WO2006089653A1 - Motorbremsverfahren für eine brennkraftmaschine mit zwei in reihe geschalteten abgasturboladern - Google Patents

Motorbremsverfahren für eine brennkraftmaschine mit zwei in reihe geschalteten abgasturboladern Download PDF

Info

Publication number
WO2006089653A1
WO2006089653A1 PCT/EP2006/001265 EP2006001265W WO2006089653A1 WO 2006089653 A1 WO2006089653 A1 WO 2006089653A1 EP 2006001265 W EP2006001265 W EP 2006001265W WO 2006089653 A1 WO2006089653 A1 WO 2006089653A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
engine
bypass
gas turbine
engine braking
Prior art date
Application number
PCT/EP2006/001265
Other languages
English (en)
French (fr)
Inventor
Martin Dietz
Peter Fledersbacher
Gernot Hertweck
Siegfried Sumser
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Priority to JP2007556520A priority Critical patent/JP5342146B2/ja
Publication of WO2006089653A1 publication Critical patent/WO2006089653A1/de
Priority to US11/894,701 priority patent/US7752844B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0005Controlling intake air during deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to an engine braking method for an internal combustion engine with two exhaust turbochargers connected in series.
  • an internal combustion engine which is equipped with two exhaust gas turbochargers connected in series.
  • the larger of the two loaders is arranged remote from the engine and takes over the function of the main loader, the smaller is arranged close to the engine and acts as an additional loader, which can be switched on when needed.
  • the auxiliary loader is switched on and off by means of a shut-off device, which in each case comprises a rotary valve both in the intake tract and in the exhaust gas line.
  • a shut-off device which in each case comprises a rotary valve both in the intake tract and in the exhaust gas line.
  • the two-stage charging can be used both in the fired drive mode as well as in engine braking operation to increase performance.
  • Engine braking power is adjusted a variable turbine geometry in the exhaust gas turbine of the main loader in the locked position, which sets an increased exhaust back pressure in the exhaust line between the exhaust of the engine and the input of the turbine with variable turbine geometry.
  • the exhaust gas flows over the remaining open flow cross sections of the variable turbine geometry and hits the turbine wheel at high flow velocities, whereupon the compressor wheel is also driven and an increased charge pressure is generated in the intake tract.
  • an elevated pressure level against which the pistons of the internal combustion engine must perform lifting work.
  • the exhaust backpressure and the boost pressure can be further increased.
  • the invention is based on the problem of being able to vary the engine braking power in an internal combustion engine with two exhaust gas turbochargers connected in series with simple measures in a large power spectrum. Both high engine braking powers and regulation to a desired target value, for example for a cruise control function, can be realized.
  • the engine braking method according to the invention can be carried out in an internal combustion engine with two exhaust gas turbochargers, the exhaust gas turbines are equipped with a fixed geometry without adjustment of the effective turbine inlet cross-section. It can basically be both near the motor Exhaust gas turbine and the engine exhaust gas turbine are dispensed with a variable turbine geometry over which the turbine inlet cross section between a minimum storage position and a maximum opening position would be adjusted.
  • the exhaust gas turbines can therefore be structurally very simple, without resulting in losses in the amount of engine braking power or in the variability of braking power generation.
  • a bypass bypassing the engine near the compressor which is closed during engine brake operation, so that the air sucked in and compressed in the engine-distant compressor is also passed through the compressor close to the engine and further compressed in it.
  • a bypass bypassing the engine exhaust bypass is provided with a check valve disposed therein, which is adjusted to set the desired or requested engine braking performance, so that an adjustable exhaust gas mass flow passed through the engine near exhaust turbine and the supercharger performance of the exhaust gas turbocharger near the engine is changed.
  • a further adjustable bypass is provided, which bridges the engine-remote exhaust gas turbine.
  • this bypass which is remote from the engine, is offset in the direction of the open position, whereby the pressure between the engine-near and engine-remote exhaust-gas turbine is lowered and the pressure drop across the engine-near exhaust-gas turbine is increased.
  • This allows a higher exhaust gas mass flow rate through the engine-near exhaust gas turbine, which is accompanied by an increased supercharger performance of the close-coupled supercharger and a correspondingly increased engine braking power.
  • several intervention options are available for setting the desired engine braking performance.
  • the check valves in the bypass lines of the compressor close to the engine, the exhaust gas close to the engine and the exhaust gas turbine remote from the engine can be adjusted.
  • bypass bypassing the engine exhaust gas bypass is initially adjusted in the direction of the closed position, whereby the pressure drop across the exhaust gas near the engine is reduced and also the turbine power is reduced in this near-engine exhaust gas turbine. If this measure is not sufficient to reduce the engine braking power to a desired low value, the next measure bypassing the compressor close to the engine can be displaced in the direction of the open position, so that an increasing proportion of the air mass flow is bypassed through the compressor wheel.
  • the bypass which bypasses the engine near the exhaust gas turbine can also be displaced in the direction of the open position, so that an increasing exhaust gas mass flow is conducted past this exhaust gas turbine and the exhaust gas turbine close to the engine generates correspondingly less supercharger power.
  • the bypass of the exhaust gas engine remote from the engine is opened, so that the exhaust gas is discharged directly bypassing even the exhaust gas turbine remote from the engine; This avoids that the off-engine exhaust gas turbine is operated in the area of their Stopfsky.
  • the internal combustion engine 1 - a diesel engine - or a gasoline engine - is equipped with two exhaust turbochargers 2 and 6 connected in series, the engine near exhaust turbocharger 2 is designed as a high pressure supercharger and the exhaust gas turbocharger 6 remote as a low pressure supercharger.
  • the exhaust gas turbocharger 2 close to the engine comprises an exhaust gas turbine 3 in the exhaust gas line, whose turbine wheel is non-rotatably connected via a shaft 5 to the compressor wheel in the associated compressor 4 in the intake tract.
  • the exhaust gas turbocharger 6 remote from the engine comprises an exhaust gas turbine 7 in the exhaust gas line, whose turbine wheel is non-rotatably connected via a shaft 9 to the compressor wheel in the associated compressor 8 in the intake tract.
  • the close-coupled exhaust gas turbine 3, the close-coupled compressor 4 and the exhaust gas turbine 7 remote from the engine are respectively bypass lines 10, 12 and 14 with arranged therein, adjustable check valves 11, 13 and 15 to bridge. These check valves are controlled by control signals of a control and control unit 23 as a function of state and operating variables of the internal combustion engine or the aggregates or the values desired by the driver.
  • the exhaust gas turbines 3 and 7 are designed as so-called solid geometry turbines, which are characterized by a particularly simple structural design.
  • the effective turbine inlet cross section can not be changed in these solid geometry turbines.
  • combustion air is drawn in the intake tract, precompressed in the low-pressure compressor 8 remote from the engine, then compressed to the final value in the series-connected high-pressure compressor 4, finally cooled in a downstream charge air cooler 16 and then fed under boost pressure to an air collector 17. over which the combustion air is supplied to the cylinders of the internal combustion engine 1.
  • the exhaust gas is first collected in an exhaust manifold 18 and forwarded from there into the exhaust system, in which the exhaust gas first flows through the engine-near exhaust gas turbine 3 and then the exhaust gas turbine 7 remote from the engine. Adjustments exist on the regulation of the check valves 11, 13 and 15 in the above-described bypass lines 10, 12 and 14 to the exhaust gas engine near the engine 3, the compressor 4 close to the engine and the exhaust turbine 7 remote from the engine.
  • the internal combustion engine 1 is equipped with an exhaust gas recirculation device 19, which comprises a return line 20 between the exhaust line and the intake tract, in particular between the exhaust manifold 18 and the air collector 17, wherein in the return line 20, an adjustable check valve 21 and an exhaust cooler 22 are arranged is.
  • the check valve 21 is also adjusted by actuating signals of the control and control unit 23.
  • the air mass flow is regulated by the bypass 12 bypassing the compressor 4 near the engine and the exhaust gas mass flow is regulated by the bypass 10 bypassing the engine-side exhaust gas turbine 3 in order to be able to set the desired or requested engine braking power.
  • valve 15 is opened in the bypass 14, which bridges the exhaust gas turbine 7 remote from the engine, whereupon downstream of the exhaust gas turbine near the engine 3, the pressure is lowered and the pressure drop across the exhaust gas engine near the engine 3 is increased.
  • the mass flows are regulated by the exhaust gas turbine 7 remote from the engine and by the compressor 4 close to the engine by corresponding adjustment of the check valves 15 and 13 in the bypass lines 14 and 12, respectively.
  • By opening the check valve 13 to bypass the compressor 4 close to the engine can also be ensured that the maximum allowable compressor temperature is not exceeded.
  • the bypass 14 bypassing the engine-exhaust gas turbine 7 is displaced in the direction of the closed position by acting on the shut-off valve 15 arranged therein, whereby the pressure drop across the exhaust gas turbine 3 close to the engine is reduced , If this measure is not sufficient, the bypass 12 is additionally adjusted to bypass the compressor 4 close to the engine in the direction of the opening position, so that a smaller amount of air is compressed.
  • the bypass 10 bridging the engine-side exhaust gas turbine 3 is displaced in the direction of the open position, whereby drops through the exhaust back pressure between the cylinder outlet and the exhaust gas engine near the engine 3 and the turbine is reduced in power accordingly.
  • This last measure is advantageously accompanied by an opening of the bypass 14 for bypassing the exhaust gas turbine 7 remote from the engine, in order to ensure that the exhaust gas turbine 7 remote from the engine does not accidentally reach the area of its stuffing limit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

Bei einem Motorbremsverf ahren für eine Brennkraftmaschine mit zwei in Reihe geschalteten Abgasturboladern (2, 6) wird der Luftmassenstrom durch einen den motornahen Verdichter (4) überbrückenden Bypass (12) und der Abgasmassenstrom durch einen die motornahe Abgasturbine (3) überbrückenden Bypass (10) zur Einstellung der gewünschten Motorbremsleistung reguliert.

Description

Motorbremsverfahren für eine Brennkraftmaschine mit zwei in Reihe geschalteten Abgasturboladern
Die Erfindung bezieht sich auf ein Motorbremsverfahren für eine Brennkraftmaschine mit zwei in Reihe geschalteten Abgas- turboladern.
In der Druckschrift DE 198 53 360 Al wird eine Brennkraftmaschine beschrieben, die mit zwei in Reihe geschalteten Abgasturboladern ausgestattet ist . Der größere der beiden Lader ist motorfern angeordnet und übernimmt die Funktion des Hauptladers, der kleinere ist motornah angeordnet und fungiert als Zusatzlader, welcher bei Bedarf zugeschaltet werden kann. Die Zu- und Abschaltung des Zusatzladers erfolgt mit- hilfe einer Absperreinrichtung, die sowohl im Ansaugtrakt als auch im Abgasstrang jeweils einen Drehschieber umfasst. Bei zugeschaltetem Zusatzlader werden die Massenströme im Ansaugtrakt und im Abgasstrang durch den Verdichter bzw. die Turbine des Zusatzladers geführt, bei abgeschaltetem Zusatzlader werden dagegen die Massenströme zur Umgehung des Zusatzladers über Bypass-Leitungen geführt. Desweiteren ist ein Bypass zur Überbrückung der Abgasturbine des Hauptladers vorgesehen.
Die zweistufige Aufladung kann sowohl in der befeuerten Antriebsbetriebsweise als auch im Motorbremsbetrieb zur Leistungssteigerung eingesetzt werden. Zur Erzielung einer hohen Motorbremsleistung wird eine variable Turbinengeometrie in der Abgasturbine des Hauptladers in Sperrposition verstellt, wodurch sich im Abgasstrang zwischen Auslass der Brennkraftmaschine und dem Eingang der Turbine mit variabler Turbinengeometrie ein erhöhter Abgasgegendruck einstellt . Das Abgas strömt über die verbleibenden offenen Strömungsquerschnitte der variablen Turbinengeometrie und trifft mit hohen Strömungsgeschwindigkeiten auf das Turbinenrad, woraufhin auch das Verdichterrad angetrieben wird und im Ansaugtrakt ein erhöhter Ladedruck erzeugt wird. Auf diese Weise entsteht sowohl auf der Luftseite als auch auf der Abgasseite ein erhöhtes Druckniveau, gegen das die Kolben der Brennkraftmaschine Hubarbeit leisten müssen. Über die Zuschaltung des Zusatzladers können der Abgasgegendruck und der Ladedruck weiter erhöht werden .
Von diesem Stand der Technik ausgehend liegt der Erfindung das Problem zugrunde, die Motorbremsleistung in einer Brennkraftmaschine mit zwei in Reihe geschalteten Abgasturboladern mit einfachen Maßnahmen in einem großen Leistungsspektrum variieren zu können. Es sollen sowohl hohe Motorbremsleistungen als auch eine Regelung auf einen gewünschten Zielwert, beispielsweise für eine Tempomatfunktion, realisiert werden können.
Dieses Problem wird erfindungsgemäß mit den Merkmalen des Anspruches 1 gelöst. Die Unteransprüche geben zweckmäßige Weiterbildungen an.
Das erfindungsgemäße Motorbremsverfahren lässt sich bei einer Brennkraftmaschine mit zwei Abgasturboladern durchführen, deren Abgasturbinen mit einer Festgeometrie ohne Verstellmöglichkeit des wirksamen Turbineneintrittsquerschnittes ausgestattet sind. Es kann grundsätzlich sowohl bei der motornahen Abgasturbine als auch bei der motorfernen Abgasturbine auf eine variable Turbinengeometrie verzichtet werden, über die der Turbineneintrittsquerschnitt zwischen einer minimalen Stauposition und einer maximalen Öffnungsposition zu verstellen wäre. Die Abgasturbinen können daher konstruktiv sehr einfach ausgeführt sein, ohne dass dies zu Einbußen in der Höhe der Motorbremsleistung oder bei der Variabilität der Bremsleistungserzeugung führt.
Erreicht wird dies dadurch, dass ein den motornahen Verdichter überbrückender Bypass vorgesehen ist, der im Motorbrems- betrieb geschlossen wird, sodass die im motorfernen Verdichter angesaugte und vorverdichtete Luft auch durch den motornahen Verdichter geschleust und in diesem weiter komprimiert wird. Des Weiteren ist auf der Abgasseite ein die motornahe Abgasturbine überbrückender Bypass mit einem darin angeordneten Sperrventil vorgesehen, das zur Einstellung der gewünschten bzw. angeforderten Motorbremsleistung verstellt wird, sodass ein einstellbarer Abgasmassenstrom durch die motornahe Abgasturbine geführt und die Laderleistung des motornahen Abgasturboladers verändert wird.
In zweckmäßiger Weiterbildung ist ein weiterer einstellbarer Bypass vorgesehen, welcher die motorferne Abgasturbine überbrückt. Zur Steigerung der Motorbremsleistung wird dieser die motorferne Abgasturbine umgehende Bypass in Richtung Öffnungsstellung versetzt, wodurch der Druck zwischen der motornahen und der motorfernen Abgasturbine abgesenkt und der Druckabfall über der motornahen Abgasturbine erhöht wird. Dies ermöglicht einen höheren Abgasmassendurchsatz durch die motornahe Abgasturbine, was mit einer gesteigerten Laderleistung des motornahen Laders und einer entsprechend erhöhten Motorbremsleistung einhergeht. Grundsätzlich stehen für die Einstellung der gewünschten Motorbremsleistung mehrere Eingriffsmöglichkeiten zur Verfügung. Prinzipiell können die Sperrventile in den Bypasslei- tungen des motornahen Verdichters, der motornahen Abgasturbi- ne und der motorfernen Abgasturbine eingestellt werden. Zur Realisierung einer Tempomatfunktion bietet es sich auch an, die Massenströme durch den die motorferne Abgasturbine überbrückenden Bypass bzw. durch den den motornahen Verdichter überbrückenden Bypass einzustellen, wobei in dieser Situation der Bypass der motornahen Abgasturbine geschlossen bleibt, sodass der gesamte Abgasmassenstrom durch die motornahe Abgasturbine durchgesetzt wird.
Ebenfalls zur Realisierung einer Zielfunktion einer Zustands- größe oder einer sonstigen Kenngröße der Brennkraftmaschine bzw. des Fahrzeuges kann es vorteilhaft sein, ausgehend von einem hohen Motorbremsleistungswert die Motorbremsleistung durch abgestufte Maßnahmen mit feststehender Reihenfolge zu reduzieren. Hierbei wird zunächst der die motorferne Abgasturbine überbrückende Bypass in Richtung Schließposition verstellt, wodurch der Druckabfall über der motornahen Abgasturbine reduziert und auch die Turbinenleistung in dieser motornahen Abgasturbine verringert wird. Falls diese Maßnahme nicht ausreicht, um die Motorbremsleistung auf einen gewünschten niedrigen Wert zu reduzieren, kann als folgende Maßnahme der den motornahen Verdichter überbrückende Bypass in Richtung Öffnungsstellung versetzt werden, sodass ein zunehmender Anteil des Luftmassenstroms unter Umgehung des Verdichterrades durch diesen Bypass geleitet wird. Hierdurch wird ein geringerer Luftmassenanteil vom Verdichterrad auf einen erhöhten Ladedruck komprimiert, was insgesamt zu einem niedrigeren Druckniveau und einer entsprechend geringeren Motorbremsleistung führt. Als weitere Maßnahme kann auch der die motornahe Abgasturbine überbrückende Bypass in Richtung Öffnungsstellung versetzt werden, sodass ein zunehmender Abgasmassenstrom an dieser Abgasturbine vorbeigeleitet wird und die motornahe Abgasturbine entsprechend weniger Laderleistung erzeugt. Zweckmäßigerweise wird zugleich der Bypass der motorfernen Abgasturbine geöffnet, sodass das Abgas unmittelbar unter Umgehung auch der motorfernen Abgasturbine abgeleitet wird; hierdurch wird vermieden, dass die motorferne Abgasturbine im Bereich ihrer Stopfgrenze betrieben wird.
Weitere Vorteile und zweckmäßige Ausführungen sind den weiteren Ansprüchen, der Figurenbeschreibung und der Zeichnung zu entnehmen, in der eine mit zwei Abgasturboladern versehene Brennkraftmaschine schematisch dargestellt ist.
Die Brennkraftmaschine 1 - eine Diesel -Brennkraftmaschine o- der ein Ottomotor - ist mit zwei in Reihe geschalteten Abgas- turboladern 2 und 6 ausgestattet, wobei der motornahe Abgas- turbolader 2 als Hochdrucklader und der motorferne Abgasturbolader 6 als Niederdrucklader ausgeführt ist. Der motornahe Abgasturbolader 2 umfasst eine Abgasturbine 3 im Abgasstrang, deren Turbinenrad über eine Welle 5 mit dem Verdichterrad im zugeordneten Verdichter 4 im Ansaugtrakt drehfest verbunden ist . In entsprechender Weise umfasst der motorferne Abgasturbolader 6 eine Abgasturbine 7 im Abgasstrang, deren Turbinenrad über eine Welle 9 mit dem Verdichterrad im zugeordneten Verdichter 8 im Ansaugtrakt drehfest verbunden ist. Die motornahe Abgasturbine 3, der motornahe Verdichter 4 sowie die motorferne Abgasturbine 7 sind jeweils über Bypassleitungen 10, 12 und 14 mit darin angeordneten, verstellbaren Sperrventilen 11, 13 und 15 zu überbrücken. Diese Sperrventile werden von Stellsignalen einer Regel- und Steuereinheit 23 als Funktion von Zustands- und Betriebsgrößen der Brennkraftmaschine bzw. der Aggregate oder der vom Fahrer gewünschten Werte eingestellt .
Die Abgasturbinen 3 und 7 sind als so genannte Festgeometrie- turbinen ausgeführt, die sich durch eine besonders einfache konstruktive Ausführung auszeichnen. Der wirksame Turbineneintrittsquerschnitt kann bei diesen Festgeometrieturbinen nicht verändert werden.
Im Betrieb der Brennkraftmaschine wird im Ansaugtrakt Verbrennungsluft angesaugt, im motorfernen Niederdruckverdichter 8 vorverdichtet, anschließend in dem in Reihe geschalteten Hochdruckverdichter 4 auf den endgültigen Wert komprimiert, schließlich in einem nachgeschalteten Ladeluft- kühler 16 abgekühlt und danach unter Ladedruck einem Luft- sammler 17 zugeführt, über den die Verbrennungsluft den Zylindern der Brennkraftmaschine 1 zugeführt wird. Auf der Abgasseite wird das Abgas zunächst in einem Abgassammler 18 gesammelt und von dort in den Abgasstrang weitergeleitet, in welchem das Abgas zunächst die motornahe Abgasturbine 3 und anschließend die motorferne Abgasturbine 7 durchströmt. Einstellmöglichkeiten bestehen über die Regulierung der Sperrventile 11, 13 und 15 in den vorbeschriebenen Bypass- Leitungen 10, 12 und 14 zur motornahen Abgasturbine 3, zum motornahen Verdichter 4 sowie zur motorfernen Abgasturbine 7.
Des Weiteren ist die Brennkraftmaschine 1 mit einer Abgas- rückführeinrichtung 19 ausgestattet, die eine Rückführleitung 20 zwischen dem Abgasstrang und dem Ansaugtrakt, insbesondere zwischen dem Abgassammler 18 und dem LuftSammler 17 umfasst, wobei in der Rückführleitung 20 ein einstellbares Sperrventil 21 und ein Abgaskühler 22 angeordnet ist. Das Sperrventil 21 wird ebenfalls von Stellsignalen der Regel- und Steuereinheit 23 eingestellt. Im Motorbremsbetrieb wird der Luftmassenstrom durch den den motornahen Verdichter 4 überbrückenden Bypass 12 und der Abgasmassenstrom durch den die motornahe Abgasturbine 3 überbrückenden Bypass 10 reguliert, um die gewünschte oder angeforderte Motorbremsleistung einstellen zu können. Für eine maximale Motorbremsleistung wird das Ventil 15 im Bypass 14 geöffnet, der die motorferne Abgasturbine 7 überbrückt, woraufhin stromab der motornahen Abgasturbine 3 der Druck abgesenkt und der Druckabfall über der motornahen Abgasturbine 3 erhöht wird.
Um eine gleich bleibende Fahrzeuggeschwindigkeit (Tempomat- funktion) einzustellen, werden die Massenströme durch die motorferne Abgasturbine 7 und durch den motornahen Verdichter 4 durch entsprechende Einstellung der Sperrventile 15 bzw. 13 in den Bypassleitungen 14 bzw. 12 reguliert. Durch ein Öffnen des Sperrventiles 13 zur Umgehung des motornahen Verdichters 4 kann zudem sichergestellt werden, dass die maximal zulässige Verdichtertemperatur nicht überschritten wird.
Um ausgehend von einem hohen Bremsleistungswert die Motorbremsleistung wieder zurückzunehmen, werden zweckmäßig die folgenden Maßnahmen durchgeführt : Zunächst wird der die motorferne Abgasturbine 7 überbrückende Bypass 14 durch Beaufschlagung des darin angeordneten Sperrventiles 15 in Richtung Schließposition verstellt, wodurch der Druckabfall über der motornahen Abgasturbine 3 reduziert wird. Falls diese Maßnahme nicht ausreicht, wird zusätzlich der Bypass 12 zur Umgehung des motornahen Verdichters 4 in Richtung Öffnungsposition verstellt, sodass eine geringere Luftmenge verdichtet wird. Als letzte Maßnahme zur weiteren Reduzierung der Motorbremsleistung wird der die motornahe Abgasturbine 3 überbrückende Bypass 10 in Richtung Öffnungsstellung versetzt, wo- durch der Abgasgegendruck zwischen dem Zylinderauslass und der motornahen Abgasturbine 3 abfällt und die Turbine in der Leistung entsprechend reduziert wird. Diese letzte Maßnahme geht vorteilhaft mit einem Öffnen des Bypass 14 zur Umgehung der motorfernen Abgasturbine 7 einher, um sicherzustellen, dass die motorferne Abgasturbine 7 nicht versehentlich in den Bereich ihrer Stopfgrenze gelangt .

Claims

Patentansprüche
1. Motorbremsverfahren für eine Brennkraftmaschine mit zwei in Reihe geschalteten Abgasturboladern (2, 6), die jeweils eine Abgasturbine (3, 7) im Abgasstrang und einen Verdichter (4, 8) im Ansaugtrakt umfassen, wobei jede der beiden Abgasturbinen (3, 7) mit einer Festgeometrie mit unveränderlichem Turbineneintrittsquerschnitt versehen ist, und wobei zur Einstellung der gewünschten bzw. angeforderten Motorbremsleistung der durch einen den motornahen Verdichter (4) überbrückenden Bypass (12) geführte Luftmassenstrom und der durch einen die motornahe Abgasturbine (3) überbrückenden Bypass (10) geführte Abgasmassenstrom reguliert werden.
2. Motorbremsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Steigerung der Motorbremsleistung ein die motorferne Abgasturbine (7) überbrückender Bypass (14) geöffnet wird.
3. Motorbremsverfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass zur Einstellung einer gleichbleibenden Fahrzeuggeschwindigkeit (Tempomatfunktion) die Massenströme durch den die motorferne Abgasturbine (7) überbrückenden Bypass (14) und/oder den den motornahen Verdichter (4) überbrückenden Bypass (12) eingestellt werden.
4. Motorbremsverfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass - ausgehend von einem hohen Motorbremsleistungswert - die Motorbremsleistung durch Maßnahmen in folgender Reihenfolge reduziert wird:
I. der die motorferne Abgasturbine (7) überbrückende Bypass (14) wird geschlossen;
II. der den motornahen Verdichter (4) überbrückende Bypass (12) wird geöffnet;
III. der die motornahe Abgasturbine (3) überbrückende Bypass (10) wird geöffnet.
5. Motorbremsverfahren nach Anspruch 4 , dadurch gekennzeichnet, dass der die motorferne Abgasturbine (7) überbrückende Bypass (14) geöffnet wird, sobald der die motornahe Abgasturbine (3) überbrückende Bypass (10) geöffnet wird.
6. Brennkraftmaschine zur Durchführung des Motorbremsverfahrens nach einem der Ansprüche 1 bis 5, mit zwei in Reihe geschalteten Abgasturboladern (2, 6), die jeweils eine Abgasturbine (3, 7) im Abgasstrang und einen Verdichter (4, 8) im Ansaugtrakt umfassen, wobei jede der beiden Abgas- turbinen (3, 7) mit einer Festgeometrie mit unveränderlichem Turbineneintrittsquerschnitt versehen ist, mit einem den motornahen Verdichter (4) überbrückenden Bypass (12) , mit einem die motornahe Abgasturbine (3) überbrückenden Bypass (10) und mit einem die motorferne Abgasturbine (7) überbrückenden Bypass (14) , wobei in jedem Bypass (10, 12, 14) jeweils ein einstellbares Sperrventil (11, 13, 15) angeordnet ist, und mit einer Regel- und Steuereinheit (23) zur Erzeugung von die Sperrventile (11, 13, 15) regulierenden SteilSignalen.
PCT/EP2006/001265 2005-02-25 2006-02-11 Motorbremsverfahren für eine brennkraftmaschine mit zwei in reihe geschalteten abgasturboladern WO2006089653A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007556520A JP5342146B2 (ja) 2005-02-25 2006-02-11 直列に接続された2つの排気ターボチャージャを有する内燃機関のためのエンジンブレーキ方法
US11/894,701 US7752844B2 (en) 2005-02-25 2007-08-21 Engine braking method for an internal combustion engine having two serially arranged exhaust-gas turbochargers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005008657.8 2005-02-25
DE102005008657A DE102005008657A1 (de) 2005-02-25 2005-02-25 Motorbremsverfahren für eine Brennkraftmaschine mit zwei in Reihe geschalteten Abgasturboladern

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/894,701 Continuation-In-Part US7752844B2 (en) 2005-02-25 2007-08-21 Engine braking method for an internal combustion engine having two serially arranged exhaust-gas turbochargers

Publications (1)

Publication Number Publication Date
WO2006089653A1 true WO2006089653A1 (de) 2006-08-31

Family

ID=36295521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/001265 WO2006089653A1 (de) 2005-02-25 2006-02-11 Motorbremsverfahren für eine brennkraftmaschine mit zwei in reihe geschalteten abgasturboladern

Country Status (4)

Country Link
US (1) US7752844B2 (de)
JP (1) JP5342146B2 (de)
DE (1) DE102005008657A1 (de)
WO (1) WO2006089653A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110000208A1 (en) * 2007-09-05 2011-01-06 Robinson Lee J Multi-stage turbocharger system
US9062594B2 (en) 2009-11-21 2015-06-23 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US10054037B2 (en) 2009-11-21 2018-08-21 Cummins Turbo Technologies Limited Multi-stage turbocharger system with bypass flowpaths and flow control valve

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8161745B2 (en) 2006-11-09 2012-04-24 Borgwarner Inc. Turbocharger
DE102007040044A1 (de) 2007-06-22 2008-12-24 Continental Teves Ag & Co. Ohg Verfahren zur Prüfung einer Behälterwarnvorrichtung eines Ausgleichsbehälters sowie Prüfvorrichtung zur Prüfung einer Behälterwarnvorrichtung
WO2009074845A1 (en) * 2007-12-11 2009-06-18 Renault Trucks Operating method for an internal combustion engine in compression braking mode, internal combustion engine capable of operating in braking mode and automotive vehicle equipped with such an engine
DE102008020745A1 (de) * 2008-04-25 2009-10-29 Daimler Ag Abgasstromführungseinrichtung und Brennkraftmaschine mit einer Abgasstromführungseinrichtung
GB0900427D0 (en) * 2009-01-12 2009-02-11 Napier Turbochargers Ltd Two-stage turbocharger assembly
DE112010000936T5 (de) * 2009-02-26 2012-08-02 Borgwarner Inc. Verbrennungsmotor
JP5324961B2 (ja) * 2009-02-27 2013-10-23 三菱重工業株式会社 内燃機関の過給システム
EP2333275B1 (de) * 2009-07-16 2014-08-20 Toyota Jidosha Kabushiki Kaisha Vorrichtung zur feststellung von anomalien an steuerungsventilen für einen verbrennungsmotor
US20140150423A1 (en) * 2009-11-25 2014-06-05 Napier Turbochargers Limited Two-stage turbocharger assembly with single low-pressure turbocharger
US9567950B2 (en) * 2010-03-25 2017-02-14 Ford Global Technologies, Llc Turbocharged engine with naturally aspirated operating mode
US20120067331A1 (en) * 2010-09-16 2012-03-22 Caterpillar Inc. Controlling engine braking loads using cat regeneration system (CRS)
WO2013163054A1 (en) * 2012-04-25 2013-10-31 International Engine Intellectual Property Company, Llc Engine braking
DE102014109577A1 (de) * 2014-07-09 2016-01-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Aufladeeinrichtung für eine Verbrennungskraftmaschine, Verbrennungskraftmaschine sowie Verfahren zum Betreiben einer Verbrennungskraftmaschine
DE102015001081A1 (de) 2015-01-28 2016-07-28 Man Truck & Bus Ag Motorbremsverfahren für eine aufgeladene Brennkraftmaschine und Vorrichtung zur Modulation einer Motorbremsleistung eines Kraftfahrzeugs mit aufgeladener Brennkraftmaschine
CN106065809B (zh) 2015-04-24 2020-12-25 福特环球技术公司 具有两级增压和排气后处理的发动机及其运行方法
US9726092B2 (en) * 2015-11-16 2017-08-08 Ford Global Technologies, Llc Methods and systems for boost control
BR112020002210A2 (pt) * 2017-08-03 2020-07-28 Jacobs Vehicle Systems, Inc. sistemas e métodos para gerenciamento de contrafluxos e sequência de movimento de válvula na frenagem melhorada do motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0864737A1 (de) * 1997-03-11 1998-09-16 Man Nutzfahrzeuge Ag Steuervorrichtung für eine aufgeladene Brennkraftmaschine
DE19853360A1 (de) * 1998-11-19 2000-05-31 Daimler Chrysler Ag Brennkraftmaschine mit zwei Abgasturboladern
DE19961610A1 (de) * 1999-12-21 2001-04-05 Daimler Chrysler Ag Brennkraftmaschine mit zwei Abgasturboladern und Verfahren hierzu
DE10144663A1 (de) * 2001-09-12 2003-04-03 Bayerische Motoren Werke Ag Brennkraftmaschine mit zwei Abgasturboladern mit Verdichterumgehung und Verfahren hierzu
EP1387058A2 (de) * 2002-08-03 2004-02-04 DaimlerChrysler AG Verfahren zur Ladedruckregelung eines Verbrennungsmotors
EP1394380A1 (de) * 2002-08-30 2004-03-03 Borg Warner Inc. Aufladesystem für eine Brennkraftmaschine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3141293A (en) * 1961-08-22 1964-07-21 Cooper Bessemer Corp Method and apparatus for refrigerating combustion air for internal combustion engines
US4930315A (en) * 1987-05-29 1990-06-05 Usui Kokusai Sangyo Kabushiki Kaisha Turbo-charger engine system
JPH0751806B2 (ja) * 1988-09-14 1995-06-05 株式会社巴コーポレーション 籠形構造物の構築法
SE467634B (sv) * 1990-05-15 1992-08-17 Volvo Ab Anordning vid turboreglering
US5199261A (en) * 1990-08-10 1993-04-06 Cummins Engine Company, Inc. Internal combustion engine with turbocharger system
SE512484C2 (sv) * 1995-12-19 2000-03-20 Volvo Ab Anordning för reglering av motorbromseffekten hos en förbränningsmotor
EP1071870B2 (de) * 1998-04-16 2011-06-29 3K-Warner Turbosystems GmbH Turboaufgeladene brennkraftmaschine
DE19837978B4 (de) * 1998-04-16 2006-05-18 Borgwarner Turbo Systems Gmbh Turboaufgeladene Brennkraftmaschine
JP3953636B2 (ja) * 1998-04-30 2007-08-08 富士重工業株式会社 レシプロエンジン用多段過給システム
US6324846B1 (en) * 1999-03-31 2001-12-04 Caterpillar Inc. Exhaust gas recirculation system for an internal combustion engine
DE50211459D1 (de) * 2002-06-26 2008-02-14 Borgwarner Inc Motorbremseinrichtung für eine turboaufgeladene Brennkraftmaschine
DE10319594A1 (de) * 2003-05-02 2004-11-18 Daimlerchrysler Ag Turboladereinrichtung sowie ein Verfahren zum Betreiben einer Turboladereinrichtung
EP1706616A1 (de) * 2004-01-14 2006-10-04 Lotus Cars Limited Verbrennungsmotor mit turbolader
JP2006097684A (ja) * 2004-09-27 2006-04-13 Borgwarner Inc Vtgタービン段を利用する多段ターボ過給装置
US7322194B2 (en) * 2005-09-28 2008-01-29 Ford Global Technologies Llc System and method for reducing surge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0864737A1 (de) * 1997-03-11 1998-09-16 Man Nutzfahrzeuge Ag Steuervorrichtung für eine aufgeladene Brennkraftmaschine
DE19853360A1 (de) * 1998-11-19 2000-05-31 Daimler Chrysler Ag Brennkraftmaschine mit zwei Abgasturboladern
DE19961610A1 (de) * 1999-12-21 2001-04-05 Daimler Chrysler Ag Brennkraftmaschine mit zwei Abgasturboladern und Verfahren hierzu
DE10144663A1 (de) * 2001-09-12 2003-04-03 Bayerische Motoren Werke Ag Brennkraftmaschine mit zwei Abgasturboladern mit Verdichterumgehung und Verfahren hierzu
EP1387058A2 (de) * 2002-08-03 2004-02-04 DaimlerChrysler AG Verfahren zur Ladedruckregelung eines Verbrennungsmotors
EP1394380A1 (de) * 2002-08-30 2004-03-03 Borg Warner Inc. Aufladesystem für eine Brennkraftmaschine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110000208A1 (en) * 2007-09-05 2011-01-06 Robinson Lee J Multi-stage turbocharger system
US8307650B2 (en) * 2007-09-05 2012-11-13 Cummins Turbo Technologies Limited Multi-stage turbocharger system with exhaust control valve
US9003794B2 (en) 2007-09-05 2015-04-14 Cummins Turbo Technologies Limited Multi-stage turbocharger system with exhaust control valve
US9903267B2 (en) 2007-09-05 2018-02-27 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US9062594B2 (en) 2009-11-21 2015-06-23 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US10054037B2 (en) 2009-11-21 2018-08-21 Cummins Turbo Technologies Limited Multi-stage turbocharger system with bypass flowpaths and flow control valve

Also Published As

Publication number Publication date
US7752844B2 (en) 2010-07-13
JP2008531906A (ja) 2008-08-14
DE102005008657A1 (de) 2006-08-31
JP5342146B2 (ja) 2013-11-13
US20080216795A1 (en) 2008-09-11

Similar Documents

Publication Publication Date Title
WO2006089653A1 (de) Motorbremsverfahren für eine brennkraftmaschine mit zwei in reihe geschalteten abgasturboladern
EP1778966B1 (de) Brenkraftmaschine mit einem abgasturbolader und einer abgasrückfüreinrichtung
EP1844221B1 (de) Turbocompound-aufladesystem mit zuschaltbarem verdichter
EP1880095B1 (de) Zweitakt-motorbremsverfahren für eine aufgeladene brennkraftmaschine
EP1866535B1 (de) Verfahren zum betrieb einer brennkraftmaschine und brennkraftmaschine hierzu
EP1828562A1 (de) Verfahren zum betrieb einer brennkraftmaschine mit einem abgasturbolader und einer nutzturbine
EP1836381B1 (de) Verfahren zum Motorbremsbetrieb einer Brennkraftmaschine mit einem den Zylindern zugeordneten Gasdruckbehälter.
WO2007124843A1 (de) Abgasturbolader in einer brennkraftmaschine
WO2010020323A1 (de) Abgasturbolader für eine brennkraftmaschine eines kraftfahrzeugs
WO2009097889A1 (de) Aufladungssystem für einen verbrennungsmotor und verfahren zum steuern desselben
DE102009026469A1 (de) Verfahren zur Ladedruckregelung einer Aufladeeinrichtung und Aufladeeinrichtung
EP1639245A1 (de) Brennkraftmaschine mit einem verdichter im ansaugtrakt und verfahren hierzu
WO2000047879A1 (de) Verfahren zum betreiben einer kolbenbrennkraftmaschine mit vorverdichtung der verbrennungsluft und kolbenbrennkraftmaschine zur durchführung des verfahrens
DE102006037396A1 (de) Brennkraftmaschine
DE102010010480A1 (de) Brennkraftmaschine mit zweistufiger Aufladung
EP2166211B1 (de) Brennkraftmaschine mit Abgasrückführung
DE102007028522A1 (de) Verfahren zum Betreiben einer aufgeladenen Brennkraftmaschine
DE102006029370A1 (de) Verfahren zur Steigerung des Ladedruckaufbaus bei aufgeladenen Verbrennungskraftmaschinen
WO2005121524A1 (de) Brennkraftmaschine mit einem abgasturbolader
WO2004111406A2 (de) Brennkraftmaschine mit abgasrückführeinrichtung und verfahren hierzu
WO2011045272A1 (de) Verbrennungsmotor mit aufladeeinrichtung sowie verfahren zum betreiben eines verbrennungsmotors
DE19849495C2 (de) Aufgeladene Brennkraftmaschine mit einer die Abgasturbine überbrückenden Umgehungsleitung
DE19844571C2 (de) Motorbremsverfahren für eine aufgeladene Brennkraftmaschine
DE19853127B4 (de) Motorbremsverfahren und Motorbremseinrichtung für eine aufgeladene Brennkraftmaschine
DE102006027738A1 (de) Brennkraftmaschine mit einem Abgasturbolader und einer Compound-Turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007556520

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06723035

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6723035

Country of ref document: EP