WO2006095479A1 - 高周波回路デバイス,高周波モジュール及び通信装置 - Google Patents

高周波回路デバイス,高周波モジュール及び通信装置 Download PDF

Info

Publication number
WO2006095479A1
WO2006095479A1 PCT/JP2005/022338 JP2005022338W WO2006095479A1 WO 2006095479 A1 WO2006095479 A1 WO 2006095479A1 JP 2005022338 W JP2005022338 W JP 2005022338W WO 2006095479 A1 WO2006095479 A1 WO 2006095479A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot line
frequency
circuit device
stub
frequency circuit
Prior art date
Application number
PCT/JP2005/022338
Other languages
English (en)
French (fr)
Inventor
Kazutaka Mukaiyama
Seiji Hidaka
Koichi Takizawa
Koichi Sakamoto
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2007506991A priority Critical patent/JP4356116B2/ja
Publication of WO2006095479A1 publication Critical patent/WO2006095479A1/ja
Priority to US11/830,976 priority patent/US7365618B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/2016Slot line filters; Fin line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • High frequency circuit device high frequency module and communication device
  • the present invention relates to a high-frequency circuit device, a high-frequency module, and a communication device that use a slot line that transmits a high-frequency signal such as a microwave or a millimeter wave.
  • Patent Document 1 Japanese Patent Laid-Open No. 08-265007
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-007349
  • the conventional high-frequency circuit device using the PDTL type line has the following problems.
  • FIG. 22 is a schematic cross-sectional view for explaining problems of the conventional high-frequency circuit device.
  • slot lines 111 and 112 having substantially the same shape are formed on both surfaces of the dielectric substrate 100, and the same high frequency signal is sent to both slot lines 111 and 112.
  • the present invention has been made to solve the above-described problems, and prevents high-frequency circuit devices, high-frequency modules, and communication apparatuses that prevent generation of unnecessary waves and avoid power loss and unnecessary coupling.
  • the purpose is to provide.
  • the invention of claim 1 is characterized in that a first slot line composed of a spacing line between electrodes disposed opposite to the surface of the substrate and an electrode disposed opposite to the back surface of the substrate.
  • a high-frequency circuit device comprising a second slot line, which is formed of a plurality of spaced lines, and opposed to the first slot line, and an electric element interposed in the first slot line, the high-frequency signal propagating through the second slot line
  • a phase adjustment unit for adjusting the phase to be approximately the same as the phase of the high-frequency signal propagating through the first slot line is provided in the second slot line.
  • the same high-frequency signal can be propagated to the first slot line and the second slot line.
  • the high-frequency signal propagating through the first slot line is subjected to predetermined processing by an electrical element interposed in the first slot line.
  • the electric element is interposed in the first slot line, there may be a phase difference between the high-frequency signal propagating through the first slot line and the high-frequency signal propagating through the second slot line.
  • the phase adjustment unit provided in the second slot line is used to adjust the phase of the high-frequency signal propagating through the second slot line to be approximately the same as the phase of the high-frequency signal propagating through the first slot line. Can be adjusted. As a result, unnecessary waves generated in the substrate due to the phase difference can be suppressed.
  • the invention of claim 2 is the high-frequency circuit device according to claim 1, wherein the phase adjustment unit is a stub that branches off the second slot line force.
  • the phase of the high-frequency signal propagating through the second slot line is substantially the same as the phase of the high-frequency signal propagating through the first slot line. It can be adjusted to the same phase.
  • the invention of claim 3 is the high-frequency circuit device according to claim 2, wherein the stub is a straight short stub having a predetermined length.
  • the invention of claim 4 is the high-frequency circuit device according to any one of claims 1 to 3, wherein the phase adjustment unit is connected between both electrodes so as to straddle the second slot line.
  • the electrode line has a fixed length.
  • the phase of the high-frequency signal propagating through the second slot line can be adjusted to substantially the same phase as the phase of the high-frequency signal propagating through the first slot line.
  • the invention of claim 5 is the high-frequency circuit device according to any one of claims 1 to 4, wherein the phase adjustment unit is a portion of the second slot line, and the electrical element is interposed. It is set as the structure provided in the site
  • a high-frequency module according to the invention of claim 6 includes the high-frequency circuit device according to any one of claims 1 to 5.
  • a communication device includes the high-frequency module according to the sixth aspect.
  • the invention of claim 8 is the communication apparatus according to claim 7, wherein the communication apparatus is a radar apparatus.
  • the phase adjustment unit converts the phase of the high-frequency signal propagating through the second slot line to the first slot line.
  • the phase By adjusting the phase to be approximately the same as the phase of the high-frequency signal propagating through the substrate, unnecessary waves generated in the substrate can be suppressed, so that generation of unnecessary waves can be prevented and power loss can be reduced. It is possible to prevent unnecessary waves from leaking outside the board and unnecessarily coupling with external devices around. As a result, the characteristics of the high-frequency circuit device itself can be improved, the designability can be improved, and the variation in characteristics can be reduced.
  • the length and shape of the stub are set.
  • the phase of the high-frequency signal propagating through the second slot line can be adjusted to approximately the same phase as the phase of the high-frequency signal propagating through the first slot line, so that the generation of unnecessary waves can only be suppressed. It is possible to improve the design characteristics of the transmission characteristics of the second slot line.
  • the high frequency that propagates through the second slot line by the electrode line straddling the second slot line without using a stub that requires a large arrangement space Since the signal phase can be adjusted, the high-frequency circuit device itself can be miniaturized. In addition, since the isolation on the second slot line side is improved, it is possible to improve the device characteristics and improve the design.
  • the operating characteristics of the high-frequency module and the communication device can be improved, and the variation in characteristics can be reduced.
  • the design of these devices can be improved.
  • FIG. 1 is a perspective view showing a high-frequency circuit device according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the high-frequency circuit device shown in FIG.
  • FIG. 3 is a plan view showing the surface side of the high-frequency circuit device.
  • FIG. 4 is a plan view showing the back side of the high-frequency circuit device.
  • FIG. 5 is a diagram showing a gain of a high-frequency circuit device having no stub.
  • FIG. 6 is a diagram showing the calculated value of the leakage loss estimation with respect to the stub length.
  • FIG. 7 is a diagram showing the gain of a high-frequency circuit device having a stub having a length of 400 ⁇ m.
  • FIG. 8 is an exploded perspective view showing a part of the high-frequency circuit device according to the second embodiment of the present invention.
  • FIG. 9 is an exploded perspective view showing a part of the high-frequency circuit device according to the third embodiment of the present invention.
  • FIG. 10 is an exploded perspective view showing a part of the high-frequency circuit device according to the fourth embodiment of the present invention.
  • FIG. 11 is a plan view showing the back side of the high-frequency circuit device of this example.
  • FIG. 12 is a diagram showing the gain of a high-frequency circuit device having electrode lines.
  • FIG. 13 is a plan view showing a back surface side that is a main part of a high-frequency circuit device according to a fifth embodiment of the present invention.
  • FIG. 14 is a diagram showing calculated values of leakage loss estimation with respect to stub length.
  • FIG. 15 is an exploded perspective view showing a part of the high-frequency oscillation circuit according to the sixth embodiment of the present invention.
  • FIG. 16 is an exploded perspective view showing a high frequency module according to a seventh embodiment of the present invention.
  • FIG. 17 is a block diagram of a high-frequency module.
  • FIG. 18 is a perspective view showing a main part of a communication device including a high-frequency module according to the seventh embodiment.
  • FIG. 19 is a block diagram of a communication device.
  • FIG. 20 is a plan view showing the back side of a high-frequency circuit device according to a modification.
  • FIG. 21 is a plan view showing the back side of a high-frequency circuit device according to another modification.
  • FIG. 22 is a schematic cross-sectional view for explaining problems of the conventional high-frequency circuit device. Explanation of symbols
  • Receiver circuit 85 ⁇ ⁇ Oscillation Circuit, 86 ... Package, 87 ... Lid, 88 ... Parasitic antenna, 89 ... Blocking plate, D ... Drain electrode, G ... Gate electrode, Ml, ⁇ 2 ... High-frequency signal, S ... Source electrode.
  • FIG. 1 is a perspective view showing a high-frequency circuit device according to a first embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the high-frequency circuit device shown in FIG. 1
  • FIG. 3 is a high-frequency circuit.
  • FIG. 4 is a plan view showing the front side of the chair, and FIG. 4 is a plan view showing the back side of the high-frequency circuit device.
  • the high-frequency circuit device 1 of this embodiment is an amplifier circuit device, and includes a first slot line 3 and a second slot line 4 provided on both surfaces of the dielectric substrate 2, respectively. And a field effect transistor element (hereinafter referred to as “FET”) 5 as an electric element.
  • FET field effect transistor element
  • the first slot line 3 is composed of a spacing line between a pair of electrodes 31 and 32 disposed to face the surface 2 a of the dielectric substrate 2. Specifically, as shown in FIG. 2, the first slot line 3 having a width W is obtained by forming the electrodes 31 and 32 on the dielectric substrate 2 at intervals W. And the stub 3a is the electrode 31, and is recessed in the mounting part of FET5 mentioned later. This stub 3a is an isolation stub, and its length is set to 1Z4 of the wavelength of the high-frequency signal Ml to be propagated to the first slot line 3.
  • the second slot line 4 is composed of a spacing line between a pair of electrodes 4 1 and 42 disposed opposite to the back surface 2 b of the dielectric substrate 2.
  • the second slot line 4 faces the first slot line 3. That is, the electrodes 41 and 42 are formed below the dielectric substrate 2 with a spacing W, and the stub 4a having the same length and the same shape as the isolation stub 3a of the first slot line 3 is formed at a portion facing the stub 3a. Yes.
  • the FET 5 is an element that functions as an active element such as an amplifying element, and is interposed in the first slot line 3 as shown in FIG. Specifically, the FET 5 has a drain electrode D, a gate electrode G, and a source electrode S on the back surface, the source electrode S is connected to the electrode 32, and the drain electrode D and the gate electrode G are connected to the stub for isolation. It is mounted in a state where it is connected to the electrode 31 so as to straddle 3a.
  • the second slot line 4 is provided with a stub 6 as a phase adjustment unit.
  • the phase of the high-frequency signal M2 propagating through the second slot line 4 is adjusted to be substantially the same as the phase of the high-frequency signal Ml propagating through the first slot line 3.
  • the stub 6 is a straight short stub having a length L as shown in FIG.
  • the positional force of the stub 4a of the slot line 4 also branches to the opposite side of the stub 4a.
  • the stub 6 is positioned almost directly behind the FET 5, and thus the phase of the high-frequency signal M 2 propagating through the second slot line 4 can be adjusted by changing the length L of the stub 6.
  • the length L of the stub 6 is changed to adjust the phase of the high-frequency signal M2 propagating through the second slot line 4 so that it is in phase with the phase of the high-frequency signal Ml of the first slot line 3. Therefore, there is no phase difference. As a result, unnecessary waves generated in the dielectric substrate 2 are suppressed, so that it is possible to prevent power loss due to the generation of unnecessary waves and unnecessary coupling with surrounding external devices.
  • a dielectric having a dielectric constant of 24 is used as the dielectric substrate 2 in length (length direction of the first slot line 3) 8.03 mm in width (first slot line). (Width direction of 3) 6.
  • the distance between the first slot lines 3 was set to 10 m and the distance between the second slot lines 4 was set to 100 m.
  • GS type FET was used as FET5.
  • the length L of the stub 6 was set to “Omm”. In other words, for a high-frequency circuit device that does not have a stub 6, a high-frequency signal with a frequency ranging from 54 GHz to 66 GHz was propagated and its gain was calculated.
  • FIG. 5 is a diagram showing the gain of a high-frequency circuit device without a stub.
  • the high-frequency circuit device without the stub 6 generates periodic ripples as indicated by points, p ′ and pi in the range of 54 GHz to 66 GHz.
  • the period and point between points p-p! -v 'period is about 3.7GHz
  • the wavelength corresponds to the length of the dielectric substrate 2.
  • the period between points pi-pi is about 4.5 GHz, and the wavelength corresponds to the width of the dielectric substrate 2. That is, this is presumed that an unnecessary wave is generated in the dielectric substrate 2, and the unnecessary ripples resonate in the dielectric substrate 2, thereby causing the ripple as described above.
  • the length L of the stub 6 was set to a predetermined length, a high-frequency signal having a frequency in the range of 54 GHz to 66 GHz was propagated, and the gain was calculated.
  • an estimate (Q conversion value) of the leakage loss with respect to the length of the stub 6 was calculated.
  • Fig. 6 is a diagram showing the calculated value of the leakage loss with respect to the length of the stub 6, and the curve S1 is the calculated value of the high-frequency circuit device used in this simulation.
  • the length L of the stub 6 that maximizes the calculated value was 400 m. Therefore, the length L of stub 6 was set to 400 m and the gain of the high-frequency circuit device was calculated.
  • FIG. 7 is a diagram showing the gain of a high frequency circuit device having a 400 m long stub.
  • FIG. 8 is an exploded perspective view showing a part of the high-frequency circuit device according to the second embodiment of the present invention.
  • the high-frequency circuit device 1 of this example has a stagger as a phase adjustment unit.
  • the shape of the hub was made different from the shape of the stub 6 of the first embodiment.
  • the circular short stub 61 was formed at the position of the stub 4a. Then, by adjusting the diameter of the short stub 61, the phase of the high-frequency signal M2 propagating through the second slot line 4 is adjusted! /.
  • FIG. 9 is an exploded perspective view showing a part of the high-frequency circuit device according to the third embodiment of the present invention.
  • the shape of the stub as the phase adjustment unit is made different from the shape of the stubs 6 and 61 of the first and second embodiments.
  • a tapered short stub 62 is formed at the position of the stub 4a.
  • the short stub 62 is set so that the branching portion with the second slot line 4 is set narrow and widens toward the tip end side.
  • the phase of the high-frequency signal M2 propagating through the second slot line 4 can be adjusted by adjusting the expansion angle of the short stub 62, the protruding length from the second slot line 4, and the like.
  • a fan-shaped short stub formed at the position of the stub 4a can be presented.
  • FIG. 10 is an exploded perspective view showing a part of the high-frequency circuit device according to the fourth embodiment of the present invention
  • FIG. 11 is a rear view of the high-frequency circuit device of this embodiment. It is a top view which shows the side.
  • the high-frequency circuit device 1 of this embodiment is different from the first to third embodiments in that the electrode line 63 is used as a phase adjusting unit.
  • an electrode line 63 having a predetermined length was connected between the electrodes 41 and 42 so as to straddle the second slot line 4. Specifically, the bridge-shaped electrode line 63 is passed to the portion directly behind FET5 in the second slot line 4 and corresponding to the drain electrode D and source electrode S of the FET5, and the corresponding portion is short-circuited. did.
  • the phase of the high-frequency signal M2 propagating through the second slot line 4 is adjusted to be approximately the same as the phase of the high-frequency signal Ml propagating through the first slot line 3 by adjusting the length of the electrode line 63. can do. As a result, the generation of unnecessary waves can be suppressed.
  • FIG. 12 is a diagram showing the gain of a high-frequency circuit device having electrode lines.
  • the phase adjustment is performed using the stubs 6, 61, 62 that require a relatively large arrangement space.
  • the second slot line is used. Since the phase is adjusted by the electrode line 63 straddling 4, the high-frequency circuit device 1 itself can be downsized. Further, since the isolation on the second slot line 4 side is improved, it is possible to obtain the effects of improving the device characteristics and improving the design. Other configurations, operations, and effects are the same as those in the first to third embodiments, and thus description thereof is omitted.
  • FIG. 13 shows the back side, which is the main part of the high-frequency circuit device according to the fifth embodiment of the invention.
  • FIG. Fig. 14 is a diagram showing the calculated value of the leakage loss estimate with respect to the stub length.
  • the vertical axis represents the reciprocal of the insertion loss, which is the calculated value for the high-frequency circuit device of the example of the curve S2 force.
  • This embodiment is different from the above-described fourth embodiment in that the second slot line 4 is provided with the stub 6 in addition to the electrode line 63.
  • the electrode line 63 having a predetermined length was connected between the electrodes 41 and 42 so as to straddle the second slot line 4, and the stub 6 was formed at the position of the stub 4a. Specifically, the portion directly behind FET 5 in the second slot line 4, the portion corresponding to the drain electrode D and the source electrode S of the FET 5 is short-circuited by the electrode line 63, and the high frequency is generated by the stub 6. The signal M2 is reflected.
  • the length L of the stub 6 that minimizes the calculated leakage loss was about 300 ⁇ m.
  • a circular or elliptical short stub, or a taper or fan-shaped short stub may be presented. it can.
  • FIG. 15 is an exploded perspective view showing a part of the high-frequency oscillation circuit according to the sixth embodiment of the present invention.
  • This embodiment shows an example in which a high-frequency circuit device is applied to a high-frequency oscillation circuit.
  • the high-frequency oscillation circuit 7 transmits a high-frequency signal having a predetermined resonance frequency generated by the dielectric resonator 70 to the first and second slot lines 3 and 4, and amplifies it by the FET 5 and outputs it. It is.
  • DC cut lines 71 and 72 are formed on the electrode 32 on the surface side of the dielectric substrate 2 to define the DC electrode 32a. Then, the gate electrode G of FET5 is connected to the DC electrode 32a, the drain electrode D is connected to the electrode 32 located on the right side of the DC cut line 71, and The source electrode S is connected to the electrode 31.
  • DC cut lines 71 /, 12 ' are also formed in the second slot line 4 on the back side of the dielectric substrate 2, and a straight stub 6 for phase adjustment projects from the position of the DC cut line 71 /. ing.
  • FIG. 16 is an exploded perspective view showing a high-frequency module according to a seventh embodiment of the present invention
  • FIG. 17 is a block diagram of the high-frequency module.
  • the high-frequency module 8 of this embodiment includes divided boards 81 to 85 on which circuits are formed, and a package 86 that houses these divided boards 81 to 85.
  • Each of the divided boards 81 to 85 is a circuit board having a PDTL structure, and each of the divided boards 81 to 85 includes, as circuit blocks, an antenna circuit 81A, a duplexer circuit 82A, a transmission circuit 83A, a reception circuit 84A, Each oscillation circuit 85A is formed.
  • the antenna circuit 81 A formed on the divided substrate 81 is a block that transmits a transmission radio wave and receives a reception radio wave, and includes a radiation slot 81a.
  • the duplexer circuit 82A formed on the divided substrate 82 is a block that is connected to the antenna circuit 81A to form an antenna duplexer, and includes a resonator 82a and the like.
  • the transmission circuit 83A formed on the divided substrate 83 is a block that is connected to the duplexer circuit 82A and outputs a transmission signal toward the antenna circuit 81A.
  • the power amplifier 83c is a high-frequency amplifier circuit.
  • the receiving circuit 84A formed on the dividing board 84 is a block for inputting a received signal received by the antenna circuit 81A connected to the duplexer circuit 82A, and a low-noise amplifier 84a as a high-frequency amplifier circuit and a band-pass It consists of a filter 84b and a mixer 84c as a mixer circuit. It is.
  • the oscillation circuit 85A formed on the divided substrate 85 is a block that is connected to the transmission circuit 83A and the reception circuit 84A and oscillates a signal of a predetermined frequency serving as a carrier wave, and has the same structure as the high-frequency oscillator of the sixth embodiment. is there.
  • a package 86 is a resin package that has been subjected to metallization treatment of a conductive metal material, and the divided substrates 81 to 85 are accommodated therein.
  • the lid 87 attached on the package 86 has an opening 87a at the center thereof, and an electromagnetic wave transmitting blocking plate 89 having a parasitic antenna 88 is attached in the opening 87a.
  • the parasitic antenna 88 faces the radiation slot 81a on the divided substrate 81.
  • reference numeral 86a is an input terminal for inputting an intermediate frequency signal to the transmission circuit 83A
  • reference numeral 86b is an output terminal for outputting the intermediate frequency signal from the reception circuit 84A. is there.
  • the high-frequency oscillation circuit of the sixth embodiment is applied to the oscillation circuit 85A.
  • the stub 6 for phase adjustment is provided on the back side of the divided substrate 85 of the oscillation circuit 85A, but the divided substrate 83 of the transmission circuit 83A that has a mixer 83a and a power amplifier 83c and needs to be provided with an FET.
  • a stub 6 for phase adjustment is provided on the divided substrate 84 of the receiving circuit 84A that has a low-noise amplifier 84a and a mixer 84c and needs to be provided with an FET, and a high-frequency signal that propagates through these circuits. It is preferable to match the phases.
  • FIG. 18 is a perspective view illustrating a main part of a communication device including the high-frequency module according to the seventh embodiment
  • FIG. 19 is a block diagram of the communication device.
  • reference numeral 90 is a substrate, and the high-frequency module 8 and the BB (baseband) chip 9 of the seventh embodiment are mounted on the substrate 90.
  • the BB chip 9 functions as the BB section due to the power applied, and the intermediate-frequency baseband signal modulated by the BB chip 9 is output from the output terminal 91 via the input terminal 86a. Input to the control 8 (functions as the RF section). Then, the baseband signal of the intermediate frequency is converted to a predetermined high frequency by the transmission circuit 83A and transmitted as a radio wave from the parasitic antenna 88. The received signal received by the parasitic antenna 88 and converted to the intermediate frequency by the receiving circuit 84A is output from the output terminal 86b to the input terminal 92 of the BB chip 9. Then, the received signal power is demodulated into a predetermined baseband signal in the B chip 9.
  • the high-frequency module 8 of the above-described embodiment it is possible to provide a communication device having high reliability with respect to operation characteristics and less variation in characteristics. In addition, the design of these devices can be improved.
  • a mobile phone or other communication device including the high-frequency module 8 and the BB chip 9 has been described as an example.
  • a signal processing unit instead of the BB chip 9, a mimic can be obtained.
  • the present invention can also be applied to a radar apparatus that transmits and receives a high frequency signal in a re-band.
  • the phase adjustment stubs 6, 61, 62 are formed at the same position as the isolator stub 4a of the second slot line 4, but as shown in FIG.
  • the stub 6 may be formed by being displaced from the stub 4a.
  • the electrode line 63 for phase adjustment is formed at the same position as the stub 4a for isolator of the second slot line 4. However, as shown in FIG. Of course, it may be formed by being displaced from the stub 4a.
  • the intervals W between the first slot line 3 and the second slot line 4 are set equal, but the width of the first slot line 3 is made smaller than that of the second slot line 4 or vice versa.
  • the line widths of the first and second slot lines 3 and 4 may be made different.
  • the high-frequency circuit device is applied to the high-frequency oscillation circuit.
  • the high-frequency amplifier circuit and the mixer circuit applied to the high-frequency module of the seventh embodiment are also applicable to the present invention.
  • a high-frequency circuit device can be applied.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Microwave Amplifiers (AREA)

Abstract

 不要波の発生を防止して、電力損失と不要結合との回避を図った高周波回路デバイス,高周波モジュール及び通信装置を提供する。  高周波回路デバイス1は、誘電体基板2の両面にそれぞれ設けられた第1スロット線路3及び第2スロット線路4と、FET5とを備えている。第1スロット線路3と第2スロット線路4とは同形に形成され、FET5が第1スロット線路3に介設されている。そして、FET5の実装によって第1スロット線路3を伝搬する高周波信号M1と第2スロット線路4を伝搬する高周波信号M2とに位相差が生じることを防止するために、位相調整用のスタブ6を第2スロット線路4のスタブ4aの位置に形成した。この位相調整は、スタブ6の長さを変化させることで行う。  

Description

明 細 書
高周波回路デバイス,高周波モジュール及び通信装置
技術分野
[0001] この発明は、マイクロ波やミリ波等の高周波信号を伝送するスロット線路を用いた高 周波回路デバイス,高周波モジュール及び通信装置に関するものである。
背景技術
[0002] 半導体素子等の電気素子を接続することが容易であることや特性インピーダンスを 高くすることが容易であること等の理由で、高周波回路デバイスにスロット線路が多用 されるようになった。特に、近年では、伝送損失の低減化の観点から誘電体基板の表 裏両面に対称的にスロット線路を形成した両面スロット構造タイプのもの(これを PDT L (Planer Dielectric Transmission Line)という)を高周波回路デバイスに使用するよう になってきた (例えば、特許文献 1及び特許文献 2参照)。
[0003] 特許文献 1:特開平 08— 265007号公報
特許文献 2:特開 2004— 007349号公報
発明の開示
[0004] しかし、上記 PDTLタイプの線路を用いた従来の高周波回路デバイスでは、次のよ うな問題がある。
図 22は、従来の高周波回路デバイスの問題点を説明するための概略断面図であ る。
図 22 (a)に示すように、 PDTL線路では、略同一形状のスロット線路 111, 112が 誘電体基板 100の両面に形成され、同一の高周波信号が両スロット線路 111, 112 に送られる。
したがって、スロット線路 111を伝搬する高周波信号とスロット線路 112を伝搬する 高周波信号とに位相差が生じない場合には、図 22 (a)に示すように、両高周波信号 によって生じる電界 El, E2が同方向を向くので、誘電体基板 100の上下間に電位 差は生じない。つまり、力かる場合には、不要波が誘電体基板 100内に発生せず、 無用な電力損失や周辺機器との不要結合は生じない。 し力しながら、高周波回路デバイスでは、図 22 (b)に示すように、 FET等の電気素 子 110をスロット線路 111上に取り付けるため、スロット線路 111, 112との間の対称 性が崩れ、スロット線路 111を伝搬する高周波信号とスロット線路 112を伝搬する高 周波信号とに位相差が生じてしまう。この結果、図 22 (b)に示すように、両高周波信 号によって生じる電界 El, E2が互いに逆方向を向いて、誘電体基板 100の上下間 に電位差が生じてしまう。つまり、力かる場合には、誘電体基板 100内に不要な電界 Eが発生し、無用な電力損失が生じると共にこの電界 Eによる不要波が周辺機器と不 要結合して、周辺機器の動作特性を劣化させるおそれがある。
[0005] この発明は、上述した課題を解決するためになされたもので、不要波の発生を防止 して、電力損失と不要結合との回避を図った高周波回路デバイス,高周波モジユー ル及び通信装置を提供することを目的とする。
[0006] 上記課題を解決するために、請求項 1の発明は、基板の表面に対向配置された電 極間の間隔線路で成る第 1スロット線路と、基板の裏面に対向配置された電極間の 間隔線路で成り且つ第 1スロット線路と対向する第 2スロット線路と、第 1スロット線路 に介設された電気素子とを備える高周波回路デバイスであって、第 2スロット線路を 伝搬する高周波信号の位相を第 1スロット線路を伝搬する高周波信号の位相と略同 位相に調整するための位相調整部を、第 2スロット線路に設けた構成とする。
力かる構成により、同一の高周波信号を第 1スロット線路と第 2スロット線路とに伝搬 させることができる。そして、第 1スロット線路を伝搬する高周波信号は、第 1スロット線 路に介設された電気素子によって所定の処理がなされる。ところで、電気素子が第 1 スロット線路に介設されていることにより、第 1スロット線路を伝搬する高周波信号と第 2スロット線路を伝搬する高周波信号とに位相差が生じる場合がある。力かる場合に は、第 2スロット線路に設けられた位相調整部を用いて、第 2スロット線路を伝搬する 高周波信号の位相を第 1スロット線路を伝搬する高周波信号の位相と略同位相に調 整することができる。これにより、位相差によって基板内に生じる不要波を抑圧するこ とがでさる。
[0007] 請求項 2の発明は、請求項 1に記載の高周波回路デバイスにおいて、位相調整部 は、第 2スロット線路力 分岐するスタブである構成とした。 力かる構成により、第 2スロット線路力 分岐するスタブの長さや形状を調整すること で、第 2スロット線路を伝搬する高周波信号の位相を第 1スロット線路を伝搬する高周 波信号の位相と略同位相に調整することができる。
[0008] 請求項 3の発明は、請求項 2に記載の高周波回路デバイスにおいて、スタブは、所 定長さの直状ショートスタブである構成とした。
[0009] 請求項 4の発明は、請求項 1ないし請求項 3のいずれかに記載の高周波回路デバ イスにおいて、位相調整部は、第 2スロット線路を跨ぐように両電極間に接続された所 定長さの電極ラインである構成とした。
力かる構成により、電極ラインの長さを調整することで、第 2スロット線路を伝搬する 高周波信号の位相を第 1スロット線路を伝搬する高周波信号の位相と略同位相に調 整することができる。
[0010] 請求項 5の発明は、請求項 1ないし請求項 4のいずれかに記載の高周波回路デバ イスにおいて、位相調整部は、第 2スロット線路の部位であって、電気素子の介設位 置の略真裏に位置する部位に設けた構成とする。
[0011] 請求項 6の発明に係る高周波モジュールは、請求項 1ないし請求項 5のいずれかに 記載の高周波回路デバイスを備える構成とした。
[0012] 請求項 7の発明に係る通信装置は、請求項 6に記載の高周波モジュールを備える 構成とした。
[0013] 請求項 8の発明は、請求項 7に記載の通信装置において、通信装置は、レーダ装 置である構成とした。
[0014] 以上詳しく説明したように、請求項 1〜請求項 9の発明に係る高周波回路デバイス によれば、位相調整部により、第 2スロット線路を伝搬する高周波信号の位相を第 1ス ロット線路を伝搬する高周波信号の位相と略同位相に調整して、基板内に生じる不 要波を抑圧することができるので、不要波の発生を防止して電力損失を低減させるこ とができると共に、不要波が基板外部に漏洩して、周囲の外部機器と不要結合するこ とを防止することができる。この結果、高周波回路デバイス自体の特性改善、設計性 改善、特性バラツキの軽減を図ることができる。
[0015] 特に、請求項 2の発明に係る高周波回路デバイスによれば、スタブの長さや形状を 調整することで、第 2スロット線路を伝搬する高周波信号の位相を第 1スロット線路を 伝搬する高周波信号の位相と略同位相に調整することができるので、不要波の発生 を抑圧することができるだけでなぐ第 2スロット線路の伝送特性の設計性を向上させ ることがでさる。
[0016] また、請求項 4の発明に係る高周波回路デバイスによれば、大きな配置スペースが 必要なスタブを用いずに、第 2スロット線路を跨ぐ電極ラインによって、第 2スロット線 路を伝搬する高周波信号の位相調整をすることができるので、高周波回路デバイス 自体の小型化を実現することができる。また、第 2スロット線路側のアイソレーションが 向上するので、デバイスの特性改善と設計性改善の効果を得ることができる。
[0017] また、請求項 6〜請求項 8の発明によれば、高周波モジュールや通信装置の動作 特性を向上させることができると共に、特性のバラツキを軽減することができる。また、 これらの機器の設計性も改善させることができる。
図面の簡単な説明
[0018] [図 1]この発明の第 1実施例に係る高周波回路デバイスを示す斜視図である。
[図 2]図 1に示す高周波回路デバイスの分解斜視図である。
[図 3]高周波回路デバイスの表面側を示す平面図である。
[図 4]高周波回路デバイスの裏面側を示す平面図である。
[図 5]スタブを有しない高周波回路デバイスの利得を示す線図である。
[図 6]スタブの長さに対する漏洩損失の見積もりの計算値を示す線図である。
[図 7]400 μ mの長さのスタブを有する高周波回路デバイスの利得を示す線図である
[図 8]この発明の第 2実施例に係る高周波回路デバイスの要部を示すために一部を 分解して示す斜視図である。
[図 9]この発明の第 3実施例に係る高周波回路デバイスの要部を示すために一部を 分解して示す斜視図である。
[図 10]この発明の第 4実施例に係る高周波回路デバイスの要部を示すために一部を 分解して示す斜視図である。
[図 11]この実施例の高周波回路デバイスの裏面側を示す平面図である。 [図 12]電極ラインを有する高周波回路デバイスの利得を示す線図である。
[図 13]この発明の第 5実施例に係る高周波回路デバイスの要部である裏面側を示す 平面図である。
[図 14]スタブの長さに対する漏洩損失の見積もりの計算値を示す線図である。
[図 15]この発明の第 6実施例に係る高周波発振回路の要部を示すために一部を分 解して示す斜視図である。
[図 16]この発明の第 7実施例に係る高周波モジュールを示す分解斜視図である。
[図 17]高周波モジュールのブロック図である。
[図 18]上記第 7実施例に係る高周波モジュールを備えた通信機の要部を示す斜視 図である。
[図 19]通信機のブロック図である。
[図 20]—変形例に係る高周波回路デバイスの裏面側を示す平面図である。
[図 21]他の変形例に係る高周波回路デバイスの裏面側を示す平面図である。
[図 22]従来の高周波回路デバイスの問題点を説明するための概略断面図である。 符号の説明
[0019] 1…高周波回路デバイス、 2…誘電体基板、 3…第 1スロット線路、 3a, 4a…ァ イソレーシヨン用のスタブ、 4…第 2スロット線路、 5"'FET、 6, 61, 62…位相調 整用のスタブ、 7…高周波発振回路、 8…高周波モジュール、 9—BBチップ、 31, 32, 41, 42· ··電極、 32a- "DC電極、 63· ··電極ライン、 70· ··誘電体共振 器、 71, 72 DCカット線路、 81〜85…分割基板、 81A…アンテナ回路、 82 A…共用器回路、 83Α· ··送信回路、 84A…受信回路、 85Α· ··発振回路、 86 …パッケージ、 87· ··蓋、 88· ··無給電アンテナ、 89· ··閉塞板、 D…ドレイン電 極、 G…ゲート電極、 Ml, Μ2· ··高周波信号、 S…ソース電極。
発明を実施するための最良の形態
[0020] 以下、この発明の最良の形態について図面を参照して説明する。
実施例 1
[0021] 図 1は、この発明の第 1実施例に係る高周波回路デバイスを示す斜視図であり、図 2は、図 1に示す高周波回路デバイスの分解斜視図であり、図 3は、高周波回路デバ イスの表面側を示す平面図であり、図 4は、高周波回路デバイスの裏面側を示す平 面図である。
[0022] 図 1に示すように、この実施例の高周波回路デバイス 1は、増幅回路デバイスであり 、誘電体基板 2の両面にそれぞれ設けられた第 1スロット線路 3及び第 2スロット線路 4 と、電気素子としての電界効果トランジスタ素子 (以下「FET」と記す) 5とを備えて ヽ る。
[0023] 第 1スロット線路 3は、誘電体基板 2の表面 2aに対向配置された 1対の電極 31, 32 間の間隔線路で成る。具体的には、図 2にも示すように、電極 31, 32を間隔 Wで誘 電体基板 2上に形成することにより、幅 Wの第 1スロット線路 3を得ている。そして、ス タブ 3aを電極 31であって且つ後述する FET5の実装部分に凹設している。このスタ ブ 3aは、アイソレーション用のスタブであり、その長さは第 1スロット線路 3に伝搬させ る高周波信号 Mlの波長の 1Z4に設定されている。
[0024] 一方、第 2スロット線路 4は、誘電体基板 2の裏面 2bに対向配置された 1対の電極 4 1, 42間の間隔線路で成る。この第 2スロット線路 4は、第 1スロット線路 3と対向する。 すなわち、電極 41, 42を間隔 Wで誘電体基板 2の下に形成し、且つ第 1スロット線路 3のアイソレーション用スタブ 3aと同長同形のスタブ 4aをスタブ 3aと対向する部位に 形成している。
[0025] FET5は、増幅素子等の能動素子として機能する素子であり、図 1に示すように、第 1スロット線路 3に介設されている。具体的には、 FET5は、裏面にドレイン電極 Dとゲ ート電極 Gとソース電極 Sとを有し、ソース電極 Sを電極 32に接続させ、ドレイン電極 D及びゲート電極 Gをアイソレーション用スタブ 3aを跨ぐように電極 31に接続させた 状態で、実装されている。
[0026] このように FET5を第 1スロット線路 3に介設することで、第 1スロット線路 3を伝搬す る高周波信号 Mlと第 2スロット線路 4を伝搬する高周波信号 M2とに位相差が生じる おそれがあるため、この実施例では、位相調整部としてのスタブ 6を第 2スロット線路 4 に設けている。これにより、第 2スロット線路 4を伝搬する高周波信号 M2の位相が第 1 スロット線路 3を伝搬する高周波信号 Mlの位相と略同位相になるように調整される。 具体的には、スタブ 6は、図 2に示すように、長さ Lの直状ショートスタブであり、第 2 スロット線路 4のスタブ 4aの位置力もスタブ 4aとは逆側に分岐している。これにより、ス タブ 6は、 FET5の略真裏に位置するので、スタブ 6の長さ Lを変化させることで、第 2 スロット線路 4を伝搬する高周波信号 M2の位相を調整することができる。
[0027] 次に、この実施例の高周波回路デバイスが示す作用及び効果について説明する。
まず、図 1,図 3及び図 4に示すように、同一の高周波信号 Ml, M2を高周波回路 デバイス 1の第 1スロット線路 3と第 2スロット線路 4とに伝搬させると、第 1スロット線路 3 を伝搬する高周波信号 Mlが、第 1スロット線路 3に介設された FET5によって増幅処 理がなされて、出力される。このとき、 FET5が第 1スロット線路 3に介設されていること から、第 1スロット線路 3を伝搬する高周波信号 Mlの位相が第 2スロット線路 4を伝搬 する高周波信号 M2の位相と異なるおそれがある。しかし、この実施例では、スタブ 6 の長さ Lを変化させて、第 2スロット線路 4を伝搬する高周波信号 M2の位相を調整し 、第 1スロット線路 3の高周波信号 Mlの位相と同位相にしているので、位相差は生じ ない。この結果、誘電体基板 2内に生じる不要波が抑圧されるので、不要波の発生に よる電力損失や周囲の外部機器との不要結合を防止することができる。
[0028] 発明者等は力かる効果を確認すべく次のようなシミュレーションを行った。
このシミュレーションでは、図 1に示す高周波回路デバイス 1において、誘電体基板 2として、誘電率 24の誘電体を長さ(第 1スロット線路 3の長さ方向) 8. 03mmで幅( 第 1スロット線路 3の幅方向) 6. 60mmの矩形状に形成した基板を用い、第 1スロット 線路 3の間隔を 10 mに設定すると共に第 2スロット線路 4の間隔を 100 mに設定 した。また、 FET5として、 GS型 FETを使用した。
[0029] このシミュレーションでは、まず、高周波回路デバイス 1において、スタブ 6の長さ L を「Omm」に設定した。つまり、スタブ 6を有しない高周波回路デバイスについて、周 波数が 54GHz〜66GHzの範囲の高周波信号を伝搬させて、その利得を計算させ た。
図 5は、スタブを有しな 、高周波回路デバイスの利得を示す線図である。 図 5の利得曲線 S1で示すように、スタブ 6を有しない高周波回路デバイスでは、 54 GHz〜66GHzの範囲で、点 , p' , piで示すような周期的なリップルが発生してい る。具体的には、点 p— p間の周期と点! -v' 間の周期が共に約 3. 7GHzであり 、その波長は誘電体基板 2の長さに対応する。また、点 pi— pi間の周期が約 4. 5G Hzであり、その波長は誘電体基板 2の幅に対応する。すなわち、このことは、誘電体 基板 2内に不要波が発生し、この不要波が誘電体基板 2で共振することによって、上 記のようなリップルが発生したと推定される。通常、ミリ波帯では、 60GHzを中心周波 数として、 59GHz〜61GHzの範囲内の高周波信号を使用する力 スタブ 6を用いな い高周波回路デバイスでは、利得曲線 S1に示すように、この範囲における利得の差 力 Sl l. 9dBとなり、動作特性が著しく悪い。
[0030] 次に、高周波回路デバイス 1において、スタブ 6の長さ Lを所定長さに設定し、周波 数が 54GHz〜66GHzの範囲の高周波信号を伝搬させて、その利得を計算させた。 このとき、長さ Lを 0 μ m〜800 μ mの範囲のスタブ 6について、スタブ 6の長さ に 対する漏洩損失の見積もり (Q換算値)を計算した。図 6は、スタブ 6の長さに対する漏 洩損失の見積もりの計算値を示す線図であり、曲線 S1がこのシミュレーションに用い た高周波回路デバイスの計算値である。
図 6の曲線 S1が示すように、計算値を最も大きくするスタブ 6の長さ Lは 400 mで あった。したがって、スタブ 6の長さ Lを 400 mに設定して、高周波回路デバイスの 利得を計算させた。
図 7は、 400 mの長さのスタブを有する高周波回路デバイスの利得を示す線図で ある。
図 7の利得曲線 S 2で示すように、このシミュレーションにおいても、スタブ 6を有しな い場合と同様に、 54GHz〜66GHzの範囲で、点 , p' , piで示すような周期的な リップルが発生している。し力し、 59GHz〜61GHzの範囲内の高周波信号を使用 する場合において、このスタブ 6を有する高周波回路デバイスでは、この範囲におけ る利得の差が 5. 6dBに圧縮されており、不要波が大きく抑圧されている。
実施例 2
[0031] 次に、この発明の第 2実施例について説明する。
図 8は、この発明の第 2実施例に係る高周波回路デバイスの要部を示すために一 部を分解して示す斜視図である。
図 8に示すように、この実施例の高周波回路デバイス 1は、位相調整部としてのスタ ブの形状を上記第 1実施例のスタブ 6の形状と異ならしめた。
すなわち、スタブ 4aの位置に円形状のショートスタブ 61を形成した。そして、ショー トスタブ 61の直径の大きさを調整することで、第 2スロット線路 4を伝搬する高周波信 号 M2の位相を調整するようにして!/、る。
その他の構成、作用及び効果は、上記第 1実施例と同様であるので、その記載は 省略する。
[0032] なお、この実施例の変形例として、スタブ 4aの位置に楕円形状のショートスタブを 形成したものを提示することができる。そして、ショートスタブの長軸や短軸の大きさを 調整することで、第 2スロット線路 4を伝搬する高周波信号 M2の位相を調整する。 実施例 3
[0033] 次に、この発明の第 3実施例について説明する。
図 9は、この発明の第 3実施例に係る高周波回路デバイスの要部を示すために一 部を分解して示す斜視図である。
図 9に示すように、この実施例の高周波回路デバイス 1は、位相調整部としてのスタ ブの形状を上記第 1及び第 2実施例のスタブ 6, 61の形状と異ならしめた。
すなわち、スタブ 4aの位置にテーパ状のショートスタブ 62を形成した。このショート スタブ 62は、第 2スロット線路 4との分岐部が幅狭に設定され、先端部側に向かって 拡開するように設定されている。そして、ショートスタブ 62の拡開の角度や第 2スロット 線路 4からの突出長さ等を調整することで、第 2スロット線路 4を伝搬する高周波信号 M2の位相を調整することができる。
その他の構成、作用及び効果は、上記第 1及び第 2実施例と同様であるので、その 記載は省略する。
[0034] なお、この実施例の変形例として、スタブ 4aの位置に扇形状のショートスタブを形 成したものを提示することができる。
実施例 4
[0035] 次に、この発明の第 4実施例について説明する。
図 10は、この発明の第 4実施例に係る高周波回路デバイスの要部を示すために一 部を分解して示す斜視図であり、図 11は、この実施例の高周波回路デバイスの裏面 側を示す平面図である。
[0036] 図 10及び図 11に示すように、この実施例の高周波回路デバイス 1では、電極ライン 63を位相調整部とした点が、上記第 1ないし第 3実施例と異なる。
すなわち、所定長の電極ライン 63を第 2スロット線路 4を跨ぐように電極 41, 42間に 接続した。具体的には、橋状の電極ライン 63を、第 2スロット線路 4における FET5の 真裏の個所であって且つ FET5のドレイン電極 Dとソース電極 Sに対応する個所に渡 して、当該個所を短絡した。
力かる構成により、電極ライン 63の長さを調整することで、第 2スロット線路 4を伝搬 する高周波信号 M2の位相を第 1スロット線路 3を伝搬する高周波信号 Mlの位相と 略同位相に調整することができる。この結果、不要波の発生を抑圧することができる。
[0037] 発明者等は力かる効果を確認すべく上記第 1実施例の場合と略同様のシミュレ一 シヨンを行った。
図 12は、電極ラインを有する高周波回路デバイスの利得を示す線図である。
図 12の禾 IJ得曲線 S3で示すよう〖こ、このシミュレーションにおいても、 54GHz〜66 GHzの範囲で、点 , p' , piで示すような周期的なリップルが発生している。しかし 、 59GHz〜61GHzの範囲内の高周波信号を使用する場合において、この電極ライ ン 63を有する高周波回路デバイスでは、この範囲における利得の差が 3. ldBにも 圧縮されており、上記第 1実施例に比べて、不要波が極めて大きく抑圧されている。
[0038] また、上記第 1ないし第 3実施例では、比較的大きな配置スペースが必要なスタブ 6 , 61, 62を用いて、位相調整する構成としたが、この実施例では、第 2スロット線路 4 を跨ぐ電極ライン 63によって、位相調整をする構成としたので、高周波回路デバイス 1自体の小型化を実現することができる。また、第 2スロット線路 4側のアイソレーション が向上するので、デバイスの特性改善と設計性改善の効果を得ることができる。 その他の構成、作用及び効果は、上記第 1ないし第 3実施例と同様であるので、そ の記載は省略する。
実施例 5
[0039] 次に、この発明の第 5実施例について説明する。
図 13は、この発明の第 5実施例に係る高周波回路デバイスの要部である裏面側を 示す平面図である。また、図 14は、スタブの長さに対する漏洩損失の見積もりの計算 値を示す線図である。なお、図 14において、縦軸は挿入損失の逆数であり、曲線 S2 力 の実施例の高周波回路デバイスにおける計算値である。
この実施例は、第 2スロット線路 4に電極ライン 63の他にスタブ 6も設けた点力 上 記第 4実施例と異なる。
すなわち、図 13に示すように、所定長の電極ライン 63を第 2スロット線路 4を跨ぐよ うに電極 41, 42間に接続すると共に、スタブ 6をスタブ 4aの位置に形成した。具体的 には、第 2スロット線路 4における FET5の真裏の個所であって、 FET5のドレイン電 極 Dとソース電極 Sに対応する個所を電極ライン 63で短絡すると共に、スタブ 6によつ て高周波信号 M2を反射させる構成とした。
力かる構成においては、図 14の曲線 S2に示すように、漏洩損失の計算値を最も小 さくするスタブ 6の長さ Lは約 300 μ mであった。
その他の構成、作用及び効果は、上記第 4実施例と同様であるので、その記載は 省略する。
[0040] なお、この実施例の変形例として、直状のスタブ 6の代わりに、円形状や楕円形状 のショートスタブを用いたり、テーパ形状や扇形のショートスタブを用いたものを提示 することができる。
実施例 6
[0041] 次に、この発明の第 6実施例について説明する。
図 15は、この発明の第 6実施例に係る高周波発振回路の要部を示すために一部 を分解して示す斜視図である。
この実施例は、高周波回路デバイスを高周波発振回路に適用した例を示す。 高周波発振回路 7は、図 15に示すように、誘電体共振器 70で生成した所定共振 周波数の高周波信号を第 1及び第 2スロット線路 3, 4に伝送させ、 FET5で増幅して 出力する回路である。
具体的には、誘電体基板 2の表面側の電極 32に、 DCカット線路 71, 72を形成し て、 DC電極 32aを画成している。そして、 FET5のゲート電極 Gを DC電極 32aに接 続し、ドレイン電極 Dを DCカット線路 71の右側に位置する電極 32に接続すると共に 、ソース電極 Sを電極 31に接続している。一方、誘電体基板 2裏面側の第 2スロット線 路 4にも、 DCカット線路 71/ , 12' が形成され、 DCカット線路 71/ の位置に位相 調整用の直状スタブ 6が突設されている。
[0042] 力かる構成により、高周波発振回路 7の誘電体基板 2内に生じる不要波を抑制して 、高周波発振回路の動作特性を向上させることができると共に、特性のバラツキ軽減 することができる。また、これらの回路の設計性も改善させることができる。
その他の構成、作用及び効果は、上記第 1実施例と同様であるので、その記載は 省略する。
実施例 7
[0043] 次に、この発明の第 7実施例について説明する。
図 16は、この発明の第 7実施例に係る高周波モジュールを示す分解斜視図であり 、図 17は、高周波モジュールのブロック図である。
図 16に示すように、この実施例の高周波モジュール 8は、各回路が形成された分 割基板 81〜85と、これらの分割基板 81〜85を収納するパッケージ 86とを有して成 る。
[0044] 各分割基板 81〜85は、 PDTL構造の回路基板であり、各分割基板 81〜85には、 回路ブロックとして、アンテナ回路 81A、共用器回路 82A、送信回路 83A、受信回 路 84A、発振回路 85Aがそれぞれ形成されている。
[0045] 図 17に示すように、分割基板 81に形成されたアンテナ回路 81 Aは、送信電波を送 信し及び受信電波を受信するブロックであり、放射スロット 81aによって構成される。 また、分割基板 82に形成された共用器回路 82Aは、アンテナ回路 81Aに接続され てアンテナ共用器をなすブロックであり、共振器 82a等で構成される。分割基板 83に 形成された送信回路 83Aは、共用器回路 82Aに接続されアンテナ回路 81Aに向け て送信信号を出力するブロックであり、ミキサ回路としての混合器 83aと、帯域通過フ ィルタ 83bと、高周波増幅回路としての電力増幅器 83cとで構成されている。分割基 板 84に形成された受信回路 84Aは、共用器回路 82Aに接続されアンテナ回路 81 A によって受信した受信信号を入力するブロックであり、高周波増幅回路としての低雑 音増幅器 84aと、帯域通過フィルタ 84bと、ミキサ回路としての混合器 84cとで構成さ れている。分割基板 85に形成された発振回路 85Aは、送信回路 83Aと受信回路 84 Aとに接続され搬送波となる所定周波数の信号を発振するブロックであり、上記第 6 実施例の高周波発振器と同構造である。
[0046] 一方、図 16において、パッケージ 86は、導電性金属材料のメツキ処理 (メタライズ) が施された榭脂パッケージであり、上記分割基板 81〜85がその内部に収納される。 そして、パッケージ 86の上に取り付けられる蓋 87は、その中央部に開口 87aを有し、 この開口 87a内に、無給電アンテナ 88を有した電磁波透過可能な閉塞板 89が取り 付けられている。これにより、無給電アンテナ 88が分割基板 81上の放射スロット 81a と対向する。
なお、図 16及び図 17において、符号 86aは、送信回路 83Aに中間周波信号を入 力するための入力端子であり、符号 86bは、受信回路 84Aから中間周波信号を出力 するための出力端子である。
[0047] なお、この第 7実施例においては、発振回路 85Aに第 6実施例の高周波発振回路 を適用した。すなわち、発振回路 85Aの分割基板 85の裏側に位相調整用のスタブ 6 を設けたが、混合器 83aと電力増幅器 83cを有し FETを介設する必要がある送信回 路 83Aの分割基板 83や、低雑音増幅器 84aと混合器 84cとを有し FETを介設する 必要がある受信回路 84Aの分割基板 84にも、位相調整用のスタブ 6を設けて、これ らの回路を伝搬する高周波信号の位相を合わせることが好ましい。
その他の構成、作用及び効果は上記第 6実施例と同様であるので、その記載は省 略する。
実施例 8
[0048] 次に、この発明の第 8実施例について説明する。
図 18は、上記第 7実施例に係る高周波モジュールを備えた通信機の要部を示す 斜視図であり、図 19は、通信機のブロック図である。
図 18において、符号 90は基板であり、上記第 7実施例の高周波モジュール 8と BB (ベースバンド)チップ 9とがこの基板 90に実装されて 、る。
力かる構成により、 BBチップ 9が BB部として機能し、 BBチップ 9で変調された中間 周波数のベースバンド信号が、出力端子 91から入力端子 86aを介して高周波モジュ ール 8 (RF部として機能する)に入力される。すると、中間周波数のベースバンド信号 が送信回路 83Aで所定の高周波に変換され、無給電アンテナ 88から電波として送 信される。また、無給電アンテナ 88で受信され、受信回路 84Aで中間周波数に変換 された受信信号は、出力端子 86bから BBチップ 9の入力端子 92に出力される。する と、受信信号力 ¾Bチップ 9において所定のベースバンド信号に復調される。
このように上記実施例の高周波モジュール 8を用いることにより、動作特性に対する 信頼性の高く且つ特性のバラツキの少ない通信機を提供することができる。また、こ れらの機器の設計性も改善させることができる。
その他の構成、作用及び効果は、上記第 7実施例と同様であるので、その記載は 省略する。
[0049] なお、この実施例では、高周波モジュール 8と BBチップ 9とで成る携帯電話等の通 信機を例にして説明したが、 BBチップ 9の代わりに信号処理部を用いることにより、ミ リ波帯の高周波信号を送受信するレーダ装置にも適用することができる。
[0050] なお、この発明は、上記実施例に限定されるものではなぐ発明の要旨の範囲内に お 、て種々の変形や変更が可能である。
例えば、上記第 1ないし第 3実施例では、位相調整用のスタブ 6, 61, 62を第 2スロ ット線路 4のアイソレーター用スタブ 4aと同位置に形成したが、図 20に示すように、ス タブ 6をスタブ 4aから変位させて形成しても良い。同様に、上記第 4及び第 5実施例 では、位相調整用の電極ライン 63を第 2スロット線路 4のアイソレーター用スタブ 4aと 同位置に形成したが、図 21に示すように、電極ライン 63をスタブ 4aから変位させて 形成しても良いことは勿論である。
また、上記実施例では、第 1スロット線路 3と第 2スロット線路 4の各間隔 Wを等しく設 定したが、第 1スロット線路 3の幅を第 2スロット線路 4よりも小さくしたり、逆に大きくし たりして、第 1及び第 2スロット線路 3, 4の線幅を異ならしめても良い。
また、上記第 6実施例では、この高周波回路デバイスを高周波発振回路に適用し た例を示したが、第 7実施例の高周波モジュールに適用された高周波増幅回路ゃミ キサ回路にもこの発明の高周波回路デバイスを適用することができることは勿論であ る。

Claims

請求の範囲
[1] 基板の表面に対向配置された電極間の間隔線路で成る第 1スロット線路と、当該基 板の裏面に対向配置された電極間の間隔線路で成り且つ上記第 1スロット線路と対 向する第 2スロット線路と、上記第 1スロット線路に介設された電気素子とを備える高 周波回路デバイスであって、
上記第 2スロット線路を伝搬する高周波信号の位相を上記第 1スロット線路を伝搬 する高周波信号の位相と略同位相に調整するための位相調整部を、上記第 2スロッ ト線路に設けた、
ことを特徴とする高周波回路デバイス。
[2] 請求項 1に記載の高周波回路デバイスにおいて、
上記位相調整部は、上記第 2スロット線路力 分岐するスタブである、 ことを特徴とする高周波回路デバイス。
[3] 請求項 2に記載の高周波回路デバイスにおいて、
上記スタブは、所定長さの直状ショートスタブである、
ことを特徴とする高周波回路デバイス。
[4] 請求項 1な!、し請求項 3の 、ずれかに記載の高周波回路デバイスにお 、て、
上記位相調整部は、上記第 2スロット線路を跨ぐように両電極間に接続された所定 長さの電極ラインである、
ことを特徴とする高周波回路デバイス。
[5] 請求項 1ないし請求項 4のいずれかに記載の高周波回路デバイスにおいて、
上記位相調整部は、上記第 2スロット線路の部位であって、上記電気素子の介設 位置の略真裏に位置する部位に設けた、
ことを特徴とする高周波回路デバイス。
[6] 請求項 1ないし請求項 5のいずれかに記載の高周波回路デバイスを備える、
ことを特徴とする高周波モジュール。
[7] 請求項 6に記載の高周波モジュールを備える、
ことを特徴とする通信装置。
[8] 請求項 7に記載の通信装置において、 当該通信装置は、レーダ装置である、 ことを特徴とする通信装置。
PCT/JP2005/022338 2005-03-10 2005-12-06 高周波回路デバイス,高周波モジュール及び通信装置 WO2006095479A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007506991A JP4356116B2 (ja) 2005-03-10 2005-12-06 高周波回路デバイス,高周波モジュール及び通信装置
US11/830,976 US7365618B2 (en) 2005-12-06 2007-07-31 High-frequency circuit device, high-frequency module, and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-067685 2005-03-10
JP2005067685 2005-03-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/830,976 Continuation-In-Part US7365618B2 (en) 2005-12-06 2007-07-31 High-frequency circuit device, high-frequency module, and communication apparatus

Publications (1)

Publication Number Publication Date
WO2006095479A1 true WO2006095479A1 (ja) 2006-09-14

Family

ID=36953085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022338 WO2006095479A1 (ja) 2005-03-10 2005-12-06 高周波回路デバイス,高周波モジュール及び通信装置

Country Status (2)

Country Link
JP (1) JP4356116B2 (ja)
WO (1) WO2006095479A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189604U (ja) * 1982-06-09 1983-12-16 三菱電機株式会社 フインラインダイオ−ドスイツチ
JPH10242717A (ja) * 1997-02-27 1998-09-11 Murata Mfg Co Ltd 平面誘電体集積回路
JPH10335909A (ja) * 1997-06-05 1998-12-18 Murata Mfg Co Ltd 非放射性平面誘電体線路およびその集積回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189604U (ja) * 1982-06-09 1983-12-16 三菱電機株式会社 フインラインダイオ−ドスイツチ
JPH10242717A (ja) * 1997-02-27 1998-09-11 Murata Mfg Co Ltd 平面誘電体集積回路
JPH10335909A (ja) * 1997-06-05 1998-12-18 Murata Mfg Co Ltd 非放射性平面誘電体線路およびその集積回路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OHTA Y. ET AL.: "Analysis of CPW Angular Bends by Spatial Network Method", PROCEEDINGS OF THE 1994 IEICE FALL CONFERENCE, 5 September 1994 (1994-09-05), XP002996560 *
SAKAMOTO K., MIKAMI S., ISHIKAWA Y.: "Proposal of Millimeter-Wave RF Module Utilizing High-Dielectric Substrate", PROCEEDINGS OF THE 2003 IEICE GENERAL CONFERENCE, 3 March 2003 (2003-03-03), XP002996561 *

Also Published As

Publication number Publication date
JPWO2006095479A1 (ja) 2008-08-14
JP4356116B2 (ja) 2009-11-04

Similar Documents

Publication Publication Date Title
WO2006022104A1 (ja) 伝送線路接続構造および送受信装置
JP4572900B2 (ja) 誘電体共振器装置、発振器装置および送受信装置
JP3764877B2 (ja) レーダ装置
JP2010272959A (ja) 高周波回路、低雑音ダウンコンバータおよびアンテナ装置
US7365618B2 (en) High-frequency circuit device, high-frequency module, and communication apparatus
JP2003060404A (ja) マイクロ波ストリップ線路フィルタおよびこれを用いた高周波送信機
KR100973797B1 (ko) 집적형 능동 안테나
US6606000B2 (en) Radio-frequency amplifier, radio-frequency module and communication device
WO2006095479A1 (ja) 高周波回路デバイス,高周波モジュール及び通信装置
KR20060071388A (ko) 패치 안테나를 이용한 밀리미터파 대역용 송수신기 시스템
US6762650B2 (en) High-frequency oscillation circuit, high-frequency module, and communication apparatus
JPH07154131A (ja) モノリシック・アンテナ・モジュール
JPWO2005020367A1 (ja) 平面誘電体線路、高周波能動回路および送受信装置
JP4845049B2 (ja) 発振装置および無線中継システム
JPS59219001A (ja) マイクロ波集積回路送受信機
JP2004032079A (ja) フィルタ回路およびフィルタ回路を用いた送信装置ならびに受信装置
JPWO2023032564A5 (ja)
JP4926907B2 (ja) 放射型発振装置および無線中継システム
JP2007180971A (ja) 送信装置とこれを用いた通信機器
KR100769535B1 (ko) 전송 선로 접속 구조 및 송수신 장치
KR200301157Y1 (ko) 유전체공진기를 이용하여 출력을 증강시킨 초고주파푸시-푸시 발진기
JP2004048106A (ja) 高周波能動装置および送受信装置
JP2007184862A (ja) ミキサ,高周波モジュール及び通信機
KR100469119B1 (ko) 전력 감지기 및 이동통신 단말기
JP2006086867A (ja) 高周波能動装置,高周波モジュール及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007506991

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11830976

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 11830976

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05814672

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5814672

Country of ref document: EP