WO2006094325A1 - Procede de fabrication de materiaux composites metalliques - Google Patents

Procede de fabrication de materiaux composites metalliques Download PDF

Info

Publication number
WO2006094325A1
WO2006094325A1 PCT/AT2006/000097 AT2006000097W WO2006094325A1 WO 2006094325 A1 WO2006094325 A1 WO 2006094325A1 AT 2006000097 W AT2006000097 W AT 2006000097W WO 2006094325 A1 WO2006094325 A1 WO 2006094325A1
Authority
WO
WIPO (PCT)
Prior art keywords
starting material
deformation
metallic
ductility
composite
Prior art date
Application number
PCT/AT2006/000097
Other languages
German (de)
English (en)
Inventor
Reinhard Pippan
Ilchat Sabirov
Original Assignee
Austria Wirtschaftsservice Technologie & Innovation / Tecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Austria Wirtschaftsservice Technologie & Innovation / Tecma filed Critical Austria Wirtschaftsservice Technologie & Innovation / Tecma
Priority to DE112006000504T priority Critical patent/DE112006000504A5/de
Publication of WO2006094325A1 publication Critical patent/WO2006094325A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/01Extruding metal; Impact extrusion starting from material of particular form or shape, e.g. mechanically pre-treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • B21J1/025Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation

Definitions

  • the invention relates to a method for producing massive metallic composite materials with a particle size in the nm range (nanocomposites).
  • Submicron or nanocrystalline materials in particular of metals, alloys or intermetallic compounds, are ideally suited for a wide range of applications and have a wide variety of mechanical and electromagnetic properties. In part, these properties change abruptly with changes in the fine structure, in particular with the grain size of individual components of metallic composite materials.
  • nanocomposites which, for example, can be produced by powder metallurgy. For example, tungsten powder with a 20% or 30% copper content can be produced by mechanical alloying and then cold pressed into shape.
  • the grain size of the W-Cu powder in the starting material is 20 nm to 30 nm.
  • amorphous metal alloys can be prepared by very rapid solidification.
  • nanocomposites can also be produced by different coating methods, but this is also limited to the production of very thin films.
  • the starting elements are mixed as powders with particle sizes of 2 ⁇ m to 250 ⁇ m and subjected to high mechanical forces to achieve a secondary powder with a nanocrystalline structure.
  • the secondary powder is obtained by mixing and cold working the starting powders or by mixing and high energy milling of the starting powders.
  • a disadvantage of such methods is the dust load due to the harmful nanopowder, as well as the considerable effort required to minimize the release of nanoparticles of different, partially toxic metal powders.
  • WO 03/026815 A1 discloses an apparatus and a method for producing finely crystalline materials, in which a starting material is mechanically processed by cyclic deformation until a previously defined fine structure of the material sample is achieved. The individual deformation steps are carried out at temperatures between the ambient temperature and the half-melting temperature of the respective material. By multiple plastic deformation, for example, the strength of recrystallized pure metals can be increased many times without having to accept significant losses in the elongation at break in purchasing. As starting materials, however, only single-phase materials, such as pure metals and, for example, intermetallic Ni 3 Al materials, called.
  • the object of the invention is to propose a method for producing massive metallic composite materials with a particle size in the nm range, which is suitable for as many combinations of different starting materials and which is further technically easy to apply.
  • the inventive method is based on a solid, coarse composite material as starting material, which is at least two-phase and thus consists of at least two non-detachable components.
  • the end product of the process is also present in solid form as a so-called nanocomposite, ie at least one or each of the two components is present in the composite material as nanoparticles with a particle size and a particle distance of a few nanometers.
  • nanocomposite ie at least one or each of the two components is present in the composite material as nanoparticles with a particle size and a particle distance of a few nanometers.
  • known nanocrystalline, single-phase materials have crystallites with a particle size of a few nanometers, they are confined to similar particles so that no nanocomposites are present.
  • the comparative strain according to MISES can be used.
  • the comparative strain or deformation ⁇ is, for example, in the case of high-pressure torsional deformation
  • n is the number of revolutions r is the radius (at which the deformation is measured) and t is the sample thickness. If specified in percent, the ⁇ value must be multiplied by 100. A comparative strain of, for example, 100 thus corresponds to 10,000%.
  • HPT High Pressure Torsion
  • ECA Equal Channel Angular Extrusion
  • CCDC Cyclic Channel Compression
  • ARB Accumulative Roll Bonding
  • the material sample to be deformed is in a cylindrical recess of a pressure-resistant mold and is pressurized with a pressure piston with a cylindrical cross-section.
  • a rotational movement of the mold or the plunger about the common axis there is a high-pressure torsional deformation of the sample, which reaches the desired degree of deformation in certain radial regions.
  • an angled channel is provided in a pressure-resistant form, through which the material sample is pressed through with the aid of a punch. After removal of the material sample from the angled channel this is again introduced into the channel and the process continues until the desired fine structure is achieved.
  • the starting material is deformed by frequent folding and rolling.
  • the component with the higher ductility can form a matrix in which the component with the lower ductility is embedded. If the two metals in a metal-metal composite have different strength properties and different ductility, it is possible to severely break up the brittle and solid phase at a high deformation rate. For example, in the W-Cu tungsten system, the much firmer and much more brittle partner at room temperature is copper, the softer and more ductile partner.
  • the yield stress or the ductility of one of the two metallic documents should be at least twice as large as that of the second metallic component.
  • biphasic Pb / Fe, Cu / Fe, Ag / Fe or Cu / Cr composite material is used as starting material.
  • the at least two individual components can also be alloys that are not soluble in each other.
  • the deformation according to point b) can be carried out at temperatures between room temperature (20 0 C) and 200 0 C, but also at low temperatures, for example at liquid nitrogen temperature.
  • the invention will be explained in more detail below with reference to drawings. Show it:
  • Fig. 1 is a micrograph of the starting material in an enlarged view, as well
  • FIGS 2, 3, 4, 5 and 6 micrographs of nanocomposites produced by the method according to the invention in different process stages and particle sizes.
  • the starting material used is a coarse-grained W-25% Cu composite, which according to FIG. 1 shows an inhomogeneous distribution of the W particles which have a size of between 2 ⁇ m and 10 ⁇ m.
  • the proportion of W grains in the Cu matrix is relatively large, so that in the subsequent high-pressure torsional deformation, the individual W particles do not "float" in the matrix but are pressed or rubbed against each other so that the particles break up and larger ones Deformation values massive particle size reduction is observable.
  • HPT high-pressure torsion deformation
  • the starting material is used in the form of a disk-shaped sample with a diameter of 5 mm to 10 mm and a thickness of 0.5 mm to 2 mm.
  • the plate has a diameter of 8 mm and a thickness t of 0.8 mm, so that according to formula (1) with a radius r of 3 mm and the corresponding selection of revolutions n different deformation values ⁇ can be achieved.
  • the deformation takes place in the example shown at room temperature, at a pressure between 5 GPa and 10 GPa, preferably at 8 GPa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

L'invention concerne un procédé de fabrication de matériaux composites métalliques pleins, présentant une granulométrie nanométrique (nanocomposites). Ledit procédé consiste a) à se munir d'un composite grossier, solide, en tant que matériau initial, contenant au moins 2 composants métalliques non solubles l'un dans l'autre, de ductilités ou contraintes d'écoulement différentes ; et b) à déformer le matériau initial par déformation plastique sévère de façon à obtenir une dilatation de comparaison de l'ordre de 10000 % ou plus, de telle manière qu'au moins un des composants métalliques de granulométrie < 100 nm, de préférence de granulométrie comprise entre 100 nm et 10 nm, est présent dans le nanocomposite formé.
PCT/AT2006/000097 2005-03-08 2006-03-07 Procede de fabrication de materiaux composites metalliques WO2006094325A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112006000504T DE112006000504A5 (de) 2005-03-08 2006-03-07 Verfahren zur Herstellung metallischer Verbundwerkstoffe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA398/2005 2005-03-08
AT3982005A AT501546B1 (de) 2005-03-08 2005-03-08 Verfahren zur herstellung metallischer verbundwerkstoffe

Publications (1)

Publication Number Publication Date
WO2006094325A1 true WO2006094325A1 (fr) 2006-09-14

Family

ID=36481416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2006/000097 WO2006094325A1 (fr) 2005-03-08 2006-03-07 Procede de fabrication de materiaux composites metalliques

Country Status (3)

Country Link
AT (1) AT501546B1 (fr)
DE (1) DE112006000504A5 (fr)
WO (1) WO2006094325A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617750B2 (en) * 2006-12-06 2009-11-17 Purdue Research Foundation Process of producing nanocrystalline bodies
CN103785844A (zh) * 2014-01-13 2014-05-14 上海交通大学 一种纳米结构块体镁材料及制备方法
CN104511595A (zh) * 2014-12-30 2015-04-15 中南大学 一种高纯钛粉的制备方法
CN109554638A (zh) * 2019-01-10 2019-04-02 北京理工大学 一种高熵合金梯度纳米材料制备方法
CN112063940A (zh) * 2020-09-23 2020-12-11 燕山大学 一种提高稀土镁合金强度的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012109929A1 (de) * 2012-10-18 2014-05-08 Karlsruher Institut für Technologie Verfahren zur Herstellung einer magnetischen Legierung und mit diesem Verfahren hergestellte magnetische Legierung
CN112391563B (zh) * 2019-08-19 2021-11-09 南京理工大学 一种层状纳米异构铝镁合金块体材料制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710239A (en) * 1984-09-14 1987-12-01 General Motors Corporation Hot pressed permanent magnet having high and low coercivity regions
DE3714239C2 (de) * 1987-04-29 1996-05-15 Krupp Ag Hoesch Krupp Verfahren zur Herstellung eines Werkstoffs mit einem Gefüge nanokristalliner Struktur
AT411027B (de) * 2001-09-25 2003-09-25 Reinhard Dipl Ing Ddr Pippan Vorrichtung und verfahren zur herstellung feinkristalliner werkstoffe

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MURAYAMA M ET AL: "Dissolution of the [theta]' precipitates in an Al-1.7 at.% Cu alloy deformed by equal-channel angular pressing", ULTRAFINE GRAINED MATERIALS. PROCEEDINGS OF A SYMPOSIUM TMS - MINER. METALS & MATER. SOC WARRENDALE, PA, USA, 2000, pages 145 - 153, XP002384010, ISBN: 0-87339-472-0 *
SAHA S ET AL: "Synthesis of Fe-Pd and Fe-Pd/Ta magnetic nanocomposites by severe plastic deformation", PRESENTATION; JOURNAL OF APPLIED PHYSICS AIP USA, vol. 97, no. 10, 8 November 2004 (2004-11-08), pages 10F301 - 1, XP002384011, ISSN: 0021-8979 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617750B2 (en) * 2006-12-06 2009-11-17 Purdue Research Foundation Process of producing nanocrystalline bodies
CN103785844A (zh) * 2014-01-13 2014-05-14 上海交通大学 一种纳米结构块体镁材料及制备方法
CN104511595A (zh) * 2014-12-30 2015-04-15 中南大学 一种高纯钛粉的制备方法
CN109554638A (zh) * 2019-01-10 2019-04-02 北京理工大学 一种高熵合金梯度纳米材料制备方法
CN112063940A (zh) * 2020-09-23 2020-12-11 燕山大学 一种提高稀土镁合金强度的方法

Also Published As

Publication number Publication date
AT501546A1 (de) 2006-09-15
AT501546B1 (de) 2007-02-15
DE112006000504A5 (de) 2008-01-17

Similar Documents

Publication Publication Date Title
DE112007000673B4 (de) Magnesiumlegierung mit hoher Festigkeit und hoher Zähigkeit und Verfahren zu deren Herstellung
EP1819838B1 (fr) Alliage a base d&#39;aluminures de titane
DE69014085T2 (de) Oxidationsbeständige Legierungen mit niedrigem Ausdehnungskoeffizient.
DE68916687T2 (de) Hochfeste, hitzebeständige Aluminiumlegierungen.
AT501546B1 (de) Verfahren zur herstellung metallischer verbundwerkstoffe
DE602004005976T2 (de) Herstellungsverfahren für nieten aus kryogen zerkleinerten aluminiumlegierungen und auf diese weise hergestellte nieten
WO2005007327A2 (fr) Procede de production de poudres fines metalliques, d&#39;alliage et composees
DE4025408A1 (de) Verfahren zum entwickeln einer verbesserten textur in titanlegierungen sowie damit erhaltene gegenstaende
DE1909781A1 (de) Metallpulver aus gekneteten Verbundteilchen und Verfahren zu deren Herstellung
DE68912394T2 (de) Verfahren zur Verformung eines grossen Produktes aus Aluminiumlegierung.
DE2542094A1 (de) Metallpulver, verfahren zur behandlung losen metallpulvers und verfahren zur herstellung eines verdichteten presslings
EP1438150B1 (fr) Dispositif et procede de production de materiaux microcristallins
EP0035601B1 (fr) Procédé de fabrication d&#39;un alliage-mémoire
DE112008001968T5 (de) Bilden von Magnesiumlegierungen mit verbesserter Duktilität
WO2019120347A1 (fr) Matériau réfractaire renforcé de particules
DE2401849A1 (de) Verfahren zum herstellen von verformten gegenstaenden aus einer dispersionsverfestigten legierung
EP0200079B1 (fr) Préparation d&#39;une ébauche métallique d&#39;un alliage amorphe
WO1981002587A1 (fr) Alliages a memoire a base de cuivre, zinc et aluminium et procede pour leur preparation
DE2200670B2 (fr)
CN101348869B (zh) 晶粒尺寸可控双峰分布的块体超细/纳米晶合金制备方法
EP0232772B1 (fr) Procédé de préparation d&#39;un matériau pulvérulent amorphe par un procédé de broyage
EP1647606B1 (fr) Alliage de nickel résistant à l&#39;usure et a dureté élevée, et son utilisation comme un outil à haute température
EP3458616B1 (fr) Procédé de fabrication de matériaux composites de palier lisse
EP0223196A2 (fr) Procédé pour la fabrication d&#39;alliages métalliques renforcés par dispersion
DE69218109T2 (de) Verdichtete und verfestigte Wirkstoffe aus Aluminium-Legierung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120060005049

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

REF Corresponds to

Ref document number: 112006000504

Country of ref document: DE

Date of ref document: 20080117

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06704739

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6704739

Country of ref document: EP