WO2006086814A2 - Remplacement du mazout fossile par des combustibles liquides renouvelables, procede, mesures et dispositifs pour adapter des installations de chauffage et de combustion - Google Patents

Remplacement du mazout fossile par des combustibles liquides renouvelables, procede, mesures et dispositifs pour adapter des installations de chauffage et de combustion Download PDF

Info

Publication number
WO2006086814A2
WO2006086814A2 PCT/AT2006/000058 AT2006000058W WO2006086814A2 WO 2006086814 A2 WO2006086814 A2 WO 2006086814A2 AT 2006000058 W AT2006000058 W AT 2006000058W WO 2006086814 A2 WO2006086814 A2 WO 2006086814A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
heating
injector
heat
nozzle body
Prior art date
Application number
PCT/AT2006/000058
Other languages
German (de)
English (en)
Other versions
WO2006086814A3 (fr
Inventor
Georg Michael Ickinger
Original Assignee
Georg Michael Ickinger
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georg Michael Ickinger filed Critical Georg Michael Ickinger
Publication of WO2006086814A2 publication Critical patent/WO2006086814A2/fr
Publication of WO2006086814A3 publication Critical patent/WO2006086814A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/44Preheating devices; Vaporising devices
    • F23D11/441Vaporising devices incorporated with burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/24Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/08Preparation of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/08Preparation of fuel
    • F23K5/10Mixing with other fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2205/00Pulsating combustion
    • F23C2205/10Pulsating combustion with pulsating fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99009Combustion process using vegetable derived fuels, e.g. from rapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2211/00Flue gas duct systems
    • F23J2211/10Balanced flues (combining air supply and flue gas exhaust)
    • F23J2211/101Balanced flues (combining air supply and flue gas exhaust) with coaxial duct arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/13004Water draining devices associated with flues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2900/00Special features of, or arrangements for fuel supplies
    • F23K2900/05004Mixing two or more fluid fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2900/00Special features of, or arrangements for fuel supplies
    • F23K2900/05083Separating watery fractions from liquid fuel

Definitions

  • the present development has set itself the task of replacing the simple heaters fuel oil extra light in homes with renewable energy to enable.
  • GLYCERIN purified from crude glycerine offers purified BIO oil prepared by pyrolysis of wood, purified distillate residues from bio refining.
  • Raw glycerin is 8% waste in the BIO Diesel production process. Whatever the use of BIO diesel products, there is currently no economic use of crude glycerine except for pharmaceutical glycerine and replacement of glycerine derived from fossil fuel.
  • the present concept presents an alternative to the use of glycerin as a liquid renewable fuel for residential heating rather than inferior to using raw glycerine in BIO gas plants or power plant firing.
  • Influence of purity on the type of heating Influence of the flexibility of the heating system on the type of heating.
  • District heating systems require at least two insulated thick pipes.
  • the sphere of activity is therefore close to the city centers.
  • Natural gas requires only one - in comparison to the heat of the heat - thin pipe.
  • the effective range is located at the main strands with a longer range.
  • Fossil fuel oil and gas transports are currently the economic alternative to remote areas and are therefore served nationwide.
  • Pellet heaters depend on the distance of the pelletizers.
  • Wood heating systems have the lowest impact of self-catering transport costs, but have a low degree of automation.
  • pellet heaters provide almost similar modes of transport as liquid fuels by means of blowing.
  • the storage room is twice as big as heating oil. The drying of the pellets must be guaranteed.
  • the prerequisite for the following consideration is the assumption that there is district heating, long-distance gas from "renewable” energy, and that there is a real BIO alternative to extra-light fuel oil.
  • the logistics supply is identical to that of fossil fuel oil Weight unit larger, but about the same size as the pellets.
  • pellets and glycerin are equal in weight and have three times the weight of heating oil. With regard to storage space, double the volume is required for glycerol and four times more for pellets compared to heating oil.
  • the manufacturer's information on the performance of the heating system is given in each case to the continuous operating condition. This requires a period of about 20 minutes to start up the heating system under less than optimum conditions.
  • the systems offered today only know two states: Heating ON ⁇ -> OFF. (There are medium sized plants designed for two stages of combustion).
  • the inner tube is made of stainless steel and leads the hot exhaust gases to the outside.
  • the old existing chimney pipe is used to supply the fresh air. This arrangement is used to use the exhaust heat, which is supplied from the exhaust gas of the fresh air.
  • the mode of action is in the heat exchanger, which is installed as a steel pipe in the existing fireplace.
  • the exhaust gas flows out through the steel pipe and releases the heat to the incoming fresh air.
  • the exhaust gas is thus cooled from 150 0 C to 60 0 C.
  • the water vapor is condensed, thus additionally giving off the heat of vaporization to the fresh air. Operation of the fireplace heat exchanger of a condensing heating.
  • This 72 GJ / a corresponds to a fuel oil extra light demand, assuming a calorific value of 0.6 of
  • the cost of glycerin heaters is one quarter of the pellet.
  • a conversion of heating oil heating systems is possible and useful. It is not necessary to increase the number of tanks. Glycerin has half the calorific value of the volume. The conversion costs are related only to the burner and the conversion from calorific value to calorific value heaters (heat exchangers in the chimney) is a requirement for the purity of glycerine because of environmental regulations
  • Liquid burners in conventional heating systems rely on a fan-generated turbulent air flow of a fuel oil-diesel or biodiesel pump for maximum 40 bar pressure generation and a centrally located burner nozzle together with an electronic control unit.
  • the atomization achieved thus far does not permit combustion of flame retardant fuels, e.g. Glycerine in compliance with the emission regulations.
  • the method described here is characterized in that by means of a high-pressure injection system, the hardly inflammable fuels are so atomized and mixed with air, so that an efficient combustion takes place.
  • the basic idea behind the atomization of flame retardant fuels is that the temperature of the liquid in a sealed pressure system is heated above the flashpoint at more than 40 MPa.
  • This pressure range is necessary to suppress the boiling of flame retardant fuels prior to injection.
  • proportional valve or pulsating injector By means of a suitable proportional valve or controlled pulsating injector, the heated fuel is now injected into the combustion chamber and swirled with air. Subsequently brought to combustion. The valve also controls the required amount of fuel.
  • the delivered fuel is cleaned. After binding any ions such as KOH or NaOH, the impurities are eliminated.
  • Combustion air supplied in two concentric tubes having means for swirling and this twist has opposite directions of rotation in the inner and outer tube.
  • the purpose of this device is to create a fluidized bed at the confluence of these opposed air swirls through which must pass through fuel injected at high speed. It comes to delay the residence time and good mixing with the combustion air.
  • State of the art for the incinerator is to create a fluidized bed at the confluence of these opposed air swirls through which must pass through fuel injected at high speed. It comes to delay the residence time and good mixing with the combustion air.
  • EP0454351 The present device differs from EP0454351 in that no diesel fuel is used, but flame retardant fuels. In a high pressure part, these are heated substantially above the flash point.
  • the present device is different from US6402505 in that the injected fuel does not pass through a baffle plate in the inlet opening when it enters the combustion chamber, but enters the combustion chamber directly through the heating of the fuel in the high-pressure part substantially above the flash point in the vapor state and is gas-like state.
  • US6402505 solves this through the baffle plate and slows down the entrance.
  • the present device introduces into the combustion chamber ignitable vapor above the flash point and thus uses despite high entry velocity the full ignition effect.
  • the present device is different from the preheating compared to US6174160 in that the injector itself is heated and the fuel is heated in the injector before exiting substantially above the flash point.
  • the present device differs from this in that the injector is heated and measures are taken to improve the flammability of the fuel
  • the present device is distinguished from WO2004055437 in that the injector is heated and measures are taken to improve the flammability of the fuel.
  • Glycerol 25-70%, soaps: 5-40%, water: 3-25%, methanol: 0.1-50% Indicated in weight percentages based on the sum of the four components.
  • WO0112756, WO9525152, and FR2496119 relate to internal combustion engines.
  • the present invention relates to an incinerator.
  • the present device is distinguished by US20040177611 that two mutually moved twisted air flows move towards each other and form a fluidized bed, in which - due to the heating in the injector - vapor strikes and comes to turbulence.
  • Fuel-injection apparatus characterized by having heating.
  • the aim of the device is the heating of the blowing additive or fuel gas mixture at flash point or ignition point temperature for the purpose of combustion in engines, or boilers or introduction into reactors. Especially with fuels or fuels with lower calorific value and higher flash point, this device is used for better ignition and economical combustion. Reactors for the production of hydrogen gas
  • the targeted heating of the injector leads to increase the heat content of the fuel or propellant, and in turn in connection with the preheated air to increase the temperature of the fuel or fuel mixture.
  • the preheating of fuel or fuel to the above temperatures is only possible under high pressure and under exclusion of air, as is generally in the liquid diesel and biodiesel and liquid fuels or heating and fuel or the flash point above the boiling point and the heating must therefore be carried out under pressure in order to avoid premature boiling in the injection system.
  • the pressures in the injection systems are above 40 Mpa, so this requirement is met.
  • the high temperatures of the nozzles of injection systems are given in today's engines and the nozzles have proven themselves over a long service life.
  • the radiant heat in the diesel engine heats the nozzle needles to over 500 ° C so that this area of the injector can be exposed to these temperatures.
  • the heating of injectors presented here is carried out by the following methods: Electric heating element, heating loop in the starting phase. Heat transfer through jet plate at the nozzle. Flushing of the nozzle by exhaust gas flow to the exhaust valve. Flushing of the nozzle by means of exhaust gas in the pipe system.
  • the injector is externally heated in the lower area.
  • a heat-insulated from the combustion chamber radiant panel is pressed with good metallic contact on the nozzle.
  • the radiation from the combustion chamber is conducted into the radiant plate and from there by means of heat conduction to the nozzle.
  • the injector by means of looping pipeline, the hot combustion air from the combustion chamber the injector for convection introduce.
  • the nozzle is electrically heated.
  • the present device is different from WO03083283 in that before entering the combustion chamber, it does not have a capillary, as here, but with a capillary
  • Valve needle creates a high pressure state in the injector, so that there is no formation of vapor.
  • the vapor formation takes place only when entering the combustion chamber.
  • the present device is distinguished from US 4396372 in that the closure element is arranged in front of the combustion chamber and not in front of the heating device as in US Pat. No. 6,174,160. Description of the figures:
  • Nozzle body optionally with heating
  • High-pressure pump (radial pump with torque-controlled drive)
  • Control needle 26 Control needle
  • FIG. 1 shows a high-pressure injector from WO 0151267 during the introduction of fuel into the combustion air stream.
  • FIGs 1 and 2 show the high pressure injector
  • Injection system consisting of fan for combustion air (1), injector (2), high pressure fuel supply (3), heat exchanger hot air supply (4) swirl device inner tube (5), swirl device outer tube (6), nozzle body, optionally with heating (7), vortex left-turning and clockwise, injection area (8), flame zone (9), combustion chamber (10) shown.
  • the supplied hot air (4) is used to heat the injector in the area of the nozzle and is insulated by means of constriction of the servo operating part of the injector (2) thermally, so that the operating mechanism is not exposed to high temperatures.
  • twisting device (5) which in this case provides the hot air (4) with a right twist.
  • the combustion air (1) provided in this case with a left twist.
  • the turbulent layers of right-hand spiral (4) and left-hand spiral (1) now come together. In this layer, the turbulence will now take place before the fuel mixture penetrates into the flame zone (9) and burns in the combustion chamber (10).
  • FIG. 2 shows the incinerator.
  • the circulation of the fuel in the high-pressure region takes place after being fed by the low-pressure pump (17) and passes via the high-pressure pump (15) for feeding the injector (3) to the injector.
  • the nozzle body and the servo control panel are supplied with fuel.
  • the return from the amount of fuel necessary for the operation of the servo is returned via the drain line (15) in the low pressure range.
  • An admixture by the pump 18 of flash point lowering additives (19), as well as the cleaning of the fuel by means of high pressure filter (20) and the optional admixture with the pump (11) of additives (12) against the entangling are shown.
  • the prior art shows the two-circuit injector
  • Figure 3 shows the injector with preheating for fuel or fuel
  • Figure 4 shows the use of the injector in the cylinder head with radiant panel
  • Figure 5 shows the use in the exhaust stream
  • Figure 6 shows the injector with radiant panel in the combustion chamber of a boiler
  • Figure 7 shows the injector with heat conduction from the combustion chamber
  • Leak oil line servo (21), servo control (22), high-pressure feed (23), injector (24), drain line (25), control needle (26), drain line (25), nozzle needle (28), fuel or fuel supply line (29), nozzle body (30), injection port (s) (31), one of which concerns the injection medium and the second circuit supplies the servo operation.
  • FIG. 3 shows the dual-circuit nozzle in an extended function
  • the present device extends the function by heating the injector in the two circuits.
  • the area Servo (32) should be as unheated work area as possible
  • the middle area (33) consists of the heat transfer zone.
  • the injection area (34) consists of the nozzle body and the lower injector area and is heated intensively in order to achieve heating of the fuel or fuel in one pass through the injector. This concerns the heat transfer in the areas (33) and (34). 7 shows the leakage of the leak oil at the nozzle body. At these temperatures of 300 0 C and pressure above 40 Mpa hot fuel will escape between the nozzle needle and the nozzle body. Advantageously, this should be performed in the combustion chamber and not return to the high pressure circuit. For this reason, there is also a seal in the middle region (33).
  • FIG. 4 shows the heating of the injector (24) by means of an example on the cylinder head (36).
  • the nozzle body (31) is positively pressed into the radiant plate (39) in order to achieve a good heat transfer.
  • the radiant plate is located between inlet (37) and outlet (38) and is advantageously isolated from the cylinder head. The radiation from the combustion chamber heats the radiant panel
  • FIG. 5 shows an example based on the heating of the injector (24) in the nozzle body region (30) in the outlet channel (40).
  • the attachment of heat transfer ribs to the nozzle body (30) will be advantageous.
  • FIG. 6 shows the heating of the injector (24) in the region of the nozzle body (30) by means of a jet plate (39) in the combustion chamber of an incinerator. The heat transfer takes place by radiation from the combustion chamber to the radiant plate (39) and from there to the nozzle body 30) of the injector (24).
  • FIG. 7 shows the heating by means of a heat exchanger (41) which is fed from the combustion chamber via a supply line of hot air.
  • the heat transfer (42) takes place advantageously via heat transfer ribs on the nozzle body (30). If necessary, the middle part of the injector for heat transfer (42) is involved with high heat demand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

La présente invention concerne un procédé pour adapter une installation de chauffage pour la faire passer de manière extrêmement simple, du fonctionnement au mazout au fonctionnement avec des combustibles liquides renouvelables tels que la glycérine brute purifiée. Selon l'invention, le brûleur est converti en un injecteur pulsatoire; le foyer est équipé d'une chambre d'évaporation en matériau fritté ou matériau fibreux; le brûleur est chauffé par la chaleur de contact provenant de la chambre d'évaporation; le brûleur passe du mode charge partielle au mode démarrage par l'intermédiaire d'un ordinateur; la cheminée est convertie en une cheminée à tube d'échappement concentrique avec séparation d'eau et filtre de purification inclus; le réservoir comprend un système de remplissage à gaz protecteur. Les injecteurs chauffés trouvent également des applications pour injecter des additifs, des réactifs ou des catalyseurs dans les chambres réactionnelles, par exemple pour la production d'hydrogène. Le chauffage ciblé de la buse d'injection conduit à une augmentation de la quantité de chaleur dans le carburant ou le combustible pour permettre une combustion ou une réaction optimale. L'invention fait également intervenir: le chauffage et l'augmentation de pression du combustible; l'adjonction d'additifs qui abaissent le point d'inflammation; la régulation de la quantité de carburant par une soupape proportionnelle ou un injecteur pulsatoire; la purification des combustibles au moyen d'un filtre haute pression; un système de contre-torsion pour l'alimentation en air de combustion.
PCT/AT2006/000058 2005-02-16 2006-02-16 Remplacement du mazout fossile par des combustibles liquides renouvelables, procede, mesures et dispositifs pour adapter des installations de chauffage et de combustion WO2006086814A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ATA244/2005 2005-02-16
AT2442005 2005-02-16
AT2452005 2005-02-16
ATA245/2005 2005-02-16

Publications (2)

Publication Number Publication Date
WO2006086814A2 true WO2006086814A2 (fr) 2006-08-24
WO2006086814A3 WO2006086814A3 (fr) 2006-12-28

Family

ID=36384534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2006/000058 WO2006086814A2 (fr) 2005-02-16 2006-02-16 Remplacement du mazout fossile par des combustibles liquides renouvelables, procede, mesures et dispositifs pour adapter des installations de chauffage et de combustion

Country Status (1)

Country Link
WO (1) WO2006086814A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1950273A1 (fr) * 2007-01-18 2008-07-30 RWE Power Aktiengesellschaft Utilisation de glycérol, de melanges glycérol-éthanol ou glycérol-méthanol comme combustible pour des installations de chauffe
EP1985687A1 (fr) * 2007-04-20 2008-10-29 Energy Biosystem Srl Procédé et installation de production d'énergie thermique utilisant de la glycérine brute comme carburant dans une chaudière
WO2008154275A2 (fr) * 2007-06-06 2008-12-18 North Carolina State University Procédé de combustion de combustibles liquides de faible valeur de chauffage et de viscosité élevée
US20110088395A1 (en) * 2008-03-20 2011-04-21 Mcneil John combustion method and apparatus
US8858223B1 (en) * 2009-09-22 2014-10-14 Proe Power Systems, Llc Glycerin fueled afterburning engine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH323858A (de) * 1954-08-21 1957-08-31 Niesper Alphonse Ing Dipl Verfahren zur intermittierenden Einführung von Brennöl in einen Feuerraum und Einrichtung zur Durchführung dieses Verfahrens
DE1265727B (de) * 1964-03-10 1968-04-11 Wolfen Filmfab Veb Verfahren zur Herstellung synthetischer kristalliner Natrium-Kalium-Zeolithe
DE1277499B (de) * 1963-06-01 1968-09-12 Manfred Leisenberg Einrichtung zum Einspritzen fluessigen Brennstoffs in keramische OEfen
DE1401803A1 (de) * 1960-07-19 1968-10-24 Manfred Leisenberg Verfahren und Einrichtung zum Betrieb von Schweroelfeuerungen,insbesondere fuer keramische OEfen
DE4134058A1 (de) * 1990-10-26 1992-04-30 Yamatake Honeywell Co Ltd Proportionalverbrennungsregelungsvorrichtung
DE19507556A1 (de) * 1994-10-20 1996-04-25 Eberspaecher J Brenner für ein Fahrzeugheizgerät oder einen Partikelfilter-Regenerator
WO2001012756A2 (fr) * 1999-08-18 2001-02-22 Tomberger, Gerhard Carburant pour moteur a combustion interne a auto-allumage
WO2001051267A2 (fr) * 2000-01-10 2001-07-19 Georg Michael Ickinger Procede pour introduire des additifs
US20040173692A1 (en) * 2001-06-26 2004-09-09 Walter Blaschke Evaporative burner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH323858A (de) * 1954-08-21 1957-08-31 Niesper Alphonse Ing Dipl Verfahren zur intermittierenden Einführung von Brennöl in einen Feuerraum und Einrichtung zur Durchführung dieses Verfahrens
DE1401803A1 (de) * 1960-07-19 1968-10-24 Manfred Leisenberg Verfahren und Einrichtung zum Betrieb von Schweroelfeuerungen,insbesondere fuer keramische OEfen
DE1277499B (de) * 1963-06-01 1968-09-12 Manfred Leisenberg Einrichtung zum Einspritzen fluessigen Brennstoffs in keramische OEfen
DE1265727B (de) * 1964-03-10 1968-04-11 Wolfen Filmfab Veb Verfahren zur Herstellung synthetischer kristalliner Natrium-Kalium-Zeolithe
DE4134058A1 (de) * 1990-10-26 1992-04-30 Yamatake Honeywell Co Ltd Proportionalverbrennungsregelungsvorrichtung
DE19507556A1 (de) * 1994-10-20 1996-04-25 Eberspaecher J Brenner für ein Fahrzeugheizgerät oder einen Partikelfilter-Regenerator
WO2001012756A2 (fr) * 1999-08-18 2001-02-22 Tomberger, Gerhard Carburant pour moteur a combustion interne a auto-allumage
WO2001051267A2 (fr) * 2000-01-10 2001-07-19 Georg Michael Ickinger Procede pour introduire des additifs
US20040173692A1 (en) * 2001-06-26 2004-09-09 Walter Blaschke Evaporative burner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1950273A1 (fr) * 2007-01-18 2008-07-30 RWE Power Aktiengesellschaft Utilisation de glycérol, de melanges glycérol-éthanol ou glycérol-méthanol comme combustible pour des installations de chauffe
EP1985687A1 (fr) * 2007-04-20 2008-10-29 Energy Biosystem Srl Procédé et installation de production d'énergie thermique utilisant de la glycérine brute comme carburant dans une chaudière
WO2008154275A2 (fr) * 2007-06-06 2008-12-18 North Carolina State University Procédé de combustion de combustibles liquides de faible valeur de chauffage et de viscosité élevée
WO2008154275A3 (fr) * 2007-06-06 2009-02-05 Univ North Carolina State Procédé de combustion de combustibles liquides de faible valeur de chauffage et de viscosité élevée
US8496472B2 (en) 2007-06-06 2013-07-30 North Carolina State University Process for combustion of high viscosity low heating value liquid fuels
US20110088395A1 (en) * 2008-03-20 2011-04-21 Mcneil John combustion method and apparatus
US8875685B2 (en) * 2008-03-20 2014-11-04 Aquafuel Research Limited Combustion method and apparatus
US8858223B1 (en) * 2009-09-22 2014-10-14 Proe Power Systems, Llc Glycerin fueled afterburning engine

Also Published As

Publication number Publication date
WO2006086814A3 (fr) 2006-12-28

Similar Documents

Publication Publication Date Title
EP0879945B1 (fr) Procédé pour faire fonctionner un moteur à combustion interne
CN103672952B (zh) 一种工业炉窑高压内混式雾化喷吹植物油脂或生物油燃烧系统及其方法
DE102018201172A1 (de) Verbrennungsanlage mit Restwärmenutzung
Sidibe et al. Comparative study of three ways of using Jatropha curcas vegetable oil in a direct injection diesel engine
WO2006086814A2 (fr) Remplacement du mazout fossile par des combustibles liquides renouvelables, procede, mesures et dispositifs pour adapter des installations de chauffage et de combustion
CN110529231A (zh) 一种使用单甲醇燃料的压燃式发动机系统及其操作方法
DE2065160A1 (de) Gas-Dampfturbinenanlage. Ausscheidung aus: 2041183
CN1103021C (zh) 联合循环动力设备的运行方法
DE19757619A1 (de) Vorrichtung und Verfahren zur Erzeugung von Energie aus einem Brennstoff
CN101169241B (zh) 固态燃料用锅炉的燃烧装置
DE102012102351A1 (de) Mikrogasturbinenvorrichtung mit Brennwertnutzung, Mini-Blockheizkraftwerk sowie Verfahren zum Betrieb einer Mikrogasturbinenvorrichtung
CN104747341A (zh) 一种新型燃油加热器
CN100582581C (zh) 一种用于低挥发分煤的等离子无油点火系统
CN106439803A (zh) 一种液态轻烃燃料气化的燃烧系统
DE60106976T2 (de) Energieerzeugungssystem
AT409405B (de) Anlage zur gewinnung elektrischer energie aus brennstoffen, insbesondere aus biogenen brennstoffen
CN100520181C (zh) 煤直接液化油渣热法进入循环流化床锅炉的方法
EP0042454A1 (fr) Procédé de fonctionnement d'appareils à combustion et machine à combustion et dispositif de chauffage dans lequel ce procédé est mis en application
AT11930U1 (de) Vorrichtung zur stromerzeugung aus komprimierten heissgasen
DE102012017718B4 (de) Verfahren und Vorrichtung zur Verwendung von Methanol in einem Verbrennungsmotor mit Selbstzündung
DE2922083A1 (de) Feuerungsanlage
DE10010163C2 (de) Verfahren zur Verwertung von kohlenwasserstoffhaltigen Altstoffen und Anlage zur Durchführung des Verfahrens
CN103113943A (zh) 用于驱动内燃机或能量生产设备的乳化燃料
CN206247318U (zh) 一种用于燃烃锅炉的轻烃燃烧装置
CN206222281U (zh) 氢混合燃气蒸汽锅炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06704700

Country of ref document: EP

Kind code of ref document: A2

WWW Wipo information: withdrawn in national office

Ref document number: 6704700

Country of ref document: EP