WO2006095041A1 - Método de diagnóstico in vitro de la enfermedad de alzheimer mediante un anticuerpo monoclonal - Google Patents

Método de diagnóstico in vitro de la enfermedad de alzheimer mediante un anticuerpo monoclonal Download PDF

Info

Publication number
WO2006095041A1
WO2006095041A1 PCT/ES2006/070027 ES2006070027W WO2006095041A1 WO 2006095041 A1 WO2006095041 A1 WO 2006095041A1 ES 2006070027 W ES2006070027 W ES 2006070027W WO 2006095041 A1 WO2006095041 A1 WO 2006095041A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
fragment
monoclonal antibody
amyloid peptide
disease
Prior art date
Application number
PCT/ES2006/070027
Other languages
English (en)
French (fr)
Inventor
Enrique MÉNDEZ
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Priority to EP06725836A priority Critical patent/EP1881008B1/en
Priority to JP2008500220A priority patent/JP5117373B2/ja
Priority to CA2601550A priority patent/CA2601550C/en
Priority to CN2006800076517A priority patent/CN101137670B/zh
Priority to BRPI0609168-7A priority patent/BRPI0609168A2/pt
Priority to AT06725836T priority patent/ATE512987T1/de
Priority to MX2007010934A priority patent/MX2007010934A/es
Priority to US11/886,022 priority patent/US7932048B2/en
Publication of WO2006095041A1 publication Critical patent/WO2006095041A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4711Alzheimer's disease; Amyloid plaque core protein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2814Dementia; Cognitive disorders
    • G01N2800/2821Alzheimer

Definitions

  • the present invention relates to the diagnosis of neurological disorders, especially to the diagnosis of Alzheimer's disease by an antibody capable of interacting with specific peptides associated with said disease.
  • AD Alzheimer's disease
  • cognitive abilities deteriorate, including the ability to make decisions and carry out daily tasks, and personality modifications may arise, as well as problematic behaviors.
  • AD leads to dementia and eventually death.
  • the disease is currently incurable and constitutes an important cause of mortality.
  • diagnosis of Alzheimer's disease is normally made through the clinical picture, since the definitive diagnosis can only be carried out through a histological study of brain samples (autopsy or biopsy), which reveals the presence in brain tissue of its characteristic features. Due to the danger of the practice of brain biopsies in living patients, this procedure is used very rarely, so it is estimated that the error rate in the in vivo diagnosis of this disease is around 20% -30%.
  • neurofibrillar degeneration which is identified by the presence of neurofibrillary tangles, dystrophic neurites and neuropil strands
  • deposits of amyloid substance that is, deposits of the so-called ⁇ peptide - amyloid, usually abbreviated as A ⁇
  • a ⁇ amyloid substance
  • plaques diffuse plaques and neuritic plaques, forms the latter characteristics of the disease, which are they denominate thus for appearing between and inside the neurons
  • vascular deposits that appear in the walls of the cerebral blood vessels.
  • the A ⁇ peptide is deposited mainly in the form of diffuse plaques.
  • This type of deposit is especially intense in some subjects with normal cognitive abilities, and for some authors it represents a process of "pathological aging", which is considered to be halfway between normal brain aging and AD [I].
  • a particularly intense and premature development of diffuse plaques years before the appearance of neuritic plaques also occurs in Down syndrome (SD), due to a trisomy of chromosome 21 that leads to an overexpression of the amyloid precursor protein ( ⁇ -APP ).
  • SD Down syndrome
  • ⁇ -APP amyloid precursor protein
  • both brains affected by AD as well as those affected by SD at advanced ages are characterized by the development of a large number of mature neuritic plaques [2,3] ].
  • preamiloid a non-fibrillar form of A ⁇
  • both vascular amyto deposits and neuritic plaques contain A ⁇ peptide in fibrillar form and react with stains of amyloid substance such as Congo Red and Tioflavin T.
  • AD Cognitive decline in AD correlates linearly with the progression of neurofibrillar changes and loss of cortical synapses [5]. No local loss of synapse associated with diffuse plaques has been observed [6]. In contrast, neuritic plaques are associated with loss of synaptic density, neurofibrillar change and activation of microglia [7]. Both pure neurofibrillar change and A ⁇ deposition follow well-established sequential progression patterns in AD [8, 9].
  • AD Alzheimer's Diseasé
  • the formation of neuritic plaques represents the central pathogenic process in AD, and the molecular composition of these ⁇ -amyloid deposits and the differences with diffuse plaques in regard to said composition is, consequently, one of the main fields of interest in current research on AD.
  • a ⁇ peptides in brains affected by EA has been elucidated with the aid of antibodies directed to the carboxyl end, to the amino end or to internal segments of the A ⁇ molecule, together with the isolation and purification of isoforms. of A ⁇ by means of biochemical methods.
  • the tissue distribution of peptides characterized by the features of their carboxyl ends shows a fairly regular and well-defined pattern. While A ⁇ .4 0 is the predominant form in vascular deposits and is the main form found in the CSF (cerebrospinal fluid), A ⁇ x- 42 is the main form detected in brain tissue deposits (diffuse and neuritic plaques ) [13].
  • a ⁇ x- 42 is the only component of diffuse plaques and the main component of neuritic plaques. The latter may also contain A ⁇ x- 4 0 , predominantly in the region of its central nucleus. It has also been established that A ⁇ x- 42 is the form that is deposited in the initial phases.
  • a ⁇ x- 4 0 and A ⁇ x- 42 began almost entirely in the amino acid Aspl, it is well established immunohistochemically and biochemically that a wide variety of heterogeneous isoforms of the A ⁇ peptide, modified and truncated at the amino terminus, they participate in the composition of both diffuse and neuritic plaques [15]. These isoforms also tend to show a regular pattern of distribution between diffuse and neuritic plaques, so that a complete image of the topographic distribution of the different A ⁇ peptides has finally begun to emerge. However, there are still some discrepancies between the studies, particularly with respect to the characteristics of the amino terminus of the peptides that make up the diffuse plaques, and the relative amount of amyloid load that each represents.
  • a ⁇ 17-42 may be the main component of diffuse plaques [16]
  • others have found a relatively larger number of longer forms (starting at Aspl, or truncated at the amino terminus or other modified isoforms ) at this level [15].
  • a ⁇ 17-42 is generated by the cleavage of ⁇ -APP by ⁇ -secretase (the so-called non-amyloidogenic pathway) and shows quite different physical-chemical properties from the longer isoforms of A ⁇ (the latter generated by the cleavage of ⁇ -APP for ⁇ -secretase), its selective presence in diffuse plaques may have a crucial pathogenic significance in the evolution of plaques.
  • a ⁇ 17-42 represents 70% of the total amyloid content in diffuse plaques of the cerebellum, while A ⁇ i. 4 2 represents 12% and other truncated forms of A ⁇ x- 42 5% or less.
  • Saido et al. [20] found a greater staining of diffuse plaques with a specific anti-A ⁇ N3 antibody (piroGlu) than with an anti-A ⁇ N (I) antibody.
  • Iwatsubo et al. [15] studied diffuse plaques in a series of brains of elderly people, affected by AD and affected by SD with a panel of antibodies aimed at recognizing truncated and modified forms of A ⁇ at the amino terminus.
  • Another aspect in which antibodies capable of detecting forms of the ⁇ -amyloid peptide would be especially useful would be in the diagnosis of Alzheimer's disease by analyzing the concentration of different forms of this peptide in biological fluids, an aspect in which Work is being done both to facilitate the diagnosis based on biochemical parameters and, even, with a view to identifying preclinical cases or in particular risk of developing the disease and allowing the follow-up of patients included in clinical studies.
  • CSF cerebrospinal fluid
  • Plasma levels of A ⁇ x- 42, but not A ⁇ x- 4 0 are increased in patients with Alzheimer's disease, and decrease throughout the course of the disease [28,29], although the concentration measure of these species in plasma does not allow its current application to diagnosis.
  • the presence of soluble forms of the ⁇ -amyloid peptide in urine has also been detected [30], although a comparative study between patients and controls has not been carried out so far.
  • the antibody of the invention which is capable of interacting with soluble forms of the ⁇ -amyloid peptide and detecting its presence in biological fluids such as urine, is one of the antibodies that may be useful in the execution of these diagnostic techniques.
  • the fact of being specifically directed against the area near the amino end of the ⁇ - peptide amyloid is a characteristic of interest in the differentiation of the forms of the ⁇ -amyloid peptide that retain the amino end of those forms in which said end is truncated.
  • the design of the proposed diagnostic method is also different, since what is determined is exclusively the binding of the antibodies used to what in that patent is considered the characteristic peptide of Alzheimer's disease, the one constituted by amino acids 1 to 28 of the amyloid peptide, not considering binding to other forms of the peptide of different lengths and / or with variations in the amino and carboxyl ends.
  • no experimental evidence is provided that demonstrates its ability to detect forms of the amyloid peptide present in biological fluids.
  • Another monoclonal antibody directed against the area in which amino acids 1 to 17 are included is the aforementioned commercial monoclonal antibody 6E10 which, as described in the description of the technical sheet corresponding to the product, http: //www.alexis_co ⁇ xom/tnonoclonal: antibodies-SIG-9320 / opfa.1.1.SIG- 9320.386.4.1.html, specifically, within amino acids 1 to 17 of the ⁇ - peptide amyloid, recognizes the epitope between amino acids 3 to 8. This epitope corresponds to a different area and closer to the amino terminus than that of the EM5 monoclonal antibody of the invention. Although it is capable of producing a differential staining of neuritic plaques and vascular deposits, without staining diffuse plaques, this antibody does not appear to exhibit affinity differences between A ⁇ 42 and A ⁇ 40 peptides.
  • the EM5 is a novel tool, because it recognizes at least one epitope not recognized by any of the antibodies described in the prior art, in the ⁇ -amyloid peptide sequence.
  • the antibody of the invention therefore, is useful for its application in the diagnosis of Alzheimer's disease. It specifically detects neuritic plaques without detecting diffuse plaques, which are not specifically associated with the disease.
  • the monoclonal antibody of the invention makes it possible to detect a subset of neuritic plaques that differs in their molecular composition with respect to ⁇ -amyloid peptide deposits.
  • the monoclonal antibody of the invention is capable of binding to forms of the ⁇ -amyloid peptide present in solution, allowing the subsequent detection and quantification of said peptides, even if the solution is a biological fluid such as urine.
  • the invention relates to a monoclonal antibody that recognizes in the ⁇ -amyloid peptide the epitope corresponding to the sequence:
  • Val-His-His-Gln-Lys (SEQ ID NO: 3) and is capable of binding to isoforms of the ⁇ -amyloid peptide containing said sequence, regardless of whether the peptide is in soluble form, added or denatured by SDS, although showing a greater affinity for the A ⁇ 42 isoform than for the A ⁇ 40 isoform.
  • the invention also relates to fragments of said antibody also capable of binding to isoforms of the ⁇ -amyloid peptide containing said SEQ ID NO: 3.
  • the invention also relates to a hybridoma cell line capable of producing the monoclonal antibody described above and a method of producing said antibody by obtaining a hybridoma cell line and culturing said cell line under conditions that allow the production of the monoclonal antibody.
  • the invention relates to a composition
  • a composition of the invention is one in which the antibody or fragment thereof is coupled to a substance capable of allowing its detection, a substance that can be a second antibody capable of binding to the antibody of the invention or to the fragment of the same and that carries a substance capable of allowing its detection, such as an enzyme capable of catalyzing the transformation of a certain substance into another that can be detected, for example a chromogen.
  • composition of the invention is that in which the antibody or a fragment thereof is coupled to some substance or particle that facilitates the extraction of isoforms of the ⁇ -amyloid peptide present in a solution, such as a magnetic particle. which will allow separation of the solution of the antigen-antibody or antigen-antibody fragment complexes formed if a magnetic field is applied, thus being possible to concentrate the isoforms of the ⁇ -amyloid peptide present in said solution and facilitate its subsequent detection, identification and / or quantification.
  • a solution such as a magnetic particle
  • the invention also relates to the use of the monoclonal antibody of the invention or at least a fragment thereof capable of binding SEQ ID NO: 3 to detect isoforms of the ⁇ -amyloid peptide containing SEQ ID NO: 3.
  • Isoforms of the ⁇ -amyloid peptide to be detected can be found in a sample of brain tissue taken from an individual, in a solution such as a sample of a biological fluid or a solution derived from it or, even, can be found in some other type sample, non-biological, in which it is also desired to detect the possible presence of isoforms of the ⁇ -amyloid peptide.
  • the invention relates to an in vitro diagnostic method of Alzheimer's disease based on the detection of isoforms of ⁇ -amyloid peptide by the use of the antibody of the invention, or of at least one fragment thereof capable of binding to SEQ ID NO: 3.
  • the detection of isoforms of the ⁇ -amyloid peptide occurs in a tissue sample. brain taken from an individual.
  • the compositions of the invention in which the antibody or fragment thereof is coupled to a substance capable of allowing its detection, a substance that can be a second antibody capable of binding to the antibody of the invention or to a fragment thereof. and that another substance capable of allowing its detection is coupled, can be especially useful.
  • the detection of isoforms of the ⁇ -amyloid peptide occurs in a solution, preferably a sample of a biological fluid such as cerebrospinal fluid, urine or blood or even a solution derived from some biological fluid, such as plasma.
  • a biological fluid such as cerebrospinal fluid, urine or blood or even a solution derived from some biological fluid, such as plasma.
  • compositions of the invention are preferred in which the antibody or fragment thereof is coupled to some substance or particle that facilitates the extraction of isoforms of the ⁇ -amyloid peptide present in solution, such as it can be a magnetic particle that will allow separation of the solution of the antigen-antibody or antigen-antibody fragment complexes formed, if a magnetic field is applied, thus being able to concentrate the isoforms of the ⁇ -amyloid peptide present in the solution and facilitate its subsequent detection, identification and / or quantification.
  • the diagnostic method of the invention comprises the steps of: a) adding a composition comprising the antibody of the invention or at least a fragment thereof capable of binding to the biological fluid sample or solution derived therefrom.
  • SEQ ID NO: 3 coupled to a magnetic particle; b) allow sufficient time for antigen-antibody or antibody fragment antigen complexes to form, between at least one isoform of the ⁇ -amyloid peptide and the antibody or antibody fragment, comprised in the composition; c) apply a magnetic field to extract the antigen-antibody or antigen-antibody fragment complexes from the solution; d) remove the solution; e) separating the antibody or antibody fragment from the ⁇ -amyloid peptide molecules, ⁇ ) Identify and quantify the isoforms of the ⁇ -amyloid peptide extracted from the biological fluid sample or solution derived from it.
  • the solution from which the isoforms of the ⁇ -amyloid peptide are extracted is a blood or urine sample, since it is easier to obtain than in the case of cerebrospinal fluid samples, or a plasma sample derived from A blood sample.
  • the biological fluid sample is a urine sample, as it does not require invasive methods to obtain it. This requires, however, to use some very sensitive method for the identification and quantification of the isoforms of the ⁇ -amyloid peptide, which can be MALDI-TOF mass spectrometry.
  • polyclonal antibodies EM2 and EM3 also developed by the group of the inventors, can also be used as a complementary tool in the diagnostic method of the invention.
  • Fig. 1 shows the binding curves of the EM5 (upper) and 6E10 (lower) antibodies to immobilized A ⁇ peptides.
  • the results corresponding to different concentrations (abscissa; in nM concentration) of the antibodies are shown both against the A ⁇ 40 peptide (filled symbols) and with the A ⁇ 42 peptide (empty symbols), in both cases aggregated ( ⁇ ) or without adding ( D).
  • Each point represents the average of experiments performed in triplicate. In ordinates the optical density (D.O) at 450 nm is represented.
  • Fig. 2 shows the result of the immunoblot analysis of the EM2, EM3 and EM5 antibodies against synthetic peptides A ⁇ 1-40 and A ⁇ 1-42.
  • Fig. 3 shows in its upper part, a bar chart referring to the reactivity of EM5 against series of synthetic A ⁇ peptides by ELISA, with absorbance values (D.O. at 450 nm) corresponding to 20 ⁇ g / ml of antibody. In the lower part, the location of the epitope recognized by EM5 is indicated according to the results obtained in this ELISA.
  • 1-28R A ⁇ ⁇ s of rodent. In parentheses, different mutations.
  • Fig. 4 shows the location of the A ⁇ peptide epitope recognized by the EM5 monoclonal antibody as determined by Spectrometry analysis. Mass of the immunoprecipitated ⁇ -amyloid peptide digested with different proteolytic enzymes indicated in the Description Table (peptides 1-5). Sequence 6 corresponds to the undigested ⁇ -amyloid peptide.
  • FIG. 5 shows photographs of immunostaining of brain tissue affected by Alzheimer's disease, using EM2, EM3, EM5 and combinations of EM5 with each of the above. Stained structures are indicated as V (vessels), DP (diffuse plaques) and NP (neuritic plaques). The photographs correspond to:
  • C High magnification micrograph of a double immunostaining technique using EM3 (chromogen: NBT) and EM5 (chromogen: DAB) as primary antibodies.
  • Fig. 6 shows graphs obtained in the analysis by MALDI-TOF mass spectrometry of ⁇ -amyloid peptide forms of different length.
  • the intensity axis (% Int.) Corresponding to each of the peaks of different mass (Mas.), Deduced from the mass / load ratio (m / z), is represented on the ordinate axis.
  • EM5 + PM on the right, was obtained after the concentration of the peptides from the solution containing them by the use of the EM5 antibody covalently bound to magnetic particles and separation of the complexes formed by the use of a magnetic field.
  • the drawing in the lower right zone represents the antibody binding zone to each of the peptides considered.
  • Fig. 7 shows a graph obtained by MALDI-TOF mass spectrometry analysis of a urine sample from a healthy individual to which additional amounts of the peptides comprising amino acids 12 to 28 (peak marked as Pep. 12-28), 1 to 40 (peak labeled Pep. 1-40) and 1-42 (peak labeled Pep.
  • the ordinate axis represents the intensity percentage (% Int.) Corresponding to each of the peaks of different mass (Ms.), deduced from the mass / load ratio (m / z). The peaks corresponding to each of the ⁇ -amyloid peptide forms added to the urine sample are indicated.
  • the invention relates to a monoclonal antibody, EM5, which recognizes in the ⁇ -amyloid peptide the epitope corresponding to the sequence:
  • the antibody is capable of binding to isoforms of the A ⁇ peptide containing residues 12 to 16 regardless of whether they are found in soluble, aggregated or denatured form (in SDS).
  • the tests described in the Examples described below demonstrate that the antibody of the invention is capable of binding to both aggregated ⁇ -amyloid peptide isoforms, forming part of the plaques present in brain tissue samples, and to ⁇ -amyloid peptide isoforms that are in solution, even if the solution is a sample of biological fluid such as urine.
  • another aspect of the invention relates to a composition containing the antibody of the invention, or at least a fragment thereof capable of binding to SEQ ID NO: 3, coupled to any substance that allows its detection and / or its concentration, and its use in the diagnosis of Alzheimer's disease.
  • the detection of the presence of isoforms of the ⁇ -amyloid peptide that have bound to the antibody or a fragment thereof and / or quantification thereof may be made by the detection and / or quantification of the antibody or its fragment bound to isoforms of the ⁇ -amyloid peptide containing the specific sequence recognized by the antibody of the invention.
  • the substance to which the antibody is coupled, or a fragment thereof capable of binding SEQ ID NO: 3 is a second antibody capable of binding to the monoclonal antibody of the invention, the second being antibody bound to an enzyme capable of catalyzing the transformation of a certain substance into another that has characteristics that make it easy to detect its presence.
  • the second antibody bound to an enzyme is part of the Envision system of Dako Laboratories, the substance whose transformation is catalyzed by the enzyme a chromogen and the enzyme that catalyzes the reaction or alkaline phosphatase (then being used as a blue nitro-tetrazolium chromogen) or horseradish peroxidase (then being used as a diaminobenzidine chromogen).
  • the antibody of the invention or a fragment thereof is bound to some substance or particle that facilitates the concentration of the isoforms of the ⁇ -amyloid peptide that have bound to said antibody or its fragment.
  • This embodiment is preferred when the composition of the invention goes to used for the detection and / or quantification of isoforms of the ⁇ -amyloid peptide that are in solution, especially in a solution in which its concentration is low, such as blood or plasma, urine or cerebrospinal fluid.
  • the substance or particle will be such that it allows easy separation of the antigen-antibody complex from said solution, for example, by immunoprecipitation.
  • a preferred example of said particles is the magnetic particles that, when coupled to the antibody of the invention or to a fragment thereof capable of binding to isoforms of the ⁇ -amyloid peptide containing the specific sequence recognized by the antibody of the invention, will allow the solution extraction of the ⁇ -amyloid peptide isoforms bound to the antibody or a fragment thereof if a suitable magnetic field is applied. Subsequently, the isoforms of the ⁇ -amyloid peptide can be separated from the antibody or fragment thereof to proceed with its detection, identification and / or quantification.
  • a suitable method can be mass spectrometry, especially known as MALDI-TOF (initials of the English expression Matrix Assisted Laser Desorption Ionization Time-of-flight, that is, mass desorption / laser ionization spectrometry , assisted by a matrix, performed in flight time).
  • MALDI-TOF matrix Assisted Laser Desorption Ionization Time-of-flight
  • the antibody of the invention or a fragment thereof capable of binding to isoforms of the ⁇ -amyloid peptide containing the specific sequence recognized by the antibody of the invention can be used for in vitro diagnosis of Alzheimer's disease.
  • In vitro diagnostic methods of Alzheimer's disease that make use of the antibody of the invention or a fragment thereof capable of binding to isoforms of the ⁇ -amyloid peptide containing the specific sequence recognized by the antibody of the invention, as well as those that make use of compositions that include said antibody or said fragment are included within the scope of the invention.
  • Said diagnosis can be made on brain tissue, in which the presence of deposits in which isoforms of the amyloid peptide predominantly containing the sequence recognized by the monoclonal antibody of the invention (neuritic plaques and vascular deposits, characteristic deposits of the body) are predominantly shown.
  • deposits in which isoforms of the amyloid peptide predominantly containing the sequence recognized by the monoclonal antibody of the invention neuritic plaques and vascular deposits, characteristic deposits of the body
  • development of Alzheimer's disease revealing the existence of binding to said deposits of the monoclonal antibody of the invention, or of a fragment thereof capable of binding to the specific sequence recognized by said antibody, unlike what would happen with deposits in which the predominant isoforms were those lacking the sequence recognized by the monoclonal antibody of the invention (diffuse plaques), the A ⁇ 17-X isoforms, which would not exhibit binding of the monoclonal antibody or fragments thereof.
  • the binding of the antibody to neuritic plaques and vascular deposits is revealed by a composition such as one that includes, in addition to the antibody of the invention or a fragment thereof, a second antibody capable of binding to the monoclonal antibody of the invention. , the second antibody being bound to an enzyme capable of catalyzing the transformation of a certain substance into another that has characteristics that make it easy to detect its presence, such as a chromogen.
  • the diagnostic method is complemented by the additional use of the polyclonal antibodies EM2 and EM3, which recognize either A ⁇ x- 42 (EM3) or A ⁇ x- 4 0 (EM2), both antibodies also previously developed by the group of the authors of the invention [24].
  • Another embodiment of the diagnostic method of the invention is carried out in a biological fluid that is known to contain isoforms of the ⁇ -amyloid peptide, such as cerebrospinal fluid, urine or blood or, in the latter case, the derived plasma.
  • a biological fluid that is known to contain isoforms of the ⁇ -amyloid peptide
  • cerebrospinal fluid such as cerebrospinal fluid, urine or blood or, in the latter case, the derived plasma.
  • the diagnostic method of the invention make use of compositions comprising the antibody of the invention or a fragment thereof bound to any substance or particle that facilitates the concentration of the isoforms of the ⁇ -amyloid peptide that bind to said antibody. or to a fragment thereof.
  • the particles that facilitate the concentration of the isoforms of the ⁇ -amyloid peptide are magnetic particles coupled to the antibody or a fragment thereof, so that, when submitting the solution containing the complexes formed with the Isoforms of the ⁇ -amyloid peptide to the action of a magnetic field, they can be extracted from the solution, which can be easily disposed of by some method such as aspiration.
  • the coupling of the antibody to the magnetic particle is produced by a covalent bond, to increase its stability, but that the establishment of said covalent bond occurs so as to avoid the antigen binding zone is possible, so as not to diminish the antibody binding capacity, whereby methods in which binding occurs preferably in the histidine-rich zone of the Fc fragment of the antibody or in the glycosidic chains of said antibody are preferred zone.
  • the separation of said isoforms from the antibodies or fragments thereof is preferred prior to the detection and / or quantification of the ⁇ peptide isoforms.
  • -aminoid extracted for which acetonitrile and trifluoroacetic acid can be used. Since the concentration of ⁇ -amyloid peptide isoforms in urine is not usually high, it is preferred that the detection and / or quantification be produced by some very sensitive method such as MALDI-TOF mass spectrometry.
  • Another aspect of the invention is a hybridoma cell line capable of producing the monoclonal antibody of the invention.
  • said cell line is obtained by fusion with the mouse myeloma line P3 / X63-Ag.653 of spleen cells of BALB / c mice immunized with A ⁇ ⁇ peptide or coupled to KLH (hemocyanin) of California limpet).
  • one more aspect of the invention is a method of producing and purifying the monoclonal antibody of the invention from hybridoma cells.
  • the method consists in the production of a hybridoma cell line as described above and its growth as ascites fluid in BALB / c mice previously treated with Pristane.
  • the monoclonal antibody is purified from that ascites fluid by affinity chromatography on an A-Sepharose protein column (Pharmacia).
  • the hybridoma cells used for this are those of the line called "EM5 clone A", whose deposit was requested on day 1 March 2006 in the European Collection of CeIl Cultures (CAMAC, Portón Down, Salisbury, Wiltshire, United Kingdom), having received access number 06030101.
  • Example 1 Production of antibodies The production of the polyclonal antibodies EM2 and EM5 used in this study was carried out as previously published [24].
  • mice 40 ⁇ g peptide BALB / c mice were injected subcutaneously coupled to KLH (California limpet hemocyanin) and dissolved in phosphate buffered saline (PBS) and emulsified with an equal volume of complete Freund's adjuvant. The mice received three repetitive injections every two weeks in incomplete Freund's adjuvant. Three days before the fusion, the mice received an intraperitoneal injection of 25 ⁇ g of -KLH in PBS. On the day of the fusion, spleen cells of the animals immunized with the mouse myeloma line P3 / X63-Ag.653 were fused using polyethylene glycol 1400 (Sigma), following established procedures [25].
  • KLH California limpet hemocyanin
  • PBS phosphate buffered saline
  • the fused cells were distributed in sterile 96-well plates at a density of 105 cells per well and were selected in media containing hypoxanthine, thymidine and aminopterin.
  • Antibody producing hybridomas were identified by the ELISA described below.
  • the plates were washed again and incubated with goat anti-mouse IgG conjugated with horseradish peroxidase (Sigma) one hour at 37 ° C. After washing, the solution was added with the substrate (0.05-phenylenediamine % and 0.015% hydrogen peroxide in 100 mM citrate buffer, pH 5.0). The reaction was stopped 10 minutes later with 2.5 M sulfuric acid and the absorbance at 492 nm was determined in a microplate reader. Hybridomas were selected whose supernatants produced an absorbance value at least twice that obtained with the supernatant of unrelated hybridomas (anti-gliadin antibodies).
  • Hybridomas producing specific antibodies were repeatedly cloned by limiting dilution, and the isotypes of the monoclonal antibodies were determined in concentrated cell culture supernatant by gel immunoprecipitation using a specific antiserum (Sigma). Selected hybridomas were grown as ascites fluid in BALB / c mice previously treated with Pristane.
  • the EM5 monoclonal antibody was purified from ascites fluid by affinity chromatography on an A-Sepharose protein column (Pharmacia). The purified antibodies were dialyzed profusely in PBS and stored at - 85 0 C until use.
  • Polystyrene microtiter plates (Immulon 2, Dynex Technology Inc., Chantilly, VA) were coated for 16 hours at 4 0 C with 0.5 ⁇ g of A ⁇ 1-40 peptide or A ⁇ i.42 freshly dissolved or added in carbonate / bicarbonate buffer pH 9.6. After blocking with Superblock (Pierce Chemical Co.) increasing concentrations of purified EM5 (0-0.5 nM in TBS-T, 100 microliters per well) were added to the wells coated with A ⁇ and incubated for 3 hours at 37 0 C. The bound EM5 was detected with the F (ab ') 2 fragment of goat anti-mouse IgG conjugated to horseradish peroxidase (1: 3000, Amersham).
  • reaction was carried out for 15 minutes with 3,3 ', 5,5'-tetramethylbenzidine (TMB) (BioRad, Hercules, CA.), stopped with 2M sulfuric acid and quantified in a microplate reader (Cambridge Technology, Watertown, MA) at 450 nm.
  • TMB 3,3 ', 5,5'-tetramethylbenzidine
  • the commercially available antibody affinity 6E10 (Senetek, PLC) was studied following a similar protocol using purified IgG antibody preparations. Nonlinear regression analysis, estimation of apparent dissociation constants and comparison of protein binding data to find out statistical significance by calculating F ratios were evaluated using Graphism Prism software (GraphPad, San Diego , CA).
  • Figure 1 shows the saturation curves corresponding to the ELISA binding of EM5 and 6E10 monoclonal antibodies to newly dissolved and aggregated A ⁇ peptides.
  • a high affinity was observed with apparent dissociation constants in the picomolar range. None of these antibodies showed a differential affinity for freshly prepared or aggregated A ⁇ forms.
  • 6E10 showed an equivalent affinity for A ⁇ ⁇ o and A ⁇ ⁇
  • EM5 showed a higher affinity for A ⁇ 42 than for A ⁇ 40 (p ⁇ 0.01) (13.7 pM and 15.5 pM for A ⁇ 42 freshly prepared and added, respectively; and 37.5 pM and 37.0 pM per freshly prepared and added A ⁇ 40, respectively).
  • a ⁇ ⁇ o and A ⁇ ⁇ by EM5 were studied and compared with polyclonal antibodies EM2 and EM3 by immunoblot analysis.
  • a ⁇ (0.5 ⁇ g / lane) peptides were subjected to PAGE electrophoresis in 16% acrylamide, tris-tricine-SDS.
  • the peptides were electrophoretically transferred for 1 hour at 400 mA and 4 ° C to polyvinylidene fluoride (Immobilon-P, Millipore) membranes using 3- acid cyclohexylamino-1-propanesulfonic acid, pH 11, containing 10% methanol.
  • the membranes were blocked for 16 h at 4 0 C with TBS-T containing 5% skim milk powder and then incubated for 1 hour at room temperature with 2 ⁇ g / ml of the IgG EM2, EM3 or EM5.
  • a goat anti-rabbit IgG (EM2 and EM3) or anti-mouse (EM5) coupled to horseradish peroxidase (Amersham) and diluted 1: 2,000 was used. Immunoblotting was visualized by chemiluminescence (Amersham) following the manufacturer's specifications.
  • peptides A ⁇ 1-16 , A ⁇ ⁇ s and A ⁇ 2 5-35 were purchased from Sigma (San Luis, MO); the peptides A ⁇ ⁇ 2 , A ⁇ ⁇ 2 (E22Q), A ⁇ ⁇ o, A ⁇ ⁇ o (E22G), A ⁇ ⁇ o (E22Q), Aß 1- August 2 (E22Q), Aß 17- 4 0, Aß 16- 42 and 5-35 were synthesized A ⁇ 2 in the WM Keck of the University of YaIe using the methodology of the Nt - butyloxycarbonyl; A ⁇ 2i-2 8 A ⁇ 2i-August 2 (E22Q), Aß 37- 4i and Aß 37- 4 0 were synthesized in the Peptide Synthesis Unit (National Biotechnology Center, Madrid) using ordinary Fmoc methodology.
  • peptides A ⁇ 37-42 and A ⁇ 37-4 9 included a tail at the amino terminus with a cysteine residue for the coupling having the sequence CSGGSGGG (SEQ ID NO: 4). All peptides were purified by High performance liquid chromatography in reverse phase mode and its purity was evaluated by MALDI-TOF mass spectrometry. a) Antibody capture ELISA
  • the complex was washed 4 times with PBS with bidirectional mixing (in a rotor).
  • a 10 ⁇ l aliquot of the trypsin-digested ⁇ -amyloid peptide (or ⁇ -chymotrypsin) was incubated with 50 ⁇ l of immobilized EM5 on magnetic particles in a rotor for 1 hour at 37 0 C.
  • the magnetic complex- Immunoprecipitate was washed 4 times with PBS in the same rotor and the supernatants were aspirated and discarded.
  • the immunoprecipitated peptides contained in the magnetic complexes were released with 20 ⁇ l of 50% acetonitrile / 0.3% trifluoroacetic acid. 5 ⁇ l of this solution was mixed with 5 ⁇ l of ⁇ -cyano-4-hydroxycinnamic acid saturated in 0.1% trifluoroacetic acid / acetonitrile (2: 1). A volume of 0.5 ⁇ l of this solution was then deposited in a tip-shaped stainless steel probe and allowed to dry at room temperature.
  • the MALDI-TOF mass spectroscopy analysis of the immunoprecipitated material demonstrates that EM5 was able to extract from the digestion mixture each peptide fragment containing residues 11-16 (shaded regions). Peptide fragments outside this region were not recovered from the solution.
  • EM5 antibody To demonstrate the validity of the EM5 antibody to reveal characteristic deposits of Alzheimer's disease (neuritic plaques and deposits vascular) against diffuse plaques, immunostaining of sections of brain tissue affected by Alzheimer's disease was performed using the EM2 antibodies (a polyclonal antibody directed to the carboxyl end of the A ⁇ 40 peptide), EM3 (a polyclonal antibody directed to the carboxyl end of the A ⁇ 42 peptide) and EM5 (a monoclonal antibody with specificity demonstrated by residues 12-16 of the A ⁇ peptide). Both EM2 and EM3 have already been used in a previous study [24].
  • Brain tissue was provided by the Tissue Bank for
  • AD Alzheimer's Disease
  • the ages ranged from 68 to 75 years.
  • a diagnosis of AD was made according to the clinical-pathological guidelines of CERAD (Consortium to Establish a Registry for Alzheimer's Disease: Consortium for the Establishment of an Alzheimer's Disease Registry) [10]. None of the patients presented other relevant neuropathological findings, for example Parkinson's disease or significant vascular changes. All brains were processed for histological study following the cutting, fixation and inclusion protocols of the Brain Bank. Postmortem periods ranged from 10 to 18 hours.
  • tissue blocks from all cortical and subcortical areas significantly involved in AD were obtained, and were included in paraffin after progressive dehydration in ethanol and rinsing of the tissue with xylol.
  • tissue sections corresponding to the lateral parieto-occipital cortex, lateral temporal cortex were obtained from the original paraffin blocks for immunohistochemical study (these last two areas as recommended by CERAD guidelines [10] ), hippocampus, caudate - putamen (at the level of the head of the caudate nucleus), and cortex of the cerebellar hemisphere.
  • staining with methenamine - silver was carried out modified in consecutive sections to those processed for amyloid immunohistochemistry.
  • the primary antibodies used were EM2, EM3, and EM5. Both EM2 and EM3 have been used in a previous study [24]. Sections were incubated with primary antibodies at room temperature for 30 minutes. Polyclonal antibodies were developed with the Envision system (Dako Laboratories) with alkaline phosphatase (FA) using nitro-tetrazolium blue (NBT) as a chromogen, and the EM5 was revealed either with the previous system or with the Envision system (Dako Laboratories) with horseradish peroxidase (HRP) using diaminobenzidine (DAB) as a chromogen. In the case of colocalization techniques, polyclonal antibodies were always revealed with the Envision system with FA (using NBT as a chromogen), while EM5 was revealed with the Envision system with HRP (using DAB as a chromogen).
  • FA alkaline phosphatase
  • NBT nitro-tetrazolium blue
  • DAB dia
  • Double immunostaining techniques were used using EM5 as the first primary antibody and EM2 or EM3 as the second primary antibody, as a preliminary work in order to establish the degree of colocalization of each pair of antibodies, together with the optimal working dilution of each of they.
  • EM5 as the first primary antibody
  • EM2 or EM3 as the second primary antibody
  • Sections incubated with the EM3 antibody showed reactivity with both diffuse and neuritic plaques (Fig. (5B)).
  • Fig. (5B) When compared with successive sections stained with the methenamine-modified silver method, it was shown that EM3 stained all the plates present in each section. Additionally, the EM3 antibody stained some neuronal bodies. Both EM2 and EM5 stained immature (without nucleus) and mature (with nucleus) neuritic plaques, again with a high degree of colocalization (Fig. (5F)). EM2 did not react with any diffuse plaque in the cortical or subcortical region (Fig. (3E)).
  • Double immunostaining with EM5 and EM3 reveals the colocalization of both antibodies in some neuritic plaques, but not in diffuse plaques (Fig. (5C)), although some colocalization was found at this level when EM5 was incubated at a very low dilution ( 1: 50). Only in one case that showed abundant diffuse plaques positive for EM3 in sections of the striatum did it stain EM5 some of them very slightly at the working dilution (1: 500). This same case showed no reactivity of diffuse plaques such as EM5 in the cerebellum cortex. In all other cases the sections of the striatum and cerebellum showed a variable amount of diffuse plaques, none of them reactive against the EM5 antibody.
  • EM2 nor EM5 appeared to stain all the neuritic plaques present (see Fig. (5A, D)). However, as observed in the case of immunoreactivity of vascular amyloid deposits, neuritic plaques reactive to EM2 or EM5 stained more intensely than with EM3. Except for the negativity of the vessels against all antibodies in a single case and the slight positivity of some diffuse plates of the striatum in that same brain, all cases can be considered to show similar staining patterns for each antibody tested.
  • the antibody panel detected heterogeneity within the neuritic plaques, which is relevant to indicate specific stages in the process of evolution of diffuse plaques to become in neuritic plaques
  • the EM5 antibody stained intensely all structures (neuritic plaques and vessel walls) stained by EM2 and stained variably by EM3.
  • a subset of neuritic plaques was shown to have a staining pattern identical to vascular amyloid, with a high colocalization of reactivity against EM2 and EM5.
  • the invention shows that EM5 should react with all structures containing either A ⁇ ⁇ 11-4 0 or A ⁇ ⁇ -42.
  • a relatively more intense staining in these positive plaques may reveal a subgroup of neuritic plaques either with a particularly high content of long, or selectively high, A ⁇ C40 peptides, or even a particular accessibility of the EM5-recognized epitope in structures (vessels or plates) showing codeposition of A ⁇ ⁇ 11-4 0 and A ⁇ ⁇ -42.
  • the antibody of the invention appears to detect the same subset of A ⁇ C40 (+) neuritic plaques previously detected by Parvathy et al. [22].
  • This subset of neuritic plaques with particularly high contents of long A ⁇ peptides may be relevant milestones in the progression of amyloid lesions in AD that the monoclonal antibody of the invention allows to reveal. Therefore, the use of EM5 can allow defining subsets of plaques that constitute a specific marker of the stage of disease progression.
  • Magnetic particles coupled to the EM5 antibody were prepared following the method described by Fuentes et al. [26], based on the mild oxidation of the glycosidic moieties of immunoglobulins to generate aldehyde groups, which are reacted with magnetic particles on whose surface amino groups have been generated by modification with ethylenediamine. Briefly, oxidation of the EM5 antibody was induced by incubation with 10 mM sodium periodate for 2 hours, after which the oxidized antibody was dialyzed in distilled water at 4 ° C.
  • Immobilization of the antibody on the magnetic particles was carried out after adding 10 mg of the oxidized EM5 antibody, dissolved in 150 mM sodium phosphate buffer pH 7.5, to 2 ml of magnetic particles (10 mg / ml) with amino groups in its surface at 4 ° C and incubating overnight.
  • the Schiff bases formed and the unreacted aldehyde groups were reduced by the addition of sodium borohydride to a concentration of 1 mg / ml, at pH 8.5 and 4 ° C.
  • the preparation was washed thoroughly with distilled water.
  • the amount of immobilized antibody was determined quantifying the difference in protein concentration in the supernatant before and after immobilization, using the Bradford method [27].
  • part A corresponds to the analysis of the solution without prior antibody treatment (Ctrl.)
  • part B corresponds to use of antibody bound to magnetic particles (EM5 + PM).
  • the antibody is capable of binding to forms of the ⁇ -amyloid peptide in solution and of complexing with them so that they can be separated from said solution.
  • the tube was placed in a magnetic particle separator and the urine was carefully extracted using a pipette.
  • the peptides bound to them were separated from the magnetic particles with 12 ⁇ l of a solution of a matrix of ⁇ -cyano-4-hydroxycinnamic acid in 30% (v / v) aqueous acetonitrile containing 0.1% (v / v) Trifluoroacetic acid (TFA) and analyzed by MALDI-TOF mass spectrometry.
  • Detection of immunoprecipitated peptides by mass spectrometry 1.5 ⁇ l of the sample mixture resulting from immunoprecipitation in the ⁇ -cyano-4-hydroxycinnamic acid matrix was placed in a stainless steel probe with capacity for 100 samples and They allowed to dry at room temperature for 5 minutes.
  • the equipment was externally calibrated using calibration mixture 2, provided by Applied Biosystems (Tres Cantos, Madrid, Spain), composed of angiotensin (1297 Da), ACTH 1-17 (2094 Da), ACTH 18-39 (2466 Da), ACTH 7-38 (3660 Da) and bovine insulin (2867 Da).
  • calibration mixture 2 provided by Applied Biosystems (Tres Cantos, Madrid, Spain), composed of angiotensin (1297 Da), ACTH 1-17 (2094 Da), ACTH 18-39 (2466 Da), ACTH 7-38 (3660 Da) and bovine insulin (2867 Da).
  • Fig. 7 shows the graph obtained with one of the samples, representative of the others. Peaks corresponding to peptides added to the urine sample are observed, demonstrating the ability of the antibody of the invention to bind to them in urine samples. Having performed the analysis with a sample of a biological fluid, other peaks are also observed, corresponding to other molecules naturally present in the sample and which have also been attached to the antibody coupled to magnetic particles.
  • the hybridoma that produces the EM5 antibody was deposited in the European Collection of CeIl Cultures (CAMAC, Salisbury, Wiltshire, United Kingdom). The deposit date and access number are shown below:
  • these hybridoma cells were obtained by fusing two types of cells: a) spleen lymphocytes of BALB / c mice, obtained after immunization of the mice using the form of the ⁇ -amyloid peptide called immunogen Ap 1-40 , which comprises amino acids 1 to 40 of said peptide, coupled to KLH, the hemocyanin of Californian barnacle; b) P3 / X63-Ag653 mouse myeloma line cells, which acted as immortal part of the fusion.
  • immunogen Ap 1-40 which comprises amino acids 1 to 40 of said peptide, coupled to KLH, the hemocyanin of Californian barnacle
  • P3 / X63-Ag653 mouse myeloma line cells which acted as immortal part of the fusion.
  • EM5 clone A which produces the monoclonal antibody called "EM5", an IgGl-like antibody capable of specifically recognizing the antigen used for immunization, the Ap 1-40 peptide , as verified by ELISA type antibody capture assays.
  • This clone was grown in RPMI 1640 culture medium with 10% fetal bovine serum, 10% DMSO, 2 mM glutamine and 1 mM sodium pyruvate, at 37 ° C and in an atmosphere with 5% CO 2 , conditions in which that 95% of the cells grew in suspension and the remaining 5% adhered to the culture vessel.
  • the cells were cloned twice by limiting dilutions, after which aliquots of 4 x 10 6 cells were taken, which were introduced into vials. After carrying out checks on the absence of bacteria, the absence of mycoplasmas and the absence of fungi, several of these vials were sent to the European Collection of CeIl Cultures (ECACC), requesting the admission of their deposit.
  • ECACC European Collection of CeIl Cultures
  • Amyloid ⁇ protein (A ⁇ ) deposition A ⁇ 42 (43) precedes A ⁇ 40 in Down's syndrome.
  • Amyloid ⁇ protein deposition in normal aging has the same characteristics as that in Alzheimer's disease.

Abstract

Método de diagnóstico in vitro de la enfermedad de Alzheimer mediante un anticuerpo monoclonal. Dicho anticuerpo es capaz de unirse al menos a los aminoácidos 12-16 del péptido β-amiloide, detectando específicamente las placas neuríticas, características de la enfermedad de Alzheimer, sin detectar placas difusas, que no son definitorias de la enfermedad. Dentro de las placas neuríticas, el anticueipo monoclonal permite detectar un subgrupo que se diferencia en la composición de las diferentes isoformas de péptido β-amiloide depositadas, lo que se asocia con el estadio de progresión de la enfermedad. Además, el anticuerpo es capaz de unirse a isoformas del péptido β-amiloide en fluidos biológicos como la orina. Por ello, el anticuerpo monoclonal de la invención, las líneas celulares que lo producen y las composiciones que lo contienen son de utilidad en el diagnóstico in vitro de la enfermedad de Alzheimer y la determinación del estadio de progresión de la enfermedad.

Description

MÉTODO DE DIAGNÓSTICO IN VITRO
DE LA ENFERMEDAD DE ALZHEIMER
MEDIANTE UN ANTICUERPO MONOCLONAL
CAMPO DE LA INVENCIÓN
La presente invención se refiere al diagnóstico de trastornos neurológicos, especialmente al diagnóstico de la enfermedad de Alzheimer mediante un anticuerpo capaz de interaccionar con péptidos específicos asociados con dicha enfermedad.
ANTECEDENTES DE LA INVENCIÓN
La enfermedad de Alzheimer (EA) es un trastorno neurológico que provoca la muerte de las células nerviosas del cerebro. Por lo general, progresa paulatinamente, comenzando después de los 50 años, y sus primeros síntomas pueden atribuirse a la vejez o al olvido común. A medida que avanza la enfermedad, se van deteriorando las capacidades cognitivas, entre ellas, la capacidad para tomar decisiones y llevar a cabo las tareas cotidianas, y pueden surgir modificaciones de la personalidad, así como conductas problemáticas. En sus etapas avanzadas, la EA conduce a la demencia y finalmente a la muerte. La enfermedad es actualmente incurable y constituye una causa importante de mortalidad. En la actualidad, el diagnóstico de la enfermedad de Alzheimer se realiza normalmente a través del cuadro clínico, pues el diagnóstico definitivo sólo puede llevarse a cabo mediante un estudio histológico de muestras cerebrales (autopsia o biopsia), que revele la presencia en el tejido cerebral de sus rasgos característicos. Debido a la peligrosidad de la práctica de biopsias cerebrales en pacientes vivos, este procedimiento se utiliza muy raramente, por lo que se estima que la tasa de errores en el diagnóstico in vivo de esta enfermedad ronda el 20%-30%.
Los cerebros de los individuos que padecen enfermedad de Alzheimer muestran dos marcadores patológicos principales: degeneración neurofibrilar (que se identifica por la presencia de ovillos neurofibrilares, neuritas distróficas y hebras del neuropilo) y depósitos de sustancia amiloide (es decir, depósitos del denominado péptido β- amiloide, abreviado generalmente como Aβ), tanto en forma de placas (placas difusas y placas neuríticas, formas estas últimas características de la enfermedad, que se denominan así por aparecer entre y dentro de las neuronas), como en forma de depósitos vasculares (que aparecen en las paredes de los vasos sanguíneos cerebrales). Tanto la degeneración neurofibrilar como la deposición amiloide representan procesos degenerativos asociados también al envejecimiento normal del cerebro. En los sujetos de avanzada edad que no padecen demencia, el péptido Aβ se deposita principalmente en forma de placas difusas. Este tipo de depósito es especialmente intenso en algunos sujetos con capacidades cognitivas normales, y para algunos autores representa un proceso de "envejecimiento patológico", que se considera que está a medio camino entre el envejecimiento normal del cerebro y la EA [I]. Un desarrollo particularmente intenso y prematuro de placas difusas años antes de que aparezcan las placas neuríticas tiene lugar también en el síndrome de Down (SD), debido a una trisomía del cromosoma 21 que conduce a una sobreexpresión de la proteína precursora amiloide (β-APP). Aunque se puede observar un pequeño número de placas neuríticas en cerebros de sujetos con capacidades cognitivas normales, tanto los cerebros afectados por EA como los afectados por SD en edades avanzadas se caracterizan por el desarrollo de una gran cantidad de placas neuríticas maduras [2, 3]. En contraste con las placas difusas, que contienen una forma no fibrilar de Aβ (denomina "preamiloide") [4], tanto los depósitos amito ides vasculares como las placas neuríticas contienen péptido Aβ en forma fibrilar y reaccionan con tinciones de sustancia amiloide tales como el Rojo Congo y la Tioflavina T.
El declive cognitivo en la EA se correlaciona de forma lineal con la progresión de los cambios neurofibrilares y la pérdida de sinapsis corticales [5]. No se ha observado pérdida local de sinapsis asociada a las placas difusas [6]. En contraste, las placas neuríticas están asociadas con pérdida de densidad sináptica, cambio neurofibrilar y activación de la microglía [7]. Tanto el cambio neurofibrilar puro como la deposición de Aβ siguen en la EA patrones secuenciales de progresión bien establecidos [8, 9]. Sin embargo, aunque el grado de declive cognitivo se correlaciona mejor con una sucesión de etapas basadas en el cambio neurofibrilar [5], el diagnóstico neuropatológico definitivo de la EA se basa todavía en la demostración histológica de una densidad significativamente mayor de placas neuríticas en las regiones neocorticales asociativas, con respecto a lo esperado según el grupo de edad del paciente, dentro de un cuadro clínico de demencia (criterios de consenso del CERAD: Consortium to Establish a Registry for Alzheimer's Diseasé) [10]. La formación de placas neuríticas representa el proceso patogénico central en la EA, y la composición molecular de estos depósitos β-amiloides y las diferencias con las placas difusas en lo que a dicha composición se refiere es, en consecuencia, uno de los principales campos de interés en la investigación actual sobre la EA.
El conocimiento que se posee sobre la composición molecular de los depósitos β-amiloides en el tejido cerebral de pacientes con enfermedad de Alzheimer ha cambiado radicalmente a lo largo de los últimos años. Varios estudios que empleaban métodos bioquímicos o inmunohistoquímicos con el fin de identificar diferentes formas del péptido Aβ han aportado una imagen bastante consistente que permite una interpretación molecular de los hallazgos morfológicos clásicos. Estos estudios son los que han proporcionado las bases de la teoría patogénica unitaria de la enfermedad denomina hipótesis amito ide [11], aunque la hipótesis original se ha reformulado recientemente con el fin de incluir el papel emergente de los oligómeros Aβ solubles como los principales agentes patógenos [12]. La suposición de un papel patógeno central y primario de los péptidos Aβ en la EA está dando lugar en la actualidad a nuevas estrategias terapéuticas dirigidas a la prevención o eliminación de estos depósitos.
La distribución topográfica y secuencia temporal de la deposición de péptidos Aβ conocidos en cerebros afectados por EA se ha dilucidado con la ayuda de anticuerpos dirigidos al extremo carboxilo, al extremo amino o a segmentos internos de la molécula Aβ, junto con el aislamiento y purificación de isoformas de Aβ por medio de métodos bioquímicos. La distribución tisular de péptidos caracterizados por los rasgos de sus extremos carboxilo muestra un patrón bastante regular y bien definido. Mientras que Aβχ.40 es la forma predominante en los depósitos vasculares y es la forma principal que se encuentra en el LCR (líquido cefalorraquídeo), Aβx-42 es la forma principal detectada en los depósitos de tejido cerebral (placas difusas y neuríticas) [13]. En la EA, el síndrome de Down (SD) [13, 14] y el envejecimiento normal [1] Aβx-42 es el único componente de las placas difusas y el componente principal de las placas neuríticas. Estas últimas también pueden contener Aβx-40, predominantemente en la región de su núcleo central. También se ha establecido que Aβx-42 es la forma que se deposita en las fases iniciales.
Aunque inicialmente se creía que Aβx-40 y Aβx-42 comenzaban casi en su totalidad en el aminoácido Aspl, está bien establecido inmunohistoquímica y bioquímicamente que una amplia variedad de isoformas heterogéneas del péptido Aβ, modificadas y truncadas en el extremo amino, participan en la composición de las placas tanto difusas como neuríticas [15]. Estas isoformas tienden a mostrar también un patrón regular de distribución entre las placas difusas y neuríticas, de forma que finalmente ha comenzado a surgir una imagen completa de la distribución topográfica de los diferentes péptidos Aβ. Sin embargo, existen todavía algunas discrepancias entre los estudios, particularmente con respecto a las características del extremo amino de los péptidos que componen las placas difusas, y la cantidad relativa de carga amiloide que representa cada uno de ellos.
Estas discrepancias implican particularmente al péptido p3 (Aβ17-42). Mientras que algunos estudios sugieren que Aβ17-42 puede ser el principal componente de las placas difusas [16], otros han encontrado una cantidad relativamente mayor de formas más largas (que comienzan en Aspl, o truncadas en el extremo amino u otras isoformas modificadas) a este nivel [15]. Puesto que Aβ17-42 se genera mediante la escisión de β-APP por la α-secretasa (la denominada ruta no amiloidogénica) y muestra propiedades físico-químicas bastante diferentes de las isoformas más largas de Aβ (estas últimas generadas mediante la escisión de β-APP por la γ-secretasa), su presencia selectiva en placas difusas puede tener un significado patogénico crucial en la evolución de las placas.
Gowing et al. [17] fueron los primeros en aislar el péptido Aβ17-42 como la forma predominante recuperada de cerebros afectados por EA ricos en placas difusas. Este depósito no se encontró, ni en depósitos amiloides vasculares, ni en placas neuríticas. El anticuerpo monoclonal comercial 6E10, que reconoce Aβ1-17, no produjo la inmunotinción de placas difusas, ni neocorticales, ni cerebelo sas, en una serie de cerebros afectados por EA y SD [18]. Sin embargo, el cuerpo estriado, donde las placas difusas son particularmente abundantes en ausencia de placas neuríticas, mostró algunas placas positivas para el anticuerpo 6E10. Utilizando determinaciones por HPLC e inmunohistoquímica, Lalowski et al. [19] demostraron que Aβ17-42 representa un 70% del contenido amiloide total en placas difusas del cerebelo, mientras que Aβi. 42 representa un 12% y otras formas truncadas de Aβx-42 un 5% o menos. En cerebros de personas de edad avanzada y afectados por SD, Saido et al. [20] encontraron una tinción mayor de placas difusas con un anticuerpo específico anti-Aβ N3 (piroGlu) que con un anticuerpo anti-Aβ N(I). Iwatsubo et al. [15] estudiaron placas difusas en una serie de cerebros de personas de edad avanzada, afectados por EA y afectados por SD con un panel de anticuerpos dirigidos a reconocer formas de Aβ truncadas y modificadas en el extremo amino. Este estudio es único por el hecho de que el tejido cerebral empleado para el estudio inmunohistoquímico se fijó o en etanol al 70%, o en formaldehído al 4%, de forma que se podía ensayar el efecto sobre la aparición de artefactos de la fijación rutinaria con formaldehído. En todas las muestras de tejido fijadas en etanol al 70%, las placas difusas se tiñeron intensamente por la presencia de Aβ Nl (L-Asp), Aβ Nl (L-isoAsp), Aβ Nl (D-Asp), Aβ N3 (piroGlu), y Aβ X-42. Se obtuvo una inmunotinción débil con Aβ Nl 1 (piroGlu) y Aβ Nl 7. Sin embargo, en el material fijado en formaldehído algunas placas difusas se tiñeron con Aβ Nl (L- Asp), y no se obtuvo ninguna tinción con Aβ Nl (L-isoAsp) o Aβ Nl (D-Asp), mientras que el patrón de tinción para el extremo carboxilo permaneció sin cambios. Aunque los autores demostraron que la modificación del extremo amino puede alterar los resultados de la inmunotinción en tejidos fijados en formaldehído, obtuvieron una reactividad débil para el Aβ Nl 7 incluso en material fijado en etanol. Utilizando un anticuerpo monoclonal específico para p3 (Aβ17-42) [16], encontraron deposición de este péptido limitada en gran medida a las placas difusas, las neuritas distróficas y las coronas de placas neuríticas en las regiones de las amígdalas, el hipocampo y el parahipocampo. Los autores sugieren un papel específico de p3 en la deposición inicial de sustancia amiloide y en el origen de las placas neuríticas. Tekirian et al. [21] , en una serie de cerebros afectados por EA y de control, demostraron la presencia en las placas difusas de Aβ N3 (pE) > Aβ Nl (D) > Aβ Nl 7 (L) > Aβ Nl (rD).
En cuanto a la variabilidad en el extremo carboxilo, Parvathy et al. [22], en un estudio que empleaba anticuerpos dirigidos contra Aβx-40,
Figure imgf000006_0001
encontraron un subgrupo de placas neuríticas reactivas sólo frente al anticuerpo Aβ C40 y un subgrupo mayor de placas reactivas tanto frente a Aβ C40 como frente a Aβ C42.
Los estudios previos han establecido así que las placas difusas muestran un perfil de Aβ altamente específico en el extremo carboxilo y un perfil bastante específico en el extremo amino, este último sometido a alguna heterogeneidad entre los pacientes y entre diferentes regiones del cerebro. La presencia de Aβ17-42 parece estar limitada en gran medida a las placas difusas, aunque hay una gran variación entre los estudios con respecto a los contenidos relativos de este péptido más corto en las mismas. En los estudios realizados por Kida et al. [18], no se obtuvo ninguna tinción para péptidos Aβ que incluían la secuencia 12-16 en placas difusas de regiones corticales y subcorticales.
Tomándolos en conjunto, los resultados del Estado de la Técnica (ET) sugieren que, como propuso Lamer [23], las formas del péptido Aβ específicas según el extremo amino pueden jugar un papel esencial en la evolución de las placas difusas para convertirse en placas neuríticas. Por ello, los anticuerpos capaces de detectar específicamente formas con el extremo amino truncado y, con ello, diferenciar claramente entre las placas difusas y las placas neuríticas son de gran utilidad como herramientas en el diagnóstico de la enfermedad de Alzheimer. De entre ellos, serían de especial utilidad aquellos capaces de diferenciar subgrupos de placas neuríticas según la proporción de las distintas formas de péptido amiloide que se diferencian en el aminoácido en el que acaba el extremo carboxilo, en especial si fueran capaces de permitir definir subconjuntos de placas que constituyeran un marcador específico de la enfermedad. El anticuerpo monoclonal de la invención, dirigido contra la secuencia constituida por los aminoácidos 12-16 del péptido β-amiloide y con una mayor afinidad por la forma Aβ42 que por Aβ40, cumple ambas características.
Otro aspecto en el que los anticuerpos capaces de detectar formas del péptido β- amiloide serían de especial utilidad sería en el diagnóstico de la enfermedad de Alzheimer mediante el análisis de la concentración de distintas formas de este péptido en fluidos biológicos, un aspecto en el que se están trabajando tanto para facilitar el diagnóstico a partir de parámetros bioquímicos como, incluso, con vistas a identificar casos preclínicos o en especial riesgo de desarrollar la enfermedad y permitir el seguimiento de los pacientes incluidos en estudios clínicos. Con esta finalidad, muchos estudios se están centrando en el líquido cefalorraquídeo (LCR), con el fin de detectar si existen variaciones en las concentraciones de formas solubles del péptido β-amiloide presentes en este fluido que permitan diferenciar a los pacientes de los controles sanos. Sin embargo, es poco probable que el análisis del LCR, que lleva implícito el uso de una técnica invasiva, la punción lumbar, pueda aplicarse al diagnóstico y seguimiento de rutina de los pacientes con enfermedad de Alzheimer en la práctica clínica. Por ello, otras líneas de investigación se han centrado en el estudio de variaciones en la concentración en sangre y orina de marcadores biológicos (entre los cuales se encuentran formas solubles del péptido β-amiloide) que puedan correlacionarse con la aparición y la evolución de la enfermedad, aunque hay pocos estudios publicados hasta el momento. De acuerdo con ellos, los niveles e Aβx-42 y Aβx-40 en plasma parecen estar aumentados en el caso de existencia de síndrome de Down y también se incrementan en individuos normales con la edad. Los niveles plasmáticos de Aβx-42, pero no de Aβx-40, están aumentados en pacientes con enfermedad de Alzheimer, y descienden a lo largo de la evolución de la enfermedad [28,29], aunque la medida de la concentración de estas especies en plasma no permite su aplicación actual al diagnóstico. También se ha detectado la presencia de formas solubles del péptido β- amiloide en orina [30], aunque no se ha realizado hasta el momento un estudio comparativo entre pacientes y controles. Aunque el orden de magnitud de las concentraciones de péptido β-amiloide que se están detectando en plasma y orina están dificultando la definición de los perfiles correspondientes a los individuos sanos y a los pacientes que se encuentran en distintos estadios de la enfermedad y la posible asociación de las formas solubles del péptido β-amiloide con otras proteínas presentes en dichos fluidos biológicos es otra dificultad a superar, es este un campo en el que se está trabajando activamente, por lo que los anticuerpos monoclonales que puedan interaccionar con formas del péptido β-amiloide presentes en fluidos biológicos para posibilitar su detección pueden significar una herramienta de gran utilidad en el diagnóstico de la enfermedad de Alzheimer. El anticuerpo de la invención, que es capaz de interaccionar con formas solubles del péptido β-amiloide y de detectar su presencia en fluidos biológicos como la orina, es uno de los anticuerpos que puede ser de utilidad en la ejecución de estas técnicas diagnósticas. Además, el hecho de estar dirigido específicamente contra la zona cercana al extremo amino del péptido β- amiloide es una característica de interés en la diferenciación de las formas del péptido β-amiloide que conservan el extremo amino de aquellas formas en las que dicho extremo está truncado.
Se han descrito otros anticuerpos monoclonales dirigidos específicamente contra la zona cercana al extremo amino del péptido β-amiloide, así como su utilización en métodos diagnósticos relacionados con la EA. Así, por ejemplo, en la patente norteamericana US-4.666.829 se describe la obtención de un anticuerpo monoclonal generado frente a una porción del péptido amiloide más cercana al extremo amino. En concreto, se preparó un péptido sintético consistente en los diez primeros residuos de dicho péptido (Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr), representando por SEQ ID NO: 1. El epítopo reconocido por este anticuerpo estará incluido en estos aminoácidos 1 a 10, mientras que el anticuerpo reivindicado en la presente invención reconoce al menos el epítopo que comprende los aminoácidos del 12 al 16. Además de diferir en la secuencia específica que reconoce este anticuerpo monoclonal con respecto al de la presente invención, también es diferente el diseño del método diagnóstico propuesto, pues lo que se determina es exclusivamente la unión de los anticuerpos utilizados a lo que en esa patente se considera el péptido característico de la enfermedad de Alzheimer, el constituido por los aminoácidos 1 a 28 del péptido amiloide, no considerándose la unión a otras formas del péptido de diferentes longitudes y/o con variaciones en los extremos amino y carboxilo. Además, no se aporta ninguna prueba experimental que demuestre su capacidad para detectar formas del péptido amiloide presentes en fluidos biológicos.
Por otra parte, en la solicitud de patente PCT WO 90/12871 se describe la preparación del anticuerpo monoclonal denominado SVl 7-6El 0. La generación de este anticuerpo se produce por inmunización con la secuencia peptídica Asp-Ala-Glu-Phe- Arg-His-Asp-Ser-Gly-Tyr-Gln-Val-His-His-Gln-Lys-Leu, representada por SEQ ID NO:2, que podría considerarse equivalente a la de los aminoácidos 1 a 17 del péptido amiloide. Otro anticuerpo monoclonal dirigido contra la zona en la que se incluyen los aminoácidos 1 a 17 es el ya mencionado anticuerpo monoclonal comercial 6E10 que, según figura en la descripción de la hoja técnica correspondiente al producto, http://www.alexis_coφxom/tnonoclonal:antibodies-SIG-9320/opfa.1.1.SIG- 9320.386.4.1.html, específicamente, dentro de los aminoácidos 1 a 17 del péptido β- amiloide, reconoce el epítopo comprendido entre los aminoácidos 3 a 8. Este epítopo corresponde a una zona diferente y más cercana al extremo amino que la del anticuerpo monoclonal EM5 de la invención. Aunque es capaz de producir una tinción diferencial de las placas neuríticas y los depósitos vasculares, sin teñir las placas difusas, este anticuerpo no parece presentar diferencias de afinidad entre los péptidos Aβ42 y Aβ40.
Por tanto, el anticuerpo monoclonal de la invención, al que se ha denominado
EM5, constituye una herramienta novedosa, porque reconoce al menos un epítopo no reconocido por ninguno de los anticuerpos descritos en el estado de la técnica conocido, en la secuencia del péptido β-amiloide. El anticuerpo de la invención, por consiguiente, es útil para su aplicación en el diagnóstico de la enfermedad de Alzheimer. Detecta específicamente placas neuríticas sin detectar placas difusas, que no están asociadas a la enfermedad de forma específica. Dentro de las placas neuríticas, el anticuerpo monoclonal de la invención permite detectar un subgrupo de placas neuríticas que se diferencia en la composición molecular de las mismas con respecto a los depósitos de péptido β-amiloide. Además, el anticuerpo monoclonal de la invención es capaz de unirse a formas del péptido β-amiloide presentes en solución, permitiendo la posterior detección y cuantificación de dichos péptidos, incluso si la solución es un fluido biológico como la orina.
SUMARIO DE LA INVENCIÓN
La invención se refiere a un anticuerpo monoclonal que reconoce en el péptido β-amiloide el epítopo correspondiente a la secuencia:
Val-His-His-Gln-Lys (SEQ ID NO:3) y es capaz de unirse a isoformas del péptido β-amiloide que contengan dicha secuencia, independientemente de que el péptido se encuentre en forma soluble, agregada o desnaturalizada por SDS, aunque mostrando una afinidad mayor por la isoforma Aβ 42 que por la isoforma Aβ 40.
La invención se refiere también a fragmentos del citado anticuerpo capaces también de unirse a isoformas del péptido β-amiloide que contengan dicha SEQ ID NO:3.
La invención se refiere también a una línea celular de hibridoma capaz de producir el anticuerpo monoclonal anteriormente descrito y a un método de producir dicho anticuerpo mediante la obtención de una línea celular de hibridoma y el cultivo de dicha línea celular en condiciones que permitan la producción del anticuerpo monoclonal.
Adicionalmente, la invención se refiere a una composición que comprenda el anticuerpo de la invención o al menos un fragmento del mismo capaz de unirse a SEQ ID NO:3. Una posible realización de una composición de la invención es aquella en la que el anticuerpo o el fragmento del mismo están acoplados a una sustancia capaz de permitir su detección, sustancia que puede ser un segundo anticuerpo capaz de unirse al anticuerpo de la invención o al fragmento del mismo y que lleva acoplada una sustancia capaz de permitir su detección, como puede ser una enzima capaz de catalizar la transformación de una determinada sustancia en otra que puede ser detectada, por ejemplo un cromógeno. Otra posible realización de una composición de la invención es aquella en la que el anticuerpo o un fragmento del mismo están acoplados a alguna sustancia o partícula que facilita la extracción de isoformas del péptido β-amiloide presentes en una solución, como puede ser una partícula magnética que permitirá la separación de la solución de los complejos antígeno-anticuerpo o antígeno-fragmento de anticuerpo formados si se aplica un campo magnético, siendo así posible concentrar las isoformas del péptido β-amiloide presentes en dicha solución y facilitar su posterior detección, identificación y/o cuantificación. La invención se refiere también al uso del anticuerpo monoclonal de la invención o al menos un fragmento del mismo capaz de unirse a SEQ ID NO: 3 para detectar isoformas del péptido β-amiloide que contengan SEQ ID NO:3. Las isoformas del péptido β-amiloide a detectar pueden encontrarse en una muestra de tejido cerebral tomada de un individuo, en una solución como puede ser una muestra de un fluido biológico o una solución derivada del mismo o, incluso, pueden encontrarse en algún otro tipo de muestra, no biológica, en la que se desea igualmente detectar la posible presencia de isoformas del péptido β-amiloide.
Por último, la invención se refiere a un método de diagnóstico in vitro de la enfermedad de Alzheimer basado en la detección de isoformas de péptido β-amiloide mediante el uso del anticuerpo de la invención, o de al menos un fragmento del mismo capaz de unirse a SEQ ID NO:3. En una realización preferida de la invención, la detección de isoformas del péptido β-amiloide se produce en una muestra de tejido cerebral tomada de un individuo. En ese caso, las composiciones de la invención en las que el anticuerpo o el fragmento del mismo están acoplados a una sustancia capaz de permitir su detección, sustancia que puede ser un segundo anticuerpo capaz de unirse al anticuerpo de la invención o a un fragmento del mismo y que lleva acoplada otra sustancia capaz de permitir su detección, pueden ser de especial utilidad.
En otra realización preferida del método diagnóstico de la invención, la detección de isoformas del péptido β-amiloide se produce en una solución, preferiblemente una muestra de un fluido biológico como puede ser el líquido cefalorraquídeo, la orina o la sangre o, incluso, una solución derivada de algún fluido biológico, como puede ser el plasma. En esta segunda realización de la invención, se prefiere el uso de composiciones de la invención en las que el anticuerpo o el fragmento del mismo están acoplados a alguna sustancia o partícula que facilite la extracción de isoformas del péptido β-amiloide presentes en solución, como puede ser una partícula magnética que permitirá la separación de la solución de los complejos antígeno-anticuerpo o antígeno-fragmento de anticuerpo formados, si se aplica un campo magnético, siendo así posible concentrar las isoformas del péptido β-amiloide presentes en la solución y facilitar su posterior detección, identificación y/o cuantificación. De esta forma, el método de diagnostico de la invención comprende las etapas de: a) añadir a la muestra de fluido biológico o la solución derivada del mismo una composición que comprende el anticuerpo de la invención o al menos un fragmento del mismo capaz de unirse a SEQ ID NO: 3 acoplados a una partícula magnética; b) dejar transcurrir tiempo suficiente para que se formen complejos antígeno- anticuerpo o antígeno fragmento de anticuerpo, entre al menos una isoforma del péptido β-amiloide y el anticuerpo o fragmento de anticuerpo, comprendidos en la composición; c) aplicar un campo magnético para extraer los complejos antígeno-anticuerpo o antígeno-fragmento de anticuerpo de la solución; d) retirar la solución; e) separar el anticuerpo o fragmento de anticuerpo de las moléculas de péptido β-amiloide, í) identificar y cuantificar las isoformas del péptido β-amiloide extraídas de la muestra de fluido biológico o solución derivada del mismo.
Se prefiere que la solución de la que se extraen las isoformas del péptido β- amiloide sea una muestra de sangre u orina, por ser más sencilla su obtención que en el caso de las muestras de líquido cefalorraquídeo, o bien una muestra de plasma derivado de una muestra de sangre. Entre sangre o plasma y orina, se prefiere especialmente que la muestra de fluido biológico sea una muestra de orina, por no requerir de métodos invasivos para su obtención. Ello obliga, sin embargo, a utilizar algún método muy sensible para la identificación y cuantificación de las isoformas del péptido β-amiloide, que puede ser la espectrometría de masas MALDI-TOF.
Los anticuerpos policlonales EM2 y EM3, desarrollados también por el grupo de los inventores, pueden utilizarse también como herramienta complementaria en el método de diagnóstico de la invención.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Fig. 1 muestra las curvas de unión de los anticuerpos EM5 (parte superior) y 6E10 (parte inferior) a péptidos Aβ inmovilizados. Se muestran los resultados correspondientes a distintas concentraciones (abscisas; en concentración nM) de los anticuerpos tanto frente al péptido Aβ 40 (símbolos rellenos) como frente al péptido Aβ 42 (símbolos vacíos), en ambos casos agregado (Δ) o sin agregar (D). Cada punto representa la media de experimentos realizados por triplicado. En ordenadas se representa la densidad óptica (D.O) a 450 nm.
La Fig. 2 muestra el resultado de los análisis por inmunotransferencia de los anticuerpos EM2, EM3 y EM5 frente a péptidos sintéticos Aβ 1-40 y Aβ 1-42. La Fig. 3 muestra en su parte superior, un diagrama de barras referente a la reactividad de EM5 frente a series de péptidos Aβ sintéticos mediante ELISA, con los valores de absorbancia (D.O. a 450 nm) correspondientes a 20 μg/ml de anticuerpo. En la parte inferior se indica la localización del epítopo reconocido por EM5 según los resultados obtenidos en este ELISA. 1-28R = Aβ^s de roedor. Entre paréntesis, diferentes mutaciones.
La Fig. 4 muestra la localización del epítopo del péptido Aβ reconocido por el anticuerpo monoclonal EM5 según se determinó mediante análisis de Espectrometría de Masas del péptido β-amiloide inmunoprecipitado digerido con diferentes enzimas proteolíticas indicadas en la Tabla de la descripción (péptidos 1-5). La secuencia 6 corresponde al péptido β-amiloide sin digerir.
La Fig. 5 muestra fotografías de inmunotinciones de tejido cerebral afectado por la enfermedad de Alzheimer, utilizando EM2, EM3, EM5 y combinaciones de EM5 con cada uno de los anteriores. Las estructuras teñidas se señalan como V (vasos), DP (placas difusas) y NP (placas neuríticas). Las fotografías corresponden a:
- (A) y (B): Secciones seriadas consecutivas de la misma zona del córtex occipital inmunoteñidas con EM5 (A) y EM 3 (B) como anticuerpo primario, utilizando azul de nitro-tetrazolio (NBT) como cromógeno.
- (C): Micrografía con alto grado de magnificación de una técnica de inmunotinción doble utilizando EM3 (cromógeno: NBT) y EM5 (cromógeno: DAB) como anticuerpos primarios.
- (D) y (E): Secciones seriadas consecutivas de la misma área del córtex occipital inmunoteñidas o con EM5 (D) o con EM2 (E).
- (F): Microfotografía con alto grado de magnificación de una técnica de inmunotinción doble empleando EM2 (cromógeno: azul de nitro-tetrazolio, NBT) y EM5 (cromógeno: diaminobencidina, DAB).
La Fig. 6 muestra gráficos obtenidos en el análisis por espectrometría de masas MALDI-TOF de formas del péptido β-amiloide de distinta longitud. En cada caso, en el eje de ordenadas se representa el porcentaje de intensidad (% Int.) correspondiente a cada uno de los picos de diferente masa (Mas.), deducida a partir de la relación masa/carga (m/z). El gráfico superior, indicado con la letra A y con el indicativo "Ctrl." a la derecha, se obtuvo de una solución que contenía los péptidos que comprenden los aminoácidos 12 a 29 (Pep. Aβ. 12-29), 1 a 40 (Pep. Aβ. 1-40) y 1-42 (Pep. Aβ 1-42) del péptido β-amiloide. El gráfico inferior, indicado con la letra B y con el indicativo
"EM5+PM" a la derecha, se obtuvo tras la concentración de los péptidos a partir de la solución que los contenía mediante el uso del anticuerpo EM5 unido covalentemente a partículas magnéticas y separación de los complejos formados mediante el uso de un campo magnético. El dibujo de la zona inferior derecha representa la zona de unión del anticuerpo a cada uno de los péptidos considerados. La Fig. 7 muestra un gráfico obtenido mediante el análisis por espectrometría de masas MALDI-TOF de una muestra de orina de un individuo sano a la que se le habían añadido cantidades adicionales de los péptidos que comprenden los aminoácidos 12 a 28 (pico marcado como Pep. 12-28), 1 a 40 (pico marcado como Pep. 1-40) y 1-42 (pico marcado Pep. 1-42) del péptido β-amiloide, tras lo cual la muestra se trató con el anticuerpo EM5 unido covalentemente a partículas magnéticas y se separaron los complejos formados mediante el uso de un campo magnético. En el eje de ordenadas se representa el porcentaje de intensidad (% Int.) correspondiente a cada uno de los picos de diferente masa (Ms.), deducida a partir de la relación masa/carga (m/z). Se indican los picos correspondientes a cada uno de las formas del péptido β-amiloide añadidas a la muestra de orina.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Como se ha comentado anteriormente, la invención se refiere a un anticuerpo monoclonal, EM5, que reconoce en el péptido β-amiloide el epítopo correspondiente a la secuencia:
Val-His-His-Gln-Lys (SEQ ID NO:3)
Esta secuencia se corresponde con la de los residuos 12-16 del péptido β- amiloide humano. En consecuencia, sería esperable que el citado anticuerpo fuera capaz de unirse a isoformas del péptido β-amiloide que contuvieran dicha secuencia, no reconociendo aquellas que carecieran de ella como, por ejemplo, el denominado péptido p3 (Aβ17-42) y otras formas con el extremo amino truncado (Aβ17-X). En la caracterización del anticuerpo monoclonal que se describe detalladamente en los ejemplos posteriores se demuestra que EM5 se une a cualquier péptido que contenga los residuos 12 a 16 de la secuencia del Aβ humano, aún presentando modificaciones fuera de esta región, y no reconoce péptidos que estén desprovistos de dicha región. Si la región se modifica, como es el caso del péptido
Figure imgf000015_0001
que presenta un cambio de aminoácido en la posición 13, además de en las posiciones 5 y 10, el péptido deja de ser reconocido por EM5.
Además, los estudios muestran que el anticuerpo es capaz de unirse a isoformas del péptido Aβ que contienen los residuos 12 a 16 independientemente de si las mismas se encuentran en forma soluble, agregada o desnaturalizada (en SDS). En particular, las pruebas descritas en los Ejemplos que se describen posteriormente demuestran que el anticuerpo de la invención es capaz de unirse tanto a isoformas del péptido β-amiloide que se encuentran agregadas, formando parte del placas presentes en muestras de tejido cerebral, como a isoformas del péptido β-amiloide que se encuentren en solución, incluso si la solución es una muestra de fluido biológico como puede ser la orina. Por ello, otro de los aspectos de la invención se refiere a una composición que contenga el anticuerpo de la invención, o al menos un fragmento del mismo capaz de unirse a SEQ ID NO:3, acoplados a alguna sustancia que permita su detección y/o su concentración, y a su uso en el diagnóstico de la enfermedad de Alzheimer.
Cuando el anticuerpo de la invención o un fragmento del mismo estén acoplados a alguna sustancia que permita su detección, la detección de la presencia de las isoformas del péptido β-amiloide que se hayan unido al anticuerpo o un fragmento del mismo y/o la cuantificación de las mismas podrá hacerse mediante la detección y/o cuantificación del anticuerpo o de su fragmento unidos a isoformas del péptido β- amiloide que contengan la secuencia específica reconocida por el anticuerpo de la invención. En una realización preferida de la invención, la sustancia a la que se acopla el anticuerpo, o un fragmento del mismo capaz de unirse a SEQ ID NO: 3, es un segundo anticuerpo capaz de unirse al anticuerpo monoclonal de la invención, estando el segundo anticuerpo unido a una enzima capaz de catalizar la transformación de una determinada sustancia en otra que posea unas características que hagan fácil la detección de su presencia. En la realización que más se prefiere de la invención, el segundo anticuerpo unido a una enzima es parte del sistema Envision, de Laboratorios Dako, siendo la sustancia cuya transformación es catalizada por la enzima un cromógeno y siendo la enzima que cataliza la reacción o bien fosíatasa alcalina (utilizándose entonces como cromógeno azul de nitro-tetrazolio) o peroxidasa de rábano (utilizándose entonces como cromógeno diaminobencidina).
Otra posibilidad es que el anticuerpo de la invención o un fragmento del mismo estén unidos a alguna sustancia o partícula que facilite la concentración de las isoformas del péptido β-amiloide que se hayan unido a dicho anticuerpo o a su fragmento. Esta realización se prefiere cuando la composición de la invención vaya a utilizarse para la detección y/o cuantificación de isoformas del péptido β-amiloide que se encuentren en solución, especialmente en una solución en la que su concentración sea baja, como puede ser la sangre o el plasma, la orina o el líquido cefalorraquídeo. La sustancia o partícula será tal que permita la separación fácil del complejo antígeno- anticuerpo de dicha disolución, por ejemplo, por inmunoprecipitación. Un ejemplo preferido de dichas partículas son las partículas magnéticas que, al estar acopladas al anticuerpo de la invención o a un fragmento del mismo capaz de unirse a isoformas del péptido β-amiloide que contengan la secuencia específica reconocida por el anticuerpo de la invención, permitirán la extracción de la solución de las isoformas del péptido β- amiloide unidas al anticuerpo o a un fragmento del mismo si se aplica un campo magnético adecuado. Posteriormente, las isoformas del péptido β-amiloide pueden separarse del anticuerpo o del fragmento del mismo para proceder a su detección, identificación y/o cuantificación. Un método adecuado para ello puede ser la espectrometría de masas, en especial la conocida como MALDI-TOF (iniciales de la expresión inglesa Matrix Assisted Láser Desorption Ionization Time-of-flight, es decir, la espectrometría de masas de desorción/ionización por láser, asistida por una matriz, realizada en tiempo de vuelo).
Como se ha mencionado, el anticuerpo de la invención o un fragmento del mismo capaz de unirse a isoformas del péptido β-amiloide que contengan la secuencia específica reconocida por el anticuerpo de la invención, así como las composiciones que contengan al menos uno de ellos, pueden utilizarse para el diagnóstico in vitro de la enfermedad de Alzheimer. Los métodos de diagnóstico in vitro de la enfermedad de Alzheimer que hagan uso del anticuerpo de la invención o de un fragmento del mismo capaz de unirse a isoformas del péptido β-amiloide que contengan la secuencia específica reconocida por el anticuerpo de la invención, así como los que hagan uso de composiciones que incluyan dicho anticuerpo o dicho fragmento, están incluidos dentro del alcance de la invención. Dicho diagnóstico puede realizarse sobre tejido cerebral, en el que se pone de manifiesto selectivamente la presencia de depósitos en los que predominen isoformas del péptido amiloide que contengan la secuencia reconocida por el anticuerpo monoclonal de la invención (placas neuríticas y depósitos vasculares, depósitos característicos del desarrollo de la enfermedad de Alzheimer) revelando la existencia de unión a dichos depósitos del anticuerpo monoclonal de la invención, o de un fragmento del mismo capaz de unirse a la secuencia específica reconocida por dicho anticuerpo, a diferencia de lo que sucedería con los depósitos en los que las isoformas predominantes fueran aquellas que carecen de la secuencia reconocida por el anticuerpo monoclonal de la invención (placas difusas), las isoformas Aβ17-X, que no presentarían unión del anticuerpo monoclonal o de fragmentos del mismo. La unión del anticuerpo a placas neuríticas y depósitos vasculares se pone de manifiesto mediante una composición como puede ser una de las que comprenden, además del anticuerpo de la invención o un fragmento del mismo, un segundo anticuerpo capaz de unirse al anticuerpo monoclonal de la invención, estando el segundo anticuerpo unido a una enzima capaz de catalizar la transformación de una determinada sustancia en otra que posea unas características que hagan fácil la detección de su presencia, como puede ser un cromógeno. En la realización del método diagnóstico de la invención sobre tejido cerebral que más se prefiere, el método de diagnóstico se complementa mediante la utilización adicional de los anticuerpos policlonales EM2 y EM3, que reconocen o Aβx-42 (EM3) o Aβx-40 (EM2), ambos anticuerpos también desarrollados previamente por el grupo de los autores de la invención [24].
Otra realización del método diagnóstico de la invención se lleva a cabo en un fluido biológico que se sepa que contiene isoformas del péptido β-amiloide, como puede ser el líquido cefalorraquídeo, la orina o la sangre o, en este último caso, el plasma derivado de la misma. Dado que la obtención de líquido cefalorraquídeo implica la realización de una punción, se prefiere la utilización de plasma o de orina, especialmente de esta última, que no lleva implícita la utilización de técnicas invasivas para su obtención. Se prefiere entonces que el método diagnóstico de la invención haga uso de composiciones que comprendan el anticuerpo de la invención o un fragmento del mismo unidos a alguna sustancia o partícula que facilite la concentración de las isoformas del péptido β-amiloide que se unan a dicho anticuerpo o a un fragmento del mismo. Tal como se ha comentado, se prefiere que las partículas que faciliten la concentración de las isoformas del péptido β-amiloide sean partículas magnéticas acopladas al anticuerpo o a un fragmento del mismo, de manera que, al someter la solución que contenga los complejos formados con las isoformas del péptido β- amiloide a la acción de un campo magnético, puedan extraerse éstos de la solución, que se puede desechar con facilidad mediante algún método como la aspiración. En el caso de utilizarse un anticuerpo completo, se prefiere especialmente que el acoplamiento del anticuerpo a la partícula magnética se produzca mediante un enlace covalente, para aumentar su estabilidad, pero que el establecimiento de dicho enlace covalente se produzca de manera que se evite en lo posible la zona de unión al antígeno, para no disminuir la capacidad de unión del anticuerpo, por lo que se prefieren los métodos en los que unión se produzca preferentemente en la zona rica en histidinas del fragmento Fc del anticuerpo o en las cadenas glicosídicas de dicha zona. En esta línea, se prefiere particularmente el método de unión de los anticuerpos a partículas magnéticas descrito por Fuentes et al. [26].
Una vez separados los complejos de unión de las isoformas del péptido β- amiloide de la solución, se prefiere la separación de dichas isoformas de los anticuerpos o de los fragmentos de los mismos previamente a la detección y/o cuantificación de las isoformas de péptido β-amiloide extraídas, para lo cual pueden utilizarse acetonitrilo y ácido trifluoroacético. Dado que la concentración de isoformas de péptido β-amiloide en orina no suele ser elevada, se prefiere que la detección y/o cuantificación se produzca mediante algún método muy sensible como puede ser la espectrometría de masas MALDI-TOF.
Otro de los aspectos de la invención es una línea celular de hibridoma capaz de producir el anticuerpo monoclonal de la invención. En una realización preferida de la invención, dicha línea celular se obtiene mediante la fusión con la línea de mieloma de ratón P3/X63-Ag.653 de células de bazo de ratones BALB/c inmunizados con péptido Aβ^o acoplado a KLH (hemocianina de lapa californiana).
Por último, un aspecto más de la invención es un método de producción y purificación del anticuerpo monoclonal de la invención a partir de células de hibridoma. En la realización preferida de la invención, el método consiste en la producción de una línea celular de hibridoma como la anteriormente descrita y su crecimiento como fluido ascítico en ratones BALB/c previamente tratados con Pristane. El anticuerpo monoclonal se purifica de ese fluido ascítico mediante cromatografía de afinidad en una columna de proteína A-Sefarosa (Pharmacia). En una realización particularmente preferida de la invención, las células de hibridoma utilizadas para ello son las de la línea denominada "EM5 clone A", cuyo depósito se ha solicitado el día 1 de Marzo de 2006 en la European Collection of CeIl Cultures (Colección Europea de Cultivos Celulares, ECACC), CAMR, Portón Down, Salisbury, Wiltshire, Reino Unido, habiendo recibido el número de acceso 06030101.
La invención y sus realizaciones preferidas se describen ahora con más detalle mediante los siguientes ejemplos.
Ejemplos.-
Ejcmplo 1.- Producción de anticuerpos La producción de los anticuerpos policlonales EM2 y EM5 empleados en este estudio se llevó a cabo tal como se ha publicado previamente [24].
Para la producción del anticuerpo monoclonal EM5 se llevaron a cabo los siguientes pasos:
Obtención de hibridomas
Se inyectaron de forma subcutánea a ratones BALB/c 40 μg de péptido
Figure imgf000020_0001
acoplado a KLH (hemocianina de lapa californiana) y disuelto en tampón fosfato salino (PBS) y emulsionado con un volumen igual de coadyuvante de Freund completo. Los ratones recibieron tres inyecciones repetitivas cada dos semanas en coadyuvante de Freund incompleto. Tres días antes de la fusión, los ratones recibieron una inyección intraperitoneal de 25 μg de
Figure imgf000020_0002
-KLH en PBS. El día de la fusión, se fusionó células de bazo de los animales inmunizados con la línea de mieloma de ratón P3/X63-Ag.653 utilizando polietilenglicol 1400 (Sigma), siguiendo procedimientos establecidos [25]. Las células fusionadas se distribuyeron en placas estériles de 96 pocilios a una densidad de 105 células por pocilio y se seleccionaron en medios que contenían hipoxantina, timidina y aminopterina. Los hibridomas productores de anticuerpos se identificaron mediante el ELISA descrito más adelante.
Cribado de hibridomas. Se recubrieron durante toda la noche a 4°C placas de microtitulación de poliestireno (Maxisorb, Nunc) con Ap1-40, a 5 μg/ml en tampón carbonato 50 mM, pH 9,6 (tampón de recubrimiento). Las placas se lavaron con Tween 20 al 0,05% en PBS (PBS-T) y se bloquearon los sitios de unión no específicos con albúmina de suero bovino (BSA) al 2% en PBS-T (solución de bloqueo) durante 1 hora a 37 0C. Después de lavar, se incubó las placas durante 1 hora con sobrenadante de cultivo de tejidos diluido dos veces en solución de bloqueo. Las placas se lavaron de nuevo y se incubaron con IgG de cabra anti-ratón conjugada con peroxidasa de rábano (Sigma) una hora a 37 0C. Después de lavar, se añadió la solución con el sustrato (o- fenilendiamina al 0,05% y peróxido de hidrógeno al 0,015% en tampón citrato 100 mM, pH 5,0). La reacción se paró 10 minutos más tarde con ácido sulfúrico 2,5 M y se determinó la absorbancia a 492 nm en un lector de microplacas. Se seleccionaron los hibridomas cuyos sobrenadantes produjeron un valor de absorbancia al menos dos veces superior al obtenido con el sobrenadante de hibridomas no relacionados (anticuerpos anti-gliadinas). Los hibridomas que producían anticuerpos específicos se clonaron repetidamente mediante dilución limitante, y los isotipos de los anticuerpos monoclonales se determinaron en sobrenadante de cultivo de células concentrado mediante inmunoprecipitación en gel utilizando un antisuero específico (Sigma). Los hibridomas seleccionados se hicieron crecer como fluido ascítico en ratones BALB/c previamente tratados con Pristane.
Purificación de anticuerpos monoclonales. El anticuerpo monoclonal EM5 se purificó del fluido ascítico mediante cromatografía de afinidad en una columna de proteína A-Sefarosa (Pharmacia). Los anticuerpos purificados se dializaron profusamente en PBS y se almacenaron a - 85 0C hasta el momento de su uso.
Ejemplo 2.- Cálculo de la constante aparente de disociación: afinidad por los pέptidos Aβi.4o y Aβi.42
Se estudió mediante ELISA la afinidad de los anticuerpo monoclonales EM5 y 6E10 utilizando los péptidos inmovilizados recién disueltos Ap1-40 y Ap1-42, péptidos que habían sido sintetizados en la instalación WM Keck de la Universidad de YaIe utilizando la metodología del N-t-butiloxicarbonilo.
Se revistieron placas de microtitulación de poliestireno (Immulon 2, Dynex Technology Inc., Chantilly, VA) durante 16 horas a 4 0C con 0,5 μg de péptido Aβ1-40 o Aβi.42 recién disuelto o agregado en tampón carbonato/bicarbonato pH 9,6. Después de bloquear con Superblock (Pierce Chemical Co.) se añadieron a los pocilios recubiertos con Aβ concentraciones crecientes de EM5 purificado (0-0,5 nM en TBS-T, 100 microlitros por pocilio) y se incubaron durante 3 horas a 37 0C. El EM5 unido se detectó con el fragmento F(ab')2 de IgG de cabra anti-ratón conjugada con peroxidasa de rábano (1:3000, Amersham). La reacción se desarrolló durante 15 minutos con 3,3',5,5'-tetrametilbencidina (TMB) (BioRad, Hercules, CA.), se paró con ácido sulfúrico 2 M y se cuantificó en un lector de microplacas (Cambridge Technology, Watertown, MA) a 450 nm. La afinidad del anticuerpo comercialmente disponibles 6E10 (Senetek, PLC) se estudió siguiendo un protocolo similar utilizando preparaciones de anticuerpos IgG purificados. El análisis de regresión no lineal, la estimación de las constantes aparentes de disociación y la comparación de los datos de unión de proteínas para averiguar la significación estadística mediante el cálculo de las ratios F se evaluaron empleando el software Prism de GraphPad (GraphPad, San Diego, CA).
La Figura 1 muestra las curvas de saturación correspondientes a la unión en el ELISA de los anticuerpos monoclonales EM5 y 6E10 a péptidos Aβ recién disueltos y agregados. En todos los casos, se observó una elevada afinidad con constantes aparentes de disociación en el rango picomolar. Ninguno de estos anticuerpos mostró una afinidad diferencial por las formas de Aβ recién preparadas o agregadas. De forma interesante, mientras que 6E10 mostró una afinidad equivalente por Aβ^o y Aβ^, EM5 mostró una afinidad mayor por Aβ 42 que por Aβ 40 (p<0,01) (13,7 pM y 15,5 pM por Aβ 42 recién preparado y agregado, respectivamente; y 37,5 pM y 37,0 pM por Aβ 40 recién preparado y agregado, respectivamente).
Ejemplo 3.- Análisis por inmunotransferencia
Se estudió y comparó el reconocimiento específico de Aβ^o y Aβ^ por parte de EM5 con los anticuerpos policlonales EM2 y EM3 mediante análisis por inmunotransferencia. Para ello, se sometieron péptidos Aβ (0,5 μg/calle) a electroforesis PAGE en acrilamida al 16%, tris-tricina-SDS. Los péptidos se transfirieron electroforéticamente durante 1 hora a 400 mA y 4°C a membranas de poli(fluoruro de vinilideno) (Immobilon-P, Millipore) utilizando ácido 3- ciclohexilamino-1-propanosulfónico, pH 11, que contenía metanol al 10%. Las membranas se bloquearon durante 16 h a 4 0C con TBS-T que contenía leche descremada en polvo al 5% y se incubaron luego durante 1 hora a temperatura ambiente con 2 μg/ml de las IgG EM2, EM3 o EM5. Como segundo anticuerpo se empleó una IgG de cabra anti-conejo (EM2 y EM3) o anti-ratón (EM5) acoplada a peroxidasa de rábano (Amersham) y diluida 1:2.000. Las inmunotransferencias se visualizaron mediante quimioluminiscencia (Amersham) siguiendo las especificaciones del fabricante.
Los resultados se muestran en la Figura 2. En ella puede apreciarse que, en los experimentos de inmunotransferencia, EM5 mostró inmunorreactividad frente a los péptidos tanto Ap1-40 como Aβ1-42 (corroborando los resultados obtenidos por ELISA), mientras que los anticuerpos EM2 y EM3 fueron capaces de reconocer sólo los péptidos Ap1-4O o Aβi.42, respectivamente, como se ha descrito anteriormente [24]. Estos resultados apoyan la idea de que el anticuerpo monoclonal EM5 se une a un epítopo lineal específico común a ambos péptidos, que se conserva en las muestras tratadas con SDS. En conjunto, nuestros resultados indican que EM5 es capaz de reconocer péptidos Aβ en las formas soluble, agregada y desnaturalizada (en SDS), con una unión ligeramente preferencial con Aβ 42, probablemente como resultado del incremento de la hidrofobicidad del péptido.
Ejemplo 4.- Localízación del epítopo
Con el fin de localizar con precisión el epítopo exacto reconocido por el anticuerpo EM5, se analizó la unión del anticuerpo a una serie de péptidos Aβ sintéticos. De ellos, los péptidos Aβ1-16, Aβ^s y Aβ25-35 se adquirieron a Sigma (San Luis, MO); los péptidos Aβ^2, Aβ^2(E22Q), Aβ^o, Aβ^o(E22G), Aβ^o(E22Q),
Figure imgf000023_0001
1-28(E22Q), Aβ17-40, Aβ16-42 y Aβ25-35 se sintetizaron en la instalación WM Keck de la Universidad de YaIe utilizando la metodología del N-t- butiloxicarbonilo; Aβ2i-28, Aβ2i-28(E22Q), Aβ37-4i y Aβ37-40 se sintetizaron en la Unidad de Síntesis de Péptidos (Centro Nacional de Biotecnología, Madrid) utilizando la metodología normal del Fmoc. El diseño de los péptidos Aβ37-42 y Aβ37-49 incluía una cola en el extremo amino con un residuo de cisteína para el acoplamiento que tenía la secuencia CSGGSGGG (SEQ ID NO:4). Todos los péptidos se purificaron mediante cromatografía líquida de alta eficacia en el modo de fase inversa y su pureza se evaluó mediante espectrometría de masas MALDI-TOF. a) ELISA de captura de anticuerpos
Para realizar el ensayo, se recubrieron placas de microtitulación de poliestireno de fondo plano (Immulon 2, Dynex Technology Inc., Chantilly, VA) durante 16 horas a 4 0C con 1 μg/pocillo del correspondiente péptido Aβ en tampón carbonato-bicarbonato 0,1 M, pH 9,6. Después de bloquear con NaCl 150 mM, Tris 20 mM, Tween-20 al 0,05%, pH 7,4 (TBST) que contenía BSA al 2%, se incubaron diluciones seriadas del anticuerpo EM5 (de 20 a 0,02 mg/ml de la fracción de las IgG) durante 1 hora a 37°C. Se aplicó entonces una IgG anti-ratón acoplada a peroxidasa (Sigma, San Luis, MO) y diluida 1:2000 durante 30 minutos a 37°C. La reacción se desarrolló con TMB (BioRad, CA), se paró con ácido sulfúrico 2M y se cuantificó a 450 nm. La unión inespecífica se determinó omitiendo los primeros anticuerpos.
Los resultado se muestran en la Figura 3, en cuya parte superior aparece un diagrama de barras correspondiente a los valores de absorbancia obtenidos correspondientes a la incubación de 20 μg/ml del anticuerpo con cada uno de los péptidos. EM5 demostró unirse a cualquier péptido que contuviera los residuos 12 a 16 de la secuencia del Aβ humano y no logró reconocer péptidos desprovistos de esta región. Es más, variantes imitantes con modificaciones fuera de esta región (Aβi. 42(E22Q), Aβi_4o(A21G), Aβ1-40(E22G), Aβ1-40(E22Q)) mostraron una unión similar al compararlas con el péptido de tipo silvestre, mientras que el péptido
Figure imgf000024_0001
que muestra tres cambios de aminoácidos en las posiciones 5, 10 y 13, no fue reconocido por EM5.
b) Análisis por espectrometría de masas del péptido $-amiloide digerido e inmunoprecipitado
Para confirmar los resultados, se realizó un estudio complementario en el que un juego de péptidos derivados de Aβi.42, generados por digestión con tripsina o α- quimotripsina, se pusieron en contacto con partículas magnéticas recubiertas con anticuerpo EM5. Para ello se siguieron los siguientes pasos:
Para digerir el péptido, a una alícuota de 10 μl de péptido β-amiloide en bicarbonato amónico 50 mM que contenía 1 μg de péptido se le añadieron 0,5 μl de tripsina o α-quimotripsina que contenían 0,025 μg de la enzima. La incubación se llevó a cabo durante 2 horas a 37 0C. En la Tabla I se muestran esquemáticamente las digestiones llevadas a cabo.
Para realizar la inmovilización del anticuerpo monoclonal EM5 sobre partículas magnéticas, se incubó una alícuota de 5 μl (1,1 mg/ml) de EM5 con 50 μl de
Dynabeads M450 recubiertas con IgG de cabra anti-ratón a temperatura ambiente durante 2 horas. El complejo se lavó 4 veces con PBS con mezcla bidireccional (en un rotor).
Para efectuar la inmunoprecipitación, se incubó una alícuota de 10 μl del péptido β-amiloide digerido con tripsina (o α-quimotripsina) con 50 μl de EM5 inmovilizado sobre partículas magnéticas en un rotor durante 1 hora a 37 0C. El complejo magnético- inmunoprecipitado se lavó 4 veces con PBS en el mismo rotor y se aspiraron y descartaron los sobrenadantes.
Para llevar a cabo el análisis de espectrometría de masas del péptido β- amiloide inmunoprecipitado digerido los péptidos inmunoprecipitados contenidos en los complejos magnéticos se liberaron con 20 μl de acetonitrilo al 50 %/ ácido trifluoroacético al 0,3 %. Se mezclaron 5 μl de esta solución con 5 μl de ácido α-ciano- 4-hidroxicinámico saturado en ácido trifluoroacético al 0,1 % / acetonitrilo (2:1). Un volumen de 0,5 μl de esta solución se depositó después en una sonda de acero inoxidable en forma de punta y se dejó que se secara a temperatura ambiente. Las muestras se midieron en un espectrómetro de masas para MALDI-TOF Reflex II de Bruker equipado con una fuente de iones con óptica de visualización y un láser de N2 (337 nm). Los espectros de masas se recogieron en el modo positivo lineal a un voltaje de aceleración de 28,5 kV y 1,5 kV en el detector lineal, acumulando 200 espectros de disparos únicos de láser por debajo del umbral de irradiancia. Sólo se consideraron las señales de masas bien resueltas, de elevada intensidad, surgidas de 3-5 puntos de incidencia seleccionados. Todos los espectros MALDI se calibraron externamente utilizando una mezcla de péptidos normalizada [angiotensina II (1047,2), fragmento 18-39 de la hormona adrenocorticotrópica (2466,7) e insulina (5734,6); Sigma]. Las características de los péptidos analizados, así como los datos obtenidos, se resumen en la Tabla I siguiente: Tabla I.- Datos de espectrometría de masas MALDI-TOF obtenidos para fragmentos obtenidos por digestión del pέptido β-amiloide
Figure imgf000026_0001
Las secuencias de cada uno de estos péptidos (1-5) y del péptido sin digerir (6) se muestran en la Figura 4, en la que se ha sombreado la zona que parece corresponder al epítopo reconocido por el anticuerpo EM5 según los resultados de espectroscopia de masas MALDI-TOF del material inmunoprecipitado.
Como puede apreciarse en dicha Figura 4, el análisis por espectroscopia de masas MALDI-TOF del material inmunoprecipitado demuestra que EM5 fue capaz de extraer de la mezcla de digestión cada fragmento de péptido que contenía los residuos 11-16 (regiones sombreadas). No se recuperaron de la solución fragmentos de péptido fuera de esta región. Estos resultados confirman los datos obtenidos mediante ELISA y análisis por inmunotransferencia.
En conclusión, la reactividad diferencial del anticuerpo frente a una serie de péptidos Aβ indica que EM5 reconoce los residuos 11-16 de los péptidos Aβ. De entre ellos, la participación de los residuos 12-16 es fundamental, como lo demuestra el hecho de que la mutación del residuo 12 en el péptido Aβ^s de roedor (1-28 R) impida su reconocimiento por parte del anticuerpo; por su parte, la implicación del residuo 11
(E) en la conformación del epítopo no puede descartarse aunque los datos obtenidos no la confirman por completo.
Ejemplo 5.- Inmunohistoquímica: reactividad tisular de los anticuerpos
Para demostrar la validez del anticuerpo EM5 para poner de manifiesto depósitos característicos de la enfermedad de Alzheimer (placas neuríticas y depósitos vasculares) frente a las placas difusas, se realizaron inmunotinciones de secciones de tejido cerebral afectado por la enfermedad de Alzheimer utilizando los anticuerpos EM2 (un anticuerpo policlonal dirigido al extremo carboxilo del péptido Aβ 40), EM3 (un anticuerpo policlonal dirigido al extremo carboxilo del péptido Aβ 42) y EM5 (un anticuerpo monoclonal con especificidad demostrada por los residuos 12-16 del péptido Aβ). Tanto EM2 como EM3 se han utilizado ya en un estudio anterior [24].
Procesamiento de tejido cerebral y áreas seleccionadas para inmunohistoquímica. El tejido cerebral fue proporcionado por el Banco de Tejidos para
Investigaciones Neurológicas, Madrid. Se incluyeron en el estudio seis sujetos, 3 varones y 3 hembras, con EA definida. Las edades oscilaban entre 68 y 75 años. En todos los casos se hizo un diagnóstico de EA según las directrices clínico-patológicas del CERAD (Consortium to Establish a Registry for Alzheimer's Disease: Consorcio para el Establecimiento de un Registro de la Enfermedad de Alzheimer) [10]. Ninguno de los pacientes presentó otros hallazgos neuropatológicos relevantes, por ejemplo enfermedad de Parkinson o cambios vasculares significativos. Todos los cerebros se procesaron para su estudio histológico siguiendo los protocolos de corte, fijación e inclusión del Brain Bank. Los períodos post-mortem oscilaron entre 10 y 18 horas. Inmediatamente después de la autopsia se fijó una mitad del cerebro (obtenida por medio de una sección medio-sagital de los hemisferios cerebrales, cerebelo y tronco encefálico) en formaldehído tamponado con fosfato al 4%. Después de 3-4 semanas de fijación, se obtuvieron bloques de tejido de todas las áreas corticales y subcorticales implicadas de modo significativo en la EA, y se incluyeron en parafina después de una deshidratación progresiva en etanol y aclarado del tejido con xilol. En todos los casos se obtuvieron de los bloques de parafina originales para su estudio inmunohistoquímico secciones de tejido de 5 μm que correspondían al córtex parieto- occipital lateral, córtex temporal lateral (estas dos últimas áreas según lo recomendado por las directrices del CERAD [10]), hipocampo, caudado - putamen (a nivel de la cabeza del núcleo caudado), y córtex del hemisferio cerebeloso. Como control de tinción amiloide inespecífica, se llevó a cabo una tinción con metenamina - plata modificada en secciones consecutivas a las procesadas para la inmunohistoquímica amiloide.
Anticuerpos y protocolos de inmunotinciόn Los anticuerpos primarios empleados fueron EM2, EM3, y EM5. Tanto EM2 como EM3 se han utilizado en un estudio anterior [24]. Las secciones se incubaron con anticuerpos primarios a temperatura ambiente durante 30 minutos. Los anticuerpos policlonales se revelaron con el sistema Envision (Laboratorios Dako) con fosfatasa alcalina (FA) utilizando azul de nitro-tetrazolio (NBT) como cromógeno, y el EM5 se reveló o con el sistema anterior o con el sistema Envision (Dako Laboratories) con peroxidasa de rábano (HRP) utilizando diaminobencidina (DAB) como cromógeno. En el caso de las técnicas de colocalización los anticuerpos policlonales se revelaron siempre con el sistema Envision con FA (utilizando NBT como cromógeno), mientras que el EM5 se reveló con el sistema Envision con HRP (utilizando DAB como cromógeno).
Inmunotinciόn doble y simple.
Se utilizaron técnicas de inmunotinción doble utilizando EM5 como primer anticuerpo primario y EM2 o EM3 como segundo anticuerpo primario, como trabajo preliminar con el fin de establecer el grado de colocalización de cada par de anticuerpos, junto con la dilución óptima de trabajo de cada uno de ellos. Durante esta fase del estudio, que se restringió a secciones de tejido del córtex parieto-occipital de dos de los casos, se estableció que el uso de EM5 como primer anticuerpo primario descartaba un efecto enmascarador de los otros dos anticuerpos, cuando se empleaban como primer anticuerpo durante la técnica de inmunotinción doble. En secciones seriadas de ambos bloques de parafina seleccionados se colocalizaron diluciones crecientes (1 :50, 1:100, 1:500, 1: 1000 y 1:2000) de EM5 con diluciones decrecientes (1:2000, 1:1000, 1:500, 1:100 y 1:50) de EM2 o de EM3. Como se encontró así que el anticuerpo EM2 se colocalizaba en alto grado con EM5, el resto del estudio se dirigió a mostrar el patrón diferencial de reactividad mostrado por EM5 y EM3. Con este propósito, la posterior inmunotinción doble en secciones de todas las áreas seleccionadas en todos los casos se limitó al uso de EM5 (a una dilución 1:1000) como primer anticuerpo primario y EM3 (a una dilución 1:1000) como segundo anticuerpo primario. De forma adicional, con el fin de visualizar con más precisión el patrón de reactividad mostrado por cada anticuerpo en el mismo tejido, se llevó a cabo una inmunotinción simple en secciones seriadas de cada bloque utilizando EM5, EM2 o EM3 como anticuerpo primario. Como el objetivo principal de esta parte del estudio es comparar cualitativamente diferentes patrones de inmunorreactividad, más que diferencias cuantitativas entre anticuerpos, los resultados de las tinciones no se cuantificaron.
Resultados
Los resultados de uno de los casos pueden apreciarse en la Figura 5, presentados con la distribución que se mencionó anteriormente, es decir:
- (A) y (B): Secciones seriadas consecutivas de la misma zona del córtex occipital inmunoteñidas con EM5 (A) y EM 3 (B) como anticuerpo primario, utilizando NBT como cromógeno. Se han marcado los vasos (V) para facilitar la localización de las placas. Mientras que EM3 (B) pone de manifiesto tanto placas difusas (DP) como neuríticas (NP), así como depósitos en los vasos sanguíneos (V), EM5 (A) tiñe con más intensidad tanto vasos sanguíneos como algunas placas neuríticas, aunque no placas difusas. - (C) Micrografía con alto grado de magnificación de una técnica de inmunotinción doble utilizando EM3 (utilizando NBT -color azul- como cromógeno) y EM5 (utilizando DAB -color marrón- como cromógeno) como anticuerpos primarios. Se observa una doble inmunotinción de las placas neuríticas y la pared de los vasos.
- (D) y (E): Secciones seriadas consecutivas de la misma área del córtex occipital inmunoteñidas o con EM5 (D) o con EM2 (E). De nuevo, se han marcado los vasos
(V) para ayudar en la identificación de las placas. Se observa que tanto los vasos como las placas neuríticas reaccionan con ambos anticuerpos. Se tifien menos placas neuríticas con EM2 que con EM5, y ninguna placa difusa reacciona con ninguno de ellos. - (F) Microfotografía con alto grado de magnificación de una técnica de inmunotinción doble empleando EM2 (utilizando NBT -color azul- como cromógeno) y EM5 (utilizando DAB -color marrón- como cromógeno) como anticuerpos primarios en la misma sección de tejido del córtex occipital. Se observa una precisa colocalización de la reactividad de ambos anticuerpos en la pared del vaso y las placas neuríticas.
Todos los casos salvo uno mostraron depósitos amiloides vasculares prominentes leptomeníngeos e intracorticales que reaccionaban con todos los anticuerpos ensayados. En todos los casos positivos la inmunorreactividad de los depósitos amiloides vasculares fue más marcada (más extensa e intensa) tanto con EM2 (Fig. (5E)) como con EM5 (Fig. (5A) y (5D)) que con EM3 (Fig. (5B)). EM2 y EM5 se colocalizan exquisitamente a este nivel (Fig. (5F)). Como se esperaba, las áreas neocorticales y el hipocampo mostraron una alta densidad de placas difusas y neuríticas, mientras que el córtex del cerebelo y el cuerpo estriado mostraron sólo depósitos amiloides difusos. Las secciones incubadas con el anticuerpo EM3 mostraron reactividad con placas tanto difusas como neuríticas (Fig. (5B)). Cuando se compararon con secciones sucesivas teñidas con el método de metenamina - plata modificado, se demostró que EM3 teñía todas las placas presentes en cada sección. Adicionalmente, el anticuerpo EM3 teñía algunos cuerpos neuronales. Tanto EM2 como EM5 tiñeron placas neuríticas inmaduras (sin núcleo) y maduras (con núcleo), de nuevo con un alto grado de colocalización (Fig. (5F)). EM2 no reaccionó con ninguna placa difusa ni en la región cortical ni en la subcortical (Fig. (3E)). La inmunotinción doble con EM5 y EM3 revela la colocalización de ambos anticuerpos en algunas placas neuríticas, pero no en placas difusas (Fig. (5C)), aunque se encontró algo de colocalización a este nivel cuando se incubó EM5 a una dilución muy baja (1 :50). Sólo en un caso que mostraba abundantes placas difusas positivas para EM3 en secciones del cuerpo estriado sí que tiñó EM5 algunas de ellas muy ligeramente a la dilución de trabajo (1:500). Este mismo caso no mostró ninguna reactividad de las placas difusas como EM5 en el córtex del cerebelo. En todos los demás casos las secciones del cuerpo estriado y del cerebelo mostraron una cantidad variable de placas difusas, ninguna de ellas reactiva frente al anticuerpo EM5. Ni EM2 ni EM5 parecieron teñir todas las placas neuríticas presentes (véanse las Fig. (5A, D)). Sin embargo, como se había observado en el caso de la inmunorreactividad de los depósitos amiloides vasculares, las placas neuríticas reactivas frente a EM2 o EM5 se tiñeron más intensamente que con EM3. Salvo por la negatividad de los vasos frente a todos los anticuerpos en un único caso y la ligera positividad de algunas placas difusas del cuerpo estriado en ese mismo cerebro, se puede considerar que todos los casos muestran patrones de tinción similares para cada anticuerpo ensayado.
Por tanto, en contraste con el patrón de tinción más bien uniforme observado en las placas difusas, el panel de anticuerpos detectó heterogeneidad dentro de las placas neuríticas, lo que resulta relevante para indicar etapas concretas en el proceso de evolución de las placas difusas para convertirse en placas neuríticas. El anticuerpo EM5 tiñó intensamente todas las estructuras (placas neuríticas y paredes de los vasos) teñidas por EM2 y teñidas de forma variable por EM3. Un subconjunto de placas neuríticas demostró tener un patrón de tinción idéntico al amiloide vascular, con una elevada colocalización de reactividad frente a EM2 y EM5. La invención muestra que EM5 debería reaccionar con todas las estructuras que contienen o Aβ <11-40 o Aβ <π-42. De hecho, los resultados de los ELISA aquí presentados muestran que el anticuerpo EM5 reconoce formas tanto de reciente disolución como agregadas del péptido Aβ. Sin embargo, en secciones de tejidos encontramos una variabilidad mayor en la tinción entre las placas neuríticas con EM5 que con los anticuerpos policlonales, junto con una elevada colocalización de intensa reactividad frente a EM5 con EM2 (Aβ C40). Una tinción relativamente más intensa en estas placas positivas puede revela un subgrupo de placas neuríticas o bien con un contenido particularmente elevado de péptidos Aβ largos, o selectivamente alto de Aβ C40, o incluso una accesibilidad particular del epítopo reconocido por EM5 en estructuras (vasos o placas) que muestran codeposición de Aβ <11-40 y Aβ <π-42. El anticuerpo de la invención parece detectar el mismo subconjunto de placas neuríticas Aβ C40 (+) detectado anteriormente por Parvathy et al. [22]. Este subconjunto de placas neuríticas con contenidos particularmente altos de péptidos Aβ largos pueden ser hitos relevantes en la progresión de las lesiones amiloides en la EA que el anticuerpo monoclonal de la invención permite poner de manifiesto. Por ello, el uso de EM5 puede permitir definir subconjuntos de placas que constituyan un marcador específico del estadio de progresión de la enfermedad. Ejemplo 6.- Capacidad de los anticuerpos para reaccionar con formas del pέptido β-amiloide en orina
Para demostrar la validez del anticuerpo EM5 para poner de manifiesto la presencia de formas del péptido β-amiloide en fluidos biológicos, se realizó una prueba de detección de los mismos en muestras de orina de pacientes sanos, a las que se había añadido con posterioridad a su obtención una mezcla de péptidos sintéticos que correspondían a formas de distinta longitud del péptido β-amiloide. Para ello, se añadió a las muestras de orina el anticuerpo monoclonal, unido a partículas magnéticas y se procedió a la detección de los péptidos unidos mediante espectrometría de masas MALDI-TOF. Los detalles del procedimiento seguido se indican a continuación.
Unión del anticuerpo a partículas magnéticas
Las partículas magnéticas acopladas al anticuerpo EM5 se prepararon siguiendo el método descrito por Fuentes et al. [26], basado en la oxidación suave de los restos glicosídicos de las inmunoglobulinas para generar grupos aldehido, que se hacen reaccionar con partículas magnéticas en cuya superficie se han generado grupos amino mediante modificación con etilendiamina. Brevemente, se indujo la oxidación del anticuerpo EM5 mediante la incubación con peryodato sódico 10 mM durante 2 horas, tras las cuales se dializó el anticuerpo oxidado en agua destilada a 4°C. La modificación de las partículas magnéticas EM/100-30 (Merck Co, Francia), que poseen grupos carboxílicos en su superficie, se produjo mediante su incubación, a una concentración de 10 mg/ml, con etilendiamina 1 M pH 4,75, durante 90 minutos, tras los cuales se añadió EDCI (l-etil-3-(3'-dimetilaminopropil)carbodiimida hidrocloruro)sólido hasta una concentración final de 10 mM y se dejó que tuviera lugar la reacción durante 90 minutos, antes de lavar profusamente con agua destilada.
La inmovilización del anticuerpo sobre las partículas magnéticas se llevó a cabo tras añadir 10 mg del anticuerpo EM5 oxidado, disuelto en tampón fosfato sódico 150 mM de pH 7,5, a 2 mi de partículas magnéticas (10 mg/ml) con grupos amino en su superficie a 4°C e incubando toda la noche. Las bases de Schiff formadas y los grupos aldehido sin reaccionar se redujeron mediante la adición de borohidruro sódico hasta alcanzar una concentración de 1 mg/ml, a pH 8,5 y 4°C. La preparación se lavó proíusamente con agua destilada. La cantidad de anticuerpo inmovilizado se determinó cuantificando la diferencia en concentración de proteínas en el sobrenadante antes y después de la inmovilización, utilizando el método de Bradford [27].
Detección depéptido $-amiloide en solución Antes de comprobar su validez para unirse a isoformas de péptido β-amiloide presentes en muestras de fluidos biológicos como puede ser la orina, se comprobó la capacidad del anticuerpo de la invención para unirse a formas del péptido β-amiloide en solución y si los anticuerpos acoplados a partículas magnéticas permitían la extracción de formas del péptido β-amiloide de soluciones en las que se encontraran para proceder a su posterior identificación y/o cuantificación. Para ello, péptidos sintéticos que correspondían a las formas del péptido β-amiloide Aβi2-29, Aβ^o y Aβi. 42, disueltos en agua destilada, se mezclaron en agua destilada para dar lugar a una mezcla con unas concentraciones finales de 0,44 μg/μl de Aβi2-29 y Aβ^ y 0,11 μg/μl de Aβi.40. 4 μl de esta mezcla de péptidos se añadieron a 981 μl de agua. A continuación, se provocó la separación de las formas del péptido β-amiloide presentes en solución en agua mediante el uso del anticuerpo de la invención, utilizándolo acoplado a partículas magnéticas. El análisis por espectrometría de masas de las mezclas de péptidos separadas de la solución se muestra en la Fig. 6, en la que la parte A corresponde al análisis de la solución sin tratamiento previo con anticuerpos (Ctrl.) y la parte B corresponde al uso del anticuerpo unido a partículas magnéticas (EM5+PM). Como se ve, el anticuerpo es capaz de unirse a formas del péptido β- amiloide en solución y de formar complejos con ellas de forma que pueden separarse de dicha solución.
Preparación de la muestra de orina
En distintos días, se recogieron muestras de 10 mi de orina de un individuo sano y se centrifugaron a 3500 rpm a temperatura ambiente durante 5 minutos. La orina se neutralizó a pH 7,0 con NaOH IM en tampón PBS.
Péptidos sintéticos que correspondían a las formas del péptido β-amiloide Aβ^. 28, Aβ^o y Aβi.42, se mezclaron en agua destilada para dar lugar a una mezcla con unas concentraciones finales de 0,44 μg/μl de Aβ^s y Aβi_42 y 0,11 μg/μl de Aβ^o. 4 μl de esta mezcla de péptidos se añadieron a 981 μl de orina. La concentración final de formas del péptido β-amiloide en orina era 1,76 μg/ml en el caso de Ap12-18 y de Ap1-42 y 0,44 μg/ml en el caso de Ap1-40.
Inmunoprecipitaciόn 15 μl de partículas magnéticas recubiertas con el anticuerpo monoclonal EM5
(diluido 1:4 en tampón PBS) se incubaron durante 1 hora a 37°C con 981 μl de la muestra de orina antes descrita, que contenía los tres péptidos β-amiloides (Ap12-18, Aβ1-40 y Aβ1-42).
Después de la incubación, se colocó el tubo en un separador imantado de partículas magnéticas y se extrajo cuidadosamente la orina utilizando una pipeta.
Las partículas magnéticas con los péptidos unidos a ellas, retenidas por la acción del campo magnético del separador, se lavaron 3 veces con H2O.
Los péptidos unidos a ellas se separaron de las partículas magnéticas con 12 μl de una solución de una matriz de ácido α-ciano-4-hidroxicinámico en 30% (v/v) de acetonitrilo acuoso que contenía un 0,1% (v/v) de ácido trifluoroacético (TFA) y se analizaron mediante espectrometría de masas MALDI-TOF.
Detección de los péptidos inmunoprecipitados por espectrometría de masas 1,5 μl de la mezcla de la muestra resultante de la inmunoprecipitación en la matriz de ácido α-ciano-4-hidroxicinámico se colocó en una sonda de acero inoxidable con capacidad para 100 muestras y se dejaron secar a temperatura ambiente durante 5 minutos.
Las muestras se midieron en una estación de trabajo para espectrometría de masas MALDI-TOF Voyager DE-PRO de PE Biosystems utilizando la configuración por defecto del aparato. Los espectros de masa de recogieron en el modo reflector positivo a un voltaje de aceleración de 20 kV y un voltaje del colector del 75%, 0,002% de filamento guía y 150 nanosegundos de tiempo de retraso, acumulando 200 espectros de disparos individuales de láser por debajo de la irradiación umbral. Sólo se consideraron las señales de masas bien resultas, de elevada intensidad, de 3-5 puntos de incidencia seleccionados. El equipo se calibró externamente empleando la mezcla de calibración 2, proporcionada por Applied Biosystems (Tres Cantos, Madrid, España), compuesta por angiotensina (1297 Da), ACTH 1-17 (2094 Da), ACTH 18-39 (2466 Da), ACTH 7-38 (3660 Da) e insulina bovina (2867 Da).
La Fig. 7 muestra la gráfica obtenida con una de las muestras, representativa de las demás. Se observan picos correspondientes a los péptidos añadidos a la muestra de orina, lo que demuestra la capacidad del anticuerpo de la invención para unirse a ellos en muestras de orina. Al haberse realizado el análisis con una muestra de un fluido biológico, se observan también otros picos, correspondientes a otras moléculas presentes de forma natural en la muestra y que se han unido también al anticuerpo acoplado a partículas magnéticas.
Depósito del hibridoma
El hibridoma que produce el anticuerpo EM5 se depositó en la European Collection of CeIl Cultures (Colección Europea de Cultivos Celulares, ECACC), CAMR, Salisbury, Wiltshire, Reino Unido. La fecha de depósito y el número de acceso se muestran a continuación:
Denominación del hibridoma Fecha de depósito N° de acceso
EM5 clone A 01.03.2006 06030101
Tal como se comentó anteriormente, estas células de hibridoma de obtuvieron mediante la fusión de dos tipos de células: a) linfocitos de bazo de ratones BALB/c, obtenidos tras la inmunización de los ratones utilizando como inmunógeno la forma del péptido β-amiloide denominada Ap1-40, que comprende los aminoácidos 1 a 40 de dicho péptido, acoplada a KLH, la hemocianina de lapa californiana; b) células de la línea de mieloma de ratón P3/X63-Ag653, que actuaban como parte inmortal de la fusión. Se obtuvieron varios clones, de los cuales se seleccionó el clon denominado "EM5 clone A", que produce el anticuerpo monoclonal denominado "EM5", un anticuerpo tipo IgGl capaz de reconocer específicamente el antígeno utilizado para la inmunización, el péptido Ap1-40, según se comprobó mediante ensayos tipo ELISA de captura de anticuerpos. Este clon se creció en medio de cultivo RPMI 1640 con 10% de suero fetal bovino, 10% de DMSO, glutamina 2 mM y piruvato sódico 1 mM, a 37°C y en una atmósfera con 5% de CO2, condiciones en las que el 95% de las células crecían en suspensión y el 5% restante adherido al recipiente de cultivo. Las células se clonaron dos veces mediante diluciones limitantes, tras lo cual se tomaron alícuotas de 4 x 106 células, que se introdujeron en viales. Una vez realizados controles de ausencia de bacterias, ausencia de micoplasmas y ausencia de hongos, se enviaron varios de estos i viales a la European Collection of CeIl Cultures (ECACC), solicitando la admisión de su depósito.
REFERENCIAS BIBLIOGRÁFICAS
1. Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, Davies P, Yen S. y Aronson MK. Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13: 1-11 (1992).
2. Iwatsubo T, Mann DAM, Odaka A, Suzuki N e Diara Y. Amyloid β protein (Aβ) deposition: Aβ42(43) precedes Aβ40 in Down's syndrome. Ann Neurol 37: 294-299
(1995).
3. Fukumoto H, Asami-Okada A, Suzuki N, Shimada H, Diara Y e Iwatsubo T. Amyloid β protein deposition in normal aging has the same characteristics as that in Alzheimer's disease. Am J Pathol 148: 259-265 (1996).
4. Giaccone G, Tagliavini F, Linoli G, Bouras C, Frigerior L, Frangione B y Bugiani O. Down syndrome patients: extracellular preamyloid deposits precede neuritic degeneration and senile plaques. Neurosci Lett 97: 232-238 (1989).
5. Terry RD, Masliah E, Salmón DP, Butters N, DeTeresa R, HiIl R, Hansen LA, Katzman R. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572-580 (1991).
6. Masliah E, Terry RD, Mallory M, Alford M y Hansen LA. Diffuse plaques do not accentuate synapse loss in Alzheimer Disease. Am J Path 137: 1293-97 (1990). 7. Dickson DW. The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56: 321- 339 (1997).
8. Braak H y Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica (Berl) 82: 239-259 (1991).
9. Thal DR, Rüb U, Schultz Ch, Sassin I, Ghebremedhin S, Del Tredici K, Braak E y Braak H. Sequence of Aβ-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol 59 (8): 733-748 (2000).
10. Mirra, SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G y Berg L. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 41: 479-486 (1991).
11. Selkoe DJ. Alzheimer's disease: genotypes, phenotype and treatments. Science 275(5300):630-l (1997).
12. Hardy J, y Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297: 353-356 (2002).
13. Vigo-Pelfrey C, Lee D, Keim P, Lieberberg I y Schenk DB. Characterization of β- amyloid peptide from human cerebrospinal fluid. J. Neurochem 61: 1965-1968 (1993).
14. Iwatsubo T, Mann DAM, Odaka A, Suzuki N e Diara Y. Amyloid β protein (Aβ) deposition: Aβ42(43) precedes Aβ40 in Down's syndrome. Ann. Neurol 37: 294-299 (1995).
15. Iwatsubo T, Saido TC, Mann DMA, Lee V M-Y y Trojanowski JQ. Full-lenght amyloid-β(l -42(43)) and amino-terminally modified and truncated amyloid-β42(43) deposit in diffüse plaques. Am J Pathol 149: 1823-1830 (1996). 16. Higgins L, Murphy Jr GM, Forno LS, Catalano R y Cordell B. p3 β-amyloid peptide has a unique and potentially pathogenic immunohistochemical profile in Alzheimer's disease brain. Am J Path 149: 585-596 (1996).
17. Gowing E, Roher AE, Woods AS, Cotter RJ, Chaney M, Little SP y BaIl MJ. Chemical characterization of Aβ 17-42 peptide, a component of diffuse amyloid deposits of Alzheimer disease. J Biol Chem 269: 10987-10990 (1994).
18. Kida E, Wisniewski KE y Wisniewski HM. Early amyloid-β deposits show different immunoreactivity to the amino- and carboxy-terminal regions of β-peptide in Alzheimer's disease and Down's syndrome brain. Neurosci Lett 193: 105-108 (1995).
19. Lalowski M, Golabek A, Lemere A, Selkoe DJ, Wisniewski HM, Beavis RC, Frangione B y Wisniewski T. The "nonamyloidogenic" p3 fragment (amyloid β 17-42) is a major constituent of Down's syndrome cerebellar preamyloid. J Biol Chem 271: 33623- 33631 (1994).
20. Saido TC, Iwatsubo T, Mann DMA, Shimada H, Ihara Y y Kawashima S. Dominant and differential deposition of distinct β-amyloid peptide species, AβN3(pE) in senile plaques. Neuron, 14: 457-466 (1995).
21. Tekirian TL, Saido TC, Markesberry WR, Russell MJ, Wekstein DR, Patel E y Geddes JW. N-terminal heterogeneity of parenchimal and cerebrovascular Aβ deposits. J Neuropathol Exp Neurol 57: 76-94 (1998).
22. Parvathy S, Davis P, Haroutunian V, Purohit DP, Davis KL, Mohs RC, Park H, Moran TM, Chan JY y Buxbaum JD. Correlation between Aβx-40-, Aβx-42-, and Aβx-43- containing amyloid plaques and cognitive decline. Arch Neurol 58: 2025-2032 (2001).
23. Lamer AJ. Hypothesis: amyloid β-peptides truncated at the N-terminus contribute to the pathogenesis of Alzheimer's disease. Neurobiol Aging 20: 65-69 (1999). 24. Jimenez-Huete A, Alfonso P, Soto C, Alvar JP, Rábano A, Ghiso J, Frangione B y Méndez E. Antibodies directed to the carboxyl terminus of amyloid β-peptide recognize sequence epitopes and distinct immunoreactive deposits in Alzheimer's disease brain. Alzheimer's Reports 1: 41-48 (1998).
25 Campbell A. Monoclonal antibody technology En: 'Laboratory Techniques in Biochemistry and Molecular Biology' (Eds: Burdon RH, Knippenberg PH) Elsevier, Amsterdam, p. 120-134 (1984).
26. Fuentes M, Mateo C, Guisan JM, Fernández- Laíuente R. Preparation of inert magnetic nano-particles for the directed immobilization of antibodies. Biosensors and Bioelectronics 20: 1380-1387. (2005)
27. Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principie of protein-dye binding. Anal. Biochem. 72:
278-254. (1976)
28. Mayeux R, Ong LS, Tang M-X, Manly J, Stern Y, Schupf N, Mehta PD. Plasma Aβ40 y Aβ42 and Alzheimer disease. Relation to age, mortaliy and risk. Neurology 61: 1185- 1190. (2003).
29. Vandersthichele H, van Kerschaver E, Hesse C, Davidsson P, Buyse M, Andreasen N, Minthon L, Tallin A, Blennow K, Vanmechelen E. Stardardization of measurement of beta-amyloid (1-42) in cerebrospinal fluid an plasma. Amyloid 7: 245-258. (2000).
30. Ghiso J, Calero M, Matsubara E, Governale S, Chuba J, Beavis R, Wisniewski T, Frangione B. Alzheimer's soluble amyloid beta is a normal component of human uriñe. FEBS Lett 408: 105-108 (1997).

Claims

REIVINDICACIONES
1.- Un anticuerpo monoclonal que reconoce en el péptido β-amiloide al menos el epítopo correspondiente a la secuencia: Val-His-His-Gln-Lys (SEQ ID NO:3) y es capaz de unirse a isoformas del péptido β-amiloide humano que contengan dicha secuencia.
2.- Un anticuerpo monoclonal según la reivindicación 1, capaz de unirse a depósitos de péptido β-amiloide humano en tejido cerebral de individuos afectados por la enfermedad de Alzheimer.
3.- Un fragmento de anticuerpo monoclonal que reconoce en el péptido β- amiloide al menos el epítopo correspondiente a la secuencia: Val-His-His-Gln-Lys (SEQ ID NO:3) y es capaz de unirse a isoformas del péptido β-amiloide que contengan dicha secuencia.
4.- Un fragmento de anticuerpo monoclonal según la reivindicación 3, capaz de unirse a depósitos de péptido β-amiloide humano en tejido cerebral de individuos afectados por la enfermedad de Alzheimer.
5.- Una línea celular de hibridoma capaz de producir el anticuerpo monoclonal de la reivindicación 1, o un fragmento del mismo según la reivindicación 3.
6.- Una línea celular de hibridoma según la reivindicación 5, obtenida mediante la fusión con la línea de mieloma de ratón P3/X63-Ag.653 de células de bazo de ratones BALB/c inmunizados con al menos un péptido que contenga la secuencia Val- His-His-Gln-Lys (SEQ ID NO:3).
7.- Una línea celular de hibridoma según la reivindicación 6, obtenida mediante la fusión con la línea de mieloma de ratón P3/X63-Ag.653 de células de bazo de ratones BALB/c inmunizados con el péptido Aβ^o.
8.- Una línea celular de hibridoma según la reivindicación 7, obtenida mediante la fusión con la línea de mieloma de ratón P3/X63-Ag.653 de células de bazo de ratones BALB/c inmunizados con el péptido Ap1-40 acoplado a KLH.
9.- Uso del anticuerpo monoclonal de las reivindicaciones 1 ó 2 o de al menos un fragmento de dicho anticuerpo monoclonal según las reivindicaciones 3 ó 4 en el diagnóstico in vitro de la enfermedad de Alzheimer a partir de una muestra de tejido cerebral tomada de un individuo aquejado de dicha enfermedad.
10.- Uso del anticuerpo monoclonal de las reivindicaciones 1 ó 2 o de al menos un fragmento de dicho anticuerpo monoclonal según las reivindicaciones 3 ó 4, en combinación con al menos otro anticuerpo específico para al menos una zona de secuencia diferente del péptido β-amiloide, en el diagnóstico de la enfermedad de Alzheimer a partir de una muestra de tejido cerebral tomada de un individuo aquejado de dicha enfermedad.
11.- Uso según la reivindicación 10 del anticuerpo monoclonal de las reivindicaciones 1 ó 2, o de al menos un fragmento de dicho anticuerpo monoclonal según las reivindicaciones 3 ó 4, en combinación con el anticuerpo EM2 y/o con el anticuerpo EM3.
12.- Una composición que comprende un anticuerpo monoclonal según cualquiera de las reivindicaciones 1 ó 2 o al menos un fragmento del mismo según la reivindicación 3 ó 4, acoplado a una sustancia que permite la detección de dicho anticuerpo o fragmento del mismo.
13.- Una composición según la reivindicación 12, en la que la sustancia a la que se acopla el anticuerpo monoclonal o fragmento del mismo es un segundo anticuerpo capaz de unirse a dicho primer anticuerpo o fragmento de anticuerpo, estando unido este segundo anticuerpo a una enzima capaz de catalizar la transformación de una determinada sustancia en otra que pueda ser detectada.
14.- Una composición según la reivindicación 13, en la que la sustancia cuya transformación cataliza la enzima es un cromógeno.
15.- Una composición según las reivindicaciones 13 y 14, en la que el segundo anticuerpo está unido a fosfatasa alcalina y el cromógeno utilizado es azul de nitro- tetrazolio.
16.- Una composición según las reivindicaciones 13 y 14, en la que el segundo anticuerpo está unido a peroxidasa de rábano y el cromógeno utilizado es diaminobencidina.
17.- Una composición según cualquiera de las reivindicaciones 12 a 16, que comprende al menos otro anticuerpo específico para al menos una zona de secuencia diferente del péptido β-amiloide.
18.- Una composición según la reivindicación 17, que comprende el anticuerpo monoclonal de las reivindicaciones 1 ó 2 o un fragmento de dicho anticuerpo monoclonal según las reivindicaciones 3 ó 4 acoplado a una sustancia que puede ser detectada y otro u otros anticuerpo(s) específico(s) para una o más zonas de secuencia diferentes del péptido β-amiloide, acoplados a sustancias diferentes que también pueden ser detectadas.
19.- Una composición según la reivindicación 18, en la que el segundo anticuerpo dirigido a una zona de secuencia diferente del péptido β-amiloide es el anticuerpo EM2.
20.- Una composición según la reivindicación 19, en la que el anticuerpo monoclonal de las reivindicaciones 1 ó 2 o el fragmento de dicho anticuerpo según las reivindicaciones 3 ó 4 está acoplado a un segundo anticuerpo unido a peroxidasa de rábano, utilizándose como sustancia a transformar que puede ser detectada el cromógeno diaminobencidina (DAB), mientras que el anticuerpo EM2 está acoplado a un segundo anticuerpo unido a fosfatasa alcalina, utilizándose como sustancia a transformar que puede ser detectada el cromógeno azul de nitro-tetrazolio.
21.- Una composición según la reivindicación 18, en la que el segundo anticuerpo dirigido a una zona de secuencia diferente del péptido β-amiloide es el anticuerpo EM3.
22.- Una composición según la reivindicación 21, en la que el anticuerpo monoclonal de las reivindicaciones 1 ó 2 o el fragmento de dicho anticuerpo según las reivindicaciones 3 ó 4 está acoplado a un segundo anticuerpo unido a peroxidasa de rábano, utilizándose como sustancia a transformar que puede ser detectada el cromógeno diaminobencidina (DAB), mientras que el anticuerpo EM3 está acoplado a un segundo anticuerpo unido a fosfatasa alcalina, utilizándose como sustancia a transformar que puede ser detectada el cromógeno azul de nitro-tetrazolio.
23.- Uso de una composición según cualquiera de las reivindicaciones 12 a 22 en el diagnóstico de la enfermedad de Alzheimer a partir de una muestra de tejido cerebral tomada de un individuo aquejado de ella.
24.- Un método de diagnóstico in vitro de la enfermedad de Alzheimer a partir de una muestra de tejido cerebral tomada de un individuo aquejado de ella que comprende la detección a partir de dicha muestra de al menos una isoforma del péptido β-amiloide que contenga al menos la secuencia Val-His-His-Gln-Lys (SEQ ID NO:3) gracias a su unión a un anticuerpo monoclonal según cualquiera de las reivindicaciones 1 ó 2 o un fragmento del mismo según las reivindicaciones 3 ó 4.
25.- Un método de diagnóstico in vitro de la enfermedad de Alzheimer a partir de una muestra de tejido cerebral tomada de un individuo aquejado de ella que comprende la detección a partir de dicha muestra de al menos una isoforma del péptido β-amiloide que contenga al menos la secuencia Val-His-His-Gln-Lys (SEQ ID NO:3) gracias a su unión a un anticuerpo monoclonal según cualquiera de las reivindicaciones 1 ó 2 o un fragmento del mismo según las reivindicaciones 3 ó 4, estando el anticuerpo 0 fragmento de anticuerpo comprendido en una composición según cualquiera de las reivindicaciones 12 a 22.
26.- Un método de diagnóstico in vitro de la enfermedad de Alzheimer a partir de una muestra de tejido cerebral tomada de un individuo aquejado de ella que comprende la detección a partir de dicha muestra de al menos una isoforma del péptido β-amiloide que contenga al menos la secuencia Val-His-His-Gln-Lys (SEQ ID NO:3) gracias a su unión a un anticuerpo monoclonal según cualquiera de las reivindicaciones
1 ó 2 o un fragmento del mismo según las reivindicaciones 3 ó 4, así como la detección de al menos una segunda forma del péptido β-amiloide gracias a su unión a al menos un segundo anticuerpo dirigido contra una región diferente del péptido β-amiloide, estando ambos anticuerpos o el fragmento del anticuerpo monoclonal según las reivindicaciones 1 ó 2 y el segundo anticuerpo o cualquier otro anticuerpo adicional dirigidos contra una región diferente del péptido amiloide, comprendidos en una composición según cualquiera de las reivindicaciones 17 a 22.
27.- Un método de diagnóstico in vitro de la enfermedad de Alzheimer según cualquiera de las reivindicaciones 24 a 26, en el que se detecta en tejido cerebral la presencia de depósitos de péptido β-amiloide a los que es capaz de unirse el anticuerpo monoclonal de la invención.
28.- Un método de diagnóstico in vitro de la enfermedad de Alzheimer según la reivindicación 27, en el que se detecta en tejido cerebral la presencia de depósitos de péptido β-amiloide a los que es capaz de unirse el anticuerpo monoclonal de la invención mediante el uso de una composición según cualquiera de las reivindicaciones
12 a 23.
29.- Un método de diagnóstico de diagnóstico in vitro de la enfermedad de
Alzheimer según la reivindicación 28, en el que se detecta en tejido cerebral la presencia de depósitos de péptido β-amiloide a los que es capaz de unirse el anticuerpo monoclonal de la invención, así como la presencia adicional de depósitos que contienen al menos una isoforma adicional del péptido β-amiloide a la que es capaz de unirse al menos un segundo anticuerpo dirigido contra una zona diferente de dicho péptido, mediante el uso de una composición según cualquiera de las reivindicaciones 17 a 22.
30.- Un anticuerpo monoclonal según la reivindicación 1, capaz de unirse a formas solubles del péptido β-amiloide humano en muestras de fluidos biológicos o soluciones derivadas de los mismos.
31.- Un anticuerpo monoclonal según la reivindicación 30, capaz de unirse a formas solubles del péptido β-amiloide humano en muestras de líquido cefalorraquídeo, sangre, plasma u orina.
32.- Un anticuerpo monoclonal según la reivindicación 31, capaz de unirse a formas solubles del péptido β-amiloide humano en muestras de orina.
33.- Un fragmento de anticuerpo monoclonal según la reivindicación 3, capaz de unirse a formas solubles del péptido β-amiloide humano en muestras de fluidos biológicos o soluciones derivadas de los mismos.
34.- Un fragmento de anticuerpo monoclonal según la reivindicación 33, capaz de unirse a formas solubles del péptido β-amiloide humano en muestras de líquido cefalorraquídeo, sangre, plasma u orina.
35.- Un fragmento de anticuerpo monoclonal según la reivindicación 34, capaz de unirse a formas solubles del péptido β-amiloide humano en muestras de orina.
36.- Una composición que comprende un anticuerpo monoclonal según cualquiera de las reivindicaciones 30 a 32 o al menos un fragmento del mismo según cualquiera de las reivindicaciones 33 a 35, en la que el anticuerpo o el fragmento del mismo están acoplados a una sustancia o partícula que facilita la extracción de complejos antígeno-anticuerpo o antígeno-fragmento de anticuerpo de la solución en la que se encuentran.
37.- Una composición según la reivindicación 36, en la que la sustancia o partícula que facilita la extracción de complejos antígeno-anticuerpo o antígeno- fragmento de anticuerpo de la solución en la que se encuentran es una partícula magnética.
38.- Una composición según la reivindicación 37, en la que la unión entre el anticuerpo o el fragmento del mismo y la partícula magnética es una unión covalente.
39.- Uso del anticuerpo monoclonal de cualquiera las reivindicaciones 30 a 32 o del fragmento del mismo de cualquiera de las reivindicaciones 33 a 35 en el diagnóstico w vitro de la enfermedad de Alzheimer a partir de una muestra de un fluido biológico o de una solución derivada del mismo.
40.- Uso según la reivindicación 39, en el que el anticuerpo monoclonal o el fragmento del mismo están comprendido en una composición según una cualquiera de las reivindicaciones 36 a 38.
41.- Uso según la reivindicación 40, en el que el anticuerpo monoclonal o el fragmento del mismo están comprendidos en una composición según la reivindicación 38.
42.- Uso según la reivindicación 41, en el que la composición según la reivindicación 38 se añade a la muestra de fluido biológico o a la solución derivada del mismo para que se formen complejos antígeno-anticuerpo o antígeno-fragmento de anticuerpo con las formas del péptido β-amiloide presentes en la muestra de fluido biológico o la solución derivada del mismo.
43.- Uso según la reivindicación 42, en el que se provoca la extracción de complejos antígeno-anticuerpo o antígeno-fragmento de anticuerpo formados del fluido biológico o la solución en la que se encuentran mediante el uso de un campo magnético.
44.- Uso según la reivindicación 43, en el que las formas del péptido β-amiloide extraídas de un fluido biológico o una solución derivada del mismo en forma de complejos antígeno-anticuerpo o antígeno-fragmento de anticuerpo se separan del anticuerpo o fragmento de anticuerpo posteriormente a su extracción del fluido biológico o la solución en la que se encontraban y antes de proceder a su identificación y/o cuantificación.
45.- Uso según la reivindicación 44, en el que las formas del péptido β-amiloide se identifican y/o cuantifican mediante espectrometría de masas MALDI-TOF.
46.- Uso según una cualquiera de las reivindicaciones 39 a 45, en el que la muestra de fluido biológico es una muestra de orina.
47.- Un método de diagnóstico in vitro de la enfermedad de Alzheimer a partir de una muestra de un fluido biológico o de una solución derivada del mismo que comprende la detección a partir de dicha muestra de al menos una isoforma del péptido β-amiloide que contenga al menos la secuencia Val-His-His-Gln-Lys (SEQ ID NO:3) gracias a su unión a un anticuerpo monoclonal según una cualquiera de las reivindicaciones 30 a 32 o a un fragmento del mismo según las reivindicaciones 33 a 35, que comprende las etapas de: a) añadir a la muestra de fluido biológico o la solución derivada del mismo una composición según la reivindicación 37 ó 38; b) dejar transcurrir tiempo suficiente para que se formen complejos antígeno- anticuerpo o antígeno-fragmento de anticuerpo entre al menos una isoforma del péptido β-amiloide y el anticuerpo o fragmento de anticuerpo comprendido en la composición; c) aplicar un campo magnético para extraer los complejos antígeno-anticuerpo o antígeno-fragmento de anticuerpo de la solución; d) retirar la solución; e) separar el anticuerpo o fragmento de anticuerpo de las moléculas de péptido β-amiloide; í) identificar y cuantificar las isoformas de péptido β-amiloide extraídas de las muestra de fluido biológico o solución derivada del mismo.
48.- Un método de diagnóstico in vitro de la enfermedad de Alzheimer según la reivindicación 47, en el que la muestra de fluido biológico es una muestra de orina.
49.- Un método de diagnóstico in vitro de la enfermedad de Alzheimer según la reivindicación 48, en el que la composición que se añade en la etapa a) comprende un anticuerpo monoclonal según una cualquiera de las reivindicaciones 30 a 32, unido covalentemente a las correspondientes partículas magnéticas mediante la modificación de uno o más restos presentes en la zona Fc de dicho anticuerpo.
50.- Un método de diagnóstico in vitro de la enfermedad de Alzheimer según la reivindicación 49, en el que la identificación y cuantificación de las isoformas del péptido β-amiloide extraídas de la muestra de orina se realiza mediante espectrometría de masas MALDI-TOF.
51.- Un método de diagnóstico in vitro de la enfermedad de Alzheimer según la reivindicación 50, en el que la etapa e) de separación del anticuerpo o fragmento del anticuerpo de las moléculas de péptido β-amiloide se realiza en ácido α-ciano-4- hidroxicinámico en acetonitrilo acuoso que contiene ácido trifluoroacético.
52.- Una línea celular de hibridoma según la reivindicación 8, caracterizada por consistir en una muestra sustancialmente pura de ECACC 06030101.
PCT/ES2006/070027 2005-03-09 2006-03-09 Método de diagnóstico in vitro de la enfermedad de alzheimer mediante un anticuerpo monoclonal WO2006095041A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP06725836A EP1881008B1 (en) 2005-03-09 2006-03-09 Method for the in vitro diagnosis of alzheimer's disease using a monoclonal antibody
JP2008500220A JP5117373B2 (ja) 2005-03-09 2006-03-09 モノクローナル抗体を使用するアルツハイマー病のin vitro診断の方法
CA2601550A CA2601550C (en) 2005-03-09 2006-03-09 Method of in-vitro diagnosis of alzheimer's disease by means of a monoclonal antibody
CN2006800076517A CN101137670B (zh) 2005-03-09 2006-03-09 用单克隆抗体体外诊断阿尔茨海默病的方法
BRPI0609168-7A BRPI0609168A2 (pt) 2005-03-09 2006-03-09 método de diagnóstico in vitro de doença de alzheimer por meio de um anticorpo monoclonal
AT06725836T ATE512987T1 (de) 2005-03-09 2006-03-09 Verfahren zur in-vitro-diagnose von alzheimer- krankheit mit einem monoklonalen antikörper
MX2007010934A MX2007010934A (es) 2005-03-09 2006-03-09 Metodo de diagnostico in vitro de la enfermedad de alzheimer mediante un anticuerpo monoclonal.
US11/886,022 US7932048B2 (en) 2005-03-09 2006-03-09 Method for the in vitro diagnosis of alzheimer's disease using a monoclonal antibody

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200500550A ES2259270B1 (es) 2005-03-09 2005-03-09 Metodo de diagnostico in vitro de la enfermedad de alzheimer mediante un anticuerpo monoclonal.
ESP200500550 2005-03-09

Publications (1)

Publication Number Publication Date
WO2006095041A1 true WO2006095041A1 (es) 2006-09-14

Family

ID=36952969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/070027 WO2006095041A1 (es) 2005-03-09 2006-03-09 Método de diagnóstico in vitro de la enfermedad de alzheimer mediante un anticuerpo monoclonal

Country Status (11)

Country Link
US (1) US7932048B2 (es)
EP (1) EP1881008B1 (es)
JP (1) JP5117373B2 (es)
CN (1) CN101137670B (es)
AT (1) ATE512987T1 (es)
BR (1) BRPI0609168A2 (es)
CA (1) CA2601550C (es)
ES (2) ES2259270B1 (es)
MX (1) MX2007010934A (es)
RU (1) RU2416619C2 (es)
WO (1) WO2006095041A1 (es)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104580A1 (en) 2007-03-01 2008-09-04 Probiodrug Ag New use of glutaminyl cyclase inhibitors
US7732162B2 (en) 2003-05-05 2010-06-08 Probiodrug Ag Inhibitors of glutaminyl cyclase for treating neurodegenerative diseases
WO2011029920A1 (en) 2009-09-11 2011-03-17 Probiodrug Ag Heterocylcic derivatives as inhibitors of glutaminyl cyclase
WO2011107530A2 (en) 2010-03-03 2011-09-09 Probiodrug Ag Novel inhibitors
WO2011110613A1 (en) 2010-03-10 2011-09-15 Probiodrug Ag Heterocyclic inhibitors of glutaminyl cyclase (qc, ec 2.3.2.5)
WO2011131748A2 (en) 2010-04-21 2011-10-27 Probiodrug Ag Novel inhibitors
WO2012123563A1 (en) 2011-03-16 2012-09-20 Probiodrug Ag Benz imidazole derivatives as inhibitors of glutaminyl cyclase
US8497072B2 (en) 2005-11-30 2013-07-30 Abbott Laboratories Amyloid-beta globulomer antibodies
US8691224B2 (en) 2005-11-30 2014-04-08 Abbvie Inc. Anti-Aβ globulomer 5F7 antibodies
US8877190B2 (en) 2006-11-30 2014-11-04 Abbvie Inc. Aβ conformer selective anti-Aβ globulomer monoclonal antibodies
US8895004B2 (en) 2007-02-27 2014-11-25 AbbVie Deutschland GmbH & Co. KG Method for the treatment of amyloidoses
US8987419B2 (en) 2010-04-15 2015-03-24 AbbVie Deutschland GmbH & Co. KG Amyloid-beta binding proteins
EP2865670A1 (en) 2007-04-18 2015-04-29 Probiodrug AG Thiourea derivatives as glutaminyl cyclase inhibitors
US9062101B2 (en) 2010-08-14 2015-06-23 AbbVie Deutschland GmbH & Co. KG Amyloid-beta binding proteins
US9176150B2 (en) 2003-01-31 2015-11-03 AbbVie Deutschland GmbH & Co. KG Amyloid beta(1-42) oligomers, derivatives thereof and antibodies thereto, methods of preparation thereof and use thereof
WO2016081640A1 (en) 2014-11-19 2016-05-26 Genentech, Inc. Anti-transferrin receptor / anti-bace1 multispecific antibodies and methods of use
WO2016081643A1 (en) 2014-11-19 2016-05-26 Genentech, Inc. Anti-transferrin receptor antibodies and methods of use
WO2016094566A2 (en) 2014-12-10 2016-06-16 Genentech, Inc. Blood brain barrier receptor antibodies and methods of use
EP3461819A1 (en) 2017-09-29 2019-04-03 Probiodrug AG Inhibitors of glutaminyl cyclase
EP3594240A1 (en) 2013-05-20 2020-01-15 F. Hoffmann-La Roche AG Anti-transferrin receptor antibodies and methods of use
WO2020072357A1 (en) 2018-10-04 2020-04-09 University Of Rochester Improvement of glymphatic delivery by manipulating plasma osmolarity
WO2020132230A2 (en) 2018-12-20 2020-06-25 Genentech, Inc. Modified antibody fcs and methods of use
US10751382B2 (en) 2016-11-09 2020-08-25 The University Of British Columbia Anti-amyloid beta antibodies binding to a cyclic amyloid beta peptide
US10759837B2 (en) 2015-11-09 2020-09-01 The University Of British Columbia Anti-amyloid beta antibodies binding to a cyclic amyloid beta peptide
US10772969B2 (en) 2015-11-09 2020-09-15 The University Of British Columbia N-terminal epitopes in amyloid beta and conformationally-selective antibodies thereto
US10774120B2 (en) 2015-11-09 2020-09-15 The University Of British Columbia Anti-amyloid beta antibodies binding to a cyclic amyloid beta peptide
US20210024994A1 (en) * 2018-03-13 2021-01-28 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Diagnostic use of cell free dna chromatin immunoprecipitation
US11397188B2 (en) * 2017-03-30 2022-07-26 Board Of Regents, The University Of Texas System Method of detecting an APP Alzheimer's disease marker peptide in patients with Alzheimer's disease
US11970522B2 (en) 2020-08-28 2024-04-30 The University Of British Columbia Cyclic compound/peptide comprising an A-beta15-18 peptide and a linker that is covalently coupled to the n-terminus residue and the c-terminus residue of the A-BETA15-18 peptide

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101591223B1 (ko) 2005-12-12 2016-02-04 에이씨 이뮨 에스.에이. 치료적 특성을 갖는 베타 1-42 특이적인 단일클론성 항체
PL2046833T3 (pl) 2006-07-14 2014-01-31 Ac Immune Sa Humanizowane przeciwciało przeciw amyloidowi beta
US8048420B2 (en) 2007-06-12 2011-11-01 Ac Immune S.A. Monoclonal antibody
US8613923B2 (en) 2007-06-12 2013-12-24 Ac Immune S.A. Monoclonal antibody
AU2008267038B2 (en) * 2007-06-12 2014-08-07 Ac Immune S.A. Humanized antibodies to amyloid beta
SG178809A1 (en) * 2007-10-05 2012-03-29 Genentech Inc Use of anti-amyloid beta antibody in ocular diseases
SI2238166T1 (sl) * 2007-10-05 2014-03-31 Genentech, Inc. Uporaba protitelesa proti amiloidu beta pri očesnih bolezni
CA2701788C (en) * 2007-10-05 2017-06-13 Genentech, Inc. Humanized beta-amyloid antibody for treating ocular diseases
US20110104821A1 (en) * 2008-05-08 2011-05-05 Takahiko Tokuda ABeta-OLIGOMER MEASUREMENT METHOD
WO2010092958A1 (ja) * 2009-02-10 2010-08-19 株式会社日立ハイテクノロジーズ 質量分析技術を用いた免疫分析方法および免疫分析システム
DE102009054057A1 (de) * 2009-11-20 2011-05-26 Charité - Universitätsmedizin Berlin (Charité) Screening-Verfahren für Wirkstoffe für die Prophylaxe und Therapie neurodegenerativer Erkrankungen
MY164579A (en) 2010-07-30 2018-01-15 Ac Immune Sa Safe and functional humanized antibodies
WO2012123562A1 (en) 2011-03-16 2012-09-20 Probiodrug Ag Diagnostic antibody assay
EP2511296A1 (en) * 2011-04-12 2012-10-17 Araclón Biotech, S. L. Antibody, kit and method for determination of amyloid peptides
ES2495266B8 (es) 2013-02-13 2015-11-12 Consejo Superior De Investigaciones Científicas (Csic) Uso de igf-1 como reactivo de diagnóstico y/o pronóstico precoz de la enfermedad de alzheimer
EP3149040A1 (en) * 2014-05-29 2017-04-05 Spring Bioscience Corporation Anti-b7-h3 antibodies and diagnostic uses thereof
KR102357045B1 (ko) * 2017-03-31 2022-01-28 뉴로디아그노스틱스 엘엘씨 알츠하이머 질환에 대한 림프구-기반 형태계측 시험
TW202300517A (zh) 2021-03-12 2023-01-01 美商美國禮來大藥廠 抗類澱粉β抗體及其用途
WO2022251048A1 (en) 2021-05-24 2022-12-01 Eli Lilly And Company Anti-amyloid beta antibodies and uses thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666829A (en) * 1985-05-15 1987-05-19 University Of California Polypeptide marker for Alzheimer's disease and its use for diagnosis
WO1990012871A1 (en) * 1989-04-14 1990-11-01 Research Foundation For Mental Hygiene, Inc. Cerebrovascular amyloid protein-specific monoclonal antibody sv17-6e10
EP0683234A1 (en) * 1993-01-25 1995-11-22 Takeda Chemical Industries, Ltd. ANTIBODY AGAINST $g(b)-AMYLOID OR DERIVATIVE THEREOF AND USE THEREOF
WO1997021728A1 (en) * 1995-12-12 1997-06-19 Karolinska Innovations Ab PEPTIDE BINDING THE KLVFF-SEQUENCE OF AMYLOID $g(b)
US5688651A (en) * 1994-12-16 1997-11-18 Ramot University Authority For Applied Research And Development Ltd. Prevention of protein aggregation
US5958883A (en) * 1992-09-23 1999-09-28 Board Of Regents Of The University Of Washington Office Of Technology Animal models of human amyloidoses

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004029629A1 (en) * 2002-09-27 2004-04-08 Janssen Pharmaceutica N.V. N-11 truncated amyloid-beta nomoclonal antibodies, compositions, methods and uses

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666829A (en) * 1985-05-15 1987-05-19 University Of California Polypeptide marker for Alzheimer's disease and its use for diagnosis
WO1990012871A1 (en) * 1989-04-14 1990-11-01 Research Foundation For Mental Hygiene, Inc. Cerebrovascular amyloid protein-specific monoclonal antibody sv17-6e10
US5958883A (en) * 1992-09-23 1999-09-28 Board Of Regents Of The University Of Washington Office Of Technology Animal models of human amyloidoses
EP0683234A1 (en) * 1993-01-25 1995-11-22 Takeda Chemical Industries, Ltd. ANTIBODY AGAINST $g(b)-AMYLOID OR DERIVATIVE THEREOF AND USE THEREOF
US5688651A (en) * 1994-12-16 1997-11-18 Ramot University Authority For Applied Research And Development Ltd. Prevention of protein aggregation
WO1997021728A1 (en) * 1995-12-12 1997-06-19 Karolinska Innovations Ab PEPTIDE BINDING THE KLVFF-SEQUENCE OF AMYLOID $g(b)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464976B2 (en) 2003-01-31 2019-11-05 AbbVie Deutschland GmbH & Co. KG Amyloid β(1-42) oligomers, derivatives thereof and antibodies thereto, methods of preparation thereof and use thereof
US9176150B2 (en) 2003-01-31 2015-11-03 AbbVie Deutschland GmbH & Co. KG Amyloid beta(1-42) oligomers, derivatives thereof and antibodies thereto, methods of preparation thereof and use thereof
US8809010B2 (en) 2003-05-05 2014-08-19 Probiodrug Ag Method for prophylactic treatment of alzheimer's disease using inhibitors of glutaminyl cyclase and glutamate cyclases
US7732162B2 (en) 2003-05-05 2010-06-08 Probiodrug Ag Inhibitors of glutaminyl cyclase for treating neurodegenerative diseases
US10538581B2 (en) 2005-11-30 2020-01-21 Abbvie Inc. Anti-Aβ globulomer 4D10 antibodies
US10323084B2 (en) 2005-11-30 2019-06-18 Abbvie Inc. Monoclonal antibodies against amyloid beta protein and uses thereof
US10208109B2 (en) 2005-11-30 2019-02-19 Abbvie Inc. Monoclonal antibodies against amyloid beta protein and uses thereof
US9540432B2 (en) 2005-11-30 2017-01-10 AbbVie Deutschland GmbH & Co. KG Anti-Aβ globulomer 7C6 antibodies
US8497072B2 (en) 2005-11-30 2013-07-30 Abbott Laboratories Amyloid-beta globulomer antibodies
US8691224B2 (en) 2005-11-30 2014-04-08 Abbvie Inc. Anti-Aβ globulomer 5F7 antibodies
US8877190B2 (en) 2006-11-30 2014-11-04 Abbvie Inc. Aβ conformer selective anti-Aβ globulomer monoclonal antibodies
US9359430B2 (en) 2006-11-30 2016-06-07 Abbvie Inc. Abeta conformer selective anti-Abeta globulomer monoclonal antibodies
US9951125B2 (en) 2006-11-30 2018-04-24 Abbvie Inc. Aβ conformer selective anti-Aβ globulomer monoclonal antibodies
US9394360B2 (en) 2006-11-30 2016-07-19 Abbvie Inc. Aβ conformer selective anti-Aβ globulomer monoclonal antibodies
US8895004B2 (en) 2007-02-27 2014-11-25 AbbVie Deutschland GmbH & Co. KG Method for the treatment of amyloidoses
WO2008104580A1 (en) 2007-03-01 2008-09-04 Probiodrug Ag New use of glutaminyl cyclase inhibitors
EP2481408A2 (en) 2007-03-01 2012-08-01 Probiodrug AG New use of glutaminyl cyclase inhibitors
EP2865670A1 (en) 2007-04-18 2015-04-29 Probiodrug AG Thiourea derivatives as glutaminyl cyclase inhibitors
WO2011029920A1 (en) 2009-09-11 2011-03-17 Probiodrug Ag Heterocylcic derivatives as inhibitors of glutaminyl cyclase
WO2011107530A2 (en) 2010-03-03 2011-09-09 Probiodrug Ag Novel inhibitors
WO2011110613A1 (en) 2010-03-10 2011-09-15 Probiodrug Ag Heterocyclic inhibitors of glutaminyl cyclase (qc, ec 2.3.2.5)
US9822171B2 (en) 2010-04-15 2017-11-21 AbbVie Deutschland GmbH & Co. KG Amyloid-beta binding proteins
US8987419B2 (en) 2010-04-15 2015-03-24 AbbVie Deutschland GmbH & Co. KG Amyloid-beta binding proteins
WO2011131748A2 (en) 2010-04-21 2011-10-27 Probiodrug Ag Novel inhibitors
US10047121B2 (en) 2010-08-14 2018-08-14 AbbVie Deutschland GmbH & Co. KG Amyloid-beta binding proteins
US9062101B2 (en) 2010-08-14 2015-06-23 AbbVie Deutschland GmbH & Co. KG Amyloid-beta binding proteins
WO2012123563A1 (en) 2011-03-16 2012-09-20 Probiodrug Ag Benz imidazole derivatives as inhibitors of glutaminyl cyclase
EP4324480A2 (en) 2013-05-20 2024-02-21 F. Hoffmann-La Roche AG Anti-transferrin receptor antibodies and methods of use
EP3594240A1 (en) 2013-05-20 2020-01-15 F. Hoffmann-La Roche AG Anti-transferrin receptor antibodies and methods of use
WO2016081643A1 (en) 2014-11-19 2016-05-26 Genentech, Inc. Anti-transferrin receptor antibodies and methods of use
WO2016081640A1 (en) 2014-11-19 2016-05-26 Genentech, Inc. Anti-transferrin receptor / anti-bace1 multispecific antibodies and methods of use
WO2016094566A2 (en) 2014-12-10 2016-06-16 Genentech, Inc. Blood brain barrier receptor antibodies and methods of use
US10759837B2 (en) 2015-11-09 2020-09-01 The University Of British Columbia Anti-amyloid beta antibodies binding to a cyclic amyloid beta peptide
US10772969B2 (en) 2015-11-09 2020-09-15 The University Of British Columbia N-terminal epitopes in amyloid beta and conformationally-selective antibodies thereto
US10774120B2 (en) 2015-11-09 2020-09-15 The University Of British Columbia Anti-amyloid beta antibodies binding to a cyclic amyloid beta peptide
US11905318B2 (en) 2015-11-09 2024-02-20 The University Of British Columbia Cyclic compound/peptide comprising an A-beta13-16 peptide and a linker that is covalently coupled to the n-terminus residue and the c-terminus residue of the A-beta13-16 peptide
US10751382B2 (en) 2016-11-09 2020-08-25 The University Of British Columbia Anti-amyloid beta antibodies binding to a cyclic amyloid beta peptide
US11779629B2 (en) 2016-11-09 2023-10-10 The University Of British Columbia Compositions comprising cyclic peptides derived from an A-beta peptide
US11397188B2 (en) * 2017-03-30 2022-07-26 Board Of Regents, The University Of Texas System Method of detecting an APP Alzheimer's disease marker peptide in patients with Alzheimer's disease
EP3461819A1 (en) 2017-09-29 2019-04-03 Probiodrug AG Inhibitors of glutaminyl cyclase
US20210024994A1 (en) * 2018-03-13 2021-01-28 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Diagnostic use of cell free dna chromatin immunoprecipitation
US11781183B2 (en) * 2018-03-13 2023-10-10 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Diagnostic use of cell free DNA chromatin immunoprecipitation
WO2020072357A1 (en) 2018-10-04 2020-04-09 University Of Rochester Improvement of glymphatic delivery by manipulating plasma osmolarity
WO2020132230A2 (en) 2018-12-20 2020-06-25 Genentech, Inc. Modified antibody fcs and methods of use
US11970522B2 (en) 2020-08-28 2024-04-30 The University Of British Columbia Cyclic compound/peptide comprising an A-beta15-18 peptide and a linker that is covalently coupled to the n-terminus residue and the c-terminus residue of the A-BETA15-18 peptide

Also Published As

Publication number Publication date
RU2416619C2 (ru) 2011-04-20
EP1881008A9 (en) 2009-10-14
US20090023159A1 (en) 2009-01-22
JP2008532984A (ja) 2008-08-21
CN101137670B (zh) 2012-08-08
EP1881008B1 (en) 2011-06-15
ATE512987T1 (de) 2011-07-15
CN101137670A (zh) 2008-03-05
MX2007010934A (es) 2007-10-12
US7932048B2 (en) 2011-04-26
EP1881008A1 (en) 2008-01-23
BRPI0609168A2 (pt) 2010-02-23
JP5117373B2 (ja) 2013-01-16
CA2601550C (en) 2014-11-18
ES2259270A1 (es) 2006-09-16
ES2259270B1 (es) 2007-11-01
ES2367837T3 (es) 2011-11-08
RU2007137125A (ru) 2009-04-20
CA2601550A1 (en) 2006-09-14
EP1881008A4 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
ES2367837T3 (es) Método de diagnóstico in vitro de la enfermedad de alzheimer mediante un anticuerpo monoclonal.
Vaikath et al. Generation and characterization of novel conformation-specific monoclonal antibodies for α-synuclein pathology
Kovacs et al. An antibody with high reactivity for disease-associated α-synuclein reveals extensive brain pathology
KR101602546B1 (ko) 아밀로이드 펩티드를 측정하기 위한 항체, 키트 및 방법
US7794692B2 (en) Methods and compositions for detecting amyotrophic lateral sclerosis
US20050196818A1 (en) Antibodies to alpha-synuclein
Sullivan et al. Pyroglutamate-Aβ 3 and 11 colocalize in amyloid plaques in Alzheimer's disease cerebral cortex with pyroglutamate-Aβ 11 forming the central core
JP2008513732A (ja) アミロイドβ(Abeta)の病理学的なアセンブリを標的とするモノクローナル抗体
BR112020018868A2 (pt) métodos baseados em anticorpo para detectar e tratar doença de alzheimer
WO2011106885A1 (en) Oligomer-specific amyloid beta epitope and antibodies
PT2183599E (pt) Imunoensaios de sensibilidade elevada e kits para a determinação de péptidos e proteínas de interesse biológico
EP3269736B1 (en) Conformational-specific antibodies against oligomers of amyloid beta
Zhang et al. Structural basis for recognition of a unique epitope by a human anti-tau antibody
Altay et al. Development and validation of an expanded antibody toolset that captures alpha-synuclein pathological diversity in Lewy body diseases
Kasai et al. Utilization of a multiple antigenic peptide as a calibration standard in the BAN50 single antibody sandwich ELISA for Aβ oligomers
JP7278960B2 (ja) 新規タウ種
JP7151985B2 (ja) 抗プロパノイル化アミロイドβタンパク質抗体
JP7221510B2 (ja) アミロイドβタンパク質におけるプロパノイル化修飾部位特異的測定方法
Rábano et al. Diversity of senile plaques in Alzheimer's disease as revealed by a new monoclonal antibody that recognizes an internal sequence of the Aβ peptide
Rosemblatt et al. Alzheimer's disease: microtubule-associated proteins 2 (MAP 2) are not components of paired helical filaments
WO2024032823A1 (zh) 强毒性淀粉样蛋白寡聚体的诊断用途
JP2000034300A (ja) 抗リン酸化タウ蛋白質抗体及びそれを用いるアルツハイマー病の検出方法
WO2021032966A1 (en) Detection of a-beta oligomers
Theofilas et al. Caspase-6-cleaved tau is relevant in Alzheimer's disease but not in 4-repeat tauopathies: diagnostic and

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/010934

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2601550

Country of ref document: CA

Ref document number: 2008500220

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680007651.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006725836

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007137125

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006725836

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11886022

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0609168

Country of ref document: BR

Kind code of ref document: A2