WO2006092825A1 - 信号処理装置および信号処理システム - Google Patents

信号処理装置および信号処理システム Download PDF

Info

Publication number
WO2006092825A1
WO2006092825A1 PCT/JP2005/003270 JP2005003270W WO2006092825A1 WO 2006092825 A1 WO2006092825 A1 WO 2006092825A1 JP 2005003270 W JP2005003270 W JP 2005003270W WO 2006092825 A1 WO2006092825 A1 WO 2006092825A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal processing
processors
port
signal transmission
Prior art date
Application number
PCT/JP2005/003270
Other languages
English (en)
French (fr)
Inventor
Satoshi Mikami
Kyoji Sato
Toshifumi Fujimoto
Takahiro Ooba
Junya Mikami
Takatoshi Nakamura
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2005/003270 priority Critical patent/WO2006092825A1/ja
Publication of WO2006092825A1 publication Critical patent/WO2006092825A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs

Definitions

  • the present invention relates to a signal processing apparatus having a plurality of processors.
  • Patent Document 1 The ring connection method described in Patent Document 1 connects a plurality of processors sequentially in an annular shape, and when the processing shared by itself ends, the processed signals are sequentially passed to the next processor.
  • this patent document 1 in addition to the basic configuration described above, a path for directly passing signals to a number of previous processors is formed to improve the efficiency of communication between processors. Techniques for wandering are disclosed.
  • Serializer is a circuit technology that collects many low-speed parallel signals into a single high-speed serial signal. Deserializer receives high-speed serial signals, recovers the clock and data, This technology restores low-speed parallel signals.
  • a plurality of processors are configured to communicate via a common bus.
  • bus wiring high-speed communication is performed.
  • processors that can be connected to one bus is naturally limited, resulting in poor system scalability.
  • the same number of wires are required for the address, data, etc., and the communication speed cannot be increased, including restrictions on the printed circuit board.
  • Patent Documents 3 to 10 are also methods using a shared bus, or a method in which direct communication between processors cannot be performed. There is a problem in that efficient communication is performed.
  • Patent Document 1 Japanese Patent Laid-Open No. 9 44464
  • Patent Document 2 JP-A-8-63442
  • Patent Document 3 Japanese Patent Laid-Open No. 62-262172
  • Patent Document 4 Japanese Patent Laid-Open No. 63-198150
  • Patent Document 5 Japanese Patent Laid-Open No. 10-21208
  • Patent Document 6 Japanese Patent Application Laid-Open No. 1-49350
  • Patent Document 7 JP-A-6-75786
  • Patent Document 8 JP-A 61-208561
  • Patent Document 9 JP-A-9-54762
  • Patent Document 10 JP-A-5-204876
  • Patent Document 11 Special Table 2001-522166
  • an object of the present invention is to provide a digital signal processing device and a digital signal processing system having a multiprocessor configuration capable of performing efficient communication between processors.
  • a plurality of ports of each of the plurality of processors is characterized by comprising a port directly connected to a port of an adjacent processor and a port connected to a signal transmission unit.
  • each of the plurality of processors has both a port directly connected to a port of an adjacent processor and a port connected to a signal transmission unit. Both direct communication and communication via the signal transmission unit are possible, so the power of various communication paths can be transmitted through the path suitable for the situation at that time, and communication between processors is possible. Efficiency is improved.
  • the signal transmission unit may include an external port for inputting / outputting a signal to / from the outside of the signal processing device.
  • the signal transmission unit sets the signal transmission path according to the route determination information recorded in the header of the output signal of the processor power of the transmission source. It is preferred to be a thing.
  • a signal transmission unit configured to set a signal transmission path and transmit an output signal according to the signal transmission path, the signal transmission unit having an external port for inputting / outputting a signal to / from the outside, and the plurality of processors
  • Each of the plurality of ports includes a plurality of signal processing devices including a port directly connected to a port of an adjacent processor and a port connected to the signal transmission unit.
  • a signal processing system of the present invention comprises the signal processing device of the present invention having the above-described external ports and connected to each other, and signal transmission over a plurality of signal processing devices is also possible. Done efficiently.
  • FIG. 1 is a conceptual diagram of a signal processing device as one embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a signal processing system as one embodiment of the present invention.
  • FIG. 3 is an internal configuration diagram of the signal processing device shown in FIG. 1.
  • FIG. 4 is a diagram showing a configuration of a header of an output signal from each processor.
  • FIG. 5 is a circuit block diagram showing a select signal generation circuit for generating a select signal for selecting an output signal by a selector.
  • FIG. 6 is a diagram showing an example of a signal transmission route when all eight processors are in a state where signal transmission is possible.
  • FIG. 7 is a diagram illustrating an example of a signal transmission route when there are processors that are executing other processes and cannot perform a transfer process among the eight processors.
  • FIG. 8 is a diagram illustrating an example of a signal transmission route that spans two groups (two signal processing devices) in which external ports are connected to each other.
  • FIG. 9 is a diagram illustrating an example of a signal transmission route using a plurality of ports.
  • FIG. 10 is a schematic diagram showing the signal processing apparatus and the IZF unit of this embodiment mounted on a printed circuit board.
  • FIG. 10 is a schematic diagram showing the signal processing apparatus and the IZF unit of this embodiment mounted on a printed circuit board.
  • FIG. 11 is a diagram illustrating an example of a signal processing apparatus and a signal processing system according to the present invention in which a plurality of processors are connected to a noise-cam structure.
  • FIG. 1 is a conceptual diagram of a signal processing apparatus as one embodiment of the present invention.
  • the signal processing apparatus 10 shown in Fig. 1 includes eight processors 110-117, and each processor 110-117 includes four ports for inputting and outputting signals.
  • Figure 1 shows that the processor 110 is connected to the processor 110! / Port 110a, 110b, 110c, 110d force ⁇ and the processor 115 is connected to the port 115a, 115b, 115c, 115d force ⁇ Being! / Speak.
  • Each processor 110-117 performs a predetermined process on the signal input from one of the four ports of the processor, and then selects one of the four ports. It has a function to output from the port.
  • the signal processing device 10 shown in FIG. 1 is provided with a signal transmission unit 12 so as to surround the eight processors 110 to 117.
  • This signal transmission unit 12 determines the transmission path of the output signal based on the route determination information recorded in the header of the output signal from one of the eight processors 110 to 117! It has a function to transmit the output signal according to the transmission path.
  • the signal transmission unit is connected to each port of eight processors, and further includes an external port (described later) for transferring signals to and from the outside of the signal processing apparatus.
  • the eight processors 110-117 each have four ports, some of which are connected to the signal transmission unit 12 and the other ports are connected to the ports of the adjacent processors. ing. For example, for processor 110, two ports 110a, 1 10d are connected to signal transmission unit 12, port 110b is connected to a port of adjacent processor 111, and port 110c is connected to a port of adjacent processor 117. For example, in the processor 115, one port 115c is connected to the signal transmission unit 12, and the other three ports 115a, 115b, and 115d are connected to the ports of the adjacent processors 112, 114, and 116, respectively. Has been. [0026] Here, each port of each processor 110-117 performs communication employing the SerDes technology described above. Alternatively, the technology described in the aforementioned Patent Document 11 and other communication technologies may be adopted for each of these ports.
  • the signal processing device 10 when a signal is transmitted to another processor, the signal can be transmitted by relay between the processors, and transmitted via the signal transmission unit 12. It is also possible to perform transmission through an appropriate route according to the availability of processing of each processor at that time, and efficient signal transmission is performed.
  • FIG. 2 is a conceptual diagram of a signal processing system as one embodiment of the present invention.
  • FIG. 2 shows three signal processing devices 10A, 10B, 10C having the same configuration as the signal processing device 10 shown in FIG. 1, and two of these signal processing devices 10A, 10B are The external ports 121A and 121B are connected to each other, and the two signal processing devices 10B and 10C are connected to the external ports 121B and 121C.
  • the signal transmission units 12A, 12B, 12C and the external ports 121A, 10A, 10B, 10C of the signal processing devices 10A, 10B, 10C are connected only between the internal processors of the signal processing devices 10A, 10B, 10C. Communication can be performed between processors across a plurality of signal processing devices via 121B, 121C, and 121D.
  • the signal processing device 10 having the configuration shown in FIG. 1 can be added in units of one signal processing device, and is excellent in system expandability.
  • FIG. 3 is an internal configuration diagram of the signal processing device shown in FIG.
  • processors 110 to 117 are arranged in the center, and a signal transmission unit 12 is provided around the processor.
  • the signal transmission unit 12 is provided with nodes 221-232 connected to the ports of the processors 110-117, and an output signal from any of the processors 110-117 is any of the nodes 221-232.
  • the signal is input to the signal transmission unit 12 via any of the above, and is input to any of the processors 110 to 117 via any of the nodes 221 to 232.
  • the signal transmission unit 12 is provided with four external ports 12 1 1 124 for performing signal communication with the outside.
  • the signal transmission unit 12 includes nodes 221-232 and external ports 121-124.
  • Selectors 241—256 are provided to output signals toward the signal, and each of the selectors 241-256 receives a signal (A) from each node and an input signal (B) from an external port. Of these signals, one of the signals is selected! /, And the signal is input as an input signal to the processor 110-117 or output signal C from the external port.
  • Each selector 241-256 selects the output signal from the selector 241-256 according to the route determination information written in the header of the output signal from the processor, as described later, or from the selector. It is configured to cut off the deviation signal.
  • FIG. 4 is a diagram showing a configuration of an output signal header for each processor.
  • Table 1 below is a table showing the contents of the symbols described in FIG.
  • the output signal of each processor has a header as shown in FIG. 4 which is 32 bits per word and is composed of 4 words.
  • ROUTE data transfer route
  • GROUP-ID transfer group ID
  • the signal in the signal transmission unit 12 in FIG. A transmission route is determined.
  • these ROUTE and GROUP ID are combined in the present invention! It plays a role as route decision information.
  • the GROUP-ID is an ID for identifying each signal processing device when a plurality of signal processing devices are connected as shown in FIG.
  • FIG. 5 is a circuit block diagram showing a select signal generation circuit that generates a select signal for selecting an output signal by the selector.
  • the signal transmission unit 12 constituting the signal processing device 10 shown in FIG. 3 includes a shift register and a decoder as shown in FIG. 5 corresponding to each of the nodes 221-232 and the external ports 121-124.
  • An encoder and a selector (SEL) are provided.
  • SEL selector
  • a shift register 271 and a decoder 272 for nodel are shown, and an encoder 273 and a selector 260 for node2 are shown!
  • a signal input from nodel to the signal transmission unit is transmitted to all nodes and external ports other than nodel via shift register 271 and input to selectors of all nodes other than nodel and external ports.
  • the selector 260 of node 2 includes nodes other than node 2 (nodel, node 3, ..., nodel2) and external ports (group 1, group 2, ..., group 4). It is shown that it is wired so that the signal of can be input.
  • the route determination information in the header that is, the ROUTE and GROUP ID are input to the decoder 272. Is done.
  • the ID of the group to which the decoder 272 belongs (signal processing device in which the decoder 272 is mounted) set by a mechanical switch or the like is also input to the decoder 272. This time, a select signal is generated that specifies the destination node or external port of the signal input via nodel.
  • the decoder provided corresponding to each node or each external port is wired so that a select signal can be transmitted to the node other than its own node or external port and the encoder of the external port.
  • the decoder 272 corresponding to nodel shown in Fig. 5 is wired to transmit the select signal to each node (node2-nodel2) other than its own node (nodel) and each external port (group 1-14).
  • the encoder 273 corresponding to node2 shown in Fig. 5 is to receive select signals of each node (no de 1, node3-node 12) other than its own node (node2) and each external port (group 1-14). It is wired.
  • decoder 272 is a control signal (for example, indicating that node2 has been selected toward encoder 273 of node2)
  • Encoder 273 provided for node 2 receives select signals from the decoders of the nodes other than node 2 and the external ports, and this time, from which node or which external port toward selector 260 Outputs the transmitted signal to node 2 or outputs a control signal indicating the power to be blocked by selector 260 without outputting any signal transmitted from any node or any external port this time.
  • the control signal outputs a signal from any node or any external port, or blocks a signal from any node and any external port.
  • transmission of a signal from nodel is described as an example. Therefore, this time, the selector 260 provided for node2 receives the signal from shift register 271 of nodel. It is switched to output.
  • the signal input from nodel to the signal transmission unit is transmitted to selector 260, output from selector 260, and input to the processor ahead of node2.
  • the ROUTE information in the header is the signal in the group of the signal transmission destination.
  • Figure 5 shows the destination node, output from the external port according to the group ID, input from the external port of the signal destination group, and then provided in the external port of the signal destination.
  • a signal transmission destination node in the signal transmission destination group is determined by a circuit configuration similar to the configuration.
  • FIG. 6 is a diagram illustrating an example of a signal transmission route when all of the eight processors are in a state where signal transmission is possible.
  • the processor 110 since all the processors 110-117 can transmit signals, however, although it can be selected, the processor 110 as the transmission source determines the route from the signal processing content.
  • route R1 or route R2 is determined in the figure, and signals are transferred from the processor 110 to the processor 114 via V several processors.
  • FIG. 7 is a diagram illustrating an example of a signal transmission route when there are processors that are executing other processing and cannot perform transfer processing among the eight processors.
  • the two processors 113 and 116 in the middle are in a state where transfer processing is impossible.
  • the signal position route R3 or R4 passed is determined and signal transmission is performed according to that route.
  • the signal transmission route in the processor can be changed according to the processing content, and high-speed signal transmission can be performed via the signal transmission unit 12 even between adjacent processors. Therefore, it is possible to reduce the signal processing load and to perform optimal signal transmission.
  • FIG. 8 is a diagram illustrating an example of a signal transmission route that spans two groups (two signal processing devices) to which external ports are connected.
  • the signal transmission route from the processor 110A of group 1 to the processor 114B of group 2 is shown. According to the present embodiment, even in the case of signal transmission over groups 1 and 2, high-speed signal transmission is possible via the signal transmission units 12A and 12B of groups 1 and 2.
  • the signal processing apparatus of this embodiment is excellent in system expandability.
  • FIG. 9 is a diagram illustrating an example of a signal transmission route using a plurality of ports.
  • the route R1 that is directly transmitted from the processor 110 to the processor 111 and the route R2 that passes through the signal transmission unit 12 are two. Two routes are selected at the same time.
  • FIG. 10 is a schematic diagram showing the signal processing device and the external IZF unit of the present embodiment mounted on a printed circuit board.
  • the external IZF unit is a circuit having a role of relaying signal transmission / reception between the signal processing apparatus and the outside.
  • the signal processing apparatus of the present embodiment can also transmit and receive signals to and from the outside, for example, with the configuration shown in FIG.
  • External force Information input via the external IZF unit includes, for example, a signal before signal processing and processing setting information for instructing the content of signal processing. There are signals after signal processing, additional information added along with the signal processing, alarm information for notifying the status of the signal processing device, and the like.
  • FIG. 11 is a diagram illustrating an example of a signal processing device and a signal processing system according to the present invention in which a plurality of processors are connected to a noise-cam structure.
  • the plurality of processors connected to the Her-cam structure is a two-layer signal transmission unit 12A shown here.
  • connection form between the processors is not limited to the lattice form as shown in FIG. 1, for example, and the two-cam structure shown in FIG. The following connection form may be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multi Processors (AREA)

Abstract

 本発明は、信号入出力を担う複数のポートを有し入力信号に処理を施して出力する複数のプロセッサ110~117を有するデジタル信号処理装置10に関し、プロセッサ間で効率的な通信を行なうことを目的とし、送信元のプロセッサからの出力信号に記録されたルート決定情報に従って信号伝送経路を設定し該信号伝送経路に従って該出力信号を伝送する信号伝送部12を備え、複数のプロセッサ110~117それぞれが、隣接するプロセッサのポートに直接に接続されたポートと信号伝送部12に接続されたポートとの双方を有する。                                                                                 

Description

明 細 書
信号処理装置および信号処理システム
技術分野
[0001] 本発明は、複数のプロセッサを有する信号処理装置に関する。
背景技術
[0002] 近年、例えば移動型無線技術を用いた無線システム機器等に様々な分野の機器 で信号処理が複雑化し、信号処理を促進するために複数のプロセッサを用いたマル チプロセッサ構成の信号処理装置が搭載されるよう
Figure imgf000003_0001
、る。複数のプロセ ッサで分担して同時並列的に信号処理を行なうことにより信号処理が促進される。
[0003] しかしながら、複数のプロセッサで処理を行なう場合、プロセス間通信が処理の効 率ィ匕を妨げる場合があり、プロセッサの数が増えるほどプロセッサ間で如何にして効 率のよ!、通信を行なうかが問題となる。
[0004] 従来、上記のようなマルチプロセッサ構成におけるプロセッサ間の通信技術として は、例えば特許文献 1に記載されたリング接続方式や特許文献 2に記載された分散 共有メモリ方式等、様々な方式が知られて!/、る (特許文献 1一 10参照)。
[0005] 特許文献 1に記載されたリング接続方式は、複数のプロセッサを順次円環状に接 続して自分が分担している処理が終了するとその処理後の信号を次のプロセッサに 順次渡していぐという方式を基本とするものであり、この特許文献 1には、上記の基 本構成に加え、何個か先のプロセッサに直接に信号を渡す経路を形成し、プロセッ サ間通信の効率ィ匕を図る技術が開示されている。
[0006] ここで、プロセッサどうしの間の通信技術としては、一般に、例えば特許文献 11に 記載された技術や、高速な Ser Des (Serializer~DeSerializer)技術を用いること ができる。ここで Serializer (シリアライザ)は多数の低速パラレル信号を集めて 1本の 高速シリアル信号にする回路技術、 Deserializer (デシリアライザ)は、高速シリアル 信号を受信してクロックとデータを復元しそのデータを多数の低速パラレル信号に復 元する技術である。
[0007] 上記の特許文献 1に開示されたリング接続方式の場合、各プロセッサの入出力ポ ートの数に限界があり、任意のプロセッサ力も別の任意のプロセッサに直接に信号を 渡すことはできず、プロセッサ間通信の効率ィ匕にも限界がある。
[0008] また、特許文献 2に開示された分散共有メモリ方式の場合、複数のプロセッサが共 通のバスを介して通信を行なう構成となっており、バス配線の場合、高速な通信を行 なうには接続上の限界があり、またバスの特性上、 1つのバスに接続できるプロセッサ の数がおのずと制限され、システムの拡張性に乏しい。また並列に接続するバスの場 合、アドレス ·データ等の配線が必要本数分、等長配線が必要となり、プリント基板の 制約も含めて通信速度を上げることができな 、。
[0009] 他の特許文献 3— 10に開示された方式も、例えば共用バスを用いる方式であった り、あるいはプロセッサ間で直接の通信を行なうことができな 、方式であったりなど、 プロセッサ間で効率的な通信を行なうという点で問題がある。
特許文献 1:特開平 9 44464号公報
特許文献 2:特開平 8— 63442号公報
特許文献 3 :特開昭 62- 262172号公報
特許文献 4:特開昭 63-198150号公報
特許文献 5 :特開平 10— 21208号公報
特許文献 6:特開平 1-49350号公報
特許文献 7:特開平 6— 75786号公報
特許文献 8:特開昭 61—208561号公報
特許文献 9:特開平 9— 54762号公報
特許文献 10:特開平 5- 204876号公報
特許文献 11 :特表 2001— 522166号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、上記事情に鑑み、プロセッサ間で効率的な通信を行なうことのできるマ ルチプロセッサ構成のデジタル信号処理装置およびデジタル信号処理システムを提 供することを目的とする。
課題を解決するための手段 [0011] 上記目的を達成する本発明の信号処理装置は、
信号入出力を担う複数のポートを有し入力信号に処理を施して出力する複数のプ 口セッサと、 送信元のプロセッサからの出力信号に記録されたルート決定情報に従って信号伝 送経路を設定し該信号伝送経路に従ってその出力信号を伝送する信号伝送部とを 備え、
上記複数のプロセッサそれぞれが有する複数のポートが、隣接するプロセッサのポ ートに直接に接続されたポートと、信号伝送部に接続されたポートとからなることを特 徴とする。
[0012] 本発明の信号処理装置は、複数のプロセッサそれぞれが、隣接するプロセッサの ポートに直接に接続されたポートと信号伝送部に接続されたポートとの双方を有する ものであり、プロセッサ間での直接の通信と信号伝送部を経由する通信との双方が 可能であり、このため、多様な通信経路の中力 その時の状況に合った経路での伝 送が可能であり、プロセッサ間通信の効率ィ匕が図られる。
[0013] ここで、上記本発明の信号処理装置にお!、て、上記信号伝送部が、この信号処理 装置外部との間での信号の入出力を担う外部ポートを備えものであることが好ましい
[0014] 上記の外部ポートを備えることによって信号処理装置どうしを接続することができ、 拡張性に優れたシステムとなる。
[0015] また、上記本発明の信号処理装置にお!、て、上記信号伝送部は、送信元のプロセ ッサ力 の出力信号のヘッダに記録されたルート決定情報に従って信号伝送経路を 設定するものであることが好まし 、。
[0016] ヘッダにルート決定情報を記録しておくことによって、先ずヘッダが送信されてきた 時点で信号伝送ルートを決定し引続き送信されて来た信号をその決定した信号伝送 ルートに従って伝送することができる。
[0017] また、上記目的を達成する本発明の信号処理システムは、
信号入出力を担う複数のポートを有し入力信号に処理を施して出力する複数のプ 口セッサと、送信元のプロセッサ力 の出力信号に記録されたルート決定情報に従つ て信号伝送経路を設定し信号伝送経路に従って出力信号を伝送する信号伝送部で あって、外部との間で信号の入出力を担う外部ポートを有する信号伝送部とを具備し 、上記複数のプロセッサそれぞれが有する複数のポートが、隣接するプロセッサのポ ートに直接に接続されたポートと、上記信号伝送部に接続されたポートとからなる信 号処理装置を複数備え、
これら複数のデジタル信号処理装置の外部ポートどうしが接続されてなることを特 徴とする。
[0018] 本発明の信号処理システムは、上記の外部ポートを有し、外部ポートどうしが接続さ れた本発明の信号処理装置からなるものであり、複数の信号処理装置に跨る信号伝 送も効率的に行なわれる。
発明の効果
[0019] 以上説明したとおり、本発明によれば、プロセッサ間で効率的に信号通信を行なう ことができる。
図面の簡単な説明
[0020] [図 1]本発明の一実施形態としての信号処理装置の概念図である。
[図 2]本発明の一実施形態としての信号処理システムの概念図である。
[図 3]図 1に示す信号処理装置の内部構成図である。
[図 4]各プロセッサからの出力信号のヘッダの構成を示す図である。
[図 5]セレクタによる出力信号選択のためのセレクト信号を生成するセレクト信号生成 回路を示す回路ブロック図である。
[図 6]8つのプロセッサの全てが信号伝送が可能な状態にある場合の信号伝送ルート の一例を示す図である。
[図 7]8つのプロセッサ中に他の処理を実行中であって転送処理を行なうことができな いプロセッサが存在する場合の信号伝送ルートの一例を示す図である。
[図 8]外部のポートどうしが接続された 2つのグループ(2つの信号処理装置)に跨る 信号伝送ルートの一例を示す図である。
[図 9]複数ポートを用いる信号伝送ルートの一例を示す図である。
[図 10]プリント基板上に搭載された本実施形態の信号処理装置と IZF部を示す模式 図である。
[図 11]複数のプロセッサをノヽ-カム構造に接続した、本発明の信号処理装置および 信号処理システムの一例を示す図である。
発明を実施するための最良の形態
[0021] 以下、本発明の実施の形態について説明する。
[0022] 図 1は、本発明の一実施形態としての信号処理装置の概念図である。
[0023] この図 1に示す信号処理装置 10には、 8つのプロセッサ 110— 117が備えられてお り、各プロセッサ 110— 117は、それぞれ信号を入出力するポートを 4つずつ備えて ヽる(図 1に ίま、プロセッサ 110につ!/ヽてポー卜 110a, 110b, 110c, 110d力 ^示され ており、プロセッサ 115につ!/、てポート 115a, 115b, 115c, 115d力 ^示されて!/ヽる。) 。各プロセッサ 110— 117は、そのプロセッサが持つ 4つのポートのうちのいずれかの ポートから入力された信号に、あら力じめ決められた処理を施して、それら 4つのポー トのうちのいずれかのポートから出力する機能を有する。
[0024] また、この図 1に示す信号処理装置 10には、 8つのプロセッサ 110— 117を取り巻く ように信号伝送部 12が設けられている。この信号伝送部 12は、 8つのプロセッサ 110 一 117の!、ずれかのプロセッサからの出力信号のヘッダに記録されたルート決定情 報に基づいてその出力信号の伝送経路を決定してその決定した伝送経路に従って その出力信号を伝送する機能を有する。この信号伝送部は、 8つのプロセッサそれぞ れのポートが接続されており、さらに、この信号処理装置外部との間で信号を受け渡 す外部ポート (後述する)を備えて 、る。
[0025] 8つのプロセッサ 110— 117は、それぞれ 4つのポートを有し、それら 4つのポートの うちの一部のポートは信号伝送部 12に接続され他のポートは隣接するプロセッサの ポートに接続されている。例えば、プロセッサ 110については、 2つのポート 110a, 1 10dは信号伝送部 12に接続され、ポート 110bは、隣接するプロセッサ 111のポート に接続され、ポート 110cは、隣接するプロセッサ 117のポートに接続されており、例 えばプロセッサ 115は、 1つのポート 115cが信号伝送部 12に接続され、それ以外の 3つのポート 115a, 115b, 115dは、それぞれ、隣接するプロセッサ 112, 114, 116 それぞれのポートに接続されている。 [0026] ここで、各プロセッサ 110— 117の各ポートは、前述した SerDes技術を採用した通 信を行なうものである。あるいは、これらの各ポートには、前掲の特許文献 11に記載 された技術やその他の通信技術を採用してもよい。
[0027] 図 1に示す構成の信号処理装置 10によれば、あるプロセッサ力 別のプロセッサに 信号を送信する場合、プロセッサどうしの中継により送信することもでき、信号伝送部 12を経由して伝送することもでき、その時点における各プロセッサの処理の空き状態 等に応じて適切な経路で送信することができ、効率的な信号伝送が行なわれる。
[0028] 図 2は、本発明の一実施形態としての信号処理システムの概念図である。
[0029] この図 2には、図 1に示す信号処理装置 10と同一構成の 3つの信号処理装置 10A , 10B, 10Cが示されており、それらのうちの 2つの信号処理装置 10A, 10Bは、そ れぞれの外部ポート 121A, 121Bどうしが接続され、また 2つの信号処理装置 10B, 10Cは、それぞれの外部ポート 121B, 121Cどうしが接続されている。
[0030] このような接続により、各信号処理装置 10A, 10B, 10Cの内部のプロセッサ間の みでなぐ信号処理装置 10A, 10B, 10Cの信号伝送部 12A, 12B, 12Cおよび外 部ポート 121A, 121B, 121C, 121Dを介して、複数の信号処理装置に跨るプロセ ッサ間で通信を行なうことができる。このように、図 1に示す構成の信号処理装置 10 は、その信号処理装置 1つを単位として増設することができ、システムの拡張性に優 れたものとなっている。
[0031] 図 3は、図 1に示す信号処理装置の内部構成図である。
[0032] この図 3に示す信号処理装置 10には、図 1にも示したように、中央に 8つのプロセッ サ 110— 117が配置されており、その周囲に信号伝送部 12が設けられて 、る。
[0033] この信号伝送部 12には、プロセッサ 110— 117のポートと接続されたノード 221— 2 32が設けられており、いずれかのプロセッサ 110— 117からの出力信号はノード 221 一 232のいずれかを経由して信号伝送部 12に入力され、ノード 221— 232のいずれ かを経由していずれかのプロセッサ 110— 117に入力される。
[0034] また、この信号伝送部 12には、外部との間で信号通信を行なう 4つの外部ポート 12 1一 124が設けられている。
[0035] また、この信号伝送部 12には、各ノード 221— 232および各外部ポート 121— 124 に向けて信号を出力するセレクタ 241— 256が設けられており、各セレクタ 241— 25 6のそれぞれには、各ノードからの信号 (A)および外部ポートからの入力信号 (B)が 入力されそれらの信号のうちの 、ずれかの信号が選択されて!/、ずれかのプロセッサ 110— 117への入力信号あるいは外部ポートからの出力信号 Cとして出力される。各 セレクタ 241— 256は、後述するようにして、プロセッサからの出力信号のヘッダに書 き込まれているルート決定情報に従ってそのセレクタ 241— 256からの出力信号を選 択し、あるいはそのセレクタからは 、ずれの信号も遮断するように構成されて 、る。
[0036] 図 4は、各プロセッサ力もの出力信号のヘッダの構成を示す図である。
[0037] また、下記の表 1は、図 4中に記載された記号の内容を示すテーブルである。
[0038] [表 1]
Figure imgf000009_0001
[0039] 各プロセッサ力もの出力信号には、図 4に示す、 1ワードあたり 32ビットであって 4ヮ ードで構成されたヘッダが付されている。ここでは、このヘッダに記載された情報のう ち、特に、 ROUTE (データ転送ルート)と GROUP-ID (転送グループ ID)とに従つ て、図 1一図 3の信号伝送部 12内の信号伝送のルートが決定される。本実施形態で は、これら ROUTEと GROUP— IDとの複合が本発明に!/、うルート決定情報としての 役割りを担っている。ここでは GROUP— IDは、図 2に示すように複数の信号処理装 置が連結されているときの各信号処理装置を特定する IDである。
[0040] 図 5は、セレクタによる出力信号選択のためのセレクト信号を生成するセレクト信号 生成回路を示す回路ブロック図である。 [0041] ここでは、図 5に示す複数のノード 221— 232のうちの任意の 1つである nodelから 信号伝送部 12に入力された信号をそれら複数のノード 221— 232のうちの他の任意 の 1つである node2に伝送する場合を例に挙げて説明する。
[0042] 図 3に示す信号処理装置 10を構成する信号伝送部 12には、各ノード 221— 232 および各外部ポート 121— 124のそれぞれに対応して、図 5に示すようなシフトレジス タ、デコーダ、エンコーダ、セレクタ(SEL)が設けられている。ここでは、それらのうち 、 nodelにつ!/ヽてのシフトレジスタ 271とデコーダ 272、および node2につ!/ヽてのェ ンコーダ 273とセレクタ 260が示されて!/、る。
[0043] nodelから信号伝送部に入力された信号は、シフトレジスタ 271を経由して nodel 以外の全てのノードおよび外部ポートに伝送され、 nodel以外の全てのノードおよび 外部ポートのセレクタに入力される。図 5に示すように、 node2のセレクタ 260には、 n ode2以外の各ノード(nodel, node 3,…… , nodel2)および各外部ポート(グルー プ 1,グループ 2,…… ,グループ 4)からの信号が入力されるように配線されているこ とが示されている。
[0044] また、 nodelのシフトレジスタ 271に nodelからの信号のヘッダ(図 4参照)が格納さ れたタイミングで、そのヘッダ中のルート決定情報、すなわち、 ROUTEと GROUP— IDがデコーダ 272に入力される。このデコーダ 272には、機械的なスィッチ等により 設定されている、そのデコーダ 272が所属するグループ (そのデコーダ 272が搭載さ れている信号処理装置)の IDも入力されており、デコーダ 273では、今回 nodelを経 由して入力されてきた信号の送信先のノードあるいは外部ポートを指定するセレクト 信号が生成される。各ノードあるいは各外部ポートに対応して備えられたデコーダは 、 自分のノードあるいは外部ポート以外のノードおよび外部ポートのエンコーダに向 けてセレクト信号が伝えられるように配線されている。図 5に示す、 nodelに対応する デコーダ 272は、自分のノード(nodel)以外の各ノード(node2— nodel2)および 各外部ポート (グループ 1一 4)にセレクト信号を伝えるべく配線されており、図 5に示 す、 node2に対応するエンコーダ 273は、自分のノード(node2)以外の各ノード(no de 1 , node3— node 12)および各外部ポート(グループ 1一 4)力ものセレクト信号を 受け取るべく配線されて 、る。 [0045] ここでは、 nodelからの信号を node2に伝送することを例として説明しており、ここ では、デコーダ 272は、 node2のエンコーダ 273に向けて node2が選択されたことを あらわす制御信号 (例えば論理 ' 1 'の信号)を出力するとともに、 node2以外の各ノ ードおよび各外部ポートのエンコーダに向けてそのノードあるいは外部ポートを選択 しな 、ことをあらわす (例えば論理' 0'の信号)を出力する。
[0046] node2に対応して備えられたエンコーダ 273は、 node2以外の各ノードおよび各外 部ポートのデコーダからのセレクト信号を受けて、セレクタ 260に向けて、今回、どの ノードあるいはどの外部ポートから伝送されてきた信号を node2に向けて出力するか 、あるいは今回はどのノードあるいはどの外部ポートから伝送されてきた信号も出力 せずにセレクタ 260で遮断する力 を表わす制御信号を出力し、セレクタ 260は、そ の制御信号に従って、 、ずれかのノードあるいは 、ずれかの外部ポートからの信号 を出力し、あるいは、いずれのノードおよびいずれの外部ポートからの信号も遮断す る。ここでは、 nodelからの信号を node2に伝送することを例として説明しており、し たがって、今回は、この node2に対応して備えられたセレクタ 260は、 nodelのシフト レジスタ 271からの信号を出力するように切り換えられる。
[0047] このようにして、 nodelから信号伝送部に入力された信号は、セレクタ 260に伝えら れ、そのセレクタ 260から出力されて node2の先にあるプロセッサに入力される。
[0048] 尚、例えば nodelからの信号のヘッダに記載された GROUP— IDが自分以外のグ ループの IDを示しているときは、そのヘッダ中の ROUTEの情報は、信号伝送先の グループにおける信号伝送先のノードを示しており、グループ IDに従って外部ポート 力 出力され、信号伝送先のグループの外部ポートから入力された後、その信号伝 送先の外部ポートに備えられた、図 5に示す回路構成と同様の回路構成により、その 信号伝送先のグループ内での信号伝送先のノードが決定される。
[0049] 以下では、図 1一図 5に示す信号処理装置における多様な信号伝送例を説明する
[0050] 図 6は、 8つのプロセッサの全てが信号伝送が可能な状態にある場合の信号伝送 ルートの一例を示す図である。
[0051] ここでは、全てのプロセッサ 110— 117が信号伝送可能であることから、どのルート であっても選択可能であるが、送信元となるプロセッサ 110は、信号処理内容から経 路を決定する。ここでは、図中、ルート R1又はルート R2を決定し、プロセッサ 110か らプロセッサ 114まで、 Vヽくつかのプロセッサを経由して信号が転送される。
[0052] 図 7は、 8つのプロセッサ中に他の処理を実行中であって転送処理を行なうことがで きないプロセッサが存在する場合の信号伝送ルートの一例を示す図である。
[0053] ここでは、プロセッサ 110からプロセッサ 114に信号を送信するにあたり、途中の 2 つのプロセッサ 113, 116が転送処理不能の状態にあることから、送信元のプロセッ サ 110は、信号伝送部 12を経由した信号位置ルート R3又は R4を決定してそのルー トに従って信号伝送が行なわれる。
[0054] 本実施形態では、処理内容に応じてプロセッサ内の信号伝送ルートに変更可能で あり、隣接して 、な 、プロセッサ間であっても信号伝送部 12を経由して高速な信号 伝送が可能であり、このため信号処理の負荷を軽減できるとともに最適な信号伝送が 可能である。
[0055] 図 8は、外部ポートどうしが接続された 2つのグループ(2つの信号処理装置)に跨る 信号伝送ルートの一例を示す図である。
[0056] ここでは、グループ 1のプロセッサ 110Aからグループ 2のプロセッサ 114Bへの信 号伝送ルートが示されている。本実施形態によれば、グループ 1, 2に跨る信号伝送 の場合もグループ 1, 2の信号伝送部 12A, 12Bを経由して高速な信号伝送が可能 である。
[0057] したがって本実施形態の信号処理装置は、システムの拡張性に優れている。
[0058] 図 9は、複数ポートを用いる信号伝送ルートの一例を示す図である。
[0059] ここでは、プロセッサ 110からそのプロセッサ 110に隣接するプロセッサ 111に信号 を伝送するにあたり、プロセッサ 110からプロセッサ 111に直接に伝送するルート R1 と、信号伝送部 12を経由するルート R2との 2つのルートが同時に選ばれている。この ように複数ポートでの信号の同時伝送を行なうことにより、信号伝送の帯域を広げ、よ り高速な信号伝送が可能となる。
[0060] 図 10は、プリント基板上に搭載された本実施形態の信号処理装置と外部 IZF部を 示す模式図である。 [0061] ここで、外部 IZF部は、信号処理装置と外部との間での信号の送受信を中継する 役割を有する回路である。
[0062] 本実施形態の信号処理装置は、例えばこの図 10に示すような構成により、外部と の間で信号の送受信を行なうことも可能である。
[0063] 外部力 外部 IZF部を経由して入力する情報としては、例えば、信号処理前の信 号や、信号処理の内容を指示する処理設定情報があり、外部に出力される情報とし ては、信号処理後の信号や、その信号処理に伴って付加された付加情報や、信号 処理装置の状況を知らせるアラーム情報等がある。
[0064] 図 11は、複数のプロセッサをノヽ-カム構造に接続した、本発明の信号処理装置お よび信号処理システムの一例を示す図である。
[0065] ハ-カム構造に接続された複数のプロセッサは、ここに示す 2層の信号伝送部 12A
, 12Bの何れかに接続されており、さらに、 2層の信号伝送部 12A, 12Bが互いに接 続されている。
[0066] この図 11に示すように、プロセッサ間の接続形態は、例えば図 1に示すような格子 状の形態に限られるものではなく、図 11に示すノ、二カム構造ある!、は他の接続形態 を採用してもよい。

Claims

請求の範囲
[1] 信号入出力を担う複数のポートを有し入力信号に処理を施して出力する複数のプ 口セッサと、 送信元のプロセッサからの出力信号に記録されたルート決定情報に従って信号伝 送経路を設定し該信号伝送経路に従って該出力信号を伝送する信号伝送部とを備 え、
前記複数のプロセッサそれぞれが有する複数のポートが、隣接するプロセッサのポ ートに直接に接続されたポートと、前記信号伝送部に接続されたポートとからなること を特徴とする信号処理装置。
[2] 前記信号伝送部が、該信号処理装置外部との間での信号の入出力を担う外部ポ ートを備えたことを特徴とする請求項 1記載の信号処理装置。
[3] 前記信号伝送部は、送信元のプロセッサからの出力信号のヘッダに記録されたル ート決定情報に従って信号伝送経路を設定するものであることを特徴とする請求項 1 記載の信号処理装置。
[4] 信号入出力を担う複数のポートを有し入力信号に処理を施して出力する複数のプ 口セッサと、送信元のプロセッサ力 の出力信号に記録されたルート決定情報に従つ て信号伝送経路を設定し該信号伝送経路に従って該出力信号を伝送する信号伝送 部であって、外部との間で信号の入出力を担う外部ポートを有する信号伝送部とを 具備し、前記複数のプロセッサそれぞれが有する複数のポートが、隣接するプロセッ サのポートに直接に接続されたポートと、前記信号伝送部に接続されたポートとから なる信号処理装置を複数備え、
これら複数のデジタル信号処理装置の外部ポートどうしが接続されてなることを特 徴とする信号処理システム。
PCT/JP2005/003270 2005-02-28 2005-02-28 信号処理装置および信号処理システム WO2006092825A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/003270 WO2006092825A1 (ja) 2005-02-28 2005-02-28 信号処理装置および信号処理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/003270 WO2006092825A1 (ja) 2005-02-28 2005-02-28 信号処理装置および信号処理システム

Publications (1)

Publication Number Publication Date
WO2006092825A1 true WO2006092825A1 (ja) 2006-09-08

Family

ID=36940871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003270 WO2006092825A1 (ja) 2005-02-28 2005-02-28 信号処理装置および信号処理システム

Country Status (1)

Country Link
WO (1) WO2006092825A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03176757A (ja) * 1989-11-21 1991-07-31 Deutsche Itt Ind Gmbh アレイプロセッサ
JPH05233567A (ja) * 1992-02-21 1993-09-10 Nec Corp アレイプロセッサのメッセージパケットルーティング方法
JPH09505921A (ja) * 1994-09-13 1997-06-10 ロッキード・マーチン・コーポレーション 並列データ処理プロセッサ
US5815728A (en) * 1996-03-01 1998-09-29 Raytheon Company Processor array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03176757A (ja) * 1989-11-21 1991-07-31 Deutsche Itt Ind Gmbh アレイプロセッサ
JPH05233567A (ja) * 1992-02-21 1993-09-10 Nec Corp アレイプロセッサのメッセージパケットルーティング方法
JPH09505921A (ja) * 1994-09-13 1997-06-10 ロッキード・マーチン・コーポレーション 並列データ処理プロセッサ
US5815728A (en) * 1996-03-01 1998-09-29 Raytheon Company Processor array

Similar Documents

Publication Publication Date Title
KR101802810B1 (ko) 하이브리드 회선 교환 및 패킷 교환 라우터의 아키텍처 및 그 방법
KR100812225B1 (ko) 멀티프로세서 SoC 플랫폼에 적합한 크로스바 스위치구조
KR20010099653A (ko) 라우팅 배열
JPH05241947A (ja) 分散クロスバー・スイッチ・アーキテクチャにおける交換接続の配列。
JP5753372B2 (ja) データ処理装置およびその制御方法
WO2006092825A1 (ja) 信号処理装置および信号処理システム
JP2008187711A (ja) 2つのエンティティ間の通信ゲートウェイ
CN107018071B (zh) 一种基于“包-电路”交换技术的路由模式切换配置器
CN103425620B (zh) 基于多令牌环的加速器与处理器的耦合结构
CN1401081A (zh) 使用多个控制线路增大多层最小逻辑网络中通过量的可扩缩设备和方法
US20110058570A1 (en) Programmable crossbar structures in asynchronous systems
JP4944377B2 (ja) 線形拡張可能な配信ルータ装置
JP2806252B2 (ja) データ処理装置
JP3661932B2 (ja) 並列計算機システムおよびクロスバスイッチ
JP4594047B2 (ja) デバイス
JP2007013856A (ja) テーブル装置及びこれを用いたアドレス検索装置
JP2004056590A (ja) 画像形成装置
CN112437032B (zh) 数据收发装置及方法、存储介质和电子设备
WO2005020515A1 (en) Broadcast router with multiple expansion capabilities
KR101882808B1 (ko) 혼합 네트워크 기반의 멀티 코어 프로세서
JP2522951B2 (ja) インタフェイス回路
JP2004282729A (ja) ネットワーク中継装置
JP2000332718A (ja) 半導体集積回路
JP2005250538A (ja) デバイス間通信装置
JP2008181424A (ja) 多重バスインタフェースモジュールおよび多重バスシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05719598

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5719598

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP