WO2006082678A1 - 光情報記録装置(反射型ホログラフィックメモリ装置) - Google Patents

光情報記録装置(反射型ホログラフィックメモリ装置) Download PDF

Info

Publication number
WO2006082678A1
WO2006082678A1 PCT/JP2005/020357 JP2005020357W WO2006082678A1 WO 2006082678 A1 WO2006082678 A1 WO 2006082678A1 JP 2005020357 W JP2005020357 W JP 2005020357W WO 2006082678 A1 WO2006082678 A1 WO 2006082678A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
light
reference light
holographic memory
signal light
Prior art date
Application number
PCT/JP2005/020357
Other languages
English (en)
French (fr)
Inventor
Osamu Matoba
Yuji Yokohama
Original Assignee
National University Corporation Kobe University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Kobe University filed Critical National University Corporation Kobe University
Priority to JP2007501508A priority Critical patent/JP4568811B2/ja
Priority to US11/794,727 priority patent/US8120826B2/en
Publication of WO2006082678A1 publication Critical patent/WO2006082678A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00772Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track on record carriers storing information in the form of optical interference patterns, e.g. holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H2001/0415Recording geometries or arrangements for recording reflection holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • G03H2001/2675Phase code multiplexing, wherein the sub-holograms are multiplexed according to spatial modulation of the reference beam

Definitions

  • Optical information recording device reflection holographic memory device
  • the present invention relates to a technology for practical use of a holographic memory recording system having a large capacity and a data protection function, and in particular, rotation of a disk type recording medium and movement of the disk type recording medium in a radial direction (optical pickup)
  • the present invention relates to a reflection-type holographic memory device having good compatibility with the operation mechanism of the system.
  • holographic memory that can be read out in parallel as image data is a next-generation recording that has a recording capacity of more than 1 terabyte using the three-dimensional space of the media and a high-speed reading transfer with a data transfer rate of 10 gigaseconds. It has been studied as a media in Japan and overseas.
  • holographic memory recording methods include a transmission hologram and a reflection hologram.
  • multiplex recording of transmission holograms angle multiplex recording, spatial shift multiplex recording, random phase modulation multiplex recording, etc. have been put to practical use. Only the angle multiplex recording system is in practical use.
  • Patent Document 1 For example, Patent Document 1,
  • the optical image encryption technology announced by the present inventors for the first time in the world that is, the encryption of the original image based on the random phase modulation technology is performed, and the optical memory having a recording data protection function is used. Research results are reported (Non-patent literature 1, Non-patent document Permissible literature 2).
  • Patent Document 2 it is also known to use a random phase modulation mask in an arrangement constituting a transmission hologram.
  • Patent Document 1 Japanese Patent Application No. 11-88098
  • Patent Document 2 UP5719691
  • Non-patent document 1 Encrypted optical memory system using three-dimensional keys in tne Fresnel domain (O.Matoba and B. Javidi, Opt. Lett., 24, 762-764 (1999))
  • Non-patent document 2 Shingo optical Encryption technology (Author: Osamu Matoba et al., Optics, 29 (2000)) Disclosure of invention
  • a first object of the present invention is to improve the cost performance of a product that has good consistency with the operation mechanism technology of an optical pickup system represented by the existing DVD technology.
  • the second object of the present invention is to realize a recording capacity that is about 1000 times the recording capacity calculated from the in-plane diffraction limit of the recording medium, and further increase the recording capacity by stacking.
  • the third objective is to achieve the above.
  • the fourth purpose is to provide data protection functions as hardware.
  • the operating mechanism of the optical pickup system is defined as an operating mechanism for rotating the disk type recording medium and moving the disk type recording medium in the radial direction.
  • the first aspect of the present invention is that binary image data is recorded as a light interference pattern by irradiating the holographic memory recording medium with signal light and reference light, and the reference light is recorded on the holographic memory recording medium. Reconstructed image obtained by irradiating A holographic recording and reproducing system for reproducing data,
  • the holographic memory recording medium is a disk type recording medium
  • Random phase modulation multiplex recording means provided in the light guide for signal light and Z or reference light;
  • a reflection-type holographic memory device characterized in that the recording capacity of the reflection-type hologram is increased is provided.
  • a feature of the reflection type holographic memory device is that the recording as the holographic memory has a reflection type configuration.
  • the reflection type is an optical system that performs recording in such a manner that signal light and reference light face each other.
  • the combined use of the spatial shift multiplex recording method and the random phase modulation multiplex recording method has succeeded in increasing the recording capacity of a holographic memory using a disk-type recording medium. Furthermore, it was demonstrated that the effect of improving the recording capacity and the effect of encryption can be obtained by using a random phase mask in the reflective holographic memory.
  • the system that aligns the polarization planes of the signal light and the reference light on the disk-type recording medium is different from the signal light whose linear polarization state differs by 90 degrees.
  • the reference light is guided in the same direction on the same axis, converged onto the disk-type recording medium by a condensing lens, and only the reference light is transmitted through the disk-type recording medium.
  • a reflective holographic memory device characterized by using a reflecting mirror to align the polarization state of the reference light with the signal light and making the signal light and the reference light face each other.
  • spatially modulated light wave When a spatially modulated light wave is used for signal light and Z or reference light, an input image can be recorded while maintaining spatial overlap, so that large capacity recording is possible.
  • the spatial shift multiplex recording means using this spatial light modulation and the random phase modulation multiplex recording means are combined. By combining the two, it is possible to realize a larger recording capacity.
  • the third aspect of the present invention is that, in the first or second aspect, in the spatial shift multiplex recording means, the shift selection distance is approximately the square of the numerical aperture of the condenser lens.
  • a reflective holographic memory device is provided that is selected to be inversely proportional.
  • the shift selection distance in the reflection-type holographic memory using the spatial shift multiplex recording is verified by using a simulation described later that it is given in a form that is inversely proportional to the square of the numerical aperture of the condenser lens. . Since the shift selection distance is given in a form that is inversely proportional to the square of the numerical aperture of the condenser lens, the recording interval in multiplex recording must be larger than the form that is inversely proportional to the numerical aperture of the condenser lens. It is smaller than the value that is inversely proportional to the cube of the number.
  • the shift selection distance is the amount of movement of the position when the diffraction efficiency becomes half of the maximum value due to the movement of the position of the material.
  • the random phase modulation multiplex recording means is a random phase mask or a pseudo-random phase mask.
  • a reflective holographic memory device is provided.
  • random phase modulation multiplex recording means performs multiplex recording via the random phase modulation means.
  • Random phase modulation means include random phase masks and phase-type spatial light modulators, but random phase masks are like frosted glass and can apply random phase modulation just by passing light. At the same time, it has high speed and low cost.
  • a quarter-wave plate and a reflecting mirror are laminated or stacked in a disk-type recording medium.
  • a reflective holographic memory device characterized by being contained as an internal structure is provided.
  • the quarter-wave plate and the reflection mirror can include the function in the recording medium material, thereby simplifying the configuration of the reflective holographic memory device.
  • the time for recording the signal light on the disk-type recording medium is adjusted for each individual signal.
  • Schedule A reflective holographic memory device provided with a Euling recording means is provided.
  • the random phase modulation means is used as an optical encryption means and a recording density improvement means.
  • a reflective holographic memory device is provided.
  • the random phase modulation multiplex recording means such as a random phase mask can increase the recording capacity and encrypt the original image as a recording data protection means. Can also be used.
  • interference of signal light and reference light may occur in the thickness direction of the disk-type recording medium.
  • a reflection-type holographic memory device characterized in that a plurality of three-dimensional distributions of generated interference papers are recorded as separable states and the recording capacity is increased is provided.
  • multilayer recording can be performed in the thickness direction, so that large-capacity recording using a stacked structure can be realized.
  • the recording capacity of the stacked type is improved by utilizing the minute recording area of the reflection hologram.
  • the signal light is a monochromatic blue laser light and the signal from the condenser lens is used.
  • the reflection type holographic memory device according to any one of claims 1 to 7, wherein a light converging angle is 70 to 90 degrees.
  • the recording capacity of the reflective shift multiplex holographic memory device can be improved by reducing the laser wavelengths of the signal light and the reference light and increasing the condensing angle.
  • a reflective holographic memory device that records signal light and reference light with a disk-type recording medium facing each other, and a condensing lens. Diffracted light obtained by converging signal light and reference light converging concentrically opposite to each other. The step of spatially propagating the signal light and the reference light is different from the step of spatial propagation. And a step of calculating the complex amplitude distribution of the readout light by Kogelnik's coupled wave theory with respect to the refractive index distribution created by each plane wave, and the complex of diffracted light propagating in the same direction.
  • a reflection type holographic memory simulator program characterized by comprising a step of adding amplitude and a step of calculating a phase shift for each plane wave component generated by an operation mechanism of the optical pickup system.
  • the reflection type holographic memory device can use an existing optical pickup technology, and thus has an effect of low barriers to practical use for industrial applications.
  • a binary image is obtained.
  • the data recording density can be improved. For example, if a recording capacity of several hundred Gbytes to several Tbytes is possible on a 5-inch disk, there are other effects.
  • random phase modulation multiplex recording means such as a random phase mask
  • the full width at half maximum of the diffraction efficiency can be narrowed, and multiplex recording at intervals of several meters can be realized.
  • bit data is actually placed on the signal light
  • multiple recording can be performed at intervals of several meters, and the bit error rate can be reduced to 1% or less.
  • shift Bragg selectivity can be improved by performing recording using random phase modulation multiplex recording means such as a random phase mask. Furthermore, recording is performed using random phase modulation multiplex recording means such as a random phase mask, so that there is an effect that the signal can be encrypted and the recorded data can be protected.
  • the reflection type holographic memory device requires less area in the thickness direction of the interference fringes, and is therefore spatially separated in the thickness direction. Recording has the effect of making it possible to increase the recording capacity by utilizing the multilayer structure of the disc.
  • FIG. 1 is a schematic configuration diagram of a reflective holographic memory device according to the present invention.
  • Fig. 2 shows a cross-sectional view from the lateral direction of Fig. 1.
  • the signal light 9 and the reference light 10 having polarization planes different from each other by 90 degrees are overlapped by the polarization beam splitter 4, and both lights propagate coaxially and are collected by the condensing lens 7 to be disc-type recording medium 1 To reach.
  • the reference light transmitted through the recording medium passes through the 1Z4 (1/4) wavelength plate 5 once, is reflected by the mirror (mirror) 6, and is again 1Z4 Passes through wave plate 5.
  • the polarization planes of the signal light 9 and the reference light 10 are aligned, and recording is performed in a reflective form.
  • the signal light transmitted through the disk type recording medium 1 passes through the 1Z4 wavelength plate 5 once, is reflected by the mirror 6, and passes again through the 1Z4 wavelength plate 5. .
  • the polarization planes of the signal light 9 and the reference light 10 are aligned, and recording is performed in a reflective form.
  • the 1Z4 wave plate 5 and the reflecting mirror 6 can be contained as a laminated structure or one internal structure.
  • the reflection type holographic memory device performs multiplexing using the existing technology
  • the movement of the optical pickup system that is, the rotation of the disk and the movement of the system in the radial direction of the disk.
  • a spatial shift multiplex recording means for multiplexing by displacement of the reference beam is used.
  • Spatial shift multiplex recording means multiplexes using the Bragg selectivity by the reference spherical wave by recording the signal light while spatially shifting. When reading, the spot of the reference light is used. By slightly changing the position of, only the data with the same shift Bragg selectivity becomes diffracted light, and independent readout can be performed.
  • a reflective holographic memory provided with this spatial shift multiplex recording means,
  • the recording capacity is increased by disposing random phase modulation multiplex recording means such as a random phase mask on the light and z or reference light guide paths.
  • Example 1 shows the usefulness of the spatial shift multiplex recording means in the reflection type holographic memory according to the present invention.
  • a reflection-type optical system as shown in Fig. 3 in which the optical system in Figs. 1 and 2 is spatially expanded is configured, and the change in diffraction efficiency with respect to the positional deviation of the reference beam is measured.
  • the effect of spatial shift Bragg selectivity is confirmed, and the usefulness of the spatial shift multiplex recording means is demonstrated.
  • An argon ion laser having a wavelength of 515 nm is used as a light source, and the light from the laser is divided into signal light and reference light by a polarizing beam splitter, and the signal light and reference light are opposed to the disk recording medium by a reflective arrangement. Write and go.
  • the disc recording medium uses lithium niobate (LiNbO) doped with 0.5 mm thick disc-type iron ions.
  • Both lights pass through the lens just before the recording medium and reach the recording medium as spherical waves.
  • the recording medium can be moved to an axis perpendicular to the propagation direction of the signal light and the reference light.
  • the signal light is recorded as a plane wave without modulating the bit data (not via the spatial light modulation means), and the intensity of the diffracted light is increased while the position of the reference light spot is moved slightly. Measurement with a photo-detector confirmed whether shift Bragg selectivity was obtained.
  • the focal length of the lens placed on the signal light and reference light sides is 50 mm.
  • FIG. 4 shows the relationship between diffraction efficiency and beam diameter obtained in this system.
  • the lower horizontal axis and the left vertical axis are axes with respect to the diffraction efficiency
  • the horizontal axis represents the deviation of the reference light from the position force recording the signal
  • the vertical axis represents the normalized diffraction efficiency.
  • the upper horizontal axis represents the scale for measuring the beam diameter
  • the right vertical axis represents the intensity of the standardized beam. From FIG. 4, the beam diameter (1 2 width) of the signal light and reference light respectively became 18.4 m, 5 5.8 / zm.
  • the maximum value of diffraction efficiency becomes 1.62%, respectively 10.1 mW / cm 2 intensity of the reference light signal light at this time is 23.8mW / cm 2, the recording time was 20 seconds.
  • the 1 / e 2 width is 15.7 m for the diffraction efficiency and 55.8 m for the reference light, and the reference light slightly changes with respect to the spot size of the reference light. It can be understood that the effect of shift Bragg selectivity is obtained because the diffraction efficiency varies greatly depending on the position.
  • Example 2 in order to confirm whether the reproduced image actually shows shift Bragg selectivity when recording is actually performed on the signal light, recording from the recording position is performed.
  • the reproduced image for the reference light shift is examined.
  • Figures 5 and 6 (a) to 6 (f) show the overall configuration and measurement results of the optical system in Example 2.
  • the configuration of the optical system of FIG. 3 in order to modulate the image data to the signal light, the configuration of the optical system of FIG. 3 is such that the spatial light modulation means is disposed on the light guide path of the signal light.
  • the image size is 130 X I 30 (Pixel). From the reconstructed image in Fig.
  • Example 3 the optical system is the same optical system as in FIG. 3, and the recording interval is changed to 28 / ⁇ ⁇ , 26 ⁇ m, m, and 22 m, and multiplex recording is performed on four signals.
  • the change of the diffraction efficiency with respect to the shift of the reference beam was measured.
  • the signal light was recorded as a plane wave without modulating the bit data as in the case of Example 1, and the multiple recording was not performed scheduling recording, and the recording time was 5 seconds for all signals. .
  • the reason why the diffraction efficiency of the last recorded signal on the left side of Fig. 7 is extremely high is that the right signal light power recording is performed in the experiment, and the recording medium used is a recordable data rewritable recording medium. Because it is a medium, when recording adjacent signals, the erasing effect works on the signals that have already been recorded.
  • the diffraction efficiency of the last recorded signal that is not affected by the erasure becomes higher than the others, and the erasure effect is reduced toward the right side, so that the diffraction efficiency decreases.
  • the recording interval is 22 m
  • the rightmost signal light peak is buried, indicating that independent data reading is not possible. From this, it can be considered that the limit of the recording interval in the system shown in Example 3 is 24 m.
  • FIG. 8 shows the relationship between the spot of the signal light and the reference light when the recording interval is 24 ⁇ m.
  • the optical system uses the optical system of FIG. 5, the recording interval is 24 / ⁇ ⁇ , the recording time is 5 seconds for each signal, multiplex recording is performed for four signals, Use the CCD sensor to capture the playback image for the signal recording position.
  • FIG. 9 shows the reproduced image and the signal image used for recording.
  • the upper images (A) to (D) in FIG. 9 are signal images
  • the lower images (a) to (d) in FIG. 9 are reproduced images.
  • each reproduced image does not have a force crosstalk with a difference in brightness, and each data can be read independently. It can be considered that the crosstalk is not observed here because the shift Bragg selectivity is effective in this optical system. From the results of this measurement, it was proved that individual reproduced images can be read out independently even when images are placed on signal light and multiple recording is performed at intervals of 24 m.
  • the quality of a reproduced image can be improved by using a random phase mask in a reflective holographic memory.
  • the optical system in Example 5 is shown in FIG.
  • an argon ion laser having a wavelength of 515 is used as the light source, and the signal light and the reference light are split by a polarizing beam splitter.
  • the signal light passes through the spatial light modulator, undergoes bit data modulation, is collected by the lens, and reaches the recording medium.
  • the reference light passes through the random phase mask, passes through the lens in the same manner, enters from the direction opposite to the signal light, and is recorded in a reflection type.
  • the signal is reproduced by the reference light, the reproduced image is captured by the CCD camera, and bit recognition processing is performed by the personal computer (PC). Is called.
  • the focal length of the lens placed on the signal light and reference light sides is 50 mm, and the recording medium is made of lithium niobate doped with 0.5 mm thick iron ion. .
  • FIGS. 11 (a) and 11 (b) show a reproduction image of the recording through the random phase mask of the reference light and a reproduction image without the random phase mask, respectively. From the figure, comparing the two reconstructed images, there is a significant difference even with the naked eye. From this, it can be considered that the condition of recording on the recording surface changes by passing the reference light through the random phase mask.
  • bit recognition processing was performed on the reproduced image of FIG. 11 (a), the recognized image was as shown in FIG. 12, and the bit error rate was 0.0%. Random phase mask from this It can be seen that the reconstructed image at the time of recording using is of sufficient image quality to perform bit recognition.
  • the bit recognition method used here is the result of multiplying the brightness of the pixels contained in each block as the block brightness, and comparing the brightness locally between adjacent blocks to determine whether it is 1 or 0. Is to do.
  • FIG. 13 shows that when there is no random phase mask, there are many blocks that are too bright or too dark for the average value, and the distribution is wide.
  • blocks that are too bright and blocks that are too dark are suppressed, and the spread of the distribution is reduced. This power can be considered to have the effect of suppressing the spread of the brightness distribution of the reproduced image and consequently improving the image quality of the reproduced image by using a random phase mask for recording.
  • the influence of the random phase mask on the shift Bragg selectivity in the reflection holographic memory will be described.
  • recording is actually performed using a random phase mask !, and the diffraction efficiency is measured for the deviation of the reference beam from the recording position.
  • the optical system of Example 6 is the same as the optical system shown in FIG. However, the objective lens is used as the condensing lens for the signal light and reference light, and the CCD is changed to a photo detector.
  • Figure 14 shows the results of recording measurements using this random phase mask and the results of normal recording (recording without using a random phase mask).
  • the horizontal axis represents the deviation of the reference beam from the position where the signal was recorded
  • the vertical axis represents the normalized diffraction efficiency.
  • the full width at half maximum of diffraction efficiency in normal recording is 4.9 m, while it is 1.0 ⁇ m when there is a random phase mask, and by inserting a random phase mask, the full width at half maximum is It can be seen that can be reduced to about 1/5.
  • phase distribution near the spot of the reference beam is a gentle distribution, so even if the reference beam is slightly shifted, the state that satisfies the shift Bragg condition continues to some extent, but it is random.
  • phase mask is used, the phase distribution near the spot of the reference beam becomes a random phase distribution. Therefore, even if the reference beam is slightly shifted, a phase shift of the light wave in the reproduction beam occurs and cancels out due to interference. Can be considered to be larger.
  • Figure 22 shows the diffraction efficiency with respect to the lateral shift of the reference beam (without random phase mask), and Fig. 23 shows the diffraction efficiency with respect to the lateral shift of the reference beam (with random phase mask).
  • Fig. 24 shows the diffraction efficiency with respect to the vertical shift of the reference beam (without random phase mask), and Fig. 25 shows the diffraction efficiency with respect to the vertical shift of the reference beam (with random phase mask). 22 to 25, as in FIG. 14, the horizontal axis represents the deviation of the reference light in the position force where the signal is recorded, and the vertical axis represents the normalized diffraction efficiency.
  • the full width at half maximum can be narrowed by inserting a random phase mask. From this, it can be seen that shift Bragg selectivity can be improved by performing recording using a random phase mask for the shift of the reference beam.
  • multiple recording is performed using a random phase mask, and it is examined how far the recording interval can be reduced. For comparison, multiple recordings were performed on six signals without using a random phase mask, and the change in diffraction efficiency with respect to the shift of the reference beam was measured. However, multiplex recording was performed with a recording time of 5 seconds for all signals. The result is shown in FIG. In Fig. 16, 0 on the horizontal axis corresponds to the position of the last recorded signal.
  • the recording interval is 22 ⁇ m
  • six peaks appear, which correspond to the recorded individual signals. In other words, if six peaks appear, it means that independent data reading is possible.
  • the diffraction efficiency of the last recorded signal is higher than other signals.
  • the recording medium used in this experiment is a rewritable recording medium. This is probably because the erasing effect was applied to the signal that was already recorded. Therefore, the diffraction efficiency of the last recorded signal that is not subject to the erasure effect is higher than the others. If we focus here when the recording interval is m, the last two peaks do not appear. In this case, all data cannot be read out. In other words, when the random phase mask is not used, the recording interval for this experimental system can be considered to be 22 m.
  • Scheduling recording is a recording method in which the recording time for each signal is individually adjusted to make the intensity of the reproduction light of each signal uniform obtained after multiple recording.
  • Figure 18 shows the change in diffraction efficiency with respect to the recording time. From Fig. 18, the diffraction efficiency increases almost linearly up to about 90 seconds with respect to the recording time, and then increases gradually. It turns out that it will change. For this reason, in order to be able to read all signals, the recording time of the first recording signal, which is easily affected by the erasing effect, is maximized, and then the recording time is sequentially reduced and recording is performed last. The recording time should be adjusted so that the signal is minimized. As a result, the intensity of the reproduced light of each signal can be made uniform.
  • the recording interval is 4 m
  • multiple recording is performed by scheduling for six signals using a random phase mask.
  • the recording time was set to 15 seconds, 13 seconds, 11 seconds, 9 seconds, 7 seconds, and 7 seconds from the first recorded signal.
  • the result is shown in FIG. From Fig. 19, six diffraction efficiency peaks appear, indicating that all data can be read independently.
  • the diffraction efficiency peaks for each signal at this time were 0.0298%, 0.0262%, 0.0283%, 0.0214%, 0.0250%, and 0.0156% from the left in FIG.
  • the peak of the power diffraction efficiency which was the same experiment with a recording interval of 2 m, overlapped, and independent data could not be read out. From this, it can be seen that if scheduling recording is performed using a random phase mask, in the optical system of Example 7, multiple recording can be performed with a recording interval of 4 ⁇ m.
  • the bit error rate for the reproduced image is evaluated when the bit data is actually put on the signal light and the multiplex recording is performed by the scheduling using the random phase mask.
  • the recording interval was 4 / ⁇ ⁇
  • the recording time was 15 seconds, 13 seconds, 11 seconds, 9 seconds, 7 seconds, and 7 seconds from the first recorded signal, as in the previous chapter.
  • Reproduced images and recognized images in this experiment are shown in Figs. 20 (1) to (12).
  • the image size is 500 X 480 (Pixel)
  • the total number of bits handled as data is 18 X 17 (Bit)
  • the block size of one bit is 17 X 22 (Pixel).
  • bit recognition processing here is the same as in the fifth embodiment, where the brightness of the pixels included in each block is integrated and the brightness of the block is compared between adjacent blocks. Or 0.
  • Bit error rates were 0.33%, 0.33%, 0.00%, 0.00%, 0.65%, and 0.33% from the smaller Offset.
  • Example 8 demonstrates that even if a bit image is placed on the signal light, it is possible to perform multiplex recording at intervals of 4 m by performing scheduling recording using a random phase mask. That's it.
  • the ninth embodiment shows that encryption can be performed using a random phase mask in a reflective holographic memory.
  • encryption there are two methods of encrypting the signal light and encrypting the reference light.
  • encryption of the reference light is performed.
  • the optical system in Example 9 is the same as the optical system in Example 5 (see FIG. 10).
  • the reference light is encrypted by passing through the random phase mask, is incident from the direction opposite to the signal light through the lens, and recording is performed in a reflective form. Is called.
  • the signal is reproduced by the reference light, is captured by the reproduction image power CCD camera, and the bit recognition processing is performed by the personal computer (PC).
  • FIG. 21 (a) shows a signal image displayed on the spatial light modulator for the ninth embodiment.
  • the playback images when the random phase mask key is correct during reading and when the random phase mask is slightly shifted and the keys are different are shown in Figs. 21 (b) and 21 (c), respectively. Both image sizes are 400 X 380 (Pixel). 21 (a) to (c), it can be seen that when the random phase mask key is correct, the recorded signal image is reproduced correctly. On the other hand, when the key is different, an image that differs greatly from the recorded signal image is played back. In addition, since it is considered that the original signal image cannot be estimated from now on, it can be seen that the effect of encryption is obtained by the random phase mask.
  • Example 7 since the minimum recording interval capable of performing multiple recording could be determined, a simple evaluation of the recording capacity was performed. Assuming that the shape of the recording medium is a 5-inch disk, in the multiple recording by scheduling using a random phase mask, when the recording interval is 4 m, the distance between the centers of adjacent signals is 4 m. Assuming that the spot radius of one signal is 2 m, the number of signals that can be recorded on a 5-inch disk is given by the following mathematical formula.
  • the recording interval is 22 ⁇ m in normal multiple recording
  • the recording capacity is 1.615 (Gbyte) from the same calculation. From this result, it is possible to improve the recording capacity by about 30 times by performing multiplex recording by scheduling using a random phase mask.
  • the simulator program simulates the diffracted light obtained by the signal light converged by the condenser lens and the reference light converged concentrically on the same axis.
  • the conditions of the optical system that can further improve the recording capacity have been obtained, and will be described below.
  • the reflection-type holographic memory simulator program includes a step of spatially propagating the signal light and the reference light, a step of dividing the light into reference plane waves having different angles, and a complex amplitude distribution of the readout light with respect to the refractive index distribution created by each plane wave. Is calculated by Kogelnik's coupled wave theory, adding the complex amplitude of diffracted light propagating in the same direction, and calculating the phase shift for each plane wave component generated by the operating mechanism of the optical pickup system. .
  • Kogelnik's coupled wave theory for analyzing a hologram is a method of calculating diffracted light from a sinusoidal volume hologram when both signal light and reference light are plane waves.
  • a lens is placed in front of the recording medium, and the signal light and the reference light are condensed as a convergent wave. Therefore, the reflective shift multiplexing is performed using the coupled wave theory.
  • the coupled wave theory is extended to a convergent wave.
  • FIG. 26 shows a schematic diagram of signal light / reference light division in the simulator program.
  • d is the thickness of the disk type recording medium.
  • ⁇ ⁇ is the step angle.
  • FIG. 27 is a diagram showing a phase difference caused by a position shift of the recording location of the disk type recording medium. As shown in Fig. 27, the phase delay ⁇ generated when the recording location of the disk-type recording medium shifts by ⁇ for the reading reference light of wavelength ⁇ incident on the recording medium at an angle ⁇ is expressed.
  • phase delay amount ⁇ differs depending on the angle of the plane wave
  • the phase of the plane wave diffracted light by the hologram differs. It strengthens in the same phase and cancels in the opposite phase. It can be understood that the phase delay amount ⁇ is larger as the angle ⁇ is larger than the number 4.
  • the validity of the simulator program was evaluated by comparing the numerical value obtained from the diffraction efficiency with the simulator program and the numerical value obtained from the actual experimental results.
  • the division number of the plane wave is 200, and the step angle is 0.1 degree.
  • the full width at half maximum of the diffraction efficiency with and without the random phase masks are each 1.5 ⁇ m, 4.9 ⁇ m, also the diffraction efficiency, 8.0 X 10- 3, 2.5 X 10- 3 Met. Parameters of this time, the maximum refractive index change is 3.35 X 10- 4, the effective opening talkative is set to 0.05.
  • the full width at half maximum of the diffraction efficiency in the case have Do and if there is a random phase mask are each 1.0 m, 4.9 m, also the diffraction efficiency, 8.0 X 10- 3, 2.5 X 10- 3 Met. Comparing the two, the full width at half maximum of the diffraction efficiency shows almost the same value, and the diffraction efficiency is the same as the experimental result and the numerical calculation result.
  • the numerical calculation result by the simulator program is in good agreement with the experimental result V.
  • the optical system is optimized based on the parameter values obtained from the numerical calculation results by this simulator program, and the recording capacity can be improved.
  • the recording capacity can be increased by changing the wavelength and numerical aperture of signal light and reference light.
  • the wavelength of the light source is 514.5 nm which is the wavelength of the argon ion laser used in the experiment, 405 nm which is the wavelength of the blue-violet laser used in Blu-ray Disc, HD-DVD, etc., and the red laser which is used in DVD Figure 29 shows the results of analysis of the full width at half maximum of the diffraction efficiency with respect to the collection angle when this simulator program is changed to 635 ° which is near the wavelength of.
  • the full width at half maximum for each wavelength at a condensing angle of 90 ° is 1.4 / z m, 1.1 / z m, and 0.8. It can be seen that the full width at half maximum of the diffraction efficiency decreases as the wavelength decreases.
  • the recording capacities for each wavelength when the collection angle is 90 ° are 398.6 Gbyte, 645.7 Gbyte, and 1107.2 Gbyte from the largest wavelength.
  • the recording capacity exceeds 1 Tbyte in the simulation, indicating that the reflective shift multiplex holographic memory may have a recording capacity of 1 Tbyte.
  • the recording density is 721.8 bits // zm 2 at a condensing angle of 90 ° at a wavelength of 405 nm.
  • This recording density is a numerical value corresponding to a three-dimensional volume recording of 92.5 layers because the recording density due to the in-plane diffraction limit when the wavelength is 405 is 7.8 bit / zm 2 .
  • the recording capacity of the reflective shift multiplex holographic memory can be improved by reducing the laser wavelength and increasing the focusing angle.
  • This example shows the result of actual simulation performed with the above-described simulator program.
  • the performances of the transmission hologram and the reflection hologram are compared by simulation.
  • a two-dimensional space as shown in Fig. 31 is handled, and spherical reference wave spatial shift multiplex recording is used as the multiplex recording method.
  • 50bit binary data is used as signal light.
  • the signal value '1' gives the amplitude distribution as a Gaussian distribution with a full width at half maximum of 20 ⁇ m.
  • the reference light and readout light give an amplitude distribution as a Gaussian distribution with a full width at half maximum of 800 m.
  • the reference light introduce a defocus amount of 1 and adjust the overlap of the reference light on the recording surface.
  • the size of the signal light on the input surface is 3.5 mm, and this area is 4096 points.
  • Propagation of signal light, reference light and readout light to the hologram surface uses Fresnel propagation calculation, and diffraction calculation in the hologram uses Kogelnik's coupled wave theory.
  • the space propagation uses Fresnel propagation calculation, and the phase shift amount of each plane wave component caused by the movement of the recording material is introduced in order to perform spatial shift multiplex recording by numerical calculation.
  • FIG. 32 shows the intensity distributions of the signal light and the reference light.
  • the solid line represents the signal light intensity distribution
  • Figures 34, 35, and 36 show the results of examining the shift selectivity of the diffraction efficiency and the bit error rate by changing the defocus amount.
  • the reflection hologram has a higher shift selectivity than the transmission hologram because the diffraction efficiency is attenuated quickly. It can also be understood that the reflection hologram has a higher data read selectivity because a bit error occurs with a smaller shift amount than the transmission hologram.
  • FIG. 37 shows a result of comparison of shift selectivity of the diffraction efficiency of the reflection type and the transmission type hologram with respect to the beam diameter of the reference light.
  • shift selectivity is determined by the amount of shift when the diffraction efficiency decreases from the maximum value to half. From FIG. 37, it can be seen that the reflection hologram reduces the diffraction efficiency with a smaller shift than the transmission hologram. For this reason, it can be seen that even when the same optical system and recording material are used, the reflection hologram can improve the recording density as compared with the transmission hologram.
  • the shift amount of the reflection type hologram is 9.7 ⁇ m and the shift amount of the transmission type hologram is 18.3 ⁇ m. Therefore, it is possible to improve the recording capacity about 1.89 times in the direction of one axis. The reason for this is considered to be that the effect of cancellation due to multi-beam interference is improved. Since reflection-type holograms have weak angle Bragg selectivity, diffraction of a plane wave with an incident angle different from that during recording increases. For this reason, multibeam interference easily occurs. It is thought that the phase shift depending on the incident angle occurs in each plane wave component due to the movement of the material, and this works in the direction that cancels out in the interference.
  • Fig. 38 shows the results of examining the change in the shift selectivity with respect to the numerical aperture (NA) of the lens.
  • FIG. 38 shows the results of examining the shift selectivity of the diffraction efficiency when the effective NA is changed by changing the beam diameter of the reference beam. From Fig. 38, it can be seen that the shift selectivity of the diffraction efficiency decreases in inverse proportion to the square of the numerical aperture (NA) of the lens.
  • FIG. 39 shows the result of examining the shift selectivity when random phase modulation is introduced. It can be seen from Fig. 39 that shift selectivity is greatly improved by introducing random phase modulation.
  • the reflective holographic memory according to the present invention uses a disk-type recording medium, is compatible with an existing optical pickup technology, and can read out data at high speed and in parallel as image data. It can be used as a large capacity data recording device. In addition, it can be used as a large-scale information security device by encryption using a random phase mask.
  • FIG. 1 Schematic configuration diagram of a reflective holographic memory
  • FIG.26 Schematic diagram of signal beam 'reference beam splitting in simulator program
  • FIG. 27 is a diagram showing a phase difference caused by a displacement of a recording place of a disk type recording medium.
  • FIG.28 Graph showing the shift dependency of diffraction efficiency when random phase modulation is calculated using a simulator program.
  • FIG.29 Graph showing the full width at half maximum of diffraction efficiency with respect to the collection angle at three light source wavelengths.
  • FIG.30 Graph showing the dependence of the recording capacity of the reflective holographic memory on the collection angle at three light source wavelengths.
  • FIG. 33 is a graph showing the intensity distribution of signal light and reference light on the recording medium surface.
  • ⁇ 38] A graph showing the change in shift selectivity of diffraction efficiency with respect to the effective numerical aperture (NA) of the lens.
  • PC Personal Computer
  • CCD Charge Coupled Device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

光ピックアップ系の動作機構を有するディスク型記録媒体を用い、信号光と参照光を同軸に対向するように導波させ、ディスク型記録媒体上で信号光と参照光の偏向面を揃えることにより、既存技術との互換性によく、製品化するのにコストパフォーマンスの高いホログラフィックメモリを提供する。信号光及び/又は参照光の導光路にランダム位相変調多重記録手段を設け、かつ、空間シフト多重記録手段を設けることにより、反射型ホログラフィックメモリの記録容量を増大する。また、ディスクの厚み方向に記録することにより、さらに記録容量を増大する。すなわち、ランダム位相変調多重記録と空間シフト多重記録を組み合わせて、記録密度を1,2桁向上させ、反射型ホログラムの微小記録領域を利用して積層型による記録容量の向上を図る。また、同時にランダム位相変調多重記録によって暗号化の効果も得る。

Description

明 細 書
光情報記録装置 (反射型ホログラフィックメモリ装置)
技術分野
[0001] 本発明は、大容量かつデータ保護機能を有するホログラフィックメモリ記録方式の 実用化技術に関するもので、特に、ディスク型記録媒体の回転とディスク型記録媒体 の半径方向への移動(光ピックアップ系の動作機構)と整合性の良 、反射型ホロダラ フィックメモリ装置に関するものである。
背景技術
[0002] 現在、光通信技術、コンピュータ、映像機器の急速な進展により、インターネットや ノ、イビジョンテレビ放送など力 非常に多くの情報を得ることができる。これらの膨大 な情報を記録し保存するために、磁気情報記録によるハードディスクに加えて、テラ ノ イトクラスの外部記録メディアの有用性が高くなつている。また、光源の短波長化に よる光メモリ技術の限界が見え始め、光メモリの研究は多層化 · 3次元化へと進展して いる。こうした状況下、画像データとして並列読み出し可能なホログラフィックメモリは 、メディアの 3次元空間を利用した 1テラバイト超の記録容量と、データ転送速度も 10 ギガ毎秒の高速読み出し転送が可能な次世代の記録メディアとして国内外で研究さ れている。
[0003] 従来から、ホログラフィックメモリの記録方式には、透過型ホログラムと反射型ホログ ラムがある。透過型ホログラムを多重記録する場合には、角度多重記録方式,空間シ フト多重記録方式,ランダム位相変調多重記録方式等が実用化されている一方、反 射型ホログラムを多重記録する場合には、角度多重記録方式しか実用化されていな い状況である。
このような状況下で、実用化されているものは透過型ホログラムのものがほとんどで ある(例えば、特許文献 1)。
また、ホログラフィックメモリに関しては、本発明者らが世界に先駆けて発表した光 暗号化技術、すなわち、ランダム位相変調技術に基づく原画像の暗号ィ匕を行い、記 録データ保護機能を有する光メモリの研究成果を報告している (非特許文献 1,非特 許文献 2)。
さらに、透過型ホログラムを構成する配置でランダム位相変調マスクを用いるものも 知られて!/ヽる(例えば、特許文献 2)。
[0004] 特許文献 1 :特願平 11— 88098号公報
特許文献 2 : UP5719691
非特許文献 1: Encrypted optical memory system using three- dimensional keys in tne Fresnel domain (O.Matoba and B. Javidi, Opt. Lett., 24, 762-764(1999)) 非特許文献 2:新 ヽ光学的暗号化技術 (著者:的場修他,光学, 29 (2000) ) 発明の開示
発明が解決しょうとする課題
[0005] 従来研究が行われて!/、た、キューブタイプの記録媒体を用いたホログラフィックメモ リ装置では、光メモリの既存技術との整合性に乏しぐ製品化するのにコストパフォー マンスが悪 、と!/、つた課題があった。
そこで、本発明は、既存の DVD技術に代表される光ピックアップ系の動作機構の 技術との整合性が良ぐ製品化のコストパフォーマンスを向上させることを第 1の目的 とする。また、本発明は、記録媒体の面内回折限界から計算される記録容量の 10倍 力も 1000倍程度の記録容量を実現することを第 2の目的とし、さらに、積層化による 記録容量の増大化を実現することを第 3の目的とする。また、ハードウェアとしてのデ ータ保護機能を持たせることを第 4の目的とする。
ここで、光ピックアップ系の動作機構とは、ディスク型記録媒体の回転とディスク型記 録媒体の半径方向への移動の動作機構と定義する。
課題を解決するための手段
[0006] 本発明者らは、上記目的を達成するため研究を重ねた結果、ディスク型記録媒体 を用いて、既存の DVD技術に代表される光ピックアップ系の動作機構と整合性の良 V、反射型ホログラフィックメモリ装置を完成した。
本発明の第 1の観点力 は、信号光および参照光をホログラフィックメモリ記録媒体 に照射することにより 2値画像データを光の干渉パターンとして記録するとともに、前 記ホログラフィックメモリ記録媒体に参照光を照射することによって得られる再生像か らデータを再生するホログラフィック記録再生システムであって、
(1)ホログラフィックメモリ記録媒体がディスク型記録媒体であり、
(2)光ピックアップ系の動作機構と、
(3)信号光と参照光を対向するように導波させて前記ディスク型記録媒体上で信号 光と参照光の偏光面を揃える系と、
(4)信号光及び Z又は参照光の導光路に設けたランダム位相変調多重記録手段と
(5)前記光ピックアップ系の動作機構を用いた参照光の変位による空間シフト多重 記録手段とを備え、
反射型ホログラムの記録容量を増大したことを特徴とする反射型ホログラフィックメモ リ装置が提供される。
[0007] 本発明に係る反射型ホログラフィックメモリ装置の特徴は、ホログラフィックメモリとし ての記録が反射型の構成を有していることである。ここで反射型とは、信号光と参照 光が対向する形で記録を行う光学系のことである。
また、空間シフト多重記録方法とランダム位相変調多重記録方法を併用することで 、ディスク型記録媒体を用いたホログラフィックメモリの記録容量を増大させることに成 功した。さらに、反射型ホログラフィックメモリにおいて、ランダム位相マスクを用いるこ とによって、記録容量の向上の効果および暗号ィ匕の効果が得られることを実証した。
[0008] 本発明の第 2の観点からは、上記第 1の観点において、前記ディスク型記録媒体上 で信号光と参照光の偏光面を揃える系が、直線偏光状態が 90度異なる信号光と参 照光を共軸で同方向に導波させ、集光レンズにより前記ディスク型記録媒体に収束 して照射させ、参照光のみ前記ディスク型記録媒体を透過させた後、 4分の 1波長板 および反射ミラーを用いて参照光の偏光状態を信号光と揃えさせ、信号光と参照光 を対向させるものであることを特徴とする反射型ホログラフィックメモリ装置が提供され る。
信号光及び Z又は参照光に空間光変調された光波を用いると空間的に重なりを持 たせながら入力画像を記録することができるため、大容量記録が可能になる。この空 間光変調を用いた空間シフト多重記録手段とランダム位相変調多重記録手段を組 み合わせることにより、さらなる大記録容量を実現することが可能となるのである。
[0009] また、本発明の第 3の観点力もは、上記第 1又は第 2の観点において、前記空間シフ ト多重記録手段において、シフト選択距離が、集光レンズの開口数の略 2乗に反比 例するように選定されることを特徴とする反射型ホログラフィックメモリ装置が提供され る。
空間シフト多重記録を用いた反射型ホログラフィックメモリにおけるシフト選択距離は 、集光レンズの開口数の略 2乗に反比例する形で与えられることを、後述するシミュレ ーシヨンを用いて検証したものである。シフト選択距離が集光レンズの開口数の略 2 乗に反比例する形で与えられるため、多重記録における記録間隔は、集光レンズの 開口数に反比例する形よりも大きくする必要があり、かつ開口数の 3乗に反比例する 値よりも小さくするのである。ここで、シフト選択距離は、材料の位置の移動により回折 効率が最大値の半分になる時の位置の移動量としている。
[0010] また、本発明の第 4の観点からは、上記第 1〜第 3の観点のいずれかの観点におい て、ランダム位相変調多重記録手段が、ランダム位相マスクまたは疑似ランダム位相 マスクであることを特徴とする反射型ホログラフィックメモリ装置が提供される。
ここで、ランダム位相変調多重記録手段とは、ランダム位相変調手段を介して、多重 記録を行うものである。ランダム位相変調手段としては、ランダム位相マスクや位相型 空間光変調器などがあるが、ランダム位相マスクは、すりガラスのようなもので、光が 通過するだけでランダムな位相変調をかけることができ、同時に高速 '安価といった 特徴を持つ。
[0011] また、本発明の第 5の観点からは、上記第 1〜第 4の観点のいずれかの観点におい て、ディスク型記録媒体中に、 4分の 1波長板および反射ミラーが積層または内部構 造として含有されていることを特徴とする反射型ホログラフィックメモリ装置が提供され る。 4分の 1波長板および反射ミラーは、記録媒体材料中にその機能を含ませることも 可能であり、これにより、反射型ホログラフィックメモリ装置の構成を簡素化することが できる。
[0012] また、本発明の第 6の観点からは、上記第 1〜第 5の観点のいずれかの観点におい て、信号光をディスク型記録媒体に記録する時間を個々の信号毎に調節するスケジ ユーリング記録手段を設けた反射型ホログラフィックメモリ装置が提供される。これに より、ディスク型記録媒体がデータの書き換えが可能な記録媒体の場合でも、各信号 の再生光の強度を均一にすることができる。
[0013] また、本発明の第 7の観点からは、上記第 1〜第 6の観点のいずれかの観点におい て、ランダム位相変調手段を光暗号ィ匕手段および記録密度向上の手段として用いる ことを特徴とする反射型ホログラフィックメモリ装置が提供される。本発明に係る反射 型ホログラフィックメモリにお ヽて、ランダム位相マスクなどのランダム位相変調多重 記録手段は記録容量を増大させることができると共に、原画像の暗号化を行い、記 録データ保護手段としても用いることができるのである。
[0014] さらに、本発明の第 8の観点からは、上記第 1〜第 7の観点のいずれかの観点にお いて、ディスク型記録媒体の厚さ方向に、信号光と参照光の干渉により生じる干渉稿 の 3次元分布を分離可能な状態として複数記録し、記録容量を増大したことを特徴と する反射型ホログラフィックメモリ装置が提供される。
本発明に係る反射型ホログラフィックメモリ装置を用いることで、厚さ方向に多層記 録が可能となるため、積層型構造を用いた大容量記録が実現できるものである。すな わち、反射型ホログラムの微小記録領域を利用して積層型による記録容量の向上を 図るものである。
[0015] また、本発明の第 9の観点からは、上記第 1〜第 8の観点のいずれかの観点におい て、信号光が単色の青色レーザー光であり、かつ、前記集光レンズによる信号光の 集光角が 70〜90度であることを特徴とする前記請求項 1乃至 7に記載のいずれかの 反射型ホログラフィックメモリ装置が提供される。
反射型シフト多重ホログラフィックメモリ装置の記録容量は、信号光および参照光の レーザーの波長を小さくし、集光角を大きくすることで記録容量を向上させることがで きるのである。
[0016] また、本発明の第 10の観点からは、信号光と参照光とをディスク型記録媒体を挟ん で対向させて記録させる反射型ホログラフィックメモリ装置にぉ 、て、集光レンズによ り収束させられる信号光と、共軸で相対向して収束させられる参照光により得られる 回折光を模擬するもので、信号光および参照光を空間伝播させるステップと、各々異 なる角度を有する平面波に分割させるステップと、個々の平面波が作り出す屈折率 分布に対して読み出し光の複素振幅分布を Kogelnikの結合波理論により算出するス テツプと、同方向に伝播する回折光の複素振幅を加算するステップと、光ピックアップ 系の動作機構により生じる各平面波成分に対する位相ずれを計算するステップとを 備えていることを特徴とする反射型ホログラフィックメモリシミュレータプログラムが提 供される。
本反射型ホログラフィックメモリシミュレータプログラムによる数値計算結果で得られ たパラメータの値をもとに、光学システムの最適化を行い、記録容量の向上を行うこと ができるのである。
発明の効果
[0017] 本発明に係る反射型ホログラフィックメモリ装置は、既存の光ピックアップ技術を使 用できるため、産業応用等の実用化障壁が低いといった効果がある。
また、ランダム位相マスクにより変調を加える等のランダム位相変調多重記録手段と 、ディスクの回転軸方向の回転,ピックアップ系の半径方向への移動による空間シフ ト多重記録手段を組み合わせることにより、 2値画像データの記録密度の向上を図る ことができる。例えば、 5インチのディスクで、数百 Gbyteから数 Tbyteの記録容量が可 能となると 、つた効果がある。
[0018] また、ランダム位相マスク等のランダム位相変調多重記録手段を用いた場合に、回 折効率の半値全幅を狭めることができ、数 m間隔での多重記録を実現することがで きる。実際に信号光にビットデータをのせた場合でも、数 m間隔で多重記録を行え 、ビットエラーレートも 1%以下にできる。
[0019] また、ランダム位相マスク等のランダム位相変調多重記録手段を用いて記録を行う ことによって、シフトブラッグ選択性を向上させることができるといった効果がある。 さらに、ランダム位相マスク等のランダム位相変調多重記録手段を用いて記録を行 うことによって、信号の暗号化を行い、記録データの保護を図ることができる効果があ る。
[0020] また、透過型に対する大きなメリットとして、本発明に係る反射型ホログラフィックメモ リ装置は、干渉縞の厚さ方向の領域は少なくてすむため、厚さ方向に空間分離して 記録することでディスクの多層構造を利用し、記録容量を増加させることが可能であ るといった効果がある。
発明を実施するための最良の形態
[0021] 以下、本発明の実施形態について図面を参照して説明する。
[0022] 図 1は、本発明に係る反射型ホログラフィックメモリ装置の概略構成図を示す。図 2 に図 1の横方向からみた断面図を示す。図 2において、偏光面が 90度異なった信号 光 9と参照光 10が偏光ビームスプリッタ 4で重ねられ、両光は同軸に伝搬し、集光レ ンズ 7で集光されてディスク型記録媒体 1に到達する。
[0023] このとき参照光 10に注目すると、記録媒体を透過した参照光は、 1Z4 (4分の 1)波 長板 5を 1回通過し、鏡 (ミラー) 6で反射して、再び 1Z4波長板 5を通過する。このよ うに 2回通過することによって、信号光 9と参照光 10の偏光面がそろい、反射型の形 で記録が行われる。
[0024] また、信号光 9に注目すると、ディスク型記録媒体 1を透過した信号光は、 1Z4波 長板 5を 1回通過し、ミラー 6で反射して、再び 1Z4波長板 5を通過する。このように 2 回通過することによって、信号光 9と参照光 10の偏光面がそろい、反射型の形で記 録が行われる。
ここで、 1Z4波長板 5および反射用のミラー 6が積層構造、または一方の内部構造 として含有させることも可會である。
[0025] また、本発明に係る反射型ホログラフィックメモリ装置は、既存技術を利用して多重 化を行うため、光ピックアップ系の動き、つまりディスクの回転と系のディスクの半径方 向への移動を利用して多重記録を行うこととしている。このディスクの回転と系のシフ トを利用して多重化を行うために、参照光の変位によって多重化を行う空間シフト多 重記録手段を用いる。空間シフト多重記録手段とは、信号光を空間的にずらして記 録することで、参照球面波によるブラッグ選択性を利用して多重化するものであり、読 み出し時は、参照光のスポットの位置をわずかに変化させることによって、シフトブラ ッグ選択性が一致するデータのみが回折光となり、独立な読み出しを行うことができ るものである。
[0026] この空間シフト多重記録手段を備えた反射型ホログラフィックメモリにおいて、信号 光及び z又は参照光の導光路上にランダム位相マスク等のランダム位相変調多重 記録手段を配設することによって記録容量を増大させるのである。
実施例 1
[0027] (空間シフト多重記録手段の有用性)
実施例 1では、本発明に係る反射型ホログラフィックメモリにおける空間シフト多重 記録手段の有用性を示す。ここでは、図 1、 2の光学系を空間的に展開した図 3のよう な反射型の光学系を構成して、参照光の位置ずれに対する回折効率の変化を測定 し、参照光のビーム径と比較することによって、空間シフトブラッグ選択性の効果を確 認し、空間シフト多重記録手段の有用性を示すこととする。
[0028] 光源として波長 515nmのアルゴンイオンレーザーを用い、レーザーからの光が偏光 ビームスプリッタによって信号光と参照光に分けられ、信号光と参照光が対向する反 射型配置によってディスク記録媒体への書き込みを行って 、る。ディスク記録媒体に は、厚さ 0.5mmのディスク型の鉄イオンをドープしたニオブ酸リチウム(LiNbO )を用
3 いている。両光は記録媒体の直前でレンズを通過することによって、球面波となって 記録媒体に到達する。このとき、光ピックアップ系におけるディスクの回転を擬似的に 再現するために、記録媒体は信号光と参照光の伝搬方向と垂直な軸に移動可能な
、移動ステージ (MS)に固定されている。この光学系において、信号光をビットデータ の変調をかけず (空間光変調手段を介さず)、平面波として記録を行い、参照光のス ポットの位置をわずかに移動させながら、回折光の強度をフォトディテクタで測定し、 シフトブラッグ選択性が得られているのかを確認した。ここで、信号光と参照光側に置 かれたレンズの焦点距離は共に 50mmである。
[0029] この系における測定結果力 得られた、回折効率とビーム径の関係を図 4に示す。
図 4において、下の横軸と左の縦軸は回折効率に対する軸であり、横軸は信号を記 録した位置力ゝらの参照光のずれを表し、縦軸は規格化した回折効率を表して ヽる。 また上の横軸はビーム径を計るスケールを表しており、右の縦軸は規格ィ匕したビーム の強度を表す。図 4より、信号光と参照光のビーム径(1 2幅)はそれぞれ 18.4 m、 5 5.8 /z mとなった。また回折効率の最大値は 1.62%となり、このときの信号光と参照光 の強度はそれぞれ 10.1mW/cm2、 23.8mW/cm2であり、記録時間は 20秒とした。 [0030] ここで回折効率と参照光のスポットに注目すると、回折効率では 1/e2幅が 15.7 m、 参照光では 55.8 mとなり、参照光のスポットサイズに対して、参照光のわずかな変 位で回折効率が大きく変化しているため、シフトブラッグ選択性の効果が得られてい ることを理解することができる。
実施例 2
[0031] (再生画像のシフトブラッグ選択性)
次に、実施例 2では、実際に信号光に画像をのせて記録を行ったときに、実際に再 生画像がシフトブラッグ選択性を示して ヽるのかを確認するために、記録位置からの 参照光のずれに対する再生画像を調べている。本実施例 2における光学系の全体 構成図と測定結果をそれぞれ図 5と図 6 (a)〜 (f)に示す。図 5の構成では、信号光 に画像データを変調するために、図 3の光学系の構成に対して、信号光の導光路上 に空間光変調手段を配設した構成となっている。図 6において、画像サイズは 130 X I 30 (Pixel)である。図 6の再生画像より、ニオブ酸リチウムの移動位置 (Offset)が- 20 mと 20 mのときには、図 4の測定結果と同様に、再生光がほとんど現れていなぐま た のときには元の信号が再生されている。このことから、信号光に画像をのせて 記録を行ったとしても、再生画像にはシフトブラッグ選択性の効果が得られて 、ること を理解することができる。
実施例 3
[0032] (シフト多重記録手段による記録容量の向上)
次に、実施例 3では、本発明に係る反射型ホログラフィックメモリにおけるシフト多重 記録手段による記録容量の向上についてデータを示しながら説明する。
本実施例 3において、光学系は図 3と同じの光学系を用い、記録間隔を 28 /ζ πι、 26 μ m、 m、 22 mと変化させて、 4つの信号に対して多重記録を行い、参照光の シフトに対する回折効率の変化を測定した。ここで、信号光は実施例 1と同様にビット データの変調をかけず、平面波として記録を行い、また多重記録はスケジューリング 記録を行わず、全ての信号に対して記録時間を 5秒として行った。
[0033] この測定結果を図 7に示す。図 7において、横軸の 0は最後に記録を行った信号の 位置に対応する。図 7より記録間隔が 28 m、 m、 24 mのときは、それぞれ回折 効率のピークが 4つ現れており、これらは記録した個々の信号に対応している。すな わちこの場合では、個々の信号光を独立に読み出せることがわかる。ここで図 7の左 側の、最後に記録した信号の回折効率が極端に高い理由は、実験では右側の信号 光力 記録を行っており、また用いた記録媒体がデータの書き換えが可能な記録媒 体であるので、隣接する信号を記録するときに、既に記録がなされた信号に対して、 消去の効果が働くことによる。
[0034] そのため、消去の効果を受けない、最後に記録した信号の回折効率が他よりも高く なり、右側になる程消去の効果を受けるため、回折効率が減少している。しかし記録 間隔が 22 mのときには、右端の信号光のピークが埋もれてしまっているため、独立 なデータ読み出しができないことがわかる。このことから、本実施例 3に示す系におい ての記録間隔の限界は 24 mであると考えることができる。
[0035] ここで、記録間隔が 24 μ mのときの信号光と参照光のスポットの関係を図 8に示す。
図 8より隣り合う信号光どうしが空間的に重なりをもっているため、多重記録が実現さ れて 、ることを確認することができる。
実施例 4
[0036] (シフト多重記録手段を用いた場合の再生画像の評価)
本実施例 4では、実際に信号光に画像をのせて、本発明に係る反射型ホログラフィ ックメモリにおける空間シフト多重記録手段を用いて記録を行ったときに、個々のデ ータを独立に読み出すことができるのかを調べるために、再生画像の評価を行う。こ の実施例 4において、光学系は図 5の光学系を用い、記録間隔を 24 /ζ πι、記録時間 を各信号に対して 5秒として、 4つの信号に対して多重記録を行い、各信号の記録位 置に対する再生画像を CCDセンサーで取り込んで 、る。
[0037] この再生画像と記録に用いた信号画像を図 9に示す。ここで、図 9の上段の画像 (A )〜(D)は信号画像であり、図 9の下段の画像 (a)〜(d)が再生画像である。また画 像サイズは 130 X 130 (Pixel)であり、記録は Offsetの大きい方から順に、小さい方へ変 化させている。図 9より、
Figure imgf000012_0001
/ζ πιのときには、再生画像がかなり弱くなつており、 それに対して Offset=0 μ mのときには、かなり再生画像の明るさが強いことがわ力る。 この再生画像の明るさの違いは、図 7の回折効率の変化と対応しており、記録が後に なるほど明るさが大きくなるのは、多重記録における消去の効果が働いたためである
[0038] また各再生画像は明るさに差はある力 クロストークは見られず、個々のデータを独 立に読み出せていることがわかる。ここでクロストークが見られないのは、この光学系 において、シフトブラッグ選択性が鋭く効いているためだと考えることができる。この測 定の結果から、信号光に画像をのせて 24 m間隔で多重記録を行った場合にも、個 々の再生画像を独立に読み出すことができることが実証されたこととなる。
実施例 5
[0039] (ランダム位相マスクを用いた再生画像の画質向上)
本実施例 5では反射型ホログラフィックメモリにお 、て、ランダム位相マスクを用いて 再生画像の画質向上が図ることができることを示す。実施例 5における光学系を図 1 0に示す。
[0040] 以下、図 10の光学系の構成について説明する。先ず、光源は波長 515應のァルゴ ンイオンレーザーを用い、偏光ビームスプリッタによって、信号光と参照光に分割して いる。信号光は空間光変調器を通過することによって、ビットデータの変調を受け、レ ンズで集光され記録媒体に到達する。また参照光はランダム位相マスクを通過し、同 様にレンズを通って、信号光と対向する方向から入射し、反射型の形で記録が行わ れる。読み出し時は、ランダム位相マスクのキーが記録時と同じときに限り、参照光に よって信号が再生され、再生画像が CCDカメラに取り込まれて、パーソナルコンビュ ータ (PC)でビット認識処理が行われる。前述の実施例と同様、信号光と参照光側に 置かれたレンズの焦点距離は共に 50mmであり、記録媒体として、厚さ 0.5mmの鉄ィ オンをドープしたニオブ酸リチウムを用いて 、る。
[0041] この参照光のランダム位相マスクを介した記録の再生画像とランダム位相マスクを 介さないときの再生画像をそれぞれ図 11(a)と (b)に示す。図より 2つの再生画像を比 較すると、肉眼でもかなり大きな違いがある。このことから、参照光をランダム位相マス クに通すことによって、記録面での記録の具合が変化すると考えることができる。
[0042] さらに、図 11 (a)の再生画像に対してビット認識処理を行ったところ、認識画像は図 12のようになり、ビットエラーレートは 0.0%となった。このことからランダム位相マスク を用いた記録時における再生画像は、ビット認識を行うのに十分な画質であることが わかる。今回用いたビット認識の方法は、各ブロックに含まれるピクセルの明るさを積 算したものをブロックの明るさとして、隣接するブロック間で局所的に明るさを比較し て 1か 0かの判定を行うものである。
[0043] ここで、図 11(a)と (b)の再生画像をより定量的に比較するために、各再生画像に対 して、上での処理におけるブロックの明るさの平均値に対する、ブロックの明るさの分 類を行い、平均に対する分布のばらつきを調べた。この結果を図 13に示す。図 13に おいて横軸は平均値に対する各ブロックの明るさの割合を表し、縦軸はカウント数を 表す。また横軸の 2のところが大きくなつているのは、平均値に対する明るさが 2以上 のブロックをすベてまとめてカウントしているからである。
[0044] 図 13より、ランダム位相マスクがないときでは、平均値に対して明るすぎるブロック や暗すぎるブロックが多数存在し、分布が広がっていることがわかる。それに対して、 ランダム位相マスクがあるときでは、明るすぎるブロックや暗すぎるブロックが抑制され 、分布の広がりが小さくなつていることがわかる。このこと力もランダム位相マスクを記 録に用いることによって、再生画像の明るさの分布の広がりを抑え、結果的に再生画 像の画質を向上させる効果があると考えることができる。
[0045] この効果が得られる理由として、参照光をランダム位相マスクに通過させることによ つて、参照光のスポット径が広がり、強度ムラが抑制されるということによる。
実施例 6
[0046] (ランダム位相マスクを用いた多重記録)
本実施例 6では反射型ホログラフィックメモリにお 、て、ランダム位相マスクによるシ フトブラッグ選択性への影響を説明する。そのために、実際にランダム位相マスクを 用いた記録を行!、、記録位置からの参照光のずれに対する回折効率の測定を行つ ている。本実施例 6の光学系としては、図 10に示した光学系と同じである。ただし、信 号光、参照光の集光レンズに対物レンズを用い、 CCDをフォトディテクタに変更して V、る。このランダム位相マスクを用いた記録測定結果と通常の記録 (ランダム位相マ スクを用いない記録)測定を行ったときの結果を図 14に示す。図 14において横軸は 信号を記録した位置からの参照光のずれを表し、縦軸は規格化した回折効率を表す [0047] 図 14より、通常の記録における回折効率の半値全幅は 4.9 mであるのに対して、 ランダム位相マスクがあるときでは 1.0 μ mとなり、ランダム位相マスクを入れることによ つて、半値全幅を約 5分の 1に狭めることができたことがわかる。
このことから、ランダム位相マスクを用いて記録を行うことによって、シフトブラッグ選 択性を向上させることができることがわかる。これは、通常の記録では参照光のスポッ ト付近の位相分布は緩やかな分布をしているために、参照光を少しずらしても、シフト ブラッグ条件を満たす状態がある程度続くのに対して、ランダム位相マスクを用いる 場合では、参照光のスポット付近の位相分布がランダムな位相分布となるため、参照 光を少しずらしただけで、再生光内での光波の位相ずれが生じ、干渉により打ち消し あう効果が大きくなるためであると考えることができる。
[0048] また、参照光のシフトに対する回折効率について、ランダム位相マスクが有る場合と 無い場合にどのような違いがあるかを説明する。図 22に参照光の横シフトに対する 回折効率 (ランダム位相マスク無し)、図 23に参照光の横シフトに対する回折効率 (ラ ンダム位相マスク有り)を示す。また、図 24に参照光の縦シフトに対する回折効率 (ラ ンダム位相マスク無し)、図 25に参照光の縦シフトに対する回折効率 (ランダム位相 マスク有り)を示す。図 22〜図 25において、図 14同様、横軸は信号を記録した位置 力 の参照光のずれを表し、縦軸は規格化した回折効率を表して 、る。
[0049] 図 22と図 23、図 24と図 25を比較してみるとわ力るように、ランダム位相マスクを入 れることによって、半値全幅を狭めることができている。このことから、参照光のシフト に対しても、ランダム位相マスクを用いて記録を行うことによって、シフトブラッグ選択 性を向上させることができることがわかる。
[0050] 次に、信号光にビット画像をのせて、ランダム位相マスクを用いた記録を行ったとき の、記録位置からの参照光のずれに対する再生画像を調べた。この結果を図 15に 示す。
図 15 (a)〜(f)の再生画像より、ランダム位相マスクを用いることによって、実用上で もシフトブラッグ選択性が向上していることを確認することができる。
実施例 7 [0051] (記録間隔とスケジューリング記録)
本実施例 7では、反射型ホログラフィックメモリにおいて、ランダム位相マスクを用い て多重記録を行い、記録間隔をどこまで狭めることができるかを調べることにする。ま ず比較のために、ランダム位相マスクを用いないで、 6つの信号に対して多重記録を 行い、参照光のシフトに対する回折効率の変化を測定した。ただし、多重記録は全て の信号に対して記録時間を 5秒として行った。この結果を図 16に示す。図 16におい て、横軸の 0は最後に記録を行った信号の位置に対応する。
[0052] 記録間隔が 22 μ mのときには、ピークが 6つ現れており、これらは記録した個々の信 号に対応する。すなわちピークが 6つ現れているのなら、独立なデータ読み出しが可 能であることを意味している。また一番最後に記録した信号の回折効率力 他の信号 よりも高くなつているのは、今回の実験で用いた記録媒体は、データの書き換えが可 能な記録媒体であり、隣接する信号を記録するときに、既に記録がなされた信号に 対して、消去の効果が働いたためだと考えられる。そのため、消去の効果を受けない 最後に記録した信号の回折効率が、他よりも高くなつている。ここで記録間隔が mのときに注目すると、最後の 2つのピークが現れていないため、この場合では全て のデータを読み出すことができないことになる。すなわちランダム位相マスクを用いな いときの、この実験系に対する記録間隔は 22 mであると考えることができる。
[0053] 次に、ランダム位相マスクを用いて、 6つの信号に対して多重記録を行った。まず記 録間隔を 4 m、記録時間を全ての信号に対して 5秒として実験を行った。この結果 を図 17に示す。図 17の横軸に対する回折効率のずれは、ステージコントローラーの 誤差であると考えられる。図 17より、 3つのピークしか現れていないため、このままで は全てのデータを読み出すことができないことがわかる。これは多重記録時における 消去の効果が働!、たためである。
[0054] ここで全ての信号を読み出すことができるようにするために、スケジューリング記録 を導入する。スケジューリング記録とは、各信号に対する記録時間を個々に調整して 、多重記録後に得られる、各信号の再生光の強度を均一にする記録方法である。こ こで記録時間に対する回折効率の変化を図 18に示す。図 18より、記録時間に対し て、回折効率が 90秒ぐらいまではほぼ線形に増加しており、その後は緩やかな増加 に変化していくことがわかる。このことから、全ての信号を読み出せるようにするため には、消去の効果を受けやすい、最初に記録する信号の記録時間を最大にし、そこ から順次記録時間を少なくして、最後に記録する信号で最小になるように記録時間 を調整すればよぐその結果、各信号の再生光の強度を均一にすることができると考 えられる。
[0055] 先程と同様に記録間隔を 4 mとして、ランダム位相マスクを用いて、 6つの信号に 対してスケジューリングによる多重記録を行う。ここで記録時間は、最初に記録する信 号から 15秒、 13秒、 11秒、 9秒、 7秒、 7秒として実験を行った。この結果を図 19に示す 。図 19より、 6つの回折効率のピークが現れており、全てのデータを独立に読み出す ことができることがわ力る。このときの各信号に対する回折効率のピークは、図 19の左 から、 0.0298%、 0.0262%、 0.0283%、 0.0214%、 0.0250%、 0.0156%となった。さら に記録間隔を 2 mとして同様の実験を行った力 回折効率のピークが重なってしま い、独立なデータの読み出しができない結果となった。このことから、ランダム位相マ スクを用いて、スケジューリング記録を行えば、この実施例 7の光学系においては、記 録間隔を 4 μ mとして多重記録を行うことができることがわかる。
実施例 8
[0056] (再生画像とビットエラーレート)
本実施例 8では、実際に信号光にビットデータをのせて、ランダム位相マスクを用い たスケジューリングによる多重記録を行ったときの、再生画像に対するビットエラーレ ートの評価を行う。記録間隔を 4 /ζ πι、記録時間を前章と同様に、最初に記録する信 号から 15秒、 13秒、 11秒、 9秒、 7秒、 7秒として実験を行った。この実験における再生 画像と認識画像を図 20 (1)〜(12)に示す。画像サイズは 500 X 480 (Pixel)、データ として扱うビットの総数は 18 X 17 (Bit)、 1つのビットのブロックサイズは 17 X 22 (Pixel) である。
[0057] 図 20より、程度の差はあるが、再生画像の明るさはほぼ近いものになっていること がわかる。ここでのビット認識処理は、実施例 5と同様、各ブロックに含まれるピクセル の明るさを積算したものをブロックの明るさとして、隣接するブロック間で局所的に明 るさを比較して 1か 0かの判定を行うものである。ビット認識処理の結果、再生画像の ビットエラーレートは Offsetの小さい方から、 0.33%、 0.33%、 0.00%、 0.00%、 0.65% 、 0.33%となった。
[0058] ここで、ビットエラーレートが 0.00%に落ちきつていない再生画像がある力 これは 参照光が、記録媒体の直前に置かれた対物レンズに入射するときに、表面反射を起 こして、ノイズとして再生画像に写り込んでしまったことが原因に考えられる。つまり表 面反射光を除去すれば、ビットエラーレートを 0.00%に近づけることが可能であると考 えられる。
この実施例 8における測定結果によって、信号光にビット画像をのせても、ランダム位 相マスクを用いたスケジューリング記録を行うことで、 4 m間隔で多重記録を行うこと 力できることが実証されたこと〖こなる。
実施例 9
[0059] (ランダム位相マスクを用いた暗号化)
本実施例 9では反射型ホログラフィックメモリにお 、て、ランダム位相マスクを用いて 暗号ィ匕を行うことができることを示す。暗号化としては、信号光を暗号化する方法と、 参照光を暗号ィ匕する 2通りの方法が存在するが、本実施例 9では参照光の暗号ィ匕を 行っている。実施例 9における光学系は、実施例 5における光学系の構成と同じであ る(図 10参照)。
[0060] 図 10の光学系の構成で、参照光がランダム位相マスクを通過することによって暗号 化され、レンズを通って、信号光と対向する方向から入射し、反射型の形で記録が行 われる。読み出し時は、ランダム位相マスクのキーが記録時と同じときに限り、参照光 によって信号が再生され、再生画像力 CCDカメラに取り込まれて、パーソナルコンビ ユータ (PC)でビット認識処理が行われる。
[0061] この実施例 9ぉ ヽて、空間光変調器に表示した信号画像を図 21 (a)に示す。また 読み出し時における、ランダム位相マスクのキーが正しいときと、ランダム位相マスク を少しずらした、キーが異なるときの再生画像をそれぞれ図 21 (b)、図 21 (c)に示す 。画像サイズは共に 400 X 380 (Pixel)である。図 21 (a)〜(c)により、ランダム位相マ スクのキーが正しいときには、記録した信号画像が正しく再生されているのがわかる。 それに対してキーが異なるときでは、記録した信号画像とは大きく異なる画像が再生 されており、またこれから元の信号画像を推定することはできないと考えられることか ら、ランダム位相マスクにより暗号ィ匕の効果が得られることがわかる。
[0062] (記録容量)
実施例 7にお ヽて、多重記録を行うことができる最小の記録間隔を決定することが できたので、記録容量の簡単な評価を行う。まず記録媒体の形状を 5インチディスク と仮定すると、ランダム位相マスクを用いたスケジューリングによる多重記録では、記 録間隔が 4 mのとき、隣接する信号の中心と中心の距離は 4 mであるので、一つ の信号のスポット半径を 2 mとすると、 5インチディスクに記録できる信号の数は、下 記数 1で表される数式で与えられる。
[0063] [数 1] π(625 \ -2 Ιπ(2 \^ γ « 9.77 x 10s
[0064] ここで、一つの信号に載せるビットデータを実施例 8の 18 X 17 = 306 (Bit)とすると、 面内記録密度に換算して、 24.41Λ/ /ζ πι2の記録密度を達成した。また、全体の記録 容量は、下記数 2で表される数式で概算値を算出できる。
[0065] [数 2]
306 X 9.77 x lO8 - 299.0[Gbit] - 37.4[Gbyte]
[0066] 通常の多重記録では記録間隔が 22 μ mであるので、同様の計算から、記録容量は 1.615 (Gbyte)となる。この結果から、ランダム位相マスクを用いてスケジューリングに よる多重記録を行うことによって、記録容量を約 30倍に向上することができたことにな る。
[0067] さらなるページ画像の高密度化により記録データ密度の向上が可能である。一つ の信号に載せるビットデータを 100 X 100=10000 (Bit)とすると、全体の記録容量は、 下記数 3で表される数式で概算値を算出できる。これにより 5インチサイズの記録メデ ィァに約 5テラバイトの記録が期待できる。
[0068] [数 3] l OOOOx 9.77 x10s = 9.77 x 1 (bit) s 1.22(Tbytc) [0069] ここで、上述した実施例で用いた機器の仕様にっ 、て説明する。
• Ar (アルゴンイオン)レーザー(Coherent製,型式: Innova300)
•CCDセンサー(Sony製,型式: XC-77)
•入力用空間光変調器 (Holoeye製,型式: LC- 2002)
•レンズ(アサヒ光学製、 smc 50mm)
'対物レンズ(ミツトヨ製、 M Plan Apo SL20)
実施例 10
[0070] 本発明の構成の反射型ホログラフィックメモリ装置において、集光レンズにより収束 させられる信号光と、共軸で相対向して収束させられる参照光により得られる回折光 を模擬するシミュレータプログラムにより、さらなる記録容量を向上できる光学システム の条件を求めることができたので以下に説明する。
[0071] 先ず、反射型ホログラフィックメモリシミュレータプログラムについて説明する。
反射型ホログラフィックメモリシミュレータプログラムは、信号光および参照光を空間 伝播させるステップと、各々異なる角度を有する平面波に分割させるステップと、個々 の平面波が作り出す屈折率分布に対して読み出し光の複素振幅分布を Kogelnikの 結合波理論により算出するステップと、同方向に伝播する回折光の複素振幅を加算 するステップと、光ピックアップ系の動作機構により生じる各平面波成分に対する位 相ずれを計算するステップとからなる。
[0072] 一般に、ホログラムを解析する Kogelnikの結合波理論は、信号光と参照光を共に平 面波としたときの正弦状の体積ホログラムからの回折光の計算方法であるが、本発明 に係る反射型ホログラフィックメモリ装置の光学系では、記録媒体の直前にレンズを 置いて、信号光と参照光を集光する収束波として集光させているため、結合波理論 を用いて反射型シフト多重ホログラフィックメモリでの回折効率の計算を行うために、 結合波理論の収束波への拡張を行う。
[0073] すなわち、反射型ホログラフィックメモリシミュレータプログラムでは、収束光を異なる 角度を有する平面波に分割し、個々の平面波が作る屈折率分布に対して読み出し 光の複素振幅分布を Kogelnikの結合波理論により算出し、同方向に伝播する回折光 の複素振幅を加算することによって回折光を求めるのである。 [0074] 図 26に、シミュレータプログラムにおける信号光 ·参照光の分割の模式図を示す。 ここで、 dはディスク型記録媒体の厚みである。また、 Δ Θは刻み角である。
[0075] 本シミュレータプログラムに、空間シフト多重記録についても模擬も対象とする。そ のために、ディスク型記録媒体の移動によって生じる各平面波に対する位相ずれを 考慮する。図 27は、ディスク型記録媒体の記録場所の位置ずれによって生じる位相 差を示す図である。図 27に示すように記録媒体に角度 Θで入射する波長 λの読み 出し参照光について、ディスク型記録媒体の記録場所が Δ χシフトすることによって 生じる位相遅延量 φは、下記数 4のように表される。
[0076] 画 = sinO
' λ
[0077] 平面波の角度により位相遅延量 φが異なるため、ホログラムによる平面波回折光の 位相が異なる。同位相では強めあい、逆位相では打ち消し合う。上記数 4より角度 Θ が大きいほど、位相遅延量 φが大きいことが理解できる。
[0078] シミュレータプログラムにより回折効率を求めた数値と実際の実験結果で得られた 数値を比較して、シミュレータプログラムの妥当性を評価した。ここでは、平面波の分 割数は 200、刻み角は 0.1度とした。
シミュレータプログラムによると、ランダム位相マスクがある場合とない場合の回折効 率の半値全幅は、それぞれ 1.5 μ m、 4.9 μ mであり、また回折効率は、 8.0 X 10— 3、 2.5 X 10— 3であった。このときのパラメータは、最大屈折率変化量は 3.35 X 10— 4、有効開 口数は、 0.05としている。一方、実験結果によると、ランダム位相マスクがある場合とな い場合の回折効率の半値全幅は、それぞれ 1.0 m、 4.9 mであり、また回折効率は 、 8.0 X 10— 3、 2.5 X 10— 3であった。両者を比較すると、回折効率の半値全幅はほぼ同 様の値を示し、また回折効率は実験結果と数値計算結果が同じである。
[0079] このことから、シミュレータプログラムによる数値計算結果は実験結果と良く一致して V、ることが理解できる。本シミュレータプログラムによる数値計算結果で得られたパラ メータの値をもとに、光学システムの最適化を行い、記録容量の向上を行うことができ る。具体的なパラメータとして、信号光や参照光の波長,開口数を変化させ、記録容 量の増大を図ることができる。
[0080] 光源の波長を実験で用いたアルゴンイオンレーザーの波長である 514.5nm、 Blu-ra y Discや HD- DVD等で用いられる青紫色レーザーの波長である 405nm、また DVDで 用いられる赤色レーザーの波長近傍である 635應と変化させたときの、集光角に対 する回折効率の半値全幅の変化を本シミュレータプログラムで解析した結果を図 29 に示す。集光角 90° のときの各波長に対する半値全幅は、 1.4 /z m, 1.1 /z m, 0.8 となり、波長が短くなるにつれて回折効率の半値全幅が小さくなつているのが理解で きる。
[0081] ここで、この半値全幅を記録間隔とし、ページデータを 20 X 20=400bit、記録媒体を 5インチディスクとして波長を変化させたときの、集光角に対する記録容量の変化を図 30に示す。図 30より波長が小さくなるにつれて、集光角に対する記録容量が大きく 向上しているのがわかる。集光角が 90° のときの各波長に対する記録容量は、波長 の大きい方から 398.6Gbyte, 645.7Gbyte, 1107.2Gbyteとなる。
[0082] 波長 405nm、集光角 90° のときに、シミュレーション上では記録容量が 1Tbyteを超 えており、反射型シフト多重ホログラフィックメモリが 1Tbyteの記録容量をもつ可能性 を示している。また波長 405nmにおける集光角 90° のときの記録密度 721.8bit/ /z m2 である。この記録密度は、波長が 405應のときの面内回折限界による記録密度が 7.8b it/ /z m2であることから、 92.5層分の 3次元的な体積記録に相当する数値である。この 結果力も反射型シフト多重ホログラフィックメモリの記録容量は、レーザーの波長を小 さくし、集光角を大きくすることで記録容量を向上させることができることが理解できょ 実施例 11
[0083] 本実施例は、上述のシミュレータプログラムで実際にシミュレーションを実施した結 果を示していく。
本シミュレーションは、信号光、参照光、読み出し光および記録材料が同じ条件の場 合に、反射型ホログラフィックメモリシステムが透過型ホログラフィックメモリより高性能 であることを示すものである。ホログラム多重記録方式として、球面参照波空間シフト 多重記録を用いる。一般に、ホログラフィックメモリの性能評価では、信号光として空 間変調パターンを用いる必要があり、データ再生の指標としてビットエラーレート (ビッ ト認識誤り率)があるが、本シミュレーションでは、バイナリ信号列を用いて回折効率 およびビットエラーレートを評価した数値計算結果を示し、さらに、反射型ホログラム における実信号を用いた解析を行って 、る。
以下に、回折効率およびビットエラーレートを評価した数値計算結果と、反射型ホロ グラムにおける実信号を用いた解析結果を説明する。
[0084] 以下では、信号光と参照光が同軸で伝播するホログラフィックメモリシステムの比較と して、透過型ホログラムと反射型ホログラムの性能をシミュレーションにより比較する。 シミュレーションでは、図 31に示すような 2次元空間を取り扱い、また、多重記録方式 として球面参照波空間シフト多重記録を用いる。信号光として、 50bitのバイナリデー タを用いる。信号値 ' 1,は半値全幅 20 μ mのガウス分布として振幅分布を与える。参 照光および読み出し光は、半値全幅 800 mのガウス分布として振幅分布を与える。 解析条件として、波長 514.5nm、レンズの焦点距離 f = 7.348mm,記録媒体の屈折率 n =2.2、最大屈折率変化量 n = 10"6,記録媒体の厚さ d = 0.5mmとした。また、参照 光においてデフォーカス量 1を導入し、記録面での信号光'参照光の重なりを調整す る。信号光の入力面での大きさは、 3.5mmであり、この領域を 4096点に分割する。信 号光、参照光および読み出し光のホログラム面までの伝播は、フレネル伝播計算を 用い、ホログラムにおける回折計算は、 Kogelnikの結合波理論を用いている。ホログ ラムからイメージセンサー面までの空間伝播は、フレネル伝播計算を用いる。空間シ フト多重記録を数値計算で行うために、記録材料の移動によって生じる各平面波成 分の位相ずれ量を導入する。
[0085] 図 32に信号光および参照光の強度分布を示す。図 32において、実線が信号光強 度分布であり、点線が参照光強度分布を示している。記録面は、参照光側のデフォ 一カス量 1=0の時、信号光および参照光のフーリエ変換面であるため、空間変調の ない参照光のビーム径が狭くなる。このため、記録面において信号光'参照光の重な りが小さくなる。このとき、再生信号光は高周波数成分が欠落するため、再生信号に ビット誤りが生じる。デフォーカス量を調節し、信号光と参照光の重なりが大きくなると 信号光を十分に記録することが可能になるため、再生信号のビットエラーレートを小 さくすることができる。
[0086] 図 33にデフォーカス量 1を変化させた場合の参照光の波形を示す。図 33から l=0.3f , 0.5fの時、参照光強度分布は信号光の拡がりと同程度かそれより大きいことが理解 できよう。
[0087] デフォーカス量を変化させ、回折効率およびビットエラーレートのシフト選択性を調べ た結果を図 34、 35、 36に示す。図 34, 35, 36ίまそれぞれ、デフォーカス量 1=0, 0. 3f, 0.5fの場合の結果である。図 34, 35, 36からすべての場合において、回折効率 が早く減衰することから、反射型ホログラムは、透過型ホログラムよりも高いシフト選択 性を有することが理解できょう。また、反射型ホログラムは、透過型ホログラムより、少 ないシフト量でビット誤りが生じることからデータ読み出しの選択性が高いことも理解 できよう。
[0088] 次に、図 37に参照光のビーム径に対する反射型および透過型ホログラムの回折効 率のシフト選択性を比較した結果を示す。ここでは、シフト選択性は、回折効率が最 大値から半分に減少する時のシフト量で判断している。図 37から、反射型ホログラム は透過型ホログラムよりも小さいシフト量で回折効率が減少することが理解されよう。 このため、同じ光学系、記録材料を用いた場合でも反射型ホログラムは透過型ホログ ラムよりも記録密度を向上させることが可能であることがわかる。
[0089] 例えば、記録面での参照光のビーム径が 84.7 μ mの場合に、反射型ホログラムのシ フト量は 9.7 μ mであり、透過型ホログラムのシフト量は 18.3 μ mである。従って、 1軸 方向に関して記録容量を約 1.89倍向上させることが可能になる。この理由としては、 多光束干渉による打ち消し合 、の効果が向上して 、るためであると考えて 、る。 反射型ホログラムは角度ブラッグ選択性が弱いため、記録時と異なる入射角をもつ平 面波の回折が大きくなる。このため、多光束干渉が容易に生じる。材料の移動により 各平面波成分に入射角に依存した位相ずれが生じ、これが干渉において打ち消し 合う方向に働くものと考えている。また、図 37から参照光のビーム径より十分小さいシ フト量で回折効率が減少することからシフト多重記録が可能であることも理解されよう [0090] また、レンズの開口数 (NA)に対するシフト選択性の幅の変化を調べた結果を図 38 に示す。なお、図 38は、参照光のビーム径を変化させ、実効的な NAを変化させた場 合の回折効率のシフト選択性を調べた結果である。図 38から回折効率のシフト選択 性は、レンズの開口数 (NA)の 2乗に反比例して減少することが理解できる。シフト選 択距離は、材料の位置の移動により回折効率が最大値の半分になる時の位置の移 動量としている力 図 38からシフト選択距離は、 d = aZ(NA2)、但し aは定数で表せる ことがわ力ゝる。
[0091] 次に、ランダム位相変調を導入した場合のシフト選択性を調べた結果を図 39に示す 。図 39からランダム位相変調を導入することにより、シフト選択性が大きく向上するこ とが理解されよう。
従って、本シミュレーションによっても、ランダム位相変調による記録密度の向上が可 能であることが検証されたことになる。この理由としては、ランダム位相変調によるフー リエスペクトルの拡散により大きな角度をもつ平面波が生成されるため、多光束干渉 による打ち消し合 、の効果が増強するためであると考えて 、る。
産業上の利用可能性
[0092] 本発明に係る反射型ホログラフィックメモリは、ディスク型記録媒体を利用し、既存 の光ピックアップ技術との互換性もあり、かつ、高速なデータ読み出し、画像データと して並列読み出し可能で大容量データ記録装置として利用できる。また、ランダム位 相マスクによる暗号ィ匕により、大規模情報セキュリティー装置としても利用できる。 図面の簡単な説明
[0093] [図 1]反射型ホログラフィックメモリの概略構成図
[図 2]反射型ホログラフィックメモリの原理図
[図 3]反射型ホログラフィックメモリにおける光学系(1)
[図 4]回折効率とビーム径の相関図
[図 5]反射型ホログラフィックメモリにおける光学系(2)
[図 6]反射型ホログラフィックメモリの参照光シフトを介した再生画像例
[図 7]参照光シフトに対する回折効率の変化の測定データ図
[図 8]記録間隔が 24 mのときの信号光と参照光のスポットの関係模式図 [図 9]反射型ホログラフィックメモリの参照光シフトを介した再生画像と記録に用いた 信号画像
[図 10]反射型ホログラフィックメモリにおける光学系(3)
[図 11]反射型ホログラフィックメモリにランダム位相マスクを用いた場合における参照 光の暗号ィ匕記録の再生画像と暗号ィ匕を行わないときの再生画像
圆 12]再生画像に対してビット認識処理を施した認識画像
[図 13]各再生画像のブロックの明るさの平均値に対する分布グラフ
[図 14]回折効率とビーム径の相関図(ランダム位相マスクの有無)
[図 15]記録位置力 の参照光のずれに対する再生画像
[図 16]参照光のシフトによる多重記録 (ランダム位相マスク無し)
[図 17]参照光のシフトによる多重記録 (ランダム位相マスク有り)
圆 18]記録時間に対する回折効率の変化
[図 19]スケジューリングによる多重記録 (ランダム位相マスク有り)
[図 20]ランダム位相マスクを用いたスケジューリングによる多重記録を行ったときの再 生画像と認識画像
[図 21]ランダム位相マスクを用いて暗号ィ匕を施した再生画像
圆 22]参照光の横シフトに対する回折効率 (ランダム位相マスク無し)
圆 23]参照光の横シフトに対する回折効率 (ランダム位相マスク有り)
[図 24]参照光の縦シフトに対する回折効率 (ランダム位相マスク無し)
[図 25]参照光の縦シフトに対する回折効率 (ランダム位相マスク有り)
[図 26]シミュレータプログラムにおける信号光'参照光の分割の模式図
[図 27]ディスク型記録媒体の記録場所の位置ずれによって生じる位相差を示す図
[図 28]シミュレータプログラムを用いて計算したランダム位相変調がある場合とな 、場 合の回折効率のシフト依存性を示すグラフ
[図 29]3つの光源波長における集光角に対する回折効率の半値全幅を示すグラフ [図 30]3つの光源波長に対する反射型ホログラフィックメモリの記録容量の集光角依 存性を示すグラフ
[図 31]反射型ホログラフィックメモリの解析用システム構成図(Lens 1,2 :フーリエ変換 レンズ、 SLM :空間光変調素子)
圆 32]入面上における信号光および参照光の強度分布を示すグラフ
[図 33]記録媒体表面における信号光と参照光の強度分布を示すグラフ
[図 34]参照光のデフォーカス量 1=0.0の時の回折効率およびビットエラーレートのシ フト選択性を示すグラフ
[図 35]参照光のデフォーカス量 l=0.3fの時の回折効率およびビットエラーレートのシ フト選択性を示すグラフ
[図 36]参照光のデフォーカス量 l=0.5fの時の回折効率およびビットエラーレートのシ フト選択性を示すグラフ
[図 37]記録面でのビーム径のシフト選択性への影響を示すグラフ
圆 38]レンズの有効開口数 (NA)に対する回折効率のシフト選択性の変化を示すダラ フ
圆 39]ランダム位相変調が無い場合と有る場合のシフト選択性の比較 (l=0.3f)を示 すグラフ
符号の説明
1 ディスク型記録媒体
2 入力画像データ
3 ランダム位ネ目マスク
4 偏光ビームスプリッタ
5 1Z4波長板
6 鏡 (ミラー)
7 集光レンズ
8 イメージセンサー
9 信号光
10 参照光
ND : Neutral Density
HWP: Half Wave Plate
P : Polarizer Ml, M2, M3 : Mirror SLM: Spatial Light Modulator RPM: Random Phase Mask LN : LiNbO; Fe
3
MS : Movable Stage
PC : Personal Computer CCD: Charge Coupled Device

Claims

請求の範囲
[1] 信号光および参照光をホログラフィックメモリ記録媒体に照射することにより 2値画 像データを光の干渉パターンとして記録するとともに、前記ホログラフィックメモリ記録 媒体に参照光を照射することによって得られる再生像力 データを再生するホロダラ フィック記録再生システムであって、前記ホログラフィックメモリ記録媒体がディスク型 記録媒体であり、光ピックアップ系の動作機構と、信号光と参照光を対向するように 導波させて前記ディスク型記録媒体上で信号光と参照光の偏光面を揃える系と、信 号光及び Z又は参照光の導光路に設けたランダム位相変調多重記録手段と、前記 光ピックアップ系の動作機構を用いた参照光の変位による空間シフト多重記録手段 とを備え、反射型ホログラムの記録容量を増大したことを特徴とする反射型ホログラフ イツタメモリ装置。
[2] 前記ディスク型記録媒体上で信号光と参照光の偏光面を揃える系が、直線偏光状 態が 90度異なる信号光と参照光を共軸で同方向に導波させ、集光レンズにより前記 ディスク型記録媒体に収束して照射させ、参照光のみ前記ディスク型記録媒体を透 過させた後、 4分の 1波長板および反射ミラーを用いて参照光の偏光状態を信号光と 揃えさせ、信号光と参照光を対向させるものであることを特徴とする請求項 1に記載 の反射型ホログラフィックメモリ装置。
[3] 前記空間シフト多重記録手段において、シフト選択距離が、集光レンズの開口数の 略 2乗に反比例するように選定されることを特徴とする請求項 1又は 2に記載の反射 型ホログラフィックメモリ装置。
[4] 前記ランダム位相変調多重記録手段が、ランダム位相マスクまたは疑似ランダム位 相マスクを用いて 、ることを特徴とする請求項 1乃至 3の 、ずれかに記載の反射型ホ ログラフィックメモリ装置。
[5] 前記ディスク型記録媒体に、 4分の 1波長板および反射ミラーが積層または内部構 造として含有されて!ヽることを特徴とする請求項 1乃至 4の ヽずれかに記載の反射型 ホログラフィックメモリ装置。
[6] 前記信号光を前記ディスク型記録媒体に記録する時間を、個々の信号毎に調節す るスケジューリング記録手段を設けたことを特徴とする請求項 1乃至 5のいずれかに 記載の反射型ホログラフィックメモリ装置
[7] 前記ランダム位相変調多重記録手段を光暗号化手段および記録密度向上の手段 として用いられることを特徴とする請求項 1乃至 6のいずれかに記載の反射型ホログ ラフィックメモリ装置。
[8] 前記ディスク型記録媒体の厚さ方向に、信号光と参照光の干渉により生じる干渉稿 の 3次元分布を分離可能な状態として複数記録し、記録容量を増大したことを特徴と する請求項 1乃至 7のいずれかに記載の反射型ホログラフィックメモリ装置。
[9] 前記信号光が単色の青色レーザー光であり、かつ、前記集光レンズによる信号光 の集光角が 70〜90度であることを特徴とする請求項 1乃至 8のいずれかに記載の反 射型ホログラフィックメモリ装置。
[10] 信号光と参照光とをディスク型記録媒体を挟んで対向させて記録させる反射型ホロ グラフィックメモリ装置において、集光レンズにより収束させられる信号光と、共軸で相 対向して収束させられる参照光により得られる回折光を模擬するもので、信号光およ び参照光を空間伝播させるステップと、各々異なる角度を有する平面波に分割させ るステップと、個々の平面波が作り出す屈折率分布に対して読み出し光の複素振幅 分布を Kogelnikの結合波理論により算出するステップと、同方向に伝播する回折光 の複素振幅を加算するステップと、光ピックアップ系の動作機構により生じる各平面 波成分に対する位相ずれを計算するステップとを備えていることを特徴とする反射型 ホログラフィックメモリシミュレータプログラム。
PCT/JP2005/020357 2005-01-06 2005-11-07 光情報記録装置(反射型ホログラフィックメモリ装置) WO2006082678A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007501508A JP4568811B2 (ja) 2005-01-06 2005-11-07 光情報記録装置(反射型ホログラフィックメモリ装置)
US11/794,727 US8120826B2 (en) 2005-01-06 2005-11-07 Optical information recorder (reflection holographic memory device)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-001430 2005-01-06
JP2005001430 2005-01-06
JP2005135200 2005-05-06
JP2005-135200 2005-05-06

Publications (1)

Publication Number Publication Date
WO2006082678A1 true WO2006082678A1 (ja) 2006-08-10

Family

ID=36777069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020357 WO2006082678A1 (ja) 2005-01-06 2005-11-07 光情報記録装置(反射型ホログラフィックメモリ装置)

Country Status (3)

Country Link
US (1) US8120826B2 (ja)
JP (1) JP4568811B2 (ja)
WO (1) WO2006082678A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090905A1 (ja) * 2008-01-16 2009-07-23 Nec Corporation 光学的情報再生装置、光ヘッド装置、光学的情報再生方法および情報再生プログラム
JP2009237920A (ja) * 2008-03-27 2009-10-15 Kobe Univ 情報記憶媒体およびそれを用いた認証システム
JP2014067468A (ja) * 2012-09-26 2014-04-17 Hokkaido Univ ノイズ除去方法およびノイズ除去装置、記録再生方法および記録再生装置、ならびに、画像計測方法および画像計測装置
KR20210095029A (ko) * 2020-01-21 2021-07-30 아메티스툼 스토리지 테크놀로지 컴퍼니 리미티드 광디스크 광헤드 위치를 정확하게 검출 및 제어하는 방법 및 광디스크와 장치

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182966B2 (en) * 2008-12-23 2012-05-22 General Electric Company Data storage devices and methods
CN102087503B (zh) * 2011-01-11 2012-07-04 浙江师范大学 一种双随机相位光学彩色图像加密装置及方法
JP5747345B2 (ja) * 2011-03-16 2015-07-15 新日鉄住金化学株式会社 ベクトル波記録媒体、及び多重記録再生方法
JP5896362B2 (ja) 2011-08-15 2016-03-30 国立大学法人神戸大学 ホログラフィックメモリの情報符号化方法、ホログラフィックメモリの記録方法およびホログラフィックメモリ装置
KR20140113326A (ko) * 2013-03-15 2014-09-24 씨에스아이알 인트라-캐비티 디지털 홀로그램을 이용한 레이저 및 레이저 장치를 작동하는 방법
KR102067762B1 (ko) * 2013-03-20 2020-02-11 삼성전자주식회사 홀로그램 기록 방법 및 장치
DE102017218544A1 (de) 2017-10-18 2019-04-18 Robert Bosch Gmbh Belichtungsvorrichtung zum Aufnehmen eines Hologramms, Verfahren zum Aufnehmen eines Hologramms und Verfahren zum Steuern einer Belichtungsvorrichtung zum Aufnehmen eines Hologramms
GB202104043D0 (en) * 2021-03-23 2021-05-05 Holomem Ltd Volumetric Holographic Data Storage Devices and Volumentric Holograms

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243403A (ja) * 1985-04-19 1986-10-29 Nitto Electric Ind Co Ltd ランダム位相板
JPH11126335A (ja) * 1997-10-24 1999-05-11 Sony Corp 光情報記録媒体、光情報記録装置および方法ならびに光情報再生装置および方法
JPH11133842A (ja) * 1997-10-24 1999-05-21 Sony Corp 光情報記録装置、光情報再生装置および光情報記録媒体
JP2004279443A (ja) * 2003-03-12 2004-10-07 Toshiba Corp 光記録媒体及びその製造方法
JP2004280899A (ja) * 2003-03-13 2004-10-07 Toshiba Corp 光情報記録媒体および情報記録方法
JP2004335044A (ja) * 2003-05-12 2004-11-25 Optware:Kk ホログラフィック記録装置および再生装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719691A (en) 1995-05-05 1998-02-17 Lucent Technologies Inc. Phase correlation multiplex holography
JPH1188098A (ja) 1997-09-12 1999-03-30 Oki Electric Ind Co Ltd インピーダンス整合器
JP2002123948A (ja) * 2000-10-12 2002-04-26 Optware:Kk 光情報記録装置および方法、光情報再生装置および方法、光情報記録再生装置および方法、ならびに光情報記録媒体
US6721076B2 (en) * 2001-08-03 2004-04-13 Inphase Technologies, Inc. System and method for reflective holographic storage with associated multiplexing techniques
JP4156911B2 (ja) * 2002-12-02 2008-09-24 新オプトウエア株式会社 光情報記録媒体、光情報記録装置および光情報再生装置
JP4474513B2 (ja) * 2003-07-08 2010-06-09 新オプトウエア株式会社 光情報再生装置および光情報記憶再生装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243403A (ja) * 1985-04-19 1986-10-29 Nitto Electric Ind Co Ltd ランダム位相板
JPH11126335A (ja) * 1997-10-24 1999-05-11 Sony Corp 光情報記録媒体、光情報記録装置および方法ならびに光情報再生装置および方法
JPH11133842A (ja) * 1997-10-24 1999-05-21 Sony Corp 光情報記録装置、光情報再生装置および光情報記録媒体
JP2004279443A (ja) * 2003-03-12 2004-10-07 Toshiba Corp 光記録媒体及びその製造方法
JP2004280899A (ja) * 2003-03-13 2004-10-07 Toshiba Corp 光情報記録媒体および情報記録方法
JP2004335044A (ja) * 2003-05-12 2004-11-25 Optware:Kk ホログラフィック記録装置および再生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATOBA O.: "Atarashii Kogakuteki Angoka Gijutsu", JAPANESE JOURNAL OF OPTICS, vol. 29, no. 7, 10 July 2000 (2000-07-10), pages 419 - 425, XP003000535 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090905A1 (ja) * 2008-01-16 2009-07-23 Nec Corporation 光学的情報再生装置、光ヘッド装置、光学的情報再生方法および情報再生プログラム
JP2009237920A (ja) * 2008-03-27 2009-10-15 Kobe Univ 情報記憶媒体およびそれを用いた認証システム
JP2014067468A (ja) * 2012-09-26 2014-04-17 Hokkaido Univ ノイズ除去方法およびノイズ除去装置、記録再生方法および記録再生装置、ならびに、画像計測方法および画像計測装置
KR20210095029A (ko) * 2020-01-21 2021-07-30 아메티스툼 스토리지 테크놀로지 컴퍼니 리미티드 광디스크 광헤드 위치를 정확하게 검출 및 제어하는 방법 및 광디스크와 장치
KR102490124B1 (ko) 2020-01-21 2023-01-18 아메티스툼 스토리지 테크놀로지 컴퍼니 리미티드 광디스크 광헤드 위치를 정확하게 검출 및 제어하는 방법 및 광디스크와 장치

Also Published As

Publication number Publication date
JPWO2006082678A1 (ja) 2008-06-26
US8120826B2 (en) 2012-02-21
US20090122376A1 (en) 2009-05-14
JP4568811B2 (ja) 2010-10-27

Similar Documents

Publication Publication Date Title
JP4568811B2 (ja) 光情報記録装置(反射型ホログラフィックメモリ装置)
US8130430B2 (en) Holographic storage device and method using phase conjugate optical system
JP4734530B2 (ja) 検索方法
WO2004034387A1 (ja) ホログラフィを利用した情報記録方法、再生方法および記録再生方法
JP3944501B2 (ja) ホログラム記録再生装置およびホログラム記録再生方法
JP2001256654A (ja) 光情報記録装置、光情報再生装置、光情報記録再生装置および光情報記録媒体
JP2006162928A (ja) ホログラム記録装置及びホログラム記録方法
JP4748043B2 (ja) 光記録装置、光記録方法、記録媒体及び再生方法
JP4289921B2 (ja) ホログラフィック記録装置および再生装置
JPWO2005098552A1 (ja) ホログラム再生装置およびホログラム再生方法
JP2016219088A (ja) ホログラム記録再生方法およびホログラム記録再生装置
JP4007267B2 (ja) ホログラム記録方法及びホログラム記録装置
JP4631473B2 (ja) ホログラム記録再生装置およびホログラム記録再生方法
KR101146441B1 (ko) 호모다인 검출기법을 구비한 홀로그래픽 저장 장치
JP4174982B2 (ja) ホログラム記録再生方法、ホログラム記録再生装置、ホログラム記録方法、及びホログラム記録装置
CN100472615C (zh) 用于记录和再生光信息的装置和方法
US8000207B2 (en) Method for reproducing hologram
JP2010135054A (ja) ホログラフィック情報記録方法及びホログラフィック情報記録/再生装置
JP2007114388A (ja) ホログラム記録再生装置及びホログラム記録再生方法
JP4132715B2 (ja) ホログラフィーデジタルデータ記憶システム
JP6037311B2 (ja) ホログラム再生方法、光位相強度変換方法、暗号化位相変調信号の復号方法、ホログラム記録再生装置、および、光位相強度変換器
JP5100729B2 (ja) ホログラム記録再生システムのノイズ測定方法
JP4128964B2 (ja) 記録再生装置
JP2005235312A (ja) 記録再生装置
KR20090017387A (ko) 홀로그래픽 정보 저장매체와, 이를 이용한 홀로그래픽 정보기록/재생 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11794727

Country of ref document: US

Ref document number: 2007501508

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05800366

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5800366

Country of ref document: EP