WO2006095651A1 - 分子通信システム - Google Patents

分子通信システム Download PDF

Info

Publication number
WO2006095651A1
WO2006095651A1 PCT/JP2006/304101 JP2006304101W WO2006095651A1 WO 2006095651 A1 WO2006095651 A1 WO 2006095651A1 JP 2006304101 W JP2006304101 W JP 2006304101W WO 2006095651 A1 WO2006095651 A1 WO 2006095651A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecule
molecular
information
transmitter
receiver
Prior art date
Application number
PCT/JP2006/304101
Other languages
English (en)
French (fr)
Inventor
Satoshi Hiyama
Yuki Moritani
Tatsuya Suda
Original Assignee
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Docomo, Inc. filed Critical Ntt Docomo, Inc.
Priority to US11/663,304 priority Critical patent/US8315807B2/en
Priority to EP06715184A priority patent/EP1857408B1/en
Priority to ES06715184T priority patent/ES2373739T3/es
Priority to JP2007507081A priority patent/JP4234767B2/ja
Priority to CN2006800008914A priority patent/CN101031501B/zh
Publication of WO2006095651A1 publication Critical patent/WO2006095651A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/005Transmission systems in which the medium consists of the human body
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00

Definitions

  • the present invention relates to a molecular communication system, and in particular, can transmit information molecules with high controllability between a molecular transmitter and a molecular receiver via an artificially designed propagation channel. About the system.
  • molecular communication is characterized by being performed at low speed and with very little energy consumption using biochemical signals. Such molecular communication may be applied to communication between nanoscale devices that cannot use electromagnetic waves for capability and environmental reasons, and to control the operation of nanomachines that are configured and not driven by electronic devices. Is expected.
  • Kinesin is approximately 80 nm in length, but carries a substance several times larger than its size along a fibrous rail molecule called a microtubule in the living body.
  • a system has been reported in which a kinesin loaded with a workpiece (microbead) moves in one direction on a microtubule (rail) fixed on a substrate.
  • kinesin loaded with a workpiece (microbead) moves in one direction on a microtubule (rail) fixed on a substrate.
  • Non-Patent Document 1 a system in which kinesin is fixed in a linear groove formed by a lithography technique and a microtubule moves in one direction on the fixed kinesin has been reported (for example, see Non-Patent Document 2).
  • the encoded sequence Z-bonding mode information is extracted from the synthetic polymer and restored to the received data or read data. Output.
  • Non-patent ⁇ ffl ⁇ l R. Yokokawa, et al., "Hybrid Nanotransport System by Biomolecular Linear Motors," Journal of Microelectromechanical Systems, Vol. 13, No. 4, pp.612 -619, Aug. 2004
  • Non-Patent Document 2 Y. Hiratsuka, et al., Ontrolling the Direction of Kinesin-driven Mic rotubule Movements along Microlithographic Tracks, Biophysical Journal, Vol. 81, No. 3, pp. 1555— 1561, Sep. 2001
  • Patent Document 1 JP 2003-101485
  • the present invention reconstructs the signal transduction mechanism of the biological world through molecules as a communication system capable of autonomous operation under an artificial design. Let it be an issue.
  • Another object of the present invention is to construct a molecular communication system having directivity with a controllable propagation channel.
  • an artificially formed molecular propagation path is formed between a molecular transmitter and a molecular receiver.
  • the molecular communication system in the first aspect is:
  • a molecule transmitter for transmitting information molecules encoded with predetermined information
  • the molecular propagation path includes a transmission path formed of a polymer material and carrier molecules that circulate in a predetermined direction along the transmission path, and the carrier molecules are information molecules transmitted from a molecular transmitter. Is transported to the molecular receiver.
  • information molecules can be transmitted to a destination with controllability along an artificially created transmission path.
  • the transmission path is formed of rail molecules, and motor molecules are used as carrier molecules.
  • the information molecule is mounted on the motor molecule and transported to the molecular receiver.
  • the transmission path is formed by motor molecules, and rail molecules are used as carrier molecules.
  • the information molecule is mounted on the rail molecule and transported to the molecular receiver.
  • a molecular transmitter generates a labeled molecule that identifies a molecular receiver that is a destination of an information molecule, and sends the labeled molecule and the information molecule to a molecular propagation path.
  • the molecular communication system in the second aspect is:
  • a molecule transmitter for transmitting information molecules encoded with predetermined information
  • the molecular transmitter is a substance having the molecular transmitter.
  • a molecular encoding unit that encodes predetermined information into a predetermined molecule to generate an information molecule
  • a label molecule generation unit that generates a labeled molecule that identifies the molecular receiver that is the destination of the information molecule
  • a molecule release unit for sending the information molecule and the label molecule to the molecule propagation path [0018]
  • an information molecule can be transmitted with high probability to a target destination, and a plurality of information molecules encoded with the same information can be transmitted. Information can be transmitted to the destination almost certainly.
  • the molecular transmitter is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoe
  • a first molecule transmitting device having a labeled molecule generating unit and a first molecule emitting unit for emitting a labeled molecule
  • a second molecular transmitter having a molecular encoding part and a second molecular emission part for emitting information molecules
  • the second molecule transmitter further includes a label molecule detector that detects the release of the labeled molecule with the force of the first molecule transmitter, and the second molecule transmitter is based on the detection of the label molecule. , Release information molecules.
  • the molecular transmitter is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoe
  • a first molecule transmitting device having a labeled molecule generating unit and a first molecule emitting unit for emitting a labeled molecule
  • a second molecular transmitter having a molecular encoding part and a second molecular emission part for emitting information molecules
  • the second molecule transmitter further includes a label molecule release instruction unit that instructs the first molecule transmitter to release the labeled molecule when releasing the information molecule.
  • the exit part releases the labeling molecule based on the instruction.
  • FIG. 1 is a schematic diagram for explaining a molecular communication system according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration example of a molecular transmitter used in the molecular communication system of FIG.
  • FIG. 3 is a diagram showing a configuration example of a molecular receiver used in the molecular communication system of FIG. 1.
  • FIG. 4 is a diagram showing an example of the data structure of information molecules transmitted in the molecular communication system of FIG.
  • FIG. 5 is a diagram showing an example in which only the data part of the information molecule in FIG. 4 is protectively coated.
  • FIG. 6 is a diagram showing a configuration example when the information molecule in FIG. 5 is coupled to a carrier molecule for transmission.
  • FIG. 7 is a schematic diagram for explaining a molecular communication system according to a second embodiment of the present invention.
  • FIG. 8 is a diagram showing a configuration example 1 of a molecular transmitter used in the molecular communication system of FIG.
  • FIG. 9 is a diagram showing a configuration example 2 of a molecular transmitter used in the molecular communication system of FIG.
  • FIG. 10 is a diagram showing a configuration example of a molecular receiver used in the molecular communication system of FIG.
  • FIG. 11 is a diagram showing a configuration example 3 of the molecular transmitter used in the molecular communication system of FIG. 7.
  • FIG. 12 is a diagram showing a configuration example 4 of a molecular transmitter used in the molecular communication system of FIG. Explanation of symbols
  • a molecular communication system according to a first embodiment of the present invention will be described with reference to Figs.
  • an artificial channel using motor molecules and rail molecules is formed to construct a molecular communication system.
  • FIG. 1 is a schematic diagram for explaining the concept of the molecular communication system 1 according to the first embodiment.
  • the molecular communication system 1 includes a molecular transmitter 20, a molecular receiver 30, and a molecular propagation path 10 connecting them.
  • rail molecule 17 is placed between molecule transmitter 20 and molecule receiver 30 to form molecule propagation path 10A, and information molecule 15 is mounted on motor molecule 16.
  • the information molecule 15 is transported to the molecular receiver 30 along the rail.
  • the rail molecule 17 for example, a microtubule is used.
  • the motor molecule 16 Depending on the use, kinesin or dynein is used. The direction in which the motor molecule 16 moves is determined by the polarity of the microtubule 17; kinesin moves toward the positive (+) end of the microtubule 17 and dynein moves toward the negative (one) end. Generally known.
  • an amino acid (PLL: Poly-L_Lysine) is used as an adhesive.
  • a resin film (not shown) in which a slit opening forming a transmission path is formed is placed on the glass substrate 11, and PLL is injected into the slit. After that, when the excess PLL is washed away and the rail molecule (microtubule solution) is introduced onto the substrate 11 from which the resin film has been removed, the rail molecule 17 adheres only to the PLL-coated portion.
  • the motor molecule 16 is arranged on the substrate 11 to form the molecule propagation path 10 B between the molecule transmitter 20 and the molecule receiver 30.
  • the microtubules 17 that are rail molecules transport the information molecules 15 along the transmission path formed by the motor molecules 16.
  • the molecular propagation path 10B is formed by forming a resist film (not shown) patterned in a predetermined path shape on the glass substrate 11 by, for example, photolithography. Motor molecules are injected into the grooves formed in the resist and adsorbed onto the substrate 11.
  • Fig. 1 (a) and Fig. 1 (b) are in principle equivalent.
  • the motor molecule 16 functions as a carrier for transmitting the information molecule 15
  • the rail molecule 17 functions as a carrier. Therefore, in the following, both are collectively referred to as carrier molecule 19.
  • the rail molecules 17 are not limited to microtubules, and may be actin filaments.
  • myosin is used as a motor molecule instead of kinesin or dynein.
  • the propagation path 10 does not necessarily need to be fixed on the substrate 11, for example, may be a fiber path.
  • FIG. 2 is a schematic configuration diagram of the molecular transmitter 20 used in the molecular communication system 1 of FIG.
  • the molecular transmitter 20 generates information molecules and sends them to the molecular propagation path 10.
  • the molecule transmitter 20 includes a molecule generator 22 that generates molecules and a molecule supply port that receives molecules from the outside.
  • the molecule supply unit 21 includes at least one of the gates 23.
  • the molecule storage unit 24 temporarily stores molecules generated by the molecule generation unit 22 or supplied externally through the molecule supply port 23.
  • the molecule information encoding unit 25 encodes information to be transmitted on the molecule.
  • the encoded information protection unit 26 performs a process for protecting the encoded information molecule from the external environment.
  • the molecule emitting unit 27 emits the encoded information molecule (optionally protected) to the outside of the molecule transmitter 20.
  • FIG. 3 is a schematic configuration diagram of the molecular receiver 30 used in the molecular communication system 1 of FIG.
  • the molecule receiver 30 receives the information molecule sent from the molecule transmitter 20 and decodes the information content.
  • the molecule receiver 31 of the molecule receiver 30 captures information molecules transmitted on the molecule propagation path 10 and takes them into the molecule receiver 30.
  • the protection mechanism release unit 32 releases the protection mechanism when the received information molecule is protected.
  • the molecular information decoding unit 33 performs decoding or interpretation of information encoded in the information molecule.
  • the molecular processing unit 34 performs storage and decomposition of molecules, discharge to the outside of the molecular receiver 30, and the like.
  • the DNA supplied from the outside or stored in the molecular storage unit 24 in advance is cloned, and the combined DNA and natural DNA are combined and connected to correspond to the transmitted data and information content.
  • a single-stranded or double-stranded DNA having the base sequence (A: Adenine / G: Guanine / T: Thymine / C: Cytosine) is generated. Or a single strand with a structure (hairpin structure, bulge structure, etc.) corresponding to the information to be transmitted or
  • DNA generation and manipulation can be performed on a small chip, as seen in micro PCR (Polymerase Chain Reaction), etc. (for example, see K. Sun, et al., Fabrication). and Evaluation or the All ransparent Micro-PCR Chip, "Technical Import of IEICE, MBE2003-40, pp.1-4, July 2003.).
  • the digital information of 0 has a hairpin structure
  • the digital information of 1 has a bulge structure. It is also possible to map the structure.
  • the information to be transmitted may be not only artificial analog Z digital information as described above but also the life information itself possessed by DNA, genes for treating disease cells, and the like.
  • the DNA thus generated is used as a data portion, and a single-stranded DNA used for binding to a carrier molecule is linked as a binding portion to generate an information molecule.
  • FIG. 4 is a schematic diagram showing a data structure of an information molecule (DNA in this example).
  • the information molecule 15 includes a coupling portion 15a used for coupling with a carrier molecule (motor molecule 16 or rail molecule 17) that moves on the molecule propagation path 10 to the molecular receiver 30, and a data portion that encodes information to be transmitted. Including 15b.
  • the data part 15b may be coated with an LDH (Layered Double Hydroxide) 18 which is an inorganic compound.
  • LDH coating is performed, for example, by encapsulating encoded DNA strands between LDH layers.
  • JH Choy, et al. “Inorganic-Biomolecular Hybrid Nanomatenais as a Genetic Molecular Code system, Advanced Material, 16, No. 14, pp. 1181-1184, Jul. 19, 2004. Please refer to.
  • the information molecule (for example, DNA) 15 generated and processed in this manner is emitted from the molecule emitting unit 27 to the outside of the molecular transmitter 20.
  • a mechanism that releases information molecules according to the cycle of carrier molecules can be considered.
  • the released information molecule 15 is present in the vicinity of the molecular transmitter 20, and a carrier molecule having a single-stranded DNA base sequence complementary to the binding portion 15a of the information molecule 15 on the surface. Combines with 19 by forming a double strand (hybridization).
  • the carrier molecule 19 circulates, if the released information molecule 15 continues to exist in the vicinity of the molecular transmitter 20, it will be released after a certain time has passed. In order to combine with the carrier molecules 19 that have circulated, it is not essential to have a timer.
  • the carrier molecule 19 constantly travels along the transmission path of the rail molecule 17 or the motor molecule 16 fixed on the substrate 11 in the solution in which adenosine triphosphate (ATP) is injected.
  • the movement speed of the carrier molecule 19 can be controlled by adjusting the ATP concentration, magnesium ion concentration, solution temperature, and viscous resistance. By utilizing this, the cycle of the carrier molecule 19 is synchronized with the cycle at which the information molecule 15 is emitted from the molecule transmitter 20.
  • carrier molecules 19 are kept waiting in the vicinity of the molecular transmitter 20 in a solution in which ATP is not present, and after the information molecules 15 are bonded to the carrier molecules 19, the amount of the molecules that can move to the molecular receiver 30 is sufficient.
  • the movement of the carrier molecule 19 may be started by injecting ATP into the solution.
  • the carrier molecule 19 to which the information molecule 15 is bonded is transported to the molecular receiver 30 along the rail molecule 17 or the motor molecule 16 that forms the propagation path 10 on the substrate 11.
  • a restriction enzyme is applied to the transported conjugate of the carrier molecule 19 and the information molecule 15 to bind the information molecule 15 to the carrier molecule 19.
  • the information molecule 15 separated from the carrier molecule 19 is taken into the molecular receiver 30 by cutting the two strands responsible for.
  • the protection mechanism release unit 32 removes the LDH coating by incorporating it into a solution having a pH of 3 or less.
  • a method for extracting DNA from an LDH coating is also described in the above-mentioned J.H. Choy, et al.
  • the molecule information decoding unit 33 reads the array of the data unit 15b of the information molecule 15 to decode the information.
  • the most common method of reading the base sequence is to use PCR (Polymerase Chain Reaction) and gel electrophoresis. By detecting the change in current when DNA passes through a nanoscale pore (nanopore), the sequence is detected. It is disclosed in TA Goor, “Nanopore Detection: Threading DNA Through a Tiny Hole," PharmaGenomics, pp.28—30, March / April 2004.
  • PCR Polymerase Chain Reaction
  • gel electrophoresis gel electrophoresis
  • the biochemical reaction for example, protein production
  • the expression of DNA taken into the molecular receiver 30 is observed. It is also possible to interpret the converted information.
  • the molecular processing unit 34 performs necessary processing. Information When storing molecules, store them in storage 35. If you want to make it disappear, disassemble it in the disassembly part 36 and make it disappear. When discharging to the outside, it is discharged out of the molecular receiver 30 via the discharge unit 37.
  • DNA is used as the information molecule 15
  • an example is shown in which information is mapped to the base sequence and structure of DNA.
  • various information coding methods are conceivable depending on the type of molecules used as information molecules.
  • azobenzene is known to change its structure from a cis form to a trans form when irradiated with light having a wavelength of 380 nm, and to change from a trans form to a cis form (photoisomerization) when irradiated with light having a wavelength of 450 nm. It has been.
  • polysilane is known to be able to convert helicality from right force left and left to right by external energy such as temperature and chemical substances. Using this property, information coding that associates ⁇ 0 ”with one state and“ 1 ”with the other state can be considered.
  • Information coding can also be performed by utilizing the three-dimensional structure of a molecule.
  • various nanostructures formed by bonding of metal atoms and organic molecules by self-assembly can be used.
  • Appropriate design of component molecules design of atom type, number, position, etc.
  • a complex nano structure square, tetrahedron, hexahedron, octahedron, tube type, box type, figure eight shape, wisdom that does not exist in nature can be obtained by simply dissolving in water at room temperature and pressure. It is known that a ring-shaped product can be synthesized with a yield of 100%. Coding methods that associate information with these structures can also be realized.
  • information coding that uses properties such as polarity, vibration, and strength of a molecular structure without using the three-dimensional structure of the molecule is also conceivable.
  • a method is also possible in which latex beads packed with semiconductor nanocrystals (quantum dots) of various sizes are used as information molecules, and the composition of quantum dots packed in the beads is used for information coding.
  • the fluorescence emitted from various sizes of quantum dots packed in one latex bead is spectrally separated by a prism, so that the wavelength according to the composition of the quantum dots in the beads A strong spectral pattern (1 billion theoretical patterns) can be obtained. Therefore, information encoding using a spectrum pattern is possible.
  • DNA is used as the information molecule 15, and thus DNA hybridization is used.
  • various methods are conceivable depending on the type of molecule used as the information molecule.
  • the information molecule 15 such as a protein released from the molecular transmitter 20 is captured by the molecular recognition ability of the receptor, and the carrier molecule It is thought that it can be transmitted on 19th. Since receptors can be artificially made with tailor-made, various information molecules can be transmitted with carrier molecules. In addition, since the receptor can be attached to the surface of the membrane vesicle, by attaching one receptor to the surface of the membrane vesicle and attaching a molecule recognized by the receptor to the carrier molecule 19, Membrane vesicles can be loaded on the carrier molecule 19.
  • the membrane vesicle corresponds to an envelope and corresponds to a letter in which the information molecule 15 is put, and the membrane vesicle moves the information molecule 15 confined inside the molecular propagation path 10
  • Environmental factors that can denature molecules such as temperature, pH, degrading enzymes, ionic strength, light, etc.
  • the nature of information molecule 15 that is simply protected is hidden from carrier molecule 19 and is classified into types of information molecule 15. Transmission that does not depend on it can be made possible.
  • information molecules can be transmitted by carrier molecules due to the molecular inclusion ability to incorporate molecules and ions that fit the ring size. .
  • the information molecules transmitted to the molecule receiver 30 can be taken out by applying an external stimulus such as irradiating light.
  • the information molecule 15 released from the molecular transmitter 20 is phosphorylated by the phosphorylase to bind to the carrier molecule 19, and the molecule receiver 30 receives the information by the dephosphorase.
  • a method of separating molecules by dephosphorylation is also conceivable.
  • each of the plurality of molecular receivers 30 has a different receptor. Then, in the molecular transmitter 20, a molecule serving as a ligand of any receptor is released, and the molecule is bonded to the carrier molecule 19 and transmitted. Is captured. In other words, in addition to the information molecule 15 in addition to the information molecule 15, the carrier molecule 19 transmits the information molecule 15 from a plurality of molecule receivers 30 to a specific molecule receiver 30. can do.
  • DNA is used as an information molecule, it is possible to transmit a large amount of information with one information molecule.
  • hydrogen is transmitted as an information molecule, energy is supplied to the fuel cell. If protons (hydrogen ions) are transmitted as information molecules, energy is supplied to the rotating molecular motor.
  • ⁇ —TAS Micro Total Analysis System
  • Lab-on-a-Chip Lab-on-a-Chip
  • Computing devices such as transistors, logic gates, and memories composed of molecules
  • Information molecules such as enzymes are transmitted as input / output and control signals between chair elements.
  • a molecular communication system according to a second embodiment of the present invention will be described with reference to Figs.
  • a molecular signal transmission path in a living body such as a blood vessel or a lymph vessel is mainly used as a propagation path.
  • FIG. 7 is a conceptual diagram of the molecular communication system 2 according to the second embodiment.
  • the molecular communication system 2 includes a molecular transmitter 60, a molecular receiver 70, and a molecular propagation path 50 connecting them.
  • the molecule transmitter 60 encodes information in the molecule to generate an information molecule 55, and transmits the information molecule 55 and a labeled molecule 56 that is a destination label of the information molecule 55.
  • the information molecule 55 and the label molecule 56 reach the molecular receiver 70 through the molecular propagation path 50.
  • the molecule receiver 70 receives the information molecule 55 and the label molecule 56 and decodes information from the information molecule 55.
  • the molecular transmitter 60 is, for example, an artificially modified cell in a living body, which has the ability to encode information in the molecule, and includes an information molecule 55 having encoded information, a label molecule 5 Generate 6 and send it out.
  • the molecular transmitter 60 may be configured artificially using mechanical parts other than artificially modifying living cells.
  • it is not always necessary to generate the molecule to be encoded and the labeled molecule in the molecular transmitter 60.
  • the human molecule and the labeled molecule are stored in the molecular transmitter 60 in advance. It is good also as a structure to keep.
  • the molecular transmitter 60 has the ability to sign and transmit information to molecules as a minimum capability.
  • the labeling molecule is a molecule such as a hormone or a neurotransmitter, and has the ability to selectively bind to a specific receptor.
  • the molecules that are the targets of the sign are, for example, biomolecules such as proteins and DNA.
  • the molecules that are the targets of these codes are given a part that binds to the label molecule in terms of molecular structure so that they can be bound to nearby label molecules. The encoding method will be described later.
  • the molecular propagation path 50 is a molecular signal transmission path in a living body such as a blood vessel or a lymphatic vessel, for example.
  • a conjugate (pair) of the information molecule 55 and the labeled molecule 56 is propagated between the molecular transmitter 60 and the molecular receiver 70.
  • the molecular propagation path 50 may be any path as long as it is capable of transporting the conjugate of the information molecule 55 / labeled molecule 56 without being a blood vessel or lymphatic vessel.
  • the path may be such that the molecular motor moves as a carrier molecule through the flow path as shown in the first embodiment, which is a path other than the living body.
  • the molecular receiver 70 is, for example, a living cell having a receptor that receives the labeled molecule 56 or an artificial cell obtained by modifying the biological cell.
  • the molecular receiver 70 takes in the information molecule 55 together with the labeled molecule 56, and The information encoded in 55 is decoded.
  • the decoding method will be described later together with the encoding method.
  • the molecular receiver 70 is not limited to a living cell or an artificial cell obtained by modifying a living cell, but may be an artificially constructed device using mechanical parts. In either case, it has a receptor for receiving the labeled molecule 56 and has a function for decoding the information encoded in the information molecule 55.
  • molecule A is associated with information "0"
  • molecule B is associated with information "1”
  • a coding method that changes the information to be transmitted by transmitting either one.
  • Molecules A and B may use completely different molecules, but as molecule B, molecules A may be modified by applying some chemical reaction such as phosphorylation or ubiquitination.
  • the molecular transmitter is a living cell or an artificial cell that is a modified living cell, if a molecule having a signal that the living cell emits to the outside of the cell is selected as such a molecule A or B, a molecule is generated and encoded.
  • a molecular transmitter when a molecular transmitter is configured using mechanical parts, it is possible to control the molecular release timing in synchronism with molecular generation and encoding using parts such as an open / close gate having a clock. If it is not necessary to transmit immediately after molecular generation and encoding, it is not necessary to synchronize molecular generation, encoding and molecular release, and it is easier to use parts such as gates that open and close periodically. It is possible to configure a molecular transmitter.
  • a decoding method in the molecular receiver 70 a corresponding receptor is prepared, and the transmitted information is decrypted by determining which force is combined with it.
  • Power S can be.
  • the determination method is to observe and measure the action that occurs in the molecular receiver as a result of binding to the receptor (morphological changes in the molecular receiver, release of chemical substances associated with molecular reception, etc.).
  • the action itself that occurs in the molecular receiver such as ⁇ 0 "and ⁇ 1" as information, and in this case, the generation of the molecule that causes the action to be transmitted in the molecule transmitter. Is equivalent to encoding, and the generation of a desired action in a molecular receiver is equivalent to decoding.
  • a molecular transmitter that transmits the action itself as information for example, genetically modifies a eukaryotic cell to turn on / off the release of a molecule in response to an external stimulus such as ambient temperature or light, or release it. It can be realized by using an external stimulus-sensitive mutant cell having a function of changing the type and concentration of the molecule.
  • molecular receivers can be realized by using living cells themselves.
  • twist direction is read out by a circular dichroism spectrum, which can be used as a decoding method in the molecular receiver 70.
  • a circular dichroism spectrum which can be used as a decoding method in the molecular receiver 70.
  • These encoding and decoding methods using circularly polarized light and spectrum can be used with mechanically configured molecular transmitters and molecular receivers, but live cell-derived molecular transmitters and molecular receivers can be used. When it is used, it is difficult to generate circular deflection and spectrum, so the feasibility is low.
  • DNA is used as the molecule to be encoded as in the first embodiment, and the base sequence is used for the encoding.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-101485
  • an amino acid may be used as a molecule to be encoded, and an encoding method for encoding the sequence may be used.
  • the molecular propagation path in this case it may be desirable for the molecular propagation path in this case to be a flow path other than blood vessels.
  • DNA can be protected by being encapsulated with LDH or the like, or information molecules can be confined and protected by membrane vesicles. Transmission in blood is also possible.
  • such a molecular transmitter having an information encoding function can use the aforementioned external stimulus-sensitive mutant cell that switches whether to release molecule A or molecule B in response to an external stimulus such as temperature or light. It can be realized by adjusting the amount of nutrients to be used to control the total amount of molecules produced, and as shown in the first embodiment, molecules are released into membrane vesicles during molecular release.
  • the concentration of molecules confined in the membrane vesicle and the composition ratio of different molecules in the membrane vesicle can also be used. It is also possible to sign the information. In this case, since the information molecule is protected by the membrane vesicle, there is also an effect that the probability that an information error occurs is reduced.
  • the strength of the action that occurs in the molecular receiver must be observed and measured. It is realized with.
  • generating a molecule that causes an action to be transmitted to the molecular transmitter, and confining it in the membrane vesicle at a concentration or ratio that achieves the desired strength corresponds to the sign ⁇ , and is a molecular receiver. It is equivalent to decoding that a desired action is produced with a desired strength.
  • the concentration or ratio of information molecules inside the membrane vesicle is the same as the concentration or ratio of information molecules in the environment when the membrane vesicle is formed. It is conceivable to use the properties that are the same as those described above, and to control the amount of molecules generated to form the cerebral membrane vesicles with the desired concentration and ratio of the information molecules in the molecular transmitter.
  • FIG. 8 shows a first configuration example of the molecular transmitter 60 shown in FIG.
  • the molecular transmitter 60 includes a labeled molecule generating unit 61, an information molecule generating unit 62, a molecular encoding unit 65, and a molecular emitting unit 67.
  • the labeled molecule generating unit 61 is a part that generates a labeled molecule 56 such as a hormone or a neurotransmitter, and is a part corresponding to a ribosome in a living cell.
  • the information molecule generation unit 62 is a part that generates a molecule such as a protein that is a target of the information code, and this also corresponds to a ribosome in a living cell.
  • generation part for convenience of explanation.
  • the molecule transmitter 60 has a label molecule storage unit 64 instead of the label molecule generation unit 61, and has an information molecule storage unit 66 instead of the information molecule generation unit 62. Both the information molecule generation unit 62 and the information molecule storage unit 66 function as a molecule supply unit in the sense that they supply molecules to be encoded.
  • the molecule encoding unit 65 performs predetermined encoding on the generated or previously stored molecule to obtain the information molecule 55.
  • the encoded information molecule 55 is emitted from the molecule emitting portion 67 together with the label molecule 56.
  • the molecular transmitter 60 is carried near the viscera in the living body, and the biological information such as body temperature and body fluid viscosity obtained by a sensor or the like (not shown) connected to the molecular transmitter 60 is used. Similarly, it is assumed that the data is periodically transmitted to the molecular receiver 70 carried in the vicinity of the liver in the living body.
  • the labeled molecule generation unit 61 of the molecular transmitter 60 uses the input from the sensor as a trigger to generate insulin, which is a hormone that targets liver cells as target cells. Produced as a labeled molecule.
  • the information molecule generator 62 uses the input from the sensor as a trigger to convert a protein molecule (molecule A) having a structure that binds to insulin into a molecule to be encoded (information Output as numerator).
  • the information detected by the sensor is body temperature, and if the body temperature is higher than 3 ⁇ 46.5 degrees, “0 ⁇ , if less than 36.5 degrees”: T is encoded. If “0” is encoded, the ratio of phosphorylated molecule A is 70% or more, and if "1” is encoded, the ratio of ubiquitinated molecule A is 70% or more. If the obtained body temperature is 36 degrees, the molecular encoding unit 65 operates ubiquitin on molecule A to encode ⁇ 1 ", and most of molecule A is ubiquitin. Turn into. Here, the threshold is set to 70% in consideration of the case where ubiquitin does not act and some molecules exist.
  • Insulin which is a labeling molecule
  • a molecule (information molecule) A in which information is encoded are released from the molecule release portion 67.
  • the molecule A since the molecule A has a structural site that is easy to bind to insulin, it forms a conjugate of the molecule A and the labeled molecule before being transmitted from the molecule release part 67. However, depending on the situation, the formation of this conjugate may occur after release from the molecular transmitter 60.
  • the molecule A is designed so that even if information is encoded by phosphorylation or ubiquitin, it does not affect the portion that is easily bound to the labeled molecule. It will not be lost.
  • the portion where molecule A and insulin bind is a portion different from the portion where insulin binds to molecular receiver (receptor) 70.
  • Molecules conjugates of information molecules A encoded with insulin transmitted from the molecular transmitter 60 are propagated in the body by the blood flow flowing through the blood vessels, which are the in vivo signal transmission pathways of insulin, It reaches target cells near the liver that have insulin receptors. At this time, in order to prevent the conjugate of insulin and information molecule A from being affected by degradation or the like in the propagation path 50, the anti-insulin antibody is previously bound to the information molecule A from the molecule emitting portion 67 of the molecular transmitter 60. You may discharge
  • FIG. 10 is a schematic diagram showing a configuration example of the molecular receiver 70 used in the molecular communication system 2 of FIG.
  • the molecule receiver 70 has a label molecule receiver 71 and an information molecule decoder 72.
  • the label molecule receiving unit 71 is a part that receives a label molecule. It corresponds to a receptor in living cells and selectively binds to a specific label molecule.
  • the information molecule decoding unit 72 is a part that decodes information, and when a protein is encoded by a chemical reaction such as phosphorylation or ubiquitin, the protein undergoing each chemical reaction causes Decryption is performed due to the difference in action.
  • the labeled molecule receiver 71 of the molecular receiver 70 is configured with an insulin receptor, and the labeled molecule (insulin) among the binding molecules that have traveled the molecular propagation path 50 is By binding to the labeled molecule receiving unit 71, molecules including information molecules are received by the molecule receiver 70.
  • the molecular receiver 70 takes in the conjugate of insulin and information encoding molecule A into the molecular receiver 70 by receptor-dependent endocytosis. Receptor-dependent endocytosis is described in Tomohiro Yoneda, “Understanding Intracellular Transport”, ISBN: 4897069963, Yodosha, pages 45-53.
  • the captured information molecule is decrypted by the information molecule decryption unit 72.
  • the destination of the information was a molecular receiver near the liver.
  • Insulin was used as 56. If the destination is a molecular receiver near the kidney, aldosterone, a hormone that acts on the kidney, will be used as the labeled molecule 56. As described above, by using an appropriate label molecule for each destination, it is possible to transmit a molecule encoded with information to an appropriate destination using a molecular signal transmission path of a living body. Further, even if it is not a biological molecular signal transmission path, for example, even if it is the path shown in the first embodiment, the present invention can be used if there are molecular receivers having different receptors for each destination. Thus, it is possible to transmit a numerator in which information is encoded to an appropriate destination.
  • the information acquired by the sensor or the like is configured to be transmitted to a target destination.
  • the molecular communication system 2 of the second embodiment is used for the purpose of transmitting drug molecules to an appropriate destination. You can also.
  • the drug molecule becomes the information molecule 55, and the encoding corresponds to the state in which the drug molecule acts on the molecule receiver 70. Equivalent to.
  • one molecular transmitter 60 generates both the labeled molecule 56 and the information molecule 55.
  • the first molecule that generates and releases the target molecule 56 is used.
  • the transmission device 60a and the second molecular transmission device 60b that generates and emits the encoded information molecule 55 can be used as a molecular transmission device group or a molecular transmitter 60.
  • the first molecular transmitter 60a for example, embeds only the second molecular transmitter 60b, which is a cell originally present in the living body, in the vicinity of the first molecular transmitter 60a. .
  • the second molecular transmitter 60b has a labeled molecule detector 68 in addition to the information molecule generator 62, the molecule encoder 65, and the molecule emitter 67b.
  • the labeled molecule detection unit 68 is, for example, a receptor for a labeled molecule, and detects the release of the labeled molecule 56 by receiving a part of the labeled molecule 56 released by the first molecular transmitter (biological cell) 60a. To do.
  • the label molecule detection unit 68 detects the release (secretion) of the label molecule 56
  • the label molecule detection unit 68 instructs the information molecule generation unit 62 to generate the encoding target molecule.
  • the molecule encoding unit 65 encodes information to the molecule, and the molecule emitting unit 67b outputs the information molecule 55.
  • the detection of the release of the labeled molecule 56 and the generation of the encoded information molecule, rather than the generation of the encoded information molecule, may be performed in advance. ,.
  • the information release unit 55b is instructed to release the information molecule 55 to promptly display the information molecule 55.
  • the labeled molecule detection unit 68 detects hormone secretion. When released, it is considered that calcium ions used when living cells release molecules are transmitted as signals to the molecule release part 67b.
  • the labeled molecule detection unit 68 As a mechanism for detecting the secretion of hormone by the labeled molecule detection unit 68, it is conceivable to use a receptor corresponding to the secreted hormone.
  • the molecule that binds to the receptor and the action that is triggered by it can be freely combined. It is considered that a chimeric receptor capable of this is available.
  • a chimeric receptor capable of this is available.
  • M. Kawahara, et al Selection of genetically modified ceil population using hapten-specinc antibody / receptor chimera, "Biochemical and Biophysical Research Communications," vol. 315, pp.132-138, Feb. 2004. Les, referred to.
  • the molecule release part 67b promotes exocytosis, which is a mechanism for releasing molecules, and releases information molecules.
  • the second molecular transmitter 60b is connected to the information at the timing when the first molecule transmitter (biological cell) 60a releases the labeled molecule.
  • the molecule is released, and a combination of these molecules is sent out along the molecular propagation path.
  • FIG. 12 shows still another configuration example 3.
  • the labeled molecule is added to the first molecule transmitter (biological cell) 60a. Give instructions to secrete.
  • the second molecule transmitting device 60b has a label molecule release instruction unit 69 in addition to the information molecule generation unit 62, the molecular encoding unit 65, and the molecule release unit 67b. If the labeled molecule 56 released by the first molecular transmitter (biological cell) 60a is a hormone, the labeled molecule release instruction unit 69 outputs the hormone release stimulating hormone and the like to the first molecular transmitter 60a. .
  • a molecular transmitter when configured as a collection of a plurality of molecular transmitters, a single molecular transmitter generates both the labeled molecule 56 and the information molecule 55. Compared to the above, it is assumed that the probability of binding between the label molecule 56 and the information molecule 55 is reduced, but this is not a problem because a certain degree of binding probability is secured. Further, in the molecular receiver 70, the decoding threshold can be avoided by reducing the decoding threshold to some extent (eg, about 60%). In addition, the configuration of FIG. 11 and FIG. In the description of the example, it has been described that the molecular transmitter 60a is a living cell. However, in addition to the living cell, a living cell is modified, or a device that satisfies the functions of the molecular transmitting device 60a is mechanically configured. May be used.
  • a molecular communication system capable of performing information transmission through molecules with good controllability is provided, and conventional communication is performed. Communication is possible in vivo, where the system cannot be applied, and between molecular scale transceivers.
  • the molecular communication system operates by 'chemical energy' and transmits information in the form of nanoscale molecules. Therefore, the molecular communication system consumes less energy than the conventional communication system. Information transmission with high information density is possible.
  • biochemical phenomena and states on the transmitting side that cannot be transmitted by conventional communication systems can be transmitted and reproduced via the molecule to the receiving side.
  • a communication form can also be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

 所定の情報が符号化された情報分子を制御性良く目的の宛先まで伝達できる分子通信システムを提供する。分子通信システムは、所定の情報が符号化された情報分子を送出する分子送信機と、前記情報分子を受信する分子受信機と、前記分子送信機と分子受信機との間を接続する分子伝搬経路と、を含み、分子伝搬経路は、高分子材料で形成される伝送パスと、当該伝送パスに沿って所定の方向に巡回するキャリア分子とを含み、前記キャリア分子は、分子送信機から送出された情報分子を搭載して分子受信機まで輸送する。

Description

明 細 書
分子通信システム
技術分野
[0001] 本発明は、分子通信システムに関し、特に、人為的に設計された伝搬チャネルを介 して、分子送信機と分子受信機の間で制御性良く情報分子を伝送することのできる 分子通信システムに関する。
背景技術
[0002] 分子通信は、化学物質 (分子)を介した細胞内'細胞間のシグナル伝達メカニズム の観察に端を発する。分子通信では、情報がエンコードされたナノスケールの分子を 情報伝達キャリアとして用い、分子の受容(受信)により生起される生化学的な反応に 基づく新たなコミュニケーションパラダイムの創出を目指すものである。
[0003] 電気や光信号といった電磁波を情報伝達キャリアとする既存の通信技術と異なり、 分子通信は、生化学信号を使用して、低速かつ非常に少ないエネルギー消費量で 行なわれるという特徴がある。このような分子通信は、能力的、環境的な理由で電磁 波を使用することができないナノスケールデバイス間の通信や、電子機器で構成、駆 動されないナノマシンの動作制御などへの適用の可能性が期待されている。
[0004] 生体内のシグナル伝達メカニズムのひとつに、キネシンと呼ばれるたんぱく質モー タ分子による物質の輸送機構がある。キネシンは、全長約 80nm程度の大きさである が、生体内で微小管と呼ばれる繊維状のレール分子に沿って、自分の大きさの何倍 もの大きさの物質を運ぶ。このような生体現象を利用したナノ輸送システムとして、人 ェ加工物(マイクロビーズ)を載せたキネシンが、基板上に固定された微小管(レール )上を一方向に移動するシステムが報告されている(たとえば、非特許文献 1参照)。 また、リソグラフィ技術により形成された直線状の溝の中にキネシンを固定し、固定さ れたキネシン上を、微小管が一方向に移動するシステムも報告されている(たとえば 、非特許文献 2参照)。
[0005] しかし、これらの文献は、生体分子の人工的な一方向移動を確認した成功例を報 告するに留まり、具体的な適用例についてはまったく言及されていない。 [0006] 一方、生体高分子を通信媒体または記録媒体として用いる情報通信システムが提 案されている(たとえば、特許文献 1参照)。このシステムでは、送信側サブシステムに おいて、送信すべき (または書き込むべき)データを配列情報または結合様式情報に 変換し、変換した配列情報または結合様式情報を、生体高分子材料と合成して、合 成高分子を生成する。
[0007] 受信側サブシステムで合成高分子を受信ほたは読み出し)する場合は、符号化さ れた配列 Z結合様式情報を合成高分子から取り出し、それを受信データまたは読み 出しデータに復元して出力する。
[0008] この文献では、送信側サブシステムから受信側サブシステムへ合成高分子を送信 する場合に、どのような伝達路(チャネル)を介して受信側まで伝達するのかについて は、まったく言及されていない。
非特許乂 ffl^l : R. Yokokawa, et al., "Hybrid Nanotransport System by Biomolecular Linear Motors," Journal of Microelectromechanical Systems, Vol. 13, No. 4, pp.612 -619, Aug. 2004
非特許文献 2 : Y. Hiratsuka, et al., ontrolling the Direction of Kinesin-driven Mic rotubule Movements along Microlithographic Tracks, Biophysical Journal, Vol. 81, No. 3, pp.1555— 1561, Sep. 2001
特許文献 1 :特開 2003— 101485
発明の開示
発明が解決しょうとする課題
[0009] 上記のような背景に基づき、本発明は、分子を介した生物界のシグナル伝達メカ二 ズムを、人為的なデザインのもとで、 自律動作可能な通信システムとして再構築する ことを課題とする。
[0010] また、制御可能な伝搬チャネルにより、指向性を有する分子通信システムの構築を 課題とする。
課題を解決するための手段
[0011] 上記課題を解決するために、本発明の第 1の側面では、分子送信機と分子受信機 の間に、人工的に形成した分子伝搬経路を形成する。 [0012] 具体的には、第 1の側面における分子通信システムは、
所定の情報が符号化された情報分子を送出する分子送信機と、
前記情報分子を受信する分子受信機と、
前記分子送信機と分子受信機との間を接続する分子伝搬経路と
を含み、
分子伝搬経路は、高分子材料で形成される伝送パスと、当該伝送パスに沿って所 定の方向に巡回するキャリア分子とを含み、前記キャリア分子は、分子送信機から送 出された情報分子を搭載して、分子受信機まで輸送する。
[0013] このような構成の分子通信システムでは、人為的に作られた伝送路に沿って、宛先 まで制御性よく情報分子を伝達することができる。
[0014] たとえば、伝送パスはレール分子で形成され、キャリア分子としてモータ分子を用い る。この場合、情報分子は、モータ分子に搭載されて分子受信機まで輸送される。
[0015] あるいは、伝送パスはモータ分子で形成され、キャリア分子としてレール分子を用い る。この場合、情報分子は、レール分子に搭載されて分子受信機まで輸送される。
[0016] 本発明の第 2の側面では、分子送信機において、情報分子の宛先となる分子受信 機を識別する標識分子を生成し、標識分子と情報分子とを分子伝搬経路に送出する
[0017] 具体的には、第 2の側面における分子通信システムは、
所定の情報が符号化された情報分子を送出する分子送信機と、
前記情報分子を受信する分子受信機と、
前記分子送信機と分子受信機との間を接続する分子伝搬経路と
を含み、
前記分子送信機は、
所定の分子に所定の情報を符号化して情報分子を生成する分子符号化部と、 前記情報分子の宛先である前記分子受信機を識別する標識分子を生成する標識 分子生成部と、
前記情報分子および標識分子を前記分子伝搬経路に送出する分子放出部と を有する。 [0018] このような構成の分子通信システムでは、 目的の宛先に対して情報分子を高確率 に伝送することができ、同一の情報を符号化した情報分子を複数送出することで、目 的の宛先に対してほぼ確実に情報を伝送することができる。
[0019] ひとつの構成例として、分子送信機は、
標識分子生成部、および標識分子を放出する第 1の分子放出部を有する第 1の分 子送信装置と、
分子符号化部、および情報分子を放出する第 2の分子放出部を有する第 2の分子 送信装置と
を含み、第 2の分子送信装置は、第 1の分子送信装置力 の標識分子の放出を検出 する標識分子検出部をさらに有し、第 2の分子放出部は、標識分子の検出に基づい て、情報分子を放出する。
[0020] 別の構成例として、分子送信機は、
標識分子生成部、および標識分子を放出する第 1の分子放出部を有する第 1の分 子送信装置と、
分子符号化部、および情報分子を放出する第 2の分子放出部を有する第 2の分子 送信装置と
を含み、第 2の分子送信装置は、情報分子を放出する際に、第 1の分子送信装置に 対して標識分子の放出を指示する標識分子放出指示部をさらに有し、第 1の分子放 出部は、前記指示に基づいて前記標識分子を放出する。
発明の効果
[0021] 分子を介した情報伝達を制御性よく行なうことのできる分子通信システムが提供さ れる。
図面の簡単な説明
[0022] [図 1]本発明の第 1実施形態に係る分子通信システムを説明するための概略図であ る。
[図 2]図 1の分子通信システムで用いられる分子送信機の構成例を示す図である。
[図 3]図 1の分子通信システムで用いられる分子受信機の構成例を示す図である。
[図 4]図 1の分子通信システムで伝送される情報分子のデータ構造例を示す図である [図 5]図 4の情報分子のデータ部のみを保護コーティングする場合の例を示す図であ る。
[図 6]図 5の情報分子をキャリア分子に結合させて伝送するときの構成例を示す図で ある。
[図 7]本発明の第 2実施形態に係る分子通信システムを説明するための概略図であ る。
[図 8]図 7の分子通信システムで用いられる分子送信機の構成例 1を示す図である。
[図 9]図 7の分子通信システムで用いられる分子送信機の構成例 2を示す図である。
[図 10]図 7の分子通信システムで用いられる分子受信機の構成例を示す図である。
[図 11]図 7の分子通信システムで用いられる分子送信機の構成例 3を示す図である。
[図 12]図 7の分子通信システムで用いられる分子送信機の構成例 4を示す図である。 符号の説明
1、 2 分子通信システム
10、 50 分子伝搬経路
11 基板
15、 55 情報分子
16 モータ分子
17 レーノレ分子
18 LDH
19 キャリア分子
20、 60 分子送信機
21 分子供給部
22 分子生成部
23 分子供給ポート
24分子貯蔵部
25、 65 分子情報符号化部
26符号化情報保護部 27、 67 分子放出部
30、 70 分子受信機
31 分子受信部
32保護機構解除部
33、 72 分子情報復号化部
34分子処理部
35貯蔵部
36分解部
37排出部
56 標識分子
61 標識分子生成部
62 情報分子生成部
64標識分子格納部
66情報分子格納部
68 標識分子検出部
69 標識分子放出指示部
71 標識分子受信部
発明を実施するための最良の形態
[0024] 以下、図面を参照して、本発明の良好な実施形態について説明する。
[0025] まず、図 1〜図 6を参照して、本発明の第 1実施形態に係る分子通信システムを説 明する。第 1実施形態では、モータ分子とレール分子を用いた人工チャネルを形成し て分子通信システムを構築する。
[0026] 図 1は、第 1実施形態に係る分子通信システム 1の概念を説明するための概略図で ある。分子通信システム 1は、分子送信機 20と、分子受信機 30と、これらの間を接続 する分子伝搬経路 10を含む。図 1 (a)の構成例では、分子送信機 20と分子受信機 3 0の間にレール分子 17を配置して分子伝搬経路 10Aを形成し、モータ分子 16に情 報分子 15を搭載して、レールに沿って分子受信機 30まで情報分子 15を輸送する。
[0027] レール分子 17として、たとえば微小管を用いる。モータ分子 16は、その移動方向に 応じて、キネシンまたはダイニンを用いる。モータ分子 16が移動する方向は、微小管 17の極性によって決定され、キネシンは、微小管 17のプラス(+ )端に向けて移動し 、ダイニンはマイナス(一)端に向けて移動することが一般に知られている。
[0028] レール分子 17を用いて伝搬経路 10Aを形成するには、ガラス基板 11上に、微小 管 17を固定する必要がある。微小管 17は、ガラス表面に対する親和性が低いので、 アミノ酸(PLL : Poly-L_Lysine)を接着剤として用いる。たとえば、ガラス基板 11上に 、伝送パスを構成するスリット開口が形成された樹脂フィルム (不図示)を配置して、ス リット内に PLLを注入する。その後、余分な PLLを洗い流し、樹脂フィルムを除去した 基板 11上にレール分子 (微小管溶液)を導入すると、 PLLコーティングされた部分に のみ、レール分子 17が付着する。
[0029] これとは逆に、図 1 (b)の例では、モータ分子 16を基板 11上に配置して、分子送信 機 20と分子受信機 30の間に分子伝搬経路 10Bを形成する。この場合は、レール分 子である微小管 17が、モータ分子 16で形成された伝送パスに沿って情報分子 15を 輸送する。
[0030] 分子伝搬経路 10Bの形成は、たとえばフォトリソグラフィ法により、ガラス基板 11上 に所定のパス形状にパターニングされたレジスト膜 (不図示)を形成する。レジストに 形成された溝内にモータ分子を注入し基板 11上に吸着させる。
[0031] 図 1 (a)と図 1 (b)のシステムは、原理的に等価である。図 1 (a)の例では、モータ分 子 16が情報分子 15の伝送を担うキャリアとして機能し、図 1 (b)の例では、レール分 子 17がキャリアとして機能する。したがって、以下では、両者を総称してキャリア分子 19と称する。
[0032] なお、図 1 (a)、図 1 (b)のいずれの例でも、レール分子 17は微小管に限定されず、 ァクチンフィラメントであってもよレ、。その場合は、モータ分子として、キネシンやダイ ニンの代わりに、ミオシンを用いる。また、伝搬経路 10は、必ずしも基板 11上に固定 される必要はなぐたとえば、ファイバ状の経路としてもよい。
[0033] 図 2は、図 1の分子通信システム 1で用いられる分子送信機 20の概略構成図である 。分子送信機 20は、情報分子を生成して分子伝搬経路 10に送出する。分子送信機 20は、分子を生成する分子生成部 22と、外部から分子の供給を受ける分子供給ポ ート 23のうち少なくとも 1つを含む分子供給部 21を有する。分子貯蔵部 24は、分子 生成部 22で生成され、または分子供給ポート 23を介して外部供給された分子を、一 時的に蓄えておく。分子情報符号化部 25は、伝送したい情報を分子に対して符号 化を行なう。符号化情報保護部 26は、符号化した情報分子を外部環境から保護する ための処理を施す。分子放出部 27は、符号化された (任意で保護処理もされた)情 報分子を、分子送信機 20の外部に放出する。
[0034] 図 3は、図 1の分子通信システム 1で用いられる分子受信機 30の概略構成図である 。分子受信機 30は、分子送信機 20から送られてきた情報分子を受け取り、情報の内 容を復号する。分子受信機 30の分子受信部 31は、分子伝搬経路 10上を伝送され てきた情報分子を捕捉し、分子受信機 30の内部へ取り込む。保護機構解除部 32は 、受信した情報分子に保護処理が施されている場合に、その保護機構を解除する。 分子情報復号化部 33は、情報分子に符号化された情報の復号ィヒないしは解釈を行 なう。分子処理部 34は、分子の貯蔵、分解、分子受信機 30外部への排出などを行 なう。
[0035] 次に、このような分子通信システム 1の動作について説明する。
[0036] 分子送信機 20において、外部から供給され、もしくはあらかじめ分子貯蔵部 24に 貯蔵された DNAをクローニング操作し、合成 DNAや天然 DNAを組み合わせて繋 ぎ合わせ、伝送したレ、情報内容に対応した塩基配列(A: Adenine/G: Guanine/T: Thymine/C : Cytosine)を持つ 1本鎖または 2本鎖の DNAを生成する。あるいは、伝 送したい情報に対応した構造 (ヘアピン構造やバルジ構造など)を持つ 1本鎖または
2本鎖の DNAを生成する。このような DNAの生成や操作は、マイクロ PCR (Polymer ase Chain Reaction)等に見られるように、微小なチップ上にて行うことが可能である( 例 は、 K. Sun, et al., Fabrication and Evaluation or the All ransparent Micro-P CR Chip," Technical Import of IEICE, MBE2003-40, pp.1-4, July 2003.を参照され たい)。
[0037] たとえば、 Aという文字には CGAの塩基配列を、 Bという文字には CCAの塩基配列 を、 Cという文字には GTTの塩基配列をマッピングするなどの方法が考えられる。
[0038] あるいは、 0のデジタル情報にはヘアピン構造を、 1のデジタル情報にはバルジ構 造をマッピングすることも考えられる。
[0039] 符号化の際には、分子送信機外部であらかじめ様々な配列や形状の DNAを大量 合成し、分子供給ポート 23を通じて分子貯蔵部 24に格納しておき、伝送したい情報 に対応した DNAを選択し、放出する形態であってもよい。
[0040] 伝送する情報は、上記のような人工的なアナログ Zデジタル情報だけではなぐ D NAが持つ生命情報そのものや、疾患細胞の治療用遺伝子などであってもよい。
[0041] このようにして生成された DNAをデータ部とし、これにキャリア分子との結合に用い る 1本鎖 DNAを結合部として連結することで、情報分子を生成する。
[0042] 図 4は、情報分子(本実施例では DNA)のデータ構造を示す模式図である。情報 分子 15は、分子伝搬経路 10上を分子受信機 30まで移動するキャリア分子 (モータ 分子 16またはレール分子 17)との結合に用いる結合部 15aと、伝送すべき情報を符 号化したデータ部 15bとを含む。
[0043] 分子伝搬経路 10中の温度や pH、分解酵素、イオン強度、光などの分子を変性さ せ得る環境因子から生成した情報分子 15を保護するために、図 5に示すように、符 号化情報保護部 26において、データ部 15bを無機化合物である LDH (Layered Dou ble Hydroxide) 18でコーティングしてもよい。 LDHコーティングは、たとえば符号化さ れた DNA鎖を LDH層間に取り込んで、カプセル化することにより行なわれる。 LDH コーティングの方法および効果については、 J.H. Choy, et al., "Inorganic-Biomolecu lar Hybrid Nanomatenais as a Genetic Molecular Code system, Advanced Material, 16, No. 14, pp.1181-1184, Jul. 19, 2004.を参照されたい。
[0044] このようにして生成、加工された情報分子(たとえば DNA) 15は、分子放出部 27か ら分子送信機 20の外へ放出される。例えば、イオンチャネルのような開閉可能なゲ ートとタイマを備えることで、キャリア分子の巡回周期にあわせて情報分子を放出する 機構が考えられる。放出された情報分子 15は、図 6に示すように、分子送信機 20の 近傍に存在し、情報分子 15の結合部 15aと相補性を有する 1本鎖 DNAの塩基配列 を表面に有するキャリア分子 19と、 2本鎖を形成 (ハイブリダィゼーシヨン)することに よって結合する。なお、キャリア分子 19は巡回しているため、放出された情報分子 15 が分子送信機 20の近傍に存在し続けていれば、放出されて一定時間が経過した後 には、巡回してきたキャリア分子 19と結合するため、タイマを備えることは必須ではな レ、。
[0045] キャリア分子 19は、アデノシン三リン酸 (ATP)が注入された溶液中で、基板 11上 に固定されたレール分子 17またはモータ分子 16の伝送パスに沿って常時巡回移動 している。キャリア分子 19の移動速度は、 ATP濃度やマグネシウムイオン濃度、溶液 の温度、粘性抵抗を調整することによって、制御可能である。これを利用して、キヤリ ァ分子 19の巡回周期と、分子送信機 20から情報分子 15が放出される周期を同期さ せることちでさる。
[0046] あるいは、 ATPが存在しない溶液中の分子送信機 20の近傍に、キャリア分子 19を 待機させておき、情報分子 15がキャリア分子 19と結合した後に、分子受信機 30まで 移動できる量の ATPを溶液中に注入することで、キャリア分子 19の移動を開始させ てもよい。
[0047] 情報分子 15が結合したキャリア分子 19は、基板 11上に伝搬経路 10を形成するレ ール分子 17またはモータ分子 16に沿って、分子受信機 30へと輸送される。
[0048] 分子受信機 30の分子受信部 31では、輸送されてきたキャリア分子 19と情報分子 1 5との結合体に対し、制限酵素を作用させて、情報分子 15とキャリア分子 19との結合 を担っている 2本鎖を切断し、キャリア分子 19から分離した情報分子 15を、分子受信 機 30の内部に取り込む。
[0049] 取り込んだ情報分子 15のデータ部 15bが LDHコーティングされている場合は、保 護機構解除部 32において、 pHを 3以下にした溶液中に取り込むことで LDHコーティ ングを除去する。 LDHコーティングから DNAを取り出す方法に関しても、上記 J.H. Choy, et al ,の文献に記載されている。
[0050] 次に、分子情報復号化部 33は、情報分子 15のデータ部 15bの配列を読み取るこ とで、情報の復号化を行なう。塩基配列を読み取る方法としては、 PCR (Polymerase Chain Reaction)とゲル電気泳動を用いる方法が最も一般的である力 ナノスケール の孔 (ナノポア)を DNAが通過する際の電流変化を検出することによって配列の読 み出しの可能十生があることが、 T.A. Goor, "Nanopore Detection: Threading DNA Thr ough a Tiny Hole, "PharmaGenomics, pp.28— 30, March/April 2004に開示されてい る。
[0051] 塩基配列を直接的に解読する代わりに、分子受信機 30に取り込まれた DNAが発 現することによって生じる生化学的な反応 (たとえば蛋白質の生成など)を観察するこ とで、符号化された情報を解釈することとしてもよい。
[0052] 情報の復号ィ匕または解釈が終わると、分子処理部 34で必要な処理を行なう。情報 分子をリサイクルする場合は貯蔵部 35に保存する。消滅させる場合は、分解部 36で 分解、消滅させる。外部へ排出する場合は、排出部 37を介して、分子受信機 30の外 へ排出する。
[0053] 次に、上述した第 1実施形態の変形例を説明する。
(情報符号化 '複号化について)
上記の実施例では、情報分子 15として DNAを用いたため、 DNAの塩基配列や構 造に情報をマップする例を示した。しかし、情報分子として使用する分子の種類に応 じて、様々な情報符号化方法が考えられる。
[0054] 例えば、ァゾベンゼンは、波長 380nmの光を照射すると、シス型からトランス型に 構造変化し、波長 450nmの光を照射すると、トランス型からシス型に変化(光異性化 )する性質が知られている。その他にも、似たような光学活性を持つ分子があり、ポリ シランは温度や化学物質といった外部からのエネルギーによって、らせん卷性を右 力 左、左から右に変換できることが知られている。このような性質を利用して、一方 の状態に〃 0"を、もう一方の状態に" 1 "を対応付ける情報符号化も考えられる。
[0055] また、数万種類存在する蛋白質の立体構造を利用することも考えられる。例えば、 アミノ酸配列や三次元立体構造が極めて似ている蛋白ファミリー(族)を構成する蛋 白質群に対して、ある 1つの情報をマッピングすれば、分子送信機 20と分子受信機 3 0との間の外部環境による変化で、蛋白質分子が多少変性したとしても、同じ蛋白質 群の中での変移であれば、情報が失われることにはならない。したがって、環境耐性 を高めた符号ィ匕が可能になる。
[0056] 分子の立体構造を利用することによつても、情報符号化は可能である。例えば、金 属原子と有機分子との自己組織化による結合で形成される各種のナノ構造体が利用 できる。構成部品となる分子を適切に設計 (原子の種類や数、位置などのデザイン) すれば、常温常圧の条件下で水に溶かすだけで、 自然界には存在しない複雑なナ ノ構造体 (正方形、四面体、六面体、八面体、チューブ型、箱型、八の字型、知恵の 輪型など)を、収率 100%で合成できることが知られている。これらの構造に情報を対 応付ける符号化方法も実現し得る。
[0057] 分子の立体構造に情報を符号ィ匕した場合には、受信側で NMR (Nuclear Magnetic
Resonance)や X線解析による立体構造の解読が必要である。
[0058] 他には、分子の立体構造を利用せずに、分子構造の極性や振動、強さ等の性質を 利用する情報符号化も考えられる。さらに、様々なサイズの半導体ナノ結晶(量子ドッ ト)を詰めたラテックス製のビーズを情報分子とし、そのビーズに詰められた量子ドット の組成を情報符号化に用いる方法も可能である。
[0059] 量子ドットビーズを用いる場合は、 1つのラテックスビーズに詰められた様々なサイ ズの量子ドットから発せられる蛍光をプリズムで分光することで、ビーズ中の量子ドット の組成に応じた波長と強度を持つスペクトルパターン (理論上では 10億通りのパター ン)が得られる。したがって、スペクトルパターンを利用した情報符号化が可能である
[0060] 一方で、分子に特別な操作を行なうことなぐ分子の存在そのものが情報を持つと レ、う考え方もできる。例えば、フェロモンなどの化学物質は、その分子を受容した受信 者の感情や行動などに作用を及ぼすことが知られている。つまり、分子の存在そのも のが符号化に相当し、その解釈が復号化に相当する。また、カプセルィ匕による情報 分子の保護については、 LDHでコーティングする以外にも例えば膜小胞を利用し、 膜小胞の内部に情報分子を閉じ込めてカプセルィ匕することも考えられる。さらに膜小 胞を利用して情報分子をカプセル化する際には、複数の情報分子を同一の膜小胞 内に閉じ込めることが可能であるため、情報分子の濃度や膜小胞内の異なる情報分 子の構成比率に情報を符号ィ匕することも可能となる。なお、フェロモンなどの化学物 質は、その分子を多く受容すればするほど、より強い作用を及ぼすため、濃度や構 成比率に情報を符号化した場合、受信者に生起される作用の強弱が複号化に相当 することとなる。なお、このように情報分子をカプセルィ匕する物質としては、膜小胞以 外にも有機、無機分子等を用いて構築した分子カプセル等でもよぐ情報分子を力 プセル化できるものであればどのようなものであってもよい。
(情報分子とキャリア分子との結合 ·分離について)
上述した実施例では、情報分子 15として DNAを用いた例であったため、 DNAの ハイブリダィゼ一シヨンを利用したが、情報分子として使用する分子の種類に応じて、 様々な方法が考えられる。
[0061] 例えば、キャリア分子の表面にレセプタ(受容体)を結合することによって、分子送 信機 20から放出された蛋白質などの情報分子 15を受容体の分子認識能によって捕 捉し、キャリア分子 19に載せて伝送できると考えられる。なお、受容体はテーラーメイ ドで人工的に作ることもできるため、様々な情報分子をキャリア分子で伝送することが 可能になる。また、受容体は膜小胞表面に付着させることも可能であるため、膜小胞 表面に 1つの受容体を付着させ、キャリア分子 19にはその受容体が認識する分子を 付着させることで、膜小胞をキャリア分子 19に載せることが可能である。膜小胞内に は様々な情報分子を閉じ込めることが可能であるため、情報分子 15の種類に応じて 異なる受容体を利用せずとも、様々な情報分子を同一のキャリア分子 19で伝送する ことができると考えられる。この場合、郵便で言えば、膜小胞は封筒に相当し、情報 分子 15が中に入れられる手紙に相当することになり、膜小胞は内部に閉じ込められ た情報分子 15を分子伝搬経路 10中の温度や pH、分解酵素、イオン強度、光などの 分子を変性させ得る環境因子力 保護するだけでなぐ情報分子 15の性質をキヤリ ァ分子 19に対して隠蔽し、情報分子 15の種類によらない伝送を可能とすることがで きる。
[0062] また、キャリア分子の表面にシクロデキストリンやクラウンエーテルを結合すれば、環 の大きさにフィットする分子やイオンを取り込む分子包接能により、情報分子をキヤリ ァ分子で伝送できるようになる。なお、分子受信機 30まで伝送された情報分子は、光 を照射するなどの外部刺激を与えることで取り出すことができる。
[0063] その他には、分子送信機 20から放出された情報分子 15をリン酸化酵素によってリ ン酸化することでキャリア分子 19に結合し、分子受信機 30では、脱リン酸化酵素によ つて情報分子を脱リン酸化することで分離する方法も考えられる。
(宛先情報の付与) 上記の実施例では、単一の分子受信機 30が用いられる場合を例にとって説明した 、複数の分子受信機 30が存在し、各々が異なる受容体を有する分子通信システ ムにも第 1実施形態を適用することができる。
この場合は、複数の分子受信機 30の各々に、それぞれ異なる受容体を持たせる。 そして、分子送信機 20において、いずれかの受容体のリガンドとなる分子を放出させ 、キャリア分子 19と結合させて伝送することで、そのリガンドに対応する受容体を持つ 分子受信機 30によってキャリア分子は捕捉される。つまり、キャリア分子 19に、情報 分子 15に加えて、宛先情報を示すリガンド分子を結合することによって、複数ある分 子受信機 30の中から特定の分子受信機 30に対して情報分子 15を伝送することがで きる。
(アプリケーション例)
(1)大容量の情報伝送
情報分子として DNAを使用した場合は特に、 1つの情報分子で大容量の情報を伝 送すること力 Sできる。
(2)燃料輸送
情報分子として水素を伝送すれば、燃料電池へのエネルギー供給となる。情報分 子としてプロトン (水素イオン)を伝送すれば、回転分子モータへのエネルギー供給と なる。
(3)擬似物質転送
情報分子として酵素や DNAといった最小限の物質を伝送することで、受信側に自 己組織化などの生化学反応を生起させ、送信側と同一の物質を受信側にも形成す ること力 Sできる。
(4) μ— TAS (Micro Total Analysis System) /Lab-on-a-Chip (ラボオンチップ) チップにポンプ、バルブ、センサ、リアクタなど様々なコンポーネントを微小化'集積 化させたシステムのことを指し、チップ上での生化学分析や合成が行える。ここでは、 情報分子として各種の試料や試薬を各コンポーネントに伝送する。
(5)分子コンピュータ
分子で構成されるトランジスタや論理ゲート、メモリーなどのコンピューティングデバ イス素子間の入出力や制御信号として、酵素などの情報分子を伝送する。
(6)ナノマシン間通信、動作制御
能力的 ·環境的に電磁波を使用することができないナノスケールデバイス間におけ る通信や、電子機器で構成 '駆動されないナノマシンの動作制御などを行う。
[0065] 次に、図 7〜図 12を参照して、本発明の第 2実施形態に係る分子通信システムに ついて説明する。第 2実施形態では、伝搬経路として、主として血管やリンパ管といつ た生体内の分子信号伝達経路を利用する。
[0066] 図 7は、第 2実施形態に係る分子通信システム 2の概念図である。分子通信システ ム 2は、分子送信機 60と、分子受信機 70と、これらの間を接続する分子伝搬経路 50 を含む。分子送信機 60は、分子に情報を符号ィ匕して情報分子 55を生成し、この情 報分子 55と、情報分子 55の宛先標識となる標識分子 56とを送信する。情報分子 55 と標識分子 56は、分子伝搬経路 50を伝って、分子受信機 70に到達する。分子受信 機 70は、情報分子 55および標識分子 56を受信し、情報分子 55から情報を復号化 する。
[0067] 分子送信機 60は、例えば生体の細胞を人工的に改変し、分子に情報を符号化す る能力を持たせたものであり、符号化された情報を有する情報分子 55と、標識分子 5 6を生成し、外部に送出する。なお、分子送信機 60は、生体の細胞を人工的に改変 する以外にも、機械的な部品を用いて人工的に構成してもよい。また、符号化の対象 となる分子と標識分子は、必ずしも分子送信機 60の内部で生成する必要はなぐ人 ェ的に符号ィ匕用の分子と標識分子をあらかじめ分子送信機 60内部に格納しておく 構成としてもよい。分子送信機 60は、最低限の能力として分子に情報を符号ィ匕し、こ れを送信する機能を持ってレ、ればよレ、。
[0068] 標識分子は、ホルモンや神経伝達物質といった分子であり、特定の受容体に選択 的に結合する能力を持った分子である。符号ィ匕の対象となる分子は、例えば、蛋白 質や DNAといった生体分子である。これらの符号ィ匕の対象となる分子には、分子構 造的に、標識分子と結合する部分を持たせ、近傍の標識分子と結合するようにして おく。なお、符号化方法については後述することとする。
[0069] 分子伝搬経路 50は、例えば、血管やリンパ管といった生体内の分子信号伝達経路 であり、分子送信機 60と分子受信機 70との間で、情報分子 55と標識分子 56の結合 体 (ペア)が伝搬される。分子伝搬経路 50は、血管やリンパ管でなくとも、情報分子 5 5/標識分子 56の結合体を輸送できる経路であれば、どのような経路であってもよく 、例えば、任意の分泌経路や、生体内以外の経路である上記の第 1実施形態に示し たような流路を分子モータがキャリア分子となって移動するような経路であってもよい
[0070] 分子受信機 70は、例えば、標識分子 56を受信する受容体を持つ生体細胞または 、これを改変した人工細胞であり、標識分子 56とともに情報分子 55を内部に取り込 み、情報分子 55に符号化された情報を復号ィ匕する。復号化方法については、符号 化方法とともに後述する。なお、分子受信機 70は、生体細胞や生体細胞を改変した 人工細胞に限定されず、機械的な部品を用いて人工的に構成したものであってもよ レ、。いずれの場合も、標識分子 56を受信する受容体を持ち、情報分子 55に符号化 された情報を復号化する機能を有すればょレ、。
[0071] 分子送信機 60による分子への情報の符号化方法としては、最も単純な符号化方 法として、例えば、分子 Aを情報" 0"に、分子 Bを情報" 1 "に対応させ、いずれかを送 信することによって伝達する情報を変化させる符号ィ匕方法がある。分子 A、 Bは全く 異なる分子を利用してもよいが、分子 Bとして、分子 Aにリン酸化やュビキチン化等、 何らかの化学反応を作用させ性質を変更したものを利用することもできる。また、分子 送信機が生体細胞や生体細胞を改変した人工細胞の場合、生体細胞が細胞外に 放出するシグナルを持つ分子をこのような分子 A、 Bとして選択すれば、分子を生成 し、符号化するだけで、細胞外に放出されることになる。また、機械的な部品を用いて 分子送信機を構成した場合、クロックを持つ開閉ゲート等の部品を利用し、分子生成 、符号化と同期させて、分子放出のタイミングを制御することができる。なお、分子生 成、符号化の後、即座に送信する必要がなければ、分子生成、符号化と分子放出と を同期させる必要はなぐ定期的に開閉するゲート等の部品を利用してより簡易に分 子送信機を構成することが可能である。
[0072] 分子受信機 70における複号化方法としては、それぞれに対応する受容体を用意し ておき、どちらと結合した力を判定することにより、送信された情報を復号化すること 力 Sできる。判定方法としては、受容体と結合した結果、分子受信機に生起される作用 (分子受信機の形態変化、分子受容に伴う化学物質の放出、等)を観測、測定すれ ばよレ、。なお、〃0"、〃1 "のようなデジタル情報でなぐ分子受信機に生起される作用 そのものを情報とすることもでき、この場合は、分子送信機において伝達する作用を 生起する分子の生成が符号化に相当し、分子受信機において所望の作用が生起さ れることが複号化に相当する。このように作用そのものを情報として送信する分子送 信機は、例えば真核細胞を遺伝子改変し、周囲の温度や光などの外部刺激に応じ てある分子の放出を ON/OFFしたり、放出される分子の種類や濃度が変化したり する機能を持たせた外部刺激感受性変異細胞等を利用して実現することが可能で あると考えられる。また、分子受信機については、生体細胞そのものを利用することで 実現可能であると考えられる。
[0073] 他にも、分子構造にねじれ部分を持ち、ねじれの方向が、右ねじれと左ねじれの場 合を有するジァザペンタフヱン類のような分子を利用して、右ねじれの場合を情報" 0 "に、左ねじれの場合を情報": Tに対応させ、情報に対応してねじれ方向を操作する ことにより、符号ィ匕することもできる。この分子は、円偏光によりねじれの方向を制御 することができるため、左右どちらの円偏光を照射するかにより符号ィ匕を行うことが可 能である。円偏光の照射によるねじれ方向の制御については、田中康隆,『分子メモ リーを目指した新規な光学活性芳香族分子の合成とその物性に関する研究』,静岡 大学ベンチャービジネスラボラトリー研究開発プロジェクト報告書,平成 12年,に記 載されている。
[0074] また、ねじれの方向は、円二色性スペクトルによって読み出すことも知られており、こ れを分子受信機 70における復号ィ匕方法として利用することができる。なお、これらの 円偏光やスペクトルを利用した符号化、復号化方法は、機械的に構成した分子送信 機、分子受信機では利用可能であるが、生細胞由来の分子送信機、分子受信機を 用いた場合には円偏向やスペクトルを発生させることが困難であるため、実現可能性 は低くなる。
[0075] 分子そのものや、分子の構造を利用した情報符号化、復号化方法の代わりに、第 1 実施形態のように、符号化される分子として DNAを利用し、その塩基配列で符号ィ匕 する、あるいは、上記特許文献 1 (特開 2003— 101485)に記載されるように、符号 ィ匕される分子としてアミノ酸を利用し、その配列で符号化する符号化方法を利用して もよレ、。ただし、ある種の蛋白質や DNAを血中におくと酵素的な分解を受けるので、 この場合の分子伝搬経路は血管以外の流路とするのが望ましい場合がある。しかし ながら、第 1実施形態で示したように DNAを LDH等でカプセル化して保護したり、膜 小胞で情報分子を閉じ込めて保護したりすることもできるため、このような手法を利用 すれば血中での伝送も可能となる。
また、 1つの分子に情報を符号ィ匕するのではなぐ複数の分子を用意し、その濃度 によって符号ィ匕するとしてもよい。例えば、分子 Aと分子 Bがあわせて 100個存在する 場合に、分子 Aの割合が 70%以上であれば情報〃 0"を、分子 Bの割合が 70%以上 であれば情報": Tを表わす符号ィ匕方法を採用してもよい。分子伝搬経路 50において レ、くつかの分子が化学変化したり、他の分子と結合したりすることによってその性質が 失われることに起因して、いくつかの情報分子を分子受信機 70で受信できなかった としても、ある一定以上の分子が分子受信機 70まで到達すれば、情報を復号化する ことが可能である。したがって、分子伝搬経路 50の影響による情報誤りを低く抑える こと力 Sできる。どちらの分子の濃度も 70%以下であった場合、情報誤りが発生したこ とを検出できるため、分子送信機 60に対して、情報の再送を要求することもでき、通 信の信頼性を向上させることができる。なお、このような情報符号化の機能を持つ分 子送信機は、温度や光などの外部刺激に応じて分子 A、分子 Bのどちらを放出する かを切り替える前述の外部刺激感受性変異細胞等を利用し、全体の分子生成量を 制御するため与える栄養素の量を調節することによって実現可能であると考えられる また、第 1実施形態に示したように、分子放出の際に膜小胞に分子を閉じ込めて分 子を保護する機構を用いることもでき、この場合は第 1実施形態の場合と同様に、膜 小胞内に閉じ込められた分子の濃度や異なる分子の膜小胞内の構成比率等に情報 を符号ィ匕することも可能である。この場合、膜小胞によって情報分子が保護されてい るため、情報誤りが発生する確率も低くなるという効果もある。なお、複号化について も第 1実施形態と同様に、分子受信機に生起される作用の強さを観測、測定すること で実現される。また、 "0 〃1"のようなデジタル信号を情報とするのではなぐ分子受 信機に生起される作用とその強さを情報とすることもできる。この場合、分子送信機に ぉレ、て伝達する作用を生起する分子を生成し、所望の強さになる濃度や比率で膜小 胞内に閉じ込めることが符号ィ匕に相当し、分子受信機において所望の強さで所望の 作用が生起されることが複号化に相当する。なお、所望の濃度や比率で膜小胞内に 分子を閉じ込める手法としては、膜小胞が形成される際に膜小胞内部の情報分子の 濃度や比率が環境中の情報分子の濃度や比率と同一になる性質を利用し、分子生 成量を制御して分子送信機内の情報分子の濃度や比率を所望の濃度や比率にして 力 膜小胞を形成することが考えられる。
[0077] 以下では、情報分子 55の濃度によって情報符号化、複号化を行う方法を例として 図 7の分子通信システム 2の動作を説明する。
[0078] 図 8は、図 7に示す分子送信機 60の第 1の構成例を示す。分子送信機 60は、標 識分子生成部 61、情報分子生成部 62、分子符号化部 65、および分子放出部 67を 含む。標識分子生成部 61は、ホルモンや神経伝達物質といった標識分子 56を生成 する部分であり、生体の細胞においては、リボソームに相当する部分である。情報分 子生成部 62は、情報符号ィ匕の対象となるタンパク質等の分子を生成する部分であり 、こちらも生体の細胞においてはリボソームに相当する。なお、符号化の対象となる 分子の生成を標識分子の生成と区別するために、説明の便宜上、情報分子生成部 と称する。
[0079] 前述したように、標識分子や情報符号化のための分子を分子送信機 60の内部で 生成するかわりに、あら力じめ人工的に格納しておく場合は、図 9のような構成となる 。その場合、分子送信機 60は、標識分子生成部 61の代わりに標識分子格納部 64を 有し、情報分子生成部 62の代わりに情報分子格納部 66を有することになる。情報分 子生成部 62も情報分子格納部 66も、ともに符号ィ匕対象となる分子を供給するという 意味で、分子供給部として機能する。
[0080] 分子符号化部 65は、生成またはあらかじめ格納された分子に対して所定の符号 化を行って、情報分子 55とする。符号化された情報分子 55は、標識分子 56とともに 、分子放出部 67から放出される。 [0081] 今、分子送信機 60は、生体内の勝臓付近に坦め込まれており、分子送信機 60に 接続したセンサ等(不図示)で取得した体温、体液粘度等の生体情報を、同じく生体 内の肝臓付近に坦め込まれた分子受信機 70に定期的に送信することを想定する。 分子送信機 60の標識分子生成部 61は、センサで取得した情報を分子受信機 70に 伝達するために、センサからの入力をトリガとして、肝臓の細胞を標的細胞とするホル モンであるインシュリンを標識分子として生成する。
[0082] 一方、情報分子生成部 62 (または情報分子格納部 66)は、センサからの入力をト リガとして、インシュリンと結合する構造を有する蛋白質分子 (分子 A)を、符号化対象 分子 (情報分子)として出力する。
[0083] センサ入力に基づいて、標識分子としてのインシュリンを 100個、情報分子のため の分子 Aを 100個出力したとする。センサにより検出された情報が体温であり、体温 力 ¾6. 5度より高ければ" 0〃を、 36. 5度以下であれば": Tを与えて符号化する。 "0" を符号化する場合には、リン酸化された分子 Aの比率を 70%以上とし、〃1"を符号化 する場合には、ュビキチン化された分子 Aの比率を 70%以上とするような符号ィ匕を 行う。取得された体温が 36度だとすると、分子符号化部 65は、〃1"を符号化するため 、分子 Aに対してュビキチンを作用させ、分子 Aの大部分をュビキチン化する。ここで 閾値を 70%に設定してレ、るのは、ュビキチンが作用しなレ、分子が一部存在する場合 を考慮してのことである。
[0084] 標識分子であるインシュリンと、情報が符号化された分子 (情報分子) Aは、分子 放出部 67から放出される。このとき、分子 Aは、インシュリンと結合し易い構造部位を 有するため、分子放出部 67から送信される前に、分子 Aと標識分子との結合体を形 成することとなる。もっとも、状況によっては、この結合体の形成は分子送信機 60から の放出後となることも考えられる。なお、分子 Aはリン酸化やュビキチンィ匕により情報 を符号化されても、標識分子と結合し易い部分には影響がないように設計しておくこ とで、符号ィ匕によってこの結合体が形成されなくなるということはない。
[0085] また、分子 Aとインシュリンが結合する部分は、インシュリンが分子受信機(受容体 ) 70と結合する部分とは異なる部分である。情報分子 Aとインシュリンとの結合部分が 他の部分に影響を与えないように設計しておくことで、この結合によりインシュリンが 分子受信機 70に受信されなくなるという事態を回避する。
[0086] 分子送信機 60より送信された分子 (インシュリンと符号化された情報分子 Aの結 合体)は、インシュリンの生体内信号伝達経路である血管を流れる血流によって、体 内を伝搬し、インシュリンの受容体を持つ肝臓付近の標的細胞に到達する。このとき 、インシュリンと情報分子 Aとの結合体が、伝搬経路 50で分解等の影響を受けないよ うに、分子送信機 60の分子放出部 67から、あらかじめ情報分子 Aに抗インシュリン抗 体を結合させた状態で放出してもよい。
[0087] 図 10は、図 7の分子通信システム 2で使用される分子受信機 70の構成例を示す 概略図である。分子受信機 70は、標識分子受信部 71と、情報分子複号化部 72を有 する。標識分子受信部 71は、標識分子を受信する部分である。生体の細胞における 受容体に相当し、特定の標識分子と選択的に結合する。情報分子複号化部 72は、 情報の復号ィ匕を行う部分であり、蛋白質に対してリン酸化やュビキチンィ匕等の化学 反応により符号化した場合は、それぞれの化学反応を受けた蛋白質の起こす作用の 違いにより、復号ィ匕を行う。
[0088] 上記の例では、分子受信機 70の標識分子受信部 71は、インシュリンの受容体で 構成されており、分子伝搬経路 50を伝ってきた結合分子のうちの標識分子 (インシュ リン)がこの標識分子受信部 71と結合することによって、情報分子を含む分子が分子 受信機 70に受信される。標識分子受信部 71にインシュリンが結合すると、分子受信 機 70は、受容体依存性エンドサイト一シスにより、インシュリンと情報符号化分子 Aの 結合体を分子受信機 70の内部に取り込む。受容体依存性エンドサイト一シスについ ては、米田悦啓,『細胞内輸送がわかる』, ISBN : 4897069963,羊土社、第 45〜 53ページに記載されている。取り込まれた情報分子は、情報分子複号化部 72で復 号される。
[0089] 上記の例では、情報の宛先が、肝臓付近の分子受信機であったため、標識分子
56としてインシュリンを使用した。宛先が腎臓付近の分子受信機である場合は、腎臓 に作用するホルモンであるアルドステロンを標識分子 56として使用することになる。こ のように、宛先ごとに適切な標識分子を使用することにより、情報を符号化した分子を 、生体の分子信号伝達経路を利用して、適切な宛先に送信することが可能になる。 また、生体の分子信号伝達経路でなくとも、例えば上記の第 1実施形態で示した流 路であっても、宛先毎に異なる受容体を持つ分子受信機が存在すれば、本発明を利 用して、適切な宛先に情報を符号ィ匕した分子を送信することが可能になる。
[0090] 上述した例では、センサ等により取得した情報を目的の宛先へ送信する構成とし たが、第 2実施形態の分子通信システム 2は、薬分子を適切な宛先に送信する目的 で使用することもできる。この場合、薬分子が情報分子 55になり、符号化は、薬分子 が分子受信機 70で作用する状態にすることに相当し、分子受信機 70で薬が作用す ることが復号ィ匕に相当する。
[0091] 上記の例では、 1つの分子送信機 60において、標識分子 56と情報分子 55の双 方を生成したが、図 11に示すように、標的分子 56を生成、放出する第 1の分子送信 装置 60aと、符号化された情報分子 55を生成、放出する第 2の分子送信装置 60bと を用いて、分子送信装置群または分子送信機 60として構成することも可能である。こ の場合、第 1の分子送信装置 60aは、例えば、本来的に生体に存在する細胞そのも のでよぐ第 2の分子送信装置 60bのみを第 1の分子送信装置 60aの近傍に埋め込 む。
[0092] 図 11 (a)に示すように、第 2の分子送信装置 60bは、情報分子生成部 62、分子 符号化部 65、分子放出部 67bに加え、標識分子検出部 68を有する。標識分子検出 部 68は、例えば、標識分子の受容体であり、第 1の分子送信装置(生体細胞) 60aが 放出した標識分子 56の一部を受信することにより、標識分子 56の放出を検出する。 標識分子検出部 68は、標識分子 56の放出(分泌)を検出すると、情報分子生成部 6 2に対して、符号化対象分子の生成を指示する。分子符号化部 65で、分子への情 報の符号化が行なわれ、分子放出部 67bから、情報分子 55が出力される。
[0093] あるいは、標識分子 56の放出を検出してから、符号化された情報分子を生成す るのではなぐ符号化対象となる分子の生成、符号ィ匕をあらかじめ行っておいてもよ レ、。この場合、図 11 (a)で破線の矢印で示すように、標識分子 56の放出の検出に基 づいて、分子放出部 67bに情報分子 55の放出指示することによって、即座に情報分 子 55を放出する。この指示方法としては、分子送信機として生体細胞やそれを人工 的に改変した人工細胞を利用した場合、標識分子検出部 68が、ホルモン分泌を検 出した際、分子放出部 67bに対して、生体細胞が分子を放出する際に利用している カルシウムイオンを信号として伝達してやることが考えられる。なお、標識分子検出部 68がホルモン分泌を検出する機構としては、分泌されるホルモンに対応する受容体 を利用することが考えられる。ホルモンが受容体に結合したことをトリガとしてカルシゥ ムイオンが分子放出部に伝達するという作用を発生する仕組みの実現には、受容体 に結合する分子とそれをトリガとして生起される作用を自由に組み合わせることが可 能なキメラ受容体を利用できると考えられる。キメラ受容体については、 M. Kawahara, et al , Selection of genetically modified ceil population using hapten-specinc antibo dy/receptor chimera," Biochemical and Biophysical Research Communications," vol. 315, pp.132-138, Feb. 2004.を参照されたレ、。カルシウムイオンが作用すると、分子 放出部 67bでは、分子を放出するメカニズムであるェクソサイト一シスが促進され、情 報分子が放出されることになる。
[0094] いずれの構成でも、図 11 (b)に示すように、第 1の分子送信装置(生体細胞) 60a が標識分子を放出するタイミングに合わせて、第 2の分子送信装置 60bが、情報分 子を放出し、これらの分子の結合体を分子伝搬経路に沿って、送り出す。
[0095] 図 12は、さらに別の構成例 3を示す。構成例 3では、図 12 (b)に示すように、第 2 の分子送信装置 60bが情報分子 55を放出する必要がある場合に、第 1の分子送信 装置(生体細胞) 60aに標識分子を分泌するように指示を出す。
[0096] この場合、第 2の分子送信装置 60bは、情報分子生成部 62、分子符号化部 65、 分子放出部 67bに加え、標識分子放出指示部 69を有する。第 1の分子送信装置 (生 体細胞) 60aが放出する標識分子 56がホルモンであれば、標識分子放出指示部 69 は、ホルモン放出刺激ホルモン等を第 1の分子送信装置 60aに対して出力する。
[0097] 図 11および図 12の例に示すように、分子送信機を複数の分子送信装置の集まり として構成した場合、 1つの分子送信機で標識分子 56と情報分子 55の両方を生成 する場合と比較して、標識分子 56と情報分子 55の結合の確率が低下することが想 定されるが、ある程度の結合確率は確保されるため、特に問題とはならない。また、 分子受信機 70において、復号化の閾値をある程度低く(例えば 60%程度)にするこ とにより、結合確率低下の問題を回避することもできる。なお、図 11および図 12の構 成例の説明では分子送信装置 60aは生体細胞であるとして説明をしたが、生体細胞 以外にも生体細胞を改変したものや、分子送信装置 60aの機能を満たす装置を機械 的に構成したものを利用してもよい。
[0098] 以上説明したように、本発明の第 1実施形態および第 2実施形態によれば、分子 を介した情報伝達を制御性よく行なうことのできる分子通信システムが提供され、従 来の通信システムを適用することができない生体内や、分子スケールの送受信機間 における通信が可能となる。
[0099] また、分子通信システムは、化学的なエネルギーによって駆動 '動作し、ナノスケ ールの分子に情報を符号ィヒして伝送するため、従来の通信システムよりも少ないェ ネルギー消費量で、情報密度の高い情報伝達が可能となる。
[0100] さらに、従来の通信システムでは伝送することができない送信側の生化学的な現 象や状態を、分子を介して受信側へ伝達 ·再現することができ、生化学反応に基づく 新たな通信形態も提供することが可能となる。
[0101] 本国際出願は、 2005年 3月 7日にした日本国特許出願 2005— 063105号に基 づく優先権を主張するものであり、その全内容は本国際出願に援用されるものとする

Claims

請求の範囲
[1] 所定の情報が符号化された情報分子を送出する分子送信機と、
前記情報分子を受信する分子受信機と、
前記分子送信機と分子受信機との間を接続する分子伝搬経路と
を含み、
前記分子伝搬経路は、高分子材料で形成される伝送パスと、当該伝送パスに沿つ て所定の方向に巡回するキャリア分子とを含み、前記分子送信機から送出された情 報分子は、前記キャリア分子に搭載されて前記分子受信機まで輸送されることを特 徴とする分子通信システム。
[2] 前記伝送パスはレール分子で形成され、前記キャリア分子はモータ分子であり、前 記情報分子は、前記モータ分子に搭載されて前記分子受信機まで輸送されることを 特徴とする請求項 1に記載の分子通信システム。
[3] 前記伝送パスはモータ分子で形成され、前記キャリア分子はレール分子であり、前 記情報分子は、前記レール分子に搭載されて前記分子受信機まで輸送されることを 特徴とする請求項 1に記載の分子通信システム。
[4] 前記分子受信機は、前記キャリア分子に搭載された情報分子を受け取り、前記キヤ リア分子力 情報分子を分離する分子受信部と、
前記分離した情報分子を復号化する復号化部と
を有することを特徴とする請求項 1に記載の分子通信システム。
[5] 前記伝送パスは、アデノシン三リン酸 (ATP)を注入した溶液中に設置され、前記キ ャリア分子の移動速度は、 ATP濃度、マグネシウムイオン濃度、溶液温度、粘性抵抗 の少なくともひとつを変更することによって調整可能であることを特徴とする請求項 1 に記載の分子通信システム。
[6] 前記分子送信機から放出される情報分子は、その種類、濃度、構成比率、またはこ れらの任意の組み合わせに情報が符号ィヒされており、
前記分子受信機において生起される作用の種類または強弱によって、情報が復号 化されることを特徴とする請求項 1に記載の分子通信システム。
[7] 前記情報分子は、当該情報分子を閉じ込めることが可能な物質でカプセル化され ており、前記情報分子は前記分子伝搬経路中の分子を変性させ得る環境因子から 保護され、前記情報分子の性質は前記キャリア分子に対して隠蔽されていることを特 徴とする請求項 1に記載の分子通信システム。
[8] 前記情報分子は、一本鎖 DNAの塩基配列から成る結合部を有し、
前記キャリア分子は、前記情報分子の結合部と相補性を有する一本鎖 DNAの塩 基配列を有し、前記情報分子の結合部と 2本鎖を形成することによって、前記情報分 子を搭載することを特徴とする請求項 1に記載の分子通信システム。
[9] 分子送信機と分子受信機との間に、高分子材料で構成される伝送パスを形成し、 前記伝送パスに沿ってキャリア分子を所定の方向に巡回させ、
前記分子送信機において、分子に所定の情報を符号化して情報分子を生成し、 前記情報分子を前記伝送パスに送出して、前記巡回するキャリア分子に搭載し、 前記情報分子を、前記伝送パスに沿って分子受信機まで伝送する
工程を含むことを特徴とする分子通信方法。
[10] 前記伝送パスをレール分子で形成し、
前記キャリア分子としてモータ分子を巡回させ、
前記情報分子を前記モータ分子に搭載して前記受信機まで輸送することを特徴と する請求項 9に記載の分子通信方法。
[11] 前記伝送パスをモータ分子で形成し、
前記キャリア分子としてレール分子を巡回させ、
前記情報分子を前記レール分子に搭載して前記分子受信機まで輸送することを特 徴とする請求項 9に記載の分子通信方法。
[12] 前記分子受信機において、前記キャリア分子に搭載された情報分子を受信し、 前記キャリア分子から前記情報分子を分離し、
前記分離した情報分子を復号化する
工程をさらに含むことを特徴とする請求項 9に記載の分子通信方法。
[13] 前記伝送パスを、アデノシン三リン酸 (ATP)を注入した溶液中に設置し、
前記 ATPの濃度、マグネシウムイオン濃度、溶液温度、粘性抵抗の少なくともひと つを変更することによって、前記キャリア分子の移動速度を調整する 工程をさらに含むことを特徴とする請求項 9に記載の分子通信方法。
[14] 前記情報分子を生成する工程は、前記情報分子の種類、濃度、構成比率、または これらの任意の組み合わせに情報を符号化することを特徴とする請求項 9に記載の 分子通信方法。
[15] 前記情報分子を生成する工程は、前記情報分子の種類、濃度、構成比率、または これらの任意の組み合わせに情報を符号ィ匕し、
前記復号化する工程は、前記分子受信機において生起される作用の種類や強弱 によって情報を復号化する
ことを特徴とする請求項 12に記載の分子通信方法。
[16] 前記情報分子を生成する工程は、前記情報分子を閉じ込めることが可能な物質で
、前記情報分子をカプセル化することによって、前記情報分子を前記分子伝搬経路 中の分子を変性させ得る環境因子力 保護し、前記情報分子の性質を前記キャリア 分子に対して隠蔽することを特徴とする請求項 9に記載の分子通信方法。
[17] 前記情報分子を生成する工程は、前記情報分子に、一本鎖 DNAの塩基配列から 成る結合部を形成する工程をさらに含み、
前記キャリア分子に搭載する工程は、前記情報分子の結合部と、前記キャリア分子 が有する情報分子の結合部と相補性を有する一本鎖 DNAの塩基配列とで 2本鎖を 形成する工程をさらに含む
ことを特徴とする請求項 9に記載の分子通信方法。
[18] 所定の情報が符号化された情報分子を送出する分子送信機と、
前記情報分子を受信する分子受信機と、
前記分子送信機と分子受信機との間を接続する分子伝搬経路と
を含み、
前記分子送信機は、
所定の分子に所定の情報を符号化して情報分子を生成する分子符号化部と、 前記情報分子の宛先である前記分子受信機を識別する標識分子を生成する標識 分子生成部と、
前記情報分子および標識分子を前記分子伝搬経路に送出する分子放出部と を有することを特徴とする分子通信システム。
[19] 前記分子送信機は、
前記標識分子生成部、および前記標識分子を放出する第 1の分子放出部を有す る第 1の分子送信装置と、
前記分子符号化部、および前記情報分子を放出する第 2の分子放出部を有する 第 2の分子送信装置と
を含み、前記第 2の分子送信装置は、
前記第 1の分子送信装置からの前記標識分子の放出を検出する標識分子検出部 をさらに有し、前記第 2の分子放出部は、前記標識分子の検出に基づいて、前記情 報分子を放出することを特徴とする請求項 18に記載の分子通信システム。
[20] 前記分子送信機は、
前記標識分子生成部、および前記標識分子を放出する第 1の分子放出部を有す る第 1の分子送信装置と、
前記分子符号化部、および前記情報分子を放出する第 2の分子放出部を有する 第 2の分子送信装置と
を含み、前記第 2の分子送信装置は、
前記情報分子を放出する際に、前記第 iの分子送信装置に対して、前記標識分子 の放出を指示する標識分子放出指示部
をさらに有し、前記第 1の分子放出部は、前記指示に基づいて前記標識分子を放出 することを特徴とする請求項 18に記載の分子通信システム。
[21] 前記分子伝搬経路は、流路であり、
前記分子放出部は、前記標識分子と情報分子が前記分子送信機の内部または外 部で結合するように、前記標識分子および情報分子を放出し、
前記情報分子は、前記標識分子により前記分子伝搬経路に沿って前記分子受信 機まで輸送されることを特徴とする請求項 18に記載の分子通信システム。
[22] 前記分子受信機は、前記標識分子と前記情報分子の結合体を受信し、前記標識 分子に結合した情報分子を取り込む標識分子受信部と、
前記情報分子を復号化する復号化部と を有することを特徴とする請求項 18に記載の分子通信システム。
[23] 分子送信機において、所定の分子に所定の情報を符号ィヒして情報分子と、当該情 報分子の宛先である分子受信機を識別する標識分子とを生成し、
前記情報分子が前記標識分子と結合するように、前記分子送信機から前記情報分 子と標識分子を分子伝搬経路に放出し、
前記分子伝搬経路により、前記情報分子と標識分子との結合体を、前記分子受信 機まで輸送し、
前記分子受信機にて、前記結合体を受信する
工程を含むことを特徴とする分子通信方法。
[24] 前記分子送信機において、前記標識分子の放出をモニタリングし、
前記標識分子の放出が検出されたときに、これをトリガとして、前記情報分子を放出 することを特徴とする請求項 23に記載の分子通信方法。
[25] 前記分子送信機において、前記情報分子を放出するときに、前記標識分子の放出 を指示することを特徴とする請求項 23に記載の分子通信方法。
[26] 前記分子受信機にぉレ、て、前記標識分子と情報分子の結合体を受信して、前記 標識分子に結合した情報分子を取り込み、
前記情報分子を復号化する
工程をさらに含むことを特徴とする請求項 23に記載の分子通信方法。
PCT/JP2006/304101 2005-03-07 2006-03-03 分子通信システム WO2006095651A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/663,304 US8315807B2 (en) 2005-03-07 2006-03-03 Molecular communication system
EP06715184A EP1857408B1 (en) 2005-03-07 2006-03-03 Molecular communication system
ES06715184T ES2373739T3 (es) 2005-03-07 2006-03-03 Sistema de comunicación molecular.
JP2007507081A JP4234767B2 (ja) 2005-03-07 2006-03-03 分子通信システム
CN2006800008914A CN101031501B (zh) 2005-03-07 2006-03-03 分子通信系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005063105 2005-03-07
JP2005-063105 2005-03-07

Publications (1)

Publication Number Publication Date
WO2006095651A1 true WO2006095651A1 (ja) 2006-09-14

Family

ID=36953250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304101 WO2006095651A1 (ja) 2005-03-07 2006-03-03 分子通信システム

Country Status (8)

Country Link
US (1) US8315807B2 (ja)
EP (2) EP2182661B1 (ja)
JP (1) JP4234767B2 (ja)
KR (1) KR100863266B1 (ja)
CN (1) CN101031501B (ja)
ES (2) ES2376042T3 (ja)
TW (1) TW200702293A (ja)
WO (1) WO2006095651A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296609A (ja) * 2006-04-28 2007-11-15 Ntt Docomo Inc 分子通信システムおよび分子通信方法
KR20190027214A (ko) * 2017-09-06 2019-03-14 경희대학교 산학협력단 분자 통신을 위한 채널 모델링 및 분자 전송 방법
WO2024048422A1 (ja) * 2022-08-29 2024-03-07 国立大学法人大阪大学 分子メモリ、分子メモリの製造方法、分子メモリのデコード方法および分子メモリをデコードするためのデバイス

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010028085A2 (en) * 2008-09-03 2010-03-11 The Regents Of The University Of California Surgical object tracking system
CN104393949B (zh) * 2014-10-20 2017-07-25 浙江工业大学 一种基于二进制分子通信模型的通信方法
CN104393967B (zh) * 2014-10-20 2018-01-23 浙江工业大学 基于二进制分子通信模型的单链路可靠性确定方法
CN104393968B (zh) * 2014-10-20 2017-07-25 浙江工业大学 基于二进制分子通信模型的多播时延确定方法
CN104393950B (zh) * 2014-10-20 2017-07-25 浙江工业大学 基于二进制分子通信模型的单链路时延确定方法
KR101614653B1 (ko) 2015-03-26 2016-04-21 인하대학교 산학협력단 분자나노통신과 테라헤르츠 전자파 하이브리드 나노통신 인터페이싱 방법 및 장치
KR101652634B1 (ko) * 2015-04-10 2016-08-30 인하대학교 산학협력단 나노 네트워크에서 분자 통신을 위한 억제제 기반 변조 방법 및 장치
KR101817122B1 (ko) 2015-12-14 2018-01-10 경희대학교 산학협력단 분자 통신 시스템, 분자 통신 방법, 분자 송신기 및 분자 수신기
CN106301600B (zh) * 2016-11-03 2018-05-18 电子科技大学 一种分子通信中的解调方法
US10084551B2 (en) * 2017-02-23 2018-09-25 International Business Machines Corporation Generic network infrastructure for nano-communication
CN109474323B (zh) * 2018-12-12 2020-08-07 北京邮电大学 分子通信编码方法及装置
KR102201264B1 (ko) * 2019-04-29 2021-01-11 경희대학교 산학협력단 분자 통신에서 연결성 정보 획득 방법
US11039749B1 (en) * 2019-12-19 2021-06-22 Alfaisal University Two factor authentication using molecular communication—a system and method
CN114641064B (zh) * 2022-03-24 2023-08-22 电子科技大学 一种分子通信中基于信标的纳米机定位方法
CN115776455A (zh) * 2022-11-23 2023-03-10 浙江工业大学 一种基于位值存储的最佳时机阈值检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674143A (ja) * 1992-08-28 1994-03-15 Hitachi Ltd 微細運搬システムまたは動力発生装置
JP2002018799A (ja) * 2000-07-10 2002-01-22 National Institute Of Advanced Industrial & Technology 微小駆動素子及びその製造方法
JP2003101485A (ja) * 2002-10-17 2003-04-04 Masayuki Sonobe 生体高分子を通信媒体もしくは記録媒体とした、情報通信方法、情報記録方法、エンコーダおよびデコーダ
WO2004036011A2 (en) * 2002-10-18 2004-04-29 Florida State University Biomolecular-based actuator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459095B1 (en) * 1999-03-29 2002-10-01 Hewlett-Packard Company Chemically synthesized and assembled electronics devices
JP4186749B2 (ja) 2003-08-11 2008-11-26 トヨタ自動車株式会社 脇見判定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674143A (ja) * 1992-08-28 1994-03-15 Hitachi Ltd 微細運搬システムまたは動力発生装置
JP2002018799A (ja) * 2000-07-10 2002-01-22 National Institute Of Advanced Industrial & Technology 微小駆動素子及びその製造方法
JP2003101485A (ja) * 2002-10-17 2003-04-04 Masayuki Sonobe 生体高分子を通信媒体もしくは記録媒体とした、情報通信方法、情報記録方法、エンコーダおよびデコーダ
WO2004036011A2 (en) * 2002-10-18 2004-04-29 Florida State University Biomolecular-based actuator

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIYAMA S. ET AL.: "Molecular Communication", PROCEEDINGS OF THE 2005 NSTI NANOTECHNOLOGY CONFERENCE, NANO SCIENCE AND TECHNOLOGY INSTITUTE, vol. 3, May 2005 (2005-05-01), pages 392 - 395, XP003003400 *
NAKANO T. ET AL.: "Molecular communication for nanomachines using intercellular calcium signaling", 2005 5TH IEEE CONFERENCE ON NANOTECHNOLOGY, INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, vol. 2, July 2005 (2005-07-01), pages 478 - 481, XP003003399 *
YOKOKAWA T. ET AL.: "Nano Hanso System no tameno Seitai Bunshi Motor Seigyo", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS ROBOTICS MECHATRONICS' 03 KOENKAI KOEN RONBUNSHU, vol. 1, no. 2, 23 May 2003 (2003-05-23), pages 2P1-3F-G8, XP003004001 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296609A (ja) * 2006-04-28 2007-11-15 Ntt Docomo Inc 分子通信システムおよび分子通信方法
KR20190027214A (ko) * 2017-09-06 2019-03-14 경희대학교 산학협력단 분자 통신을 위한 채널 모델링 및 분자 전송 방법
KR102036068B1 (ko) * 2017-09-06 2019-10-24 경희대학교 산학협력단 분자 통신을 위한 채널 모델링 및 분자 전송 방법
WO2024048422A1 (ja) * 2022-08-29 2024-03-07 国立大学法人大阪大学 分子メモリ、分子メモリの製造方法、分子メモリのデコード方法および分子メモリをデコードするためのデバイス

Also Published As

Publication number Publication date
CN101031501B (zh) 2010-08-18
US8315807B2 (en) 2012-11-20
KR20070063517A (ko) 2007-06-19
KR100863266B1 (ko) 2008-10-15
EP2182661B1 (en) 2011-10-26
US20080280342A1 (en) 2008-11-13
ES2373739T3 (es) 2012-02-08
EP1857408A4 (en) 2010-01-27
EP1857408B1 (en) 2011-09-28
EP2182661A1 (en) 2010-05-05
ES2376042T3 (es) 2012-03-08
JP4234767B2 (ja) 2009-03-04
TWI306079B (ja) 2009-02-11
EP1857408A1 (en) 2007-11-21
JPWO2006095651A1 (ja) 2008-08-14
TW200702293A (en) 2007-01-16
CN101031501A (zh) 2007-09-05

Similar Documents

Publication Publication Date Title
JP4234767B2 (ja) 分子通信システム
Hiyama et al. Molecular communication
Nakano Molecular communication
Moore et al. A design of a molecular communication system for nanomachines using molecular motors
Astier et al. Protein components for nanodevices
Schmidt et al. Transport selectivity of nuclear pores, phase separation, and membraneless organelles
Hiyama et al. Molecular communication: Harnessing biochemical materials to engineer biomimetic communication systems
Gregori et al. A new nanonetwork architecture using flagellated bacteria and catalytic nanomotors
JP4767654B2 (ja) 分子伝送・分子配送システムおよび分子伝送・分子配送方法
Moritani et al. Molecular communication among nanomachines using vesicles
JP5132906B2 (ja) 分子通信システムおよび分子通信方法
Lu et al. Wireless communication in nanonetworks: Current status, prospect and challenges
Sun et al. Micro/Nanorobots as Active Delivery Systems for Biomedicine: From Self‐Propulsion to Controllable Navigation
Shi et al. Engineering receptor-mediated transmembrane signaling in artificial and living cells
Pushpavanam et al. Solid-binding proteins: bridging synthesis, assembly, and function in hybrid and hierarchical materials fabrication
Matsuura et al. Horseradish peroxidase-decorated artificial viral capsid constructed from β-annulus peptide via interaction between His-tag and Ni-NTA
Moritani et al. Molecular communication a biochemically-engineered communication system
Koshy et al. New insights on molecular communication in nano communication networks and their applications
Moritani et al. A molecular communication system
Yan et al. Molecular communication in nanonetworks
Chude-Okonkwo et al. Bio-inspired physical layered device architectures for diffusion-based molecular communication: design issues and suggestions
Moore et al. Interfacing with nanomachines through molecular communication
US20220091040A1 (en) Biological sensing and communication using optogenetics and electronics
Gong et al. HcRed, a genetically encoded fluorescent binary cross-linking agent for cross-linking of mitochondrial ATP synthase in Saccharomyces cerevisiae
Anjum et al. Molecular communication for nanoscale communication networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507081

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006715184

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11663304

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680000891.4

Country of ref document: CN

Ref document number: 1020077006578

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006715184

Country of ref document: EP