WO2006082651A1 - 粒子線照射方法およびそれに使用される粒子線照射装置 - Google Patents

粒子線照射方法およびそれに使用される粒子線照射装置 Download PDF

Info

Publication number
WO2006082651A1
WO2006082651A1 PCT/JP2005/001710 JP2005001710W WO2006082651A1 WO 2006082651 A1 WO2006082651 A1 WO 2006082651A1 JP 2005001710 W JP2005001710 W JP 2005001710W WO 2006082651 A1 WO2006082651 A1 WO 2006082651A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
particle beam
layer
target
dose
Prior art date
Application number
PCT/JP2005/001710
Other languages
English (en)
French (fr)
Inventor
Hisashi Harada
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to DE112005002171T priority Critical patent/DE112005002171B4/de
Priority to JP2007501485A priority patent/JP4435829B2/ja
Priority to PCT/JP2005/001710 priority patent/WO2006082651A1/ja
Priority to CNA2005800225108A priority patent/CN1980709A/zh
Priority to US11/596,707 priority patent/US7525104B2/en
Publication of WO2006082651A1 publication Critical patent/WO2006082651A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1096Elements inserted into the radiation path placed on the patient, e.g. bags, bolus, compensators

Definitions

  • the present invention relates to a particle beam irradiation method applied to cancer treatment and the like, and a particle beam irradiation apparatus used therefor.
  • a method of treating a cancer by irradiating a tumor formed in a human organ with this Bragg peak BP is used to treat cancer.
  • cancer In addition to cancer, it can also be used to treat deep parts of the body.
  • a treated site including a tumor is generally called an irradiation target.
  • the position of the black peak BP is determined by the energy of the irradiated particle beam. The higher the energy of the beam beam, the deeper the Bragg peak BP can be.
  • particle beam therapy it is necessary to obtain a uniform dose distribution over the entire irradiation target to be irradiated with the particle beam, and in order to give this flag peak BP to the entire irradiation target, The field is expanded.
  • This "expansion of the irradiation field” is performed in three directions, the X axis, the Y axis, and the Z axis, which are orthogonal to each other.
  • “expansion of the irradiation field” is first performed in the Z-axis direction.
  • This “expansion of the irradiation field” in the irradiation direction of the radiation beam is generally called irradiation field expansion in the depth direction.
  • the second “field expansion” is to expand the field in the X-axis and Y-axis directions and to expand the field in the horizontal direction perpendicular to the depth direction. This is called lateral field expansion.
  • the expansion of the irradiation field in the depth direction is caused by the Bragg peak BP width in the irradiation direction of the particle beam, which is narrower than the expansion in the depth direction of the irradiation target. This is done to expand the BP in the depth direction.
  • the Bragg peak BP is expanded in the direction orthogonal to the irradiation direction.
  • the particle beam beam is irradiated to the scatterer by irradiating the particle beam beam to the particle beam irradiation unit of the particle beam irradiation apparatus, thereby causing the particle beam beam to have a lateral spread, and its central portion. Cut out the uniform dose part of the target part It is a method of irradiating the position. If there is only one scatterer, the uniform dose portion cannot be made sufficiently large. In some cases, the uniform dose portion may be enlarged using two scatterers. This is called the double scatterer method.
  • the particle beam beam is scanned in a donut shape using two deflecting electromagnets provided upstream of the particle beam irradiation unit of the particle beam irradiation apparatus, and the particle beam beam scanned in the donut shape is used as a scatterer.
  • the Wobbler method Wobbler
  • a particle beam is scanned in the XY plane using a deflecting electromagnet provided in the upstream portion of the particle beam irradiation unit of the particle beam irradiation apparatus, and the particle
  • a deflecting electromagnet provided in the upstream portion of the particle beam irradiation unit of the particle beam irradiation apparatus, and the particle
  • a uniform dose distribution can be obtained by properly overlapping adjacent irradiation spots of a narrow diameter pencil beam.
  • pencil beam scanning methods There are two types of pencil beam scanning methods: the raster method, which scans continuously over time, and the spot method, which scans in steps.
  • the particle beam is normally irradiated toward the target site with a thin diameter called a pencil beam, but the diameter of the pencil beam may be slightly enlarged using a thin scatterer.
  • the width of the Bragg peak BP in the irradiation direction of the particle beam is narrow, but expanding the width in the irradiation direction of the Bragg peak BP is the expansion of the irradiation field in the depth direction.
  • the Bragg peak BP with an expanded width in this irradiation direction is the expanded Bragg peak SOBP (Spread-Out
  • the passive irradiation field expansion method in the depth direction is a ridge filter (Ridge Filter) or a range modulator (Range
  • the thickness of the material of the energy modulator is modulated in the irradiation direction of the particle beam.
  • These ridge filters or range modules decelerate the energy of the particle beam according to its modulated thickness and change the energy according to its modulated thickness, resulting in a change in intensity.
  • a particle beam mixed with various energies is irradiated toward the irradiation target. Since the range of the particle beam changes according to the strength of the energy, the irradiation target can be irradiated with a particle beam having various ranges.
  • an expanded Bragg peak SOBP with an expanded width can be obtained in the irradiation direction, but in the lateral direction, that is, orthogonal to the irradiation direction of the particle beam.
  • the width of the expanded Bragg peak SOBP is constant and cannot be changed.
  • a compensator called a bolus.
  • the treatment site of a patient is located at the maximum depth in the depth direction of the affected organ, that is, the deepest portion of the affected organ in the Z-axis direction (the boundary in the depth direction of the affected organ).
  • the depth of the treatment site depends on the lateral direction (X and Y axis directions) and changes in the X and Y axis directions.
  • This changing shape of the treatment site in the depth direction is called a “stal” shape.
  • the bolus BL is an energy modulator processed for each patient in accordance with this distal shape, and is made using polyethylene or wax. By using this bolus BL, the Bragg peak BP can be adjusted to a digital shape while applying a uniform dose to the X and Y planes.
  • Figure 2 (a) shows the target TV and the bolus BL.
  • the irradiation target TV has the deepest layer TVd, and the shape of the deepest layer TVd is called a distal shape. Seven arrows indicate typical particle beams.
  • Fig. 2 (b) the doses of seven representative particle beam beams for the irradiation target TV are shown from a to g. By using the bolus BL, the dose distribution in the deepest TVd can be flattened.
  • the energy of the particle beam is controlled by changing the acceleration energy of the accelerator that accelerates the particle beam, or an instrument called a range shifter is inserted across the particle beam. As a result, the energy of the particle beam is changed.
  • a range shifter is inserted across the particle beam.
  • the particle beam is converted into a beam having a predetermined intensity of energy, and the Bragg peak BP is applied to one irradiation layer of the irradiation target with a uniform dose.
  • the Bragg peak BP is irradiated to the irradiation layer next to the irradiation target TV by changing the energy of the particle beam.
  • spot scanning irradiation method spot Scanning Technique
  • the particle beam irradiation method force combining the above-mentioned active irradiation field expansion method in the depth direction and the active irradiation field expansion method in the lateral direction is described above. It is described on pages 39 to 45 of the second paper.
  • the energy of the particle beam can be controlled in accordance with the movement of the particle beam in the horizontal direction (X and Y axis directions).
  • the width in the direction can also be changed in the lateral direction.
  • the energy of the particle beam can be changed so that the range of the particle beam is matched to the distal shape of the treatment site, the bolus is not used in this spot scanning irradiation method.
  • Non-Patent Document 1 Published in August 1993, “Review of Scientificlnstruments”, 64 (8), 2055 forces et al. Also, a paper entitled "Instrumentation for treatment of cancer using proton ana light— ion beams" by WTChu et al.
  • Non-Patent Document 2 E. Pedoroni et al., Published on pages 37–53 of 22 (1) of the journal “Medical Physics” published in January 1995 "The 200- MeV proton tnerapy project at the Paul bchrrerlnstitute: The 200- MeV proton tnerapy project at the Paul bchrrerlnstitute:
  • the energy of the particle beam is controlled simultaneously while moving the particle beam in the horizontal direction (X and Y axis directions).
  • X and Y axis directions it is difficult to accurately deliver the desired relative dose to the irradiation target, which is difficult to accurately control the irradiation dose.
  • the particle beam irradiation method according to the present invention includes an irradiation field expansion in a depth direction in which the irradiation field of the particle beam is expanded in the depth direction along the irradiation direction of the particle beam irradiation direction,
  • This is a particle beam irradiation method for irradiating an irradiation target with the particle beam by using the horizontal irradiation field expansion for expanding the irradiation field of the particle beam in a horizontal direction orthogonal to the irradiation direction of the particle beam.
  • the irradiation field expansion in the depth direction is an active irradiation field expansion in which a plurality of irradiation layers having different ranges are overlapped in the irradiation direction of the particle beam, and the irradiation field expansion in the lateral direction is An active irradiation field expansion that superimposes the irradiation spots of the particle beam in the lateral direction, and in addition, the particle beam beam A bolus having a shape along the deepest part in the depth direction of the irradiation target is disposed so as to cross the system.
  • a particle beam irradiation apparatus includes a particle beam generation unit that generates a particle beam, a particle beam transport unit that transports the particle beam generated by the particle beam generation unit, and the particle A particle beam irradiation unit configured to irradiate the particle beam beam transported by the beam transport unit toward an irradiation target; and irradiation of the particle beam beam in a depth direction along an irradiation direction of the particle beam beam irradiation direction.
  • Particles comprising: a depth direction irradiation field expanding means for expanding a field; and a horizontal direction irradiation field expanding means for expanding the particle beam irradiation field in a lateral direction perpendicular to the particle beam irradiation direction.
  • the irradiation field expansion means in the depth direction is an active irradiation field expansion means for superimposing a plurality of irradiation layers having different ranges in the irradiation direction of the particle beam.
  • Direction of field expansion It is an active irradiation field expanding means for superimposing the irradiation spot of the particle beam in the lateral direction, and in addition, a shape along the deepest part in the depth direction of the irradiation target so as to cross the particle beam. It is characterized by arranging a bolus having.
  • the irradiation field expansion in the depth direction is an active irradiation field expansion in which a plurality of irradiation layers having different ranges are overlapped in the irradiation direction of the particle beam, and the horizontal direction
  • the irradiation field expansion is an active field expansion that overlaps the irradiation spot of the particle beam in the horizontal direction, and in addition, the shape along the deepest part in the depth direction of the irradiation target so as to cross the particle beam Since the bolus with the irradiance is arranged, the irradiation dose to be applied to each of the deepest layer of the irradiation target and each irradiation layer in front of it can be kept substantially constant in each irradiation layer. Simplification can be achieved.
  • the irradiation field expanding means in the depth direction performs irradiation in the active depth direction in which a plurality of irradiation layers having different ranges are superimposed on the irradiation direction of the particle beam.
  • the irradiation field expansion means in the horizontal direction is the active irradiation field expansion means for superimposing the irradiation spots of the particle beam in the horizontal direction, and in addition, the irradiation target is set so as to cross the particle beam.
  • the deepest layer of the irradiation target and each irradiation layer in front of it Since the irradiation dose to be applied can be kept substantially constant in each irradiation layer, the control can be simplified.
  • Embodiment 1 of the present invention will be described.
  • a particle beam irradiation apparatus according to a first embodiment of the present invention will be described as well as a first embodiment of a particle beam irradiation method according to the present invention.
  • This Embodiment 1 combines an active field expansion in the depth direction and an active lateral field expansion, and in addition to this, the shape of the deepest part in the depth direction of the irradiation target is It is characterized by using an existing bolus.
  • FIG. 4 shows the overall configuration of the particle beam irradiation apparatus according to the first embodiment used for carrying out the first embodiment of the particle beam irradiation method according to the present invention.
  • Embodiment 1 of the particle beam irradiation apparatus includes a particle beam generation unit 10, a particle beam transport unit 20, and three particle beam irradiation units 30A, 30B, and 30C.
  • the particle beam generator 10 and the particle beam irradiation units 30A, 30B, 30C are installed in shielded separate rooms.
  • the particle beam transport unit 20 connects the particle beam generation unit 10 and each particle beam irradiation unit 30A, 30B, 3OC.
  • the accelerated particle beam transport unit 20 includes particle beam transport paths 21, 22, and 23 that transport the particle beam beam generated by the particle beam generation unit 10 to the particle beam irradiation units 30A, 30B, and 30C, respectively. These particle beam transport paths 21, 22, and 23 are constituted by vacuum ducts.
  • the particle beam irradiation units 30A, 30B, and 30C irradiate the target site TV of the patient with the particle beam PB.
  • the particle beam generator 10 includes an ion source 11 and an accelerator 12.
  • the ion source 11 generates a particle beam having a large mass such as a proton beam or a carbon beam.
  • the accelerator 12 accelerates the particle beam generated by the ion source 11 and forms a particle beam PB.
  • An energy setting controller 13 is electrically connected to the accelerator 12.
  • This energy setting controller 13 supplies the energy control signal ES to the accelerator 12, and sets and controls the acceleration energy of the particle beam PB by the accelerator 12, and constitutes an active depth direction irradiation field expanding means 15.
  • the This active depth direction field expansion means 15 is a control calculation that controls the entire system. It is controlled by the machine and controls to stack multiple irradiation layers with different ranges in the depth direction. For each of the plurality of irradiation layers, the irradiation energy of the particle beam is changed to form an enlarged Bragg peak SOBP in the irradiation direction of the particle beam PB, that is, the Z-axis direction.
  • Particle beam irradiation units 30A, 30B, and 30C constitute treatment room 1, treatment room 2, and treatment room 3, respectively.
  • the three particle beam irradiation units 30A, 30B, and 30C have the same configuration, and each include an irradiation nozzle 31, a treatment table 32, and a positioning device 33.
  • the treatment table 32 is used to hold the patient in a supine position or a sitting position, and the positioning device 33 is used to confirm the position of the affected organ by an X-ray device or the like.
  • the irradiation nozzle 31 irradiates the irradiation target TV of the patient on the treatment table 32 with the particle beam PB transported to the particle beam irradiation units 30A, 30B, and 30C.
  • FIG. 5 shows a specific configuration of the irradiation nozzle 31 of each particle beam irradiation unit 30A, 30B, 30C in the first embodiment.
  • the irradiation nozzle shown in FIG. 5 is denoted by reference numeral 31A.
  • the irradiation nozzle 31A shown in Fig. 5 determines the irradiation positions of the deflecting electromagnets 41a and 41b and the particle beam PB that scan the particle beam PB in the horizontal direction, that is, the X and Y planes orthogonal to the irradiation direction of the particle beam PB. It has a beam position monitor 42a, 42b to be monitored, a dose monitor 43 for monitoring the irradiation dose of the particle beam PB, and a bolus mount 44. A bolus 45 is attached to the bolus mount 44.
  • An arrow PB in FIG. 5 indicates an irradiation direction of the particle beam PB.
  • the deflection electromagnets 41a and 41b are disposed adjacent to each other on the upstream side in the irradiation direction.
  • the beam position monitors 42a and 42b are arranged at intervals in the irradiation direction, and a dose monitor 43 is arranged between the beam position monitors 42a and 42b in the vicinity of the beam position monitor 42b.
  • the bolus mount 44 is arranged on the downstream side in the irradiation direction closest to the patient.
  • the deflecting electromagnets 41a and 41b shown in FIG. 5 have a laterally active irradiation field expanding means 40 for expanding the Bragg peak BP in the lateral direction perpendicular to the irradiation direction with respect to the particle beam PB.
  • This laterally active irradiation field expanding means 40 forms an expanded SOBP in the lateral direction orthogonal to the irradiation direction of the particle beam beam PB, that is, in the X-axis and Y-axis directions.
  • the particle beam PB is scanned in the lateral direction, that is, the XY plane, and The irradiation spots are overlapped in the horizontal direction, and an enlarged SOBP is formed on this XY plane.
  • the bolus 45 attached to the bolus mount 44 has a shape along the irradiation target TV, that is, the distant shape of the deepest part of the treatment site.
  • the bolus 45 is an energy modulator processed for each patient and is made using polyethylene or wax.
  • This bolus 45 is arranged so as to cross the particle beam PB irradiated to the irradiation target TV of the patient from the irradiation nozzle 31 A.
  • the deepest layer TVd of the irradiation target TV and each of the deepest TV The irradiation dose for each irradiation layer can be flattened.
  • a feature of the first embodiment is that a bolus 45 is combined with an active depth direction irradiation field expanding means 15 and an active lateral direction irradiation field expanding means 40.
  • the combination of active depth field expansion and active lateral field expansion is a force known as spot scanning irradiation. In this Embodiment 1, this is combined with a bolus 45. use.
  • the weight of the deepest TVd which is the highest in the deepest TVd, is set to 100, the weight of each irradiated layer in front of it is 5 Less than a minute.
  • the irradiation dose to the deepest layer TVd of the irradiation target TV and each irradiation layer in front of it can be flattened. Irradiation can be performed while keeping the irradiation dose to each layer constant in each irradiation layer. For this reason, in the irradiation field expanding means 15 in the active depth direction, each irradiation dose for each irradiation layer varies depending on each irradiation layer, but in each irradiation layer, Irradiation energy can be made substantially constant, and control can be simplified.
  • FIGS. 7A and 7B show the conventional spot scanning irradiation method.
  • Figures 6 (a) and 7 (a) show the shape of the irradiation target TV, and both assume a hemispherical irradiation target TV.
  • the deepest layer TVd is the surface part of this hemispherical irradiation target TV.
  • Fig. 8 shows the shape of the bolus 45 used in the irradiation of the target TV shown in Figs. 6 (a) and 6 (b). [0037] Fig.
  • Fig. 6 (b) schematically shows the irradiation method of the particle beam PB according to Embodiment 1
  • Fig. 7 (b) schematically shows the irradiation method of the particle beam PB by the conventional spot scanning irradiation method.
  • a plurality of small circles S indicate irradiation spots corresponding to the diameter of the particle beam PB.
  • these irradiation spots S are shown in a non-overlapping state in order to simplify a force diagram that is scanned so that adjacent irradiation spots S partially overlap each other.
  • the number of irradiation spots S is actually large, the number is shown smaller than the actual number.
  • the X axis in the lateral direction with respect to the particle beam PB is represented by X—X line
  • the Y axis is represented by Y—Y line.
  • the deepest TVd of the target TV shown in Fig. 6 (a) is shown as a large circle TVd, and multiple irradiation spots S that partially overlap this circle TVd or inside this circle TVd are circles S with small solid lines. Is shown as These small solid circles S are the particle beam PB corresponding to the deepest layer TVd of the target TV, and these are substantially the same energy dose in one X and Y plane scan. Irradiate with
  • the irradiation spot S is basically scanned from address A1 along the X-X line, moved from address A12 to address B1, and scanned to the last address P12.
  • the deepest layer TV d is scanned with the same irradiation dose by the irradiation spot S indicated by a small solid circle.
  • the irradiation to the deepest layer TVd is achieved by scanning the irradiation spot S corresponding to the circle T Vd while maintaining the same dose.
  • Fig. 7 (a) the region of the irradiation depth D (see Fig. 7 (a)) for the same hemispherical irradiation target TV is shown in Fig. 7 (a) (b).
  • Fig. 7 (a) multiple annular parts TV1 to TV4 with different depths are assumed.
  • addresses B6 and B7 correspond to the deepest layer TVd. Since it is shallow, the irradiation dose to be applied is made small.
  • addresses F2 and F11 correspond to the deepest layer TVd, so the power addresses F3 and F10 that give a high irradiation dose are shallow layers before the deepest TVd, so it is necessary to reduce the irradiation dose.
  • Addresses F4 and F9 are shallower layers than addresses F3 and F10 when viewed from the deepest TVd, so it is necessary to further reduce the irradiation dose.
  • the irradiation dose given to each irradiation spot S is controlled by the irradiation time.
  • the control device for this irradiation dose has the table dose values corresponding to each irradiation spot S in the form of a table, and the particle beam of each irradiation spot S has a point when the irradiation dose reaches its planned dose. Paused. In this way, the irradiation dose can be controlled by the irradiation time.
  • the accelerator 12 supplies a beam current suitable for the planned dose of the irradiation spot S. Above, it is necessary to control the beam current accurately.
  • the conventional spot scanning irradiation method increases the beam current in the portion corresponding to the deepest layer TVd such as addresses F2 and F11 in Fig. 7 (b). , Address F3, F10 and addresses F4, F9, the beam current is reduced in order.
  • the adjustment of the beam current of the accelerator 12 cannot be performed instantaneously. Therefore, it is necessary to extend the irradiation time, and there is a problem that the control is complicated.
  • the combination of the active depth direction irradiation field expanding means 15 and the active lateral direction irradiation field expanding means 40 and the bolus 45 is most suitable.
  • the irradiation dose applied to the irradiation spot S can be kept substantially constant in each of the deep layer TVd and each irradiation layer in front of it, and the beam current of the accelerator 12 is substantially constant for each irradiation layer. Therefore, the control can be simplified.
  • Embodiment 2 As well, Embodiment 2 of the particle beam irradiation apparatus according to the present invention will be described, and Embodiment 2 of the particle beam irradiation method according to the present invention will also be described.
  • Embodiment 2 of the particle beam irradiation apparatus used in Embodiment 2 of the particle beam irradiation method according to the present invention also has an active depth direction irradiation field expansion and an active lateral direction irradiation field expansion. And bolus 45, and the irradiation target deepest layer TVd is re-irradiated one or more times.
  • the particle beam irradiation apparatus in the particle beam irradiation apparatus according to the first embodiment, in addition to the active depth direction irradiation field expanding means 15, the active depth direction irradiation is performed. Field expansion means 60 is added.
  • the particle beam irradiation apparatus according to the second embodiment is configured in the same manner as in the first embodiment except for the above.
  • the irradiation field expanding means 15 and 60 in the active depth direction have a plurality of ranges different from each other in the irradiation direction of the particle beam PB, that is, in the depth direction.
  • An extended Bragg peak SOBP is formed in the depth direction so that the irradiated layers are overlapped.
  • the bolus 45 makes the irradiation dose for each of the deepest layer TVd and each irradiation layer in front thereof substantially constant, and simplifies the control of the irradiation field expanding means 15 and 60 in the depth direction. Hesitate.
  • FIG. 9 shows a configuration of an irradiation nozzle 31 used in the particle beam irradiation apparatus according to the second embodiment of the present invention.
  • the irradiation nozzle in FIG. 9 is denoted by reference numeral 31B.
  • the irradiation nozzle 31B used in the second embodiment monitors the irradiation positions of the deflecting electromagnets 51a and 51b and the particle beam PB that scan the particle beam PB in the X and Y planes.
  • the deflection electromagnets 51a and 51b shown in FIG. 9 expand the Bragg peak BP in the transverse direction perpendicular to the irradiation direction with respect to the particle beam PB.
  • the lateral active field magnifying means 50 is configured.
  • the lateral active field magnifying means 50 is an active lateral field in the first embodiment.
  • the enlarged SOBP is formed in the lateral direction orthogonal to the irradiation direction of the particle beam PB, that is, in the X-axis and Y-axis directions.
  • the particle beam PB is scanned in the lateral direction, that is, in the XY plane, the irradiation spots are overlapped in the lateral direction, and an enlarged SOBP is formed in the XY plane.
  • the range shifter 56 constitutes an irradiation field expanding means 60 in the active depth direction.
  • the range shifter 56 is inserted across the particle beam PB, and the energy of the particle beam PB is decelerated in accordance with the adjustment signal supplied thereto, and the irradiation field is expanded in the depth direction.
  • the energy setting controller 13 for the accelerator 12 constitutes an active depth direction irradiation field expansion means 15
  • the range shifter 56 constitutes an active depth direction irradiation field expansion means 60. .
  • the variable collimator 57 is for restricting the irradiation field in the horizontal direction, and is moved in the direction of arrow A by remote control to adjust the irradiation field in the horizontal direction.
  • a variable collimator 57 for example, a multileaf collimator is used. By adjusting the lateral field with this variable collimator 57, a three-dimensional dose distribution is created.
  • An arrow PB in FIG. 9 indicates an irradiation direction of the particle beam PB.
  • the deflection electromagnets 51a and 51b are disposed adjacent to each other on the upstream side.
  • the beam position monitors 52a and 52b are arranged at intervals, and a dose monitor 53 is arranged between the beam position monitors 52a and 52b in the vicinity of the beam position monitor 52b.
  • the bolus mount 54 is disposed on the downstream side closest to the patient, and the bolus 45 is mounted on the bolus mount 54.
  • the range shifter 56 is disposed near the dose monitor 53 between the dose monitor 53 and the beam position monitor 52a.
  • the variable collimator 57 is disposed between the beam position monitor 52b and the bolus mount 54.
  • active depth direction irradiation field expanding means 15, 60 are combined with active lateral direction irradiation field expanding means 50, and further a bolus 45 is combined.
  • the bolus 45 is a means for expanding the irradiation field in the depth direction by making the irradiation dose to each of the deepest layer TVd and each irradiation layer in front thereof substantially constant. Simplify control of 15 and 60.
  • the overlapping of irradiation doses in the deepest layer TVd in the depth direction of the irradiation target TV is controlled as planned.
  • the affected organ moves based on physiological activities such as patient breathing and blood flow in the body, and the irradiation target TV is displaced accordingly.
  • the position of the liver is also periodically displaced mainly in the direction of the body thickness and in the direction of the body thickness.
  • the deepest layer TVd is re-irradiated one or more times.
  • the irradiation dose given to this deepest layer TVd is 5 to 20 times larger than that of the other irradiation layers. Therefore, by making the irradiation dose to this deepest layer TVd accurate, Distribution accuracy can be improved.
  • the particle beam PB is irradiated by the irradiation procedure shown in FIG.
  • This control procedure is stored in a storage device of a control computer that controls the entire apparatus.
  • the irradiation layers from the deepest layer TVd to the second layer, the third layer,..., The ninth layer are arranged along the column, and the irradiation order is 1 in the horizontal column.
  • the second, second,... Are arranged up to the fifth, and the irradiation order is described as 1, 2, 3,..., 13 at the intersection of each irradiation layer and the order of each irradiation.
  • the irradiation of the particle beam PB is executed in the order of irradiation sequence 1, 2, 3,.
  • the first irradiation is performed in the irradiation order 1 for the deepest layer TVd and in the irradiation order 2, 3, 4, 5, 6 for each of the second to ninth layers. , 7, 8, 9 included.
  • the second irradiation includes irradiation of the irradiation sequence 10 for the deepest layer TVd
  • the third irradiation includes irradiation of the irradiation sequence 11 for the deepest layer TVd
  • the fourth irradiation and the fifth irradiation each of the deepest TVd includes irradiation of irradiation sequence 12, 13 for. Irradiation in the irradiation sequence 10, 1 1, 12, 13 is all re-irradiation to the deepest layer TVd.
  • Irradiation sequence 1, 10, 11, 12, 13 for the deepest layer TVd is performed at the highest irradiation dose corresponding to the deepest layer TVd at a dose of 1Z5 for each RV1, and the total irradiation dose is I try to become R VI.
  • the irradiation doses RV2 to RV9 for the ninth layer are sequentially reduced from the irradiation dose RV1.
  • the number of times of irradiation of the deepest layer TVd is set to 5 times, and the required irradiation dose RV1 is equally divided into 5 times, and the irradiation dose of RVZ5 is applied 5 times.
  • Fig. 11 (a), (b), (c), and (d) show that the number of irradiations to the deepest TVd is 2 in total, that is, the number of re-irradiations is 1, and the irradiation target TV is displaced. It is a diagram which shows the improvement situation of the radiation dose error.
  • FIG. 11 (a) shows an irradiation target TV, and this irradiation target TV is assumed to be displaced in the direction of arrow B along the axis 206 along with breathing.
  • the distribution of the first irradiation dose is indicated by a solid curve 201
  • the distribution of the second irradiation dose is indicated by a dotted curve 202.
  • FIG. 11 (c) shows the distribution 201 of the first irradiation dose and the curve 203 of the total irradiation dose distribution plus the first and second irradiation doses.
  • FIG. 11 (d) the distribution of the irradiation dose when the irradiation to the deepest layer TVd is executed only once is shown by a curve 205, and the curve 205 and the curve 203 are contrasted.
  • a gray basin 204 shown in FIG. 11 (d) shows an area where a higher irradiation dose is given in the curve 205 than in the curve 203 due to the displacement of the irradiation target TV.
  • a distribution in which the dose decreases linearly from 100% to 0% at both ends of the dose distribution curves 201, 202, 203, 205 is used for the sake of simplicity.
  • the end of the dose distribution is close to a function convolved with a Gaussian distribution, but this explanation does not depend on a specific mathematical representation of the distribution!
  • the dose distribution can be further improved by further increasing the number of exposures to the deepest TVd. In the depth direction as well, the dose distribution can be improved by irradiating multiple times in the same manner.
  • the power to irradiate the particle beam PB by combining the active field expansion in the depth direction and the active lateral field expansion.
  • each irradiation spot S is In both the depth direction and the lateral direction, they are individually irradiated and superimposed.
  • the overlapping of the irradiation spots S is required not only in the depth direction but also in the lateral direction, so that the time required for irradiation tends to increase.
  • the deepest TVd is irradiated multiple times in order to shorten the time required for shooting and reduce the irradiation error caused by the physiological activities of the patient. .
  • Bolus 45 is not used in the conventional spot scanning irradiation method that combines the active depth field expansion and the active lateral field expansion, so Fig. 7 (a) (b As shown in Fig. 7), the deepest layer TVd exists only at the outer periphery of each irradiation layer with different irradiation depth D (see Fig. 7 (a)). For this reason, in the conventional spot scanning irradiation method, re-irradiation of the deepest layer TVd requires re-irradiation of many irradiation layers, and each irradiation layer with a different depth D has an accelerator 12 It is necessary to adjust the energy of this, and complicated control is required.
  • the deepest layer TVd can be integrated into one layer as shown in Fig. 6 (b). Since adjustment of the energy of the accelerator 12 and adjustment of the range shifter 56 are also unnecessary, the entire deepest TVd can be easily re-irradiated.
  • the irradiation accuracy of the irradiation spot S is maintained even for the irradiation target TV that is displaced based on physiological activities such as patient respiration. This can prevent the irradiation time from becoming longer.
  • one or more re-irradiations are performed on the deepest layer TVd, and the number of times of irradiation is divided into a plurality of times, so The amount error can be reduced.
  • the particle beam PB is irradiated by the irradiation procedure shown in FIG. this
  • the control procedure is also stored in a storage device of a control computer that controls the entire apparatus.
  • the irradiation layers from the deepest layer TVd to the second layer, the third layer,..., The ninth layer are arranged along the vertical column, and the irradiation order is shown in the horizontal column for the first irradiation. It is arranged until the second time, ..., the fifth time, and the irradiation order is written as 1, 2, 3, ... 16 at the intersection of each irradiation layer and each irradiation order.
  • the particle beam PB is executed in the order of irradiation sequence 1, 2, 3,.
  • the first irradiation is performed in the irradiation order 1 for the deepest layer TVd and in the irradiation order 2, 3, 4, 5, 6 for each of the second to ninth layers. , 7, 8, 9 included.
  • the second irradiation includes irradiation of the irradiation sequence 10 for the deepest layer TVd and irradiations of the irradiation sequences 11 and 12 for the second layer and the third layer, respectively.
  • the third irradiation includes irradiation of irradiation sequence 13 for the deepest layer TVd and irradiation of irradiation sequence 14 for the second layer.
  • the fourth irradiation includes irradiation of the irradiation sequence 15 for the deepest layer TVd, and the fifth irradiation includes irradiation of the irradiation sequence 16 for the deepest layer TVd.
  • All four irradiations of irradiation sequence 10, 13, 15, 16 are re-irradiation to the deepest layer TVd, two irradiations of irradiation sequences 11, 14 are re-irradiation to the second layer, and irradiation sequence 12 Irradiation is re-irradiation to the third layer.
  • Irradiation sequence for deepest layer TVd A total of five irradiations of 1, 10, 13, 15, 16 are performed at the highest irradiation dose RV1 corresponding to the deepest layer TVd at a dose of 1Z5. The irradiation dose is set to RV1. The three irradiations in the irradiation sequence 2, 11, and 14 for the second layer are performed at a dose of 1Z3 of the irradiation dose RV2 required for the second layer, respectively, so that the total irradiation dose becomes RV2. Yes.
  • Irradiation of the irradiation sequence 3 and 12 to the third layer is performed at a dose of 1Z2 of the irradiation dose RV3 required for the third layer, respectively, so that the total irradiation dose is RV3.
  • Layer 2 force Irradiation doses RV2 to RV9 for layer 9 are the power that is sequentially reduced from the exposure dose RV1 for deepest layer TVd. Radiation doses RV2 and RV3 for layer 2 and layer 3 Higher than the radiation dose to the layer.
  • the deepest layer TVd and subsequently, the irradiation dose is high!
  • the second layer and the third layer are re-irradiated one or more times, breathing, etc. Even if the target TV is displaced due to the physiological activity of the deepest layer, these deepest layer TVd, second layer, and third layer are irradiated. Error can be reduced.
  • the particle beam PB is irradiated by the irradiation procedure shown in FIG.
  • This irradiation procedure is also stored in a storage device of a control computer that controls the entire apparatus.
  • the irradiation layers from the deepest layer TVd to the second layer, the third layer,..., The ninth layer are arranged along the vertical column, and the irradiation order is shown in the horizontal column. It is arranged until the second time, ..., the fifth time, and the irradiation order is written as 1, 2, 3, ... 16 at the intersection of each irradiation layer and each irradiation order.
  • the particle beam PB is executed in the order of this irradiation sequence 1, 2, 3,.
  • the first irradiation is performed in the irradiation order 1 for the deepest layer TVd and in the irradiation order 2, 3, 4, 5, 6 for each of the second to ninth layers. , 7, 8, 9 included.
  • the second irradiation includes irradiation of the irradiation sequence 10 for the deepest layer TVd and irradiations of the irradiation sequences 14 and 16 for the second layer and the third layer, respectively.
  • the third irradiation includes irradiation of irradiation sequence 11 for the deepest layer TVd and irradiation of irradiation sequence 15 for the second layer.
  • the fourth irradiation includes irradiation in the irradiation sequence 12 for the deepest layer TVd, and the fifth irradiation includes irradiation in the irradiation sequence 13 for the deepest layer TVd.
  • Irradiation of irradiation sequence 10, 11, 12, and 13 is all re-irradiation to the deepest layer TVd
  • irradiation of irradiation sequences 14 and 15 is re-irradiation to the second layer
  • irradiation of irradiation sequence 16 is the third layer Re-irradiation.
  • Irradiation sequence for the deepest layer TVd 5 irradiations of 1, 10, 11, 12, and 13 are performed at the highest irradiation dose RV1 of 1Z5 corresponding to the deepest layer TVd.
  • the total irradiation dose is set to RV1.
  • Irradiation sequence 2, 14, and 15 for the second layer is performed three times at a dose of 1Z3 of the required radiation dose RV2 for the second layer, so that the total radiation dose is RV2. ing.
  • Irradiation of irradiation sequence 3 and 16 for the third layer is performed with the dose of 1Z2 of RV3 required for the third layer, respectively.
  • the irradiation dose is set to RV3.
  • Layer 2 force Irradiation doses RV2 to RV9 for layer 9 are the power that is sequentially reduced from the exposure dose RV1 for deepest layer TVd. Radiation doses RV2 and RV3 for layer 2 and layer 3 Higher than the radiation dose to the layer.
  • the re-irradiation of the irradiation sequence 10 to 13 for the deepest layer TVd is completed four times, the re-irradiation of the irradiation order 14 and 15 for the second layer is performed, and then Thus, reirradiation of irradiation order 16 for the third layer is performed.
  • the re-irradiation is performed once or more for the deepest layer TVd, followed by the second and third layers with a high irradiation dose. Even if the target TV is displaced, it is possible to reduce irradiation errors for the deepest layer TVd, the second layer, and the third layer, which have high irradiation doses.
  • the particle beam PB is irradiated by the irradiation procedure shown in FIG.
  • This control procedure is also stored in the storage device of the control computer that controls the entire apparatus.
  • the irradiation layers from the deepest layer TVd to the second layer, the third layer,..., The ninth layer are arranged along the vertical column, and the horizontal column shows weights (relative to each irradiation layer). Value) followed by the irradiation order power 1st, 2nd, ..., 10th, and at the intersection of each irradiation layer and each irradiation order, the irradiation order is 1, 2, 3, ⁇ ⁇ ⁇ ⁇ 24.
  • the particle beam PB is executed in the order of irradiation order 1, 2, 3,.
  • the first irradiation is performed in the irradiation order 1 for the deepest layer TVd and in the irradiation order 2, 3, 4, 5, 6 for each of the second to ninth layers. , 7, 8, 9 included.
  • the second irradiation includes irradiation of irradiation sequence 10 for the deepest layer TVd and irradiations of irradiation sequences 11, 12, 13, and 14 for the second to fifth layers, respectively.
  • the third irradiation is for irradiation of irradiation sequence 15 for the deepest layer TVd, and for each of the second and third layers.
  • the fourth to tenth irradiations are irradiations of the irradiation sequences 18, 19, 20, 21, 22, 23, and 24 to the deepest layer TVd, respectively.
  • irradiations of irradiation sequence 10, 15, 18 to 24 are all re-irradiation to the deepest layer TVd, and two irradiations of irradiation sequences 11, 16 are re-irradiation to the second layer, irradiation sequence 12, The second irradiation of 17 is a re-irradiation to the third layer.
  • the irradiations in the irradiation sequences 13 and 14 are re-irradiation on the fourth layer and the fifth layer, respectively.
  • Irradiation sequence for deepest layer TVd 10 irradiations of 1, 10, 15, 18 to 24 are performed at a dose of 1Z10 with the highest irradiation dose RV1 (weight 100) corresponding to the deepest TVd. The total irradiation dose is set to RV1. Irradiation sequence 2, 11, 16 for the second layer is performed three times in total with a dose of 1Z3 of the required radiation dose RV2 (weight 30) for the second layer, and the total irradiation dose becomes RV2. It is trying to become.
  • Irradiation in the irradiation sequence 3, 12, and 17 for the third layer is performed with a dose of 1Z2 of the irradiation dose RV3 (weighted 28) required for the third layer, so that the total irradiation dose is RV3.
  • the irradiation of the fourth layer in the order of irradiation 4 and 13 is performed twice with the dose of 1Z2 of the irradiation dose RV4 (weighting 22) required for the fourth layer so that the total irradiation dose becomes RV4. I have to.
  • the irradiation of the fifth layer in the order of irradiation 5 and 14 is performed twice with the dose of 1Z2 of the irradiation dose RV5 (weight 20) required for the fifth layer so that the total irradiation dose is RV5. ing.
  • the particle beam irradiation method according to the present invention is also used in the sixth embodiment.
  • Embodiment 6 will be mainly described.
  • the particle beam PB is irradiated by the irradiation procedure shown in FIG.
  • This control procedure is also stored in the storage device of the control computer that controls the entire apparatus.
  • the irradiation layers from the deepest layer TVd to the second layer, the third layer,..., The ninth layer are arranged along the vertical column, and the horizontal column shows weights (relative to each irradiation layer).
  • the irradiation order power 1st, 2nd, ..., 10th, and at the intersection of each irradiation layer and each irradiation order, the irradiation order is 1, 2, 3, ⁇ ⁇ ⁇ ⁇ 24.
  • the particle beam PB is executed in the order of irradiation order 1, 2, 3,.
  • the first irradiation is performed in the irradiation sequence 1 for the deepest layer TVd, and in the irradiation sequence 2, 3, 4, 5, 6 for each of the second to ninth layers. , 7, 8, 9 included.
  • the second irradiation consists of irradiation of irradiation sequence 10 for the deepest layer TVd, irradiation of irradiation sequence 19 for the second layer, irradiation of irradiation sequence 21 for the third layer, irradiation of irradiation sequence 23 for the fourth layer, and fifth Includes 24th irradiation of the layer.
  • the third irradiation includes irradiation in the irradiation sequence 11 for the deepest layer TVd and irradiations in the irradiation sequences 20 and 22 for the second layer and the third layer, respectively.
  • the fourth to tenth irradiations are irradiations 12 to 24 for the deepest TVd.
  • irradiation sequence 10 to 18 Nine irradiations of irradiation sequence 10 to 18 are all re-irradiation to the deepest layer TVd, and two irradiations of irradiation sequences 19 and 20 are re-irradiation to the second layer, irradiation sequence 21, 22 irradiation is re-irradiation to the third layer.
  • the irradiations in the irradiation sequences 23 and 24 are re-irradiation on the fourth layer and the fifth layer, respectively.
  • Irradiation sequence for deepest layer TVd 10 irradiations from 1, 10 to 18 are performed at a dose of 1Z10 with the highest irradiation dose RV1 (weight 100) corresponding to the deepest layer TVd. The dose is set to RV1.
  • Irradiation sequence 2, 19, and 20 for the second layer is performed three times in total with a dose of 1Z3 of the irradiation dose RV2 (weight 30) required for the second layer, and the total irradiation dose is RV2. It is trying to become.
  • Irradiation sequence 3, 21, and 22 for the third layer is required for the third layer.
  • Irradiation dose RV3 (weighted 28) is performed at a dose of 1Z3, so that the total irradiation dose is RV3.
  • Two irradiations in the order of irradiation 4 and 23 for the fourth layer are performed at a dose of 1Z2 of the irradiation dose RV4 (weighting 22) required for the fourth layer, and the total irradiation dose is RV4. I am doing so.
  • the irradiation of the fifth layer in the order of irradiation 5 and 24 is performed twice with a dose of 1Z2 of the irradiation dose RV5 (weighting 20) required for the fifth layer so that the total irradiation dose is RV5.
  • the number of times in proportion to the weight of each of the deepest layer TVd and the second layer, the third layer, the fourth layer, and the fifth layer having a weight (relative value) of 20 or more. It is characterized by re-irradiation. Even in the sixth embodiment, even if the irradiation target TV is displaced due to physiological activities such as breathing, the deepest layer TVd, the second layer, the third layer, the fourth layer, the fifth layer having the highest irradiation dose. Irradiation error can be reduced.
  • Embodiment 7 of the particle beam irradiation apparatus according to the present invention and Embodiment 7 of the particle beam irradiation method according to the present invention will be described.
  • the patient's respiration measurement or irradiation target position detection is performed, and based on the respiration measurement or irradiation target position detection, the patient's respiration determination is performed, and the irradiation of the particle beam PB is turned on and off. Is added with a function to control.
  • Embodiment 7 the particle beam irradiation apparatus of Embodiment 7 shown in FIG. 16 is used.
  • the particle beam irradiation device shown in FIG. 16 includes a particle measurement unit 71, an irradiation target position detection device 73, a respiratory determination computer 75, a particle beam, in addition to the particle beam generation unit 10, the particle beam transport unit 20, and the particle beam irradiation unit 30.
  • a treatment safety system 77 is provided.
  • the particle beam generation unit 10 and the particle beam transport unit 20 are the same as those shown in FIG.
  • the particle beam irradiation unit 30 includes the particle beam irradiation units 30A, 30B, and 30C of FIG.
  • the irradiation nozzle 31 is the irradiation nozzle 31A used in the first embodiment shown in FIG. 5 or the implementation shown in FIG.
  • the irradiation nozzle 31 B used in Form 2 is used.
  • the particle beam PB is controlled on and off.
  • FIG. 16 shows the patient 70 on the treatment table 32.
  • the particle beam irradiation unit 30 is Irradiate particle beam PB from above.
  • the respiration measurement device 71 measures the respiration of the patient 70 and outputs a respiration signal BS.
  • the respiration measurement device 71 used in a conventional particle beam therapy device or X-ray CT can be used.
  • the This breathing measurement means 71 is equipped with a light emitting diode (LED) on the abdomen or chest of the patient 70, and means for measuring respiration by displacement of the light emitting position of this light emitting diode.
  • the irradiation target position detection device 73 detects the position of the irradiation target TV in the patient 70 and outputs a respiratory signal BS.
  • X-ray sources 731 and 732 and X-ray image acquisition devices 741 and 742 corresponding thereto are used as the irradiation target position detection device 73.
  • the X-ray sources 731 and 732 emit X-rays toward the irradiation target TV in the patient 70, and the X-ray image acquisition devices 741 and 742 acquire the X-ray images from the X-ray sources 731 and 732, respectively.
  • Irradiation target TV position is detected.
  • the X-ray image acquisition apparatuses 741 and 742 for example, an X-ray television apparatus using an image intensifier or means for measuring a scintillator plate with a CCD camera is used.
  • the irradiation target TV has a method of embedding a small piece of metal such as gold in advance as a marker in the corresponding point, and using this marker makes it easy to specify the position of the irradiation target TV.
  • Both the respiration measuring means 71 and the irradiation target position detecting device 73 detect the displacement of the irradiation target TV accompanying respiration and generate a respiration signal BS. Both of these respiration signals BS are input to the respiration determination calculator 75.
  • This respiratory determination computer 75 determines the phase of the respiratory cycle in real time from the input respiratory signal BS based on the correlation of the exhaled breath Z inspiration stored in the storage means, and the status signal SS is safe for the particle beam therapy.
  • the particle beam therapy safety system 77 supplies the control signal CS to the particle beam generation unit 10 and the particle beam transport unit 20 based on the status signal SS, and switches the particle beam beam P B from the particle beam irradiation nozzle 31 on and off.
  • the particle beam PB described in the first to sixth embodiments is controlled to be turned on and off, so that the degree of safety is higher and the high-precision particles. Line lighting You can shoot. Note that only one of the respiration measurement device 71 and the irradiation target position detection means 73 can be used.
  • Embodiment 8 of the particle beam irradiation apparatus according to the present invention and Embodiment 8 of the particle beam irradiation method according to the present invention will be described.
  • the patient's respiration measurement or irradiation target position detection is performed. Based on the respiration measurement or irradiation target position detection, the patient's respiration determination is performed, and the irradiation of the particle beam PB is turned on and off. Is added with a function to control.
  • the particle beam therapy safety system 77 in the seventh embodiment is replaced with an irradiation control computer 80, and the irradiation dose of the irradiated particle beam PB is controlled based on the respiratory signal BS. It is what I did.
  • the other configuration is the same as that of the seventh embodiment.
  • the particle beam irradiation apparatus of the ninth embodiment shown in Fig. 17 is used.
  • the particle beam generator 10 and the particle beam transporter 20 shown in FIG. 17 are the same as those shown in FIG.
  • the particle beam irradiation unit 30 includes the particle beam irradiation units 30A, 30B, and 30C in FIG.
  • This particle beam irradiation unit 30 has an irradiation nozzle 31, which is used in the irradiation nozzle 31A used in the first embodiment shown in FIG. 5 and the second embodiment shown in FIG. Irradiation nozzle 31B is used.
  • the particle beam irradiation method of the ninth embodiment is based on the irradiation method described in the first to seventh embodiments, and controls the irradiation dose of the particle beam PB.
  • the respiratory phase of the patient 70 and the position of the irradiation target TV corresponding to the patient 70 are measured, and their correlation is stored in the storage means of the respiratory determination computer 75.
  • the respiration determination computer 75 receives a respiration signal BS from one or both of the respiration measurement device 71 and the irradiation target position detecting means 73, and in real time, a position signal indicating the position of the irradiation target TV corresponding to this respiration signal BS.
  • Output PS is a respiration signal BS from one or both of the respiration measurement device 71 and the irradiation target position detecting means 73.
  • the irradiation control computer 80 supplies an irradiation dose control signal RS representing the irradiation dose corresponding to the position signal PS to the particle beam irradiation unit 30 based on the position signal PS from the breath determination computer 75.
  • the particle beam irradiation unit 30 is based on the position signal PS corresponding to the respiratory signal BS, Irradiation target Adjust the irradiation dose for TV. For example, if the irradiation target TV is the liver, if the liver is displaced to a position 1 cm deep from the irradiation nozzle 31 in a phase of respiration, the particle beam PB Adjust the irradiation dose.
  • the irradiation control computer 80 may be a control computer that controls the entire apparatus described in the first to sixth embodiments.
  • the irradiation dose of the particle beam PB described in the first to sixth embodiments is adjusted in accordance with the displacement of the irradiation target TV accompanying respiration. Irradiation can be performed.
  • the respiration signal BS from the irradiation target position detection device 73 is used, the position of the irradiation target TV can be detected more directly than the respiration signal BS from the respiration measurement device 71. Therefore, irradiation with higher accuracy can be performed.
  • the irradiation target TV of the patient 70 is a force that is displaced as the patient 70 breathes.
  • the displacement is mainly a displacement along a certain axis.
  • FIG. 18 shows a state of displacement in the direction of arrow C along the length direction of the irradiation target TV force body in the patient 70.
  • the force of the particle beam PB is normally applied as shown by the arrow B1. If the particle beam PB is irradiated with the upward force of the head 70h of the patient 70 diagonally as shown by the arrow B2. The displacement in the direction of arrow C of the irradiation target TV accompanying the breathing of the patient 70 can be decomposed into the irradiation direction of the particle beam PB, that is, the depth direction and the transverse direction perpendicular thereto. Irradiation target accompanying the irradiation error for TV can be reduced.
  • the particle beam PB described in the first to sixth embodiments is also irradiated with an oblique force in the direction of the length of the body.
  • the rotating gantry 90 shown in FIGS. 19 and 20 and the treatment table rotating mechanism are used together.
  • the rotating gantry 90 has a large cylindrical shape and is rotatable around a horizontal axis 91.
  • a treatment table 32 is installed inside the rotating gantry 90. It is assumed that the treatment table 32 is rotated around a vertical axis 92 orthogonal to the horizontal axis 91 by a treatment table rotating mechanism.
  • the particle beam irradiation nozzle 31 is installed at an irradiation point P on the peripheral surface of the rotating gantry 90.
  • FIG. 19 shows a state in which the horizontal axis 91 and the length direction of the body are parallel to each other, and the particle beam PB is irradiated in the direction of the arrow B1 directly below the irradiation point P.
  • the rotating gantry 90 is rotated approximately 45 degrees counterclockwise from FIG. 19 around the horizontal axis 91, and the treatment table 32 is rotated 90 degrees around the vertical axis 92 from FIG.
  • the particle beam PB is also irradiated obliquely along the arrow B2 with the upward force of the head 70h of the patient 70.
  • the irradiation accompanying the breathing of the patient 70 is performed.
  • the displacement of the target TV in the direction of arrow C can be decomposed into the irradiation direction of the particle beam PB, that is, the depth direction and the transverse direction perpendicular thereto, and the irradiation to the irradiation target TV accompanying breathing is performed.
  • the error can be reduced.
  • the particle beam irradiation method according to the present invention is used as a treatment method for cancer, for example, and the particle beam irradiation apparatus according to the present invention is used as a treatment device for cancer, for example.
  • FIG. 1 A diagram showing dose distributions of various types of radiation in the body.
  • FIG. 2 is an explanatory diagram showing conversion of irradiation energy by a bolus.
  • FIG. 4 is an overall configuration diagram of Embodiment 1 of a particle beam irradiation apparatus according to the present invention.
  • FIG. 5 is an internal configuration diagram of an irradiation nozzle in the first embodiment.
  • FIG. 6 is an explanatory diagram of the particle beam irradiation method according to Embodiment 1, in which FIG. 6 (a) is a perspective view showing an irradiation target, and FIG. 6 (b) is a scanning explanatory diagram of the irradiation spot.
  • FIG. 7 is an explanatory diagram of a conventional spot scanning irradiation method, and FIG. 7 (a) shows an irradiation target.
  • FIG. 7B is a perspective view of the irradiation spot, and FIG.
  • FIG. 8 is a cross-sectional view of a bolus used in the particle beam irradiation method of FIG.
  • FIG. 9 is an internal configuration diagram of an irradiation nozzle in the second embodiment of the particle beam irradiation apparatus according to the present invention.
  • FIG. 10 shows an irradiation procedure in the second embodiment of the particle beam irradiation method according to the present invention.
  • FIG. 11 is a diagram showing the effect of the irradiation procedure of the second embodiment.
  • FIG. 12 shows an irradiation procedure in the embodiment 3 of the particle beam irradiation method according to the present invention.
  • FIG. 13 is a diagram showing an irradiation procedure in Embodiment 4 of the particle beam irradiation method according to the present invention.
  • FIG. 14 is a diagram showing an irradiation procedure in the fifth embodiment of the particle beam irradiation method according to the present invention.
  • FIG. 15 shows an irradiation procedure in the sixth embodiment of the particle beam irradiation method according to the present invention.
  • FIG. 16 is a configuration diagram of Embodiment 7 of a particle beam irradiation apparatus according to the present invention.
  • FIG. 17 is a configuration diagram of an eighth embodiment of a particle beam irradiation apparatus according to the present invention.
  • FIG. 18 is an explanatory diagram of the irradiation direction of the particle beam with respect to the ninth embodiment of the particle beam irradiation method according to the present invention.
  • FIG. 19 is a perspective view showing Embodiment 9 of the particle beam irradiation apparatus according to the present invention.
  • FIG. 20 is a perspective view showing a rotation state of the ninth embodiment of the particle beam irradiation apparatus according to the present invention. Explanation of symbols
  • 31, 31A, 31B irradiation nozzle, 40: means for expanding the irradiation field in the horizontal direction,
  • TV Irradiation target
  • TVd Deepest layer
  • S Irradiation spot
  • PB Particle beam
  • Safety system for particle beam therapy system 80: Irradiation control computer, 90: Rotating gantry.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

【課題】深さ方向の照射野拡大と、横方向の照射野拡大を行なう粒子線照射方法および粒子線照射装置において、照射目標の各照射層のそれぞれにおける照射線量を実質的に一定にし、制御の簡略化を図る。 【解決手段】深さ方向の照射野拡大が、前記粒子線ビームの照射方向に互いに異なる飛程の複数の照射層を重ね合わせるアクティブな照射野拡大とされ、また横方向の照射野拡大が、粒子線ビームの照射スポットを横方向に重ね合わせるアクティブな照射野拡大とされ、加えて粒子線ビームを横切るように、照射目標の深さ方向の最深部に沿った形状を有するボーラスを配置する。

Description

明 細 書
粒子線照射方法およびそれに使用される粒子線照射装置
技術分野
[0001] この発明は、癌の治療などに応用される粒子線照射方法およびそれに使用される 粒子線照射装置に関するものである。
背景技術
[0002] この種の粒子線照射方法および粒子線照射装置に関する先行技術として、次の 2 つの論文が知られている。第 1の論文は、 1993年 8月に発行された雑誌「レビュー 才ブ サイエンティフィック インスッノレメンッ(Review
of Scientific Instruments)」の 64 (8)の 2055から 2096ページに掲載された、ダブリュ ~ ·ティ'チュー (W.T.Chu)他による「インスツルメンテイシヨン フォー トリートメント ォブ キャンサー ユージング プロトン アンド ライト一イオン ビームズ
(Instrumentation
for treatment of cancer using proton and light-ion beams)」と題する論文で &) 。
[0003] 第 2の論文は、 1995年 1月に発行された雑誌「メディカル フィジックス (Medical Physics)」の 22 (1)の 37— 53ページに掲載された、ィー ペドロ- (E.
Pedoroni)他による「ザ 200— MeV プロトン ゼラフィ プロゼクト アット ザ ポール セララー インスティチュート:コンセプチユアル デザイン アンド プラクティカル リアライゼイシヨン(
The 200— MeV proton therapy project at the Paul bchrrerlnstitute: Conceptual design and practical realization) と題する論文である。
[0004] 第 1の論文には、各種の放射線ビームをペンシルビームと呼ばれる細い径のビーム で人の体に照射した場合、その放射線ビームの体内における線量分布は図 1に示す ように変化することが紹介されている。図 1に示すように、各種放射線の中、 X線、ガ ンマ線などの質量の小さな放射線ビームは、体の表面に近!、部分で相対線量が最 大となり、体の表面からの深さが増加するとともにその相対線量は低下する。一方、 陽子線、炭素線などの質量の大きな粒子線ビームは体の表面力 深 、部分でそれら のビームが止まる位置、すなわちその粒子線ビームの飛程の直前に相対線量がピー ク値となる。このピーク値は、ブラッグピーク BP (Bragg
Peak)と呼ばれる。
[0005] このブラッグピーク BPを、人の臓器にできた腫瘍に照射して、癌の治療を行なうの が粒子線癌治療方法である。癌以外にも、体の深い部分を治療する場合にも用いる ことができる。腫瘍を含む被治療部位は、一般には照射目標と呼ばれる。ブラックピ ーク BPの位置は、照射される粒子線ビームのエネルギーで決まり、エネルギーの高 い粒子線ビームほどブラッグピーク BPは深い位置にできる。粒子線治療では、粒子 線ビームを照射すべき照射目標の全体に一様な線量分布とする必要があり、このブ ラッグピーク BPを照射目標の全域に与えるために、粒子線の「照射野 (照射フィール ド)の拡大」が行なわれる。
[0006] この「照射野の拡大」は、互いに直交する X軸、 Y軸、 Z軸の 3つの方向において実 施される。粒子線ビームの照射方向を Z軸の方向としたとき、「照射野の拡大」は、第 1にこの Z軸方向で行われる。この放射線ビームの照射方向における「照射野の拡大 」は、通常深さ方向の照射野拡大と呼ばれる。第 2の「照射野の拡大」は、 X軸および Y軸方向にぉ 、て照射野拡大を行なうもので、深さの方向と直交する横方向にぉ 、 て照射野拡大を行なうので、通常横方向の照射野拡大と呼ばれる。
[0007] 深さ方向の照射野拡大は、粒子線ビームの照射方向におけるブラッグピーク BPの 幅力 照射目標の深さ方向における拡がりに比べて狭いために、粒子線ビームの照 射方向におけるブラッグピーク BPを、深さの方向に拡大するために行なわれる。一 方、横方向の照射野拡大は、粒子線ビームの径が、その照射方向と直交する方向に おける照射目標の寸法よりも小さいために、ブラッグピーク BPをその照射方向と直交 する方向に拡大するために行なわれる。これらの深さ方向の照射野拡大と、横方向 の照射野拡大の方法につ!、て、前述の各論文で紹介された方法を説明する。
[0008] まず横方向の照射野拡大には、パッシブな横方向照射野拡大法と、アクティブな横 方向照射野拡大法がある。パッシブな横方向照射野拡大法は、粒子線照射装置の 粒子線照射部にぉ 、て粒子線ビームを散乱体に照射することにより、粒子線ビーム に横方向の拡がりを持たせ、その中心部分の一様な線量部分を切り取って、目標部 位に照射する方法である。散乱体が一枚であると、一様な線量部分を充分に大きく することができな 、場合には、 2枚の散乱体を用いて一様な線量部分を拡大すること もあり、これは二重散乱体法と呼ばれている。また、粒子線照射装置の粒子線照射 部の上流部分に設けられる 2台の偏向電磁石を用いて粒子線ビームを、ドーナツ状 に走査させ、このドーナツ状に走査される粒子線ビームを散乱体に照射して、横方向 照射野を拡大する方法もあり、これはヮブラ法 (Wobbler
System)と呼ばれる。
[0009] アクティブな横方向照射野拡大法としては、粒子線照射装置の粒子線照射部の上 流部分に設けられた偏向電磁石を用いて粒子線ビームを XY面内で走査し、その粒 子線ビームの照射位置を時間とともに移動させることにより、広い照射野を得る方法 がある。この方法では、一様な線量分布は、細い径のペンシルビームの隣り合う照射 スポットを適切に重ね合わせることにより得ることができる。ペンシルビームの走査方 法として、時間に対して連続的に走査するラスター法、時間に対してステップ状に走 查するスポット法がある。なお、この方法では、粒子線ビームは、通常ペンシルビーム と呼ばれる細い径でそのまま目標部位に向けて照射されるが、薄い散乱体を用いて ペンシルビームの径を少し拡大することもある。
[0010] 次に深さ方向の照射野拡大について述べる。前述のように、粒子線ビームの照射 方向におけるブラッグピーク BPの幅は狭 、が、このブラッグピーク BPの照射方向に おける幅を拡大するのが深さ方向の照射野拡大である。この照射方向における幅を 拡大したブラッグピーク BPは、拡大ブラッグピーク SOBP (Spread-Out
Bragg Peak)と呼ばれる。まず、深さ方向のパッシブな照射野拡大法として、リッジフィ ルタ(Ridge Filter)またはレンジモジユレータ(Range
Modulater)と呼ばれる櫛型のエネルギー変調器を、粒子線ビームを横切るように揷 入する方法がある。
[0011] リッジフィルタまたはレンジモジユレータは、いずれも粒子線ビームの照射方向にお いて、エネルギー変調器の材料の厚さが変調されている。これらのリッジフィルタまた はレンジモジュールは、その変調された厚さに応じて粒子線ビームのエネルギーを 減速し、エネルギーをその変調された厚さに応じて変化させ、結果として強さの変化 する多種のエネルギーが混ざった粒子線ビームを照射目標に向けて照射する。エネ ルギ一の強さに応じて粒子線ビームの飛程が変化するので、多種の飛程を持った粒 子線ビームを照射目標に照射することができる。このようなパッシブな深さ方向の照 射野拡大法では、照射方向にぉ 、て幅を拡大した拡大ブラッグピーク SOBPを得る ことができるが、横方向、すなわち粒子線ビームの照射方向と直交する X、 Y軸の方 向では、拡大ブラッグピーク SOBPの幅は一定であり、変化させることはできない。
[0012] 深さ方向のパッシブな別の照射野拡大法として、ボーラス (Bolus)と呼ばれる補償 器 (Compensator)を用いる方法もある。一般に、患者の被治療部位は、患部臓器の 深さ方向における最大深さ、すなわち Z軸方向における患部臓器の最深部(患部臓 器の深さ方向の境界)に位置しており、一般にこの被治療部位の深さは横方向(X、 Y軸方向)の依存性を有し、 X軸、 Y軸方向に変化している。この深さ方向における被 治療部位の変化形状は、デイスタル形状と呼ばれる。ボーラス BLは、図 2に示すよう に、このディスタル形状の合わせて、各患者毎に加工されたエネルギー変調器であり 、ポリエチレンまたはワックスを用いて作られる。このボーラス BLを用いることにより、 X 、 Y平面に一様な照射線量を照射しながら、し力もブラッグピーク BPをデイスタル形 状に合わせることができる。
[0013] 図 2 (a)は照射目標 TVと、ボーラス BLを示す。照射目標 TVは、最深層 TVdを有し 、この最深層 TVdの形状がデイスタル形状と呼ばれる。 7本の矢印は、代表的な粒子 線ビームを示す。図 2 (b)では、照射目標 TVに対する代表的な 7本の粒子線ビーム の線量が aから gで示される。ボーラス BLを用いることにより、最深層 TVdにおける線 量分布を平坦ィ匕できる。
[0014] 深さ方向のアクティブな照射野拡大法としては、粒子線照射装置から照射される粒 子線ビーム自体のエネルギーを、前述のエネルギー変調器を使用せずに制御する 方法がある。この方法では、粒子線ビームのエネルギーは、粒子線を加速する加速 器の加速エネルギーを変えることにより制御される力、またはレンジシフタ(Range shifter)と呼ばれる器具を、粒子線ビームを横切るように挿入することにより、粒子線ビ ームのエネルギーを変化させる。またこれらの加速器の制御と、レンジシフタを併用 する方法もある。 [0015] 深さ方向のアクティブな照射野拡大法では、その粒子線ビームを所定の強さのエネ ルギーを持ったビームとして、照射目標の 1つの照射層に一様な線量でそのブラッグ ピーク BPを照射した後に、粒子線ビームのエネルギーを変化させて、照射目標 TV の次の照射層にブラッグピーク BPを照射する。このような操作を複数回繰返し、複数 の照射層に粒子線ビームのブラッグピーク BPを照射することにより、ビーム照射方向 に所望の幅を持った拡大ブラッグピーク SOBPを得ることができる。この深さ方向のァ クティブな照射野拡大法は、粒子線ビームを X、 Y軸方向に移動させずに一定の照 射位置に固定した状態で、その粒子線ビームのエネルギーを変化させる方法である
[0016] 所望の幅を持った拡大ブラッグピーク SOBPを得るためには、照射目標 TVの各照 射層毎の線量を適正に調整することが必要であり、各層に与える線量を「層の重み 付け」と呼ぶ。この「層の重み付け」はリッジフィルタまたはレンジモジュールと同じ手 法で計算される。この深さ方向の線量分布と「層の重み付け」の例を図 3に示す。図 3 において、縦軸は相対線量、横軸は体内の深さである。実線で示す曲線は計算値を 示し、複数の小さな四角◊は実測値を示す。縦軸方向に延びる複数の直線が各照 射層における重み付けを表わす。この例は、典型的な例であるが、「層の重み付け」 は、最深部が最も高ぐこの最深部の重みを 100とすると、その手前の層の重みは、 殆ど 10以下とされる。
[0017] さて、前述の深さ方向のアクティブな照射野拡大法と、横方向のアクティブな照射 野拡大法とを組み合わせた粒子線の照射方法力 スポットスキャニング照射法 (Spot Scanning Technique)として、前記第 2の論文の 39ページから 45ページに記載されて いる。
[0018] このスポットスキャニング照射法によれば、横方向(X、 Y軸方向)の粒子線ビームの 移動に応じて、粒子線ビームのエネルギーを制御することがきるので、拡大ブラッグ ピーク SOBPの照射方向における幅も横方向に変化させることができる。また被治療 部位のデイスタル形状に粒子線ビームの飛程を合わせるように、粒子線ビームのエネ ルギーも変化させることができるので、このスポットスキャニング照射法では、ボーラス は使用されない。 [0019] 非特許文献 1 : 1993年 8月に発行された雑誌「レビュー ォブ サイエンティフィック インスッノレメンッ(Review of Scientificlnstruments)」の 64 (8)の 2055力ら 2096ぺー ジに掲載された、ダブリュー 'ティ'チュー (W.T.Chu)他による「インスツルメンテイショ ン フォー トリートメント ォブ キャンサー ユージング プロトン アンド ライトーィ オン ヒ ~~ムズ (Instrumentationfor treatment of cancer using proton ana light— ion beams)」と題する論文
非特許文献 2: 1995年 1月に発行された雑誌「メディカル フィジックス (Medical Physics)」の 22 (1)の 37— 53ページに掲載された、ィー ペドロ- (E.Pedoroni)他によ る「ザ 200— MeV プロトン ゼラフィ プロゼクト アット ザ ポール セララー イン スティチュート:コンセプチユアル デザイン アンド プラクティカル リアライゼイショ ン (The 200- MeV proton tnerapy project at the Paul bchrrerlnstitute:
Conceptualdesign and practical realization) と題する 文
発明の開示
発明が解決しょうとする課題
[0020] しかし、前記スポットスキャニング法では、横方向(X、 Y軸方向)の粒子線ビームの 移動を行ないながら、同時に粒子線ビームのエネルギーを制御するため、重み付け の高い部分と、重み付けの低い部分とが、同一の照射層に混在する結果となり、この ため照射線量の正確な制御が難しぐ照射目標に正確に所望の相対線量を照射す ることが困難である。
課題を解決するための手段
[0021] この発明による粒子線照射方法は、粒子線ビームの照射方向の照射方向に沿った 深さ方向に方向に前記粒子線ビームの照射野を拡大する深さ方向の照射野拡大と 、前記粒子線ビームの照射方向と直交する横方向に前記粒子線ビームの照射野を 拡大する横方向の照射野拡大とを併用し、前記粒子線ビームを照射目標に照射す る粒子線照射方法であって、前記深さ方向の照射野拡大が、前記粒子線ビームの 照射方向に互いに異なる飛程の複数の照射層を重ね合わせるアクティブな照射野 拡大とされ、また前記横方向の照射野拡大が、前記粒子線ビームの照射スポットを 前記横方向に重ね合わせるアクティブな照射野拡大とされ、加えて前記粒子線ビー ムを横切るように、前記照射目標の深さ方向の最深部に沿った形状を有するボーラ スを配置することを特徴とする。
[0022] また、この発明による粒子線照射装置は、粒子線ビームを発生する粒子線発生部 と、この粒子線発生部で発生した前記粒子線ビームを輸送する粒子線輸送部と、こ の粒子線輸送部で輸送された前記粒子線ビームを照射目標に向けて照射する粒子 線照射部と、前記粒子線ビームの照射方向の照射方向に沿った深さ方向に方向に 前記粒子線ビームの照射野を拡大する深さ方向の照射野拡大手段と、前記粒子線 ビームの照射方向と直交する横方向に前記粒子線ビームの照射野を拡大する横方 向の照射野拡大手段とを備えた粒子線照射装置であって、前記深さ方向の照射野 拡大手段が、前記粒子線ビームの照射方向に互いに異なる飛程の複数の照射層を 重ね合わせるアクティブな照射野拡大手段とされ、また前記横方向の照射野拡大手 段力 前記粒子線ビームの照射スポットを前記横方向に重ね合わせるアクティブな照 射野拡大手段とされ、加えて前記粒子線ビームを横切るように、前記照射目標の深 さ方向の最深部に沿った形状を有するボーラスを配置したことを特徴とする。
発明の効果
[0023] この発明の粒子線照射方法では、深さ方向の照射野拡大が、粒子線ビームの照射 方向に互いに異なる飛程の複数の照射層を重ね合わせるアクティブな照射野拡大と され、横方向の照射野拡大が、粒子線ビームの照射スポットを横方向に重ね合わせ るアクティブな照射野拡大とされ、加えて粒子線ビームを横切るように、照射目標の 深さ方向の最深部に沿った形状を有するボーラスを配置するので、照射目標の最深 層とその手前の各照射層のそれぞれに付与する照射線量は、それぞれの照射層の 中で実質的に一定に保持することができるので、制御の簡略ィ匕を図ることができる。
[0024] また、この発明による粒子線照射装置では、深さ方向の照射野拡大手段が、粒子 線ビームの照射方向に互いに異なる飛程の複数の照射層を重ね合わせるアクティブ な深さ方向の照射野拡大手段とされ、横方向の照射野拡大手段が、粒子線ビームの 照射スポットを横方向に重ね合わせるアクティブな照射野拡大手段とされ、加えて前 記粒子線ビームを横切るように、照射目標の深さ方向の最深部に沿った形状を有す るボーラスを配置したので、照射目標の最深層とその手前の各照射層のそれぞれに 付与する照射線量は、それぞれの照射層の中で実質的に一定に保持することができ るので、制御の簡略ィ匕を図ることができる。
発明を実施するための最良の形態
[0025] 以下この発明のいくつかの実施の形態について、図面を参照して説明する。
[0026] 実施の形態 1.
まず、この発明の実施の形態 1について説明する。この実施の形態 1では、この発 明による粒子線照射装置の実施の形態 1につ 、て説明し、併せてこの発明による粒 子線照射方法の実施の形態 1につ!、て説明する。
[0027] この実施の形態 1は、アクティブな深さ方向の照射野拡大と、アクティブな横方向の 照射野拡大とを組合せ、これに加えて、照射目標の深さ方向の最深部の形状を有す るボーラスを使用することを特徴とする。
[0028] 図 4は、この発明による粒子線照射方法の実施の形態 1を実施するのに使用される 粒子線照射装置の実施の形態 1の全体構成を示す。この粒子線照射装置の実施の 形態 1は、図 4に示すように、粒子線発生部 10と、粒子線輸送部 20と、 3つの粒子線 照射部 30A、 30B、 30Cを備えている。放射線安全管理などの運用上の都合から粒 子線発生部 10と、粒子線照射部 30A、 30B、 30Cは、遮蔽された個別の部屋に設 置される。粒子線輸送部 20は、粒子線発生部 10と、各粒子線照射部 30A、 30B、 3 OCとを連結する。加速粒子線輸送部 20は、粒子線発生部 10で発生した粒子線ビ ームを粒子線照射部 30A、 30B、 30Cのそれぞれに輸送する粒子線輸送路 21、 22 、 23を有する。この粒子線輸送路 21、 22、 23は真空ダクトで構成される。粒子線照 射部 30A、 30B、 30Cは、粒子線ビーム PBを患者の目標部位 TVへ照射する。
[0029] 粒子線発生部 10は、イオン源 11と加速器 12を有する。イオン源 11は、陽子線また は炭素線などの質量の大きな粒子線を発生する。加速器 12は、イオン源 11で発生 した粒子線を加速し、粒子線ビーム PBを形成する。この加速器 12には、エネルギー 設定制御器 13が電気的に接続される。このエネルギー設定制御器 13は、加速器 12 にエネルギー制御信号 ESを供給し、加速器 12による粒子線ビーム PBの加速エネ ルギーを設定し制御するもので、アクティブな深さ方向照射野拡大手段 15を構成す る。このアクティブな深さ方向照射野拡大手段 15は、装置全体を制御する制御計算 機により制御され、深さ方向に互いに異なる飛程の複数の照射層を重ね合わせる制 御を行なう。複数の各照射層毎に、粒子線ビームの照射エネルギーを変化させ、粒 子線ビーム PBの照射方向、すなわち Z軸方向に拡大ブラッグピーク SOBPを形成す る。
[0030] 粒子線照射部 30A、 30B、 30Cは、それぞれ治療室 1、治療室 2、治療室 3を構成 する。 3つの粒子線照射部 30A、 30B、 30Cは互いに同じ構成を有し、それぞれ照 射ノズル 31、治療台 32、および位置決め装置 33を有する。治療台 32は患者を仰臥 位または座位の状態に保持するのに使用され、位置決め装置 33は、 X線装置などに より患部臓器の位置を確認するのに使用される。照射ノズル 31は、粒子線照射部 30 A、 30B、 30Cに輸送された粒子線ビーム PBを治療台 32上の患者の照射目標 TV に向けて照射する。
[0031] 図 5は、実施の形態 1における各粒子線照射部 30A、 30B、 30Cの照射ノズル 31 の具体的構成を示す。この図 5に示す照射ノズルは符号 31 Aで示される。図 5に示 す照射ノズル 31Aは、粒子線ビーム PBを横方向、すなわち粒子線ビーム PBの照射 方向と直交する X、 Y面で走査する偏向電磁石 41a、 41b、粒子線ビーム PBの照射 位置をモニタするビーム位置モニタ 42a、 42b、粒子線ビーム PBの照射線量をモ- タする線量モニタ 43、およびボーラス取付け台 44を有する。ボーラス取付け台 44に は、ボーラス 45が取付けられる。
[0032] 図 5の矢印 PBは、粒子線ビーム PBの照射方向を示す。偏向電磁石 41a、 41bは、 照射方向の上流側に互いに隣接して配置されている。ビーム位置モニタ 42a、 42b は、照射方向に間隔をおいて配置され、このビーム位置モニタ 42a、 42bの間に、ビ ーム位置モニタ 42bの近くに線量モニタ 43が配置される。ボーラス取付け台 44は、 最も患者に近い照射方向の下流側に配置される。
[0033] 図 5に示す偏向電磁石 41a、 41bは、粒子線ビーム PBに対して、そのブラッグピー ク BPをその照射方向と直交する横方向に拡大する横方向のアクティブな照射野拡 大手段 40を構成する。この横方向のアクティブな照射野拡大手段 40は、粒子線ビ ーム PBの照射方向に直交する横方向、すなわち X軸、 Y軸方向に拡大 SOBPを形 成する。具体的には、粒子線ビーム PBをその横方向、すなわち XY面で走査し、そ の照射スポットを横方向に重ね合わせ、この XY面で拡大 SOBPを形成する。
[0034] ボーラス取付け台 44取付けられたボーラス 45は、照射目標 TV、すなわち被治療 部位の最深部のデイスタル形状に沿った形状を有する。このボーラス 45は、各患者 毎に加工されたエネルギー変調器であり、ポリエチレンまたはワックスを用いて作られ る。このボーラス 45は、照射ノズル 31 Aから患者の照射目標 TVに照射される粒子線 ビーム PBを横切るように配置され、このボーラス 45を用いることにより、照射目標 TV の最深層 TVdおよびその手前の各照射層のそれぞれに対する照射線量を平坦ィ匕 することができる。
[0035] 実施の形態 1の特徴は、アクティブな深さ方向の照射野拡大手段 15と、アクティブ な横方向の照射野拡大手段 40に、ボーラス 45を組み合わせたことである。ァクティ ブな深さ方向の照射野拡大とアクティブな横方向の照射野拡大を組み合わせること はスポットスキャニング照射法として知られている力 この実施の形態 1では、これにさ らにボーラス 45を組み合わせて使用する。図 3にも示したように、複数の照射層に対 する層の重み付けは最深層 TVdで最も高ぐこの最深層 TVdの重み付けを 100とし た場合、その手前の各照射層の重み付けは、 5分の 1以下である。この実施の形態 1 において、ボーラス 45を用いることにより、照射目標 TVの最深層 TVdとその手前の 各照射層のそれぞれに対する照射線量を平坦ィ匕できるので、最深層 TVdおよびそ の手前の各照射層に対する照射線量をそれぞれの各照射層の中で一定の保持して 照射を行なうことが可能となる。このため、アクティブな深さ方向の照射野拡大手段 1 5では、各照射層毎のそれぞれの照射線量は、各照射層に応じて変化されるが、そ れぞれの照射層の中では、照射エネルギーを実質的に一定にすることができ、制御 の簡略ィ匕を図ることができる。
[0036] この実施の形態 1による粒子線ビームの照射方法を、従来のスポットスキャニング照 射法と対比して説明する。図 6 (a)、(b)は実施の形態 1による照射方法を示し、図 7 ( a) (b)は従来のスポットスキャニング照射法を示す。図 6 (a)および図 7 (a)は照射目 標 TVの形状を示すもので、いずれも半球状の照射目標 TVを想定している。最深層 TVdはこの半球状の照射目標 TVの表面部分である。図 8は、図 6 (a) (b)に示す照 射目標 TVに対する照射で使用されるボーラス 45の形状を示す。 [0037] 図 6 (b)は実施の形態 1による粒子線ビーム PBの照射方法を、図 7 (b)は従来のス ポットスキャニング照射法による粒子線ビーム PBの照射方法をそれぞれ模式的に示 す。図 6 (b)および図 7 (b)において、小さな複数の円 Sは、粒子線ビーム PBの径に 対応する照射スポットを示す。実際は、これらの照射スポット Sは互いに隣接する照射 スポット Sが互いに一部で重なり合うようにして走査される力 図を簡単にするため、 重ね合わせがない状態で示している。また、照射スポット Sの数も実際はもつと多いが 、実際よりも数を少なくして示している。
[0038] 図 6 (b)および図 7 (b)では、粒子線ビーム PBに対する横方向の X軸が X— X線で、 またその Y軸が Y— Y線でそれぞれ表わされる。 X— X線に沿って 1から 12の番地付け 力^れ、また Y— Y線に沿って Aから Pの番地付けがされる。図 6 (a)に示す照射目標 TVの最深層 TVdが、大きな円 TVdで示されており、この円 TVdの内部またはこの円 TVdに一部が重なる複数の照射スポット Sが実線の小さな円 Sとして示されている。こ れらの実線の小さな円 Sは、照射目標 TVの最深層 TVdに対応する粒子線ビーム P Bであり、これらは、 1回の X、 Y面の走査の中で、実質的に同じエネルギー線量を持 つて照射される。
[0039] 図 6 (b)では、照射スポット Sは、基本的には、番地 A1から X— X線に沿って走査さ れ、番地 A12から番地 B1に移動し、最後の番地 P12まで走査されるが、最深層 TV dに対しては、実線の小さな円で示す照射スポット Sだけ力 互いに同じ照射線量を 持って走査される。この最深層 TVdに対する照射は、同じ線量を保持しながら、円 T Vdに該当する照射スポット Sを走査することで達成される。
[0040] 従来のスポットスキャニング照射法では、ボーラス 45が使用されないので、同じ半 球状の照射目標 TVに対する照射深さ D (図 7 (a)参照)の領域について、図 7 (a) (b) に示すような、深さの異なる複数の環状の部分 TV1から TV4が想定され。この環状 の部分 TV1から TV4について照射スポット Sを走査する場合、例えば番地 B6、 B7は 最深層 TVdに該当するので、高い照射線量とする必要である力 例えば番地 C6、 C 7は最深層 TVdよりも浅いので、付与する照射線量は小さくする。番地 Fの列では、 番地 F2、 F11が最深層 TVdに該当するので、高い照射線量を付与する力 番地 F3 、 F10は最深層 TVdの手前の浅い層であるので、照射線量を小さくする必要があり、 また番地 F4、 F9は最深層 TVdから見て、番地 F3、 F10よりもさらに手前の浅い層で あるので、さらに照射線量を小さくする必要がある。
[0041] このように、従来のスポットスキャニング照射法では、同じ照射深さ Dの領域を走査 する中で、頻繁に照射線量を変える必要がある。この照射線量は、深さ方向の照射 野拡大手段 15により、加速器 12においてビーム電流を変化させて行なうが、頻繁な ビーム電流の変化を間違いなく行なうのは困難である。
[0042] アクティブな横方向の照射野拡大法として、粒子線ビーム PBをステップ状の走査 するスポット法を採用した場合、各照射スポット Sに付与する照射線量を照射時間に よって制御する。この照射線量に対する制御装置は、各照射スポット Sに対応した計 画線量の値を表形式で持っており、各照射スポット Sの粒子線ビームは、照射線量が その計画線量に達した時点で、一時停止される。このように照射線量を照射時間によ り制御することもできる力 照射線量を正確に制御するには、加速器 12が、照射スポ ット Sの計画線量に適したビーム電流を供給するようにした上で、そのビーム電流を 正確に制御する必要がある。
[0043] このような加速器 12のビーム電流の制御において、従来のスポットスキャニング照 射法では、図 7 (b)の番地 F2、 F11のような最深層 TVdに該当する部分ではビーム 電流を大きくし、番地 F3、 F10および番地 F4、 F9ではビーム電流を順次小さくする 力 加速器 12のビーム電流の調整は瞬時に実行できないため、 1つのある照射深さ Dの領域について、ビーム電流を変化させるには、照射時間を延長することが必要で あり、制御を複雑にする問題がある。
[0044] これに対して、実施の形態 1のように、アクティブな深さ方向の照射野拡大手段 15と 、アクティブな横方向の照射野拡大手段 40に、ボーラス 45を組み合わせたものでは 、最深層 TVdとその手前の各照射層のそれぞれで、照射スポット Sに付与する照射 線量は実質的に一定に保持することができ、各照射層のそれぞれについて、加速器 12のビーム電流を実質的に一定に保持できるので、制御の簡略ィ匕を図ることができ る。
なお、ここで述べた線量分布、線量の重み付けの関する数値は、単なる 1つの例で あり、この発明の実施の形態 1の効果は具体的数値に依存するものではない。 [0045] 実施の形態 2.
次にこの発明の実施の形態 2について説明する。この実施の形態 2でも、この発明 による粒子線照射装置の実施の形態 2について説明し、併せてこの発明による粒子 線照射方法の実施の形態 2について説明する。
[0046] この発明による粒子線の照射方法の実施の形態 2に使用される粒子線照射装置の 実施の形態 2も、アクティブな深さ方向の照射野拡大と、アクティブな横方向の照射 野拡大とを組み合わせ、さらにボーラス 45を組み合わせて使用し、また照射目標の 最深層 TVdに対して、一回以上の再照射を行なうことを特徴とする。
[0047] この実施の形態 2の粒子線照射装置では、実施の形態 1による粒子線照射装置に おいて、アクティブな深さ方向の照射野拡大手段 15に加えて、アクティブな深さ方向 の照射野拡大手段 60が追加される。この実施の形態 2の粒子線照射装置は、それ 以外は実施の形態 1と同じに構成される。
[0048] この実施の形態 2の粒子線照射装置では、アクティブな深さ方向の照射野拡大手 段 15、 60は、粒子線ビーム PBの照射方向、すなわち深さ方向に互いに異なる飛程 の複数の照射層を重ね合わせるようにして、深さ方向に拡大ブラッグピーク SOBPを 構成する。ボーラス 45は、実施の形態 1と同様に、最深層 TVdとその手前の各照射 層のそれぞれに対する照射線量を実質的に一定にし、深さ方向の照射野拡大手段 15、 60の制御を簡略ィ匕する。
[0049] 図 9は、この発明の実施の形態 2の粒子線照射装置において使用される照射ノズ ル 31の構成を示す。この図 9の照射ノズルは符号 31Bで示される。図 9から明らかな ように、この実施の形態 2で使用される照射ノズル 31Bは、粒子線ビーム PBを X、 Y 平面で走査する偏向電磁石 51a、 51b、粒子線ビーム PBの照射位置をモニタするビ ーム位置モニタ 52a、 52b、粒子線 PBの照射線量をモニタする線量モニタ 53、ボー ラス取付け台 54、レンジシフタ 56および可変コリメータ 57を有する。
[0050] 図 9に示す偏向電磁石 51a、 51bは、図 5に示す偏向電磁石 41a、 41bと同様に、 粒子線ビーム PBに対して、そのブラッグピーク BPをその照射方向と直交する横方向 に拡大する横方向のアクティブな照射野拡大手段 50を構成する。この横方向のァク ティブな照射野拡大手段 50は、実施の形態 1のおけるアクティブな横方向の照射野 拡大手段 40と同様に、粒子線ビーム PBの照射方向に直交する横方向、すなわち X 軸、 Y軸方向に拡大 SOBPを形成する。具体的には、粒子線ビーム PBをその横方 向、すなわち XY面で走査し、その照射スポットを横方向に重ね合わせ、この XY面で 拡大 SOBPを形成する。
[0051] レンジシフタ 56は、アクティブな深さ方向の照射野拡大手段 60を構成する。このレ ンジシフタ 56は粒子線ビーム PBを横切るように挿入され、それに供給される調整信 号に応じて粒子線ビーム PBのエネルギーを減速させ、深さ方向の照射野拡大を行 なう。実施の形態 2では、加速器 12に対するエネルギー設定制御器 13によりァクティ ブな深さ方向の照射野拡大手段 15が構成され、またレンジシフタ 56によりアクティブ な深さ方向の照射野拡大手段 60が構成される。これらを併用することにより、充分な 深さ方向の照射野拡大を図ることができる。しかし、これらの一方を非使用とすること ちでさる。
[0052] 可変コリメータ 57は、横方向の照射野を制限するためのものであり、遠隔制御によ り、矢印 A方向に移動し、横方向の照射野を調整する。この可変コリメータ 57には、 例えば多葉コリメータを使用する。この可変コリメータ 57により横方向の照射野を調 整することにより、 3次元的な線量分布を作り出す。
[0053] 図 9の矢印 PBは、粒子線ビーム PBの照射方向を示す。偏向電磁石 51a、 51bは、 上流側に互いに隣接して配置されている。ビーム位置モニタ 52a、 52bは、間隔をお いて配置され、ビーム位置モニタ 52a、 52bの間に、ビーム位置モニタ 52bの近くに 線量モニタ 53が配置される。ボーラス取付け台 54は、最も患者に近い下流側に配置 され、このボーラス取付け台 54にボーラス 45が取付けられる。レンジシフタ 56は、線 量モニタ 53とビーム位置モニタ 52aとの間に、線量モニタ 53の近くに配置される。ま た可変コリメータ 57は、ビーム位置モニタ 52bとボーラス取付け台 54との間に配置さ れる。
[0054] この実施の形態 2では、アクティブな深さ方向の照射野拡大手段 15、 60と、ァクテ イブな横方向の照射野拡大手段 50とを組み合わせ、これにさらにボーラス 45を組み 合わせる。ボーラス 45は、実施の形態 1と同様に、最深層 TVdとその手前の各照射 層のそれぞれに対する照射線量を実質的に一定にし、深さ方向の照射野拡大手段 15、 60の制御を簡略ィ匕する。
[0055] 実施の形態 2では、照射目標 TVの深さ方向の最深層 TVdにおける照射線量の重 ね合わせが、計画通りに制御されることが重要である。しかし、患者の呼吸、体内の 血流などの生理的な活動に基づき患部臓器が動き、これに伴なつて照射目標 TVも 変位するので、照射線量の重ね合わせにも誤差が生じる可能性がある。例えば、呼 吸に伴ない、肝臓の位置は主に体の長さの方向に周期的に変位する力 また体の 厚みの方向にも周期的に変位する。
[0056] 実施の形態 2による粒子線の照射方法では、最深層 TVdに対して、 1回以上の再 照射を行なう。この最深層 TVdに付与される照射線量は、他の照射層のそれに比べ て 5— 20倍の大きさであるので、この最深層 TVdに対する照射線量を正確にするこ とにより、全体の照射線量分布の精度を向上することができる。
[0057] 実施の形態 2では、図 10に示す照射手順で粒子線ビーム PBを照射する。この制 御手順は、装置全体を制御する制御計算機の記憶装置に記憶される。図 10では、 縦欄に沿って、最深層 TVdから第 2層、第 3層、 · · ·、第 9層までの各照射層が配置さ れ、その横欄には照射の順番が、 1回目、 2回目、…、 5回目まで配置され、各照射 層と各照射の順番との交点には、照射順序が 1、 2、 3、 · · ·、 13と記載される。粒子 線ビーム PBの照射は、この照射順序 1、 2、 3、 · · ·、 13の順に実行される。
[0058] この図 10の照射手順では、 1回目の照射は、最深層 TVdに対する照射順序 1の照 射、および第 2層から第 9層のそれぞれに対する照射順序 2、 3、 4、 5、 6、 7、 8、 9の 照射を含む。 2回目の照射は、最深層 TVdに対する照射順序 10の照射を含み、 3回 目の照射は、最深層 TVdに対する照射順序 11の照射を含み、 4回目、 5回目の照射 は、それぞれ最深層 TVdに対する照射順序 12、 13の照射を含む。照射順序 10、 1 1、 12、 13の照射は、すべて最深層 TVdに対する再照射である。
[0059] 最深層 TVdに対する照射順序 1、 10、 11、 12、 13の 5回の照射は、最深層 TVdに 対応する最も高い照射線量 RV1の各 1Z5の線量で行なわれ、合計の照射線量が R VIになるようにしている。第 2層力も第 9層に対する照射線量 RV2から RV9は、照射 線量 RV1から順次低減される。図 10では、最深層 TVdに対する照射回数を 5回とし 、必要な照射線量 RV1を 5等分して RVZ5の照射線量で、 5回の照射を行なってい る。
[0060] 図 11 (a) (b) (c) (d)は、最深層 TVdに対する照射回数を合計 2回、すなわち再照 射回数を 1とした場合について、照射目標 TVの変位に伴なう照射線量の誤差の改 善状況を示す線図である。
[0061] 図 11 (a)には、照射目標 TVが示され、この照射目標 TVが呼吸に伴ない軸軸 206 に沿って矢印 B方向に変位するものとする。図 11 (b)には、 1回目の照射線量の分布 が実線の曲線 201で、また 2回目の照射線量の分布が点線の曲線 202でそれぞれ 示されている。図 11 (c)には、 1回目の照射線量の分布 201と、 1回目と 2回目の照 射線量をプラスした合計の照射線量の分布が曲線 203とが示される。
[0062] 図 11 (d)には、最深層 TVdに対する照射を単に 1回だけで実行した場合の照射線 量の分布が曲線 205で示され、この曲線 205と曲線 203とが対比される。図 11 (d)の 示すグレイ流域 204は、照射目標 TVの変位により、曲線 205では、曲線 203よりも多 くの照射線量が与えられた領域を示す。
[0063] このように、最深層 TVdなどのある照射層に単に 1回だけの照射を行なう場合には 、照射目標 TVの変位に伴ない、領域 204で過大な照射線量が付与される危険があ るが、再照射により、複数回に分割し、等分した照射線量で照射を行なうことにより、 このような過大な照射領域 204が生じるのを改善できる。
[0064] なお、図 11の例では、説明を簡単にするため、線量分布の曲線 201、 202、 203、 205の両端部で 100%から 0%まで線量が線形で低下する分布を使用した。実際に は、線量分布の端部は、ガウス分布でコンボリューシヨンされた関数の近いが、この説 明は分布の具体的な数学的表現に依存するものではな!、。最深層 TVdに対する照 射回数をさらに増加することにより、線量分布はさらに改善できる。また、深さ方向に ついても、同様に複数回照射することにより、線量分布の改善を図ることができる。
[0065] この実施の形態 2では、アクティブな深さ方向の照射野拡大と、アクティブな横方向 の照射野拡大とを組み合わせて粒子線ビーム PBを照射する力 この場合、各照射ス ポット Sは深さ方向と横方向の両方において、個別に照射して重ね合わせる。
[0066] また、この実施の形態 2では、照射スポット Sの重ね合わせは、深さの方向だけでは なぐ横方向にも必要であるので、照射に要する時間が長くなる傾向にある。この照 射に要する時間を短縮し、しかも患者の生理的な活動に伴なう照射誤差を軽減する ため、実施の形態 2では、最深層 TVdのみに対して、複数回の照射を行なうようにし ている。
[0067] アクティブな深さ方向の照射野拡大と、アクティブな横方向の照射野拡大とを組み 合わせた従来のスポットスキャニング照射法ではボーラス 45を使用しな 、ので、図 7 ( a) (b)に示すように、最深層 TVdは、照射深さ D (図 7 (a)参照)を変えた各照射層に ついて、その外周部のみに存在する。このため、従来のスポットスキャニング照射法 では、最深層 TVdを再照射するには、多くの照射層について再照射が必要になり、 また深さ Dを変えた各照射層につ 、て、加速器 12のエネルギーを調整する必要があ り、煩雑な制御が必要となる。
[0068] 実施の形態 2では、ボーラス 45を使用するので、最深層 TVdは、図 6 (b)に示すよ うに、 1つの層に集約することができ、この最深層 TVdの照射の中では加速器 12の エネルギーの調整およびレンジシフタ 56の調整も不要であるので、最深層 TVdの全 体を、簡単に再照射することができる。
[0069] このように、実施の形態 2によれば、患者の呼吸などの生理的な活動に基づ 、て変 位する照射目標 TVに対しても、照射スポット Sの照射精度を保持しながら、照射時間 が長くなるのを抑えることができる。
[0070] 以上のように、実施の形態 2において、最深層 TVdに対する 1回以上の再照射を行 ない、照射回数を複数回に分割することにより、目標部位 TVの変位に伴なう照射線 量の誤差を軽減することができる。
なお、ここで述べた線量分布、および重み付けの具体的数値は一例であり、この発 明の効果はその具体的数値に依存するものではない。
[0071] 実施の形態 3.
次に、この発明による実施の形態 3について説明する。この実施の形態 3で使用す る粒子線照射装置は、実施の形態 1または実施の形態 2で説明したものと同じものが 使用されるので、実施の形態 3では、この発明による粒子線照射方法の実施の形態 3について、主に説明する。
[0072] この実施の形態 3では、図 12に示す照射手順で粒子線ビーム PBを照射する。この 制御手順も、装置全体を制御する制御計算機の記憶装置に記憶される。図 12では 、縦欄に沿って、最深層 TVdから第 2層、第 3層、 · · ·、第 9層までの各照射層が配置 され、その横欄には照射の順番が、 1回目、 2回目、…、 5回目まで配置され、各照 射層と各照射の順番との交点には、照射順序が 1、 2、 3、 · · ·、 16と記載される。粒 子線ビーム PBは、照射順序 1、 2、 3、 · · ·、 16の順に実行される。
[0073] この図 12の照射手順では、 1回目の照射は、最深層 TVdに対する照射順序 1の照 射、および第 2層から第 9層のそれぞれに対する照射順序 2、 3、 4、 5、 6、 7、 8、 9の 照射を含む。 2回目の照射は、最深層 TVdに対する照射順序 10の照射、および第 2 層、第 3層のそれぞれに対する照射順序 11、 12の照射を含む。 3回目の照射は、最 深層 TVdに対する照射順序 13の照射、および第 2層に対する照射順序 14の照射を 含む。 4回目の照射は、最深層 TVdに対する照射順序 15の照射を含み、 5回目の照 射は最深層 TVdに対する照射順序 16の照射を含む。
照射順序 10、 13、 15、 16の 4つの照射は、すべて最深層 TVdに対する再照射で あり、照射順序 11、 14の 2つの照射は第 2層に対する再照射であり、また照射順序 1 2の照射は第 3層に対する再照射である。
[0074] 最深層 TVdに対する照射順序 1、 10、 13、 15、 16の合わせて 5つの照射は、それ ぞれ最深層 TVdに対応する最も高い照射線量 RV1の 1Z5の線量で行なわれ、合 計の照射線量が RV1になるようにしている。第 2層に対する照射順序 2、 11、 14の合 わせて 3つの照射は、それぞれ第 2層に必要な照射線量 RV2の 1Z3の線量で行な われ、合計の照射線量が RV2になるようにしている。第 3層に対する照射順序 3、 12 の照射は、それぞれ第 3層に必要な照射線量 RV3の 1Z2の線量で行なわれ、合計 の照射線量が RV3となるようにして 、る。第 2層力 第 9層に対する照射線量 RV2か ら RV9は、最深層 TVdに対する照射線量 RV1から順次低減される力 第 2層、第 3 層に対する照射線量 RV2、 RV3は、第 4層力 第 9層に対する照射線量に比べて高 い。
[0075] このように実施の形態 3では、最深層 TVdと、これに続 、て照射線量が高!、第 2層 、第 3層に対して、 1回以上の再照射を行ない、呼吸などの生理的な活動によって照 射目標 TVが変位した場合にも、これらの最深層 TVd、第 2層、第 3層の対する照射 誤差を低減できる。
[0076] 実施の形態 4.
次に、この発明による実施の形態 4について説明する。この実施の形態 4で使用す る粒子線照射装置は、実施の形態 1または実施の形態 2で説明したものと同じものが 使用されるので、実施の形態 4でも、この発明による粒子線照射方法の実施の形態 4 について、主に説明する。
[0077] この実施の形態 4では、図 13に示す照射手順で粒子線ビーム PBを照射する。この 照射手順も、装置全体を制御する制御計算機の記憶装置に記憶される。図 13では 、縦欄に沿って、最深層 TVdから第 2層、第 3層、 · · ·、第 9層までの各照射層が配置 され、その横欄には照射の順番が、 1回目、 2回目、…、 5回目まで配置され、各照 射層と各照射の順番との交点には、照射順序が 1、 2、 3、 · · ·、 16と記載される。粒 子線ビーム PBは、この照射順序 1、 2、 3、 · · ·、 16の順に実行される。
[0078] この図 13の照射手順では、 1回目の照射は、最深層 TVdに対する照射順序 1の照 射、および第 2層から第 9層のそれぞれに対する照射順序 2、 3、 4、 5、 6、 7、 8、 9の 照射を含む。 2回目の照射は、最深層 TVdに対する照射順序 10の照射、および第 2 層、第 3層のそれぞれに対する照射順序 14、 16の照射を含む。 3回目の照射は、最 深層 TVdに対する照射順序 11の照射と、第 2層に対する照射順序 15の照射を含む 。 4回目の照射は、最深層 TVdに対する照射順序 12の照射を含み、また 5回目の照 射は、最深層 TVdに対する照射順序 13の照射を含む。
照射順序 10、 11、 12、 13の照射は、すべて最深層 TVdに対する再照射であり、 照射順序 14、 15の照射は第 2層に対する再照射であり、また照射順序 16の照射は 第 3層に対する再照射である。
[0079] 最深層 TVdに対する照射順序 1、 10、 11、 12、 13の合わせて 5回の照射は、それ ぞれ最深層 TVdに対応する最も高い照射線量 RV1の 1Z5の線量で行なわれ、合 計の照射線量が RV1になるようにしている。第 2層に対する照射順序 2、 14、 15の合 わせて 3回の照射は、それぞれ第 2層に必要な照射線量 RV2の 1Z3の線量で行な われ、合計の照射線量が RV2になるようにしている。第 3層に対する照射順序 3、 16 の照射は、それぞれ第 3層に必要な照射線量 RV3の 1Z2の線量で行なわれ、合計 の照射線量が RV3となるようにして 、る。第 2層力 第 9層に対する照射線量 RV2か ら RV9は、最深層 TVdに対する照射線量 RV1から順次低減される力 第 2層、第 3 層に対する照射線量 RV2、 RV3は、第 4層力 第 9層に対する照射線量に比べて高 い。
[0080] この実施の形態 4では、最深層 TVdに対する照射順序 10から 13の 4回の再照射 が完了した後に、第 2層に対する照射順序 14、 15の 2回の再照射を行ない、さらに その後で、第 3層に対する照射順序 16の再照射を行なうことを特徴とする。この実施 の形態 4においても、最深層 TVdと、それに続いて照射線量の高い第 2層、第 3層に 対して、 1回以上の再照射を行なうので、呼吸などの生理的な活動により照射目標 T Vが変位しても、これらの照射線量の高い最深層 TVd、第 2層、第 3層に対する照射 誤差を低減できる。
[0081] 実施の形態 5.
次に、この発明による実施の形態 5について説明する。この実施の形態 5で使用す る粒子線照射装置は、実施の形態 1または実施の形態 2で説明したものと同じものが 使用されるので、実施の形態 5でも、この発明による粒子線照射方法の実施の形態 5 について、主に説明する。
[0082] この実施の形態 5では、図 14に示す照射手順で粒子線ビーム PBを照射する。この 制御手順も、装置全体を制御する制御計算機の記憶装置に記憶される。図 14では 、縦欄に沿って、最深層 TVdから第 2層、第 3層、 · · ·、第 9層までの各照射層が配置 され、その横欄には各照射層に対する重み付け (相対値)と、これに続き照射の順番 力 1回目、 2回目、 · · ·、 10回目まで配置され、各照射層と各照射の順番との交点 には、照射順序が 1、 2、 3、 · · ·、 24と記載される。粒子線ビーム PBは、この照射順 序 1、 2、 3、 · · ·、 24の順に実行される。
[0083] この図 14の照射手順では、 1回目の照射は、最深層 TVdに対する照射順序 1の照 射、および第 2層から第 9層のそれぞれに対する照射順序 2、 3、 4、 5、 6、 7、 8、 9の 照射を含む。 2回目の照射は、最深層 TVdに対する照射順序 10の照射、および第 2 層から第 5層のそれぞれに対する照射順序 11、 12、 13、 14の照射を含む。 3回目の 照射は、最深層 TVdに対する照射順序 15の照射と、第 2層、第 3層のそれぞれに対 する照射順序 16、 17の照射を含む。 4回目から 10回目の照射は、それぞれ最深層 TVdに対する照射順序 18、 19、 20、 21、 22、 23および 24の照射である。
照射順序 10、 15、 18から 24の 9回の照射は、すべて最深層 TVdに対する再照射 であり、照射順序 11、 16の 2回の照射は第 2層に対する再照射であり、照射順序 12 、 17の 2回の照射は第 3層に対する再照射である。また、照射順序 13、 14の照射は 、それぞれ第 4層、第 5層の対する再照射である。
[0084] 最深層 TVdに対する照射順序 1、 10、 15、 18から 24の合わせて 10回の照射は、 それぞれ最深層 TVdに対応する最も高い照射線量 RV1 (重み付け 100)の 1Z10 の線量で行なわれ、合計の照射線量が RV1になるようにしている。第 2層に対する照 射順序 2、 11、 16の合わせて 3回の照射は、それぞれ第 2層に必要な照射線量 RV2 (重み付け 30)の 1Z3の線量で行なわれ、合計の照射線量が RV2になるようにして いる。第 3層に対する照射順序 3、 12、 17の照射は、それぞれ第 3層に必要な照射 線量 RV3 (重み付け 28)の 1Z2の線量で行なわれ、合計の照射線量が RV3となる ようにしている。第 4層に対する照射順序 4、 13の合わせて 2回の照射は、それぞれ 第 4層に必要な照射線量 RV4 (重み付け 22)の 1Z2の線量で行なわれ、合計の照 射線量が RV4となるようにしている。第 5層に対する照射順序 5、 14の合わせて 2回 の照射は、それぞれ第 5層に必要な照射線量 RV5 (重み付け 20)の 1Z2の線量で 行なわれ、合計の照射線量が RV5となるようにしている。
[0085] この実施の形態 5では、最深層 TVdおよび重み付け (相対値)が 20以上の第 2層、 第 3層、第 4層、第 5層に対して、それぞれの重み付けに比例した回数の再照射を行 なうことを特徴とする。この実施の形態 5においても、呼吸などの生理的な活動により 照射目標 TVが変位しても、これらの照射線量の高い最深層 TVd、第 2層、第 3層、 第 4層、第 5層に対する照射誤差を低減できる。
[0086] 実施の形態 6.
次に、この発明による実施の形態 6について説明する。この実施の形態 6で使用す る粒子線照射装置は、実施の形態 1または実施の形態 2で説明したものと同じものが 使用されるので、実施の形態 6でも、この発明による粒子線照射方法の実施の形態 6 について、主に説明する。 [0087] この実施の形態 6では、図 15に示す照射手順で粒子線ビーム PBを照射する。この 制御手順も、装置全体を制御する制御計算機の記憶装置に記憶される。図 15では 、縦欄に沿って、最深層 TVdから第 2層、第 3層、 · · ·、第 9層までの各照射層が配置 され、その横欄には各照射層に対する重み付け (相対値)と、これに続き照射の順番 力 1回目、 2回目、 · · ·、 10回目まで配置され、各照射層と各照射の順番との交点 には、照射順序が 1、 2、 3、 · · ·、 24と記載される。粒子線ビーム PBは、この照射順 序 1、 2、 3、 · · ·、 24の順に実行される。
[0088] この図 15の照射手順では、 1回目の照射は、最深層 TVdに対する照射順序 1の照 射、および第 2層から第 9層のそれぞれに対する照射順序 2、 3、 4、 5、 6、 7、 8、 9の 照射を含む。 2回目の照射は、最深層 TVdに対する照射順序 10の照射、第 2層に対 する照射順序 19の照射、第 3層に対する照射順序 21の照射、第 4層に対する照射 順序 23の照射および第 5層に対する第 24の照射を含む。 3回目の照射は、最深層 TVdに対する照射順序 11の照射と、第 2層、第 3層のそれぞれに対する照射順序 2 0、 22の照射を含む。 4回目から 10回目の照射は、それぞれ最深層 TVdに対する照 射順序 12から 24の照射である。
[0089] 照射順序 10から 18の 9回の照射は、すべて最深層 TVdに対する再照射であり、照 射順序 19、 20の 2回の照射は第 2層に対する再照射であり、照射順序 21、 22の照 射は第 3層に対する再照射である。また、照射順序 23、 24の照射は、それぞれ第 4 層、第 5層の対する再照射である。照射順序 10から 18の 9回の最深層 TVdに対する 再照射が、再照射の最初にまとめて実行され、これに続いて第 2層に対する照射順 序 19、 20の再照射が実行される。その後、第 3層、第 4層、第 5層に対する再照射が 実行される。
[0090] 最深層 TVdに対する照射順序 1、 10から 18の合わせて 10回の照射は、それぞれ 最深層 TVdに対応する最も高い照射線量 RV1 (重み付け 100)の 1Z10の線量で 行なわれ、合計の照射線量が RV1になるようにしている。第 2層に対する照射順序 2 、 19、 20の合わせて 3回の照射は、それぞれ第 2層に必要な照射線量 RV2 (重み付 け 30)の 1Z3の線量で行なわれ、合計の照射線量が RV2になるようにしている。第 3 層に対する照射順序 3、 21、 22の合わせて 3回の照射は、それぞれ第 3層に必要な 照射線量 RV3 (重み付け 28)の 1Z3の線量で行なわれ、合計の照射線量が RV3と なるようにしている。第 4層に対する照射順序 4、 23の合わせて 2回の照射は、それぞ れ第 4層に必要な照射線量 RV4 (重み付け 22)の 1Z2の線量で行なわれ、合計の 照射線量が RV4となるようにしている。第 5層に対する照射順序 5、 24の合わせて 2 回の照射は、それぞれ第 5層に必要な照射線量 RV5 (重み付け 20)の 1Z2の線量 で行なわれ、合計の照射線量が RV5となるようにして 、る。
[0091] この実施の形態 6でも、最深層 TVdおよび重み付け (相対値)が 20以上の第 2層、 第 3層、第 4層、第 5層に対して、それぞれの重み付けに比例した回数の再照射を行 なうことを特徴とする。この実施の形態 6においても、呼吸などの生理的な活動により 照射目標 TVが変位しても、これらの照射線量の高い最深層 TVd、第 2層、第 3層、 第 4層、第 5層に対する照射誤差を低減できる。
[0092] 実施の形態 7.
次にこの発明の実施の形態 7について説明する。この実施の形態 7では、この発明 による粒子線照射装置の実施の形態 7と、この発明による粒子線照射方法の実施の 形態 7について説明する。
この実施の形態 7は、患者の呼吸測定または照射目標の位置検出を行ない、これ らの呼吸測定または照射目標の位置検出に基づき、患者の呼吸判定を行ない、粒 子線ビーム PBの照射の入り切りを制御する機能を付加したものである。
[0093] この実施の形態 7では、図 16に示す実施の形態 7の粒子線照射装置が使用される 。この図 16に示す粒子線照射装置は、粒子線発生部 10、粒子線輸送部 20および 粒子線照射部 30に加え、呼吸測定装置 71、照射目標位置検出装置 73、呼吸判定 計算機 75、粒子線治療安全系 77を備えている。粒子線発生部 10および粒子線輸 送部 20は、図 4に示したものと同じである。粒子線照射部 30は、図 4の粒子線照射 部 30A、 30B、 30Cを含み、その照射ノズル 31は、図 5に示す実施の形態 1で使用 した照射ノズル 31 Aまたは図 9に示す実施の形態 2で使用した照射ノズル 31 Bが使 用される。実施の形態 7の粒子線照射方法では、実施の形態 1から実施の形態 6〖こ 述べた照射方法が使用され、加えて粒子線ビーム PBが入り切り制御される。なお、 図 16には、治療台 32上に患者 70が図示される。粒子線照射部 30は、患者 70の真 上から粒子線ビーム PBを照射する。
[0094] 呼吸測定装置 71は、患者 70の呼吸を測定して呼吸信号 BSを出力するものであり 、従来の粒子線治療装置または X線 CTで使用されて 、るものを使用することができ る。この呼吸測定手段 71には、患者 70の腹部または胸部に発光ダイオード (LED) を取付け、この発光ダイオードの発光位置の変位により呼吸を測定する手段、反射 装置を用いレーザ光線により体の変位を測定する手段、患者の腹部に伸縮型抵抗 を取付けてその電気特性の変化を測定する手段、患者の 70の呼吸する息を直接計 測する手段などを用いることができる。
[0095] 照射目標位置検出装置 73は、患者 70内の照射目標 TVの位置を検出して呼吸信 号 BSを出力するものである。この照射目標位置検出装置 73としては、 X線源 731、 7 32と、これらに対応する X線画像取得装置 741、 742を使用する。 X線源 731、 732 は、患者 70内の照射目標 TVに向けて X線を照射し、 X線画像取得装置 741、 742 は、 X線源 731、 732からの X線の画像を取得して、照射目標 TVの位置を検出する 。 X線画像取得装置 741、 742としては、例えばイメージインテンシファイアを用いた X線テレビ装置あるいはシンチレ一タ板を CCDカメラで計測する手段などを使用する 。照射目標 TVは、それに対応する要所に、予め金などの金属の小片をマーカとして 埋め込む手法もあり、このマーカを用いることにより、照射目標 TVの位置の特定が容 易になる。
[0096] 呼吸測定手段 71および照射目標位置検出装置 73はともに、呼吸に伴なう照射目 標 TVの変位を検出し、呼吸信号 BSを発生する。これらの呼吸信号 BSは、ともに呼 吸判定計算機 75に入力される。この呼吸判定計算機 75は、その記憶手段内に記憶 された呼気 Z吸気の相関関係に基づき、入力された呼吸信号 BSから呼吸周期の位 相をリアルタイムで判定し、ステータス信号 SSを粒子線治療安全系 77に出力する。 粒子線治療安全系 77は、ステータス信号 SSに基づき、制御信号 CSを粒子線発生 部 10および粒子線輸送部 20に供給し、粒子線照射ノズル 31からの粒子線ビーム P Bの入り切りを行なう。
[0097] 実施の形態 7によれば、呼吸に同期して、実施の形態 1から実施の形態 6について 説明した粒子線ビーム PBを入り切り制御して、より安全度の高!、高精度の粒子線照 射を行なうことができる。なお、呼吸測定装置 71と照射目標位置検出手段 73は、そ れらのいずれか一方だけを使用することもできる。
[0098] 実施の形態 8.
次にこの発明の実施の形態 8について説明する。この実施の形態 8では、この発明 による粒子線照射装置の実施の形態 8と、この発明による粒子線照射方法の実施の 形態 8について説明する。
この実施の形態 8は、患者の呼吸測定または照射目標の位置検出を行ない、これ らの呼吸測定または照射目標の位置検出に基づき、患者の呼吸判定を行ない、粒 子線ビーム PBの照射の入り切りを制御する機能を付加したものである。この実施の 形態 8は、実施の形態 7における粒子線治療安全系 77を、照射制御計算機 80に置 き換え、呼吸信号 BSに基づいて、照射される粒子線ビーム PBの照射線量を制御す るようにしたものである。その他は実施の形態 7と同じに構成される。
[0099] この実施の形態 8では、図 17に示す実施の形態 9の粒子線照射装置が使用される 。この図 17に示す粒子線発生部 10および粒子線輸送部 20は、図 4に示したものと 同じである。粒子線照射部 30は、図 4の粒子線照射部 30A、 30B、 30Cを含む。こ の粒子線照射部 30は照射ノズル 31を有し、この照射ノズル 31〖こは、図 5に示す実施 の形態 1で使用した照射ノズル 31 Aおよび図 9に示す実施の形態 2で使用した照射 ノズル 31Bが使用される。この実施の形態 9の粒子線照射方法は、実施の形態 1から 実施の形態 7に述べた照射方法にカ卩え、粒子線ビーム PBの照射線量の制御を行な
[0100] この実施の形態 8では、患者 70の呼吸位相と、それに対応した照射目標 TVの位 置を計測し、それらの相関関係を呼吸判定計算機 75の記憶手段に記憶する。呼吸 判定計算機 75は、呼吸測定装置 71および照射目標位置検出手段 73のいずれか 一方または両方からの呼吸信号 BSを受け、リアルタイムで、この呼吸信号 BSに対応 する照射目標 TVの位置を表わす位置信号 PSを出力する。
[0101] 照射制御計算機 80は、呼吸判定計算機 75からの位置信号 PSに基づき、その位 置信号 PSに対応する照射線量を表わす照射線量制御信号 RSを粒子線照射部 30 へ供給する。粒子線照射部 30は、呼吸信号 BSに対応する位置信号 PSに基づき、 照射目標 TVに対する照射線量を調整する。例えば、照射目標 TVが肝臓である場 合、呼吸のある位相において肝臓が照射ノズル 31から lcm深い位置に変位したとす ると、この深い位置において計画照射線量となるように、粒子線ビーム PBの照射線 量を調整する。照射制御計算機 80は、実施の形態 1から 6について説明した装置全 体を制御する制御計算機とすることもできる。
[0102] この実施の形態 8では、呼吸に伴なう照射目標 TVの変位に対応して、実施の形態 1から 6について説明した粒子線ビーム PBの照射線量を調整するので、より精度の 高い照射を行なうことができる。なお、実施の形態 8において、照射目標位置検出装 置 73からの呼吸信号 BSを使用すれば、呼吸測定装置 71からの呼吸信号 BSに比 ベ、より直接的に照射目標 TVの位置を検出でき、より精度の高い照射を行なうことが できる。
[0103] 実施の形態 9.
次にこの発明の実施の形態 9について説明する。この実施の形態 9では、この発明 による粒子線照射装置の実施の形態 9と、この発明による粒子線照射方法の実施の 形態 9について説明する。
[0104] 患者 70の照射目標 TVは、患者 70の呼吸に伴なつて変位する力 その変位は、主 に一定の軸に沿った変位である。胸部および腹部の臓器については、横隔膜の動 作によって、体の長さ方向に沿った変位が多い。図 18は、患者 70内の照射目標 TV 力 体の長さ方向に沿って矢印 C方向に変位する様子を示す。
[0105] 粒子線ビーム PBは通常は体の真上の位置力 矢印 B1のように照射される力 粒 子線ビーム PBを患者 70の頭 70hの上方力も斜めに矢印 B2のように照射すれば、患 者 70の呼吸に伴なう照射目標 TVの矢印 C方向の変位を、粒子線ビーム PBの照射 方向、すなわち深さ方向と、それに直交する横方向とに分解することができ、呼吸に 伴なう照射目標 TVに対する照射誤差を小さくできる。
[0106] 実施の形態 9は、これに着目して、実施の形態 1から実施の形態 6について説明し た粒子線ビーム PBを、体の長さの方向に対して斜め力も照射する。この実施の形態 9の粒子線照射装置では、図 19、 20に示す回転ガントリ 90と、治療台回転機構が併 用される。 [0107] 回転ガントリ 90は、大きな円筒型であり、水平軸線 91の周りに回転可能とされる。こ の回転ガントリ 90の内部に治療台 32が設置される。この治療台 32は、水平軸線 91 と直交する垂直軸線 92の周りに、治療台回転機構により回転されるものとする。粒子 線照射ノズル 31は、回転ガントリ 90の周面の照射点 Pに設置される。
[0108] 図 19は、水平軸線 91と体に長さ方向とが互いに平行となり、照射点 Pから真下に 矢印 B1方向に粒子線ビーム PBが照射される状態を示す。図 20では、回転ガントリ 9 0が、水平軸線 91の周りに、図 19から反時計方向にほぼ 45度回転し、また治療台 3 2が図 19から垂直軸線 92の周りで 90度回転した状態を示し、この図 20の状態では 、粒子線ビーム PBは、患者 70の頭 70hの上方力も斜めに矢印 B2に沿って照射され る。
[0109] この実施の形態 9の粒子線照射方法では、患者 70の頭 70hの上方力も斜めに矢 印 B2に沿って粒子線ビーム PBが照射されるので、患者 70の呼吸に伴なう照射目標 TVの矢印 C方向の変位を、粒子線ビーム PBの照射方向、すなわち深さ方向と、そ れに直交する横方向とに分解することができ、呼吸に伴なう照射目標 TVに対する照 射誤差を小さくできる。
産業上の利用可能性
[0110] この発明による粒子線の照射方法は、例えば癌などの治療方法として利用され、ま た、この発明による粒子線の照射装置は、例えば癌などの治療装置として利用される 図面の簡単な説明
[0111] [図 1]各種放射線の体内における線量分布を示す線図。
[図 2]ボーラスによる照射エネルギーの変換を示す説明図。
[図 3]粒子線ビームの体内における深さ方向の線量分布図。
[図 4]この発明による粒子線照射装置の実施の形態 1の全体構成図。
[図 5]実施の形態 1における照射ノズルの内部構成図。
[図 6]実施の形態 1による粒子線照射方法の説明図であり、図 6 (a)は照射目標を示 す斜視図、図 6 (b)はその照射スポットの走査説明図。
[図 7]従来のスポットスキャニング照射法の説明図であり、図 7 (a)は照射目標を示す 斜視図、図 7 (b)はその照射スポットの走査説明図。
[図 8]図 6の粒子線照射方法で用いられるボーラスの断面図。
[図 9]この発明による粒子線照射装置の実施の形態 2における照射ノズルの内部構 成図。
[図 10]この発明による粒子線照射方法の実施の形態 2における照射手順を示す図。
[図 11]実施の形態 2の照射手順の効果を示す線図。
[図 12]この発明による粒子線照射方法の実施の形態 3における照射手順を示す図。
[図 13]この発明による粒子線照射方法の実施の形態 4における照射手順を示す図。
[図 14]この発明による粒子線照射方法の実施の形態 5における照射手順を示す図。
[図 15]この発明による粒子線照射方法の実施の形態 6における照射手順を示す図。
[図 16]この発明による粒子線照射装置の実施の形態 7の構成図。
[図 17]この発明による粒子線照射装置の実施の形態 8の構成図。
[図 18]この発明による粒子線照射方法の実施の形態 9に関する粒子線ビームの照射 方向の説明図。
[図 19]この発明による粒子線照射装置の実施の形態 9を示す斜視図。
[図 20]この発明による粒子線照射装置の実施の形態 9の回転状態を示す斜視図。 符号の説明
10 :粒子線発生部、 12 :加速器、 15、 60 :深さ方向の照射野拡大手段、
20 :粒子線輸送部、 30、 30A、 30B、 30C :粒子線照射部、
31、 31A、 31B:照射ノズル、 40 :横方向の照射野拡大手段、
TV:照射目標、 TVd:最深層、 S:照射スポット、 PB:粒子線ビーム、
45 :ボーラス、 50 :横方向の照射野拡大手段、
71:呼吸測定装置、 73:照射目標位置検出装置、 75:呼吸判定計算機、
77 :粒子線治療装置安全系、 80 :照射制御計算機、 90 :回転ガントリ。

Claims

請求の範囲
[1] 粒子線ビームの照射方向の照射方向に沿った深さ方向に方向に前記粒子線ビー ムの照射野を拡大する深さ方向の照射野拡大と、前記粒子線ビームの照射方向と直 交する横方向に前記粒子線ビームの照射野を拡大する横方向の照射野拡大とを併 用し、前記粒子線ビームを照射目標に照射する粒子線照射方法であって、前記深さ 方向の照射野拡大が、前記粒子線ビームの照射方向に互いに異なる飛程の複数の 照射層を重ね合わせるアクティブな照射野拡大とされ、また前記横方向の照射野拡 大力 前記粒子線ビームの照射スポットを前記横方向に重ね合わせるアクティブな照 射野拡大とされ、加えて前記粒子線ビームを横切るように、前記照射目標の深さ方 向の最深部に沿った形状を有するボーラスを配置することを特徴とする粒子線照射 方法。
[2] 請求項 1記載の粒子線照射方法であって、前記複数の照射層の中から選ばれた 照射層について、前記粒子線ビームを一回以上再照射することを特徴とする粒子線 照射方法。
[3] 請求項 2記載の粒子線照射方法であって、前記選ばれた照射層が、前記複数の照 射層の中で照射線量が最も高い照射層とされ、この照射層について、前記粒子線ビ ームを一回以上再照射することを特徴とする粒子線照射方法。
[4] 請求項 2記載に粒子線照射方法であって、前記選ばれた照射層が、複数の照射層 とされ、この選ばれた複数の照射層のそれぞれについて、前記粒子線ビームを一回 以上再照射することを特徴とする粒子線照射方法。
[5] 請求項 4記載の粒子線照射方法であって、前記選ばれた複数の照射層のそれぞ れに対する再照射の回数を、それぞれの照射層に対する計画照射線量に応じた回 数とすることを特徴とする粒子線照射方法。
[6] 請求項 1記載の粒子線照射方法であって、前記照射目標の変位を検出し、この照 射目標の変位に応じて、前記粒子線ビームの照射を入り切りすることを特徴とする粒 子線照射方法。
[7] 請求項 1記載の粒子線照射方法であって、前記照射目標の変位を検出し、この照 射目標の変位に応じて、前記粒子線ビームの照射線量を制御することを特徴とする 粒子線照射方法。
[8] 請求項 1記載の粒子線照射方法であって、前記照射目標が主に所定の方向に沿 つて変位する場合に、前記粒子線ビームを前記所定の方向に関して斜めの方向から 前記照射目標に向けて照射することを特徴とする粒子線照射方法。
[9] 粒子線ビームを発生する粒子線発生部と、この粒子線発生部で発生した前記粒子 線ビームを輸送する粒子線輸送部と、この粒子線輸送部で輸送された前記粒子線ビ ームを照射目標に向けて照射する粒子線照射部と、前記粒子線ビームの照射方向 の照射方向に沿った深さ方向に方向に前記粒子線ビームの照射野を拡大する深さ 方向の照射野拡大手段と、前記粒子線ビームの照射方向と直交する横方向に前記 粒子線ビームの照射野を拡大する横方向の照射野拡大手段とを備えた粒子線照射 装置であって、前記深さ方向の照射野拡大手段が、前記粒子線ビームの照射方向 に互いに異なる飛程の複数の照射層を重ね合わせるアクティブな照射野拡大手段と され、また前記横方向の照射野拡大手段が、前記粒子線ビームの照射スポットを前 記横方向に重ね合わせるアクティブな照射野拡大手段とされ、加えて前記粒子線ビ ームを横切るように、前記照射目標の深さ方向の最深部に沿った形状を有するボー ラスを配置したことを特徴とする粒子線照射装置。
[10] 請求項 9記載の粒子線照射装置であって、前記アクティブな深さ方向の照射野拡 大手段が、前記粒子線ビームを加速する加速器に結合され、その加速エネルギーを 変化させることを特徴とする粒子線照射装置。
[11] 請求項 9記載の粒子線照射装置であって、前記アクティブな深さ方向の照射野拡 大手段が、前記粒子線ビームを横切るように配置されたレンジシフタとされ、このレン ジシフタは与えられる調整信号に応じて前記粒子線ビームのエネルギーを調整する ことを特徴とする粒子線照射装置。
[12] 請求項 9記載の粒子線照射装置であって、さらに、前記照射目標の変位を検出す る変位検出手段と、前記粒子線ビームの照射を入り切りする入り切り手段とを備え、 前記照射目標の変位に応じて前記粒子線ビームを入り切りすることを特徴とする粒 子線照射装置。
[13] 請求項 9記載の粒子線照射装置であって、さらに、前記照射目標の変位を検出す る変位検出手段と、前記粒子線ビームの照射線量を調整する調整手段とを備え、前 記照射目標の変位に応じて前記粒子線ビームの照射線量を調整することを特徴とす る粒子線照射装置。
請求項 9記載の粒子線照射装置であって、前記粒子線照射部は粒子線ビームを 照射する照射ノズルを有し、この照射ノズルが回転ガントリに搭載され、前記照射目 標が主に所定の方向に沿って変位する場合に、前記粒子線ビームを前記所定の方 向に関して斜めの方向力 前記粒子線ビームを照射目標に向けて照射することを特 徴とする粒子線照射装置。
PCT/JP2005/001710 2005-02-04 2005-02-04 粒子線照射方法およびそれに使用される粒子線照射装置 WO2006082651A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112005002171T DE112005002171B4 (de) 2005-02-04 2005-02-04 Teilchenstrahl-Bestrahlungsverfahren und dafür verwendete Teilchenstrahl-Bestrahlungsvorrichtung
JP2007501485A JP4435829B2 (ja) 2005-02-04 2005-02-04 粒子線照射装置
PCT/JP2005/001710 WO2006082651A1 (ja) 2005-02-04 2005-02-04 粒子線照射方法およびそれに使用される粒子線照射装置
CNA2005800225108A CN1980709A (zh) 2005-02-04 2005-02-04 粒子射线照射方法及使用该方法的粒子射线照射装置
US11/596,707 US7525104B2 (en) 2005-02-04 2005-02-04 Particle beam irradiation method and particle beam irradiation apparatus used for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/001710 WO2006082651A1 (ja) 2005-02-04 2005-02-04 粒子線照射方法およびそれに使用される粒子線照射装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/685,421 Continuation US7867961B2 (en) 2004-09-13 2007-03-13 Wash composition

Publications (1)

Publication Number Publication Date
WO2006082651A1 true WO2006082651A1 (ja) 2006-08-10

Family

ID=36777046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001710 WO2006082651A1 (ja) 2005-02-04 2005-02-04 粒子線照射方法およびそれに使用される粒子線照射装置

Country Status (5)

Country Link
US (1) US7525104B2 (ja)
JP (1) JP4435829B2 (ja)
CN (1) CN1980709A (ja)
DE (1) DE112005002171B4 (ja)
WO (1) WO2006082651A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268940A (ja) * 2009-08-21 2009-11-19 Mitsubishi Electric Corp 粒子線照射装置
JP2010172427A (ja) * 2009-01-28 2010-08-12 Japan Health Science Foundation 陽子線治療におけるポジトロン放出核種のアクティビティ分布のシミュレーション方法
WO2010122662A1 (ja) * 2009-04-24 2010-10-28 三菱電機株式会社 粒子線治療装置
WO2011148486A1 (ja) * 2010-05-27 2011-12-01 三菱電機株式会社 粒子線照射システムおよび粒子線照射システムの制御方法
WO2012066631A1 (ja) * 2010-11-16 2012-05-24 三菱電機株式会社 ボーラス、ボーラスの製造方法、粒子線治療装置、および治療計画装置
WO2012117538A1 (ja) 2011-03-02 2012-09-07 三菱電機株式会社 粒子線照射システムおよび粒子線照射システムの制御方法
JP2013520257A (ja) * 2010-02-24 2013-06-06 シーメンス アクティエンゲゼルシャフト 標的体積に線量を蓄積する照射装置および照射方法
US8466428B2 (en) 2009-11-03 2013-06-18 Mitsubishi Electric Corporation Particle beam irradiation apparatus and particle beam therapy system
US8481979B2 (en) 2010-09-09 2013-07-09 Mitsubishi Electric Company Particle beam therapy system with respiratory synchronization control
US8808341B2 (en) 2010-11-16 2014-08-19 Mitsubishi Electric Corporation Respiratory induction apparatus, respiratory induction program, and particle beam therapy system
JP2016526452A (ja) * 2013-07-05 2016-09-05 ユニヴァーシティ オブ アイオワ リサーチ ファウンデーションUniversity of Iowa Research Foundation イオン治療のための動的トリミングスポット走査の方法及びシステム
JP2021135111A (ja) * 2020-02-25 2021-09-13 大学共同利用機関法人 高エネルギー加速器研究機構 フィードバックデフレクターシステム

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5046928B2 (ja) 2004-07-21 2012-10-10 メヴィオン・メディカル・システムズ・インコーポレーテッド シンクロサイクロトロン及び粒子ビームを生成する方法
CN1980709A (zh) * 2005-02-04 2007-06-13 三菱电机株式会社 粒子射线照射方法及使用该方法的粒子射线照射装置
ES2730108T3 (es) 2005-11-18 2019-11-08 Mevion Medical Systems Inc Radioterapia de partículas cargadas
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
JP5143606B2 (ja) * 2008-03-28 2013-02-13 住友重機械工業株式会社 荷電粒子線照射装置
US8907309B2 (en) * 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
DE102008027485B4 (de) * 2008-06-09 2010-02-11 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Deposition einer Solldosisverteilung in einem zyklisch bewegten Zielgebiet
KR100946270B1 (ko) * 2008-08-12 2010-03-09 주식회사 메가젠임플란트 연조직 절단 치과용 공구
DE102009033297A1 (de) * 2009-07-15 2011-01-20 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Bestrahlung bzw. Bestrahlungsplanung für ein Rescanning-Verfahren mit einem Partikelstrahl
US10555710B2 (en) * 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
WO2012008274A1 (ja) * 2010-07-15 2012-01-19 三菱電機株式会社 粒子線照射装置およびこれを備えた粒子線治療装置
JP5637055B2 (ja) * 2011-04-18 2014-12-10 株式会社日立製作所 粒子線治療計画装置および粒子線治療装置
US8644571B1 (en) 2011-12-06 2014-02-04 Loma Linda University Medical Center Intensity-modulated proton therapy
DE102012000650A1 (de) * 2012-01-16 2013-07-18 Carl Zeiss Microscopy Gmbh Verfahren und vorrichtung zum abrastern einer oberfläche eines objekts mit einem teilchenstrahl
WO2014018976A1 (en) * 2012-07-27 2014-01-30 H. Lee Moffitt Cancer Center And Research Institute, Inc. Multi-spectral fluorescence for in-vivo determination of proton energy and range in proton therapy
EP2901822B1 (en) 2012-09-28 2020-04-08 Mevion Medical Systems, Inc. Focusing a particle beam
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
EP2901820B1 (en) 2012-09-28 2021-02-17 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
JP6121546B2 (ja) 2012-09-28 2017-04-26 メビオン・メディカル・システムズ・インコーポレーテッド 粒子加速器用の制御システム
WO2014052734A1 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Controlling particle therapy
TW201433331A (zh) 2012-09-28 2014-09-01 Mevion Medical Systems Inc 線圈位置調整
EP3342462B1 (en) 2012-09-28 2019-05-01 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
JP5918865B2 (ja) * 2012-12-26 2016-05-18 三菱電機株式会社 線量分布測定装置
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
EP3072554A4 (en) * 2013-11-21 2017-07-19 Mitsubishi Electric Corporation Particle therapy device
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
KR101747209B1 (ko) * 2014-12-16 2017-06-14 사회복지법인 삼성생명공익재단 방사선 세기 변조체 제조 방법 및 제조 장치
US9884206B2 (en) 2015-07-23 2018-02-06 Loma Linda University Medical Center Systems and methods for intensity modulated radiation therapy
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US9855445B2 (en) * 2016-04-01 2018-01-02 Varian Medical Systems, Inc. Radiation therapy systems and methods for delivering doses to a target volume
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US10974076B2 (en) 2016-12-14 2021-04-13 Varian Medical Systems, Inc Dynamic three-dimensional beam modification for radiation therapy
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
EP3645111A1 (en) 2017-06-30 2020-05-06 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
JP7356370B2 (ja) * 2020-02-14 2023-10-04 株式会社日立製作所 ビーム監視システム、粒子線治療システム、およびビーム監視方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167072A (ja) * 1998-12-03 2000-06-20 Mitsubishi Electric Corp 動体追跡照射装置
JP3518270B2 (ja) * 1996-08-30 2004-04-12 株式会社日立製作所 荷電粒子ビーム装置
JP2004358237A (ja) * 2003-05-13 2004-12-24 Hitachi Ltd 粒子線出射装置、これに用いる治療計画装置、及び粒子線出射方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO964690L (no) * 1996-01-25 1997-07-28 Geberit Technik Ag Holdeinnretning på en monteringsramme for sanitære anordninger
EP0826394B1 (en) * 1996-08-30 2004-05-19 Hitachi, Ltd. Charged particle beam apparatus
EP0897731A4 (en) * 1996-11-26 2003-07-30 Mitsubishi Electric Corp METHOD FOR CHANGING THE POWER DISTRIBUTION
JPH11142600A (ja) * 1997-11-12 1999-05-28 Mitsubishi Electric Corp 荷電粒子線照射装置及び照射方法
JP3528583B2 (ja) * 1997-12-25 2004-05-17 三菱電機株式会社 荷電粒子ビーム照射装置および磁界発生装置
JPH11253563A (ja) * 1998-03-10 1999-09-21 Hitachi Ltd 荷電粒子ビーム照射方法及び装置
DE19907098A1 (de) 1999-02-19 2000-08-24 Schwerionenforsch Gmbh Ionenstrahl-Abtastsystem und Verfahren zum Betrieb des Systems
US6256592B1 (en) * 1999-02-24 2001-07-03 Schweitzer Engineering Laboratories, Inc. Multi-ended fault location system
JP2004321408A (ja) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp 放射線照射装置および放射線照射方法
JP3643371B1 (ja) * 2003-12-10 2005-04-27 株式会社日立製作所 粒子線照射装置及び照射野形成装置の調整方法
DE102004043738B4 (de) * 2004-09-09 2006-11-30 Siemens Ag Verfahren zum Betreiben einer Strahlen-Therapieeinrichtung und Strahlen-Therapieeinrichtung
CN101031336B (zh) * 2005-02-04 2011-08-10 三菱电机株式会社 粒子射线照射方法及该方法中使用的粒子射线照射装置
CN1980709A (zh) * 2005-02-04 2007-06-13 三菱电机株式会社 粒子射线照射方法及使用该方法的粒子射线照射装置
JP2006280457A (ja) * 2005-03-31 2006-10-19 Hitachi Ltd 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
JP4158931B2 (ja) * 2005-04-13 2008-10-01 三菱電機株式会社 粒子線治療装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3518270B2 (ja) * 1996-08-30 2004-04-12 株式会社日立製作所 荷電粒子ビーム装置
JP2000167072A (ja) * 1998-12-03 2000-06-20 Mitsubishi Electric Corp 動体追跡照射装置
JP2004358237A (ja) * 2003-05-13 2004-12-24 Hitachi Ltd 粒子線出射装置、これに用いる治療計画装置、及び粒子線出射方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172427A (ja) * 2009-01-28 2010-08-12 Japan Health Science Foundation 陽子線治療におけるポジトロン放出核種のアクティビティ分布のシミュレーション方法
WO2010122662A1 (ja) * 2009-04-24 2010-10-28 三菱電機株式会社 粒子線治療装置
JP2009268940A (ja) * 2009-08-21 2009-11-19 Mitsubishi Electric Corp 粒子線照射装置
US8466428B2 (en) 2009-11-03 2013-06-18 Mitsubishi Electric Corporation Particle beam irradiation apparatus and particle beam therapy system
US8674318B2 (en) 2009-11-03 2014-03-18 Mitsubishi Electric Corporation Particle beam irradiation apparatus and particle beam therapy system
JP2013520257A (ja) * 2010-02-24 2013-06-06 シーメンス アクティエンゲゼルシャフト 標的体積に線量を蓄積する照射装置および照射方法
WO2011148486A1 (ja) * 2010-05-27 2011-12-01 三菱電機株式会社 粒子線照射システムおよび粒子線照射システムの制御方法
JP5579266B2 (ja) * 2010-05-27 2014-08-27 三菱電機株式会社 粒子線照射システムおよび粒子線照射システムの制御方法
US8232536B2 (en) 2010-05-27 2012-07-31 Mitsubishi Electric Corporation Particle beam irradiation system and method for controlling the particle beam irradiation system
TWI406683B (zh) * 2010-05-27 2013-09-01 Mitsubishi Electric Corp 粒子束照射系統及粒子束照射系統之控制方法
US8481979B2 (en) 2010-09-09 2013-07-09 Mitsubishi Electric Company Particle beam therapy system with respiratory synchronization control
US8664626B2 (en) 2010-09-09 2014-03-04 Mitsubishi Electric Corporation Particle beam therapy systems and the methods for time-sharing irradiation
EP2952226A1 (en) 2010-09-09 2015-12-09 Mitsubishi Electric Corporation Particle beam therapy system
US8263954B2 (en) 2010-11-16 2012-09-11 Mitsubishi Electric Corporation Bolus, bolus manufacturing method, particle beam therapy system, and treatment planning apparatus
CN103153397A (zh) * 2010-11-16 2013-06-12 三菱电机株式会社 物块、物块的制造方法、粒子射线治疗装置、及治疗计划装置
TWI404549B (zh) * 2010-11-16 2013-08-11 Mitsubishi Electric Corp 膠塊土、膠塊土之製造方法、粒子束治療裝置,及治療計劃裝置
US8808341B2 (en) 2010-11-16 2014-08-19 Mitsubishi Electric Corporation Respiratory induction apparatus, respiratory induction program, and particle beam therapy system
WO2012066631A1 (ja) * 2010-11-16 2012-05-24 三菱電機株式会社 ボーラス、ボーラスの製造方法、粒子線治療装置、および治療計画装置
CN103153397B (zh) * 2010-11-16 2015-10-07 三菱电机株式会社 物块、物块的制造方法、粒子射线治疗装置、及治疗计划装置
JP5124046B2 (ja) * 2010-11-16 2013-01-23 三菱電機株式会社 ボーラス、ボーラスの製造方法、粒子線治療装置、および治療計画装置
WO2012117538A1 (ja) 2011-03-02 2012-09-07 三菱電機株式会社 粒子線照射システムおよび粒子線照射システムの制御方法
US9265970B2 (en) 2011-03-02 2016-02-23 Mitsubishi Electric Corporation Particle beam irradiation system
JP2016526452A (ja) * 2013-07-05 2016-09-05 ユニヴァーシティ オブ アイオワ リサーチ ファウンデーションUniversity of Iowa Research Foundation イオン治療のための動的トリミングスポット走査の方法及びシステム
JP2021135111A (ja) * 2020-02-25 2021-09-13 大学共同利用機関法人 高エネルギー加速器研究機構 フィードバックデフレクターシステム
JP7523779B2 (ja) 2020-02-25 2024-07-29 大学共同利用機関法人 高エネルギー加速器研究機構 フィードバックデフレクターシステム

Also Published As

Publication number Publication date
JP4435829B2 (ja) 2010-03-24
JPWO2006082651A1 (ja) 2008-06-26
DE112005002171T5 (de) 2007-07-05
DE112005002171B4 (de) 2009-11-12
US7525104B2 (en) 2009-04-28
CN1980709A (zh) 2007-06-13
US20080067401A1 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
JP4435829B2 (ja) 粒子線照射装置
JP4679567B2 (ja) 粒子線照射装置
JP5579266B2 (ja) 粒子線照射システムおよび粒子線照射システムの制御方法
JP5485469B2 (ja) 粒子線治療装置、および粒子線治療装置の照射線量設定方法
JP5395912B2 (ja) 粒子線照射システム
US8542797B2 (en) Radiotherapy apparatus configured to track a motion of a target region using a combination of a multileaf collimator and a patient support
US8299448B2 (en) Determination of control parameters for irradiation of a moving target volume in a body
US20080170663A1 (en) Radiation irradiation method and radiotherapy apparatus controller
US20090114847A1 (en) Particle therapy
US11446520B2 (en) Radiation therapy apparatus configured to track a tracking object moving in an irradiation object
JP2012520703A (ja) 粒子線照射処理における照射モデルデータの評価方法
JP4862070B2 (ja) 粒子線照射装置
JP2007319439A (ja) 放射線治療装置制御装置および放射線照射方法
JP4436343B2 (ja) マルチリーフコリメータおよび放射線治療装置組立方法
JP5777749B2 (ja) 粒子線治療装置、および照射線量設定方法
JP2014028310A (ja) 粒子線照射システム
JP4326567B2 (ja) 放射線治療装置制御装置および放射線照射方法
CN104258506B (zh) 粒子射线照射方法及使用该方法的粒子射线照射装置
WO2020188890A1 (ja) 粒子線治療システム、計測粒子線ct画像生成方法、およびct画像生成プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11596707

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007501485

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580022510.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120050021718

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112005002171

Country of ref document: DE

Date of ref document: 20070705

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

122 Ep: pct application non-entry in european phase

Ref document number: 05709775

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5709775

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11596707

Country of ref document: US