WO2006087074A1 - Verbindungeiner welle mit einem turbinenrad eines abgasturboladers - Google Patents

Verbindungeiner welle mit einem turbinenrad eines abgasturboladers Download PDF

Info

Publication number
WO2006087074A1
WO2006087074A1 PCT/EP2006/000576 EP2006000576W WO2006087074A1 WO 2006087074 A1 WO2006087074 A1 WO 2006087074A1 EP 2006000576 W EP2006000576 W EP 2006000576W WO 2006087074 A1 WO2006087074 A1 WO 2006087074A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
turbine wheel
surface treatment
sealing region
exhaust gas
Prior art date
Application number
PCT/EP2006/000576
Other languages
English (en)
French (fr)
Inventor
Christian Elsner
Martin Schlegl
Steffen Schmitt
Holger Stark
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2006087074A1 publication Critical patent/WO2006087074A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0006Electron-beam welding or cutting specially adapted for particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0053Seam welding
    • B23K15/0073Seam welding with interposition of particular material to facilitate connecting the parts, e.g. using a filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/025Fixing blade carrying members on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/064Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable
    • F16D1/068Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable involving gluing, welding or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/233Electron beam welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/234Laser welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • F05D2230/41Hardening; Annealing

Definitions

  • the invention relates to a method for producing a connection between a turbine wheel and a shaft of an exhaust gas turbocharger according to the preamble of patent claim 1 and to an exhaust gas turbocharger produced by such a method according to the preamble of patent claim 9.
  • the turbine wheel In an exhaust gas turbocharger, the turbine wheel is located in the hot exhaust gas flow of the engine. Undetachably connected to the turbine wheel is a mounted shaft, which is surrounded by oil.
  • the shaft In order to achieve sufficient tightness between the oil-filled shaft housing and the gas filled Turbinenradgephase, the shaft in the vicinity of the junction with the turbine wheel on a sealing area with a plurality of annular grooves for receiving piston rings.
  • this area between the turbine wheel and shaft is exposed to very high temperature loads due to increasing specific liter performance of modern engines and stricter legal requirements.
  • the invention is based on the object, a
  • an electron beam is used as the high-energy beam. This offers the advantage that high beam powers are available with an electron beam, which keeps the processing times and thus the cycle times correspondingly low (claim 2).
  • a laser beam is used as the high-energy beam. This has the advantage that work under atmospheric pressure is possible with a laser beam, so that no vacuum must be generated. Furthermore, high beam powers with correspondingly short processing times are also available when using laser beams (claim 3).
  • the surface treatment comprises a local hardening of the shaft in the sealing area. This method is particularly easy to carry out, since in the sealing area, the surface must be heated only by the high-energy beam to the hardening temperature and then the desired structural transformation of the near-surface area due to self-quenching takes place (claim 4).
  • the surface treatment comprises a local alloying of the shaft in the sealing area. Compared to hardening can through the Introducing a new alloying element in the base material of the shaft material properties are widely changed (claim 5).
  • the surface treatment comprises a local welding of a filler material to the sealing region of the shaft.
  • the surface treatment is carried out by a deflection of the high-energy beam to the sealing area.
  • the surface treatment can be carried out directly after the joining, without the position of the source of the high-energy beam having to be changed.
  • the surface treatment can be made in this way even simultaneously with the joining (claim 8).
  • Fig. 1 turbine wheel, shaft and compressor wheel of a
  • FIG. 3 is a detail view of the joint and the
  • FIG. 1 an assembly of the rotating components of an exhaust gas turbocharger 5 is shown in a schematic representation.
  • this is a turbine wheel 3, which is arranged in the exhaust gas stream of an internal combustion engine and is set in rotation by these hot exhaust gases.
  • the torque of the turbine wheel 3 is forwarded via a rotatably connected thereto shaft 1 to a compressor 17, which in turn compresses the intake air leading to the engine.
  • Shaft 1 and turbine wheel 3 are connected to one another at a joint 7. So they can consist of different materials.
  • the seal between the turbine wheel 3 and shaft 1 takes place in a sealing region 9 with the aid of sealing rings in the form of piston rings made of a high-quality steel material, which are in one or more, in this embodiment, two annular grooves 11 lie. Since this point is exposed to high thermal loads because of the high temperatures of the exhaust gas, high demands are placed on the surface quality of the shaft 1 in the sealing region 9. If this area is not sufficiently wear-resistant, then the piston rings can wear off the material of the shaft 1 during the operating period or work into it or become wedged, resulting in leaks and possibly. a subsequent permanent damage to the exhaust gas turbocharger 5 can lead.
  • the shaft 1 can be made of a more cost-effective steel material per se.
  • a hardening process is selected as the surface treatment.
  • Fig. 2 shows the assembly of shaft and turbine during the implementation of the method.
  • the figure also shows a high-energy beam 13 used in this case.
  • the high-energy beam 13 is an electron beam 15.
  • Tensioning device used.
  • the two workpieces 1.3 are aligned exactly to each other.
  • a vacuum is generated in this working chamber.
  • the electron beam 15 is also located in the same working chamber.
  • the shaft 1 and the turbine wheel 3 are connected to one another at the joint 7 with the aid of the electron beam 15. This can be done, for example, by the assembly 4 is rotated by the clamping device about its central axis 16 under the stationary electron beam 15 therethrough. Conversely, the electron beam 15 during machining in the circumferential direction of the shaft 1 can be moved around the joint 7 around.
  • the composite 8 now produced from shaft 1 and the turbine wheel 3 fixedly connected thereto remain in the clamping device.
  • the local surface treatment or the change in the material properties of the surface of the shaft 1 in the sealing region 9 is carried out, even with the aid of the electron beam 15.
  • a suitable deflection of the electron beam 15, without changing its position by suitable optical means generates a deflection pattern 25, which, as shown in Fig. 2, realized a uniform irradiation of the sealing region 9.
  • This deflection pattern 25 is adapted to the special geometry of the sealing region 9 of the shaft 1.
  • the composite 6 rotates under the deflected electron beam 15.
  • the entire surface of the sealing area 9 is heated to the hardening temperature of the material. Since the surface treatment only the surface and near-surface areas are heated with low penetration, takes place the subsequent cooling with structural change by self-quenching or by heat dissipation to the environment and the non-heated by the electron beam 15 areas of the shaft 1. By this rapid cooling, the hardness in the irradiated areas is increased locally. As a result, the desired high wear resistance is achieved for the entire component composite 8 on the heavily stressed sealing region 9.
  • FIG. There, a section through shaft 1 and turbine wheel 3 after the implementation of the method is shown. Evident is the joint 7, were joined to the shaft 1 and turbine wheel 3 by means of the electron beam 15.
  • the adjacent sealing region 9, which comprises the two grooves 11 an altered region 27 of higher hardness than the remaining wave 1 has been produced by a correspondingly adapted deflection pattern 25 of the electron beam 15.
  • the penetration depth of the electron beam 15, and thus the depth of the modified region 27, can be precisely adjusted on the surface of the sealing region 9, for example by controlling the rotational speed of the composite 8 in the clamping device and the consequent control of the residence time of the deflected electron beam 15.
  • the method is carried out in this' embodiment with an electron beam 15, it is also possible alternatively to use a laser beam as energy beam. 13 If a laser beam is used which does not require a vacuum, the surface treatment can also be carried out in a separate working chamber used for the joining process. It is then possible, for example, the surface treatment together with an adjoining machining operation, such as a cutting Machining the surface of the joint 7 to perform in a subsequent processing machine, since the laser power can be switched between spatially separate processing stations.
  • an adjoining machining operation such as a cutting Machining the surface of the joint 7
  • hard materials can be introduced into the sealing region 9 by first being melted by the high-energy jet 13. Subsequently, hard materials are introduced into the melt in order to locally increase the wear resistance.
  • the resistance of the alloy system is influenced by the type, amount, size and distribution of the hard materials.
  • Possible hard materials are vanadium carbide (VC), tungsten carbide (WC), titanium carbide (TiC), chromium carbide (Cr 3 C 2 ), molybdenum carbide (Mo 2 C), niobium carbide (NbC) or steel. Of the materials listed here, vanadium carbide has the greatest hardness.
  • Another possible surface treatment is the welding of a filler material on the surface of the sealing region 9.
  • the composition of this filler material is independent of the base material of the shaft 1.
  • the third alternative surface treatment consists in alloying the sealing area 9.
  • the sealing area 9 is locally melted on the surface by the high-energy beam 13.
  • an alloying material is introduced into the melt, which merges with the base material of the shaft 1 connects.
  • a wear-resistant alloyed layer forms on the surface.
  • the method and the exhaust gas turbocharger 5 produced by the method are not limited to the embodiments listed above.
  • the sealing area 9 to heat locally, for example, the sweeping of the sealing region 9 through a along the central axis 16 of the wave 1 moving high-energy beam 13th

Abstract

Die Erfindung betrifft ein Verfahren zum Herstellen einer Schweißverbindung einer Welle (1) mit einem Turbinenrad (3) eines Abgasturboladers (5) wobei die Welle (1) einen der Fügestelle (7) mit dem Turbinenrad (3) benachbarten Dichtbereich (9) mit wenigstens einer ringförmigen Nut (11) aufweist. Um eine hohe Verschleissf estigkeit des Dichtbereichs (9) zu erreichen, wird erfindungsgemäß vorgeschlagen, dass mit einem energiereichen Strahl (13) im gleichen Arbeitsschritt die schweißtechnische Verbindung der Welle (1) mit dem Turbinenrad (3) sowie eine Oberflächenbehandlung des Dichtbereichs (9) der Welle (1) durchgeführt werden. Weiterhin wird ein solchermassen hergestellter Abgasturbolader (5) vorgeschlagen.

Description

Verbindung einer Welle mit einem Turbinenrad eines
Abgasturboladers
Die Erfindung betrifft ein Verfahren zum Herstellen einer Verbindung zwischen einem Turbinenrad und einer Welle eines Abgasturboladers gemäß dem Oberbegriff des Patentanspruchs 1 sowie einen durch ein solches Verfahren hergestellten Abgasturbolader gemäß dem Oberbegriff des Patentanspruchs 9.
Bei einem Abgasturbolader liegt das Turbinenrad im heißen Abgasstrom des Motors. Mit dem Turbinenrad unlösbar verbunden ist eine gelagerte Welle, welche von Öl umflossen ist. Um eine ausreichende Dichtheit zwischen dem mit Öl gefüllten Wellengehäuse und dem gasbefüllten Turbinenradgehäuse zu erreichen, weist die Welle in der Nähe der Verbindungsstelle mit dem Turbinenrad einen Dichtbereich mit mehreren ringförmigen Nuten zur Aufnahme von Kolbenringen auf. Dieser Bereich zwischen Turbinenrad und Welle ist jedoch aufgrund steigender spezifischer Literleistungen moderner Motoren und verschärfter gesetzlicher Vorgaben sehr hohen Temperaturbelastungen ausgesetzt .
Aus der DE-OS 27 34 747 ist ein Verfahren zur Verbindung der Welle mit dem Turbinenrad eines Abgasturboladers mittels Schweißen bekannt. Um trotz der hohen thermischen Belastung eine hohe Dichtheit und Verschleißbeständigkeit des Dichtbereichs zu erzielen, werden sowohl für die Welle als auch für das Turbinenrad hochwertige Werkstoffe verwendet.
Dies führt jedoch zu hohen Kosten für die Herstellung des Abgasturboladers .
Der Erfindung liegt die Aufgabe zugrunde, einen
Abgasturbolader sowie ein Verfahren zu seiner Herstellung vorzuschlagen, der bei geringen Kosten für seine Herstellung im Dichtbereich der Welle eine hohe Verschleißbeständigkeit aufweist.
Die Aufgabe wird erfindungsgemäß durch die Merkmale der Ansprüche 1 und 9 gelöst .
Danach wird ein Verfahren zur Verbindung eines Turbinenrades mit einer Welle eines Abgasturboladers vorgeschlagen, bei dem mit einem energiereichen Strahl im gleichen Arbeitsschritt die schweißtechnische Verbindung der Welle mit dem Turbinenrad sowie eine Oberflächenbehandlung des Dichtbereichs der Welle durchgeführt werden. Dadurch, dass im gleichen Verfahrensschritt mit dem Fügen die besonders beanspruchten Bereiche einer Oberflächenbehandlung unterzogen werden und damit ihre Verschleißfestigkeit lokal erhöht wird, können Welle und Turbinenrad an sich aus weniger hochwertigen und damit kostengünstigeren Werkstoffen gefertigt werden.
Durch die Tatsache, dass für das gesamte Verfahren nur eine Strahlquelle verwendet wird, werden die Investitionskosten für das Verfahren gesenkt .
Weiterhin ist es mit diesem Verfahren möglich, das Fügen und die Oberflächenbehandlung in einer einzigen Einspannung für die Bauteile in einer Spannvorrichtung durchzuführen. So ist man in der Lage, die Prozesskosten und die Taktzeiten zu senken.
Ferner wird zur Durchführung des Verfahrens nur eine Arbeitskammer benötigt. Dies ist besonders beim Elektronenstrahlschweißen vorteilhaft, da dann nur einmal ein Vakuum erzeugt werden muss.
Vorteilhafterweise wird als energiereicher Strahl ein Elektronenstrahl verwendet. Dies bietet den Vorteil, dass mit einem Elektronenstrahl hohe Strahlleistungen zur Verfügung stehen, was die Bearbeitungszeiten und somit die Taktzeiten entsprechend gering hält (Anspruch 2) .
Alternativ wird als energiereicher Strahl ein Laserstrahl verwendet. Dieser besitzt den Vorteil, dass mit einem Laserstrahl Arbeiten unter Atmosphärendruck möglich sind, dass also kein Vakuum erzeugt werden muss. Weiterhin sind auch bei der Verwendung von Laserstrahlen hohe Strahlleistungen mit entsprechend kurzen Bearbeitungszeiten verfügbar (Anspruch 3) .
In einer vorteilhaften Ausgestaltung umfasst die Oberflächenbehandlung ein lokales Aufhärten der Welle im Dichtbereich. Dieses Verfahren ist besonders einfach durchführbar, da im Dichtbereich die Oberfläche lediglich durch den energiereichen Strahl auf die Härtetemperatur erhitzt werden muss und sich anschließend die gewünschte Gefügeumwandlung des oberflächennahen Bereichs infolge von Selbstabschreckung vollzieht (Anspruch 4) .
In einer weiteren vorteilhaften Ausgestaltung umfasst die Oberflächenbehandlung ein lokales Auflegieren der Welle im Dichtbereich. Im Vergleich zum Härten können hier durch das Einbringen eines neuen Legierungselements in das Grundmaterial der Welle die Stoffeigenschaften im weiten Umfang geändert werden (Anspruch 5) .
In einer weiteren vorteilhaften Ausgestaltung umfasst die Oberflächenbehandlung ein lokales Aufschweißen eines Zusatzwerkstoffes auf den Dichtbereich der Welle. Dies bietet den Vorteil, dass völlig unabhängig vom Grundwerkstoff der Welle eine verschleißfeste Schicht gewünschter Ausprägung auf den Dichtbereich aufgebracht werden kann (Anspruch 6) .
In einer weiteren vorteilhaften Ausgestaltung werden im Zuge der Oberflächenbehandlung lokal Hartstoffe in den durch den energiereichen Strahl aufgeschmolzenen Dichtbereich der Welle eingebracht. Durch dieses Verfahren wird eine zusätzliche Härtesteigerung der Oberfläche gegenüber dem Werkstoff des Kolbenringes ermöglicht (Anspruch 7) .
Vorteilhafterweise erfolgt die Oberflächenbehandlung durch eine Umlenkung des energiereichen Strahls auf den Dichtbereich. So kann die Oberflächenbehandlung direkt im Anschluss an das Fügen vorgenommen werden, ohne dass die Position der Quelle des energiereichen Strahls verändert werden muss . Die Oberflächenbehandlung kann auf diese Weise sogar gleichzeitig mit dem Fügen vorgenommen werden (Anspruch 8).
Weiterhin wird ein Abgasturbolader vorgeschlagen, bei dem die Schweißverbindung zwischen Welle und Turbinenrad durch einen energiereichen Strahl hergestellt ist, mit welchem im gleichen Arbeitsschritt eine lokale Oberflächenbehandlung des Dichtbereichs erfolgt (Anspruch 9) . Weitere Ausgestaltungen und Vorteile der Erfindung gehen aus der Beschreibung hervor.
In den Zeichnungen ist die Erfindung anhand eines Ausführungsbeispiels näher erläutert. Es zeigen
Fig. 1 Turbinenrad, Welle und Verdichterrad eines
Abgasturboladers , Fig. 2 Welle und Turbinenrad während der Durchführung des
Verfahrens sowie Fig. 3 eine Detailansicht der Fügestelle und des
Dichtbereichs .
In Fig. 1 ist in einer schematischen Darstellung ein Zusammenbau der rotierenden Komponenten eines Abgasturboladers 5 dargestellt. Dabei handelt es sich zum einen um ein Turbinenrad 3, welches im Abgasstrom eines Verbrennungsmotors angeordnet ist und von diesen heißen Abgasen in Rotation versetzt wird. Das Drehmoment des Turbinenrades 3 wird über eine drehfest damit verbundene Welle 1 an ein Verdichterrad 17 weitergeleitet, welches seinerseits die zum Motor führende Ansaugluft verdichtet . Welle 1 und Turbinenrad 3 sind an einer Fügestelle 7 miteinander verbunden. So können sie aus unterschiedlichen Werkstoffen bestehen.
Während Turbinenrad 3 und Verdichterrad 17 von Gasen umströmt werden, wird die Welle 1, welche an zwei Lagerstellen 21,23 gelagert ist, von Öl umflossen. Aus diesem Grund müssen die Gehäuse von Turbinenrad 3, Welle 1 und Verdichterrad 17 gut gegeneinander abgedichtet sein.
Die Abdichtung zwischen Turbinenrad 3 und Welle 1 erfolgt in einem Dichtbereich 9 mit Hilfe von Dichtringen in Form von Kolbenringen aus einem hochwertigen Stahlwerkstoff, welche in einer oder mehreren, in diesem Ausführungsbeispiel zwei ringförmigen Nuten 11 liegen. Da diese Stelle wegen der hohen Temperaturen des Abgases hohen thermischen Belastungen ausgesetzt ist, werden an die Oberflächengüte der Welle 1 im Dichtbereich 9 hohe Anforderungen gestellt. Ist dieser Bereich nicht ausreichend verschleißfest, so können die Kolbenringe im Laufe der Betriebsdauer das Material der Welle 1 abtragen oder sich darin einarbeiten oder verkeilen, was zu Undichtigkeiten und evtl . einer darauf folgenden bleibenden Schädigung des Abgasturboladers 5 führen kann.
Wenn nun aus Kostengründen oder aus Gründen der Gewichtsersparnis nicht die gesamte Welle 1 aus einem hochwertigen, verschleißfesten Material hergestellt werden soll, besteht die Möglichkeit der lokalen, auf den Dichtbereich 9 begrenzten Veränderung der
Oberflächeneigenschaften der Welle 1. So kann die Welle 1 an sich aus einem kostengünstigeren Stahlwerkstoff gefertigt werden. Im folgenden Ausführungsbeispiel wird als Oberflächenbehandlung ein Härteverfahren gewählt.
Fig. 2 zeigt den Zusammenbau aus Welle und Turbinenrad während der Durchführung des Verfahrens. Die Figur zeigt weiterhin einen dabei verwendeten energiereichen Strahl 13.
Bei diesem Ausführungsbeispiel handelt es sich bei den energiereichen Strahl 13 um einen Elektronenstrahl 15.
Bei der Durchführung des erfindungsgemäßen Verfahrens werden zunächst die vorgefertigte Welle 1 sowie das vorgefertigte Turbinenrad 3 in eine hier nicht dargestellte
Spannvorrichtung eingesetzt. Die beiden Werkstücke 1,3 werden dabei exakt zueinander ausgerichtet. Anschließend wird die Baugruppe 4, bestehend aus Welle 1 und Turbinenrad 3, gemeinsam mit der Spannvorrichtung in eine Arbeitskammer eingebracht . Dann wird in dieser Arbeitskammer ein Vakuum erzeugt. In der gleichen Arbeitskammer befindet sich auch der Elektronenstrahl 15. Im nächsten Verfahrensschritt werden mit Hilfe des Elektronenstrahls 15 die Welle 1 und das Turbinenrad 3 an der Fügestelle 7 miteinander verbunden. Dies kann beispielsweise geschehen, indem die Baugruppe 4 durch die Spannvorrichtung um ihre Mittelachse 16 unter dem ortsfest angeordneten Elektronenstrahl 15 hindurch rotiert wird. Umgekehrt kann auch der Elektronenstrahl 15 während der Bearbeitung in Umfangsrichtung der Welle 1 um die Fügestelle 7 herum bewegt werden.
Ist der Fügevorgang abgeschlossen, verbleibt der nunmehr hergestellte Verbund 8 aus Welle 1 und den damit fest verbundenen Turbinenrad 3 in der Spannvorrichtung. Nun wird die lokale Oberflächenbehandlung bzw. die Veränderung der Stoffeigenschaften der Oberfläche der Welle 1 im Dichtbereich 9 durchgeführt, und zwar auch mit Hilfe des Elektronenstrahls 15. Dazu wird durch eine geeignete Ablenkung des Elektronenstrahls 15, ohne seine Position zu verändern, durch geeignete optische Maßnahmen ein Umlenkmuster 25 erzeugt, welches, wie in Fig. 2 dargestellt, eine gleichmäßige Bestrahlung des Dichtbereichs 9 realisiert. Dieses Umlenkmuster 25 ist auf die spezielle Geometrie des Dichtbereichs 9 der Welle 1 angepasst.
Im Zuge der Oberflächenbehandlung rotiert beispielsweise, wie schon beim Fügevorgang dargestellt, der Verbund 6 unter dem umgelenkten Elektronenstrahl 15 hindurch. Auf diese Weise wird die gesamte Oberfläche des Dichtbereichs 9 auf die Härtetemperatur des Werkstoffs erwärmt . Da bei der Oberflächenbehandlung nur die Oberfläche und oberflächennahe Gebiete mit geringer Eindringtiefe erwärmt werden, erfolgt die anschließende Abkühlung mit Gefügeveränderung durch Selbstabschreckung bzw. durch Wärmeabfuhr an die Umgebung sowie die vom Elektronenstrahl 15 nicht erwärmten Bereiche der Welle 1. Durch diese schnelle Abkühlung wird lokal die Härte in den bestrahlten Bereichen erhöht . Dadurch wird für den gesamten Bauteilverbund 8 an dem stark beanspruchten Dichtbereich 9 die gewünschte hohe Verschleißfestigkeit erreicht.
Das Ergebnis des Verfahrens ist in Fig. 3 dargestellt. Dort ist ein Schnitt durch Welle 1 und Turbinenrad 3 nach der Durchführung des Verfahrens dargestellt. Zu erkennen ist die Fügestelle 7, an der Welle 1 und Turbinenrad 3 mit Hilfe des Elektronenstrahls 15 zusammengefügt wurden. In dem benachbarten Dichtbereich 9, der die beiden Nuten 11 umfasst, ist durch ein entsprechend angepasstes Umlenkmuster 25 des Elektronenstrahls 15 ein veränderter Bereich 27 mit höherer Härte als die übrige Welle 1 erzeugt worden. Die Eindringtiefe des Elektronenstrahls 15 und somit die Tiefe des veränderten Bereichs 27 ist dabei beispielsweise über die Steuerung der Rotationsgeschwindigkeit des Verbundes 8 in der Spannvorrichtung und die dadurch bedingte Steuerung der Verweildauer des abgelenkten Elektronenstrahls 15 auf der Oberfläche des Dichtbereichs 9 exakt einstellbar.
Während das Verfahren in diesem' Ausführungsbeispiel mit einem Elektronenstrahl 15 durchgeführt wird, ist es alternativ auch möglich, einen Laserstrahl als energiereichen Strahl 13 zu verwenden. Wird ein Laserstrahl verwendet, der kein Vakuum benötigt, so kann die Oberflächenbehandlung auch in einer von der für den Fügeprozess verwendeten separaten Arbeitskammer durchgeführt werden. Es ist dann beispielsweise möglich, die Oberflächenbehandlung gemeinsam mit einem sich daran anschließenden Bearbeitungsvorgang, wie z.B. einer spanenden Bearbeitung der Oberfläche der Fügestelle 7, in einer folgenden Bearbeitungsmaschine durchzuführen, da sich die Laserleistung zwischen räumlich getrennten Bearbeitungsstationen umschalten lässt.
Neben der oben beschriebenen Oberflächenbehandlung durch Härten sind prinzipiell drei andere Arten der Oberflächenbehandlung mit diesem Verfahren realisierbar:
Zum einen können Hartstoffe in den Dichtbereich 9 eingebracht werden, indem dieser zunächst durch den energiereichen Strahl 13 aufgeschmolzen wird. Anschließend werden in die Schmelze Hartstoffe eingebracht, um die Verschleißbeständigkeit lokal zu erhöhen. Hierbei wird die Beständigkeit des Legierungssystems durch Art, Menge, Größe und Verteilung der Hartstoffe beeinflusst. Mögliche Hartstoffe sind dabei Vanadinkarbid (VC) , Wolframkarbid (WC) , Titankarbid (TiC) , Chromkarbid (Cr3C2) , Molybdänkarbid (Mo2C) , Niobkarbid (NbC) oder Stahl . Von den hier aufgeführten Werkstoffen weist Vanadinkarbid die größte Härte auf .
Eine weitere mögliche Oberflächenbehandlung ist das Aufschweißen eines Zusatzwerkstoffes auf die Oberfläche des Dichtbereichs 9. Die Zusammensetzung dieses Zusatzwerkstoffes ist dabei unabhängig von der des Grundwerkstoffs der Welle 1. So entsteht eine verschleißfeste Schicht auf dem Dichtbereich 9.
Die dritte alternative Oberflächenbehandlung besteht im Auflegieren des Dichtbereichs 9. In diesem Fall wird der Dichtbereich 9 an der Oberfläche durch den energiereichen Strahl 13 lokal aufgeschmolzen. Anschließend wird ein Legierungswerkstoff in die Schmelze eingebracht, der sich mit dem Grundwerkstoff der Welle 1 verbindet. So bildet sich eine verschleißfeste legierte Schicht auf der Oberfläche.
In allen vier Fällen ist es mit Hilfe des beschriebenen Verfahrens möglich, mit einem einzigen StrahlWerkzeug in einer Arbeitskammer in einem Verfahrensschritt gleichzeitig das Fügen der Einzelbauteile 1,3 sowie die gewünschte Erhöhung der Verschleißfestigkeit der besonders beanspruchten Bereiche 9 durch eine lokale Änderung der Stoffeigenschaften durchzuführen.
Das Verfahren sowie der durch das Verfahren hergestellt Abgasturbolader 5 sind nicht beschränkt auf die oben aufgeführten Ausführungsbeispiele .
Vielmehr entspricht die Reihenfolge der aufgeführten Verfahrensschritte nicht zwingend der oben angegebenen. Es kann beispielsweise zunächst die Oberflächenbehandlung mit Hilfe des energiereichen Strahls 13 und erst dann der Fügeprozess durchgeführt werden.
Statt des oben beschriebenen Umlenkmusters 25, welches durch eine geeignete Ablenkung des energiereichen Strahls 13 erzeugt wird, sind auch andere Verfahren denkbar, mit Hilfe des energiereichen Strahls 13 den Dichtbereich 9 lokal zu erwärmen, beispielsweise das Überstreichen des Dichtbereichs 9 durch einen sich entlang der Mittelachse 16 der Welle 1 bewegenden energiereichen Strahl 13.

Claims

Patentansprüche
1. Verfahren zum Herstellen einer Schweißverbindung einer Welle (1) mit einem Turbinenrad (3) eines Abgasturboladers (5) , wobei die Welle (1) einen der Fügestelle (7) mit dem Turbinenrad' (3) benachbarten Dichtbereich (9) mit wenigstens einer ringförmigen Nut
(11) aufweist, dadurch gekennzeichnet, dass mit einem energiereichen Strahl (13) im gleichen Arbeitsschritt die schweißtechnische Verbindung der Welle
(1) mit dem Turbinenrad (3) sowie eine
Oberflächenbehandlung des Dichtbereichs (9) der Welle (1) durchgeführt werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als energiereicher Strahl (13) ein Elektronenstrahl (15) verwendet wird.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als energiereicher Strahl (13) ein Laserstrahl verwendet wird.
4. Verfahren nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet , dass die Oberflächenbehandlung ein lokales Aufhärten der Welle (1) im Dichtbereich (9) umfasst.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Oberflächenbehandlung ein lokales Auflegieren der Welle (1) im Dichtbereich (9) umfasst.
6. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Oberflächenbehandlung ein lokales Aufschweißen eines Zusatzwerkstoffes auf den Dichtbereich (9) der Welle (1) umfasst.
7. Verfahren nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet, dass im Zuge der Oberflächenbehandlung lokal Hartstoffe in den durch den energiereichen Strahl (13) aufgeschmolzenen Dichtbereich (9) der Welle (1) eingebracht werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Oberflächenbehandlung durch eine Umlenkung des ursprünglich auf die Fügestelle (7) gerichteten energiereichen Strahls (13) auf den Dichtbereich (9) erfolgt .
9. Abgasturbolader (5) für einen Verbrennungsmotor mit einem im Abgasstrom des Motors angeordneten Turbinenrad (3) , einem im Ansaugluftström des Motors angeordneten Verdichterrad (17) sowie einer zwischen Turbinenrad (3) und Verdichterrad (17) angeordneten Welle (1) , wobei das Turbinenrad (3) an einer Fügestelle (7) durch eine Schweißverbindung mit der Welle (1) verbunden ist und die Welle (1) in einem Dichtbereich (9) wenigstens eine ringförmige Nut (11) zur Aufnahme einer Wellenabdichtung aufweist, dadurch gekennzeichnet, dass die Schweißverbindung und eine lokale Oberflächenbehandlung des Dichtbereichs (9) durch einen energiereichen Strahl (13) hergestellt sind.
PCT/EP2006/000576 2005-02-18 2006-01-24 Verbindungeiner welle mit einem turbinenrad eines abgasturboladers WO2006087074A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005007404A DE102005007404B3 (de) 2005-02-18 2005-02-18 Verbindung einer Welle mit einem Turbinenrad eines Abgasturboladers
DE102005007404.9 2005-02-18

Publications (1)

Publication Number Publication Date
WO2006087074A1 true WO2006087074A1 (de) 2006-08-24

Family

ID=36011917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/000576 WO2006087074A1 (de) 2005-02-18 2006-01-24 Verbindungeiner welle mit einem turbinenrad eines abgasturboladers

Country Status (2)

Country Link
DE (1) DE102005007404B3 (de)
WO (1) WO2006087074A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129408A1 (ja) * 2012-02-28 2013-09-06 三菱重工業株式会社 タービンロータ
CN106001923A (zh) * 2016-06-15 2016-10-12 湖南天雁机械有限责任公司 一种涡轮增压器的涡轮转子激光复合加工方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007009779B4 (de) * 2007-02-27 2019-08-01 Wittenstein Se Drehverbindung zwischen Welle und Ritzel und Verfahren zu deren Herstellung
DE102008038007A1 (de) * 2008-08-16 2010-02-18 Bosch Mahle Turbo Systems Gmbh & Co. Kg Abgasturbolader
DE102008046945A1 (de) * 2008-09-12 2010-03-18 Bosch Mahle Turbo Systems Gmbh & Co. Kg Ladeeinrichtung
DE102009030042A1 (de) 2009-06-23 2011-01-05 Continental Automotive Gmbh Turbinenläufer für einen Turbolader und Verfahren zur Herstellung eines Turbinenläufers
DE102012202272B4 (de) 2012-02-15 2021-05-12 BMTS Technology GmbH & Co. KG Rotor einer Ladeeinrichtung und Ladeeinrichtung
DE102012212990A1 (de) * 2012-07-24 2014-01-30 Schaeffler Technologies AG & Co. KG Welle-Nabeverbindung eines Läufers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778345A (en) * 1985-03-15 1988-10-18 Ngk Spark Plug Co., Ltd. Turbine rotor
DE3739792A1 (de) * 1987-11-24 1989-06-08 Fraunhofer Ges Forschung Verfahren und vorrichtung zum herstellen von schneide- oder praegewerkzeugen sowie schneide- oder praegewerkzeug
US5176497A (en) * 1991-01-22 1993-01-05 Allied-Signal Inc. Boreless hub compressor wheel assembly for a turbocharger
DE4221530A1 (de) * 1992-06-16 1993-12-23 Kugler Gmbh Feinmechanik & Opt Vorrichtung zum Reflektieren eines optischen Strahles
JPH07286528A (ja) * 1994-04-19 1995-10-31 N D K Kako Center Kk タービンロータ軸の電子ビーム接合方法
EP1134358A2 (de) * 2000-03-13 2001-09-19 Ishikawajima Mass-Produced Machinery Co., Ltd. Herstellungsmethode für den Rotor eines Turboladers
DE10262053A1 (de) * 2002-09-05 2004-08-12 Daimlerchrysler Ag Verfahren zur Laserbearbeitung beschichteter Bleche
DE102004001166A1 (de) * 2003-02-28 2004-09-16 Daimlerchrysler Ag Verfahren zum Laserschweissen mit Vor- und/oder Nachwärmung im Bereich der Schweißnaht

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2734747A1 (de) * 1977-08-02 1979-02-15 Daimler Benz Ag Verbindung eines keramischen turbinenrades mit einer metallischen welle
JP2002235547A (ja) * 2001-02-09 2002-08-23 Shozo Shimizu ターボチャージャ用タービン軸の接合方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778345A (en) * 1985-03-15 1988-10-18 Ngk Spark Plug Co., Ltd. Turbine rotor
DE3739792A1 (de) * 1987-11-24 1989-06-08 Fraunhofer Ges Forschung Verfahren und vorrichtung zum herstellen von schneide- oder praegewerkzeugen sowie schneide- oder praegewerkzeug
US5176497A (en) * 1991-01-22 1993-01-05 Allied-Signal Inc. Boreless hub compressor wheel assembly for a turbocharger
DE4221530A1 (de) * 1992-06-16 1993-12-23 Kugler Gmbh Feinmechanik & Opt Vorrichtung zum Reflektieren eines optischen Strahles
JPH07286528A (ja) * 1994-04-19 1995-10-31 N D K Kako Center Kk タービンロータ軸の電子ビーム接合方法
EP1134358A2 (de) * 2000-03-13 2001-09-19 Ishikawajima Mass-Produced Machinery Co., Ltd. Herstellungsmethode für den Rotor eines Turboladers
DE10262053A1 (de) * 2002-09-05 2004-08-12 Daimlerchrysler Ag Verfahren zur Laserbearbeitung beschichteter Bleche
DE102004001166A1 (de) * 2003-02-28 2004-09-16 Daimlerchrysler Ag Verfahren zum Laserschweissen mit Vor- und/oder Nachwärmung im Bereich der Schweißnaht

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 02 29 February 1996 (1996-02-29) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129408A1 (ja) * 2012-02-28 2013-09-06 三菱重工業株式会社 タービンロータ
JP2013177850A (ja) * 2012-02-28 2013-09-09 Mitsubishi Heavy Ind Ltd タービンロータ
US9797256B2 (en) 2012-02-28 2017-10-24 Mitsubishi Heavy Industries, Ltd. Turbine rotor
CN106001923A (zh) * 2016-06-15 2016-10-12 湖南天雁机械有限责任公司 一种涡轮增压器的涡轮转子激光复合加工方法
CN106001923B (zh) * 2016-06-15 2018-06-29 湖南天雁机械有限责任公司 一种涡轮增压器的涡轮转子激光复合加工方法

Also Published As

Publication number Publication date
DE102005007404B3 (de) 2006-03-30

Similar Documents

Publication Publication Date Title
DE102005007404B3 (de) Verbindung einer Welle mit einem Turbinenrad eines Abgasturboladers
EP0197268B1 (de) Verfahren zum Herstellen eines Regelrades für den Hochdruckrotor einer Dampfturbine
EP2215329B1 (de) Herstellungsprozess für einen rotor
EP2830803B1 (de) Turbinenläufer für eine abgasturbine sowie ein verfahren zur herstellung des turbinenläufers
DE10052176B4 (de) Dampfturbinenrotor und Verfahren zur Herstellung desselben
DE10013429C5 (de) Ausgleichgetriebe
EP2029318B1 (de) Verfahren zur herstellung eines einteiligen kolbens
DE69720616T2 (de) Turbinenrotor und Methode zur Reparatur eines Turbinenrotors
DE102012205043A1 (de) Turbinenläufer für eine Abgasturbine sowie ein Verfahren zur Herstellung des Turbinenläufers
DE102013226664A1 (de) Turbinenläufer und Verfahren zur Herstellung des Turbinenläufers
EP3081669B1 (de) Verfahren zur herstellung von gedeckelten laufrädern
DE102008060205A1 (de) Verfahren zur Herstellung eines geschweißten Rotors für ein Gasturbinentriebwerk
EP2410137A1 (de) Verfahren zur Herstellung eines groß dimensionierten Bauteils aus Sphäroguss
DE102013009209A1 (de) Kolben für einen Verbrennungsmotor sowie Verfahren und Vorrichtung zu dessen Herstellung
DE102014225966A1 (de) Laufradgehäuse mit einer Bypass-Ventileinrichtung für Abgasturbolader und Abgasturbolader
DE102005057317A1 (de) Verfahren und Vorrichtung zum Laserschweißen von Eisenguss- und Stahlwerkstoffen
DE2622823A1 (de) Zentrifugalschaufelrad und herstellungsverfahren dafuer
EP0204121B1 (de) Verfahren zur Herstellung eines thermisch und mechanisch hoch belastbaren sowie gegen Heisskorrosion geschützten Gaswechselventiles einer schwerölbetriebenen Brennkraftmaschine
DE102004043337B4 (de) Querdifferential eines Kraftfahrzeuges sowie Herstellungsverfahren desselben
DE102009024581B4 (de) Schweißverfahren für Wellen bei vertikaler Rotationsachse
EP2785491B1 (de) Verfahren zur reparatur einer variablen leitschaufel
DE10311150A1 (de) Verfahren zur Herstellung eines geschmiedeten Kolbens für einen Verbrennungsmotor
EP2098326B1 (de) Verfahren zur Herstellung eines metallischen Bauteils, hergestelltes Bauteil und Verwendung des Bauteils
EP3568618B1 (de) Kolbenring und verfahren zur herstellung
DE102006061448B4 (de) Verfahren zur Herstellung einer Blisk oder eines Blings einer Gasturbine und danach hergestelltes Bauteil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06706374

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6706374

Country of ref document: EP