WO2006088025A1 - 脂環式モノオレフィンカルボン酸及びその製造方法 - Google Patents

脂環式モノオレフィンカルボン酸及びその製造方法 Download PDF

Info

Publication number
WO2006088025A1
WO2006088025A1 PCT/JP2006/302551 JP2006302551W WO2006088025A1 WO 2006088025 A1 WO2006088025 A1 WO 2006088025A1 JP 2006302551 W JP2006302551 W JP 2006302551W WO 2006088025 A1 WO2006088025 A1 WO 2006088025A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxylic acid
alicyclic monoolefin
monoolefin carboxylic
producing
alicyclic
Prior art date
Application number
PCT/JP2006/302551
Other languages
English (en)
French (fr)
Inventor
Takahiro Fukumoto
Gang Wen
Yoshiaki Koyashiki
Kaoru Hamashima
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005038657A external-priority patent/JP2006225290A/ja
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2006088025A1 publication Critical patent/WO2006088025A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/60Ring systems containing bridged rings containing three rings containing at least one ring with less than six members
    • C07C2603/66Ring systems containing bridged rings containing three rings containing at least one ring with less than six members containing five-membered rings

Definitions

  • the present invention relates to a method for efficiently producing a high-purity alicyclic monoolefin carboxylic acid. Specifically, it is possible to efficiently remove coloring impurities which are difficult to purify using industrially available alicyclic monoolefin carboxylic acid or its ester as a raw material, and to produce highly pure alicyclic monoolefin carboxylic acid.
  • the present invention relates to an easy manufacturing method.
  • Alicyclic monoolefin carboxylic acids are known to be useful as raw materials for electronic materials and optical materials.
  • various polymer resins can be obtained by radical polymerization, ring-opening metathesis polymerization, and bull polymerization of a compound having a norbornene skeleton.
  • an ester compound of alicyclic monoolefin carboxylic acid can be used for electronic materials.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-286467
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2004-51621
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-183215
  • alicyclic monoolefin carboxylic acid obtained by a normal production method has high chemical purity but contains colored impurities, and is used for optical materials and electronic materials.
  • the quality was not satisfactory as a raw material. Even if the amount of colored impurities is extremely small, the quality is affected.
  • it is difficult to identify the structure and the amount of contamination by conventional chemical purity analysis methods such as gas chromatography and liquid chromatography.
  • crystallization is one of the purification methods for increasing the purity, but it was very difficult to selectively separate the colored impurities.
  • An object of the present invention is to provide a method for producing a highly pure alicyclic monoolefin carboxylic acid with reduced coloring impurities by an industrially advantageous method.
  • the present inventors have found that a fraction containing a alicyclic monoolefin carboxylic acid ester represented by the above formula (2) as a main component and weak A method that enables high-quality and stable production of alicyclic monoolefin carboxylic acids from which colored impurities that are difficult to purify and separate are efficiently removed by carrying out a hydrolysis reaction after stirring the alkaline water solution. Furthermore, the alicyclic monoolefin carboxylic acid obtained in the above step is extracted and purified using a solvent system containing a hydrocarbon solvent and an alcohol solvent, so that colored impurities that are difficult to purify and separate can be efficiently treated. The inventors have found a method capable of producing a highly removed alicyclic monoolefin carboxylic acid with high purity and stability, and have completed the present invention.
  • the gist of the present invention is as follows.
  • R 1 represents a hydrogen atom or a methyl group
  • n is 1 or 2.
  • R 1 represents a hydrogen atom or a methyl group, represents a hydrocarbon group having! To 6 carbon atoms, n is 1 or 2)
  • a step of contacting with an alkali metal and / or alkaline earth metal carbonate and / or hydrogen carbonate aqueous solution is performed.
  • a method for producing a high purity alicyclic monoolefin carboxylic acid is performed.
  • the alicyclic monoolefin carboxylic acid used for extraction and purification treatment is alicyclic monoolefin.
  • a step of contacting with an alkali metal and / or alkaline earth metal carbonate and / or hydrogen carbonate aqueous solution is performed before the reaction step of hydrolyzing the alicyclic monoolefin carboxylic acid ester.
  • a step of contacting with an alkali metal and / or alkaline earth metal carbonate and / or hydrogen carbonate aqueous solution is performed before the reaction step of hydrolyzing the alicyclic monoolefin carboxylic acid ester.
  • high-purity alicyclic monoolephine carboxylic acid with reduced impurities can be produced by an industrially advantageous method.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • the alicyclic monoolefin carboxylic acid in the present invention is the following general formula (1)
  • R 1 is a hydrogen atom or a methyl group, more preferably a hydrogen atom.
  • n is 1 or 2, preferably 1.
  • the production method of alicyclic monoolefin carboxylic acid can be synthesized by various methods.
  • it contains an alicyclic monoolefin carboxylic acid ester represented by the following general formula (2) by Diels-Alder reaction of dicyclopentagen and / or cyclopentagen with a (meth) acrylic acid compound.
  • a mixture is obtained.
  • R 1 is preferably a hydrogen atom or a methyl group, more preferably a hydrogen atom.
  • R 2 is a leaving group to be hydrolyzed and represents a hydrocarbon group having 1 to 6 carbon atoms, preferably a linear or branched alkyl group such as a methyl group, an ethyl group or a propyl group, or a cyclopentyl group. And a cycloalkyl group such as a cyclohexyl group. Of these, the methyl group is preferred.
  • n is 1 or 2, preferably 1.
  • the amount of dicyclopentagen and / or cyclopentagen and (meth) acrylic acid compound used in the Diels.Alder reaction is the molar ratio of dicyclopentagen and / or cyclopentagen to the (meth) acrylic acid compound.
  • a solvent may or may not be used, but when used, the type is not particularly limited as long as the compound to be reacted is dissolved, and a conventionally known solvent is used. It is done. Specifically, hydrocarbons such as benzene, toluene, xylene, hexane, heptane, and cyclohexane, alcohols such as methanol, ethanol, propanol, and isopropanol, jetyl ether, diisopropyl ether, and tetrahydrofuran.
  • hydrocarbons such as benzene, toluene, xylene, hexane, heptane, and cyclohexane
  • alcohols such as methanol, ethanol, propanol, and isopropanol
  • jetyl ether diisopropyl ether
  • diisopropyl ether diisopropyl ether
  • Examples include ethers, esters such as methyl acetate and ethyl acetate, halogen-containing solvents such as methylene chloride and black benzene, and nitrogen-containing solvents such as N, N-dimethylformamide and N-methylpyrrolidone. Of these, toluene, xylene and heptane are preferable.
  • the amount used is based on the total charged weight of the (meth) acrylic acid compound used and dicyclopentagen and / or cyclopentagen.
  • the lower limit is usually 0.5 times by weight
  • the upper limit is usually 2 times by weight. Too much of this amount is economically disadvantageous.
  • the Diels-Alder reaction is usually performed under normal pressure to increased pressure. Usually, it is carried out while maintaining the vapor pressure at the reaction temperature in a pressure-resistant reaction kettle such as an autoclave.
  • the lower limit of the pressure is usually normal pressure or higher, preferably 0. IMPa or higher
  • the upper limit is usually lOMPa or lower, preferably 5 MPa or lower. If the pressure is too high, the pressure resistance of the reactor is required, which is economically disadvantageous.
  • the reaction at the vapor pressure or higher you may pressurize using an inert gas. When an inert gas is used, it is preferably performed in a nitrogen atmosphere.
  • the Diels-Alder reaction may be either a batch type or a continuous type. In the case of a batch type reaction, the order of preparation is not particularly specified.
  • the reaction time is usually in the range of 0.1 hour to 50 hours, preferably 1 hour to 20 hours.
  • the reaction is carried out in the presence of an antioxidant and / or a polymerization inhibitor.
  • an antioxidant for example, hydroquinone, phenolic compounds such as 2,6-di-tert-butyl p-taresole, 4-methoxyphenol, sulfur compounds such as dilauryl 3,3′-thiodipropionate, phosphorus such as triphenylphosphite System compounds and the like.
  • 4-methoxyphenol is preferred.
  • the amount added is usually 10 ppm or more, preferably lOOppm or more, and the upper limit is usually 10 ppm or more with respect to the total charged weight of the (meth) acrylic acid compound and dicyclopentagen and / or cyclopentagen used. 10, OOOppm or less, preferably 5, OOOppm or less.
  • the alicyclic monoolefin carboxylic acid ester obtained by the Diels-Alder reaction contains unreacted raw materials and / or by-products, it is preferable to carry out purification. Specifically, the fraction near the target product is usually obtained by distillation under reduced pressure.
  • the lower limit of the temperature is usually 50 ° C or higher, preferably 100 ° C or higher, and the upper limit is usually 250 ° C or lower, preferably 200 ° C or lower.
  • the lower limit of the pressure is usually 0.05 kPa or more, preferably 0.1 kPa or more, and the upper limit is usually 10 kPa or less, preferably 1 kPa or less.
  • the fraction containing alicyclic monoolefin carboxylic acid ester as a main component has components that become colored after alkaline hydrolysis, more than the colored impurities observed in the state of the main fraction. Contained.
  • the fraction used in the present invention is mainly composed of an alicyclic monoolefin carboxylic acid ester, and the alicyclic monoolefin carboxylic acid ester is usually 50% or more, more preferably 70% or more. Says what it contains.
  • the distillate is mixed with an aqueous solution of an alkali metal and Z or alkaline earth metal carbonate and / or bicarbonate, and the mixture is stirred to add water. Only the colored components can be selectively extracted into the alkaline aqueous layer with little progress of the decomposition reaction.
  • the colored impurities removed by this alkali contact treatment operation do not show a clear peak in gas chromatography or liquid chromatography used in ordinary purity analysis, and therefore the content is in the order of ppm (0 It is a component that shows coloration in a trace amount of 1% or less.
  • it is presumed that, for example, it may be a compound having an ester group or a phenolic hydroxyl group which causes an alkali hydrolysis reaction and exhibits water solubility.
  • the alkaline aqueous solution used in this operation means a weakly basic aqueous carbonate as described above and a weak alkaline aqueous solution of Z or hydrogen carbonate. This is different from the alkaline aqueous solution used for hydrolyzing the olefin carboxylic acid ester.
  • the colored component is transferred to the aqueous layer in the hydrolysis reaction performed in the next step, even the alicyclic monoolefin carboxylic acid ester undergoes the hydrolysis reaction, so that only the colored component is selectively transferred to the aqueous layer. It is very difficult.
  • the water layer loss of the target product accompanying the hydrolysis reaction is low with respect to fluctuations in the amount of basic compound used, operation temperature, and operation time. It is industrially advantageous because of its high reproducibility.
  • a liquid of alicyclic monoolefin carboxylic acid ester itself is stirred and mixed with an alkali metal and Z or alkaline earth metal carbonate and an aqueous solution of Z or bicarbonate.
  • a method of separating and purging a layer, a method of extracting and separating a alicyclic monoolefin carboxylic acid ester in an organic solvent which is inactive with an aqueous alkaline solution and has a liquid separating property, etc. Can be mentioned.
  • alkali metal and Z or alkaline earth metal used herein include sodium, potassium, magnesium, calcium and the like.
  • sodium, potassium, and magnesium salts having high solubility in water are more preferable.
  • sodium carbonate and sodium hydrogen carbonate which are moderately basic and inexpensive, are particularly preferred.
  • An aqueous solution of an alkali metal and / or alkaline earth metal carbonate and / or hydrogen carbonate usually has a lower limit as a weight ratio with respect to a fraction mainly composed of an alicyclic monoolefin carboxylic acid ester. 0.1 times or more, preferably 0.5 times or more, and the upper limit is usually 20 times or less, preferably 10 times or less.
  • the salt concentration in the aqueous solution of alkali metal and / or alkaline earth metal carbonate and / or bicarbonate is determined by the type of salt used and the saturated solubility of the salt at the operating temperature.
  • the lower limit is usually 5% by weight or more, preferably 10% by weight or more.
  • the separation property with the aqueous layer is improved without diluting the carboxylic acid ester with an organic solvent.
  • Specific examples of the solvent used when operating after diluting in an organic solvent include carbonization that is not miscible with inert water in an alkaline aqueous solution such as toluene, xylene, hexane, heptane, and black benzene.
  • a hydrogen solvent is mentioned, Preferably it is toluene.
  • the lower limit of the temperature in the contact treatment with an alkali metal and Z or alkaline earth metal carbonate and / or hydrogen carbonate aqueous solution is usually 10 ° C or higher, preferably 40 ° C or higher.
  • the upper limit is usually 100 ° C or lower, preferably 90 ° C or lower. If the operation temperature is too low, the solubility of the alkali salt tends to be low, and if it is too high, the operability tends to be poor.
  • Alkali metal and / or alkaline earth metal carbonate and / or bicarbonate water The stirring time and standing separation time in the contact treatment with the solution are set in the operability, but the stirring time is usually 10 minutes or more and 2 hours or less, and the standing time is usually 30 minutes or more 2 The range is less than the time.
  • the desired alicyclic monoolefin carboxylic acid represented by the above formula (1) is obtained.
  • the contact treatment step between the hydrolysis step and the alkali metal and / or alkaline earth metal carbonate and / or bicarbonate solution may not be a continuous step. However, in the present invention, it is preferable to perform the contact treatment step before performing the hydrolysis step.
  • the solvent used here is usually water, but is not particularly limited as long as it does not interfere with the reaction, and an organic solvent or the like may be mixed therein.
  • the lower limit is usually 1 or more times, preferably 2 or more times, and the upper limit is usually 2 or more times for a mixed solution containing an alicyclic monoolefin carboxylic acid ester.
  • It is 0 weight times or less, preferably 10 weight times or less.
  • the hydrolysis reaction is carried out using a basic compound capable of hydrolyzing the ester compound.
  • a basic compound capable of hydrolyzing the ester compound include basic compounds such as hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide, and alkoxides such as sodium methoxide and potassium t-butoxide.
  • hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide
  • alkoxides such as sodium methoxide and potassium t-butoxide.
  • the amount of the basic compound used is, as a molar ratio to the alicyclic monoolefin carboxylic acid ester used, the lower limit is usually at least 0.8 mol, preferably at least 1.0 mol.
  • the upper limit is usually 10 mol or less, preferably 5 mol or less. If this amount is too small, the reaction tends to be slow. On the other hand, when the amount is too large, the amount of acid used in acid precipitation tends to increase.
  • the temperature in the hydrolysis reaction varies depending on the solvent used, reaction pressure, etc., but the lower limit is usually 20 ° C or higher, preferably 60 ° C or higher, and the upper limit is usually 150 ° C or lower, preferably It is preferably below 110 ° C. If the reaction temperature is too low, the reaction rate tends to be slow, If it is too high, it is disadvantageous in terms of cost.
  • the hydrolysis reaction is usually carried out at normal pressure, but can be carried out under pressure as necessary.
  • the reaction time for the hydrolysis is usually in the range of 30 minutes to 10 hours, and preferably in the range of 1 hour to 5 hours.
  • the carboxylic acids are dissolved in the aqueous layer as alkali salts, so that the reaction solution is acidified by adding an acid to obtain alicyclic monoolefin carboxylic acids.
  • a specific method includes a method of adding an acid such as an aqueous hydrochloric acid solution to the hydrolyzed alkaline aqueous layer until the pH becomes acidic, and filtering the precipitated crystals.
  • carboxylic acids precipitated by acid precipitation are dissolved in an organic solvent such as hexane, and low molecular weight carboxylic acids and inorganic salts that are water-soluble even after acidification are removed by washing with water, and then rubonic acid is removed from the organic solvent.
  • a method for crystallization can be used. These methods are useful in removing impurities other than colored impurities in the alicyclic monoolefinic carboxylic acid.
  • the later organic solvent can be reused as the organic solvent used in the above-described method.
  • examples of the type of acid used include mineral acids such as hydrochloric acid and sulfuric acid.
  • the acid form may be a gas form or an aqueous solution form.
  • the ultimate pH for acid precipitation is usually pH 7 or lower, preferably pH 5 or lower, and the lower limit is preferably 1 or higher. If the pH is not sufficiently acidified, the sodium salt state remains, which tends to decrease the yield. Even if the pH is too low, the subsequent washing load tends to increase.
  • the alicyclic monoolefin carboxylic acid having a high purity in which the colored impurities and the like are removed from the liquid phase can be crystallized and isolated by cooling crystallization.
  • the crystallization method includes acidifying and precipitating an alkaline aqueous solution, further cooling the acidified slurry liquid to improve the precipitation amount, and carboxylic acid in an organic solvent immiscible with water as described above. Extract In such a case, a method of precipitating crystals by concentrating and / or cooling the organic solvent can be used.
  • Solvents used at the time of crystallization from an organic solvent include acids such as toluene, xylene, hexane, heptane, black benzene, and hydrocarbon solvents that do not mix with water inert to Z or alkaline aqueous solution. Is mentioned. After crystallization, the precipitated solid is preferably filtered and dried under reduced pressure.
  • an extraction purification treatment with an organic solvent.
  • at least an alicyclic monoolefin carboxylic acid is used in a solvent system containing a hydrocarbon solvent having 5 to 10 carbon atoms and an alcohol solvent having 1 to 4 carbon atoms.
  • the alicyclic monoolefin carboxylic acid is dissolved in the hydrocarbon solvent, and the colored impurities are selectively extracted and removed to the alcohol solvent side.
  • hydrocarbon solvent having 5 to 10 carbon atoms examples include linear hydrocarbon solvents, branched hydrocarbons, cyclic hydrocarbons, and aromatic hydrocarbons. Specifically, n-hexane, n-heptane, n-decane, 2-methylhexane, cyclopentane, cyclohexane, 1-hexene, cyclohexene, tolylene, xylene, black benzene, acetic acid Echinore and the like. Of these solvents, n-hexane, n-heptane and toluene are preferred, and n_heptane is particularly preferred.
  • the amount of the hydrocarbon solvent required for the extraction and purification is not particularly limited as long as it is higher than the solubility of the alicyclic monoolefin carboxylic acid, but the alicyclic monoolefin carboxylic acid is not particularly specified.
  • the lower limit is usually 1 times or more, preferably 2 times or more
  • the upper limit is usually 20 times or less, preferably 10 times or less. If this amount is too small, the slurry concentration after crystallization tends to be high and stirring becomes substantially difficult. If the amount is too large, the amount of the target product obtained by crystallization tends to decrease.
  • Examples of the alcohol solvent having 1 to 4 carbon atoms include linear alcohols, branched alcohols, and dihydric alcohols. Specific examples include methanol, ethanol, n_propanol, i-propanol, ethylene glycol, or diethylene glycol. I can get lost. Of these solvents, methanol is particularly preferred.
  • the amount of the alcohol solvent used is usually 0.1 times or more, preferably 0.3 or more, and the upper limit is usually 10 or more times the weight of the alicyclic monoolefin carboxylic acid. It is less than 5 times by weight, preferably less than 5 times by weight. If this amount is too small, the effect of removing the coloring components tends to decrease due to a decrease in the liquid separation property or a decrease in the dispersibility. On the other hand, if the amount is too large, the size of the reaction kettle for the extraction operation increases, which is disadvantageous in terms of cost.
  • the proportion of water originally contained in the alcohol solvent is usually lw% or less as a weight ratio to the alcohol solvent.
  • water may be added to a solvent system including an alcohol solvent and a hydrocarbon solvent.
  • water and water are those that are separately added in addition to the water originally contained in the alcohol solvent to be used.
  • Alcohol solvents are good solvents for water, and after extraction and purification treatment, they must be separated from hydrocarbon solvents.
  • these solvents contain water in terms of reducing the dissolution loss of the alicyclic monoolefin carboxylic acid and improving the liquid separation property with the hydrocarbon solvent.
  • the lower limit of the weight ratio of water to the alcohol solvent is usually 0.01 times by weight or more, preferably 0.05 times by weight or more. Further, the upper limit is usually 2 times by weight or less, preferably 1 by weight or less. If this amount is too small, the solubility of the target compound in the alcohol solvent increases, leading to a decrease in the recovery rate, and the liquid separation property between the alcohol solvent and the hydrocarbon solvent tends to be poor. On the other hand, when the amount is too large, the effect of removing colored impurities tends to be low.
  • the temperature during extraction and purification is usually 10 ° C or higher, preferably 20 ° C or higher, and the upper limit is usually 100 ° C or lower, preferably 90 ° C or lower. If the temperature is too low, the difference between the dissolution temperature and precipitation temperature of the alicyclic monoolefin carboxylic acid is small even when the temperature is lowered due to crystallization after purification, and the yield of the target product obtained by precipitation is reduced. Tend to. In this case, a method of concentrating after extraction and then carrying out the crystallization process may be considered, but the number of processes tends to increase. On the other hand, it is not preferable that the operating temperature is too high in view of safety such as a liquid separation operation.
  • the stirring time and the stationary separation time in the extraction and purification treatment are set in the operability.
  • the stirring time is usually from 10 minutes to 2 hours
  • the separation time is usually from 30 minutes to 2 hours.
  • the hydrocarbon solvent layer obtained by the liquid separation treatment is cooled, and the alicyclic monoolefin carboxylic acid having a high purity from which the colored impurities are removed is crystallized and isolated by crystallization. Can do. After crystallization, the precipitated solid is filtered and dried under reduced pressure.
  • the apparatus used in this extraction processing operation is not limited as long as the processing operation is not hindered. Usually, a stirrer and an extraction kettle having a bottom valve for extraction are included. When performing multi-stage extraction processing, a rotating disk extraction tower, a centrifugal extractor, etc. are listed.
  • Crystallization is usually carried out by cooling to 30 ° C or lower, preferably 10 ° C or lower.
  • the precipitated solid is filtered and usually dried under reduced pressure at lOkPa or less.
  • a vacuum dryer such as a shelf dryer, a conical dryer or an internal rotary blade.
  • the high purity alicyclic monoolefin carboxylic acid obtained in the above-mentioned process is a stable compound even when stored at room temperature in the atmosphere. It is preferable to store it in a dry state.
  • the chromaticity (APHA) of the alicyclic monoolefin carboxylic acid obtained by the above process is compared and examined in a state where the target compound is dissolved in a colorless and transparent organic solvent.
  • the solvent is not particularly limited as long as it is an organic solvent that is colorless and transparent and has high solubility of the target substance. Specific examples include acetonitrile and methanol.
  • the degree of coloration is compared in the state of using acetonitrile, which has high solubility of the target product, in a 10% concentration (for example, 5 g measurement sample is dissolved in a solvent to prepare 50 ml). .
  • the color test can be carried out in accordance with the Japanese Industrial Standard (JIS) K0071-1, or as a standard colorimetric solution (for example, Wako Pure Chemical Industries, Ltd. ) To adjust the colorimetric solution within the measurement range by dilution
  • JIS Japanese Industrial Standard
  • a standard colorimetric solution for example, Wako Pure Chemical Industries, Ltd.
  • a method using a colorimetric color difference meter for example, Nippon Denshoku Industries Co., Ltd. ZE-2000 or 0ME_2000
  • a colorimetric color difference meter (ZE-2000) is used.
  • This measuring device is preferable because the APHA (American Public Healthy Association) value is displayed together with the YI value (yellowness) of the liquid contained in the cell container.
  • APHA American Public Healthy Association
  • YI yellowness
  • APHA 10 or less appears to be almost colorless and transparent.
  • APHA may show strong coloring of 50 or more, and when the synthesis or purification conditions of alicyclic monoolefin carboxylic acid are changed, it may show strong coloring of 100 or more. is there. More specifically, when the hydrolysis step is performed after the contact treatment step with an alkali metal and / or alkaline earth metal carbonate and / or bicarbonate solution, the formula (1)
  • the upper limit of the chromaticity (APHA) in a 10% concentration solution state of the alicyclic monoolefin carboxylic acid shown is usually 30 or less, preferably 25 or less.
  • the alicyclic monoolefin carboxylic acid obtained when performing the extraction and purification treatment step is usually 20 or less, preferably 15 or less, more preferably 10 or less.
  • the alicyclic monoolefin carboxylic acid obtained in the present invention can be used as a raw material for electronic materials and optical materials.
  • the purity was measured using the following apparatus.
  • the measurement sample was treated with TMS.
  • the chromaticity (APHA) was measured using the following apparatus.
  • Samples were prepared to 10% concentration. (For example, dissolve 5 g of alicyclic monoolefin carboxylic acid in acetonitrile to make up to 50 ml)
  • the sample preparation solution was put into a measurement cell, and APHA was measured with the above apparatus.
  • the distillate 60 g (tetracyclo [6. 2. 1. I 3 '. 6 0 2' 7] de de force one 9 _ E down one 4_ carboxylate: 0. 2 mol) and 20. /. 180 g of an aqueous sodium carbonate solution was added to a 1000 ml separable flask equipped with a stirring blade, a temperature measuring unit, and a Jim mouth cooling tube, followed by extraction at 80 ° C. for 2 hours. Thereafter, standing separation was performed at 60 ° C, and the underlying alkaline water layer colored yellow was purged. About 0.1% fraction undergoes hydrolysis in alkaline aqueous layer is as tetracyclo [6. 2. 1. I 3 '6 . 0 2' 7] de de force one 9 _ E down one 4_ carboxylic acid Disappeared.
  • the target product became water-soluble in the form of a sodium salt. Therefore, an operation of extracting a hardly soluble impurity in an alkaline aqueous solution with 90 g of toluene and performing a liquid separation purge was performed twice at 70 ° C. Then, add 200 g of heptane and maintain 35% hydrochloric acid aqueous solution while maintaining the internal temperature at 60 ° C The aqueous layer was added until the pH was 3 or less. The target product was extracted into the heptane organic layer with acid precipitation, so after purging the aqueous layer, the organic layer was washed 3 times with 200 g of water.
  • Example 2 In a 200 ml separable flask equipped with a stirring blade, a temperature measuring section, and a Dimroth condenser, the tetracyclo [6. 2. 1. I 3, 6.0 2 ' 7 ] dode force obtained in Example 1 was used. —10 g of 4-carboxylic acid, 45 g of heptane, 7 g of methanol and 2 g of water were added and stirred at 40 ° C., and the colored impurities were extracted into the lower methanol solvent layer. After separation, the lower alcohol solvent layer was purged, and the upper heptane layer was filtered through a 1 micron filter.
  • Example 2 Thereafter, in the same manner as in Example 1, 90 g of 10% aqueous sodium hydroxide solution was added to the upper organic layer, and a hydrolysis reaction was carried out at 90 ° C. for 2 hours. After the hydrolysis reaction, the target product became water-soluble in the form of a sodium salt. Therefore, an operation of extracting a hardly soluble impurity in an alkaline aqueous solution with 30 g of toluene and separating and purging was performed twice at 70 ° C. Thereafter, 70 g of heptane was added, and while maintaining the internal temperature at 60 ° C., 35% aqueous hydrochloric acid was added until the aqueous layer pH was 3 or less. The target product was extracted into the heptane organic layer with acid precipitation, so after purging the aqueous layer, the organic layer was washed 3 times with 70 g of water.
  • the distillate 60 g (tetracyclo [6. 2. 1. I 3 '. 6 0 2' 7] de de force one 9 _ E down one 4_ carboxylate: 0. 2 mol) and 10. /. 260 g of an aqueous sodium hydroxide solution was added to a 1000 ml separable flask equipped with a stirring blade, a temperature measuring unit, and a Dimroth condenser, and subjected to a hydrolysis reaction at 90 ° C. for 2 hours. After the hydrolysis reaction, the target product became water-soluble in the form of sodium salt.
  • the operation of extracting the hardly soluble impurities in the alkaline aqueous solution with 90 g of toluene and separating and purging was performed twice at 70 ° C. Thereafter, 200 g of heptane was added, and a 35% aqueous hydrochloric acid solution was added until the aqueous layer pH became 3 or less while maintaining the internal temperature at 60 ° C.
  • the target product was extracted into the heptane organic layer along with acid precipitation, so after purging the aqueous layer, the organic layer was washed with 200 g of water three times.
  • Tetracyclo obtained in Synthesis Example 2 [6. 2. 1. I 3 ' 6. 0 2' 7] de de force one 9-E down one 4- local Bonn acid 5g was added to heptane 20g, under a nitrogen atmosphere 70 The temperature was raised to 0 ° C., and the target product was dissolved, then cooled to 20 ° C., and the precipitated solid was filtered and dried under reduced pressure to obtain 4 g of a solid. Tetracyclododecene of the target compound [6. 2. 1. I 3 '6 . 0 2' de de force one 9-E down one 4-carboxylic acid purity der of 99.9% ivy.
  • a high-purity alicyclic monoolephine carboxylic acid with reduced impurities can be produced by an industrially advantageous method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書
脂環式モノォレフィンカルボン酸及びその製造方法
技術分野
[0001] 本発明は、高純度な脂環式モノォレフィンカルボン酸を効率的に製造する方法に 関する。具体的には、工業的に入手可能な脂環式モノォレフィンカルボン酸又はそ のエステルを原料として精製困難な着色不純物等を効率良く除去し、高純度な脂環 式モノォレフィンカルボン酸を容易に製造する方法に関する。
背景技術
[0002] 脂環式モノォレフィンカルボン酸は電子材料や光学材料の原料として有用性が知 られている。例えば、ノルボルネン骨格を有する化合物のラジカル重合、開環メタセ シス重合、及びビュル重合により各種のポリマー樹脂が得られる。また、脂環式モノ ォレフインカルボン酸のエステルイ匕合物を電子材料用途に使用できることが報告され ている。
[0003] 脂環式モノォレフィンカルボン酸の製造方法としては、ジシクロペンタジェン及び Z 又はシクロペンタジェンと(メタ)アクリル酸化合物とをディールス ·アルダー反応させ る。さらに、反応液を蒸留精製し、これを加水分解反応させることにより脂環式モノォ レフインカルボン酸を得る方法が一般的に知られている。具体的には、脂環式モノォ レフインカルボン酸エステルを選択的にアルカリ加水分解することにより、単一異性体 が得られることが報告されている(特許文献 1)。
[0004] さらに高純度な脂環式モノォレフィンカルボン酸を得るために、ディールス 'アルダ 一反応後のカルボン酸エステルを溶媒抽出処理しシクロペンタジェンの多量体を除 去する方法や、加水分解後の脂環式モノォレフィンカルボン酸アルカリ塩の水溶液 を有機溶媒で抽出処理しシクロペンタジェンの多量体を除去する方法などが報告さ れてレ、る(特許文献 2及び特許文献 3)。
[0005] しかし、上述したような光学材料や感光性レジスト原料として用いられる場合、脂環 式モノォレフィンカルボン酸において一般的な化学的純度向上の他に微量な着色不 純物が低減できる工業的手法が望まれていた。 特許文献 1:特開平 11 - 286467号公報
特許文献 2:特開 2004— 51621号公報
特許文献 3 :特開 2003— 183215号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明者らの検討によれば、通常の製造方法で得られる脂環式モノォレフィンカル ボン酸の化学純度は高いが着色不純物を含有しており、光学材料や電子材料用途 の原料としては満足される品質ではなかった。着色不純物は極微量であっても品質 に影響を示すが、従来のガスクロマログラフィー、液体クロマトグラフィー等の化学純 度分析法では構造及び混在量の同定が困難であった。また、一般的に純度を高め る精製法の 1つとして晶析 (再結晶)が挙げられるが、着色不純物を選択的に分離す ることは非常に困難であった。
[0007] 本発明は、着色不純物が低減された高純度な脂環式モノォレフィンカルボン酸を 工業的に有利な方法で製造する方法を提供することにある。
課題を解決するための手段
[0008] 本発明者らは、上述の課題を解決すべく鋭意研究を行った結果、前記式(2)で表 される脂環式モノォレフィンカルボン酸エステルを主成分とする留分と弱アルカリ水 溶液とを攪拌させた後に、加水分解反応を実施することによって、精製分離が困難な 着色不純物等を効率良く除去した脂環式モノォレフィンカルボン酸を高純度でかつ 安定に製造できる方法、更に、上記工程で得られた脂環式モノォレフィンカルボン酸 を炭化水素系溶媒とアルコール溶媒を含む溶媒系を用いて抽出精製処理を行うこと によって、精製分離が困難な着色不純物等が効率良く除去された脂環式モノォレフ インカルボン酸を高純度でかつ安定に製造できる方法を見出し、本発明を完成する に至った。
[0009] 即ち、本発明の要旨は、以下の通りである。
(1) 下記一般式 (1)
[0010] [化 1]
Figure imgf000005_0001
[0011] (式(1)中、 R1は水素原子又はメチル基を示し、 nは 1又は 2である。)で表される脂環 式モノォレフィンカルボン酸を製造する方法において、下記一般式(2)
[0012] [化 2]
Figure imgf000005_0002
[0013] (式(2)中、 R1は水素原子又はメチル基を示し、 は炭素数:!〜 6の炭化水素基を示 す。 nは 1又は 2である。)で表される脂環式モノォレフィンカルボン酸エステルを加水 分解させる反応工程の前に、アルカリ金属及び/又はアルカリ土類金属の炭酸塩及 び/又は炭酸水素塩の水溶液と接触させる工程を行うことを特徴とする高純度脂環 式モノォレフィンカルボン酸の製造方法。
(2) 脂環式モノォレフィンカルボン酸エステル力 シクロペンタジェン及び/又はジ シクロペンタジェンと(メタ)アクリル酸エステルとをディールス .アルダー反応させ、次 レ、で蒸留を行うことによって得られる留分であることを特徴とする、上記(1)に記載の 高純度脂環式モノォレフィンカルボン酸の製造方法。
(3) アルカリ金属及び Z又はアルカリ土類金属力 ナトリウム及び/又はカリウム及 び Z又はマグネシウムである、上記(1)又は(2)に記載の高純度脂環式モノォレフィ ンカルボン酸の製造方法。
(4) 加水分解反応後に得られる脂環式モノォレフィンカルボン酸を 10%濃度の溶 液に調製した場合の色度 (APHA)が 30以下である、上記(1)〜(3)のいずれか 1項 に記載の高純度脂環式モノォレフィンカルボン酸の製造方法。
(5) 上記構造式(1)で示される脂環式モノォレフィンカルボン酸を、炭素数 5〜: 10 の炭化水素系溶媒と炭素数 1〜4のアルコール溶媒を含む溶媒系を用いて抽出精 製処理を行うことを特徴とする、高純度脂環式モノォレフィンカルボン酸の製造方法
(6) 抽出精製処理に供する脂環式モノォレフィンカルボン酸が、脂環式モノォレフ インカルボン酸エステルを加水分解して得られるものである、上記(5)に記載の高純 度脂環式モノォレフィンカルボン酸の製造方法。
(7) 脂環式モノォレフィンカルボン酸エステルを加水分解させる反応工程の前に、 アルカリ金属及び/又はアルカリ土類金属の炭酸塩及び/又は炭酸水素塩の水溶 液と接触させる工程を行うことを特徴とする上記(6)に記載の高純度脂環式モノォレ フィンカルボン酸の製造方法。
(8) アルカリ金属及び Z又はアルカリ土類金属力 ナトリウム及び/又はカリウム及 び/又はマグネシウムである、上記(7)に記載の高純度脂環式モノォレフィンカルボ ン酸の製造方法。
(9) 溶媒系がさらに水を含有するものである、上記(5)〜(8)のいずれか 1項に記 載の高純度脂環式モノォレフィンカルボン酸の製造方法。
(10) 脂環式モノォレフィンカルボン酸を 10%濃度の溶液に調製した場合の色度( APHA)が 20以下である高純度脂環式モノォレフィンカルボン酸。
発明の効果
[0014] 本発明の製造方法によれば、不純物が低減された高純度な脂環式モノォレフィン カルボン酸を工業的に有利な方法で製造することができる。
発明を実施するための最良の形態
[0015] 以下、本発明につき詳細に説明する。
なお、本発明において (メタ)アクリル酸とはアクリル酸及び/又はメタアクリル酸を 意味する。
[0016] <脂環式モノォレフィンカルボン酸 >
本発明における脂環式モノォレフィンカルボン酸とは、下記一般式(1)
[0017] [化 1]
Figure imgf000006_0001
( 1 )
[0018] で表される。前記一般式(1)中、本化合物の特性が変わらない限り、特に制限されな レ、が、好ましくは、 R1は水素原子又はメチル基であり、より好ましくは、水素原子であ る。 nは 1又は 2であり、好ましくは、 1である。
[0019]
<脂環式モノォレフィンカルボン酸の製造方法 >
脂環式モノォレフィンカルボン酸の製造方法は、各種方法によって合成することが できる。例えば、ジシクロペンタジェン及び/又はシクロペンタジェンと(メタ)アクリル 酸化合物とをディールス ·アルダー反応させることにより、下記一般式(2)で表される 脂環式モノォレフィンカルボン酸エステル含有する混合液が得られる。
[0020] [化 2]
Figure imgf000007_0001
[0021] 前記式(2)において、本化合物の特性が変わらない限り、特に制限されないが、好 ましくは、 R1は水素原子又はメチル基であり、より好ましくは、水素原子である。 R2は 加水分解される脱離基であり、炭素数 1〜6の炭化水素基を示し、好ましくは、メチル 基、ェチル基、プロピル基等の直鎖状又は分岐鎖状アルキル基、シクロペンチル基 、シクロへキシル基等のシクロアルキル基を挙げられる。この中でもメチル基が好まし レ、。 nは 1又は 2であり、好ましくは、 1である。
[0022] 次いで、この混合液を蒸留することによって得られる脂環式モノォレフィンカルボン 酸エステルを主成分とする留分とアルカリ金属及び/又はアルカリ土類金属の炭酸 塩及び/又は炭酸水素塩の水溶液とを接触させた後に加水分解反応を行う。
[0023] さらに、加水分解処理後、洗浄を行うことにより、ほとんど収量のロスをすることなぐ 着色不純物等の量を低減させた高純度な脂環式モノォレフィンカルボン酸を得ること ができる。
( 1 )ディールス ·アルダー反応
ディールス.アルダー反応時におけるジシクロペンタジェン及び/又はシクロペンタ ジェンと(メタ)アクリル酸化合物との使用量は、ジシクロペンタジェン及び/又はシク 口ペンタジェンの(メタ)アクリル酸化合物に対するモル比として、下限が通常、 50モ ル%以上、好ましくは 90モル%以上であり、上限が通常、 200モル%以下、好ましく は 160モル%以下である。この量が少なすぎると目的の脂環式モノォレフィンカルボ ン酸エステルの収量が減少する傾向にあり、また多すぎると前記式(2)の n= 3以上 の多環成分が増加し目的の脂環式モノォレフィンカルボン酸エステルの収量が同様 に減少する傾向にある。
[0024] ディールス ·アルダー反応において溶媒は、使用してもしなくてもよいが、使用する 場合、その種類は反応する化合物が溶解するものであれば特に限定されず、従来公 知の溶媒が用いられる。具体的には、ベンゼン、トルエン、キシレン、へキサン、ヘプ タン、シクロへキサン等の炭化水素類、メタノール、エタノール、プロパノール、イソプ ロパノール等のアルコール類、ジェチルエーテル、ジイソプロピルエーテル、テトラヒ ドロフラン等のエーテル類、酢酸メチル、酢酸ェチル等のエステル類、塩化メチレン、 クロ口ベンゼン等の含ハロゲン溶媒、 N, N—ジメチルホルムアミド、 N—メチルピロリ ドン等の含窒素溶媒等が挙げられる。これらの中でも、トルエン、キシレン、ヘプタン が好ましい。
[0025] また溶媒は使用してもしなくてもよいが、使用する場合の使用量は、使用される (メ タ)アクリル酸化合物とジシクロペンタジェン及び/又はシクロペンタジェンの合計仕 込み重量に対して、下限が通常、 0. 5重量倍、上限が通常、 2重量倍である。この量 が多すぎると経済的に不利である。
[0026]
反応温度は、下限は通常、 30°C以上、好ましくは 100°C以上であり、上限は通常、 3 00°C以下、好ましくは 250°C以下である。反応温度が低すぎると、反応速度が遅くェ 業的に優位でなぐ一方、反応温度が高すぎると前記式 (2)の n= 3以上の多環化合 物等の副生成物が多くなる傾向にある。
[0027] ディールス ·アルダー反応は通常、常圧から加圧下で行われる。通常、オートクレー ブ等の耐圧性のある反応釜にぉレ、て反応温度での蒸気圧を保持して実施される。具 体的には、圧力は、下限は通常、常圧以上、好ましくは 0. IMPa以上であり、上限は 通常、 lOMPa以下、好ましくは、 5MPa以下である。圧力が高すぎる場合には、反 応器の耐圧性能が必要となるため、経済的に不利である。また、蒸気圧以上で反応 を行う場合、不活性ガスを用いて加圧してもよい。不活性ガスを用いる場合、窒素雰 囲気下で行うのが好ましい。
[0028] ディールス ·アルダー反応はバッチ式、連続式いずれの形式でも良ぐバッチ式で の反応の場合は、仕込みの順序等は特に規定するものではなレ、。
反応時間は、通常、 0. 1時間以上 50時間以下、好ましくは 1時間以上 20時間以下 の範囲である。
[0029] 反応は、酸化防止剤及び/又は重合禁止剤の存在下におレ、て行う。例えば、ハイ ドロキノン、 2, 6 ジ一 t ブチル p—タレゾール、 4—メトキシフエノール等のフエノ ール系化合物、ジラウリル 3, 3 ' チォジプロピオネート等の硫黄系化合物、トリフ ェニルホスファイト等のリン系化合物などが挙げられる。その中でも、 4—メトキシフエノ ールが好ましい。その添加量は、使用される(メタ)アクリル酸化合物とジシクロペンタ ジェン及び/又はシクロペンタジェンの合計仕込み重量に対して、下限は通常、 10 ppm以上、好ましくは lOOppm以上であり、上限は通常、 10, OOOppm以下、好まし くは 5, OOOppm以下である。
(2)ディールス 'アルダー反応後の精製処理
ディールス.アルダー反応により得られた脂環式モノォレフィンカルボン酸エステル には、未反応原料及び/又は副生物等を含むため、精製を行うのが好ましい。具体 的には、通常、減圧蒸留を行い目的物付近の留分を得る。
[0030] 温度は、下限は通常、 50°C以上、好ましくは 100°C以上であり、上限は通常、 250 °C以下、好ましくは 200°C以下である。
圧力は、下限は通常、 0. 05kPa以上、好ましくは 0. lkPa以上であり、上限は通常 、 lOkPa以下、好ましくは lkPa以下である。
[0031] 減圧蒸留では、低沸成分として、溶媒、ジシクロペンタジェン及び/又はシクロペン タジェン、前記式(1)において n=0で示される化合物等が得られ、主留分として、前 記式(1)において n= l又は 2で示される化合物ゃシクロペンタジェンの 3量体化合 物等が得られる。蒸留釜残存物には、前記式(2)において n= 3以上で示されるよう な化合物や、シクロペンタジェンの 4量体等の高沸物等が得られる。
(3)アルカリ金属及び/又はアルカリ土類金属の炭酸塩及び/又は炭酸水素塩の 水溶液との接触処理
減圧蒸留後、脂環式モノォレフィンカルボン酸エステルを主成分とする留分には、 主留分の状態で観察される着色不純物以上に、アルカリ加水分解後に着色性を帯 びてくる成分が含有されている。本発明でいう留分とは、脂環式モノォレフィンカルボ ン酸エステルを主成分とするものであり、脂環式モノォレフィンカルボン酸エステルが 通常、 50%以上、より好ましくは 70%以上含有したものを言う。
[0032] これら着色不純物を効率良く低減させるために、上記留分とアルカリ金属及び Z又 はアルカリ土類金属の炭酸塩及び/又は炭酸水素塩の水溶液とを混合し攪拌させ ることにより、加水分解反応を殆ど進行させずに、着色成分のみを選択的にアルカリ 性水層に抽出することができる。
[0033] このアルカリ接触処理操作で除去される着色不純物とは、通常の純度分析に用い られるガスクロマトグラフィーや液体クロマトグラフィーにおいて明確なピークを示さな レ、ことから、含有量として ppmオーダー(0. 1 %程度)もしくはそれ以下の微量で着色 を示す成分である。但し、アルカリ接触処理操作で除去が可能である点から、例えば 、アルカリ加水分解反応を生じて水溶性を示すエステル基やフエノール性水酸基を 持つ化合物等のではないかと推測される。これらの着色不純物は、電子材料や光学 材料用の原料として用いられる場合、製品性能に影響を及ぼす因子として敬遠され る。
[0034] この操作で用いるアルカリ性水溶液とは、上記に示したような塩基性の弱い炭酸塩 及び Z又は炭酸水素塩の弱アルカリ水溶液のことを指し、次工程で積極的に脂環式 モノォレフィンカルボン酸エステルを加水分解するために用いるアルカリ性水溶液と は異なるものである。
[0035] 次工程で行う加水分解反応でも着色成分は水層に移行するが、脂環式モノォレフ インカルボン酸エステルまでが加水分解反応を受けるため、選択的に着色成分のみ を水層に移行させることは非常に困難である。それに対して上述の弱アルカリ水溶液 を用いた処理法では、塩基性化合物の使用量、操作温度、操作時間の振れに対し て、加水分解反応に伴う目的物の水層ロスが低いレベルであり、再現性も高いため、 工業的に有利である。 [0036] アルカリ接触処理は、脂環式モノォレフィンカルボン酸エステル自身の液体に、了 ルカリ金属及び Z又はアルカリ土類金属の炭酸塩及び Z又は炭酸水素塩の水溶液 とを攪拌混合し、水層を分液パージする方法、脂環式モノォレフィンカルボン酸エス テルをアルカリ性水溶液に対して不活性で、且つ分液性のある有機溶媒に溶解した 状態で抽出、分液操作する方法等が挙げられる。
[0037] ここで用いられるアルカリ金属及び Z又はアルカリ土類金属とは、具体的にはナトリ ゥム、カリウム、マグネシウム、カルシウム等が挙げられる。中でも水への溶解性も高 いナトリウム、カリウム、マグネシウムの塩がより好ましい。その中でも、適度な塩基性 を有し、安価な炭酸ナトリウムや炭酸水素ナトリウムが特に好ましレ、。
[0038] アルカリ金属及び/又はアルカリ土類金属の炭酸塩及び/又は炭酸水素塩の水 溶液は、脂環式モノォレフィンカルボン酸エステルを主成分とする留分に対する重量 比として、下限が通常、 0. 1重量倍以上、好ましくは 0. 5重量倍以上であり、上限が 通常、 20重量倍以下、好ましくは 10重量倍以下である。
[0039] また、アルカリ金属及び/又はアルカリ土類金属の炭酸塩及び/又は炭酸水素塩 の水溶液中の塩濃度としては、使用する塩の種類及び操作温度での塩の飽和溶解 度により定まるものであるが、操作温度での飽和溶解度以下の範囲の水溶液であり、 下限は通常、 5重量%以上、好ましくは 10重量%以上である。特に 10重量%以上の 水溶液を用いた場合には、カルボン酸エステルを有機溶媒で希釈をしなくても水層と の分液性が向上するため好ましい。
[0040] 有機溶媒に希釈して操作する場合に用いられる溶媒としては、具体的には、トルェ ン、キシレン、へキサン、ヘプタン、クロ口ベンゼン等のアルカリ性水溶液に不活性な 水と混和しない炭化水素系溶媒が挙げられ、好ましくは、トルエンである。
[0041] アルカリ金属及び Z又はアルカリ土類金属の炭酸塩及び/又は炭酸水素塩の水 溶液との接触処理における温度は、下限は通常、 10°C以上、好ましくは 40°C以上で あり、上限は通常、 100°C以下、好ましくは 90°C以下である。操作温度が低すぎる場 合にはアルカリ塩の溶解度が低くなる傾向があり、高すぎる場合には操作性が悪くな る ί頃向がある。
[0042] アルカリ金属及び/又はアルカリ土類金属の炭酸塩及び/又は炭酸水素塩の水 溶液との接触処理における攪拌時間や静置分液時間は操作性の中で設定されるも のであるが、攪拌時間は通常、 10分以上 2時間以下、静置時間は通常、 30分以上 2 時間以下の範囲である。
(4)加水分解反応
上記工程により得られた脂環式モノォレフィンカルボン酸エステルを含有する混合 溶液を加水分解することにより、 目的とする前記式(1)で表される脂環式モノォレフィ ンカルボン酸を得る。加水分解工程とアルカリ金属及び/又はアルカリ土類金属の 炭酸塩及び/又は炭酸水素塩の水溶液との接触処理工程は連続した工程ではなく てもよい。しかし、本発明では、加水分解工程を行う前に上記接触処理工程をする事 は好ましい。
[0043] ここで用いられる溶媒は、通常、水であるが、反応を妨げないものでなければ特に 限定されず、有機溶媒等を混在させてもよい。
水を用いる場合、脂環式モノォレフィンカルボン酸エステルを含有する混合溶液に 対して、下限が通常、 1重量倍以上、好ましくは 2重量倍以上であり、上限が通常、 2
0重量倍以下、好ましくは 10重量倍以下である。
[0044] 加水分解反応は、エステル化合物の加水分解が可能な塩基性化合物を用いて実 施する。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等水酸化 物、ナトリウムメトキシド、カリウム— t—ブトキシド等のアルコキシド類等の塩基性化合 物が挙げられる。これらの中でも、水酸化ナトリウムの水溶液を用いるのがコスト的に 好ましい。
[0045] また塩基性化合物の使用量は、使用される脂環式モノォレフィンカルボン酸エステ ルに対するモル比として、下限は通常、 0. 8モル以上、好ましくは 1. 0モル以上であ り、上限は通常、 10モル以下、好ましくは 5モル以下である。この量が少なすぎると反 応が遅くなる傾向がある。一方、多すぎる場合には、酸析で使用する酸の使用量が 増加する傾向がある。
[0046] 加水分解反応における温度は、使用する溶媒や反応圧力等によって異なるが、下 限は通常、 20°C以上、好ましくは 60°C以上であり、上限は通常、 150°C以下、好まし くは 110°C以下である。反応温度が低すぎると反応速度が遅くなる傾向があり、また 高すぎるとコスト面にぉレ、て不利である。
[0047] 加水分解反応は通常、常圧で行われるが、必要に応じて加圧下でも実施できる。
加圧下で反応を実施する場合には、 IMPa以下が好ましい。高すぎるとコスト面にお いて不利である。
[0048] 加水分解の反応時間は、通常 30分以上 10時間以下の範囲、好ましくは、 1時間以 上 5時間以下の範囲である。
(5)加水分解反応後の抽出処理
加水分解反応終了後、カルボン酸類はアルカリ塩として水層に溶解した状態である ので、反応液に酸を添加して酸性化し、脂環式モノォレフィンカルボン酸を得る。
[0049] 具体的な方法としては、加水分解後のアルカリ性水層に、塩酸水溶液等の酸を pH が酸性となるまで添加し、析出した結晶を濾過する方法等が挙げられる。さらに、酸 析により析出したカルボン酸類をへキサン等の有機溶媒に溶解し、酸性化しても水 溶性を示すような低分子カルボン酸や無機塩等を水洗除去した後、有機溶媒から力 ルボン酸を晶析する方法等を用いることができる。これらの方法は脂環式モノォレフィ ンカルボン酸中の着色不純物以外の不純物を除去する点で有用である。また、脂環 式モノォレフィンカルボン酸を有機溶媒に溶解して晶析する場合、脂環式モノォレフ インカルボン酸が有機溶媒濾液中に溶解して収率が低下するのを防ぐために、晶析 後の有機溶媒を上述の方法で使用する有機溶媒として再利用することもできる。
[0050] 具体的には、酸析を行う場合、使用する酸の種類としては、塩酸、硫酸等の鉱酸が 挙げられる。酸の形態としては、ガスとしての形態でも、水溶液の形態でも構わない。 酸析の到達 pHとしては、通常、 pH7以下、好ましくは pH5以下であり、下限は好まし くは 1以上である。 pHが十分に酸性化されていない場合には、ナトリウム塩の状態が 残存するため収率の低下等を招く傾向がある。また pHが低すぎても、その後の水洗 負荷等が増加する傾向がある。
[0051] 酸析後、冷却晶析により、液相から着色不純物等が除かれた純度の高い脂環式モ ノォレフインカルボン酸を結晶化させ単離することができる。晶析の方法としては、ァ ルカリ水溶液を酸性化し析出させる方法や、その酸性化スラリー液を更に冷却して析 出量を向上させる方法、前述のようにカルボン酸を水と混和しない有機溶媒に抽出し た場合には、その有機溶媒を濃縮及び/又は冷却して結晶を析出させる方法等が 挙げられる。
[0052] 有機溶媒からの晶析時に使用される溶媒としては、トルエン、キシレン、へキサン、 ヘプタン、クロ口ベンゼン等の酸および Zまたはアルカリ性水溶液に不活性な水と混 和しない炭化水素系溶媒が挙げられる。晶析後、析出した固体をろ過し、減圧乾燥 を行うことが好ましい。
<抽出精製処理 >
上記工程により得られた脂環式モノォレフィンカルボン酸に含まれている着色不純 物を更に除去する方法として、有機溶媒による抽出精製処理を行うことが好ましい。 具体的には、着色不純物の除去のため、少なくとも脂環式モノォレフィンカルボン酸 を炭素数 5〜: 10の炭化水素系溶媒と炭素数 1〜4のアルコール溶媒を含む溶媒系を 用レ、て抽出精製することにより、脂環式モノォレフィンカルボン酸を炭化水素系溶媒 に溶解させ、着色不純物をアルコール溶媒側に選択的に抽出除去する。
[0053] 炭素数 5〜: 10の炭化水素系溶媒としては、直鎖炭化水素系溶媒、分岐状炭化水 素類、環状炭化水素類又は、芳香族系炭化水素類が挙げられる。具体的には、 n— へキサン、 n—ヘプタン、 n—デカン、 2—メチルへキサン、シクロペンタン、シクロへキ サン、 1一へキセン、シクロへキセン、トノレェン、キシレン、クロ口ベンゼン、酢酸ェチノレ 等が挙げられる。これらの溶媒の中でも、 n—へキサン、 n—ヘプタン、トルエンが好ま しぐ n_ヘプタンが特に好ましい。
[0054] 抽出精製に必要とする炭化水素系溶媒の使用量は、脂環式モノォレフィンカルボ ン酸の溶解度以上であれば特に規定されるものではなレ、が、脂環式モノォレフインカ ルボン酸に対して、下限が通常、 1重量倍以上、好ましくは 2重量倍以上であり、上限 が通常、 20重量倍以下、好ましくは、 10重量倍以下の範囲である。この量が少なす ぎると、晶析後のスラリー濃度が高くなる傾向にあり実質上攪拌が困難となる。また多 すぎると晶析で得られる目的物の量が減少する傾向がある。
[0055] 炭素数 1〜4のアルコール溶媒としては、直鎖状アルコール類、分岐状アルコール 類又は、 2価アルコール類が挙げられる。具体的には、メタノーノレ、エタノール、 n_ プロパノール、 i プロパノール、エチレングリコール又はジエチレングリコール等が挙 げられる。これらの溶媒の中でも、メタノールが特に好ましい。
[0056] アルコール溶媒の使用量は、脂環式モノォレフィンカルボン酸に対して、下限が通 常、 0. 1重量倍以上、好ましくは、 0. 3重量倍以上で、上限が通常、 10重量倍以下 、好ましくは 5重量倍以下である。この量が少なすぎると、分液性の低下や分散性の 低下等により着色成分の除去効果が低下する傾向にある。一方、多すぎると、抽出 操作の反応釜のサイズが大きくなり、コスト面において不利である。
アルコール溶媒に元々含有する水の割合は、アルコール溶媒に対する重量比として 通常、 lw%以下である。
[0057] さらに、アルコール溶媒と炭化水素系溶媒を含む溶媒系に、水を加えてもよい。ここ でレ、う水とは、使用するアルコール溶媒中に元々含まれる水分以外に別途添加する ものである。アルコール溶媒は、水に対して良溶媒であり、抽出精製処理後は炭化 水素系溶媒と分液する必要がある。またこれらの溶媒は水を含有する方が、脂環式 モノォレフィンカルボン酸の溶解ロスを低減する点、及び炭化水素系溶媒との分液性 を向上させる点で好ましい。
[0058] 水はアルコール溶媒に対する重量比として、下限が通常、 0. 01重量倍以上、好ま しくは 0. 05重量倍以上である。また、上限が通常、 2重量倍以下、好ましくは 1重量 倍以下である。この量が少なすぎると、アルコール溶媒への目的物の溶解度が高くな り回収率の低下を招き、またアルコール溶媒と炭化水素系溶媒との分液性が悪くなる 傾向がある。一方で、多すぎる場合には、着色不純物の除去効果が低くなる傾向が ある。
[0059] 抽出精製時の温度は、下限が通常、 10°C以上、好ましくは 20°C以上で、上限が通 常、 100°C以下、好ましくは 90°C以下である。この温度が低すぎると、精製後の晶析 のため降温しても脂環式モノォレフィンカルボン酸の溶解温度と析出温度の差が小 さいため、析出して得られる目的物の収量が減少する傾向がある。この場合、抽出精 製後に濃縮してから、晶析工程を実施する手法も考えられるが、工程数が増える傾 向がある。一方、操作温度が高すぎるのも、分液作業等の安全性を考慮するとあまり 好ましくない。
[0060] 抽出精製処理での攪拌時間や静置分液時間は、操作性の中で設定されるもので あるが、通常攪拌時間は通常、 10分以上 2時間以下、分液時間は通常、 30分以上 2 時間以下である。
[0061] 分液処理によって得られた炭化水素系溶媒層を冷却し、晶析により、着色不純物 等が除かれた純度の高い脂環式モノォレフィンカルボン酸を結晶化させ単離するこ とができる。晶析後は析出した固体をろ過し、減圧乾燥を行う。
[0062] この抽出処理操作で用いられる装置としては、処理操作を妨げない限り限定されな レ、が、通常、撹拌機及び抜き出しのために底弁を有する抽出釜等が挙げられ、連続 抽出処理や多段抽出処理を行う場合には回転円板抽出塔や遠心式抽出機等が挙 げられる。
<晶析 >
得られた炭化水素系溶媒層を晶析することにより、着色不純物等が除かれた純度 の高い脂環式モノォレフィンカルボン酸を結晶化させ単離することができる。
[0063] 晶析は、通常、 30°C以下、好ましくは 10°C以下に冷却することによって行われる。
晶析後は析出した固体をろ過し、通常、 lOkPa以下で減圧乾燥を行う。乾燥は、棚 段式乾燥機、コニカルドライヤー、内部回転翼付きなどの減圧乾燥機を用いることが 好ましい。
[0064] 上述の工程で得られた純度の高い脂環式モノォレフィンカルボン酸は、室温'大気 中の保管においても安定な化合物であるが、長期の品質保持のためには、冷喑所で 乾燥した状態で保存しておくことが好ましレ、。
<脂環式モノォレフインカルボン酸の色度測定 >
上記工程により得られた脂環式モノォレフィンカルボン酸の色度 (APHA)は、無色 透明な有機溶媒に目的物を溶解した状態で比較検討する。溶媒は、無色透明で目 的物の溶解性が高い有機溶媒であれば特に限定されず、具体的には、ァセトニトリ ルゃメタノール等が挙げられる。本発明においては、 目的物の溶解性の高いァセトニ トリルを用レ、、 10%濃度(例えば、 5gの測定サンプルを溶媒に溶解し 50mlに調製す る)溶液にした状態で着色度を比較する。色試験の方法としては、具体的には、 日本 工業規格 (JIS) K0071 - 1に則って実施する方法や、標準比色液として試薬 (例え ば、和光純薬工業 (株)色度標準液)を用い、希釈により測定範囲内の比色液を調整 し、測色色差計(例えば、 日本電色工業(株) ZE— 2000や〇ME_ 2000)を用いる 方法が挙げられる。
[0065] 本発明では、測色色差計 (ZE— 2000)を用いる。この測定機は、セル容器に入れ た液体の YI値(黄色度)とともに、 APHA(American Public Healthy Associat ion)の値が表示されるので、好ましい。例えば、比色管を用いる目視による色度判定 の場合、測定者の熟練具合によるが、 APHA= 10以下は殆ど無色透明に見えるた め判断が難しレ、。 APHA= 30〜50のレベルで微かな黄色が判定でき、 APHA= 1 00〜200以上のレベルではっきりとした濃い黄色が観察される力 正確な数値化は 困難である。一方、前述の測色色差計を用いた場合には、数値で APHA値が正確 に表示されるとともに、 目視では測定判断の付きにくい APHA= 30以下のレベルも 測定可能なため簡便である。
[0066] 本発明に示す着色不純物の除去操作をしない場合、 APHAは 50以上、脂環式モ ノォレフインカルボン酸の合成や精製条件を変更した場合には 100以上の強い着色 を示すこともある。より具体的には、アルカリ金属及び/又はアルカリ土類金属の炭 酸塩及び/又は炭酸水素塩の水溶液との接触処理工程の後に加水分解工程を行 つた際には、前記式(1)で示される脂環式モノォレフィンカルボン酸の 10%濃度溶 液状態での色度 (APHA)は、上限が通常 30以下、好ましくは 25以下である。更に 抽出精製処理工程を行った際に得られる脂環式モノォレフィンカルボン酸は、通常 2 0以下、好ましくは 15以下、より好ましくは 10以下である。
<脂環式モノォレフインカルボン酸の用途 >
本発明で得られる脂環式モノォレフィンカルボン酸は、電子材料や光学材料用の 原料として利用することができる。
実施例
[0067] 以下、実施例により本発明をさらに詳細に説明するが、本発明は下記実施例に限 定されるものではない。
<純度の測定方法 >
以下の装置を用い、純度の測定を実施した。
[0068] ガスクロマトグラフ: HP6890 ( (株)ヒューレット 'パッカード社製) カラム: Ultra Alloy— 5 (フロンティア 'ラボ(株))
測定サンプルは TMS化処理を実施した。
く色度: APHAの測定方法 >
下記の装置を用い、色度 (APHA)を測定した。
[0069] 測色色度計: ZE - 2000 (日本電色工業 (株) )
サンプルを 10%濃度になるよう調製した。 (例えば、脂環式モノォレフィンカルボン 酸 5gをァセトニトリルに溶解し 50mlとなるようにメスアップする)
サンプル調製液を測定セルに入れ、上記装置にて APHAを測定した。
[0070]
合成例 1
電磁誘導式攪拌装置、安全弁、測温部を備えた 0. 5Lのオートクレープにアタリノレ 酸メチノレ 52g (0. 6mol)、ジシクロペンタジェン 79g (0· 6mol)、 4—メトキシフエノー ル 0. 5g、及びトルエン 131gを仕込み、気相部を窒素置換した。攪拌下内温を 200 °Cに昇温後、 6時間同温度を維持し、ディールス 'アルダー反応を実施した。得られ た反応液を減圧蒸留し、テトラシクロ [6. 2. 1. I3' 6. 02' 7]ドデ力— 9—ェン— 4—力 ルボン酸メチルを主成分とする留分を分取した。
実施例 1
上記留出液 60g (テトラシクロ [6. 2. 1. I3' 6. 02' 7]ドデ力一 9 _ェン一 4_カルボン 酸メチル : 0. 2mol)及び 20。/。炭酸ナトリウム水溶液 180gを攪拌翼、測温部、ジム口 ート冷却管を備えた 1000mlのセパラブルフラスコに加え、 80°Cで 2時間攪拌し抽出 処理をした。その後 60°Cで静置分液を行い、下層の黄色に着色したアルカリ水層を パージした。アルカリ水層中には加水分解を受けて約 0. 1 %分がテトラシクロ [6. 2. 1. I3' 6. 02' 7]ドデ力一 9 _ェン一 4_カルボン酸として消失した。
[0071] その後、上層の有機層に 10%水酸化ナトリウム水溶液 260gを加え、 90°C、 2時間 、加水分解反応を実施した。
加水分解反応後、 目的物はナトリウム塩の形で水溶性となるため、アルカリ水溶液 に難溶な不純物をトルエン 90gで抽出し分液パージする操作を、 70°Cで 2回実施し た。その後、ヘプタン 200gを添加し、内温を 60°Cに保ちながら、 35%塩酸水溶液を 水層 pHが 3以下となるまで添加した。 目的物は酸析とともにヘプタン有機層に抽出さ れるので水層をパージ後、有機層を 200gの水で 3回洗浄した。
[0072] 洗浄後のヘプタン有機層を攪拌下で 60°Cから 5°Cまで冷却し、析出した固体を濾 過し、減圧乾燥後、 35gの固体を得た。 目的物のテトラシクロ [6. 2. 1. I3' 6. 02' 7]ド デカ _ 9—ェン _ 4—カルボン酸は 99. 5 %の純度であつた。
得られた固体の色度を測定したところ、 APHA= 30であった。
実施例 2
攪拌翼、測温部、ジムロート冷却管を備えた 200mlのセパラブルフラスコに、実施 例 1で得られたテトラシクロ [6. 2. 1. I3, 6. 02' 7]ドデ力一 9—ェン一 4—カルボン酸 1 0g、ヘプタン 45g、メタノール 7g、水 2gを加え、 40°Cで攪拌し、着色不純物を下層の メタノール溶媒層に抽出した。分液後、下層のアルコール溶媒層をパージし、上層の ヘプタン層を 1ミクロンのフィルターで濾過した。濾過処理したヘプタン層を 40°Cに保 つたまま、 0. 1%塩酸水溶液 40mlで 2回、精製水 40mlで 3回洗浄した。水洗後のへ ブタン層を 40°Cから 5°Cに冷却し析出した固体を濾過し、減圧乾燥後、 9gの固体を 得た。 目的物のテトラシクロ [6. 2. 1. I3' 6. 02' 7]ドデ力一 9—ェン一 4—カルボン酸 は 99. 6%の純度であった。
得られた固体の色度を測定したところ、 APHA= 10であった。
比較例 1
合成例 1と同様な方法で得られた留出液 60g (テトラシクロ [6. 2. 1. I3' 6. 02' 7]ド デカ _ 9—ェン _ 4—カルボン酸メチル: 0. 2mol)及び 10。/。水酸化ナトリウム水溶液 260gを、実施例 1と同様な装置で 90°C、 2時間加水分解反応を実施した。加水分解 反応後、アルカリ水層をトルエン 90gで抽出しトルエン層をパージする操作を、 70°C で 2回実施した。
[0073] その後、ヘプタン 200gを添加し、内温を 60°Cに保ちながら、 35%塩酸水溶液を水 層 pHが 3以下となるまで添加した。 目的物は酸析とともにヘプタン有機層に抽出され るので水層をパージ後、有機層を 200gの水で 3回洗浄した。洗浄後のヘプタン有機 層を攪拌下で 60°Cから 5°Cまで冷却し、析出した固体を濾過し、減圧乾燥後、 36g の固体を得た。 目的物のテトラシクロ [6. 2. 1. I3' 6. 02' 7]ドデ力一 9—ェン一 4—力 ノレボン酸は 99. 5%の純度であった。
得られた固体の色度を測定したところ、 APHA= 60であった。
実施例 3
合成例 1と同様な方法で得られた留出液 10g、 (テトラシクロ [6. 2. 1. I3' 6. 02' 7]ド デ力— 9 _ェン— 4 _カルボン酸メチル: 34mmol)及び 20%炭酸ナトリウム水溶液 3 0gを lOOmLのナスフラスコに仕込み、 90°Cで 7時間攪拌し抽出処理を実施した。下 層の黄色に着色したアルカリ水層中には加水分解を受けて約 0. 3%分がテトラシク 口 [6. 2. 1. I3, 6. 02' 7]ドデカー 9ーェンー4一力ルボン酸として消失した。
比較例 2
合成例 1と同様な方法で得られた留出液 10g、 (テトラシクロ [6. 2. 1. I3' 6. 02' 7]ド デカー 9ーェンー4一力ルボン酸メチル:34mmol)及び 10%水酸化ナトリウム水溶 液 7gを 50mLのナスフラスコに仕込み、 60°Cで 5時間攪拌し抽出処理を実施した。 下層の黄色に着色したアルカリ水層中には加水分解を受けて約 23%分がテトラシク 口 [6. 2. 1. I3, 6. 02' 7]ドデカー 9ーェンー4一力ルボン酸として消失した。
実施例 4
合成例 1と同様な方法で得られた留出液 20g、 (テトラシクロ [6. 2. 1. I3' 6. 02' 7]ド デカー 9 ェンー 4一力ルボン酸メチル: 34mmol)及び 20%炭酸カリウム水溶液 60 gを 500mLのセパラブルフラスコに仕込み、実施例 1と同様に 80°Cで 2時間攪拌し 抽出処理を実施した。下層の黄色に着色したアルカリ水層中には加水分解を受けて 約 0. 1%分がテトラシクロ [6. 2. 1. I3' 6. 02' 7]ドデ力一 9 ェン一 4 カルボン酸と して消失した。その後実施例 1と同様に、上層の有機層に 10%水酸化ナトリウム水溶 液 90gをカ卩え、 90°Cで 2時間加水分解反応を実施した。加水分解反応後、 目的物は ナトリウム塩の形で水溶性となるため、アルカリ水溶液に難溶な不純物をトルエン 30g で抽出し分液パージする操作を、 70°Cで 2回実施した。その後、ヘプタン 70gを添カロ し、内温を 60°Cに保ちながら、 35%塩酸水溶液を水層 pHが 3以下となるまで添カロし た。 目的物は酸析とともにヘプタン有機層に抽出されるので水層をパージ後、有機 層を 70gの水で 3回洗浄した。
洗浄後のヘプタン有機層を攪拌下で 60°Cから 5°Cまで冷却し、析出した固体を濾 過し、減圧乾燥後、 12gの固体を得た。 目的物のテトラシクロ [6. 2. 1. I3' 6. 02' 7]ド デカ _ 9—ェン _ 4—カルボン酸は 99. 5 %の純度であつた。
得られた固体の色度を測定したところ、 APHA= 25であった。
実施例 5
合成例 1と同様な方法で得られた留出液 20g、 (テトラシクロ [6. 2. 1. I3' 6. 02' 7]ド デ力— 9 _ェン— 4_カルボン酸メチル:34mmol)及び 10%炭酸水素ナトリウム水 溶液 60gを 500mLのセパラブルフラスコに仕込み、実施例 1と同様に 80°Cで 2時間 攪拌し抽出処理を実施した。上層の黄色に着色したアルカリ水層中には加水分解を 受けて約 0. 2%分がテトラシクロ [6· 2. 1. I3, 6. 02' 7]ドデ力一 9—ェン一 4—カルボ ン酸として消失した。その後下層の有機層に実施例 4と同様の加水分解、後処理を 実施し、 l lgの固体を得た。 目的物のテトラシクロ [6. 2. 1. I3' 6. 02' 7]ドデカ—9— ェンー 4一力ルボン酸は 99. 5%の純度であった。得られた固体の色度を測定したと ころ、 APHA= 30であった。
合成例 2
電磁誘導式攪拌装置、安全弁、測温部を備えた 0. 5Lのオートクレープにアタリノレ 酸メチノレ 52g (0. 6mol)、ジシクロペンタジェン 79g (0· 6mol)、 4—メトキシフエノー ル 0. 5g、及びトルエン 131gを仕込み、気相部を窒素置換した。攪拌下内温を 200 °Cに昇温後、 6時間同温度を維持し、ディールス ·アルダー反応を実施した。得られ た反応液を減圧蒸留し、テトラシクロ [6. 2. 1. I3' 6. 02' 7]ドデ力— 9 _ェン— 4_力 ルボン酸メチルを主成分とする留分を分離し得た。
上記留出液 60g (テトラシクロ [6. 2. 1. I3' 6. 02' 7]ドデ力一 9 _ェン一 4_カルボン 酸メチル : 0. 2mol)及び 10。 /。水酸化ナトリウム水溶液 260gを攪拌翼、測温部、ジム ロート冷却管を備えた 1000mlのセパラブルフラスコに加え、 90°Cで 2時間、加水分 解反応を行った。加水分解反応後、 目的物はナトリウム塩の形で水溶性となるため、 アルカリ水溶液に難溶な不純物をトルエン 90gで抽出し分液パージする操作を、 70 °Cで 2回実施した。その後、ヘプタン 200gを添加し、内温を 60°Cに保ちながら、 35 %塩酸水溶液を水層 pHが 3以下となるまで添加した。 目的物は酸析とともにヘプタ ン有機層に抽出されるので水層をパージ後、有機層を 200gの水で 3回洗浄した。 [0076] 洗浄後のヘプタン有機層を攪拌下で 60°Cから 5°Cまで冷却し、析出した固体を濾 過し、減圧乾燥後、 36gの固体を得た。 目的物のテトラシクロ [6. 2. 1. I3' 6. 02' 7]ド デカ _ 9—ェン _ 4—カルボン酸は 99. 5 %の純度であつた。
[0077] 得られた固体の色度を測定したところ、 APHA= 60であった。
実施例 6
攪拌翼、測温部、ジムロート冷却管を備えた 200mlのセパラブルフラスコに、合成 例 2で得られたテトラシクロ [6. 2. 1. I3, 6. 02' 7]ドデ力一 9_ェン一 4_カルボン酸 1 0g、ヘプタン 45g、メタノーノレ (含水率 =約 0· 2%) 7g、水 1. 5gをカロえ、 40oCで攪拌 し、着色不純物を下層のメタノール溶媒層に抽出した。分液後、下層のアルコール溶 媒層をパージし、上層のヘプタン層を 1ミクロンのフィルターで濾過した。濾過処理し たヘプタン層を 40°Cに保ったまま、 0. 1%塩酸水溶液 40mlで 2回、精製水 40mlで 3回洗浄した。水洗後のヘプタン層を 40°Cから 5°Cに冷却し析出した固体を濾過し、 減圧乾燥後、 8. 5gの固体を得た。 目的物のテトラシクロ [6. 2. 1. I3, 6. 02' 7]ドデカ — 9—ェン一 4—力ノレボン酸は 99. 6 %の純度であつた。
[0078] 得られた固体の色度を測定したところ、 APHA= 15であった。
合成例 3
合成例 2と同様な方法で、 1000Lのオートクレーブにアタリノレ酸メチノレ 178kg (206 7mol)、ジシクロペンタジェン 272kg (2057mol)、 4—メトキシフエノール lkg、及び トノレェン 380kgを仕込み、 180〜: 190。Cで 6時間ディールス 'アルダー反応を実施し た。得られた反応液を減圧蒸留し、テトラシクロ [6. 2. 1. I3' 6. 02' 7]ドデカ _ 9—ェ ン _4_カルボン酸メチルを主成分とする留分を 154kg分離し得た。
[0079] 上記留出液 154kg (テトラシクロ [6. 2. 1. I3' 6. 02' ドデ力一 9—ェン一 4—カル ボン酸メチル: 502mol)及び 20。 /。炭酸ナトリウム水溶液 440kgを 2000Lの反応器 に仕込み、 80°Cで抽出処理後水層をパージした。その後、 10%水酸化ナトリウム水 溶液 615kgを加え、 90°Cで 2時間、加水分解反応を実施した。加水分解反応後、ト ルェン 200kgで抽出し分液パージする操作を、 70°Cで 2回行った。その後、ヘプタ ン 460kgを添カロし、内温を 60°Cに保ちながら、 35%塩酸水溶液を水層 pHが 3以下 となるまで添加し、水層をパージ後、有機層を 430kgの脱イオン水で 5回洗浄した。 [0080] 洗浄後のヘプタン有機層を攪拌下で 60°Cから 20°Cまで冷却し、析出した固体を濾 過し、減圧乾燥後、 80kgの白色固体を得た。 目的物のテトラシクロ [6. 2. 1. I3' 6. 0 2' 7]ドデ力一 9_ェン一 4_カルボン酸は 99. 7%の純度であった。
[0081] 得られた固体の色度を測定したところ、 APHA= 30であった。
実施例 7
実施例 6と同様な方法で、合成例 3で得られたテトラシクロ [6. 2. 1. I3, 6. 02' 7]ド デ力一 9 _ェン一 4_力ノレボン酸 50kg、ヘプタン 225kg、メタノーノレ 40kg、水 20kg を加え、 45°Cで攪拌し、着色不純物を下層のメタノール溶媒層に抽出した。分液後、 下層のアルコール溶媒層をパージし、上層のヘプタン層を 0. 8ミクロンのチェックフィ ルターで濾過し、別の反応釜に移液した。濾過処理したヘプタン層を 60°Cに昇温し 、 0. 1 %塩酸水溶液 190kgで 2回、精製水 220kgで 3回洗浄した。水洗後のへプタ ン層を 60°Cから 5°Cに冷却し析出した固体を濾過し、減圧乾燥後、 42kgの固体を得 た。 目的物のテトラシクロ [6. 2. 1. I3, 6. 02' 7]ドデ力一 9—ェン一 4—カルボン酸は 99. 9%の純度であった。
[0082] 得られた固体の色度を測定したところ、 APHA= 10であった。
比較例 3
合成例 2で得られたテトラシクロ [6. 2. 1. I3' 6. 02' 7]ドデ力一 9—ェン一 4—カル ボン酸 5gをヘプタン 20gに加え、窒素雰囲気下 70°Cに昇温し目的物を溶解後、 20 °Cまで冷却し析出した固体を濾過し、減圧乾燥後 4gの固体を得た。 目的物のテトラ シクロ [6. 2. 1. I3' 6. 02' ドデ力一 9—ェン一 4—カルボン酸は 99. 9%の純度であ つた。
[0083] 得られた固体の色度を測定したところ、 APHA= 60であり、晶析精製前に比べて 着色不純物の除去効果は得られなかった。
比較例 4
合成例 2で得られたテトラシクロ [6. 2. 1. I3' 6. 02' 7]ドデ力一 9 _ェン一 4_カル ボン酸 5gを 3重量%—メタノール Zヘプタン溶液(メタノール 3重量% +ヘプタン 97 重量%) 20§に加え、窒素雰囲気下 60°Cに昇温し目的物を溶解後、 20°Cまで冷却 し析出した固体を濾過し、減圧乾燥後 2. 5gの固体を得た。 目的物のテトラシクロ [6 . 2. 1. I3' 6. 02' 7]ドデ力一 9—ェン一 4—カルボン酸はほぼ 100%の純度であった
[0084] 得られた固体の色度を測定したところ、 APHA= 50であり、回収率が悪いうえに着 色不純物の除去効果はあまり得られなかった。
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更および変形が可能であることは、当業者にとって明らかである。
[0085] なお、本出願は、 2005年 2月 16日付けで出願された日本特許出願(特願 2005—
038657)、及び 2005年 6月 28日付けで出願された日本特許出願(特願 2005— 1
88962)に基づいており、その全体が引用により援用される。
産業上の利用可能性
[0086] 本発明の製造方法によれば、不純物が低減された高純度な脂環式モノォレフィン カルボン酸を工業的に有利な方法で製造することができる。

Claims

請求の範囲 下記一般式(1) [化 1] ( 1 )
(式(1)中、 R1は水素原子又はメチル基を示し、 nは 1又は 2である。)で表される脂環 式モノォレフィンカルボン酸を製造する方法において、下記一般式(2)
[化 2]
Figure imgf000025_0002
(式(2)中、 R1は水素原子又はメチル基を示し、 R2は炭素数 1〜6の炭化水素基を示 す。 nは 1又は 2である。)で表される脂環式モノォレフィンカルボン酸エステルを加水 分解させる反応工程の前に、アルカリ金属及び Z又はアルカリ土類金属の炭酸塩及 び/又は炭酸水素塩の水溶液と接触させる工程を行うことを特徴とする高純度脂環 式モノォレフィンカルボン酸の製造方法。
[2] 脂環式モノォレフィンカルボン酸エステル力 S、シクロペンタジェン及び/又はジシクロ ペンタジェンと(メタ)アクリル酸エステルとをディールス.アルダー反応させ、次いで 蒸留を行うことによって得られる留分であることを特徴とする、請求項 1に記載の高純 度脂環式モノォレフィンカルボン酸の製造方法。
[3] アルカリ金属及び/又はアルカリ土類金属力 ナトリウム及び/又はカリウム及び/ 又はマグネシウムである、請求項 1又は 2に記載の高純度脂環式モノォレフィンカル ボン酸の製造方法。
[4] 加水分解反応後に得られる脂環式モノォレフィンカルボン酸を 10%濃度の溶液に調 製した場合の色度 (APHA)が 30以下である、請求項:!〜 3のいずれか 1項に記載の 高純度脂環式モノォレフィンカルボン酸の製造方法。
[5] 上記構造式(1)で示される脂環式モノォレフィンカルボン酸を、炭素数 5〜: 10の炭化 水素系溶媒と炭素数 1〜4のアルコール溶媒を含む溶媒系を用いて抽出精製処理を 行うことを特徴とする、高純度脂環式モノォレフィンカルボン酸の製造方法。
[6] 抽出精製処理に供する脂環式モノォレフィンカルボン酸が、脂環式モノォレフインカ ルボン酸エステルを加水分解して得られるものである、請求項 5に記載の高純度脂 環式モノォレフィンカルボン酸の製造方法。
[7] 脂環式モノォレフィンカルボン酸エステルを加水分解させる反応工程の前に、アル力 リ金属及び/又はアルカリ土類金属の炭酸塩及び Z又は炭酸水素塩の水溶液と接 触させる工程を行うことを特徴とする請求項 6に記載の高純度脂環式モノォレフィン カルボン酸の製造方法。
[8] アルカリ金属及び/又はアルカリ土類金属力 ナトリウム及び/又はカリウム及び/ 又はマグネシウムである、請求項 7に記載の高純度脂環式モノォレフィンカルボン酸 の製造方法。
[9] 溶媒系がさらに水を含有するものである、請求項 5〜8のいずれか 1項に記載の高純 度脂環式モノォレフィンカルボン酸の製造方法。
[10] 脂環式モノォレフィンカルボン酸を 10%濃度の溶液に調製した場合の色度 (APHA
)が 20以下である高純度脂環式モノォレフィンカルボン酸。
PCT/JP2006/302551 2005-02-16 2006-02-14 脂環式モノオレフィンカルボン酸及びその製造方法 WO2006088025A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-038657 2005-02-16
JP2005038657A JP2006225290A (ja) 2005-02-16 2005-02-16 脂環式モノオレフィンカルボン酸の製造方法
JP2005188962 2005-06-28
JP2005-188962 2005-06-28

Publications (1)

Publication Number Publication Date
WO2006088025A1 true WO2006088025A1 (ja) 2006-08-24

Family

ID=36916431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302551 WO2006088025A1 (ja) 2005-02-16 2006-02-14 脂環式モノオレフィンカルボン酸及びその製造方法

Country Status (1)

Country Link
WO (1) WO2006088025A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849753A (ja) * 1971-10-21 1973-07-13
JP2004051621A (ja) * 2002-05-30 2004-02-19 Nippon Petrochemicals Co Ltd 脂環式カルボン酸化合物の製造方法
JP2005272336A (ja) * 2004-03-24 2005-10-06 Nippon Zeon Co Ltd カルボキシル基含有テトラシクロドデセン化合物、その製造方法及びその重合体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849753A (ja) * 1971-10-21 1973-07-13
JP2004051621A (ja) * 2002-05-30 2004-02-19 Nippon Petrochemicals Co Ltd 脂環式カルボン酸化合物の製造方法
JP2005272336A (ja) * 2004-03-24 2005-10-06 Nippon Zeon Co Ltd カルボキシル基含有テトラシクロドデセン化合物、その製造方法及びその重合体

Similar Documents

Publication Publication Date Title
JP4539580B2 (ja) 脂環式モノオレフィンカルボン酸の製造方法
CN114585601A (zh) 联萘羧酸类的制造方法
EP2573066B1 (en) Method for preparing a lactate
JP7141303B2 (ja) 5,5’-メチレンジサリチル酸の製造方法
JP5428942B2 (ja) 着色の低減されたN−tert−ブチルアクリルアミドの製造方法
WO2017200073A1 (ja) フルオレン骨格を有するアルコール化合物の製造方法
CN100368376C (zh) (甲基)丙烯酸聚氟烷基酯的制造方法
WO2006088025A1 (ja) 脂環式モノオレフィンカルボン酸及びその製造方法
EP0764630B1 (en) Process for the preparation of dialkyl succinylsuccinates
JP2006225290A (ja) 脂環式モノオレフィンカルボン酸の製造方法
JP6503227B2 (ja) 4−ヒドロキシ安息香酸長鎖エステルの精製方法
JPH09328451A (ja) Hf触媒を用いたカルボン酸エステルの製造方法
US2515595A (en) Preparation of 2,4-pentadienoic acids
EP1319650B1 (en) Process for producing (meth)acrylic anhydride and process for producing (meth)acrylic ester
CN1155578C (zh) 环酸的生产
JP4511093B2 (ja) 脂環式モノオレフィンカルボン酸の製造方法
JP4118653B2 (ja) 2−アルキル−2−アダマンチル(メタ)アクリレートの製造方法
CN113498409A (zh) α,β-不饱和二羧酸酯的制造方法
JP2594826B2 (ja) p−またはm−ヒドロキシフェネチルアルコールの製造法
EP2977368B1 (en) Method for producing optically active trans-1,2-diaminocyclohexane
CN113423683B (zh) 4-羟基-2-甲基苯甲酸的制造方法
KR102324025B1 (ko) n-알킬 시클로펜타디엔의 제조 방법 및 이에 의해 제조된 조성물
CN114989115B (zh) α-(硝基甲基)-2-呋喃甲醇的改进合成方法和保持该方法中催化剂活性的方法
JP7439604B2 (ja) ラクトン化合物の精製方法
US9994530B2 (en) Method of producing optically active 2-methylpiperazine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680001456.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713692

Country of ref document: EP

Kind code of ref document: A1