WO2006093266A1 - 色ズレを補正する画像処理装置、画像処理プログラム、画像処理方法、および電子カメラ - Google Patents

色ズレを補正する画像処理装置、画像処理プログラム、画像処理方法、および電子カメラ Download PDF

Info

Publication number
WO2006093266A1
WO2006093266A1 PCT/JP2006/304079 JP2006304079W WO2006093266A1 WO 2006093266 A1 WO2006093266 A1 WO 2006093266A1 JP 2006304079 W JP2006304079 W JP 2006304079W WO 2006093266 A1 WO2006093266 A1 WO 2006093266A1
Authority
WO
WIPO (PCT)
Prior art keywords
color component
color
component
unit
correction target
Prior art date
Application number
PCT/JP2006/304079
Other languages
English (en)
French (fr)
Inventor
Akihiko Utsugi
Kenichi Ishiga
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to US11/884,455 priority Critical patent/US7945091B2/en
Priority to EP06715162.1A priority patent/EP1855486B1/en
Priority to JP2007506020A priority patent/JP5071104B2/ja
Publication of WO2006093266A1 publication Critical patent/WO2006093266A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Definitions

  • Image processing apparatus for correcting color misregistration, image processing program, image processing method, and electronic camera
  • the present invention relates to an image processing technique for suppressing lateral chromatic aberration of an image.
  • Patent Document 1 when a missing color component of RAW data is generated by color interpolation processing, correction of lateral chromatic aberration is simultaneously performed by manipulating an interpolation coefficient.
  • Patent Document 2 discloses a method for compensating for sharpness lost due to color misregistration correction. That is, interpolation coefficient data representing the amount of deviation of the correction target color components (for example, R and B components) is first obtained. Next, a complementary coefficient of the interpolation coefficient data is obtained, and the complementary coefficient is multiplied by a reference color component (for example, G component). Adding this multiplication result to the correction color component compensates for sharpness.
  • interpolation coefficient data representing the amount of deviation of the correction target color components (for example, R and B components) is first obtained.
  • a complementary coefficient of the interpolation coefficient data is obtained, and the complementary coefficient is multiplied by a reference color component (for example, G component). Adding this multiplication result to the correction color component compensates for sharpness.
  • the G component of the RAW data is scaled according to the chromatic aberration of magnification of the R component and the B component.
  • a method of generating color difference components (R ⁇ G) and (B ⁇ G) with corrected color misregistration by subtracting the G component after scaling from the R and B components is disclosed. In this method, an appropriate correction is made particularly in an achromatic image region.
  • “RAW data” corresponds to “image data having one color component per pixel” in the claims.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-186533 (paragraph 0043)
  • Patent Document 2 Japanese Patent Application No. 2552742
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-112276
  • interpolation processing is also performed for correcting the chromatic aberration of magnification for the color components originally included in the RAW data.
  • interpolation processing is performed on the R color component and B color component in the RAW data.
  • the R and B color components in RAW data have a relatively coarse pixel density that is only 1Z4 pixels in the entire image. For this reason, if the correction of chromatic aberration of magnification (simple interpolation processing here) is performed on the rough pixel density, R color component, and B color component as they are, the fine structure of the R color component and B color component disappears immediately. Resulting in.
  • Patent Document 2 since the G component is multiplied by the complementary coefficient at the RB position, the G component needs to exist at the pixel position of the R component or the B component. Therefore, this method cannot be applied directly to RAW data such as a Bayer array.
  • Patent Document 3 the G component is scaled according to the R component and B component shifted due to lateral chromatic aberration. Therefore, the pixel positions of the generated color difference components (R ⁇ G) and (B ⁇ G) are deviated from the original G components. Therefore, in an image area with a chromatic color structure, the positional deviation between the G component and the color difference component cannot be ignored, and the lateral chromatic aberration is not accurately corrected. Furthermore, there is a risk that the color structure of the chromatic color will be destroyed by the influence of this positional deviation.
  • an object of the present invention is to correct lateral chromatic aberration with high image quality for RAW data.
  • An image processing apparatus of the present invention includes an input unit, a color misregistration information acquisition unit, and a color misregistration suppression unit.
  • the input unit captures image data expressed by a plurality of types of color components including at least a correction target color component and a reference color component, and one type of color component per pixel.
  • the color misregistration information acquisition unit acquires or detects information related to the positional misalignment of the correction target color component.
  • the color misregistration suppressing unit corrects the positional deviation of the correction target color component based on the information on the positional deviation.
  • the color misregistration suppressing unit includes a position misalignment correcting unit, an image structure extracting unit, and an image structure compensating unit.
  • the positional deviation correction unit corrects the positional deviation of the color component to be corrected based on the information on the positional deviation.
  • the image structure extraction unit extracts an image structure from the reference color component.
  • the image structure compensation unit compensates the image structure that disappears from the correction target color component by the positional deviation correction with the image structure of the reference color component extracted by the image structure extraction unit.
  • the image structure extraction unit uses a color component having a pixel density higher than the correction target color component as a reference color component.
  • the positional deviation correction unit is a positional deviation destination of the pixel position P of the color component to be corrected!
  • the color component to be corrected for ⁇ is obtained by interpolation processing and is used as the color component to be corrected at pixel position P.
  • the image structure extraction unit obtains the reference color component Z1 at the pixel position P by interpolation processing. Further, the image structure extraction unit generates the reference color component Z2 at the pixel position P by performing an interpolation process with the same reference interval as the pixel interval referred to in the interpolation process of the positional deviation correction unit. The image structure extraction unit extracts the difference between the two interpolation results Zl and Z2 obtained in this way.
  • the image structure compensation unit adds the difference between the interpolation results Zl and Z2 obtained by the image structure extraction unit to the color component to be corrected whose position shift has been corrected by the position shift correction unit.
  • ⁇ 4 It is preferable that the image structure extraction unit obtains the original position Q before the positional deviation of the correction target color component used for the interpolation processing of the positional deviation destination I 3 ′.
  • the image structure extraction unit interpolates the reference color component at the original position Q to obtain the reference color component Z2 at the pixel position P.
  • ⁇ 5 Another image processing apparatus according to the present invention includes an input unit, a color misregistration information acquisition unit, and a color misregistration suppression unit.
  • the input unit captures image data that is represented by a plurality of types of color components including at least a correction target color component and a reference color component, and at least one type of correction target color component is missing per pixel.
  • the color misregistration information acquisition unit acquires or detects information related to the positional misalignment of the correction target color component.
  • the color misregistration suppressing unit corrects the positional deviation of the correction target color component based on the information on the positional deviation.
  • the color misregistration suppressing unit includes a reference color component position shifting unit, a color difference calculating unit, and a color difference position misalignment correcting unit.
  • the reference color component position shift unit shifts the position of the reference color component in accordance with the position shift of the correction target color component based on the information on the position shift.
  • the color difference calculation unit obtains a color difference whose position is shifted based on the reference color component whose position is shifted by the reference color component shift unit and the correction target color component.
  • the color difference position deviation correction unit corrects the color difference position deviation based on the information on the position deviation.
  • the color difference position shift correction unit corrects the color difference position shift in accordance with the pixel position of the reference color component before being shifted by the reference color component position shift unit.
  • Another image processing apparatus of the present invention includes an input unit, a color misregistration information acquisition unit, and a color misregistration suppression unit.
  • the input unit captures image data that is represented by a plurality of types of color components including at least a correction target color component and a reference color component, and at least one type of correction target color component is missing per pixel.
  • the color misregistration information acquisition unit acquires or detects information related to the positional misalignment of the correction target color component.
  • the color misregistration suppressing unit corrects the positional deviation of the correction target color component based on the information on the positional deviation.
  • the color misregistration suppressing unit includes a reference color component interpolation unit, a color difference calculation unit, and a color difference interpolation unit.
  • the reference color component interpolating unit obtains the original position P "before the positional deviation occurs for the pixel position P of the correction target color component based on the information on the positional deviation. Further, the reference color component interpolating unit obtains the original position P P A reference color component is generated by interpolation processing.
  • the color difference calculation unit obtains the color difference component c ⁇ at the original position P ⁇ from the “correction target color component at pixel position P” and the “reference color component at the original location”.
  • the color difference interpolation unit interpolates the color difference component C "at the original position P ⁇ to obtain at least the color difference component C at the pixel position P.
  • the color misregistration suppressing unit generates the reference color component at the pixel position P by interpolation processing. Further, the color misregistration suppression unit includes a correction target color component generation unit that generates a correction target color component at the pixel position P based on the reference color component and the color difference component C at the pixel position P.
  • the color misregistration suppressing unit interpolates the color difference component at the original position P ′′ to obtain a color difference component C for the pixel position of the reference color component. Further, the color misregistration suppressing unit includes the color difference component C Based on the reference color component, the correction target color component is generated based on the pixel position of the reference color component.
  • Another image processing apparatus of the present invention includes an input unit, a color shift blueprint acquisition unit, and a color shift suppression unit.
  • the input unit captures image data expressed by a plurality of types of color components including at least a correction target color component and a reference color component, and one type of color component per pixel.
  • the color misregistration information acquisition unit acquires or detects information related to the positional misalignment of the correction target color component.
  • the color misregistration suppressing unit corrects the positional deviation of the correction target color component based on the information on the positional deviation.
  • the color misregistration suppressing unit corrects the color misregistration of the correction target color component based on the reference color component and the correction target color component. Further, the color misregistration suppressing unit generates image data in which one color component is arranged per pixel, in which the color misaligned correction target color component and the reference color component are arranged in pixels.
  • the image processing program of the present invention is a program for causing a computer to function as the image processing apparatus according to any one of claims 1 to 10.
  • the electronic camera according to the present invention includes the image processing device according to any one of the above ⁇ 1 >> to ⁇ : 10 >> and the image data obtained by imaging a subject and one pixel having one color component. Generate An imaging unit.
  • the image processing device is characterized in that the image data generated by the imaging unit is processed by the image processing device to correct the color misregistration.
  • the image processing apparatus of the present invention is an image processing method for performing the same image processing as in the above ⁇ 1 >>.
  • Another image processing method of the present invention is an image processing method for performing the same image processing as the above ⁇ 7 >>.
  • the present invention refers to another color component (reference color component) in the correction of the positional deviation of the correction target color component of image data composed of pixels from which at least one color component is missing. Therefore, even when the pixel density of the correction target color component is low, the reference pixel interval can be substantially narrowed by referring to the base color component. In this way, by performing the positional deviation correction with a close pixel spacing, it is possible to perform the positional deviation correction while leaving the fine structure of the image satisfactorily.
  • reference color component reference color component
  • the technique of the present invention realizes high-quality magnification chromatic aberration correction with little loss of fine structure.
  • FIG. 1 is a block diagram showing a structure of a first embodiment.
  • FIG. 2 is a flowchart for explaining the operation of the image processing apparatus 11.
  • FIG. 3 is a diagram showing an R interpolation process for a position shift destination!
  • FIG. 4 is a diagram illustrating two types of G interpolation processing.
  • FIG. 5 is a diagram for explaining an R interpolation value ⁇ R >> in which chromatic aberration of magnification is roughly corrected.
  • FIG. 6 is an explanatory diagram showing a state in which the image structure of the R interpolation value ⁇ R >> is supplemented using the difference between the G interpolation values Zl and Z2.
  • FIG. 7 is a block diagram showing a structure of a second embodiment.
  • FIG. 8 is a flowchart (first half) for explaining the operation of the image processing apparatus 51.
  • FIG. 9 is a flowchart (second half) for explaining the operation of the image processing apparatus 51.
  • FIG. 10 is a diagram illustrating processing for obtaining a color difference component C ⁇ at the original position.
  • FIG. 11 is a diagram illustrating a process for obtaining a corrected R color component from a color difference component C and an interpolated G color component.
  • FIG. 1 is a block diagram showing the structure of the first embodiment.
  • an electronic camera 1 is configured to include an imaging unit 10 and an image processing device 11.
  • the imaging unit 10 captures a subject via a photographing optical system (not shown) and generates RAW data.
  • This RAW data is image data in which RGB color components are arranged in a Bayer array.
  • the image processing device 11 corrects the chromatic aberration of magnification of the RAW data and outputs corrected raw data.
  • the image processing apparatus 11 has the following configuration.
  • Color misalignment information acquisition unit 14 Acquires or detects position misalignment information due to chromatic aberration of magnification (data indicating differences in image magnification of each color component and on-screen distribution of position misalignment, etc.).
  • Similar direction determination unit 15 ⁇ Determines the local similar direction of the image structure.
  • the similar direction may be determined in consideration of the positional deviation of the lateral chromatic aberration by the method described in the pamphlet of International Publication WO03Z058554.
  • the determination of the similar direction may be easily performed only between the same colors. For example, if the similarity direction includes only the G color component, the similarity direction can be determined without being affected by the lateral chromatic aberration.
  • Position shift correction unit 16 The R color component and B color component in RAW data are subjected to simple positional shift correction by interpolation processing, and the R color component and B color component with coarse correction of chromatic aberration of magnification are obtained. Output.
  • Image structure extraction unit 17 Instead of the image structure that disappears at the position shift correction unit 16, a G image component with a high pixel density and a fine image structure are extracted.
  • Image structure compensation unit 18 The fine structure of the G color component extracted by the image structure extraction unit 17 is compensated for the R color component and B color component with coarsely corrected magnification chromatic aberration, and the fine structure disappears. It produces a low amount of R, R color component and B color component.
  • FIG. 2 is a flowchart showing the processing procedure of the image processing apparatus 11.
  • Step SI RAW data is input to the WB correction unit 12.
  • Step S2 The WB correction unit 12 adjusts the white balance by changing the signal gain for each of the R color component and the B color component in the RAW data. Normally, this white balance is adjusted so that the signal levels of the RGB color components are averaged. By this adjustment, the signal level extracted from the G color component in step S10 and the signal level lost from the RB color component by the positional shift correction in step S5 can be roughly aligned. Subsequently, the gamma conversion unit 13 performs gamma correction on the RAW data after white balance adjustment.
  • Step S3 The color misregistration information acquisition unit 14 acquires or detects a blue misalignment of the R color component due to lateral chromatic aberration.
  • the color shift information acquisition unit 14 can acquire the position shift information from communication information with the shooting optical system and shooting information attached to the RAW data. It is also possible to detect misalignment information by detecting the edge position deviation width between color components from RAW data.
  • Step S4 The positional deviation correction unit 16 obtains the positional deviation destination 3 of the chromatic aberration of magnification for the pixel position P in which the R color component is arranged in the RAW data using the positional deviation information (see FIG. 3). ).
  • Step S5 The R color component at the position shift destination is the R color component that appears at the pixel position ⁇ without any lateral chromatic aberration. Therefore, as shown in FIG. 3, the positional deviation correction unit 16 interpolates the R component in the vicinity, and obtains the R interpolation value ⁇ R >> of the positional deviation destination! ⁇ . In this interpolation process, a known interpolation technique such as bicubic or linear interpolation can be used. The position shift correction unit 16 uses the R interpolation value ⁇ R >> as a simple correction value for the pixel position P to compensate for the image structure. Output to padding unit 18.
  • Step S6 The image structure extraction unit 17 obtains the position of the neighboring R pixel (position Q ′ shown in FIG. 4) used during the interpolation of the R interpolation value ⁇ R >> from the positional deviation correction unit 16.
  • the image structure extraction unit 17 obtains a position (original position Q shown in FIG. 4) before the position shift occurs for the R color component at the position Q ′ based on the position shift information.
  • Step S7 The R light and G light that should originally reach the same image height position on the imaging surface are displaced by the double chromatic aberration, one R light reaches the position, and the other G light is the original. Reach position Q. Therefore, the image structure indicated by the group of R color components at position ⁇ and the image structure indicated by the group of G color components at original position Q are image structures that should overlap the same image position. 17 calculates an interpolated value G for each of the original positions Q by performing an interpolation process using a G color component having a high pixel density. As the interpolation processing here, interpolation processing such as bicubic or linear interpolation, or interpolation processing using the similarity determination result by the similar direction determination unit 15 is preferable.
  • Step S8 The image structure extraction unit 17 further interpolates using each interpolation value G of the original position Q to obtain a G interpolation value Z2 of the pixel position P.
  • This G interpolation value Z2 is the result of rough interpolation under the same conditions (reference interval, image structure of the same image position) as the R interpolation value ⁇ R >>.
  • Step S9 The image structure extraction unit 17 performs high-precision G interpolation processing using similarity discrimination to obtain a high-precision G interpolation value Z1 at the pixel position P.
  • Step S10 The image structure extraction unit 17 extracts the image structure of the G color component that has disappeared with the coarse and G interpolation values Z2 from the difference between the two types of G interpolation results Z1 and Z2. As the difference here, the difference between Z1 and Z2 may be calculated, or a value corresponding to the ratio of Z1 and Z2 may be obtained.
  • Step S11 In many natural images, the image structure of each color component shows a similar tendency. Therefore, the image structure obtained in step S10 is very similar to the image structure of the R color component lost from the R interpolation value ⁇ R >>.
  • the image structure compensation unit 18 compensates the difference between Z1 and Z2 obtained in step S10 for the R interpolation value ⁇ R >> obtained in step S5 to generate a corrected R color component.
  • the difference in step S10 may be added as it is to the R interpolation value ⁇ R >>. You can also multiply the R interpolation value ⁇ R >> by multiplying the difference in step S10 by the effect adjustment weighting factor.
  • a limit hard limit or soft limit such as a logarithmic curve
  • the difference in step S10 may be multiplied by the R interpolation value ⁇ R >>.
  • Step S12 For the B color component in the RAW data, the same processing as in steps S3 to S11 is performed to generate a corrected B color component.
  • Step S13 The image structure compensation unit 18 outputs RAW data in which corrected R color components, corrected B color components, and G color components are arranged in pixels.
  • FIG. 5 is a diagram for explaining how to obtain the R interpolation value ⁇ R >> in which the lateral chromatic aberration is roughly corrected.
  • the fine undulations are largely lost from the R interpolation value ⁇ R >>.
  • FIG. 6 is a diagram for explaining how the G interpolation values Zl and Z2 are obtained from the G color component.
  • the G interpolation value Z2 is a value processed under the same conditions (reference interval and image structure) as the calculation of the R interpolation value ⁇ R >>. Therefore, the G interpolation value Z2 and the R interpolation value ⁇ R >> show similar trends. In particular, since interpolation processing is performed at the same reference interval, the G interpolation value Z2 and the R interpolation value ⁇ R >> are very similar in terms of the disappearance of the high frequency spatial frequency components.
  • the G interpolation value Z2 and the R interpolation value ⁇ R ⁇ are generated by interpolating the image structure that should essentially overlap the same position, so the topological features of the undulations are also very similar.
  • the pixel density in the RAW data is inherently high, and it is possible to enjoy the similarity determination. Therefore, apart from the G interpolation value Z2, which is a coarse interpolation result, a highly accurate G interpolation value Z1 can be obtained.
  • the data format of RAW data to be handled is the same regardless of whether magnification chromatic aberration correction is applied or not. For this reason, it is not necessary to switch the basic processing configuration in the subsequent processing unit (not shown), whether the magnification chromatic aberration correction is applied or not applied. As a result, the overall circuit scale can be reduced. In addition, it is possible to keep the entire image processing trend the same whether the magnification chromatic aberration correction is applied or not.
  • FIG. 7 is a block diagram showing the structure of the second embodiment.
  • the same number is attached
  • the electronic camera 5 includes an imaging unit 10 and an image processing device 51.
  • the image processing apparatus 51 has the following configuration.
  • G interpolation unit 31 ⁇ ' Interpolates G color components in RAW data.
  • Color difference generation unit 32 ⁇ 'R Generates color difference components from (B) color components and interpolation G color components.
  • Color difference interpolation unit 33 ⁇ Interpolates the color difference component C ⁇ to generate a color difference component C in which the positional deviation of lateral chromatic aberration is corrected.
  • RB generation unit 34 Generates RAW data or image data from the color difference component C and the interpolated G color component that corrects the positional deviation of lateral chromatic aberration.
  • FIGS. 8 and 9 are flowcharts for explaining the operation of the image processing device 51.
  • FIG. The specific operation of the second embodiment will be described below along the step numbers in FIGS. 8 and 9.
  • Steps S31 to S33 The same processing as Steps S1 to S3 of the first embodiment
  • Step S34 The G interpolation unit 31 obtains the original position P ⁇ before the positional deviation for the pixel position P having the R color component of the RAW data using the positional deviation information (see FIG. 10).
  • Step S35 The G interpolation unit 31 performs an interpolation process on the G color component of the RAW data.
  • the interpolation G color component of these original positions P ⁇ is obtained.
  • the interpolation processing here is preferably high-precision interpolation processing using similarity discrimination.
  • Step S36 The color difference generation unit 32 obtains a color difference component C ⁇ from the R color component at the pixel position P and the interpolated G color component at the original position P ⁇ (see FIG. 10).
  • This chrominance component is the chrominance component that originally appears at the original position P ⁇ if there is no lateral chromatic aberration.
  • Step S37 When only the magnification chromatic aberration correction is performed, the image processing apparatus 51 shifts the operation to Step S38. On the other hand, if color interpolation processing is also performed, step S
  • Step S38 The G interpolation unit 31 performs an interpolation process for the G color component, and obtains an interpolation G color component at the pixel position P where the R color component is located.
  • interpolation processing here, high-precision interpolation processing using similarity discrimination is preferred.
  • Step S39 On the other hand, the color difference interpolation unit 33 interpolates the color difference component at the original position P ⁇ to generate the color difference component C at the pixel position P (see FIG. 11).
  • Step S40 The RB generation unit 34 generates a corrected R color component based on the interpolation G color component and the color difference component C at the pixel position P (see FIG. 11). For example, use the following formula to find the corrected R color component.
  • Step S41 The same processing as steps S33 to S40 is performed for the B color component in the RAW data to generate a corrected B color component.
  • Step S42 The RB generation unit 34 outputs RAW data in which the corrected R color component, corrected B color component, and G color component are arranged in pixels.
  • the image processing device 51 corrects the chromatic aberration of magnification for the RAW data. Complete the process.
  • Step S43 After step S43, magnification chromatic aberration correction and color interpolation processing are performed together. Therefore, the G interpolation unit 31 interpolates the G color component in the RAW data and obtains the G color component for all pixels. In this correction, it is preferable to perform highly accurate interpolation processing using similarity discrimination.
  • Step S44 The color difference interpolation unit 33 interpolates the color difference component C ⁇ at the original position and generates the color difference component C for all pixels.
  • Step S45 The RB generation unit 34 generates corrected R color components of all pixels based on the G color components and color difference components C of all pixels.
  • Step S46 The same processing as in steps S33 to S37 and steps S43 to S45 is performed for the B color component in the RAW data to generate corrected B color components for all pixels.
  • Step S47 The RB generation unit 34 outputs image data having a corrected R color component, a corrected B color component, and a G color component for each pixel.
  • the image processing device 51 completes the magnification chromatic aberration correction and the color interpolation processing.
  • the color difference component C ⁇ is obtained after removing the positional deviation between the R color component and the G color component in advance. For this reason, there is almost no peak-like error in the color difference component C ⁇ , and the color difference can be obtained accurately.
  • the interpolation value is calculated using G color components that exist at high density, an accurate interpolation value can be calculated in the vicinity of the Nyquist frequency, and the positional deviation can be corrected with high accuracy. In addition, moiré and false color generated in the Nyquist structure can be suppressed.
  • the high-frequency structure of each RGB color component shows a similar tendency. Therefore, when the color difference component is generated by the difference or ratio of each color component, the high frequency structure of the color difference component tends to be much smaller than the RGB high frequency structure. Therefore, even if some high-frequency information is lost when interpolating the color difference component to obtain the color difference component C, the final This has little effect on the image quality.
  • a corrected R color component is generated by combining the interpolated color difference component C and the G color component.
  • the fine image structure of the G color component is reflected in the corrected R color component, it is possible to obtain a corrected R color component having a fine image structure.
  • This processing brings about the same effect as the processing for providing the fine structure by supplementing the roughly corrected R color component with the structural information extracted from the G color component as in the first embodiment.
  • the same processing is performed for the B color component.
  • the same processing is performed for the B color component.
  • the image after magnification chromatic aberration correction is output in the form of RAW data. Therefore, it is not necessary for the processing unit (not shown) in the subsequent stage to switch the basic processing configuration as long as it supports RAW data, regardless of whether the magnification chromatic aberration correction is applied. As a result, the overall circuit scale can be reduced. In addition, it is possible to keep the entire image processing tendency the same regardless of whether the chromatic aberration correction is applied or not.
  • steps S43 to S47 of the second embodiment it is possible to perform magnification chromatic aberration correction and color interpolation processing together.
  • wasteful calculation processing such as color difference calculation
  • steps S35 and S36 of the second embodiment a color difference component C "at the original position P ⁇ is generated.
  • the pixel coordinates of the original position P ⁇ are not necessarily integer values. It is difficult to record the component C ⁇ on the image memory, in this case, instead of associating it with the original position P ⁇ , for example, the color difference component C ⁇ is recorded in association with the pixel position P.
  • steps S35 and S36 are as follows: Interpretation is also possible.
  • the G component at the position of the original position P ⁇ is generated by interpolation, and the value of the G component is shifted to the pixel position P (for example, stored in the memory address of the pixel position P).
  • the shifted color difference Component C ⁇ is generated at pixel position P.
  • Step S39 or Step S44 corrects the positional deviation by shifting the color difference component C "of the pixel position P to the original position P ⁇ , and then corrects the positional deviation for the pixel position P or all the pixels. This is the process of generating the correct and chrominance component C by interpolation.
  • the processing target of the second embodiment is not limited to the bay image.
  • image data generated by a two-plate image sensor is composed of an image sensor with a G filter arranged on the entire surface and an image sensor with an RB filter arranged in a pinecone, image data missing either the R component or B component per pixel Generated.
  • RAW data with an RGB Bayer array has been described.
  • the color component is not limited to RGB.
  • the color array pattern of RAW data is not limited to the Bayer array.
  • color components with coarse pixel density in RAW data are used as correction target color components, and color components with fine pixel density are used as the basis.
  • the quasi-color component By using the quasi-color component, the same effect as that of the above-described embodiment can be obtained.
  • the above-described RAW data image processing method is applied to an image server on the Internet.
  • the present invention is a technique that can be used for image processing of RAW data.

Abstract

 本発明の画像処理装置は、補正対象色成分と基準色成分とを少なくとも含み、1画素当たり1種類の色成分を配した画像データを取り込む。本装置は、この補正対象色成分の位置ズレに関する情報を取得または検出し、補正対象色成分の位置ズレを補正する。この補正において補正対象色成分から消失する画像構造を、基準色成分から抽出した画像構造で補う。                                                                                 

Description

明 細 書
色ズレを補正する画像処理装置、画像処理プログラム、画像処理方法、 および電子カメラ
技術分野
[0001] 本発明は、画像の倍率色収差を抑制する画像処理技術に関する。
背景技術
[0002] 一般に、電子カメラでは、撮影光学系の倍率色収差によって、撮像された画像に色 ズレを生じることが知られている。このような色ズレを、画像処理によって補正する技 術が従来提案されている。
例えば、特許文献 1では、 RAWデータの欠落色成分を色補間処理で生成する際 に、補間係数を操作することで倍率色収差の補正も同時に行っている。
また例えば、特許文献 2では、色ズレ補正によって失われる先鋭さを補うための一 方法が開示されている。すなわち、補正対象色成分 (例えば R、 B成分)のズレ量を表 す補間係数データをまず求める。次に、この補間係数データの相補的係数を求め、 その相補的係数を基準色成分 (例えば G成分)に乗ずる。この乗算結果を補正色成 分に加えることで、先鋭さを補う。
また例えば、特許文献 3では、 RAWデータの G成分を、 R成分や B成分の倍率色 収差に合わせて変倍する。この変倍後の G成分を R成分や B成分から減算することに より、色ズレの補正された色差成分 (R—G) , (B— G)を生成する方法が開示されて いる。この方法では、特に、無彩色の画像領域において適切な補正がなされる。 なお、『RAWデータ』は、請求項の『1画素当たり 1種類の色成分を有する画像デ ータ』に対応する。
特許文献 1:日本出願の特開 2001— 186533号公報 (段落 0043)
特許文献 2 :日本出願の特許第 2552742号公報
特許文献 3 :日本出願の特開 2002— 112276号公報
発明の開示
発明が解決しょうとする課題 [0003] 上述した特許文献 1では、 RAWデータが元から有する色成分についても、倍率色 収差の補正のために補間処理が行われる。例えば、一般的な RGBべィヤー配列の RAWデータであれば、 RAWデータ中の R色成分や B色成分に対して補間処理が 行われる。
し力、し、 RAWデータ中の R色成分や B色成分は、画像全体の 1Z4の画素数しかな ぐ画素密度が比較的粗い。そのため、これら画素密度の粗レ、 R色成分や B色成分 に対して、そのまま倍率色収差補正(ここでは単純な補間処理)を実施すると、 R色成 分および B色成分の微細構造がたちまち消失してしまう。
一方、特許文献 2では、 RB位置の相補的係数を G成分に乗じるため、 R成分また は B成分の画素位置に、 G成分が存在する必要がある。そのため、べィヤー配列など の RAWデータに対して、この方法を直に適用することはできない。
また一方、特許文献 3では、 G成分を、倍率色収差によってずれた R成分や B成分 に合わせて変倍する。そのため、生成される色差成分 (R— G) , (B— G)は、元の G 成分に対して画素位置がずれる。そのため、有彩色の色構造がある画像領域では、 G成分と色差成分との間の位置ズレを無視できず、倍率色収差は正確に補正されな レ、。さらには、この位置ズレの影響によって、有彩色の色構造が破壊される危険性も ある。
以上の理由から、上述した従来技術では、 RAWデータに対して、高画質に倍率色 収差を補正することが困難であった。
[0004] そこで、本発明は、 RAWデータに対して、高画質に倍率色収差を補正することを 目的とする。
課題を解決するための手段
[0005] 《1》 本発明の画像処理装置は、入力部、色ズレ情報取得部、および色ズレ抑制部 を備える。
入力部は、補正対象色成分と基準色成分とを少なくとも含む複数種の色成分で表 され、 1画素当たり 1種類の色成分を配した画像データを取り込む。
色ズレ情報取得部は、補正対象色成分の位置ズレに関する情報を取得または検 出する。 色ズレ抑制部は、位置ズレに関する情報に基づき、補正対象色成分の位置ズレを 補正する。
なお、上記の色ズレ抑制部は、位置ズレ補正部、画像構造抽出部、および画像構 造補填部を備える。
位置ズレ補正部は、位置ズレに関する情報に基づき、補正対象色成分の位置ズレ を補正する。
画像構造抽出部は、基準色成分から画像構造を抽出する。
画像構造補填部は、位置ズレ補正によって補正対象色成分から消失する画像構 造を、画像構造抽出部で抽出した基準色成分の画像構造で補う。
《2》 なお好ましくは、画像構造抽出部は、補正対象色成分よりも画素密度が高い色 成分を基準色成分とする。
《3》 また好ましくは、位置ズレ補正部は、補正対象色成分の画素位置 Pの位置ズレ 先! ^ について補正対象色成分を補間処理で求めて、画素位置 Pの補正対象色成 分とする。
画像構造抽出部は、画素位置 Pの基準色成分 Z1を補間処理で求める。さらに、画 像構造抽出部は、位置ズレ補正部の補間処理で参照する画素間隔と同じ参照間隔 の補間処理を実施して画素位置 Pの基準色成分 Z2を生成する。画像構造抽出部は 、このように求めた両補間結果 Zl, Z2の差異を抽出する。
一方、画像構造補填部は、位置ズレ補正部で位置ズレを補正された補正対象色成 分に、画像構造抽出部で求めた両補間結果 Zl, Z2の差異を付加する。
《4》 なお好ましくは、画像構造抽出部は、位置ズレ先 I3' の補間処理に使用する補 正対象色成分について位置ズレを起こす前の元位置 Qを得る。画像構造抽出部は、 この元位置 Qの基準色成分を補間して、画素位置 Pの基準色成分 Z2を求める。 《5》 本発明の別の画像処理装置は、入力部、色ズレ情報取得部、および色ズレ抑 制部を備える。
入力部は、補正対象色成分と基準色成分とを少なくとも含む複数種の色成分で表 され、 1画素当たり少なくとも 1種類の補正対象色成分が欠落した画像データを取り 込む。 色ズレ情報取得部は、補正対象色成分の位置ズレに関する情報を取得または検 出する。
色ズレ抑制部は、位置ズレに関する情報に基づき、補正対象色成分の位置ズレを 補正する。
なお、上記の色ズレ抑制部は、基準色成分位置ずらし部、色差算出部、および色 差位置ズレ補正部を備える。
基準色成分位置ずらし部は、位置ズレに関する情報に基づき、補正対象色成分の 位置ズレに合わせて基準色成分の位置をずらす。
色差算出部は、基準色成分ずらし部によって位置のずれた基準色成分と、補正対 象色成分とに基づいて、位置のずれた色差を求める。
色差位置ズレ補正部は、位置ズレに関する情報に基づき、色差の位置ズレを補正 する。
《6》 なお好ましくは、色差位置ズレ補正部は、基準色成分位置ずらし部でずらす前 の前記基準色成分の画素位置に合わせて、色差の位置ズレを補正する。
7》 本発明の別の画像処理装置は、入力部、色ズレ隋報取得部、および色ズレ抑 制部を備える。
入力部は、補正対象色成分と基準色成分とを少なくとも含む複数種の色成分で表 され、 1画素当たり少なくとも 1種類の補正対象色成分が欠落した画像データを取り 込む。
色ズレ情報取得部は、補正対象色成分の位置ズレに関する情報を取得または検 出する。
色ズレ抑制部は、位置ズレに関する情報に基づき、補正対象色成分の位置ズレを 補正する。
なお、上記の色ズレ抑制部は、基準色成分補間部、色差算出部、および色差補間 部を備える。
基準色成分補間部は、位置ズレに関する情報に基づき、補正対象色成分の画素 位置 Pについて位置ズレを起こす前の元位置 P" を得る。さらに、基準色成分補間部 は、元位置 P〃 における基準色成分を補間処理により生成する。 色差算出部は、『画素位置 Pの補正対象色成分』と『元位置 の基準色成分』とか ら、元位置 P〃 における色差成分 c〃 を求める。
色差補間部は、元位置 P〃 における色差成分 C" を補間して、少なくとも画素位置 Pの色差成分 Cを求める。
《8》 なお好ましくは、色ズレ抑制部は、画素位置 Pの基準色成分を補間処理により 生成する。さらに、色ズレ抑制部は、画素位置 Pの基準色成分および色差成分 Cに 基づレ、て、画素位置 Pの補正対象色成分を生成する補正対象色成分生成部を備え る。
《9》 また好ましくは、色ズレ抑制部は、元位置 P" における色差成分 を補間して 、基準色成分の画素位置について色差成分 Cを求める。さらに、色ズレ抑制部は、色 差成分 Cと基準色成分に基づレ、て、基準色成分の画素位置にっレ、て補正対象色成 分を生成する。
《10》 本発明の別の画像処理装置は、入力部、色ズレ青報取得部、および色ズレ 抑制部を備える。
入力部は、補正対象色成分と基準色成分とを少なくとも含む複数種の色成分で表 され、 1画素当たり 1種類の色成分を配した画像データを取り込む。
色ズレ情報取得部は、補正対象色成分の位置ズレに関する情報を取得または検 出する。
色ズレ抑制部は、位置ズレに関する情報に基づき、補正対象色成分の位置ズレを 補正する。
なお、上記の色ズレ抑制部は、基準色成分と補正対象色成分に基づいて補正対 象色成分の色ズレを補正する。さらに、色ズレ抑制部は、色ズレ補正済みの補正対 象色成分と、基準色成分とを画素配列した、 1画素当たり 1種類の色成分を配した画 像データを生成する。
《11》 本発明の画像処理プログラムは、コンピュータを、請求項 1ないし請求項 10の いずれ力 4項に記載の画像処理装置として機能させるためのプログラムである。
《12》 本発明の電子カメラは、上記《1》〜《: 10》のいずれ力 4項に記載の画像処理 装置と、被写体を撮像して、 1つの画素が 1つの色成分を有する画像データを生成す る撮像部とを備える。
上記構成において、画像処理装置は、撮像部で生成された画像データを画像処 理装置で処理して色ズレを補正することを特徴とする。
《13》 本発明の画像処理装置は、上記《1》と同じ画像処理を実施する画像処理方 法である。
《14》 本発明の別の画像処理方法は、上記《7》と同じ画像処理を実施する画像処 理方法である。
発明の効果
[0006] 本発明は、少なくとも 1つの色成分が欠落した画素から成る画像データの補正対象 色成分の位置ズレ補正において、別の色成分 (基準色成分)を参照する。したがって 、補正対象色成分の画素密度が粗くても、基準色成分を参照することで、位置ズレ 補正において参照する画素間隔を実質的に密にすることができる。このように画素間 隔を密にして位置ズレ補正を実施することにより、画像の微細構造を良好に残した位 置ズレ補正が可能となる。
したがって、本発明の技術により、微細構造の消失の少ない高画質な倍率色収差 補正が実現する。
なお、本発明における上述した目的およびそれ以外の目的は、以下の説明と添付 図面とによって容易に確認することができる。
図面の簡単な説明
[0007] [図 1]第 1実施形態の構造を示すブロック図である。
[図 2]画像処理装置 11の動作を説明する流れ図である。
[図 3]位置ズレ先! の R補間処理を示す図である。
[図 4]2種類の G補間処理を説明する図である。
[図 5]倍率色収差を粗く補正した R補間値《R》を説明する図である。
[図 6]G補間値 Zl , Z2の差異を用いて、 R補間値《R》の画像構造を補う様子を示す 説明図である。
[図 7]第 2実施形態の構造を示すブロック図である。
[図 8]画像処理装置 51の動作を説明する流れ図(前半)である。 [図 9]画像処理装置 51の動作を説明する流れ図(後半)である。
[図 10]元位置 の色差成分 C〃 を求める処理を説明する図である。
[図 11]色差成分 Cと補間 G色成分から補正済み R色成分を求める処理を説明する図 である。
発明を実施するための最良の形態
[0008] 《第 1実施形態》
[第 1実施形態の構成説明]
図 1は、第 1実施形態の構造を示すブロック図である。
図 1において、電子カメラ 1は、撮像部 10および画像処理装置 11を備えて構成さ れる。この撮像部 10は、撮影光学系(不図示)を介して被写体を撮像し、 RAWデー タを生成する。この RAWデータは、 RGB色成分をべィヤー配列した画像データであ る。画像処理装置 11は、この RAWデータの倍率色収差を補正し、補正済みの RA Wデータを出力する。
この画像処理装置 11は、次のような構成を備える。
[0009] (1)WB補正部 12 · 'RAWデータに対してホワイトバランス調整処理を実施する。
(2)ガンマ変換部 13 · 'RAWデータに対してガンマ変換を実施する。
(3)色ズレ情報取得部 14 · ·倍率色収差による位置ズレ情報 (各色成分の像倍率の 差や、位置ズレの画面内分布を示すデータなど)を取得または検出する。
(4)類似方向判定部 15 · ·画像構造の局所的な類似方向を判定する。なお、国際公 開 WO03Z058554号パンフレットに記載の方法により、倍率色収差の位置ズレを 考慮した類似方向の判定を実施してもよい。また、同色間のみで簡易に類似方向の 判定を実施してもよい。例えば、 G色成分のみの類似方向であれば、倍率色収差の 影響を受けずに類似方向を判定することができる。
(5)位置ズレ補正部 16 · 'RAWデータ中の R色成分や B色成分について、補間処理 による簡易な位置ズレ補正を実施し、倍率色収差を粗く補正した R色成分や B色成 分を出力する。
(6)画像構造抽出部 17 · ·位置ズレ補正部 16で消失する画像構造の代わりに、画素 密度の高い G色成分力 微細な画像構造を抽出する。 (7)画像構造補填部 18 · ·倍率色収差を粗く補正した R色成分や B色成分に対し、画 像構造抽出部 17で抽出した G色成分の微細画像構造を補って、微細構造の消失の 少なレ、R色成分および B色成分を生成する。
[0010] [第 1実施形態の動作説明]
図 2は、画像処理装置 11の処理手順を示す流れ図である。
以下、図 2のステップ番号に沿って、第 1実施形態の具体的な動作について説明す る。
[0011] ステップ SI : WB補正部 12に RAWデータが入力される。
[0012] ステップ S2 : WB補正部 12は、 RAWデータ中の R色成分および B色成分について 、信号ゲインをそれぞれ変更して、ホワイトバランスを調整する。通常、このホワイトバ ランスは、 RGB色成分の信号レベルを平均的に揃える方向に調整が行われる。この 調整により、ステップ S10で G色成分から抽出する信号レベルと、ステップ S5の位置 ズレ補正で RB色成分から消失する信号レベルとをおおよそ揃えておくことができる。 続いて、ガンマ変換部 13は、ホワイトバランス調整後の RAWデータに対してガンマ ネ 正を施す。
[0013] ステップ S3 : 色ズレ情報取得部 14は、倍率色収差による R色成分の位置ズレ青報 を取得または検出する。例えば、この色ズレ情報取得部 14は、撮影光学系との通信 情報や、 RAWデータに付帯する撮影情報から、この位置ズレ情報を取得することが できる。また、 RAWデータから色成分間のエッジ位置のずれ幅を検出するなどして、 位置ズレ情報を検出することもできる。
[0014] ステップ S4 : 位置ズレ補正部 16は、位置ズレ情報を用いて、 RAWデータ中で R色 成分が配列される画素位置 Pについて、倍率色収差の位置ズレ先! 3 を求める(図 3 参照)。
[0015] ステップ S5 : この位置ズレ先 の R色成分こそが、倍率色収差の無い状態で画素 位置 Ρに現れる R色成分となる。そこで、位置ズレ補正部 16は、図 3に示すように、近 傍の R色成分を補間し、位置ズレ先! ^ の R補間値《R》を求める。ここでの補間処理 には、バイキュービック、線形補間など公知の補間技術を使用することができる。位置 ズレ補正部 16は、この R補間値《R》を、画素位置 Pの簡易補正値として画像構造補 填部 18へ出力する。
[0016] ステップ S6 : 画像構造抽出部 17は、 R補間値《R》の補間時に使用した近傍の R画 素の位置(図 4に示す位置 Q' )を位置ズレ補正部 16から得る。画像構造抽出部 17 は、位置ズレ情報により、これら位置 Q' の R色成分について位置ズレを起こす前の 位置(図 4に示す元位置 Q)を求める。
[0017] ステップ S7 : 撮像面上において本来同じ像高位置に到達すべき R光と G光は、倍 率色収差によって変位し、一方の R光は位置 に到達し、もう一方の G光は元位置 Qに到達する。したがって、位置^ の R色成分の群が示す画像構造と、元位置 Qの G色成分の群が示す画像構造とは、本来は同じ像位置に重なるべき画像構造である そこで、画像構造抽出部 17は、これら元位置 Qのそれぞれについて、画素密度の 高い G色成分による補間処理を実施して補間値 Gを求める。ここでの補間処理には、 バイキュービックや線形補間などの補間処理や、または類似方向判定部 15による類 似性判別結果を用いた補間処理などが好ましレ、。
[0018] ステップ S8 : 画像構造抽出部 17は、元位置 Qのそれぞれの補間値 Gを用いて更に 補間することにより、画素位置 Pの G補間値 Z2を求める。この G補間値 Z2は、 R補間 値《R》と同じ条件 (参照間隔、同じ像位置の画像構造)で粗く補間した結果となる。
[0019] ステップ S9 : 画像構造抽出部 17は、類似性判別を利用した高精度な G補間処理を 実施して、画素位置 Pの高精度な G補間値 Z1を求める。
[0020] ステップ S10 : 画像構造抽出部 17は、 2種類の G補間の結果 Z1と Z2との差異から 、粗レ、 G補間値 Z2で消失した G色成分の画像構造を抽出する。ここでの差異は、 Z1 と Z2との差分を演算してもよいし、また Z1と Z2の比に応じた値を求めてもよい。
[0021] ステップ S11 : 自然画の多くは、各色成分の画像構造は類似した傾向を示す。した がって、ステップ S10で求めた画像構造は、 R補間値《R》から消失した R色成分の画 像構造とよく類似する。
そこで、画像構造補填部 18は、ステップ S5で求めた R補間値《R》に、ステップ S10 で求めた Z1と Z2の差異を補って、補正済み R色成分を生成する。
ここでの演算は、ステップ S10の差異を、 R補間値《R》にそのまま加算してもよい。 また、ステップ S10の差異に、効果調整用の重み係数を乗じた上で、 R補間値《R》に カロ算してもよレ、。さらに、過度な誤差が生じないよう、ステップ S10の差異にリミット(ハ 一ドリミット、または対数カーブのようなソフトリミットなど)をかけた上で、 R補間値《R》 に加算してもよい。また、加算の代わりに、ステップ S10の差異を R補間値《R》に乗算 してもよい。
[0022] ステップ S12 : RAWデータ中の B色成分についても、ステップ S3〜S11と同じ処理 を実施し、補正済み B色成分を生成する。
[0023] ステップ S13 : 画像構造補填部 18は、補正済み R色成分、補正済み B色成分、およ び G色成分を画素配列した RAWデータを出力する。
[0024] [第 1実施形態の効果など]
図 5は、倍率色収差を粗く補正した R補間値《R》を求める様子を説明する図である 。この処理では、 R色成分の画素密度が粗いため、図 5に示すように、微細な起伏が R補間値《R》から大部分消失してしまう。
[0025] 図 6は、 G色成分から G補間値 Zl , Z2を求める様子を説明する図である。
G補間値 Z2については、 R補間値《R》の算出と同一条件 (参照間隔および画像構 造)で処理した値である。そのため、 G補間値 Z2と R補間値《R》とは類似した傾向を 示す。特に、同じ参照間隔で補間処理を行うため、 G補間値 Z2と R補間値《R》とは、 高域の空間周波数成分の消失具合がよく類似する。また、 G補間値 Z2と R補間値〈く R 》とは、本来同じ位置に重なるべき画像構造を補間して生成するため、起伏の位相的 な特徴もよく類似する。
[0026] ところで、 G色成分については、 RAWデータ中の画素密度が本来高ぐかつ類似 性判断をカ卩味することも可能となる。そのため、粗い補間結果である G補間値 Z2とは 別に、高精度な G補間値 Z1を求めることができる。
[0027] したがって、 2種類の補間結果 Zl , Z2の差異を求めることによって、 G補間値 Z2の 算出過程で消失した局所的な起伏を求めることができる。この起伏から、 R補間値〈く R 》の算出過程で消失した画像構造を補うことができる。その結果、倍率色収差による 位置ズレを補正しつつ、かつ画像構造をよく保存した補正済み R色成分を得ることが できる。 [0028] さらに、第 1実施形態では、同様の処理を B色成分についても実施し、補正済み B 色成分を求める。このような倍率色収差補正により、倍率色収差による位置ズレがな ぐかつ画像構造をよく保存した RAWデータを生成することが可能になる。
[0029] また、撮影光学系の種類によっては倍率色収差が充分に小さぐ倍率色収差補正 が不要となる場合もある。そのため、電子カメラ 1内では倍率色収差補正の適用 Z非 適用を柔軟に変更できることが好ましい。第 1実施形態は、倍率色収差補正の適用 /非適用のいずれであっても、取り扱う RAWデータのデータ形式は変わらなレ、。そ のため、後段の処理部(不図示)では、倍率色収差補正の適用/非適用のどちらで も基本的な処理構成を切り替える必要がない。その結果、全体の回路規模を小さく できる。また、倍率色収差補正の適用 Z非適用のどちらにおいても、全体の画像処 理の傾向を同一に保つことが可能になる。
[0030] その上、ナイキスト周波数構造における色ズレも精度良く補正されるため、色補間 時の類似性判断の間違いや補間値算出誤差を低減することもできる。
次に、別の実施形態について説明する。
[0031] 《第 2実施形態》
[第 2実施形態の構成説明]
図 7は、第 2実施形態の構造を示すブロック図である。なお、第 1実施形態(図 1)と 同じ構成については同一番号を付与し、ここでの重複説明を省略する。
図 7に示すように、電子カメラ 5は、撮像部 10および画像処理装置 51を備えて構成 される。この画像処理装置 51は、次の構成を備える。
[0032] (1) G補間部 31 · 'RAWデータ中の G色成分について補間処理を実施する。
(2)色差生成部 32 · 'R (B)色成分と補間 G色成分とから色差成分 を生成する。
(3)色差補間部 33 · ·色差成分 C〃 を補間して、倍率色収差の位置ズレを補正した 色差成分 Cを生成する。
(4) RB生成部 34· ·色差成分 Cと補間 G色成分とから、倍率色収差の位置ズレを補 正した RAWデータまたは画像データを生成する。
[0033] [第 2実施形態の動作説明]
図 8および図 9は、画像処理装置 51の動作を説明する流れ図である。 以下、図 8および図 9のステップ番号に沿って、第 2実施形態の具体的な動作につ いて説明する。
[0034] ステップ S31〜S33 : 第 1実施形態のステップ S1〜S3と同じ処理
[0035] ステップ S34 : G補間部 31は、位置ズレ情報を用いて、 RAWデータの R色成分を 有する画素位置 Pについて、位置ズレ前の元位置 P〃 を求める(図 10参照)。
[0036] ステップ S35 : G補間部 31は、 RAWデータの G色成分について補間処理を実施し
、これら元位置 P〃 の補間 G色成分を求める。ここでの補間処理には、類似性判別を 利用した高精度な補間処理が好ましい。
[0037] ステップ S36 : 色差生成部 32は、画素位置 Pの R色成分と、元位置 P〃 の補間 G色 成分とから、色差成分 C〃 を求める(図 10参照)。この色差成分 は、倍率色収差 が無ければ、元位置 P〃 に本来現れる色差成分である。
[0038] ステップ S37 : 画像処理装置 51は、倍率色収差補正のみを実施する場合、ステツ プ S38に動作を移行する。一方、色補間処理も併せて実施する場合には、ステップ S
43に動作を移行する。
[0039] ステップ S38 : G補間部 31は、 G色成分の補間処理を実施し、 R色成分が位置する 画素位置 Pの補間 G色成分を求める。ここでの補間処理には、類似性判別を利用し た高精度な補間処理が好ましレ、。
[0040] ステップ S39 : —方、色差補間部 33は、元位置 P〃 の色差成分 を補間して、画 素位置 Pの色差成分 Cを生成する(図 11参照)。
[0041] ステップ S40 : RB生成部 34は、画素位置 Pの補間 G色成分および色差成分 Cに基 づいて、補正済み R色成分を生成する(図 11参照)。例えば、下式を用いて補正済 み R色成分を求めてもょレ、。
補正済み R色成分 =色差成分 C +補間 G色成分
[0042] ステップ S41 : RAWデータ中の B色成分についても、ステップ S33〜S40と同じ処 理を実施し、補正済み B色成分を生成する。
[0043] ステップ S42 : RB生成部 34は、補正済み R色成分、補正済み B色成分、および G 色成分を画素配歹してなる RAWデータを出力する。
以上の動作により、画像処理装置 51は、 RAWデータに対する倍率色収差の補正 処理を完了する。
[0044] ステップ S43 : ステップ S43以降は、倍率色収差補正および色補間処理を併せて 実施する。そのため、 G補間部 31は、 RAWデータ中の G色成分を補間し、全画素に ついて G色成分を求める。ここでの補正も類似性判別を利用した高精度な補間処理 を実施することが好ましい。
[0045] ステップ S44 : 色差補間部 33は、元位置 の色差成分 C〃 を補間して、全画素に っレヽて色差成分 Cを生成する。
[0046] ステップ S45 : RB生成部 34は、全画素の G色成分および色差成分 Cに基づいて、 全画素の補正済み R色成分を生成する。
[0047] ステップ S46 : RAWデータ中の B色成分についても、ステップ S33〜S37およびス テツプ S43〜S45と同じ処理を実施し、全画素の補正済み B色成分を生成する。
[0048] ステップ S47 : RB生成部 34は、画素ごとに、補正済み R色成分、補正済み B色成 分、および G色成分を有する画像データを出力する。
以上の動作により、画像処理装置 51は、倍率色収差補正および色補間処理を完 了する。
[0049] [第 2実施形態の効果など]
通常、倍率色収差を生じた画像から色差成分を求めると、色成分間の僅力な位置 ズレに起因して、色差成分にピーク状の誤差が多数発生する。
し力しながら、第 2実施形態では、 R色成分と G色成分の位置ズレを予め除去した 上で、色差成分 C〃 を求める。そのため、色差成分 C〃 に、ピーク状の誤差は殆ど生 じず、色差を正確に求めることができる。
[0050] また、高密度に存在する G色成分を用いて補間値を算出するので、ナイキスト周波 数近傍において正確な補間値を算出して高精度に位置ズレを補正でき、位置ズレが あるときにナイキスト構造部に発生するモアレや偽色を抑制できる。
[0051] また、 自然画の多くでは、 RGBの各色成分の高域構造は類似した傾向を示す。し たがって、各色成分の差または比によって色差成分を生成すると、色差成分の高域 構造は、 RGBの高域構造に比べて非常に小さくなる傾向がある。したがって、色差 成分 を補間して色差成分 Cを求める際に高域情報がある程度欠落しても、最終 的な画質にほとんど影響しなレ、。
[0052] さらに、第 2実施形態では、補間後の色差成分 Cと、 G色成分とを合わせることによ つて、補正済み R色成分を生成する。この処理において、 G色成分の微細画像構造 が補正済み R色成分に反映されるため、微細な画像構造を有する補正済み R色成分 を得ること力できる。
この処理は、第 1実施形態のように、 G色成分から抽出した構造情報を、粗く補正さ れた R色成分に補足して微細構造を与える処理と同じ効果をもたらす。
[0053] また、第 2実施形態では、同様の処理を B色成分について実施する。そのため、倍 率色収差による位置ズレがなぐかつ画像構造をよく保存した RAWデータまたは画 像データを生成することが可能になる。
[0054] さらに、第 2実施形態のステップ S38〜S42では、倍率色収差補正後の画像を RA Wデータの形態で出力する。そのため、後段の処理部(不図示)では、倍率色収差 補正の適用/非適用のどちらでも、 RAWデータに対応すればよぐ基本的な処理 構成を切り替える必要がない。その結果、全体の回路規模を小さくできる。また、倍 率色収差補正の適用/非適用のどちらにおいても、全体の画像処理の傾向を同一 に保つことが可能になる。
[0055] その上、ナイキスト周波数構造における色ズレも精度良く補正されるため、その後に 色補間を実施する際の類似性判断の間違いや補間値算出誤差を低減することがで きる。
[0056] 一方、第 2実施形態のステップ S43〜S47では、倍率色収差補正および色補間処 理を併せて実施することが可能になる。その結果、倍率色収差補正および色補間処 理を別々に実施するより、無駄な演算処理 (色差算出など)を省くことが可能になり、 処理速度の向上や、回路規模の縮小を達成できる。
[0057] なお、第 2実施形態のステップ S35, S36では、元位置 P〃 における色差成分 C" を生成する。この場合、元位置 P〃 の画素座標は、必ずしも整数値ではないため、色 差成分 C〃 を画像メモリ上に記録することは困難となる。この場合は、元位置 P〃 に 対応付ける代わりに、例えば、画素位置 Pに対応付けて色差成分 C〃 を記録すれば よレ、。この処理を前提とすると、ステップ S35, S36の処理については、以下のような 解釈も可能になる。
すなわち、元位置 P〃 の位置の G成分を補間生成し、その G成分の値を画素位置 P にずらす(例えば、画素位置 Pのメモリアドレスに記憶する)。この画素位置 Pの G成分 (位置をずらした基準色成分)と、画素位置 Pの R成分 (元から位置のずれている補間 対象色成分)との差分をとることにより、位置のずれた色差成分 C〃 を画素位置 P 生成する。
この解釈のもとでは、ステップ S39またはステップ S44は、画素位置 Pの色差成分 C " を元位置 P〃 にずらして位置ズレを補正した後、画素位置 Pまたは全画素につい て、位置ズレの補正された正しレ、色差成分 Cを補間生成する処理となる。
以上のような解釈は、第 2実施形態の動作説明とは一見異なる表現に見えるが、実 際には同等の処理である。
[0058] 《実施形態の補足事項》
なお、第 2実施形態ではべィャ画像の倍率色収差を補正する処理について説明し た。し力 ながら、第 2実施形態の処理対象はべィャ画像に限定されない。例えば、 2板式撮像素子で生成された画像データの処理も可能である。一般に、 2板式撮像 素子を、 Gフィルタを全面配置した撮像素子と、 RBフィルタを巿松配列した撮像素子 とから構成した場合、 1画素当たり R成分/ B成分のいずれかが欠落した画像データ が生成される。この種の画像データに対して第 2実施形態と同様に色ズレ補正を実 施することにより、補正後の R成分と B成分に対して G成分の微細構造情報を補う効 果が得られる。
[0059] また、上述した実施形態では、電子カメラ(画像処理装置を含む)の実施形態につ いて説明した。し力、しながら、本発明はこれに限定されるものではなレ、。上述した RA Wデータの処理(図 2,図 8、図 9参照)を、コンピュータ(画像処理プログラム)で実行 してもよい。
[0060] なお、上述した実施形態では、 RGBべィヤー配列の RAWデータについて説明し た。しかしながら、色成分は RGBに限定されるものではなレ、。また、 RAWデータの色 配列パターンはべィヤー配列に限定されるものではなレ、。一般的には、 RAWデータ 中の画素密度の粗い色成分を補正対象色成分とし、画素密度の細かい色成分を基 準色成分とすることによって、上述した実施形態と同様の効果を得ることができる。
[0061] さらに、上述した RAWデータの画像処理方法を、インターネット上の画像サーバー
(例えはアルバムサーバーなど)を用いてサービス提供することも可能である。
[0062] また、上述した実施形態では、倍率色収差に起因する色ズレを補正するケースに ついて説明した。し力 ながら、本発明はこれに限定されるものではなレ、。本発明は、 倍率色収差とは別の要因による色ズレを補正することも可能である。
[0063] なお、本発明は、その精神または主要な特徴から逸脱することなぐ他のいろいろ な形で実施することができる。そのため、前述の実施例はあらゆる点で単なる例示に 過ぎず、限定的に解釈してはならない。本発明の範囲は、特許請求の範囲によって 示すものであって、明細書本文には、なんら拘束されなレ、。さらに、特許請求の範囲 の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。
産業上の利用可能性
[0064] 以上説明したように、本発明は、 RAWデータの画像処理などに利用可能な技術で ある。

Claims

請求の範囲
[1] 補正対象色成分と基準色成分とを少なくとも含む複数種の色成分で表され、 1画素 当たり 1種類の前記色成分を配した画像データを取り込む入力部と、
前記補正対象色成分の位置ズレに関する情報を取得または検出する色ズレ情報 取得部と、
前記位置ズレに関する情報に基づき、前記補正対象色成分の位置ズレを補正する 色ズレ抑制部とを備え、
前記色ズレ抑制部は、
前記位置ズレに関する情報に基づき、前記補正対象色成分の前記位置ズレを補 正する位置ズレ補正部と、
前記基準色成分から画像構造を抽出する画像構造抽出部と、
前記位置ズレ補正によって前記補正対象色成分から消失する画像構造を、前記画 像構造抽出部で抽出した前記基準色成分の画像構造で補う画像構造補填部とを備 えた
ことを特徴とする画像処理装置。
[2] 請求項 1に記載の画像処理装置において
前記画像構造抽出部は、
前記補正対象色成分よりも画素密度が高い色成分を前記基準色成分とする ことを特徴とする画像処理装置。
[3] 請求項 1または請求項 2に記載の画像処理装置において、
前記位置ズレ補正部は、
前記補正対象色成分の画素位置 Pの位置ズレ先 につレ、て前記補正対象色成 分を補間処理で求めて、前記画素位置 Ρの補正対象色成分とし、
前記画像構造抽出部は、
前記画素位置 Ρの基準色成分 Z1を補間処理で求め、さらに前記位置ズレ補正部 の補間処理で参照する画素間隔と同じ参照間隔の補間処理を実施して前記画素位 置 Ρの基準色成分 Ζ2を生成し、両補間結果 Zl, Ζ2の差異を抽出し、
前記画像構造補填部は、 前記位置ズレ補正部で位置ズレを補正された前記補正対象色成分に、前記画像 構造抽出部で求めた両補間結果 Zl, Z2の差異を付加する
ことを特徴とする画像処理装置。
[4] 請求項 3に記載の画像処理装置において、
前記画像構造抽出部は、
前記位置ズレ先 ^ の補間処理に使用する前記補正対象色成分について前記位 置ズレを起こす前の元位置 Qを得て、前記元位置 Qの基準色成分を補間して前記画 素位置 Pの前記基準色成分 Z2を求める
ことを特徴とする画像処理装置。
[5] 補正対象色成分と基準色成分とを少なくとも含む複数種の色成分で表され、 1画素 当たり少なくとも 1種類の前記補正対象色成分が欠落した画像データを取り込む入 力部と、
前記補正対象色成分の位置ズレに関する情報を取得または検出する色ズレ情報 取得部と、
前記位置ズレに関する情報に基づき、前記補正対象色成分の位置ズレを補正する 色ズレ抑制部とを備え、
前記色ズレ抑制部は、
前記位置ズレに関する情報に基づき、前記補正対象色成分の位置ズレに合わせ て前記基準色成分の位置をずらす基準色成分位置ずらし部と、
前記基準色成分ずらし部によって位置のずれた前記基準色成分と、前記補正対象 色成分とに基づいて、位置のずれた色差を求める色差算出部と、
前記位置ズレに関する情報に基づき、前記色差の位置ズレを補正する色差位置ズ レ補正部とを備えた
ことを特徴とする画像処理装置。
[6] 請求項 6に記載の画像処理装置において、
前記色差位置ズレ補正部は、前記基準色成分位置ずらし部でずらす前の前記基 準色成分の画素位置に合わせて、色差の位置ズレを補正する
ことを特徴とする画像処理装置。
[7] 補正対象色成分と基準色成分とを少なくとも含む複数種の色成分で表され、 1画素 当たり少なくとも 1種類の前記補正対象色成分が欠落した画像データを取り込む入 力部と、
前記補正対象色成分の位置ズレに関する情報を取得または検出する色ズレ情報 取得部と、
前記位置ズレに関する情報に基づき、前記補正対象色成分の位置ズレを補正する 色ズレ抑制部とを備え、
前記色ズレ抑制部は、
前記位置ズレに関する情報に基づき、前記補正対象色成分の画素位置 Pについ て前記位置ズレを起こす前の元位置 P" を得て、前記元位置 P〃 における基準色成 分を補間処理により生成する基準色成分補間部と、
『前記画素位置 Pの補正対象色成分』と『前記元位置 P" の基準色成分』とから、前 記元位置 P〃 における色差成分 C" を求める色差算出部と、
前記元位置 P〃 における色差成分 C〃 を補間して、少なくとも画素位置 Pの色差成 分 Cを求める色差補間部とを備えた
ことを特徴とする画像処理装置。
[8] 請求項 7に記載の画像処理装置において、
前記色ズレ抑制部は、
画素位置 Pの基準色成分を補間処理により生成し、画素位置 Pの基準色成分およ び色差成分 Cに基づレ、て、画素位置 Pの補正対象色成分を生成する補正対象色成 分生成部を備えた
ことを特徴とする画像処理装置。
[9] 請求項 7に記載の画像処理装置において、
前記色ズレ抑制部は、
前記元位置 P〃 における色差成分 C〃 を補間して、基準色成分の画素位置につい て色差成分 Cを求め、色差成分 Cと基準色成分に基づいて、基準色成分の画素位 置にっレ、て補正対象色成分を生成する
ことを特徴とする画像処理装置。
[10] 補正対象色成分と基準色成分とを少なくとも含む複数種の色成分で表され、 1画素 当たり 1種類の前記色成分を配した画像データを取り込む入力部と、
前記補正対象色成分の位置ズレに関する情報を取得または検出する色ズレ情報 取得部と、
前記位置ズレに関する情報に基づき、前記補正対象色成分の位置ズレを補正する 色ズレ抑制部とを備え、
前記色ズレ抑制部は、
前記基準色成分と前記補正対象色成分に基づいて前記補正対象色成分の色ズレ を補正し、色ズレ補正済みの補正対象色成分と、前記基準色成分とを画素配列した
、 1画素当たり 1種類の前記色成分を配した画像データを生成する
ことを特徴とする画像処理装置。
[11] コンピュータを、請求項 1ないし請求項 10のいずれか 1項に記載の画像処理装置と して機能させるための画像処理プログラム。
[12] 請求項 1ないし請求項 10のいずれか 1項に記載の画像処理装置と、
被写体を撮像して、 1つの画素が 1つの色成分を有する画像データを生成する撮 像部とを備え、
前記撮像部で生成された前記画像データを前記画像処理装置で処理して色ズレ を補正する
ことを特徴とする電子カメラ。
[13] 補正対象色成分と基準色成分とを少なくとも含む複数種の色成分で表され、 1画素 当たり 1種類の前記色成分を配した画像データを取り込む入力ステップと、 前記補正対象色成分の位置ズレに関する情報を取得または検出する色ズレ情報 取得ステップと、
前記位置ズレに関する情報に基づき、前記補正対象色成分の位置ズレを補正する 色ズレ抑制ステップとを備え、
前記色ズレ抑制ステップは、
前記位置ズレに関する情報に基づき、前記補正対象色成分の前記位置ズレを補 正する位置ズレ補正ステップと、 前記基準色成分から画像構造を抽出する画像構造抽出ステップと、
前記位置ズレ補正によって前記補正対象色成分から消失する画像構造を、前記画 像構造抽出ステップで抽出した前記基準色成分の画像構造で補う画像構造補填ス テツプとを備えた
ことを特徴とする画像処理方法。
補正対象色成分と基準色成分とを少なくとも含む複数種の色成分で表され、 1画素 当たり少なくとも 1種類の前記補正対象色成分が欠落した画像データを取り込む入 力ステップと、
前記補正対象色成分の位置ズレに関する情報を取得または検出する色ズレ情報 取得ステップと、
前記位置ズレに関する情報に基づき、前記補正対象色成分の位置ズレを補正する 色ズレ抑制ステップとを備え、
前記色ズレ抑制ステップは、
前記位置ズレに関する情報に基づき、前記補正対象色成分の画素位置 Pについ て前記位置ズレを起こす前の元位置 P" を得て、前記元位置 P〃 における基準色成 分を補間処理により生成する基準色成分補間ステップと、
『前記画素位置 Pの補正対象色成分』と『前記元位置 P" の基準色成分』とから、前 記元位置 P〃 における色差成分 C" を求める色差算出ステップと、
前記元位置 P〃 における色差成分 C〃 を補間して、少なくとも画素位置 Pの色差成 分 Cを求める色差補間ステップとを備えた
ことを特徴とする画像処理方法。
PCT/JP2006/304079 2005-03-04 2006-03-03 色ズレを補正する画像処理装置、画像処理プログラム、画像処理方法、および電子カメラ WO2006093266A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/884,455 US7945091B2 (en) 2005-03-04 2006-03-03 Image processor correcting color misregistration, image processing program, image processing method, and electronic camera
EP06715162.1A EP1855486B1 (en) 2005-03-04 2006-03-03 Image processor correcting color misregistration, image processing program, image processing method, and electronic camera
JP2007506020A JP5071104B2 (ja) 2005-03-04 2006-03-03 色ズレを補正する画像処理装置、画像処理プログラム、画像処理方法、および電子カメラ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005061015 2005-03-04
JP2005-061015 2005-03-04

Publications (1)

Publication Number Publication Date
WO2006093266A1 true WO2006093266A1 (ja) 2006-09-08

Family

ID=36941296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304079 WO2006093266A1 (ja) 2005-03-04 2006-03-03 色ズレを補正する画像処理装置、画像処理プログラム、画像処理方法、および電子カメラ

Country Status (4)

Country Link
US (1) US7945091B2 (ja)
EP (2) EP1855486B1 (ja)
JP (1) JP5071104B2 (ja)
WO (1) WO2006093266A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015946A (ja) * 2006-07-07 2008-01-24 Canon Inc 画像処理装置及び画像処理方法
JP2009021810A (ja) * 2007-07-11 2009-01-29 Canon Inc 撮像装置及び画像処理方法
JP2010021733A (ja) * 2008-07-09 2010-01-28 Canon Inc 画像処理装置およびその方法
JP2010074826A (ja) * 2008-08-21 2010-04-02 Panasonic Corp 撮像装置および画像処理プログラム
JP2013051599A (ja) * 2011-08-31 2013-03-14 Canon Inc 画像処理装置及び画像処理方法
JP2013243439A (ja) * 2012-05-18 2013-12-05 Nikon Corp 画像処理装置および画像処理プログラム並びに電子カメラ
US8634001B2 (en) 2011-02-28 2014-01-21 Canon Kabushiki Kaisha Image processing apparatus, image processing program, image processing method, and image-pickup apparatus
JP2014199527A (ja) * 2013-03-29 2014-10-23 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム
US9167216B2 (en) 2011-08-31 2015-10-20 Canon Kabushiki Kaisha Image processing apparatus, image capture apparatus and image processing method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5080305B2 (ja) 2008-02-13 2012-11-21 株式会社リコー 画像処理方法及び装置、並びに画像撮像装置
JP4966894B2 (ja) * 2008-03-18 2012-07-04 株式会社リコー 画像撮像装置
JP5343441B2 (ja) * 2008-08-05 2013-11-13 セイコーエプソン株式会社 画像処理装置、画像表示装置、画像処理方法、画像表示方法及びプログラム
EP2164268A1 (en) * 2008-09-15 2010-03-17 Telefonaktiebolaget LM Ericsson (PUBL) Image processing for aberration correction
JP5505135B2 (ja) * 2010-06-30 2014-05-28 ソニー株式会社 画像処理装置、画像処理方法、および、プログラム
US9451213B2 (en) * 2010-07-23 2016-09-20 Toyota Jidosha Kabushiki Kaisha Distance measuring apparatus and distance measuring method
JP2012070046A (ja) * 2010-09-21 2012-04-05 Sony Corp 収差補正装置、収差補正方法、および、プログラム
CN102158731B (zh) * 2011-05-26 2014-03-12 威盛电子股份有限公司 影像处理系统及方法
CN102158730B (zh) * 2011-05-26 2014-04-02 威盛电子股份有限公司 影像处理系统及方法
US20130321675A1 (en) * 2012-05-31 2013-12-05 Apple Inc. Raw scaler with chromatic aberration correction
EP2797326A1 (en) * 2013-04-22 2014-10-29 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Image color correction
CN112822370B (zh) * 2021-01-12 2022-11-15 Oppo广东移动通信有限公司 电子设备、前置图像信号处理器及图像处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2552742B2 (ja) 1989-11-09 1996-11-13 池上通信機株式会社 適応型輪郭補正回路
JP2000299874A (ja) * 1999-04-12 2000-10-24 Sony Corp 信号処理装置及び方法並びに撮像装置及び方法
JP2001186533A (ja) 1999-12-22 2001-07-06 Olympus Optical Co Ltd 画像処理装置
JP2001245314A (ja) * 1999-12-21 2001-09-07 Nikon Corp 補間処理装置および補間処理プログラムを記録した記録媒体
JP2002112276A (ja) 2000-09-29 2002-04-12 Toshiba Corp カラー固体撮像装置
JP2004153323A (ja) * 2002-10-28 2004-05-27 Nec Micro Systems Ltd 色収差補正画像処理システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69029507T2 (de) 1989-11-09 1997-05-15 Ikegami Tsushinki Kk Bildeinstellungs- und Konturkorrekturschaltung und Verfahren für Festkörperkamera
US6853400B1 (en) * 1998-06-16 2005-02-08 Fuji Photo Film Co., Ltd. System and method for correcting aberration of lenses through which images are projected
US6246857B1 (en) * 1998-11-24 2001-06-12 Kabushiki Kaisha Toshiba Image forming apparatus
JP4329542B2 (ja) * 2001-12-28 2009-09-09 株式会社ニコン 画素の類似度判定を行う画像処理装置、および画像処理プログラム
JP4004904B2 (ja) * 2002-09-17 2007-11-07 シャープ株式会社 画像形成装置、および、画像形成装置の色重ね調整方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2552742B2 (ja) 1989-11-09 1996-11-13 池上通信機株式会社 適応型輪郭補正回路
JP2000299874A (ja) * 1999-04-12 2000-10-24 Sony Corp 信号処理装置及び方法並びに撮像装置及び方法
JP2001245314A (ja) * 1999-12-21 2001-09-07 Nikon Corp 補間処理装置および補間処理プログラムを記録した記録媒体
US20020001409A1 (en) 1999-12-21 2002-01-03 Nikon Corporation Interpolation processing apparatus and recording medium having interpolation processing program recorded therein
JP2001186533A (ja) 1999-12-22 2001-07-06 Olympus Optical Co Ltd 画像処理装置
JP2002112276A (ja) 2000-09-29 2002-04-12 Toshiba Corp カラー固体撮像装置
JP2004153323A (ja) * 2002-10-28 2004-05-27 Nec Micro Systems Ltd 色収差補正画像処理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1855486A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015946A (ja) * 2006-07-07 2008-01-24 Canon Inc 画像処理装置及び画像処理方法
JP2009021810A (ja) * 2007-07-11 2009-01-29 Canon Inc 撮像装置及び画像処理方法
JP2010021733A (ja) * 2008-07-09 2010-01-28 Canon Inc 画像処理装置およびその方法
JP2010074826A (ja) * 2008-08-21 2010-04-02 Panasonic Corp 撮像装置および画像処理プログラム
US8634001B2 (en) 2011-02-28 2014-01-21 Canon Kabushiki Kaisha Image processing apparatus, image processing program, image processing method, and image-pickup apparatus
JP2013051599A (ja) * 2011-08-31 2013-03-14 Canon Inc 画像処理装置及び画像処理方法
US9167216B2 (en) 2011-08-31 2015-10-20 Canon Kabushiki Kaisha Image processing apparatus, image capture apparatus and image processing method
JP2013243439A (ja) * 2012-05-18 2013-12-05 Nikon Corp 画像処理装置および画像処理プログラム並びに電子カメラ
JP2014199527A (ja) * 2013-03-29 2014-10-23 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム

Also Published As

Publication number Publication date
US20090207271A1 (en) 2009-08-20
JP5071104B2 (ja) 2012-11-14
EP3258687A1 (en) 2017-12-20
EP1855486B1 (en) 2017-09-20
US7945091B2 (en) 2011-05-17
JPWO2006093266A1 (ja) 2008-08-07
EP1855486A4 (en) 2011-08-03
EP1855486A1 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP5071104B2 (ja) 色ズレを補正する画像処理装置、画像処理プログラム、画像処理方法、および電子カメラ
US7667738B2 (en) Image processing device for detecting chromatic difference of magnification from raw data, image processing program, and electronic camera
JPH1091765A (ja) 画像合成装置及びその方法
TW552800B (en) Screen correcting method and imaging device
JP2008283442A (ja) 撮像装置
JP5210198B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム
US7317482B2 (en) Distance calculating method and imaging device
JPWO2002071761A1 (ja) 画像処理装置および画像処理プログラム
JP2001086522A (ja) 画像処理装置
JP2008141323A (ja) 画像の色を補正する画像処理装置、および画像処理プログラム
JP2003123063A (ja) 画像処理装置
JP4128123B2 (ja) 手ぶれ補正装置、手ぶれ補正方法および手ぶれ補正プログラムを記録したコンピュータ読み取り可能な記録媒体
JP2008003683A (ja) 画像生成装置及びその方法並びに記録媒体
US20130188874A1 (en) Method for image processing and apparatus using the same
JP5055571B2 (ja) 画像処理装置、電子カメラ、および画像処理プログラム
JP4834938B2 (ja) 2板式画像取り込み装置
JP3709092B2 (ja) 画像圧縮装置および画像伸張装置
JP3660504B2 (ja) カラー固体撮像装置
JP3857829B2 (ja) 画像圧縮装置および画像伸張装置
JP5139350B2 (ja) 画像処理装置、画像処理方法、撮像装置
JP2005057748A (ja) 色調補正回路及び色調補正方法
JP3872943B2 (ja) 輪郭補正装置、輪郭補正方法、及び輪郭補正プログラム記録媒体
JPH11168622A (ja) 画像処理装置、画像処理方法および記憶媒体
WO2007026655A1 (ja) 画像の色ズレ処理を行う画像処理装置、プログラム、撮像装置、および方法
JP2006262248A (ja) 色ずれ映像信号のノイズ除去回路及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007506020

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11884455

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2006715162

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006715162

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006715162

Country of ref document: EP