteristics as the modulo arithmetic unit in the THP precoder 14. .
  • the sign reverse converter 37 converts the output of the THP decoder 36 back to the original bit information.
  • the reception side adjustment control circuit 38 cooperates with the transmission side adjustment control circuit 17 to adjust the gain of the variable gain amplifier 32 and the equalizer circuit 34 using the training signal.
  • the correction values and filter coefficients of the AZD converter 32 and the equalizer circuit 34 are simultaneously adjusted based on, for example, a genetic algorithm. Adjust the variable gain amplifier 31 and the THP precoder 14 on the transmission side at the same time.
  • FIG. 2 is a block diagram showing the configuration of the AZD modification 32 of the present invention.
  • AZD Transform 32 is a main AZD converter 40 that is the main AZD conversion means that converts the input analog signal into a digital signal, a differentiation circuit 41 that is a differentiation means that differentiates the input analog signal, and the output signal of the differentiation means is digitally converted.
  • Auxiliary AZD transformation that is auxiliary AZD conversion means to convert to signal 42
  • correction value memory 43 which is a storage means for inputting the output digital signal of the main AZD conversion means and the auxiliary AZD conversion means as an address and outputting the corrected value or the corrected output value, correction value output from the storage means
  • a digital signal output from the main AZD conversion means an adder 44 that is an addition means, a timing generation circuit 45, and a memory writing circuit 46 that is a writing means for writing information to the storage means.
  • FIG. 4 is a block diagram showing a configuration example of the main AZD modification 40.
  • the main AZD converter 40 for example, a flash-type AZD converter circuit as shown in FIG. 4 can be adopted.
  • Input signals are input in parallel to one input terminal of all of the plurality (eg, 128) of comparators 60.
  • a reference voltage obtained by equally dividing the reference voltage by the resistor group 61 is applied to the other input terminal of the comparator 60.
  • the output of the comparator 60 is latched by a latch circuit 62, converted into, for example, a 7-bit binary code by an encoder 63, and output.
  • FIG. 3 is a block diagram illustrating a configuration example of the differentiating circuit 41.
  • the differentiating circuit 41 for example, an integral type differentiating circuit as shown in FIG. 3 can be adopted.
  • This integrating differential circuit has two amplifiers 50 and 51 with differential input / output terminals and a gain of 1.
  • One amplifier 50 inputs the input signal as it is, and the other amplifier 51 receives the input signal.
  • the output terminals of the amplifiers 50 and 51 are connected with opposite polarities.
  • the auxiliary AZD converter 42 may be less accurate than the main AZD converter 40 having an output of about 4 bits, for example.
  • the auxiliary AZD transformation the same configuration as the main AZD transformation, such as a flash-type AZD conversion circuit as shown in Fig. 4, can be adopted.
  • the correction value memory 43 is, for example, a memory having 11 bits as an address input and 4 bits as a data output.
  • type of memory rewritable non-volatile memory such as flash memory and RAM can be used.
  • it is necessary to change after determining the correction value If there is no memory, mask ROM, fuse ROM, etc. can be used.
  • the correction value memory 43 stores the correction value of the digital signal output from the main A / D converter 40, and the read correction value is stored in the adder 44. It is added to the digital signal output from the main AZD 40 and output.
  • the correction value is 4 bits, and if the digital signal output from the main AZD variable 40 is an integer of 7 bits, the correction value is, for example, 2 bits after the decimal point and 2 bits of the integer part. Therefore, the corrected output data after addition is 9 bits, 7 bits for the integer part and 2 bits for the fractional part.
  • the correction output value is uniquely determined by the digital signal (address information) output from the main AZD converter 40 and the auxiliary AZD converter 42, for example, a 9-bit correction output value is stored in the correction value memory 43. You may write it down. In this way, the adder 44 becomes unnecessary.
  • the timing generation circuit 45 supplies latch pulses to the main D converter 40 and the auxiliary AZD converter 42 based on the clock signal input for AZD conversion. Normally, the sampling timing of the main AZD change 40 and the sampling timing of the auxiliary AZD change should be the same.
  • the memory writing circuit 46 is a circuit for rewriting the content of the correction value memory 43 during transmission training, during data transmission, and during other calibration of the AZD converter.
  • FIG. 5 is a block diagram showing a configuration of the equalizer circuit 34.
  • the equalizer circuit 34 employs a well-known transversal filter (FIR filter) circuit.
  • the shift register 70 outputs a plurality of signals obtained by delaying the input signal by a predetermined number of clocks.
  • the plurality of adders 71 and 72 multiply the signal output from the shift register 70 and the filter coefficient data stored in the register 73.
  • the adder 74 adds all the outputs of the plurality of adders 71 and 72 and outputs the result.
  • the filter coefficient is set from the reception side adjustment control circuit 38.
  • FIG. 6 is a block diagram showing a configuration of the level determination circuit 35.
  • this circuit is an example of a circuit that determines five values, the number of multi-values is arbitrary.
  • digital data can be obtained if, for example, five values of “+2”, “+1”, “0”, “one 1”, and “one 2” can be determined.
  • the determination result of each of the five values is further subdivided, A distinction is made between cases where the analog signal value is near the center between the threshold values and cases where it is biased near the threshold value.
  • the value of register 81 is input.
  • the multiple register 81 has two boundary values that divide each multi-value voltage range into three equal parts (subscript B , Including C).
  • Each comparison circuit 80 outputs “1” when the voltage at the + side input terminal is higher, and outputs “0” otherwise. Therefore, for example, when the voltage of the input signal is between V4A and V4B, the outputs of the five comparison circuits 80 from the top in FIG. 6 are “0”, and the outputs of the other comparison circuits 80 are “1”.
  • the latch circuit 82 latches the output of the comparison circuit 80 at a predetermined timing, and the AND gate 84 takes a logical product with the inverted (negative) signal of the latch output one level higher. Therefore, in FIG. 6, only the fifth AND gate 84 from the top outputs force “l”, and all other outputs are “0”. This output is input to the binary converter via the OR gate 86 and, for example, a binary code indicating “+1” is output. In FIG. 6, the output of the fifth AND gate 84 from the top is connected to the counter 94 that counts the evaluation signal of ⁇ through the OR gate 92, and the counter 94 counts up by one.
  • FIG. 7 is a block diagram showing a configuration of the reception side adjustment control circuit 38.
  • the CPU 100 reads the evaluation information from the data input circuit 103, executes the adjustment process described later using the RAM 102 as a work area, and passes the data output circuit 104 through the AZD. Adjust the correction value of the converter and the filter coefficient of the equalizer circuit.
  • Such a control circuit itself is well known.
  • a circuit adjustment method using a genetic algorithm will be described.
  • a general adjustment procedure using a genetic algorithm is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-156627 “Electronic circuit and adjustment method thereof”.
  • the genetic algorithm referred to in the present invention refers to an evolutionary calculation technique, and includes an evolutionary programming (EP) technique.
  • EP evolutionary programming
  • fine adjustment of the AZD converter and the equalizer circuit is performed online so that the state of the transmission apparatus is kept optimal while performing actual data transmission.
  • the adjustment range during transmission should be limited to a very small range centering on the adjustment result that was good immediately before, so as not to have a significant effect on the communication quality of the transmission equipment.
  • Signal evaluation results are used to evaluate each individual (parameter set) in online adjustment using a genetic algorithm.
  • FIG. 8 is a flowchart showing the processing contents of the adjustment system according to the present invention. This process is executed by the CPU 100 of the receiving side adjustment control circuit 38.
  • initialization is performed such as securing the area for the number of individuals
  • S11 the generation of an initial population of individuals with multiple genes, that is, the parameters of the AZD conversion correction value and the filter coefficient of the equalizer circuit is generated. Do.
  • the number of genes related to the correction value is 85, for example, and the horizontal axis is the output of the main AZD variation, and the vertical axis is the output of the auxiliary AZD variation 42.
  • the correction value of the address position based on the combination of the upper 4 bits of the output of the main AZD conversion 40 and the upper 2 bits of the output of the auxiliary AZD converter 42 is set as a gene value.
  • each value is randomly specified so that it is evenly distributed within the range where the evaluation value is considered to be high as the correction value.
  • all the filter coefficients are genes.
  • each value is randomly specified so that it is evenly distributed within the range where the evaluation value is considered to be high as a filter coefficient.
  • the population of past adjustment results are genes.
  • the outputs of the main AZD converter 40 which is a gene
  • the seven correction values are obtained by a well-known linear interpolation operation, which is the correction value of the gene at both ends.
  • the filter coefficient of the gene of the individual selected in S12 is written in the register 73 of the equalizer circuit 34.
  • the evaluation signal counters 94 and 95 are tared, the signal is transmitted for a predetermined period or a predetermined amount of data, and the number of O and ⁇ are counted by the evaluation signal counters 94 and 95.
  • a signal that actually transmits data may be used, or an evaluation signal may be interrupted during data transmission.
  • the evaluation signal is read, and the evaluation value F of the genetic algorithm is calculated by the following equation, for example.
  • the number of ⁇ is the count value of the counter 95
  • the number of ⁇ is the total value of the counter 94.
  • S16 it is determined whether or not the evaluated force has been determined for all individuals. If the determination result is negative, the process proceeds to S12. If the determination result is affirmative, the process proceeds to S17. Note that the processing of S12 to S15 is initially performed for all individuals. From the second round onward, only newly generated individuals or individuals whose genes have been changed are executed.
  • an individual selection process is executed. That is, the individuals are arranged in the order of evaluation values, and a predetermined number of individuals with low evaluation are deleted from the population.
  • a crossover process is executed. In other words, a predetermined number of pairs that also have two parent individual strengths are randomly selected (copied), and individual genes are copied from either of the two individual pairs to create new child individuals. create. In addition, it is decided at random which parent individual power is copied for each gene. The number of newly created individuals is the same as the number deleted in S17.
  • a mutation process is executed. In other words, a predetermined number of individuals are selected at random, and a mutation process is performed for a predetermined number of genes randomly selected in each individual to randomly change the correction values or filter coefficients that are the genes. Replace the individual with the original individual of the population. Then, return to S12 and repeat the processing from S12 to S19.
  • a batch conversion type AZD conversion circuit represented by a flash type is particularly suitable for the AZD conversion device of the present invention.
  • an example using a flash type AZD conversion circuit has been disclosed.
  • Other types of AZD conversion circuit such as pipeline type or successive approximation type can also be used.
  • the force genetic algorithm disclosed in the example of simultaneously adjusting the AZD conversion apparatus and the equalizer circuit can simultaneously adjust a number of different parameters, so that, for example, the AZD conversion apparatus, The equalizer circuit and THP bricker on the transmission side may be adjusted simultaneously. Furthermore, all adjustable parameters such as the gain of the variable gain amplifier of the receiving circuit may be adjusted simultaneously. There may be provided a readout circuit for reading the correction value data currently set in the correction value memory 43 to the outside.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Description

明 細 書
AZD変換装置および AZD変換装置を使用したデータ伝送装置 技術分野
[0001] 本発明は、 AZD変換装置および AZD変換装置を使用したデータ伝送装置に関 するものであり、特に、高い周波数まで使用可能であり、かつオンライン調整可能な A ZD変換装置および AZD変換装置を使用したデータ伝送装置に関するものである 背景技術
[0002] 従来、高速の AZD変換装置としては、フラッシュ型の AZD変換器が使用されて いた。下記特許文献 1にはフラッシュ型の AZD変換器の一例が開示されている。こ のフルフラッシュ型 AZD変換器には上側基準電圧 VRTと下側基準電圧 VRBが与え られている。そして、上側基準電圧 VRTと下側基準電圧 VRBとの間には抵抗群が接 続されており、上側基準電圧 VRTと下側基準電圧 VRBとの間の電圧は等間隔に分 圧されている。
[0003] 抵抗群からの電圧はコンパレータ群の比較基準電圧となり、コンパレータ群におけ る例えば番号 1〜256が付されている 256個のコンパレータは、その比較基準電圧と アナログ入力信号 VINとを比較し、 0または 1を出力する。コンパレータ群の出力(比 較結果)はエンコーダに入力され、エンコーダは例えばバイナリーコードに変換され た 8ビットのデジタル信号 DOUTを出力する。
特許文献 1 :特開平 10— 108041
発明の開示
発明が解決しょうとする課題
[0004] 例えば 10ギガ LAN伝送装置のような高速の有線伝送装置に使用される信号方式 として、最近 THP (Tomlinson Harashima Precoding)方式が注目されている。この TH P方式は、プレエンファシス方式を改良したものであり、伝送路を擬似する FIRフィル タを使用したプリエンファシス回路の途中にモジュロ演算回路を挿入して、出力信号 の振幅を所定の範囲内に抑圧する方式である。下記非特許文献 1には、 THP方式 の波形調整技術が開示されている。
非特許文献 1:「Matched- Transmission Technique for Channels With Intersymbol Int erferenceJ IEEE TRANSACTIONS ON COMMUNICATIONS,VOL.COM-20,NO.4 A UGUST 1972 774〜780ページ。
[0005] THP方式においては、送信端においては信号レベルが所定の幅内に抑圧される 力 伝送路を経由して受信される信号は、絶対値は減衰しているが、信号値の取り得 る値が拡散し、送信側における信号幅の数倍以上に広がってしまうという性質がある 。従って、この信号を AD変換器でデジタル信号に変換する際には、広がった信号幅 分を所定の分解能で変換する必要があり、高精度の AD変換器が必要である。
[0006] ところが、上記した従来の AZD変換器を使用した場合、高速で動作させると変換 誤差が大きくなり、必要な精度が得られないという問題点があった。また、経年変化 や動作環境によって AZD変換器の精度が低下するという問題点もあった。本発明 は上記した課題を解決し、高い周波数まで使用可能であり、かつオンライン調整可能 な AZD変換装置および AZD変換装置を使用したデータ伝送装置を提供すること を目的とする。
課題を解決するための手段
[0007] 本発明者は、 IC化した AZD変翻を使用して超高速で AZD変換を行う場合に、 サンプルホールド回路のホールドタイミングあるいはフラッシュ型の AZD変換回路の 場合にはコンパレータの出力信号のラッチタイミングのわずかなずれが変換誤差の 原因になり、この誤差は入力信号の振幅の単位時間当たりの変化 (傾斜 =微分値) が大きいほど大きくなることを見出した。
[0008] タイミングのわずかなずれの原因は例えば IC内の回路構成や配線の配置に基づく 信号の遅延によるものと推定される。しかし、 IC内の各回路の信号の遅延量を正確 に制御して ICを設計することは非常に困難である。また、経年変化や動作環境によ つてもずれが発生する。そこで、本発明においては、入力信号の微分値に基づいて
AZD変換器の出力値を補正することにより、高速かつ高精度な AZD変換器を得る ようにした。また、前記補正値をオンラインで調整できるようにした。
[0009] 本発明の AZD変換装置は、入力アナログ信号をデジタル信号に変換する主 AZ D変換手段と、入力アナログ信号を微分処理する微分手段と、前記微分手段の出力 信号をデジタル信号に変換する補助 AZD変換手段と、前記主 AZD変換手段およ び前記補助 AZD変換手段の出力デジタル信号をアドレスとして入力し、補正値ある いは補正された出力値を出力する記憶手段と、前記記憶手段に補正値ある 、は補 正された出力値を書き込む書込手段とを備えたことを主要な特徴とする。
[0010] また、前記した AZD変換装置にぉ ヽて、前記記憶手段は、主 AZD変換手段から 出力されるデジタル信号の補正値を記憶しており、前記 AZD変換装置は更に、前 記記憶手段から出力される補正値と前記主 AZD変換手段から出力されるデジタル 信号とを加算する加算手段を備えた点にも特徴がある。
[0011] 本発明の AZD変換装置を使用したデータ伝送装置は、前記した AZD変換装置 と、受信信号の評価情報を生成する評価情報生成手段と、前記評価情報に基づき、 少なくとも前記 AZD変換装置を調整する調整手段とを備えたことを主要な特徴とす る。
[0012] また、前記した AZD変換装置を使用したデータ伝送装置において、前記調整手 段は、遺伝的アルゴリズムを使用して調整を行う点にも特徴がある。また、前記した A ZD変換装置を使用したデータ伝送装置において、前記調整手段は、前記評価情 報に基づき、前記 AZD変換装置およびイコライザ手段を同時に調整する点にも特 徴がある。また、前記した AZD変換装置を使用したデータ伝送装置において、前記 調整手段は、前記評価情報に基づき、前記 AZD変換装置、イコライザ手段および T HPプリコーダを同時に調整する点にも特徴がある。
発明の効果
[0013] 本発明の AZD変換装置は上記のような構成によって以下のような効果がある。
(1)超高速に動作可能であり、かつ高精度な AZD変換器を提供できる。
(2) AZD変換器の IC設計時に信号遅延に関する正確な検証を行う必要がなぐ補 正前の AZD変^^には高 、精度が要求されな 、ので、回路設計が容易になる。
[0014] また、本発明の AZD変換装置を使用したデータ伝送装置は上記のような構成によ つて以下のような効果がある。
(3)多数のパラメータを同時に調整可能な遺伝的アルゴリズムを使用してイコライザ
o
や THPプリコーダと同時にオンラインで調整することにより、伝送装置の状態を常に 最 〇適な状態に保つことができる。
(4)経年変化等に対応して AZD変換装置の記憶手段に記憶される補正値を修正 することにより校正が可能である。
図面の簡単な説明
015] [図 1]図 1は本発明の AZD変換装置を含む高速デジタルデータ伝送装置全体の構 成を示すブロック図である。
[図 2]図 2は本発明の AZD変翻 32の構成を示すブロック図である。
[図 3]図 3は微分回路 41の構成例を示すブロック図である。
[図 4]図 4は主 AZD変翻 40の構成例を示すブロック図である。
[図 5]図 5はイコライザ回路 34の構成を示すブロック図である。
[図 6]図 6はレベル判定回路 35の構成を示すブロック図である。
[図 7]図 7は受信側調整制御回路 38の構成を示すブロック図である。
[図 8]図 8は本発明における調整システムの処理内容を示すフローチャートである。 符号の説明
··送信回路
11 · 符号変換器
12· ••PN信号発生回路
13· "スィッチ
14· ••THPプリコーダ
is••DZA変
le- "アンプ
17· ··送信側調整制御回路
20· "ノ、イブリツド回路
21 · ··伝送ケーブル
30· ··受信回路
31 · ··可変利得アンプ
32· ••AZD変翻 33…シンボル同期回路
34· ··イコライザ回路
35· ··レベル判定回路
36· ··ΤΗΡデコーダ
37· ··符号逆変換回路
38· ··受信側調整制御回路
発明を実施するための最良の形態
[0017] 本発明の AZD変換装置は、ツイストペアケーブルに代表される平衡ケーブルや同 軸ケーブルを使用した数ギガ bps以上の超高速デジタルデータ伝送装置 (LAN)に 使用することを前提として開発されたものである。しかし、本発明の AZD変換装置は これに限らず、任意の信号の AZD変換に適用可能である。以下実施例 1について 説明する。
実施例 1
[0018] 図 1は、本発明の AZD変換装置を含む高速デジタルデータ伝送装置全体の構成 を示すブロック図である。この実施例は伝送ケーブル 21の両端に接続された同じ構 成の全二重データ送受信装置力もなつている。なお、例えば 10ギガイーサネット(登 録商標)においては図 1の伝送装置を 4組使用する。
[0019] 送信回路 10は、符号変換器 11、 PN信号発生回路 12、スィッチ 13、 THPプリコー ダ 14、 DZA変換器 15、アンプ 16、送信側調整制御回路 17からなる。符号変換器 1 1は、送信データを所定ビット毎に区切り、そのビット列の値と対応して、複数の信号 レベル(電圧値)の 1つを出力する。
[0020] THPプリコーダ 14は、例えば加算器、モジュロ演算器、 FIRフィルタからなる。入力 信号は加算器に入力され、加算器は入力信号力 FIRフィルタの出力を減算してモ ジュロ演算器へ出力する。モジュロ演算器の出力信号は FIRフィルタに入力され、 FI Rフィルタの出力は加算器へ出力される。 FIRフィルタにはイコライザ回路も含めた伝 送路のインパルス応答の係数が設定されて!、る。
[0021] THPプリコーダ 14の出力は DAC15によってアナログ信号に変換され、アンプ 16、 ノ、イブリツド回路 20を介して送信される。送信側トレーニング制御回路 17は、例えば 装置の電源投入時等にスィッチ 13を PN信号発生回路 12に切り替え、伝送路にトレ 一二ング信号を送出し、受信側の回路で適切な THP係数を算出し、受信側から返 送されてきた THP係数データを受信して、 THPプリコーダ 14に設定する。また、信 号伝送中にぉ 、ても、受信回路側における信号の評価結果に基づき THPプリコー ダ 14の係数の調整を行ってもよ!、。
[0022] 次に、受信回路について説明する。受信回路 30は、可変利得アンプ 31、本発明 による AZD変換器 32、シンボル同期回路 33、イコライザ回路 34、レベル判定回路 35、 THPデコーダ 36、符号逆変換回路 37、受信側調整制御回路 38等からなる。
[0023] 可変利得アンプ 31は、 AZD変換器 32の出力信号のレベルが送信回路の DAC1 5の入力信号と同じ信号レベルになるように、受信された信号を増幅する。シンボル 同期回路 33は受信信号力も同期信号を再生し、本発明の AZD変換器 32は受信 信号を AZD変換する。
[0024] イコライザ回路 34は公知の FIR形式のデジタルフィルタ回路である。レベル判定回 路 35は受信信号が多値のどの領域内にあるかを判定する回路であり、 THPデコー ダ 36は、 THPプリコーダ 14内のモジュロ演算器と同一の特性を有するモジュロ演算 回路である。符号逆変換器 37は THPデコーダ 36の出力を元のビット情報に逆変換 する。
[0025] 受信側調整制御回路 38は、送信側調整制御回路 17と共働して、トレーニング信号 を使用して可変利得アンプ 32の利得やイコライザ回路 34を調整する。また、データ 通信中に信号が信号配置の中心レベルからどちら側にどの程度ずれて 、るかと!/、う ような、より精細な信号評価情報を取得して、評価値が向上するように、 AZD変換器 32およびイコライザ回路 34の補正値やフィルタ係数を例えば遺伝的アルゴリズムに 基づいて同時に調整する。なお、可変利得アンプ 31や送信側の THPプリコーダ 14 も同時に調整するようにしてもょ 、。
[0026] 図 2は、本発明の AZD変翻 32の構成を示すブロック図である。 AZD変翻 32 は、入力アナログ信号をデジタル信号に変換する主 AZD変換手段である主 AZD 変換器 40、入力アナログ信号を微分処理する微分手段である微分回路 41、微分手 段の出力信号をデジタル信号に変換する補助 AZD変換手段である補助 AZD変 42、主 AZD変換手段および補助 AZD変換手段の出力デジタル信号をァドレ スとして入力し、補正値あるいは補正された出力値を出力する記憶手段である補正 値メモリ 43、記憶手段から出力される補正値と前記主 AZD変換手段から出力される デジタル信号とを加算する加算手段である加算器 44、タイミング生成回路 45、記憶 手段に情報を書き込む書込手段であるメモリ書込回路 46を備えている。
[0027] 図 4は、主 AZD変 40の構成例を示すブロック図である。主 AZD変 40と しては例えば図 4に示すようなフラッシュ型の AZD変換回路を採用可能である。入 力信号は複数 (例えば 128個)のコンパレータ 60全ての一方の入力端子に並列に入 力されている。コンパレータ 60の他方の入力端子には基準電圧を抵抗群 61によって 等分圧した基準電圧が印加されている。コンパレータ 60の出力はラッチ回路 62によ つてラッチされ、エンコーダ 63によって例えば 7ビットのバイナリーコードに変換されて 出力される。
[0028] 図 3は、微分回路 41の構成例を示すブロック図である。微分回路 41としては、例え ば図 3に示すような積分型微分回路を採用可能である。この積分型微分回路は差動 入出力端子を備えた利得が 1の 2つのアンプ 50、 51を備え、一方のアンプ 50には入 力信号をそのまま入力し、他方のアンプ 51には、入力信号を抵抗 52、 53およびコン デンサ 54、 55からなる積分回路を介して入力する。そして、それぞれのアンプ 50、 5 1の出力端子同士は逆極性で接続されている。
[0029] この結果、出力信号としては、アンプ 50の出力信号(=入力信号)から入力信号の 積分信号を減算した信号、即ち入力信号の微分信号が得られる。なお、微分回路と して他の公知の微分回路を採用してもょ 、。
[0030] 図 2に戻って、補助 AZD変換器 42は、例えば出力が 4ビット程度の主 AZD変換 器 40よりも精度の低いもので足りる。補助 AZD変 としては、例えば図 4に示 すようなフラッシュ型の AZD変換回路など、主 AZD変 と同様の構成を採用 可能である。
[0031] 補正値メモリ 43は、例えばアドレス入力として 11ビット、データ出力として 4ビットを 有するメモリである。メモリの種類としては、フラッシュメモリ等の書き替え可能な不揮 発性メモリ、 RAMなどを使用可能である。また、補正値を決定した後に変更の必要 がない場合には、マスク ROM、フューズ型 ROM等を使用可能である。
[0032] 図 2に示す構成においては、補正値メモリ 43には主 A/D変換器 40から出力され るデジタル信号の補正値が記憶されており、読み出された補正値は加算器 44により 主 AZD変 40から出力されるデジタル信号と加算されて出力される。補正値は 例えば 4ビットであり、主 AZD変 40から出力されるデジタル信号が 7ビットの整 数であるものとすれば、補正値は例えば小数点以下 2ビット、整数部分 2ビットからな る。従って、加算後の補正出力データは整数部 7ビット、小数部 2ビットの計 9ビットと なる。
[0033] なお、補正出力値は、主 AZD変換器 40および補助 AZD変換器 42から出力され るデジタル信号 (アドレス情報)によって一意に決まるので、例えば 9ビットの補正出力 値を補正値メモリ 43に書き込んでおいてもよい。このようにすれば、加算器 44は不要 となる。
[0034] タイミング生成回路 45は、 AZD変翻に入力されるクロック信号に基づき、主 ΑΖ D変換器 40および補助 AZD変換器 42にそれぞれラッチパルスを供給する。通常 は、主 AZD変 40のサンプリングタイミングと補助 AZD変 のサンプリン グタイミングが同じになるようにする。メモリ書込回路 46は、伝送トレーニング時ゃデ ータ伝送中、その他 AZD変換器の校正時において補正値メモリ 43の内容を書き替 えるための回路である。
[0035] 図 5は、イコライザ回路 34の構成を示すブロック図である。このイコライザ回路 34は 周知のトランスバーサルフィルタ(FIRフィルタ)回路を採用している。シフトレジスタ 7 0は入力信号を所定のクロック数分だけ遅延させた複数の信号を出力する。複数の 加算器 71、 72はシフトレジスタ 70から出力される信号とレジスタ 73に格納されている フィルタ係数データとを乗算する。加算器 74は複数の加算器 71、 72の出力を全て 加算して出力する。フィルタ係数は受信側調整制御回路 38から設定される。
[0036] 図 6は、レベル判定回路 35の構成を示すブロック図である。なお、この回路は 5値 を判定する回路例であるが、多値の数は任意である。レベル判定回路 35においては 、例えば「 + 2」、 「 + 1」、 「0」、「一 1」、「一 2」の 5値の判定ができればデジタルデータ を得ることができる。しかし本発明では、 5値のそれぞれの判定結果を更に細分ィ匕し、 アナログ信号の値がしきい値の間の中央付近にある場合と、しきい値付近に偏って いる場合を区別する。
[0037] 図中、アナログ信号の値がしきい値の間の中央付近にある場合を〇の記号で示し 、アナログ信号の値がしきい値付近に偏っている場合を△の記号で示してある。そし て、レベル判定回路 35での判定結果が、〇の判定となった数と の判定となった数( の割合)をカウンター 94、 95を用いて計測し、評価信号として受信側調整制御回路 3 8に出力する。
[0038] 入力信号は多値数の 3倍(図では 5 X 3 = 15)— 1の比較回路 80全ての +側入力 端子に入力され、各比較回路 80の-側入力端子にはそれぞれ対応するレジスタ 81 の値が入力されている。複数のレジスタ 81には多値のそれぞれの境界の値 (V2A、 V 3A、 V4A、 V5A)の他、それぞれの多値の電圧範囲を 3等分する 2つの境界の値(添 え字に B、 Cを含むもの)が設定されている。
[0039] 各比較回路 80は、 +側入力端子の方が電圧が高い場合に「1」を、そうでない場合 には「0」を出力する。従って、例えば入力信号の電圧が V4Aと V4Bの間であった場 合には、図 6において上から 5個の比較回路 80の出力は「0」、それ以外の比較回路 80の出力は「1」となる。
[0040] ラッチ回路 82は所定のタイミングで比較回路 80の出力をラッチし、 ANDゲート 84 は一つ上のラッチ出力の反転 (否定)信号との論理積を取っている。よって、図 6にお いて上から 5個目の ANDゲート 84のみ力「l」を出力し、他の出力は全て「0」となる。 この出力は ORゲート 86を介してバイナリ変換器に入力され、例えば「 + 1」を示すバ イナリコードが出力される。また、図 6において上から 5個目の ANDゲート 84の出力 は ORゲート 92を介して△の評価信号を計数するカウンタ 94に接続されており、カウ ンタ 94が 1つカウントアップする。
[0041] 図 7は、受信側調整制御回路 38の構成を示すブロック図である。 CPU100は RO M101に記憶されているプログラムに基づき、データ入力回路 103から評価情報を 読み込み、 RAM102をワークエリアとして使用して後述する調整処理を実行し、デ ータ出力回路 104を介して、 AZD変換器の補正値、イコライザ回路のフィルタ係数 等を調整する。なお、このような制御回路自体は周知である。 [0042] 以下に、遺伝的アルゴリズムを用いた回路の調整方法にっ 、て説明する。なお遺 伝的アルゴリズムを用いた一般的な調整手順は、例えば特開 2000— 156627号公 報「電子回路およびその調整方法」に開示されている。また、本発明でいう遺伝的ァ ルゴリズムとは、進化的計算手法のことをいい、進化的プログラミング (EP)の手法も 含むものである。
[0043] この実施例においては、実際のデータ伝送を行いながら伝送装置の状態が最適に 保たれるようにオンラインで AZD変換器およびイコライザ回路の微調整を行う。伝送 中の調整範囲は、伝送装置の通信品質に大きな影響を与えないように、直前の良好 であった調整結果を中心とした微少範囲に限定する。遺伝的アルゴリズムを用いた オンライン調整における各個体 (パラメータセット)の評価には信号の判定結果 (評価 信号)を利用する。
[0044] 図 8は、本発明における調整システムの処理内容を示すフローチャートである。この 処理は受信側調整制御回路 38の CPU100によって実行される。 S10においては個 体数分の領域の確保等の初期化を行い、 S11においては、複数の遺伝子、即ち、 A ZD変換補正値およびイコライザ回路のフィルタ係数のパラメータを持つ個体の初期 集団の発生を行う。
[0045] 補正値に関する遺伝子の数は例えば 85個とし、横軸を主 AZD変 の出力、 縦軸を補助 AZD変 42の出力とする 2次元平面においてむらなく均等に分布す るよう〖こ選択する。即ち、主 AZD変翻 40の出力の上位 4ビットおよび補助 AZD 変換器 42の出力の上位 2ビットの組み合わせに基づくアドレス位置の補正値を遺伝 子の値とする。遺伝子の初期値としては、補正値として評価値が高いと思われる範囲 内において均等に分布するようにそれぞれの値をランダムに指定する。
[0046] フィルタ係数に関する遺伝子としては全てのフィルタ係数をそれぞれ遺伝子とする 。遺伝子の初期値としては、フィルタ係数として評価値が高いと思われる範囲内にお いて均等に分布するようにそれぞれの値をランダムに指定する。過去の調整結果の 母集団を記憶してぉ 、てもよ 、。
[0047] S12においては、未評価の個体の 1つを選択し、個体内の遺伝子の補正値 85個に 基づ 、て補間演算を行 、、補正値メモリ 43に書き込む全ての補正値 (アドレス 11ビ ット = 2048個)を算出し、 AZD変換器 32内の補正値メモリ 43に書き込む。
[0048] 例えば前記 2次元平面における補助 AZD変換器 42の出力が「01, 00」である行 において、例えば遺伝子である主 AZD変換器 40の出力が「0110, 000」と「0111 , 000」の場合の補正値の間には 7個の補正値が存在する。従って、この 7個の補正 値を両端の補正値である遺伝子の値力 周知の直線補間演算により求める。
[0049] この補間演算を主 AZD変換器 40の出力の上位 4ビットおよび補助 AZD変換器 4 2の出力の上位 2ビットの全ての組み合わせについて実行することにより、補助 AZD 変 42の出力の下位 2ビットが「00」である全ての行の補正値が生成される。次に 、補正値が算出された行と行の間にある補正値を上下の行の補正値力 直線補間 演算によって求める。この演算を全ての列について実行することにより、全ての補正 値が算出される。
[0050] S13においては、 S12において選択した個体の遺伝子のフィルタ係数をイコライザ 回路 34のレジスタ 73に書き込む。 S14においては、評価信号カウンタ 94、 95をタリ ァし、所定期間あるいは所定データ量だけ信号を伝送して、評価信号カウンタ 94、 9 5によって〇の数および△の数を計数する。信号としては実際にデータが伝送される 信号を使用してもよ ヽし、データ伝送の途中に評価用の信号を割り込ませてもよ ヽ。
[0051] S15にお 、ては、評価信号を読み込み、遺伝的アルゴリズムの評価値 Fを例えば 次式で計算する。ここで、〇の数は、カウンタ 95の計数値、△の数はカウンタ 94の計 数値である。
[0052] = (〇の数) { (〇の数)+ ( の数)}
[0053] S16においては、全ての個体について評価済み力否かが判定され、判定結果が否 定の場合には S12に移行する力 肯定の場合には S17に移行する。なお S12〜S1 5の処理は最初は全ての個体について行われる力 2巡目以降は新たに生成された 個体か遺伝子が変更された個体についてのみ実行される。
[0054] S17においては、個体の選択淘汰処理が実行される。即ち、個体を評価値順に並 ベて、評価の低い所定数の個体を母集団から削除する。 S18においては、交叉処理 が実行される。即ち、二つの親個体力もなるペアを所定数だけランダムに選択 (複写 )し、個々の遺伝子をペアの二つの個体のいずれ力からコピーして新たな子個体を 作る。なお、個々の遺伝子についてどちらの親個体力もコピーするかはランダムに決 定する。また、新たに生成する個体数は S17における削除数と同じ数とする。
[0055] S19においては、突然変異処理が実行される。即ち、個体をランダムに所定数だけ 選択して、各個体においてランダムに選択した所定数の遺伝子について、その遺伝 子である補正値あるはフィルタ係数をランダムに変化させる突然変異処理を実行し、 新たな個体を母集団の元の個体と置き換える。そして S12に戻り、 S12〜S19の処 理を繰り返す。
[0056] 以上、実施例を開示したが、本発明には以下に示すような変形例も考えられる。本 発明の AZD変換装置にはフラッシュ型に代表される一括変換型の AZD変換回路 が特に好適であり、実施例においては、フラッシュ型の AZD変換回路を使用する例 を開示したが、サンプリング回路を併用するパイプライン型あるいは逐次比較型など の他の型の AZD変換回路も採用可能である。
[0057] 実施例の伝送装置においては、 AZD変換装置およびイコライザ回路を同時に調 整する例を開示した力 遺伝的アルゴリズムは多数の異種のパラメータを同時に調整 することができるので、例えば AZD変換装置、イコライザ回路、送信側の THPブリコ ーダを同時に調整するようにしても良い。更に、受信回路の可変利得アンプの利得 など、調整可能な全てのパラメータを同時に調整するようにしてもよい。補正値メモリ 43に現在設定されている補正値のデータを外部に読み出す読み出し回路を備えて いてもよい。

Claims

請求の範囲
[1] 入力アナログ信号をデジタル信号に変換する主 AZD変換手段と、
入力アナログ信号を微分処理する微分手段と、
前記微分手段の出力信号をデジタル信号に変換する補助 AZD変換手段と、 前記主 AZD変換手段および前記補助 AZD変換手段の出力デジタル信号をアド レスとして入力し、補正値あるいは補正された出力値を出力する記憶手段と、 前記記憶手段に補正値あるいは補正された出力値を書き込む書込手段と を備えたことを特徴とする AZD変換装置。
[2] 前記記憶手段は、主 AZD変換手段から出力されるデジタル信号の補正値を記憶 しており、
前記 AZD変換装置は更に、前記記憶手段から出力される補正値と前記主 AZD 変換手段力 出力されるデジタル信号とを加算する加算手段を備えた
ことを特徴とする請求項 1に記載の AZD変換装置。
[3] 請求項 1乃至 2のいずれかに記載の AZD変換装置と、
受信信号の評価情報を生成する評価情報生成手段と、
前記評価情報に基づき、少なくとも前記 AZD変換装置を調整する調整手段と を備えたことを特徴とする AZD変換装置を使用したデータ伝送装置。
[4] 前記調整手段は、遺伝的アルゴリズムを使用して調整を行うことを特徴とする請求 項 3に記載の AZD変換装置を使用したデータ伝送装置。
[5] 前記調整手段は、前記評価情報に基づき、前記 AZD変換装置およびイコライザ 手段を同時に調整することを特徴とする請求項 4に記載の AZD変換装置を使用し たデータ伝送装置。
[6] 前記調整手段は、前記評価情報に基づき、前記 AZD変換装置、イコライザ手段 および THPプリコーダを同時に調整することを特徴とする請求項 5に記載の AZD変 換装置を使用したデータ伝送装置。
PCT/JP2006/304427 2005-03-08 2006-03-08 A/d変換装置およびa/d変換装置を使用したデータ伝送装置 WO2006095751A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007507137A JPWO2006095751A1 (ja) 2005-03-08 2006-03-08 A/d変換装置およびa/d変換装置を使用したデータ伝送装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005064304 2005-03-08
JP2005-064304 2005-03-08

Publications (1)

Publication Number Publication Date
WO2006095751A1 true WO2006095751A1 (ja) 2006-09-14

Family

ID=36953345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304427 WO2006095751A1 (ja) 2005-03-08 2006-03-08 A/d変換装置およびa/d変換装置を使用したデータ伝送装置

Country Status (2)

Country Link
JP (1) JPWO2006095751A1 (ja)
WO (1) WO2006095751A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262404A (ja) * 2009-04-30 2010-11-18 Nikon Corp 遺伝的処理装置、遺伝的処理方法、および遺伝的処理プログラム
JP2014519793A (ja) * 2011-06-30 2014-08-14 インテル コーポレイション 逐次近似レジスタ(sar)及び時間−デジタル変換器(tdc)を用いる二段式アナログ−デジタル変換器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197019A (ja) * 1992-12-25 1994-07-15 Hitachi Denshi Ltd デジタルオシロスコープ
JPH0750581A (ja) * 1991-04-02 1995-02-21 Sony Tektronix Corp アナログ・デジタル変換器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750581A (ja) * 1991-04-02 1995-02-21 Sony Tektronix Corp アナログ・デジタル変換器
JPH06197019A (ja) * 1992-12-25 1994-07-15 Hitachi Denshi Ltd デジタルオシロスコープ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262404A (ja) * 2009-04-30 2010-11-18 Nikon Corp 遺伝的処理装置、遺伝的処理方法、および遺伝的処理プログラム
JP2014519793A (ja) * 2011-06-30 2014-08-14 インテル コーポレイション 逐次近似レジスタ(sar)及び時間−デジタル変換器(tdc)を用いる二段式アナログ−デジタル変換器

Also Published As

Publication number Publication date
JPWO2006095751A1 (ja) 2008-08-14

Similar Documents

Publication Publication Date Title
US10880128B2 (en) Decision feedback equalizer
CN110266615B (zh) 低isi比低功率芯片间通信方法和装置
US9450744B2 (en) Control loop management and vector signaling code communications links
JP6497069B2 (ja) 判定帰還型等化回路
JP4684743B2 (ja) A/d変換回路、a/d変換器およびサンプリングクロックのスキュー調整方法
CN109155632A (zh) 具有交替比较器的adc的dc偏移校准
US7656339B2 (en) Systems and methods for analog to digital conversion
JP4837781B2 (ja) 受信回路、受信方法、信号伝送システム
US9214953B1 (en) Generalized data weighted averaging method for equally weighted multi-bit D/A elements
JPWO2003067764A1 (ja) Ad変換装置及び方法
US7642938B2 (en) Gray code to sign and magnitude converter
CN101595699A (zh) 用于校准第一后体isi的自适应连续时间均衡器
KR101927228B1 (ko) 누산기 및 이를 포함하는 데이터 가중 평균화 장치
US20200007379A1 (en) Calibration for Mismatch in Receiver Circuitry with Multiple Samplers
JPS6360568B2 (ja)
CN101796732B (zh) 接收电路及其ad转换器的转换表生成方法以及信号传输系统
US8160179B2 (en) Cross-over compensation by selective inversion
US20050225470A1 (en) Digitally self-calibrating pipeline adc and controlling method thereof
WO2006095751A1 (ja) A/d変換装置およびa/d変換装置を使用したデータ伝送装置
CN112868207A (zh) 正交差分向量信令码的时偏检测和校正
WO2006101160A1 (ja) A/d変換装置
WO2006101161A1 (ja) A/d変換装置およびa/d変換方法
KR20200021300A (ko) 수신장치 및 그 동작 방법
JPWO2005027368A1 (ja) デジタルデータ伝送装置
WO2017145494A1 (ja) アナログデジタル変換器、電子装置およびアナログデジタル変換器の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507137

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06728746

Country of ref document: EP

Kind code of ref document: A1