JPWO2005098552A1 - ホログラム再生装置およびホログラム再生方法 - Google Patents

ホログラム再生装置およびホログラム再生方法 Download PDF

Info

Publication number
JPWO2005098552A1
JPWO2005098552A1 JP2006511983A JP2006511983A JPWO2005098552A1 JP WO2005098552 A1 JPWO2005098552 A1 JP WO2005098552A1 JP 2006511983 A JP2006511983 A JP 2006511983A JP 2006511983 A JP2006511983 A JP 2006511983A JP WO2005098552 A1 JPWO2005098552 A1 JP WO2005098552A1
Authority
JP
Japan
Prior art keywords
light beam
light
reproduction
hologram
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006511983A
Other languages
English (en)
Inventor
橘 昭弘
昭弘 橘
伊藤 善尚
善尚 伊藤
小笠原 昌和
昌和 小笠原
田中 覚
覚 田中
窪田 義久
義久 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Publication of JPWO2005098552A1 publication Critical patent/JPWO2005098552A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

小型化が可能なホログラム再生装置を提供する。本発明のホログラム再生装置は、可干渉性の参照光ビームと記録情報に応じて空間的に変調した信号光ビームとを略同一の光軸で記録媒体に照射して該参照光ビームと該信号光ビームとの干渉による回折格子の領域を記録して得られる記録済み記録媒体から該記録情報を再生する。該ホログラム再生装置は、可干渉性の光ビームを出射する光源部と、該光ビームを該記録媒体の該回折格子の領域に照射する光ビーム照射部と、該光ビームを該回折格子の領域に照射することによって再生される再生光ビームを集束位置に向けて集光する集光部と、該集束位置に設けられて該再生光ビームからそのフーリエ0次成分と該再生光ビームから回折光成分とを分離する入射光処理部と、該回折光成分から該記録情報を検出する検出部と、を有する。

Description

本発明はホログラフィックメモリを利用するホログラム再生方法及び光情報再生装置に関する。
ホログラムの原理を利用したデジタル情報記録システムとして、体積ホログラフィック記録システムが知られている。このシステムの特徴は、記録情報をフォトリフラクティブ材料などの感光材料からなる記録媒体に屈折率の変化として記録することである。
従来のホログラム記録再生方法の1つにフーリエ変換を用いて記録再生する方法がある。
図1に示すように、従来の4f系ホログラム記録再生装置において、レーザ光源LDから発せられたレーザ光ビーム1は、ビームスプリッタ2において光ビーム1aと光ビーム1bとに分割される。光ビーム1aは、ビームエキスパンダBXでビーム径を拡大されて、平行光として、透過型のTFT液晶表示装置(LCD)のパネルなどの空間光変調器SLMに照射される。空間光変調器SLMは、エンコーダ3で信号変換された記録すべき情報を電気信号として受け取って、2次元データすなわち平面上に明暗の2次元ドットパターンなどの記録情報を形成する。光ビーム1aは、空間光変調器SLMを透過すると、空間的に光変調されて、データ信号成分を含む信号光ビームとなる。ドットパターン信号成分を含んだ信号光ビーム1aは、その焦点距離fだけ離しておいたフーリエ変換レンズ4を通過してドットパターン信号成分がフーリエ変換されて、記録媒体5内に集光される。一方、ビームスプリッタ2において分割された光ビーム1bは、参照光としてミラー6、7によって記録媒体5内に導かれて、信号光ビーム1aの光路と記録媒体5の内部で交差し干渉して光干渉パターンを形成し、光干渉パターン全体を屈折率の変化などの回折格子として記録する。
このように、コヒーレントな平行光で照明されたドットパターンデータからの回折光をフーリエ変換レンズで結像し、その焦点面すなわちフーリエ面上の分布に直してフーリエ変換の結果の分布をコヒーレントな参照光と干渉させてその干渉縞を焦点近傍の記録媒体に記録する。1ページ目の記録が終了したら、回動ミラー7を所定量回転し、かつ、その位置を所定量平行移動させ記録媒体5に対する参照光ビーム1bの入射角度を変化させ、2ページ目を同じ手順で記録する。このように逐次記録を行うことにより角度多重記録を行う。
一方で、再生時には逆フーリエ変換を行いドットパターン像を再生する。情報再生においては、図1に示すように、例えば、空間光変調器SLMによって信号光ビーム1aの光路を遮断して、参照光ビーム1bのみを記録媒体5へ照射する。再生時には、再生するページを記録した時の参照光ビームと同じ入射角度になるように、ミラーの位置と角度をミラーの回動と直線移動を組み合わせで変化させ制御する。参照光ビーム1bが照射された記録媒体5の信号光ビーム1aの入射側の反対側には、記録された信号光を再現した再生波が現れる。この再生波を逆フーリエ変換レンズ8に導いて、逆フーリエ変換するとドットパターン信号を再現することができる。さらに、このドットパターン信号を焦点距離位置の像検出センサ9によって受光して、電気的なデジタルデータ信号に再変換した後、デコーダ10に送ると、元のデータが再生される。このようにして、数mm角程度の体積中に多重記録を行なっていた(特開2001−184637号公報)。
上述の多重記録の方式は回動ミラー7等の正確な制御が必要であると共に、装置の小型化を図りにくいという問題点がある。そこで、球面波を用いて、記録媒体と記録光学系を平行移動する事で多重記録を行う方法が提案されており(D.Psaltis,M.Levene,A.Pu,G.Barbastathis and K.Curtis;″Holographic storage using shift multiplexing″,OPTICS LETTERS,Vol.20,No.7,(April 1,1995)p.782−784)、図2はこうした原理を用いて空間多重を行い、更に参照光ビームと信号光ビームを同軸にした構成を示している。
図2に示す如き従来のホログラム記録装置は、可干渉性の光ビーム1を出射するレーザ光源LDとビームエキスパンダBXと第1ハーフプリズムを有する。第1ハーフミラープリズムHP1は入射した光ビーム1を当該ビームの光軸と同一の方向に透過しかつ当該光軸に対して垂直の方向に反射して光ビームを分離する。
第1ハーフミラープリズムHP1を透過した光ビームは信号用光ビームとなり、空間光変調器SLMに入射するように照射される。信号用光ビームは、データが表示されている空間光変調器SLMを通過すると光変調されて、データをドットマトリクス成分として含む信号光ビーム1aとなる。信号光ビーム1aは、第2ハーフミラープリズムHP2に入射するように照射される。
第1ハーフミラープリズムHP1によって反射された参照光ビーム1bは、第1ミラーM1および第2ミラーM2によって反射されて、第2ハーフミラープリズムHP2に入射する。
第2ハーフミラープリズムHP2は、空間光変調器SLMからの信号光ビーム1aを透過し、第2ミラーM2からの参照光ビーム1bを当該ビームの光軸に対して垂直な方向、すなわち信号光ビーム1aと同一の進行方向に向けて反射する。
第2ハーフミラープリズムHP2からの信号光ビーム1aおよび参照光ビーム1bの混合光ビームは、フーリエ変換レンズ4に照射される。フーリエ変換レンズ4は、信号光ビーム1aのドットマトリクス成分をフーリエ変換し、ホログラム記録媒体5に焦点を結ぶように集光する。
再生時には、上述の図1の従来例と同様に空間光変調器SLMによって信号光ビーム1aの光路を遮断して、記録媒体に参照光のみを照射することにより、記録媒体中に形成されている回折格子からの再生光を逆フーリエ変換レンズ8に導いてこれを受光し、元のデータを再生する。この構成には、媒体を平行移動するのみで多重記録が行えるので、板状の記録媒体、特に円盤状の記録媒体形状に適用し易いという利点がある。しかしながら、この構成の場合、情報の再生時において、参照光の回折されなかった成分と回折格子からの回折光成分とが同じ光軸に沿って伝搬することになり、更に、一般的に回折格子からの回折光の強度と比較して、参照光の回折されなかった成分の強度は大きい。そのため再生信号の読み取り性能が劣化してしまう問題がある。
そこで、本発明の解決しようとする課題には、小型化が可能なホログラム記録媒体のホログラム再生方法並びにホログラム再生装置を提供することが一例として挙げられる。
本発明のある特徴によるホログラム再生装置は、可干渉性の、参照光成分と記録情報に応じて空間的に変調された信号光成分とを略同一の光軸で含む記録光ビームを記録媒体に照射して該参照光成分と該信号光成分との干渉を記録した回折格子の領域から該記録情報を再生するホログラム再生装置であって、可干渉性の光ビームを出射する光源部と、該光ビームを該記録媒体の該回折格子の領域に照射する光ビーム照射部と、該光ビームを該回折格子の領域に照射することによって再生される再生光ビームを集束位置に向けて集光する集光部と、該集束位置に設けられて該再生光ビームのフーリエ0次成分と該再生光ビームの回折光成分とを分離する入射光処理部と、該回折光成分から該記録情報を検出する検出部と、を含むことを特徴とする。
本発明の別の特徴によるホログラム再生方法は、可干渉性の、参照光成分と記録情報に応じて空間的に変調された信号光成分とを略同一の光軸で含む記録光ビームを記録媒体に照射して該参照光成分と該信号光成分との干渉を記録した回析格子の領域から該記録情報を再生するホログラム再生方法であって、可干渉性の光ビームを該記録媒体の該回折格子の領域に照射する照射工程と、該照射工程によって再生される再生光ビームを集束位置に向けて集光する集光工程と、該集束位置に設けられた入射光処理部によって該再生光ビームのフーリエ0次成分と該再生光ビームの回折光成分とを分離する入射光処理工程と、該回折光成分から該記録情報を再生する再生工程と、を含むことを特徴とする。
図1は、従来のホログラム記録再生システムを示す概略構成図である。
図2は、従来のホログラム記録再生システムを示す概略構成図である。
図3は、本発明に使用されるホログラム記録媒体に情報を記録するホログラム記録装置を説明する概略構成図である。
図4は、本発明によるホログラム再生装置の実施例を説明する概略構成図である。
図5は、本発明の実施例のホログラム再生装置に使用される入射光処理部の動作を説明するグラフ及び線図である。
図6は、本発明によるホログラム再生装置の変形例を説明する概略構成図である。
図7は、本発明によるホログラム再生装置の変形例を説明する概略構成図である。
図8は、本発明によるホログラム再生装置の変形例を説明する概略構成図である。
図9は、本発明の実施例のホログラム再生装置に使用される入射光処理部の動作を説明するグラフ及び線図である。
図10は、本発明によるホログラム再生装置の変形例を説明する概略構成図である。
図11は、本発明によるホログラム再生装置の変形例を説明する概略構成図である。
図12は、本発明によるホログラム再生装置の変形例を説明する概略構成図である。
図13は、本発明によるホログラム再生装置に使用される入射光処理部を説明するグラフおよび線図である。
図14は、本発明によるホログラム再生装置の変形例を説明する概略構成図である。
図15は、本発明によるホログラム再生装置の変形例を説明する概略構成図である。
図16は、本発明によるホログラム再生装置の変形例を説明する概略構成図である。
図17は、本発明によるホログラム再生装置の変形例を説明する概略構成図である。
図18は、本発明に使用されるホログラム記録媒体に情報を記録するホログラム記録装置の変形例を説明する概略構成図である。
本発明によるホログラム再生方法およびホログラム再生装置について添付図面を参照しつつ以下に説明する。
<ホログラム記録媒体>
本発明のホログラム再生方法およびホログラム再生装置に使用されるホログラム記録媒体は、可干渉性の参照光成分と記録情報に応じて空間的に変調された信号光成分とを略同一の光軸で含む記録光ビームを記録媒体に照射して該参照光成分と該信号光成分との干渉による回折格子の領域を記録した記録媒体部を含む。
該記録媒体部は光透過性の感光材料からなる。該感光材料は、光伝導性と電気光学効果(印加電場の1次項に比例した屈折率変化を示す)とを持ち、ドナー準位とアクセプター準位がバンドギャップの深いレベルに存在するような材料いわゆるフォトリフラクティブ材料や、ホールバーニング材料、フォトクロミック材料、フォトポリマー材料などが用いられる。すなわち、該感光材料は光強度分布を保存できる材料が用いられる。フォトリフラクティブ材料は化学反応などを用いずに内部に屈折率格子を書き込むことができる故、可逆的に書き換え可能なメモリに適している。フォトリフラクティブ材料には、半導体材料では、AlGaAs/GaAs、InGaN/InGaN量子井戸など、誘電体材料ではLiNbO3など、有機材料ではPVK(ポリビニルカルバゾール)/TNF(トリニトロフルオレノン)などを含む電荷移動錯体系有機感光材料(有色のものも含む)などがある。フォトポリマー材料には例えばDuPont社のOmniDexなどがある。
上記の如き記録媒体部を含むホログラム記録媒体には、例えば参照光ビームと記録されるべき情報が担持された信号光ビームとを照射することによって生じる光干渉分布に対応した回折格子の領域を記録することによって、記録情報が記録される。例えば図3に示す如きホログラム記録装置によって、当該ホログラム記録媒体に記録情報が記録される。
ホログラム記録装置は、可干渉性の光ビームを出射するレーザ光源LDを含む。レーザ光源LDには、例えば近赤外レーザ光波長850nmのDBR(Distributed Bragg Reflector)レーザが用いられる。
レーザ光源LDからは光ビーム11が出射され、光ビーム11の光路上には、シャッタSHs、ビームエキスパンダBXが配置されている。シャッタSHsはコントローラ(cont.)に制御され、光ビーム11が通過する時間、すなわち後述する記録媒体部への光ビームの照射時間を制御する。ビームエキスパンダBXは、シャッタSHsを通過した光ビーム11の径を拡大して平行光線とする。
ビームエキスパンダBXによって平行光線にされた光ビーム11は第1ハーフミラープリズムHP1に入射し、第1ハーフミラープリズムHP1は入射した光ビーム11を当該ビームの光軸と同一の方向に透過しかつ当該光軸に対して垂直の方向に反射して光ビームを分離する。
第1ハーフミラープリズムHP1を透過した光ビームは信号用光ビームとなり、空間光変調器SLMに入射するように照射される。空間光変調器SLMは、エンコーダ12から供給される記録されるべき記録データに対応する電気的なデータ(2次元ドットパターンデータ)を受けて、明暗のドットマトリクス信号を表示することができる。信号用光ビームは、データが表示されている空間光変調器SLMを通過すると光変調されて、データをドットマトリクス成分として含む信号光ビーム11aとなる。信号光ビーム11aは、第2ハーフミラープリズムHP2に入射するように照射される。
第1ハーフミラープリズムHP1によって反射された参照光ビーム11bは、第1ミラーM1および第2ミラーM2によって反射されて、第2ハーフミラープリズムHP2に入射する。
第2ハーフミラープリズムHP2は、空間光変調器SLMからの信号光ビーム11aを透過し、第2ミラーM2からの参照光ビーム11bを当該ビームの光軸に対して垂直な方向、すなわち信号光ビーム11aと同一の進行方向に向けて反射する。従って、第2ハーフミラープリズムHP2は、信号光ビーム11aと参照光ビーム11bとを合流させる合流部となっている。
第2ハーフミラープリズムHP2からの信号光ビーム11aおよび参照光ビーム11bの混合光ビームは、フーリエ変換レンズ13に照射される。フーリエ変換レンズ13は、信号光ビーム11aのドットマトリクス成分をフーリエ変換するとともに、ホログラム記録媒体14の記録媒体部(図示せず)近傍に焦点を結ぶように集光する。図3の例では、記録媒体14の後方に焦点を結ぶように描いてあるが、記録媒体の前方で焦点を結ぶようにしても良い。また、記録媒体部(図示せず)の厚さが十分なものであれば、その内部で焦点を結ぶようにしても良い。なお、シャッタSHsが開いたとき、フーリエ変換レンズ13から、信号光ビーム11aおよび参照光ビーム11bが該記録媒体部の入射面に所定入射角度(例えば零度)で照射されるようにホログラム記録媒体14が配置されている。また、空間光変調器SLMは、フーリエ変換レンズ13の焦点距離位置に配置されている。なお、ホログラム記録媒体14はこれを移動させる支持部である可動ステージ15上に装着されており、可動ステージ15を動作せしめてホログラム記録媒体に対する参照光ビームと信号光ビームとの照射位置を逐次変更することによって、複数の回折格子の領域を記録することができる。なお、可動ステージ15はコントローラに接続されており、コントローラから制御信号を受信してホログラム記録媒体の位置を制御することができる。
上記の如きホログラム記録装置におけるホログラム記録媒体に対する情報の記録は以下のように行う。レーザ光源LDから出射された光ビーム11は、開状態のシャッタSHsとビームエキスパンダBXとを透過して、第1ハーフミラープリズムHP1に入射する。第1ハーフミラープリズムHP1は、光ビーム11の光軸と同一の方向に進行する信号用光ビームと当該光軸に垂直な方向へ進行する参照光ビームとに分離する。
分離前の光ビーム11の光軸と同一の方向に進行する第1ハーフミラープリズムHP1透過後の信号用光ビームは、エンコーダ12から供給される2次元ドットパターンデータを受けて明暗のドットマトリクス信号を表示している空間光変調器SLMを透過する。空間光変調器SLMを透過した該信号用光ビームは光変調されて、データをドットマトリクス成分として含む信号光ビーム11aとなる。信号光ビーム11aは、第2ハーフミラープリズムHP2に入射する。
分離前の光ビーム11の光軸に垂直な方向へ進行する参照光ビーム11bは第1ミラーM1および第2ミラーM2によって垂直方向に反射されて、第2ハーフミラープリズムHP2に入射する。
第2ハーフミラープリズムHP2は、信号光ビーム11aと参照光ビーム11bとを略同一の光軸に沿って進行するように合流せしめて、フーリエ変換レンズ13に信号光ビームおよび参照光ビームを照射する。フーリエ変換レンズ13は、ホログラム記録媒体14の記録媒体部(図示せず)に信号光ビームおよび参照光ビームを照射し、かつ該記録媒体部内で信号光ビームおよび参照光ビームによる光干渉パターンを形成する。該光干渉パターンの光の強度分布に対応する屈折率の変化などの回折格子の領域が該記録媒体部内に記録される。
上記の如きホログラム記録装置によって記録されたホログラム記録媒体の再生装置および再生方法について、以下に記載する。
<実施例1>
図4に示す如く、ホログラム再生装置16aは、可干渉性の光ビームを出射するレーザ光源LDを含む。レーザ光源LDは、ホログラム記録媒体から記録情報を再生できる光の波長であれば良く、例えば上述したホログラム記録媒体にホログラムを記録した際に使用した光の波長と同一のレーザ光を発する光源としても良い。レーザ光源LDとして、例えば近赤外レーザ光波長850nmのDBR(Distributed Bragg Reflector)レーザが使用できる。
レーザ光源LDからは光ビーム17が出射され、光ビーム17の光路上には、シャッタSHs、ビームエキスパンダBX、第1対物レンズ18aおよびホログラム記録媒体14が順に配置されている。
シャッタSHsはコントローラ(cont.)に制御され、該コントローラによって光ビームが通過する時間、すなわち後述するホログラム記録媒体への光ビームの照射時間が制御される。
ビームエキスパンダBXはシャッタSHsを通過した光ビーム17の径を拡大して平行光線とする。
第1対物レンズ18aは、ホログラム記録媒体14の記録媒体部(図示せず)の装着位置に対して、参照光ビームとなる光ビーム17の焦点が記録時の参照光ビームと同じになるように集光させる。なおシャッタSHs、ビームエキスパンダBXおよび第1対物レンズ18aが光ビーム照射部を形成している。
ホログラム記録媒体14は、上述したホログラム記録装置などによって記録媒体部(図示せず)内に回折格子の領域として記録情報を記録しており、かつ当該媒体の位置を移動させる支持部である可動ステージ15上に装着されている。該記録媒体部へ光ビーム照射部からの参照光ビームを照射することによって、参照光ビームの入射側とは反対の側から、記録された回折格子に対応した再生光ビーム19が導出される。再生光ビームには、記録された回折格子から再現された回折光の他に、参照光の可折されなかった成分が含まれている。(本願明細書では、この参照光の回折されなかった成分を0次光、或いは0次光成分と呼ぶ。)再生光ビーム19の光路上に第1逆フーリエ変換レンズ20aと第2対物レンズ18bが順に配置されており、これらが再生光案内部を構成している。第1逆フーリエ変換レンズ20aは、フーリエ変換レンズである第1対物レンズ18aと共軸に配置されている。
第2対物レンズ18bは、再生光ビームを集光しフーリエ変換レンズとして機能する。集光位置には、入射光ビームの光の強度に依存して反射率、吸収率及び透過率の少なくとも1つの特性値が変化する感光材料からなる光学素子を含む入射光処理部21が配置されている。該感光材料としては、光ビームの照射時の透過率が非照射時の透過率より低い特性値を有する感光性の透過材料が使用される。
感光性の当該透過材料としては、酸化物材料、フォトクロミック材料、量子井戸構造を備えた量子閉じ込め層およびサーモクロミック材料などがある。
酸化物材料は、通常(非照射又は所定光強度未満の照射時)は透明であるものの、光ビームの中心の温度が高く、一定の温度を越えた領域で還元反応を生じて金属粒子が析出して不透明に変わり、温度が下がると再び酸化して透明な酸化化合物に戻る。例えば、酸化銀などが挙げられる。
フォトクロミック材料は、通常(非照射又は所定光強度未満の照射時)は透明だが、照射光ビーム(強度が強い中心部分)の吸収により不安定な不透明状態へ変化し、光ビームの強度が弱くなれば元の透明な状態に戻る。
量子井戸構造を備えた量子閉じ込め層は、量子閉じ込め効果により光ビームの強度が強い中心部分では反射率が高くなるが、光ビーム強度が弱い周囲領域では反射率が低く抑えられる。
サーモクロミック材料の一部は、通常(非照射又は所定光強度未満の照射時)は透明であるものの、一定の温度を越えた領域だけが不透明になり、温度が下がれば元の透明な状態に戻る。
上記の如き特性の1つを有する材料からなる光学素子を含む入射光処理部21は、入射光ビームの強度が強い箇所において入射光処理部の反射率もしくは吸収率が通常より高くなるので、入射光ビームの強度が強い箇所での透過強度が減少する。かかる作用を用いることによって、入射光処理部21は再生光ビーム中の0次光と回折光とを分離することに貢献できる。なお、上記の如く入射光ビームの強度が弱い箇所において入射光を透過せしめる入射光処理部を透過タイプの入射光処理部と称する。
入射光処理部を透過した光の光路上に第2逆フーリエ変換レンズ20bと像検出センサ22が順に配置されている。第2逆フーリエ変換レンズ20bは、第2対物レンズ18bと共軸に配置されている。また、像検出センサ22は、第2逆フーリエ変換レンズ20bの焦点距離位置に配置され、電荷結合素子CCDや相補型金属酸化膜半導体装置などのアレイなどから構成されている。像検出センサ22にはデコーダ23が接続されており、デコーダ23はコントローラに接続されている。
上記の如きホログラム再生装置16aにおいて、ホログラム記録媒体に記録された記録情報を再生する場合、レーザ光源LDからの光ビーム17をシャッタSHs、ビームエキスパンダBX、第1対物レンズ18aを介してホログラム記録媒体14の記録媒体部(図示せず)に照射する照射工程が実施される。かかる照射工程において、参照光ビームが照射された該記録媒体部から、回折格子に対応した再生光ビーム(0次光および再現された回折光)が生成される。
該再生光ビームを第1逆フーリエ変換レンズ20a及び第2対物レンズ18bに導き、さらに第2対物レンズ18bにて集光位置に集光する集光工程が実施される。かかる集光工程において集光された再生光ビームは、該集束位置において入射光処理部21を照射する。
集光工程後、入射光処理部21を用いて再生光ビームの0次光と回折光とを分離する入射光処理工程が行われる。ここで、照射時の透過率が非照射時の透過率より低い特性値(非照射時の透過率が照射時の透過率より高い特性値)を有する感光材料からなる透過タイプの入射光処理部の再生時の動作を図5(a)(b)に示す。
再生光ビーム照射前の入射光処理部では(図5(a))、入射光処理部21は一様に高い透過率を有している。
フーリエ変換レンズとして働く第2対物レンズ18bにより集束された再生光ビーム(0次光と回折光)の集束位置にある入射光処理部21の部分では、再生光ビームはフーリエ成分に分解されている。再生光ビームの内の無変調の成分、即ち参照光(成分)はフーリエ0次成分であるので、入射光処理部21の中心部分R1(図5(b))に集束し、光強度の高い部分を形成する。再生光ビームの内の変調された成分は、入射光処理部21の中心部分R1の外側に分布し、光強度はあまり高くならない。入射光処理部21の透過率が減少する閾値THを、R1部分の光強度と周辺の光強度の間に設定すれば無変調の成分、即ち参照光成分のみを減少させることができる。上記の如き入射光処理工程が行われた後、入射光処理部を透過した再生光ビームの回折光が図4に示す第2逆フーリエ変換レンズ20bを介して像検出センサ22に導かれて、記録情報の再生を行う再生工程が行われる。像検出センサ22は、再生光ビームの回折光によるドットパターン像を受光して、電気的なデジタルデータ信号に変換した後、デコーダ23に送ると、元の記録データが再生される。
上記の如く、入射光処理部21の動作により、像検出センサ22で再生に不要な0次光の光量を低減せしめることが可能となり、再生情報の検出が容易になる。
上記実施例では、非照射時の透過率が照射時の透過率より高い特性値を有する感光材料を入射光処理部に用いているものの、該感光材料が光透過性でありかつ非照射時と比較して照射時の反射率及び吸収率の少なくとも1つが上昇する材料も使用できることは明らかである。
<実施例2A>
実施例1は入射光を透過せしめる形態のホログラム記録媒体(以下、透過タイプのホログラム記録媒体と称する)に適用したホログラム再生装置を示しているものの、これに限定されず、入射光を反射せしめる形態のホログラム記録媒体(以下、反射タイプのホログラム記録媒体と称する)に適用したホログラム再生装置においても同等の効果が発揮できる。
図6に示す如く、反射タイプのホログラム記録媒体に適用できるホログラム再生装置16bは、可干渉性の光ビームを出射するレーザ光源LDと、シャッタSHs、ビームエキスパンダBX、第1ハーフミラープリズムHP1及び第1対物レンズ18aからなる光ビーム照射部と、が同一光軸上に配置されている。
シャッタSHsはコントローラに制御され、レーザ光源LDからの光ビームが通過する時間を制御する。ビームエキスパンダBXはシャッタSHsを通過した光ビーム17の径を拡大して平行光線とする。第1ハーフミラープリズムHP1は、レーザ光源LDからの光ビームを透過させて該光ビームを第1対物レンズ18aに投射する。
第1対物レンズ18aは当該光ビームを集光し、参照光ビームとする。参照光ビームの集束位置にはホログラム記録媒体14が配置されている。ホログラム記録媒体14は、回折格子の領域として記録情報が記録されている記録媒体部(図示せず)と光反射材料からなる反射部(図示せず)とを有しており、かつ当該媒体の位置を移動させる支持部である可動ステージ15上に装着されている。
該記録媒体部は参照光ビームが照射されることによって、該回折格子の領域に対応した再生光ビーム(0次光および再現された回折光)を生成する。生成された再生光ビームは、参照光ビームの入射側とは反対側に設けられた該反射部によって反射されて、参照光ビームの入射方向とは反対方向に進行する。かかる再生光ビームは、第1対物レンズ18aおよび、第1ハーフミラープリズムHP1に案内される。このとき、再生光ビームに対して第1対物レンズ18aは逆フーリエ変換レンズとして機能する。
第1ハーフミラープリズムHP1は、かかる再生光ビームを垂直方向、すなわち再生光ビームの進行方向に対して垂直方向に反射して、参照光ビームの光路から分離する。当該再生光ビームは、第2対物レンズ18bによって再度集光される。上記の如く、第1対物レンズ18a、第1ハーフミラープリズムHP1および第2対物レンズ18bは、再生光案内部を構成しており、光ビーム照射部を構成する第1対物レンズ18aおよび第1ハーフミラープリズムHP1は共通となっている。
第2対物レンズ18bの集光位置に透過タイプの入射光処理部21が配置されており、入射光処理部21を透過した光の光路上に第1逆フーリエ変換レンズ20aと像検出センサ22が順に配置されている。第1逆フーリエ変換レンズ20aは、第2対物レンズ18bと共軸に配置されている。また、像検出センサ22は、第1逆フーリエ変換レンズ20aの焦点距離位置に配置されて、第1逆フーリエ変換レンズによって逆フーリエ変換された光を受光する。像検出センサ22にはデコーダ23が接続されており、デコーダ23はコントローラに接続されている。
上記の如き構成のホログラム再生装置16bにおける記録情報データの再生方法は、まずレーザ光源LDからの光ビームをシャッタSHs、ビームエキスパンダBX、第1ハーフミラープリズムHP1、第1対物レンズ18aを介してホログラム記録媒体14に照射する照射工程を含む。かかる照射工程において、参照光が照射されたホログラム記録媒体から、記録媒体に記録された回折格子に対応した再生光ビーム(0次光および再現された回折光)が生成される。該再生光ビームがホログラム記録媒体14の参照光ビーム17の入射側とは反対側に設けられた反射部(図示せず)において反射される。
照射工程後、当該再生光ビームは、第1対物レンズ18aに導かれて、第1ハーフミラープリズムHP1に案内される。第1ハーフミラープリズムHP1は該再生光ビームを垂直方向に反射する。当該再生光ビームが第2対物レンズ18bによって透過タイプの入射光処理部21に集光されて集光工程が行われる。
透過タイプの入射光処理部21は、再生光の0次光が照射されている部分の透過率を低減させて0次光を遮断しつつ回折光を透過させて、0次光と回折光とを分離する入射光処理工程が行われる。0次光と分離された再生光の回折光は、第1逆フーリエ変換レンズ20aを介して像検出センサ22に導かれる。像検出センサ22が再生光ビームの回折光によるドットパターン像を受光して、電気的なデジタルデータ信号に再変換した後、デコーダ23に送ると、元のデータが再生される。
<実施例2B>
実施例2Bのホログラム再生装置は、図7に示すように、図6に示されたホログラム再生装置16bの第1ハーフミラープリズムHP1を偏光ビームスプリッタPBSに置換し、偏光ビームスプリッタPBSと第1対物レンズ18aとの間に1/4波長板λ/4を設けた以外、上述の実施例2Aと同一の構成である。再生工程も同一である。
偏光ビームスプリッタPBSと1/4波長板λ/4とからなる参照光ビームの光路から再生光ビームを分離する分離部を設けることにより、光ビームの利用効率が向上する。
<実施例3A>
実施例1、2Aおよび2Bは透過タイプの入射光処理部を用いたホログラム再生装置を示しているものの本発明のホログラム再生装置はこれに限定されず、入射光ビームの強度が強い箇所において入射光処理部の反射率が非照射時に比べて低くなる反射タイプの入射光処理部を用いることとしても良い。
例えば図8に示すホログラム再生装置16dは、実施例1にて説明したホログラム再生装置16aと同様の、可干渉性の光ビームを出射するレーザ光源LDと、シャッタSHs、ビームエキスパンダBXおよび第1対物レンズ18aからなる光ビーム照射部と、透過タイプのホログラム記録媒体14と、を同一光路上に配置している。さらに当該光路上に、第1逆フーリエ変換レンズ20a、第1ハーフミラープリズムHP1、第2対物レンズ18b、反射タイプの入射光処理部21が配置されている。なお第1逆フーリエ変換レンズ20aは、第1対物レンズ18aと共軸に配置されている。
第1ハーフミラープリズムHP1は、第1逆フーリエ変換レンズ20a側から進行する光ビームを透過し、第2対物レンズ18b側から進行する光ビームを垂直方向に反射するように配置されている。また、第1ハーフミラープリズムHP1によって反射された光を受光できるように像検出センサ22が配置されている。像検出センサ22はデコーダ23に接続されており、デコーダ23はコントローラへ接続されている。
反射タイプの入射光処理部21は、第2対物レンズ18bによって集光される集光位置に配置されており、入射光ビームの光の強度に依存して反射率、吸収率及び透過率の少なくとも1つの特性値が変化する感光材料からなる光学素子を含む。感光材料としては、光ビームの照射時の反射率が非照射時の反射率より低い特性値を有する感光性の反射材料が使用される。
感光性の反射材料としては、相変化材料、半導体微粒子材料及び逆フォトクロミック材料、サーモクロミック材料などがある。
相変化材料は、通常(非照射又は所定光強度未満の照射時)は不透明であるが、光ビーム中心の温度が高く、一定の温度を越えた領域で相変化して透明になり、温度が下がれば再び相変化して元の不透明な状態に戻る。例えばアンチモンなどが挙げられる。
半導体微粒子材料は、通常(非照射又は所定光強度未満の照射時)は不透明だが、光ビーム中心の温度が高く、一定の温度を越えた領域だけ透明になり、温度が下がれば元の不透明な状態に戻る。
逆フォトクロミック材料は、通常(非照射又は所定光強度未満の照射時)は不透明だが、照射光ビーム(強度が強い中心部分)の吸収により不安定な透明状態へ変化し、光ビームの強度が弱くなれば元の不透明な状態に戻る。
サーモクロミック材料の一部は、通常(非照射又は所定光強度未満の照射時)は不透明だが、光ビーム中心の温度が高く、一定の温度を越えた領域だけが透明になり、温度が下がれば元の不透明状態に戻る。
かかる感光性の反射材料を含む入射光処理部21は、入射光ビームの強度が強い箇所において入射光処理部Rの透過率が通常より高くすることによって、光ビームの反射強度を減少せしめる。かかる作用を用いることによって、反射タイプの入射光処理部は再生光ビームの0次光と回折光とを分離することに貢献できる。
上記の如きホログラム再生装置16dにおいて、ホログラム記録媒体に記録された情報データを再生する方法は、レーザ光源LDからの光ビーム17をシャッタSHs、ビームエキスパンダBX、第1対物レンズ18aを介してホログラム記録媒体14の記録媒体部(図示せず)に照射する照射工程を含む。参照光ビームが照射されたホログラム記録媒体から、記録された回折格子に対応した再生光ビーム19が生成されて導出される。
再生光ビーム19を第1逆フーリエ変換レンズ20aに導いて逆フーリエ変換し、第1ハーフミラープリズムHP1を透過させた後に、第2対物レンズ18bによって集光して入射光処理部21を照射する集光工程を行う。集光工程後、入射光処理部21を用いて再生光ビームの0次光と回折光とを分離する入射光処理工程が行われる。ここで、照射時の反射率が非照射時の反射率より低い特性値(非照射時の反射率が照射時の反射率より高い特性値)を有する感光材料からなる反射タイプの入射光処理部の再生時の感光材料の動作を図9(a)(b)に示す。
再生光ビーム照射前の入射光処理部21では(図9(a))、入射光処理部21は一様に高い反射率を有している。第2対物レンズ18bにより集束された再生光ビーム(0次光と回折光)の集束位置にある入射光処理部21の部分では、再生光ビームはフーリエ成分に分離されている。再生光ビームの内の無変調の成分、即ち参照光(成分)は、入射光処理部21の中心部分R1(図9(b))に集束し、光強度の高い部分を形成する。再生光ビームの内の変調された成分は、入射光処理部21の中心部分R1の外側に分布し、光強度はあまり高くならない。入射光処理部21の反射率が減少する閾値THを、R1部分の光強度と周辺の光強度の間に設定すれば無変調の成分、即ち参照光成分のみを減少させることができる。このようにして、回折光のみが反射され、第2対物レンズ18bと第1ハーフミラープリズムHP1を介して像検出センサ22に導かれる。このとき第2対物レンズ18bは逆フーリエ変換レンズとして働く。像検出センサ22が再生光ビームの回折光によるドットパターン像を受光して、電気的なデジタルデータ信号に再変換した後、デコーダ23に送ると、元のデータが再生される。上記の如き入射光処理部21の動作により、像検出センサ22で再生に不要な再生光の0次光の光量を低減せしめることが可能となり、再生情報の検出が容易になる。
この実施形態では、非照射時の反射率が照射時の反射率より高い特性値を有する感光材料を入射光処理部に用いているものの、該感光材料が反射性でありかつ非照射時と比較して照射時の透過率及び吸収率の少なくとも1つが上昇する材料も使用できることは明らかである。
<実施例3B>
実施例3Bのホログラム再生装置は、図10に示すように、図8に示されたホログラム再生装置16dの第1ハーフミラープリズムHP1を偏光ビームスプリッタPBSに置換し、偏光ビームスプリッタPBSと第2対物レンズ18bとの間に1/4波長板λ/4を設けた以外、上述の実施例3Aと同一の構成である。再生工程も同一である。
偏光ビームスプリッタPBSと1/4波長板λ/4とからなる再生光ビームの光路から再生光ビームの回折光を分離する分離部を設けることにより、光ビームの利用効率が向上する。
<実施例4A>
反射タイプのホログラム記録媒体と反射タイプの入射光処理部とを用いて構成されたホログラム再生装置の1例として、図11に示す如きホログラム再生装置16fがある。
ホログラム再生装置16fは、実施例2Aにて説明したホログラム再生装置16bと同様の、可干渉性の光ビームを出射するレーザ光源LDと、シャッタSHs、ビームエキスパンダBX、第1ハーフミラープリズムHP1および第1対物レンズ18aからなる光ビーム照射部と、反射タイプのホログラム記録媒体14と、を同一光路上に配置している。また、ホログラム再生装置16fは、第1ハーフミラープリズムHP1によって当該光路に対して垂直方向に反射された再生光ビームをさらに垂直方向に反射する第2ハーフミラープリズムHP2を含む再生光案内部を備えている。再生光案内部は、第2ハーフミラープリズムHP2によって反射された再生光を集光する第2対物レンズ18bと、第2対物レンズ18bによって集光される位置に配置された反射タイプの入射光処理部21と、反射タイプの入射光処理部21によって反射された再生光ビームの回折光を受光する像検出センサ22とを含む。なお再生光案内部において、再生光の回折光は、第2対物レンズ18bと第2ハーフミラープリズムHP2を透過して、像検出センサ22に受光される。
上記の如きホログラム再生装置16fにおいて、ホログラム記録媒体14に記録された情報データを再生する方法は、レーザ光源LDからの光ビームをシャッタSHs、ビームエキスパンダBX、第1ハーフミラープリズムHP1、第1対物レンズ18aを介して反射タイプのホログラム記録媒体部14に照射する照射工程を含む。ホログラム記録媒体部14は、参照光ビームが照射されることによって、記録された回折格子に対応した再生光ビーム(参照光および再現された回折光)を生成し、かつ参照光ビームの入射進行方向とは逆の進行方向へ該再生光ビームを導出する。該再生光ビームは第1対物レンズ18aおよび第1ハーフミラープリズムHP1に案内され、第1ハーフミラープリズムHP1により垂直方向に反射される。反射された再生光ビームは、第2ハーフミラープリズムHP2に入射され、第2ハーフミラープリズムHP2によって入射方向に対して垂直方向にさらに反射される。かかる再生光ビームは、第2対物レンズ18bによって集光される。集光位置に配置された反射タイプの入射光処理部21は再生光の0次光が照射されている部分の反射率を低減させて0次光を透過若しくは吸収しつつ回折光を反射させて、0次光と回折光を分離する入射光処理工程が行われる。反射された回折光は、第2対物レンズ18b、第2ハーフミラープリズムHP2を介して像検出センサ22に導かれる。像検出センサ22が再生光ビームの回折光によるドットパターン像を受光して、電気的なデジタルデータ信号に再変換した後、デコーダ23に送ると、元のデータが再生される。
<実施例4B>
実施例4Bのホログラム再生装置は、図12に示すように、図11に示されたホログラム再生装置16fの第1ハーフミラープリズムHP1を第1偏光ビームスプリッタPBS1に置換して第1偏光ビームスプリッタPBS1と第1対物レンズ18aとの間に1/4波長板λ/4を設けること、ならびに第2ハーフミラープリズムHP2を第2偏光ビームスプリッタPBS2に置換して第2偏光ビームスプリッタPBS2と第2対物レンズ18bとの間に1/4波長板λ/4を設けること以外、上述した実施例4Aのホログラム再生装置と同一の構成である。再生工程も同一である。
再生光ビームの光路上に偏光ビームスプリッタと1/4波長板とを設けることによって、光ビームの利用効率が向上して、像検出センサにおける再生光ビームの回折光の光量が上昇する。
実施例1乃至4Bに示したいずれの実施形態においても、入射光処理部は、光ビーム強度が高い領域において透過タイプの場合は透過率を低下させて、反射タイプの場合は反射率を低下させる動作をする。ホログラム記録媒体で記録情報に対応する信号を再生した再生光ビームの0次光と回折光は、入射光処理部へ照射される。このとき、再生光ビームの0次光と回折光との光強度差があり、すなわち、光強度は0次光の方が回折光よりも大きいことにより、入射光処理部は0次光と回折光とでは異なる作用をする。
透過タイプの入射光処理部の場合(実施例1、実施例2A、実施例2B)、入射光処理部では、0次光が照射された範囲は透過率が下がることで、逆フーリエ変換を行うレンズに到達する光量は低下する。一方、回折光で照射された範囲は透過率が高いままなので、ほとんど減衰せずに逆フーリエ変換を行うレンズに導かれる。
反射タイプの入射光処理部の場合(実施例3A、実施例3B、実施例4A、実施例4B)、入射光処理部では、0次光が照射された範囲は反射率が下がることで、逆フーリエ変換を行うレンズに到達する光量は低下する。一方、回折光で照射された範囲は反射率が高いままなので、ほとんど減衰せずに逆フーリエ変換を行うレンズに導かれる。
上記の如き入射光処理部の動作により、像検出センサで再生に不要な参照光の光量を低減せしめることが可能となり、再生情報の検出が容易になる。さらに、入射光処理部に予め画定された領域が無いので、微細構造の加工が必要なくなるとともに、境界での回折や散乱による再生信号へのノイズが減らせる。
<実施例5A>
上述した実施例の入射光処理部の代替として、再生光ビームの0次光を反射する反射部が設けられている入射光処理部が用いられても良い。
例えば図13(a)に示す如く、入射光処理部24aは、光を反射する光反射材料からなる円形の反射部25aと、反射部の周囲に形成された光を透過する透光性材料からなる透過部26aと、を含む。反射部25aの位置と大きさは、フーリエ変換された再生光の光量分布を用いて定められ、反射部25aは所定の光量以上の0次光を反射しかつ回折光によって照射されない大きさに対応している。かかる構成の入射光処理部24aを以下0次光反射タイプの入射光処理部と称する。
なお反射部25aの形状は、円形に限定されず、例えば、矩形、3角形、5角形、6角形、8角形としても良い。
上記の如き0次光反射タイプの入射光処理部を備えたホログラム再生装置は、入射光処理部の反射部の中心と入射光処理部に集光して入射する再生光ビームの光軸とを一致させる光軸合わせ(光軸に対して垂直な面内方向)と、反射部の中心に0次光を集光せしめる焦点合わせ(光軸に平行な方向)と、を行う手段を有することがより好ましい。すなわち、再生光ビームの0次光の光軸付近において0次光の光量は大である故、当該光軸およびその近傍の0次光を反射させて再生光の回折光と分離することによって、回折光に含まれる記録データの検出が容易になる。
0次光反射タイプの入射光処理部を備えたホログラム再生装置の1例が、図14に示されている。ホログラム装置16hは、以下の点を除いて実施例1に示すホログラム再生装置16aと略同様の構成を有する。すなわち、図4のホログラム再生装置16aとは、透過タイプの入射光処理部21を0次光反射タイプの入射光処理部24aに置換し、第1逆フーリエ変換レンズ20aと第2対物レンズ18bとの間に第1逆フーリエ変換レンズ20a側から入射する光を透過しかつ第2対物レンズ18b側から入射する光を垂直方向に反射する第1ハーフミラープリズムHP1と、第1ハーフミラープリズムHP1にて反射された光を受光する検出部27と、検出部27からの検出信号に基づいて入射光処理部の位置を移動せしめる第1駆動部28と、検出部27からの検出信号に基づいて第2対物レンズ18bと第2逆フーリエ変換レンズ20bとの位置を移動せしめる第2駆動部29a,29bと、が設けられている点において異なる。
検出部27は、電荷結合素子CCDや相補型金属酸化膜半導体装置などのアレイなどから構成されており、コントローラ(図示せず)中の検出信号処理回路に検出信号を供給する。
第1および第2駆動部28,29a,29bは該コントローラに接続されており、該検出信号に対応する駆動信号をコントローラから受信して、かかる駆動信号に応じて第1駆動部28は入射光処理部24を、第2駆動部29a,29bは第2対物レンズ18bと第2逆フーリエ変換レンズ20bとを、それぞれ移動せしめる。
検出部27、第1および第2駆動部28,29a,29bはサーボ機構を構成しており、入射光処理部において反射されかつ検出部27にて受光される0次光の光量が最大になるように、すなわち再生光ビームの0次光の光軸と入射光処理部の反射部(図示せず)の中心とが一致するように、第1駆動部28は入射光処理部24aを移動せしめ、第2駆動部29a,29bは第2対物レンズ18bと第2逆フーリエ変換レンズ20bとを移動せしめる。
上記の如き構成のホログラム再生装置16hにおける記録情報データの再生方法は、レーザ光源LDからの光ビームをシャッタSHs、ビームエキスパンダBX、第1対物レンズ18aを介してホログラム記録媒体14に照射する照射工程を含む。参照光ビームが照射されたホログラム記録媒体14から、ホログラム記録媒体の記録媒体部(図示せず)に記録された回折格子に対応した再生光ビーム(0次光および再現された回折光)が生成される。再生光ビーム生成後、この再生光ビームを第1逆フーリエ変換レンズ20aに導いて逆フーリエ変換し、第1ハーフミラープリズムHP1を透過させて、第2対物レンズ18bにて集束位置に集光する集光工程が行われる。集光工程後、集光された再生光ビームを入射光処理部24aに照射して、再生光ビームの0次光を入射光処理部24aの反射部(図示せず)において反射させ、再生光ビームの回折光を入射光処理部24aの透過部(図示せず)を透過させる、入射光処理工程が行われる。
入射光処理部24aの該反射部において反射された0次光は、第2対物レンズ18b、第1ハーフミラープリズムHP1の順に案内されて、第1ハーフミラープリズムHP1において再生光ビームの光軸から垂直方向に反射される。反射された0次光は検出部27に入射し、該0次光の光量が検出される。サーボ機構によって0次光の光量が最大になるように第1および第2駆動部28,29a,29bが制御されて、入射光処理部24aの位置が位置決めされる。
上述の如く入射光処理部24a、第2対物レンズ18bおよび第2逆フーリエ変換レンズ20bの位置決めがなされた後に、入射光処理部24aの該透過部を透過した再生光ビームの回折光は像検出センサ22に入射する。像検出センサ22が再生光ビームの回折光によるドットパターン像を受光して、電気的なデジタルデータ信号に再変換した後、デコーダ23に送ると、元のデータが再生される。
<実施例5B>
入射光処理部の反射部の中心と再生光の0次光の光軸との位置合わせは、入射光処理部に入射する再生光ビームの位置を検出することによって行うこととしても良い。
例えば、図15に示す如く、ホログラム再生装置16iは、以下の点を除いて実施例5Aに示すホログラム再生装置16hと略同様の構成を有する。すなわち、図14に示す如きホログラム再生装置16hとは、第1ハーフミラープリズムHP1に向かって第2対物レンズ18b側から入射して垂直方向に反射された光を検出する検出部27を省略して、第1ハーフミラープリズムHP1に向かって第1逆フーリエ変換レンズ20b側から入射して垂直方向に反射された光を集光するレンズ30と当該集光された光を検出する検出部27とを設ける、点において異なる。検出部27は、例えば光ディスクのピックアップに使用されている4分割ディテクターから構成されており、コントローラ(図示せず)中の検出信号処理回路に検出信号を供給する。
第1および第2駆動部28,29a,29bはコントローラに接続されており、該検出信号に対応する駆動信号をコントローラから受信して、かかる駆動信号に応じて第1駆動部28は入射光処理部24aを、第2駆動部29a,29bは第2対物レンズ18bと第2逆フーリエ変換レンズ20bとを、それぞれ移動せしめる。
検出部27、第1および第2駆動部28,29a,29bはサーボ機構を構成しており、再生光ビームの位置の検出は、非点収差法などの手段を利用する。これによって、入射光処理部24aの位置決めが行われる。
上記の如き構成のホログラム再生装置16iにおける記録情報データの再生方法は、レーザ光源LDからの光ビームをシャッタSHs、ビームエキスパンダBX、第1対物レンズ18aを介してホログラム記録媒体14に照射する工程を含む。参照光ビームをホログラム記録媒体14に照射することによって、ホログラム記録媒体14に記録された回折格子に対応した再生光ビーム(0次光および再現された回折光)が生成される。この再生光ビームを第1逆フーリエ変換レンズ20aに導いて逆フーリエ変換し、第1ハーフミラープリズムHP1に照射する。第1ハーフミラープリズムHP1は、入射した再生光ビームの入射光軸に対して垂直方向に反射する成分と、該光軸に沿って透過する成分とに分離する。
垂直方向に反射された再生光ビーム成分はレンズ30を介して検出部27に受光され、検出部27からの検出信号に基づいて再生光ビームの位置が検出される。かかる再生光ビームの位置に応じて、入射光処理部24aの位置が第1駆動部28によって、かつ第2対物レンズ18bと第2逆フーリエ変換レンズ20bの位置が第2駆動部29a,29bによって、それぞれ位置決めされる。
第1ハーフミラープリズムHP1を光軸に沿って透過した再生光ビーム成分は、位置決めされた第2対物レンズ18bによって集光される。集光された再生光ビームは入射光処理部24aに照射されて、再生光ビームの0次光は入射光処理部24aの反射部(図示せず)において反射され、再生光ビームの回折光は入射光処理部24aの透過部(図示せず)を透過する。すなわち、再生光ビームの0次光と回折光が、上述の如く位置決めされた入射光処理部24aで分離される。
入射光処理部24aの該透過部を透過した再生光ビームの回折光は、位置決めされた第2逆フーリエ変換レンズ20bを介して像検出センサ22に入射する。像検出センサ22は再生光ビームの回折光によるドットパターン像を受光して、電気的なデジタルデータ信号に再変換した後、デコーダ23に送ると、元のデータが再生される。
<実施例6A>
実施例5Aおよび5Bにて説明した0次光を反射する反射部を備えた入射光処理部の代替として、再生光ビームの0次光を透過する透過部が設けられている入射光処理部が用いられても良い。
例えば図13(b)に示す如く、入射光処理部24bは、光を透過する透光性材料からなる円形の透過部25bと、透過部の周囲に形成された光を反射する反射材料からなる反射部26bと、を含む。かかる構成の入射光処理部24bを以下0次光透過タイプの入射光処理部と称する。
0次光透過タイプの入射光処理部24bの透過部25bの位置および大きさは、実施例5Aにて説明した反射タイプの入射光処理部24aの反射部25aと同様に、フーリエ変換された再生光の光量分布を用いて定められる。また、透過部25bの形状は、円形に限定されず、例えば、矩形、3角形、5角形、6角形、8角形としても良い。
上記の如き0次光透過タイプの入射光処理部を備えたホログラム再生装置は、入射光処理部の透過部の中心と入射光処理部に集光して入射する再生光ビームの光軸とを一致させる光軸合わせ(光軸に対して垂直な面内方向)と、透過部の中心に0次光を集光せしめる焦点合わせ(光軸に平行な方向)と、を行う手段を有することがより好ましい。
0次光透過タイプの入射光処理部を備えたホログラム再生装置の1例が、図16に示されている。ホログラム装置16jは、以下の点を除いて、上述した実施例5Aに記載のホログラム再生装置16hとほぼ同一の構成を有している。すなわち、0次光反射タイプの入射光処理部24aを0次光透過タイプの入射光処理部24bに置換して第2逆フーリエ変換レンズ20bを省略し、像検出センサ22と検出部27とを入れ替えて形成されている点においてホログラム再生装置16hとは異なる。
ホログラム再生装置16jに設けられている検出部27、第1および第2駆動部28,29aはサーボ機構を構成しており、検出部27にて受光される0次光の光量が最大になるように、すなわち再生光の0次光の光軸と透過部の中心とが一致するように、第1駆動部28は入射光処理部24bを移動せしめ、第2駆動部29aは第2対物レンズ18bを移動せしめる。
上記の如き構成のホログラム再生装置16jにおける記録情報データの再生方法は、レーザ光源LDからの光ビームをシャッタSHs、ビームエキスパンダBX、第1対物レンズ18aを介してホログラム記録媒体14に照射する照射工程を含む。参照光ビームが照射されたホログラム記録媒体14から、ホログラム記録媒体の記録媒体部(図示せず)に記録された回折格子に対応した再生光ビーム(0次光および再現された回折光)が生成される。当該再生光ビームを第1逆フーリエ変換レンズ20aに導いて逆フーリエ変換し、第1ハーフミラープリズムHP1を透過させて、第2対物レンズ18bにて集光する集光工程が行われる。集光された再生光ビームは入射光処理部24bに照射されて、再生光ビームの0次光は入射光処理部24bの透過部(図示せず)を透過し、再生光ビームの回折光は入射光処理部24bの反射部(図示せず)において反射される。
入射光処理部24bの透過部を透過した再生光ビームの0次光は検出部27に入射し、該0次光の光量が検出される。サーボ機構によって0次光の光量が最大になるように第1および第2駆動部28,29aが制御されて、入射光処理部24bと第2対物レンズ18bの位置が位置決めされる。
入射光処理部24bの反射部にて反射された写生光ビームの回折光は、位置決めがなされた第2対物レンズ18bから第1ハーフミラープリズムHP1へ案内されて、第1ハーフミラープリズムHP1において再生光ビームの進行方向に対して垂直方向に反射される。反射された回折光は像検出センサ22に入射する。像検出センサ22が再生光ビームの回折光によるドットパターン像を受光して、電気的なデジタルデータ信号に再変換した後、デコーダ23に送ると、元のデータが再生される。
<実施例6B>
入射光処理部の反射部の中心と再生光の0次光の光軸との位置合わせは、入射光処理部に入射する再生光ビームの位置を検出することによって行うこととしても良い。
例えば図17に示す如く、ホログラム再生装置16kは、以下の点を除いて実施例5Bに示すホログラム再生装置16iと略同様の構成を有する。すなわち、図15に示す如きホログラム再生装置16iとは、第2逆フーリエ変換レンズ20bを省略して、像検出センサ22の位置を第2対物レンズ18bと入射光処理部24aとを結ぶ光路の延長上から第1ハーフミラープリズムHP1に向かって第2対物レンズ18b側から入射して垂直方向に反射された光の光路上へ変更する、点において異なる。検出部27は、例えば光ディスクのピックアップに使用されている4分割ディテクターから構成されており、コントローラ中の検出信号処理回路に検出信号を供給する。
第1および第2駆動部28,29aはコントローラに接続されており、該検出信号に対応する駆動信号を該コントローラから受信して、かかる駆動信号に応じて第1駆動部28は入射光処理部24bを、第2駆動部29aは第2対物レンズ18bを、それぞれ移動せしめる。
検出部27、第1および第2駆動部28,29aはサーボ機構を構成しており、再生光ビームの位置の検出は、非点収差法などの手段を利用する。これによって、入射光処理部24bの位置決めが行われる。
上記の如き構成のホログラム再生装置16kにおける記録情報データの再生方法は、レーザ光源LDからの光ビームをシャッタSHs、ビームエキスパンダBXおよび第1対物レンズ18aを介してホログラム記録媒体14に照射する照射工程を含む。参照光ビームが照射されたホログラム記録媒体14から、記録媒体に記録された回折格子に対応した再生光ビーム(0次光および再現された回折光)が生成される。当該再生光ビームを第1逆フーリエ変換レンズ20aに導いて逆フーリエ変換し、第1ハーフミラープリズムHP1に照射する。第1ハーフミラープリズムHP1は、入射された再生光ビームを再生光ビームの入射光軸に対して垂直方向に反射する成分と該光軸に沿って透過する成分とに分離する。
垂直方向に反射された再生光ビーム成分はレンズ30を介して検出部27に照射され、検出部27からの検出信号に基づいて再生光ビームの位置が検出される。かかる再生光ビームの位置に応じて、入射光処理部24bの位置が第1駆動部28によって、かつ第2対物レンズ18bの位置が第2駆動部29aによって、それぞれ位置決めされる。
第1ハーフミラープリズムHP1を光軸に沿って透過した再生光ビーム成分は、位置決めされた第2対物レンズ18bによって集光される。集光された再生光ビームは入射光処理部24bに照射されて、再生光ビームの0次光は入射光処理部24bの透過部(図示せず)を透過し、再生光ビームの回折光は入射光処理部24bの反射部(図示せず)において反射される。すなわち、再生光ビームの0次光と回折光が、上述の如く位置決めされた入射光処理部24bで分離される。
入射光処理部24bの該反射部にて反射された再生光ビームの回折光は、位置決めされた第2対物レンズ18b、第1ハーフミラープリズムHP1の順に案内されて、第1ハーフミラープリズムHP1において再生光ビームの進行方向に対して垂直方向に反射される。反射された回折光は像検出センサ22に入射する。像検出センサ22が再生光ビームの回折光によるドットパターン像を受光して、電気的なデジタルデータ信号に再変換した後、デコーダ23に送ると、元のデータが再生される。
<その他のホログラム記録媒体>
上記した実施例におけるホログラム記録媒体は図3に示す如きホログラム記録装置によって情報が記録されたものとして記載しているものの、これに限定されない。すなわち、本発明に適用できるホログラム記録媒体は、参照光ビーム(0次光)を照射することによってほぼ同一の光軸に沿って進行する0次光と回折光とを含む再生光ビームを生成するホログラム記録媒体であれば良い。
例えば図18に示す如きホログラム記録装置によって情報が記録されたホログラム記録媒体が適用できる。
ホログラム記録装置は、レーザ光源LD、シャッタSHs、ビームエキスパンダBX、空間光変調器SLMおよびフーリエ変換レンズ13を同一の光軸上に配置して形成されている。
ホログラム記録装置は、レーザ光源LDから出射された光ビーム11を、シャッタSHs、ビームエキスパンダBXおよび空間光変調器SLMの順に透過せしめる。空間光変調器SLMは、エンコーダ12から供給される2次元ドットパターンデータを受けて明暗のドットマトリクス信号を表示しており、光ビーム11は空間光変調器SLMを通過することによって、光変調された信号光成分(回折光)を含むこととなるが、参照光成分(0次光)もまた含んでいる。従って、図3に示す如きホログラム記録装置のように信号光ビームと参照光ビームとを別途に用いなくとも、干渉は発生する。
参照光ビームおよび信号光ビームはフーリエ変換レンズ13でフーリエ変換されて、ホログラム記録媒体14の記録媒体部(図示せず)内で0次光成分及び回折光成分が光干渉パターンを形成する。該記録媒体部は、光干渉パターンにおける光の強度分布に応じて屈折率を変化させて回折格子の領域を記録する。
なお、ホログラムの記録に用いる光ビームの波面は球面(集束光)である場合に限定されない。
<その他のホログラム再生装置>
なお上記実施例において、ホログラム記録媒体はフーリエ変換レンズの焦点よりも後方に配置することにしても良い。
また、上記実施例では、ホログラム再生方法及びホログラム再生装置を列に説明したが、本発明は、明らかに、ホログラム記録方法、ホログラム記録装置及びホログラム記録再生装置を含む。例えば、光ビーム照射部に空間光変調器を含むホログラム記録部を設けることによって、ホログラム記録再生装置が得られる。
可干渉性の、参照光成分と記録情報に応じて空間的に変調された信号光成分とを略同一の光軸で含む記録光ビームを記録媒体に照射して該参照光成分と該信号光成分との干渉を記録した回折格子の領域から該記録情報を再生するホログラム再生装置であって、可干渉性の光ビームを出射する光源部と、該光ビームを該記録媒体の該回折格子の領域に照射する光ビーム照射部と、該光ビームを該回折格子の領域に照射することによって再生される再生光ビームを集束位置に向けて集光する集光部と、該集束位置に設けられて該再生光ビームのフーリエ0次成分と該再生光ビームの回折光成分とを分離する入射光処理部と、該回折光成分から該記録情報を検出する検出部と、を含むことを特徴とする本発明のホログラム再生装置によれば、再生信号に含まれるノイズの原因である0次光を入射光処理部において再生光ビームから分離することができる故、ホログラム記録媒体に記録されている記録情報から再生された再生信号のS/N比を良好にすることができる。
可干渉性の、参照光成分と記録情報に応じて空間的に変調された信号光成分とを略同一の光軸で含む記録光ビームを記録媒体に照射して該参照光成分と該信号光成分との干渉を記録した回折格子の領域から該記録情報を再生するホログラム再生方法であって、可干渉性の光ビームを該記録媒体の該回折格子の領域に照射する照射工程と、該照射工程によって再生される再生光ビームを集束位置に向けて集光する集光工程と、該集束位置に設けられた入射光処理部によって該再生光ビームのフーリエ0次成分と該再生光ビームの回折光成分とを分離する入射光処理工程と、該回折光成分から該記録情報を再生する再生工程と、を含むことを特徴とする本発明のホログラム再生方法によれば、入射光処理工程において回折光に比べて光量が大である0次光を再生光ビームから分離することができる故、ホログラム記録媒体に記録された情報を担持している回折光を検出することが容易になる。

Claims (15)

  1. 可干渉性の、参照光成分と記録情報に応じて空間的に変調された信号光成分とを略同一の光軸で含む記録光ビームを記録媒体に照射して前記参照光成分と前記信号光成分との干渉を記録した回折格子の領域から前記記録情報を再生するホログラム再生装置であって、
    可干渉性の光ビームを出射する光源部と、
    前記光ビームを前記記録媒体の前記回折格子の領域に照射する光ビーム照射部と、
    前記光ビームを前記回折格子の領域に照射することによって再生される再生光ビームを集束位置に向けて集光する集光部と、
    前記集束位置に設けられて前記再生光ビームのフーリエ0次成分と前記再生光ビームの回折光成分とを分離する入射光処理部と、
    前記回折光成分から前記記録情報を検出する検出部と、を含むことを特徴とするホログラム再生装置。
  2. 前記入射光処理部は前記再生光ビームの前記フーリエ0次成分の照射により透過率が非照射時の透過率より低い特性値となる光学素子を含むことを特徴とする請求項1記載のホログラム再生装置。
  3. 前記入射光処理部は前記再生光ビームの前記フーリエ0次成分の照射により反射率が非照射時の反射率より低い特性値となる光学素子を含むことを特徴とする請求項1記載のホログラム再生装置。
  4. 前記入射光処理部は前記再生光ビームの前記フーリエ0次成分を反射する反射部と前記再生光ビームの前記回折光成分を透過する透過部とを有することを特徴とする請求項1記載のホログラム再生装置。
  5. 前記入射光処理部は前記再生光ビームの前記フーリエ0次成分を透過する透過部と前記再生光ビームの前記回折光成分を反射する反射部とを有することを特徴とする請求項1記載のホログラム再生装置。
  6. 前記再生光ビームの光軸の位置を検出する光軸検出部と、
    前記光軸検出部において検出した光軸の位置を基にして前記集光部および前記入射光処理部を移動する駆動部と、を含む、ことを特徴とする請求項4または5に記載のホログラム再生装置。
  7. 前記光軸検出部は前記再生光ビームの前記フーリエ0次成分を受光することを特徴とする請求項6記載のホログラム再生装置。
  8. 可干渉性の、参照光成分と記録情報に応じて空間的に変調された信号光成分とを略同一の光軸で含む記録光ビームを記録媒体に照射して前記参照光成分と前記信号光成分との干渉を記録した回折格子の領域から前記記録情報を再生するホログラム再生方法であって、
    可干渉性の光ビームを前記記録媒体の前記回折格子の領域に照射する照射工程と、
    前記照射工程によって再生される再生光ビームを集束位置に向けて集光する集光工程と、
    前記集束位置に設けられた入射光処理部によって前記再生光ビームのフーリエ0次成分と前記再生光ビームの回折光成分とを分離する入射光処理工程と、
    前記回折光成分から前記記録情報を再生する再生工程と、を含むことを特徴とするホログラム再生方法。
  9. 前記入射光処理部は前記再生光ビームの前記フーリエ0次成分の照射により透過率が非照射時の透過率より低い特性値となる光学素子を含むことを特徴とする請求項8記載のホログラム再生方法。
  10. 前記入射光処理部は前記再生光ビームの前記フーリエ0次成分の照射により反射率が非照射時の反射率より低い特性値となる光学素子を含むことを特徴とする請求項8記載のホログラム再生方法。
  11. 前記入射光処理部は前記再生光ビームの前記フーリエ0次成分を反射する反射部と前記再生光ビームの前記回折光成分を透過する透過部とを有することを特徴とする請求項8記載のホログラム再生方法。
  12. 前記入射光処理工程は前記再生光ビームの光軸の位置を検出する光軸検出工程と、前記光軸検出工程において検出した前記光軸の位置を基にして前記フーリエ0次成分の光軸と前記反射部との位置を合わせる位置合わせ工程と、を含むことを特徴とする請求項11記載のホログラム再生方法。
  13. 前記入射光処理部は前記再生光ビームの前記フーリエ0次成分を透過する透過部と前記再生光ビームの前記回折光成分を反射する反射部とを有することを特徴とする請求項8記載のホログラム再生方法。
  14. 前記入射光処理工程は前記再生光ビームの光軸の位置を検出する光軸検出工程と、前記光軸検出工程において検出した前記光軸の位置を基にして前記フーリエ0次成分の光軸と前記透過部との位置を合わせる位置合わせ工程と、を含むことを特徴とする請求項13記載のホログラム再生方法。
  15. 前記光軸検出工程は前記再生光ビームの前記フーリエ0次成分を受光する工程を含むことを特徴とする請求項12または14に記載のホログラム再生方法。
JP2006511983A 2004-03-31 2005-03-15 ホログラム再生装置およびホログラム再生方法 Pending JPWO2005098552A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004106185 2004-03-31
JP2004106185 2004-03-31
PCT/JP2005/005059 WO2005098552A1 (ja) 2004-03-31 2005-03-15 ホログラム再生装置およびホログラム再生方法

Publications (1)

Publication Number Publication Date
JPWO2005098552A1 true JPWO2005098552A1 (ja) 2008-02-28

Family

ID=35125241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006511983A Pending JPWO2005098552A1 (ja) 2004-03-31 2005-03-15 ホログラム再生装置およびホログラム再生方法

Country Status (5)

Country Link
US (1) US20080239419A1 (ja)
EP (1) EP1734417A4 (ja)
JP (1) JPWO2005098552A1 (ja)
CN (1) CN1961263A (ja)
WO (1) WO2005098552A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090196145A1 (en) * 2007-12-11 2009-08-06 Kabushiki Kaisha Toshiba Optical information recording/reproducing apparatus, optical information reproducing apparatus, and optical information recording medium
JP5053193B2 (ja) * 2008-07-17 2012-10-17 新日本製鐵株式会社 粒度測定装置及び粒度測定方法
JP5847568B2 (ja) * 2011-12-15 2016-01-27 Ckd株式会社 三次元計測装置
TWI456778B (zh) * 2012-05-28 2014-10-11 Univ Nat Chiao Tung 全像式集光元件及其製法
WO2014064636A2 (en) * 2012-10-24 2014-05-01 Csir Modal decomposition of a laser beam
CN103149827B (zh) * 2013-02-28 2015-05-20 山东大学 消除单光束同轴数字全息直流项和共轭像的方法
US9983545B2 (en) * 2013-07-30 2018-05-29 Dolby Laboratories Licensing Corporation Projector display systems having non-mechanical mirror beam steering
CZ2014714A3 (cs) * 2014-10-20 2016-06-22 Vysoké Učení Technické V Brně Interferometrický systém a způsob měření prostorového rozložení indexu lomu
WO2020190313A1 (en) * 2019-03-20 2020-09-24 Ward Matthew E Mems-driven optical package with micro-led array

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3253791B2 (ja) * 1994-02-25 2002-02-04 三菱電機株式会社 フーリエ変換光学系装置
JP3519778B2 (ja) * 1994-05-16 2004-04-19 シチズン時計株式会社 光学結像装置
US5671073A (en) * 1995-02-15 1997-09-23 California Institute Of Technology Holographic storage using shift multiplexing
US5986781A (en) * 1996-10-28 1999-11-16 Pacific Holographics, Inc. Apparatus and method for generating diffractive element using liquid crystal display
US5838467A (en) * 1997-06-03 1998-11-17 Lucent Technologies Inc. Method for processing information stored in a holographic system
US6731819B1 (en) * 1999-05-21 2004-05-04 Olympus Optical Co., Ltd. Optical information processing apparatus capable of various types of filtering and image processing
JP2001194624A (ja) * 2000-01-14 2001-07-19 Olympus Optical Co Ltd 画像処理装置
JP3611756B2 (ja) * 1999-08-31 2005-01-19 パイオニア株式会社 ホログラム記録装置及びその方法
US6710292B2 (en) * 2000-01-19 2004-03-23 Hamamatsu Photonics K.K. Laser machining device
JP2001272636A (ja) * 2000-01-19 2001-10-05 Hamamatsu Photonics Kk レーザ加工装置
US6909529B2 (en) * 2001-07-31 2005-06-21 Inphase Technologies, Inc. Method and apparatus for phase correlation holographic drive
TWI228710B (en) * 2002-08-01 2005-03-01 Pioneer Corp Method for holographic recording and reproducing and apparatus therefor

Also Published As

Publication number Publication date
WO2005098552A1 (ja) 2005-10-20
EP1734417A4 (en) 2009-05-27
CN1961263A (zh) 2007-05-09
EP1734417A1 (en) 2006-12-20
US20080239419A1 (en) 2008-10-02

Similar Documents

Publication Publication Date Title
US9715426B2 (en) Monocular holographic data storage system and method thereof
JP4156911B2 (ja) 光情報記録媒体、光情報記録装置および光情報再生装置
US6825960B2 (en) System and method for bitwise readout holographic ROM
JP4631439B2 (ja) ホログラム記録再生装置およびホログラム記録再生方法
US7023786B2 (en) Hologram recording and reproducing apparatus
JPWO2005098552A1 (ja) ホログラム再生装置およびホログラム再生方法
JP4289921B2 (ja) ホログラフィック記録装置および再生装置
JP4787097B2 (ja) サーボを用いるホログラフィック記憶再生システム
KR20090076604A (ko) 홀로그래픽 정보 기록/재생 장치
US7649661B2 (en) Holographic storage device having a reflective layer on one side of a recording layer
US7848204B2 (en) Holographic storage and regeneration system having servo mechanism
JPWO2007026521A1 (ja) 光ピックアップ装置及びホログラム記録再生システム
JP4060813B2 (ja) ホログラフィック記録装置、ホログラフィック再生装置、及びマスク
JP5125351B2 (ja) 光情報記録再生装置
US8036072B2 (en) Holographic recording and reproduction system having servo optical path
JP2004171611A (ja) 光情報記録装置および光情報再生装置
JP2010135054A (ja) ホログラフィック情報記録方法及びホログラフィック情報記録/再生装置
JP2007114388A (ja) ホログラム記録再生装置及びホログラム記録再生方法
EP2390731B1 (en) Monocular holographic data storage system architecture
JP4473591B2 (ja) ホログラム記録媒体、記録再生方法及び記録再生装置
JP2005025906A (ja) 光情報記録再生装置及びその方法
KR20090017387A (ko) 홀로그래픽 정보 저장매체와, 이를 이용한 홀로그래픽 정보기록/재생 장치 및 방법
WO2005047988A1 (en) System and method for bitwise readout holographic rom
JP2004348856A (ja) 光情報記録再生装置及び方法、光情報記録媒体、光情報記録装置及び方法、並びに光情報再生装置及び方法
JP2005251269A (ja) カートリッジを用いたホログラム記録メディア及びホログラム記録再生装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105