WO2006078018A1 - 液体吐出装置 - Google Patents

液体吐出装置 Download PDF

Info

Publication number
WO2006078018A1
WO2006078018A1 PCT/JP2006/300974 JP2006300974W WO2006078018A1 WO 2006078018 A1 WO2006078018 A1 WO 2006078018A1 JP 2006300974 W JP2006300974 W JP 2006300974W WO 2006078018 A1 WO2006078018 A1 WO 2006078018A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
discharge
liquid
discharge port
opening
Prior art date
Application number
PCT/JP2006/300974
Other languages
English (en)
French (fr)
Inventor
Kenji Ogawa
Original Assignee
Neuberg Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neuberg Company Limited filed Critical Neuberg Company Limited
Priority to JP2006553986A priority Critical patent/JP4621692B2/ja
Priority to US11/814,392 priority patent/US7815422B2/en
Publication of WO2006078018A1 publication Critical patent/WO2006078018A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/003Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by piezoelectric means

Definitions

  • the present invention relates to a liquid ejecting apparatus (dispenser) that ejects liquid, and can be used particularly for a liquid ejecting apparatus capable of ejecting a small amount of liquid with high accuracy and at high speed.
  • the liquid discharge device of Patent Document 1 includes a suction path opening / closing member that opens and closes a suction path for sucking liquid, a discharge port opening / closing member that opens and closes a discharge port that discharges liquid, and a discharge member that discharges liquid Are arranged concentrically in the order of the discharge port opening / closing member, the discharge member, and the suction path opening / closing member from the inside to the outside, and these discharge port opening / closing member, the discharge member, and the suction path opening / closing member. Are each provided with a drive mechanism for driving them in a predetermined operation.
  • the suction passage opening / closing member is opened, the discharge member is moved away from the discharge port, and the liquid is sucked into the space formed between the discharge port and the discharge member.
  • the discharge operation is to close the suction path opening / closing member after liquid inhalation, measure the discharge liquid, open the discharge opening / closing member, move the discharge member to the discharge port side, discharge the liquid, and finally open / close the discharge port The member is closed to complete the discharge operation.
  • each member and the ejection member are driven by an air cylinder, and the volume can be measured by confining the liquid in the space between the members by forcibly driving each member. Even a small amount of liquid can be discharged with high accuracy, and the liquid discharge device can be reduced in weight, mounted on a production line robot etc. and moved to the liquid discharge point at high speed, and the discharge port opening and closing member is closed, It has the advantage of being able to eject a fixed amount of liquid and has become widely used.
  • Patent Document 1 Japanese Patent No. 2521332 Disclosure of the Invention Problems to be Solved by the Invention
  • this stroke adjustment mechanism usually uses a micrometer, it is not possible to set the stroke amount manually. Possible force Automatic adjustment is often not possible. Furthermore, automatic adjustment by driving a micrometer using a servo motor was considered, but the dispenser weight increases because the adjustment speed is slow, and it can only be attached to a relatively large robot arm. There was also a problem that it could only be used in limited places.
  • the solenoid drive is slightly improved in terms of performance such as liquid discharge compared to the air cylinder drive, but has a complicated structure that makes it difficult to obtain a stroke.
  • the solenoid drive is slightly improved in terms of performance such as liquid discharge compared to the air cylinder drive, but has a complicated structure that makes it difficult to obtain a stroke.
  • copper coils and electromagnetic soft iron are heavy, it is not practical as a dispenser in various fields that are difficult to handle, and there is no advantage in that it is difficult to automatically adjust the discharge amount. there were.
  • the cam drive has a problem that the dispenser, which is difficult to be compacted, becomes large.
  • the operating speed and the way liquid is expected are expected. Possible force There is also a problem that it is difficult to automatically adjust the discharge amount.
  • An object of the present invention is to discharge a small amount of liquid at a high speed, to automatically adjust the discharge amount, to simplify the structure, to reduce the manufacturing cost, and to easily reduce the size of the liquid. To provide an apparatus.
  • the liquid discharge device of the present invention includes a main body in which a liquid storage space in which discharge liquid is stored, a discharge port communicating with the liquid storage space, and a liquid storage in the main body.
  • a discharge port opening / closing member disposed in the space to open and close the discharge port; and a discharge member disposed in the liquid storage space of the main body and disposed concentrically outside the discharge port opening / closing member to discharge liquid.
  • a supply section opening / closing member that is disposed in the liquid storage space of the main body and is concentrically disposed outside the discharge member and opens and closes a liquid supply section that communicates with the discharge port from the liquid storage space;
  • a discharge mechanism and a drive mechanism capable of setting a displacement amount for driving the supply part opening / closing member by a predetermined operation, and the drive mechanism is separated from the supply part opening / closing member in the first direction and the discharge locus.
  • the discharge port opening / closing member is urged toward the discharge port by the urging means and contacts the discharge port when the supply unit opening / closing member is separated from the main body and the liquid supply unit is opened.
  • the supply port opening / closing member is moved in the first direction by the supply unit opening / closing driving means and comes into contact with the main body, and is further moved in the first direction by the supply unit opening / closing drive means.
  • the biasing means The discharge port is opened by being moved away from the discharge port against the urging force.
  • the drive means that can set the displacement amount can control the displacement amount by the drive voltage value like a piezoelectric element, or the displacement amount by the number of drive pulses like a servo motor or a stepping motor. It means drive means that can be controlled.
  • the discharge port opening / closing member, the discharge member, and the supply portion opening / closing member are driven using drive means capable of setting a displacement such as a piezoelectric element, a servo motor, and a stepping motor.
  • drive means capable of setting a displacement such as a piezoelectric element, a servo motor, and a stepping motor.
  • the liquid discharge device can be easily downsized. Therefore, even when using the liquid ejection device of the present invention for ejection of adhesives and various best in various product production lines, it can be attached to the robot arm and moved at high speed and high acceleration. This can reduce the tact time of the production line and contribute to productivity improvement.
  • piezoelectric elements, servo motors, and the like can be driven at high speeds compared to air cylinder driving, for example, discharge operations can be performed 10 times or more per second, which is faster than air cylinder driving. Liquid discharge operation can be realized.
  • piezoelectric elements, servo motors, and the like generate greater force than air cylinder drive, so that even if resistance is increased by narrowing the nozzle, liquid can be ejected and discharged. For this reason, for example, even 0.01 microliters of water can be blown cleanly, and stable operation can be realized.
  • the displacement amount of the drive means can be easily and easily adjusted by adjusting the drive voltage and the number of drive pulses. It can be adjusted accurately. For this reason, the stroke amount of the discharge member can be easily adjusted, and the discharge amount for each time can be automatically adjusted even during the driving operation. Therefore, in the process of mounting a plurality of electronic components on the substrate, the amount of liquid discharged on the substrate may be changed in order to apply a different amount of adhesive at each electronic component mounting location. In a production line where products are mixed and delivered, even if the liquid discharge rate is changed for each product, it can be easily handled and the liquid discharge is easy to use. Equipment can be provided.
  • the liquid ejection device of the present invention includes a main body in which a liquid storage space in which a liquid for discharge is stored and a discharge port communicating with the liquid storage space are formed, and a liquid storage space in the main body.
  • a discharge port opening / closing member disposed to open and close the discharge port; a discharge member disposed in a liquid storage space of the main body and concentrically disposed outside the discharge port opening / closing member; and discharging the liquid;
  • a supply part opening / closing member arranged concentrically outside the discharge member and opening / closing a liquid supply part communicating with the discharge port from the liquid storage space, the discharge opening / closing member,
  • a biasing means for biasing the holding member toward the discharge port with respect to the main body; and a drive control means for individually driving each piezoelectric element.
  • the piezoelectric element support member is fixed at one end side of each piezoelectric element.
  • a first displacement enlarging unit and a second displacement enlarging unit for enlarging and outputting the displacement when the unit is displaced, and the supply unit opening / closing member is driven by the first drive as the first piezoelectric element expands.
  • the first drive unit and the first displacement are moved in accordance with the contraction of the first piezoelectric element.
  • the discharge member is moved in a direction approaching the discharge port via the second drive unit and the second displacement enlarging unit as the second piezoelectric element expands, and discharges liquid from the discharge port.
  • the piezoelectric element is moved in a direction away from the discharge port via the second drive unit and the second displacement expansion unit, and sucks liquid from the liquid supply unit.
  • the piezoelectric element is moved toward the discharge port via the piezoelectric element support member biased toward the discharge port by the biasing means and contacts the discharge port to close the discharge port.
  • the first piezoelectric element expands further, whereby the piezoelectric element
  • the support member is piled on the urging force of the urging means and moved in a direction away from the discharge port to release the discharge port away from the discharge port.
  • the size is approximately the same as when an air cylinder is used. Therefore, the liquid discharge device can be easily downsized compared with the case where a drive mechanism such as a servo motor, solenoid, or cam is employed. Therefore, when using the liquid discharge device of the present invention for discharging adhesives and various pastes in the production line of various products, it can be attached to the robot arm and moved at high speed and high acceleration. This can reduce the tact time of the production line and contribute to productivity improvement.
  • the piezoelectric element can be driven at a high speed, for example, a discharging operation can be performed 10 times or more per second, and a liquid discharging operation can be realized at a higher speed than the air cylinder driving.
  • the piezoelectric element has a larger generation force than that of the air cylinder drive, even if the nozzle is thinned and the resistance is increased, the liquid can be discharged and discharged. For this reason, for example, even 0.01 microliters of water can be cleaned neatly, and stable operation can be realized.
  • the amount of displacement of the piezoelectric element can be easily adjusted by the voltage applied to the piezoelectric element.
  • the discharge amount for each time can be automatically adjusted even during the driving operation. For this reason, in the process of attaching a plurality of electronic components on the substrate, the amount of liquid discharged on the substrate may be changed in order to apply a different amount of adhesive for each electronic component attachment location, In a production line in which multiple products are sent together, even if the liquid discharge amount is changed for each product, it is possible to provide an easy-to-use liquid discharge device.
  • the operation of the two piezoelectric elements controls the drive of the discharge member and the supply part opening / closing member, and the piezoelectric element support member that supports the piezoelectric element is urged toward the discharge port by the urging means to open and close the supply part.
  • the piezoelectric element is extended even after the member abuts the main body, so that the piezoelectric element support member is piled on the urging force of the urging means so that it can move in the direction away from the discharge loca. Therefore, it is possible to control the driving of the three members simply by controlling the driving of the two piezoelectric elements. For this reason, the structure of the drive mechanism The manufacturing cost of the liquid ejection device can be reduced.
  • the piezoelectric element support member includes an integrally formed piezoelectric element support plate and a drive arm member attached to the piezoelectric element support plate, and the piezoelectric element support plate includes each piezoelectric element.
  • a base portion provided therebetween, the first base end portion and the second base end portion continuously formed from one end side of the base portion, and a first deformable first end portion that is deformable from the other end side of the base portion.
  • the first drive unit and the second drive unit that are continuously formed via a hinge unit, the second hinge unit that can be deformed with respect to the respective base end portions, and the second drive unit that can be deformed with respect to each of the drive units.
  • the first displacement transmitting portion and the second displacement transmitting portion formed continuously via the hinge portion, and when each piezoelectric element extends from the initial state, the first hinge portion is deformed in each driving portion. And tilted so that the third hinge side moves in the direction of extension of the piezoelectric element.
  • the displacement expanding part moves in the extension direction of the piezoelectric element due to the inclination of each driving part on the third hinge part side, and the second hinge part is deformed along with the movement.
  • the drive arm member includes a fixed portion fixed to each displacement transmission portion and a drive arm portion extended by the force of the fixed portion, and the displacement transmission portion is tilted.
  • the amount of movement of the tip of the drive arm portion is larger than the amount of extension of the piezoelectric element, and that each displacement enlargement portion is constituted by this drive arm member and each displacement transmission portion. .
  • the piezoelectric element support plate is integrally formed, the displacement amount of the drive unit corresponding to the expansion and contraction of each piezoelectric element can be set with high accuracy.
  • the piezoelectric element support plate is integrally formed by wire cutting or the like, it is possible to reliably displace the displacement expansion portion by a predetermined amount as the piezoelectric element expands without the displacement being sucked. it can.
  • a strain gauge is attached to at least one of the hinge portions.
  • the distortion (deformation) of each hinge can be measured when each hinge is deformed by expansion and contraction of the piezoelectric element. wear.
  • This amount of distortion is substantially proportional to the amount of inclination of the displacement transmitting portion, that is, the amount of movement of the tip of the drive arm.
  • the discharge member is moved with the movement of the tip of the drive arm, and the liquid discharge amount is adjusted according to the movement amount of the discharge member. Therefore, the strain amount of the hinge portion is measured with the strain gauge. By doing so, the discharge amount can be indirectly measured.
  • the relationship between the strain amount measured with a strain gauge and the liquid discharge amount is measured in advance, and when a predetermined amount of liquid is discharged, the strain amount corresponding to the discharge amount is controlled.
  • the strain gauge is very small and thin, it can be easily incorporated into a small liquid discharge device driven by a piezoelectric element.
  • strain gauges are provided on each side of the second hinge part, for a total of four shellfish, and these four strain gauges are connected in a bridge shape. Is preferred.
  • the amount of movement of the tip of the drive arm member can be detected with an accuracy of 0.1 microns or less, for example. Therefore, the movement amount of the discharge member moved by the drive arm member, that is, the discharge amount can be detected with high accuracy.
  • strain gauges may be attached only to one of the second hinge parts, but it is possible to attach a total of eight strain gauges, four for each of the two second hinge parts. This is preferable because it can reliably detect the operation of the discharge device and perform appropriate control based on the detected information.
  • a dimension adjusting means for adjusting a length dimension from the base end portion to the displacement expanding portion is provided between the base end portions and the displacement expanding portion.
  • the position of the enlarged displacement portion can be finely adjusted, and the enlarged displacement portion can be accurately positioned with respect to the discharge port opening / closing member, the supply path opening / closing member, the discharge member, and the like. Operation error can be suppressed.
  • the dimension adjusting means includes a folding portion provided between each base end portion and the driving portion, and a screw member provided so as to penetrate the folding portion, and the screw portion It is preferable to adjust the length dimension of the folding part by adjusting the tightening amount of the material. If a dimensional adjusting means having such a configuration is provided, the length dimension (thickness dimension) of the folding part can be shortened by tightening the screw member and deforming the thin part (hinge part) of the folding part. I can. The position of the displacement enlarged portion with respect to the base end portion can be easily finely adjusted.
  • a second urging means provided between the main body and the supply section opening / closing member and urges the supply section opening / closing member toward the piezoelectric element support member with respect to the main body, a supply section opening / closing member, A third urging means provided between the ejection members and urging the ejection member toward the piezoelectric element supporting member with respect to the supply section opening / closing member; and provided between the ejection member and the ejection port opening / closing member.
  • a fourth urging means for urging the discharge port opening / closing member toward the piezoelectric element support member with respect to the discharge member, and the urging force of the second to fourth urging means is set to be gradually reduced.
  • the urging force of the urging means for urging the piezoelectric element support member toward the discharge port with respect to the main body is preferably larger than the urging force of the second urging means.
  • each biasing means for example, a coil panel or the like can be used.
  • the piezoelectric element support member is pressed by pressing the supply part opening / closing member, the discharge member, and the discharge port opening / closing member against the piezoelectric element support member side by the second to fourth biasing means.
  • Each member can be driven in conjunction with the movement of the material itself and the operation of the displacement magnifying unit.
  • the supply part opening / closing member, the discharge member, the discharge port opening / closing member, and the piezoelectric element support member side are only in contact with each other, so the supply part opening / closing member and the discharge member are in contact with the piezoelectric element support member side.
  • the discharge opening / closing member can be easily removed.
  • the drive control unit can change the voltage value applied to the first piezoelectric element from the first set value for the first piezoelectric element to the second set value for the first piezoelectric element, In addition, the voltage value applied to the second piezoelectric element can be changed from the first set value for the second piezoelectric element to the second set value for the second piezoelectric element, and the voltage of the first set value is applied to each piezoelectric element.
  • the initial state in which the discharge port is closed by applying the biasing means to the discharge port side by the biasing means and the voltage value applied to the first piezoelectric element are set to the first set value for the first piezoelectric element.
  • the voltage value applied to the second piezoelectric element is kept at the first set value for the second piezoelectric element, and is larger than the first set value and smaller than the second set value for the second piezoelectric element.
  • the discharge member is moved to the discharge port side by extending the second piezoelectric element by a predetermined amount by changing it to the set value.
  • the supply part opening / closing member is brought into contact with the main body to close the liquid supply part, and the piezoelectric element support member is piled on the urging force of the urging means via the supply part opening / closing member in contact with the main body.
  • the second set value for the piezoelectric element is maintained and the second piezoelectric value is set.
  • the second piezoelectric element is further expanded by a predetermined amount to move the discharge member to the discharge port side.
  • the inlet valve opening step for reducing the length, releasing the supply unit opening / closing member to release the main body and opening the liquid supply unit, and maintaining the voltage value applied to the first piezoelectric element at the first set value for the first piezoelectric element,
  • the voltage value applied to the second piezoelectric element is changed from the second set value for the second piezoelectric element to the second piezoelectric element. Condensation of the second piezoelectric element to the original length by changing to a first set value It is preferable to carry out an origin returning step for reducing the discharge member from the main body and returning it to the initial state.
  • the outlet valve that is opened and closed by the discharge side opening / closing member is sealed in the suction process
  • the inlet valve that is opened and closed by the supply side opening / closing member is sealed in the discharge process, and at least the outlet valve
  • either one of the inlet valves is always closed, so that liquid does not flow back from the discharge port to the supply path in each process. Therefore, the backflow of the liquid can be reliably prevented only by the operation of each member, and there is no need to provide a check valve.
  • liquid discharge amount can be set only by the movement amount of the discharge member, even a very small amount of liquid can be measured and discharged with high accuracy.
  • the drive control unit is configured to control the drive speed of the outlet opening / closing member, the discharge member, and the supply unit opening / closing member by controlling a current value applied to each piezoelectric element. , I prefer to be.
  • the cycle time of the discharge operation can be controlled, and the liquid can be driven at a high speed to discharge the liquid almost continuously.
  • the main body includes a drive mechanism storage portion in which the piezoelectric element support member is stored, and a container portion detachably attached to the drive mechanism storage portion. It is preferable that a discharge port is formed.
  • the container portion is provided, a certain amount of liquid can be stored. For example, the liquid for one day's work can be stored in the container for work. If comprised in this way, the pipe for supplying the liquid to a liquid discharge apparatus can also be made unnecessary, and the handleability of a liquid discharge apparatus can be improved.
  • a liquid supply container is connected to the container portion via a tube or the like, and a liquid level gauge that detects the liquid level in the external container and a liquid level level detected by the liquid level gauge.
  • a valve controlled according to the bell may be provided.
  • the liquid ejection device of the present invention includes a main body in which a liquid storage space in which a liquid for discharge is stored and a discharge port communicating with the liquid storage space are formed, and a liquid storage space in the main body.
  • a discharge port opening / closing member disposed to open and close the discharge port; a discharge member disposed in a liquid storage space of the main body and concentrically disposed outside the discharge port opening / closing member; and discharging the liquid;
  • a supply part opening / closing member arranged concentrically outside the discharge member and opening / closing a liquid supply part communicating with the discharge port from the liquid storage space, the discharge opening / closing member,
  • the other end side is connected to the discharge port opening / closing member, the first nut member is connected to the supply unit opening / closing member, and the second nut member is connected to the discharge member, and the supply
  • the part opening / closing member is moved in the direction approaching the discharge port along with the movement of the first nut member.
  • the liquid supply part is closed by contact, and the first module is closed.
  • the liquid supply unit is moved away from the main body and released from the main body along with the movement, and the liquid supply unit is opened.
  • the discharge member When the second nut member is moved in the direction approaching the discharge port as the second motor is driven to rotate, the discharge member is moved in the direction approaching the discharge port along with the movement. The liquid is discharged from the outlet, and the second nut member is moved away from the discharge port as the second motor is driven to rotate to suck the liquid from the liquid supply unit.
  • the supply unit opening / closing member In a state where the supply unit opening / closing member is separated from the main body force and the liquid supply unit is opened, the discharge port is urged toward the discharge port side through the urging means and the screw shaft and comes into contact with the discharge port.
  • the supply unit is closed when the first motor rotates. If the first motor is further rotated after the opening / closing member contacts the body, the screw shaft Is moved away from the discharge port against the urging force of the urging means to release the discharge port away from the discharge port.
  • the discharge port opening / closing member, the discharge member, and the supply portion opening / closing member are driven using the first motor and the second motor formed of a servo motor or the like. Liquid ejection operation at high speed.
  • the motor since the motor generates more force than the air cylinder drive, even if the nozzle is narrowed and the resistance is increased, the liquid can be discharged and discharged. For this reason, for example, even 0.01 liters of water can be washed cleanly, and stable operation can be realized.
  • the drive means that can set the displacement amount such as a servo motor or a stepping motor
  • the displacement amount (rotation amount) of the motor can be adjusted easily and accurately.
  • the stroke amount of the discharge member by the number of drive knobs, etc., the discharge amount for each time can be automatically adjusted even during the drive operation.
  • the amount of liquid discharged on the substrate may be changed in order to apply a different amount of adhesive at each electronic component mounting location. In a production line in which multiple products are sent together, even when the liquid discharge amount is changed for each product, it is possible to provide a liquid discharge device that can be easily handled and is easy to use.
  • the operation of the two motors controls the driving of the discharge member and the supply unit opening / closing member, and the screw shaft such as a ball screw rotated by the first motor is moved to the outlet side by the urging means. Even after the supply part opening / closing member comes into contact with the main body, the screw shaft is rotated to move the second nut member to the discharge port side, so that the screw shaft resists the urging force of the urging means. Since the drive of the discharge port opening / closing member is controlled by being configured to be movable away from it, the drive of the three members can be controlled only by controlling the drive of the two motors. For this reason, the structure of the drive mechanism can be made relatively simple, and the manufacturing cost of the liquid ejection device can be reduced.
  • the urging means for example, a coil panel (coil spring) or the like can be used.
  • the structure of the drive mechanism can be simplified at a low cost.
  • a motor that can control the displacement amount by the number of drive pulses such as a pulse motor or a stepping motor, can be used.
  • a spline shaft that is coaxial with the rotation shaft and rotates integrally with the rotation shaft is connected to the rotation shaft of the second motor, and the transmission gear extends along the spline shaft.
  • the second nut member by rotating the first motor and the second motor in the same direction, the second nut member can be rotated in the same direction as the rotation direction of the screw shaft.
  • the screwing position of the nut member with respect to the screw shaft can be maintained at a fixed position. For this reason, for example, compared to the case where one intermediate gear is added and each motor is reversely rotated so that the above state is achieved, the movement control of each nut member is controlled by the rotation control of each motor. Can be easily performed.
  • the drive control means is configured such that the supply unit opening / closing member is disposed away from the main body, the liquid supply unit is opened, and the ejection member approaches the ejection port side.
  • the second motor is rotated by a predetermined amount to move the discharge member connected to the second nut member by a predetermined distance in the direction away from the discharge locus, and the discharge member in the supply portion opening / closing member moves.
  • a suction step for sucking liquid into the space, and a supply unit opening / closing member connected to the first nut member by rotating the first motor by a predetermined amount so as to abut the main body. Is closed against the body The screw shaft is moved in a direction away from the discharge port against the biasing force of the biasing means via the supply unit opening / closing member, and the discharge port opening / closing member is moved in a direction away from the discharge port along with the movement.
  • the outlet valve opened and closed by the discharge-side opening / closing member is sealed in the suction process
  • the inlet valve opened and closed by the supply-side opening / closing member is sealed in the discharge process, and at least the outlet valve
  • either one of the inlet valves is always closed, so that liquid does not flow back from the discharge port to the supply path in each process. Therefore, the backflow of the liquid can be reliably prevented only by the operation of each member, and there is no need to provide a check valve.
  • liquid discharge amount can be set only by the movement amount of the discharge member, even a very small amount of liquid can be measured and discharged with high accuracy.
  • the discharge port opening / closing member is disposed at a position where the discharge port is closed by being pushed by the second nut member, and when the discharge process is completed, It is preferable that the discharge opening / closing member is disposed at a position where the discharge opening is closed by being pushed by the second nut member.
  • the drive control means is configured to be able to control the drive speeds of the discharge port opening / closing member, the discharge member, and the supply unit opening / closing member by controlling the rotation speed of each motor. preferable.
  • the cycle time of the discharge operation can be controlled, and the liquid can be driven at such a high speed that the liquid is discharged almost continuously.
  • the main body includes a drive mechanism storage portion in which the drive mechanism is stored, and a container portion detachably attached to the drive mechanism storage portion, and the discharge port is provided in the container portion. Preferably it is formed.
  • the container portion is provided, a certain amount of liquid can be stored. For example, the liquid for one day's work can be stored in the container for work. If comprised in this way, the pipe for supplying the liquid to a liquid discharge apparatus can also be made unnecessary, and the handleability of a liquid discharge apparatus can be improved.
  • a liquid supply container is connected to the container portion via a tube or the like, and a liquid level gauge that detects the liquid level in the external container and a liquid level level detected by the liquid level gauge. All There may be provided a valve that is controlled according to the level. With this configuration, when the liquid level in the container drops to a predetermined level, the valve is opened to supply liquid into the container, and when the liquid level is filled to the predetermined level, the valve is closed. The liquid can be constantly supplied from the container to the container portion through the tube. For this reason, the liquid ejection device can be continuously operated automatically for 24 hours.
  • FIG. 1 is a cross-sectional view showing a liquid ejection apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a perspective view showing a main part of the drive mechanism of the first embodiment.
  • FIG. 4 is a plan view showing the drive mechanism of the first embodiment.
  • FIG. 5A is a front view showing a state where the piezoelectric elements of the piezoelectric element support plate in the first embodiment are not extended.
  • FIG. 5B is a front view showing a state in which the piezoelectric element of the piezoelectric element support plate in the first embodiment is extended.
  • FIG. 6A is a sectional view showing an origin state of the drive mechanism in the first embodiment.
  • FIG. 6B is a cross-sectional view showing the end of the metering process of the drive mechanism in the first embodiment.
  • FIG. 7A is a cross-sectional view showing the origin state of the pump mechanism in the first embodiment.
  • FIG. 7B is a cross-sectional view showing the end of the metering process of the pump mechanism in the first embodiment.
  • FIG. 8A is a cross-sectional view showing the end of the valve switching step of the drive mechanism in the first embodiment.
  • FIG. 8B is a cross-sectional view showing the end of the discharge process of the drive mechanism in the first embodiment.
  • FIG. 9A is a cross-sectional view showing the end of the valve switching step of the pump mechanism in the first embodiment.
  • FIG. 9B is a cross-sectional view showing the end of the discharge process of the pump mechanism in the first embodiment.
  • FIG. 10A is a cross-sectional view showing the end of the inlet valve opening process of the drive mechanism in the first embodiment.
  • Fig. 10B is a cross-sectional view showing the end of the suction process of the drive mechanism in the first embodiment.
  • Fig. 11A is a cross-sectional view showing the end of the inlet valve opening step of the pump mechanism in the first embodiment.
  • FIG. 11 is a cross-sectional view showing the end of the suction process of the pump mechanism in the first embodiment.
  • FIG. 13 is a cross-sectional view showing the main parts of a second embodiment.
  • FIG. 16 is a front view showing a liquid ejection apparatus according to a third embodiment of the present invention.
  • FIG. 17 is a cross-sectional view showing a liquid ejection apparatus according to a third embodiment.
  • FIG. 18 is a cross-sectional view showing a liquid ejection apparatus according to a third embodiment.
  • FIG. 19 is a cross-sectional view showing a main part of a drive unit of a liquid ejection apparatus according to a third embodiment.
  • FIG. 20 is a cross-sectional view showing a main part of a pump part of a liquid ejection apparatus according to a third embodiment.
  • FIG. 21 is a cross-sectional view showing a main part of a drive unit of a liquid ejection apparatus according to a third embodiment.
  • FIG. 22 is a cross-sectional view showing a main part of a pump part of a liquid ejection device according to a third embodiment.
  • FIG. 23 is a sectional view taken along line AA in FIG.
  • FIG. 24 is a sectional view taken along line BB in FIG.
  • FIG. 25 is a cross-sectional view taken along line CC in FIG.
  • FIG. 26 is a cross-sectional view taken along line DD in FIG.
  • FIG. 27 is a cross-sectional view taken along line EE in FIG.
  • FIG. 28 is a cross-sectional view showing a starting state of the origin setting work in the drive unit of the third embodiment.
  • FIG. 29 is a cross-sectional view showing a starting state of the origin setting work in the pump unit of the third embodiment.
  • FIG. 30 A sectional view showing a state where the first motor in the drive unit of the third embodiment has been moved to the proximity sensor ON position.
  • FIG. 31 is a cross-sectional view showing a state where the first motor in the pump section of the third embodiment has been moved to the proximity sensor ON position.
  • FIG. 32 A sectional view showing a state where the first motor in the drive unit of the third embodiment has been moved to the origin position.
  • FIG. 33 A sectional view showing a state where the first motor in the pump unit of the third embodiment is moved to the origin position.
  • FIG. 34 is a cross-sectional view showing a state where the second motor in the drive unit of the third embodiment has been moved to the proximity sensor ON position.
  • FIG. 35 is a cross-sectional view showing a state where the second motor in the pump unit of the third embodiment has been moved to the proximity sensor ON position.
  • FIG. 36 is a cross-sectional view showing a state in which the origin setting operation is completed by moving the second motor to the origin position in the drive unit of the third embodiment.
  • FIG. 37 is a cross-sectional view showing a state where the second motor in the pump section of the third embodiment is moved to the home position and the home setting operation is completed.
  • FIG. 38 A sectional view showing the start state (origin state) of the pump operation in the drive unit of the third embodiment.
  • FIG. 39 is a cross-sectional view showing a start state (origin state) of the pump operation in the pump section of the third embodiment.
  • FIG. 40 is a cross-sectional view showing the end of the suction process in the drive unit of the third embodiment.
  • FIG. 41] is a cross-sectional view showing the end of the suction process in the pump unit of the third embodiment.
  • FIG. 42] is a cross-sectional view showing the end of the valve switching process in the drive unit of the third embodiment.
  • FIG. 43 is a cross-sectional view showing the end of the valve switching process in the pump section of the third embodiment.
  • FIG. 44 is a cross-sectional view showing the end of the ejection process in the drive section of the third embodiment.
  • FIG. 45 is a cross-sectional view showing the end of the discharge process in the pump unit of the third embodiment.
  • FIG. 46 is a cross-sectional view showing a return-to-origin state in the drive unit of the third embodiment.
  • FIG. 47 is a cross-sectional view showing an origin return state in the pump section of the third embodiment.
  • FIG. 48 is a timing chart for explaining the operation of the third embodiment.
  • Inlet return spring 22 ⁇ ⁇ Measuring return spring, 23 ⁇ ⁇ Need-no return spring, 313... Inlet non-rebar saddle, 323 ⁇ Measurement The Ranger, 333 ⁇ 2nd motor, 523 ⁇ spline wheel, 527 ⁇ 529, ⁇ 531 , 535 ... Sensor head, 536 ... Proximity sensor, 540 ... Measuring nut, 542 ... Measuring nut holder, 543 ... Measuring nut retainer, 544 ... Intermediate gear, 550 ... Motor gear, 561 ... Needle pusher, 563 ... Bush 5 64 ... Return spring receiving member, 565 ... Return spring, 571 ... Inlet rod, 572 ...
  • the liquid discharge apparatus 1 includes a pump holder 2, a drive unit base 3, a container 4, and a cover 5.
  • the pump holder 2 and the container 4 are arranged with the drive unit base 3 interposed therebetween, and are screwed to the drive unit base 3 respectively.
  • the container 4 is detachably attached to the pump holder 2 via a cap nut 6.
  • the pump holder 2, the drive unit base 3, the container 4, and the cover 5 constitute a main body of the liquid discharge device 1.
  • a drive mechanism of the liquid ejection device 1 is built in the cover 5.
  • the drive mechanism includes a guide member 11 fixed to the drive unit base 3, a piezoelectric element support plate 12 that is slidably movable with respect to the guide member 11, and the piezoelectric element support plate 12 with respect to the guide member 11.
  • Push panel 13 that is biased to the 4th side, first and second piezoelectric elements 14A and 14B fixed to the piezoelectric element support plate 12, and a first drive arm member 15 attached to the piezoelectric element support plate 12 A and a second drive arm member 15B.
  • the cover 5 is provided with a connector 18 connected to an external control device (not shown) as drive control means so that the piezoelectric elements 14A and 14B are driven by a drive signal output from the control device. It is configured.
  • the control device applies a voltage from the first set value for the first piezoelectric element to the second set value for the first piezoelectric element to the first piezoelectric element 14A.
  • the second piezoelectric element 14B is configured to be able to apply a voltage from the first setting value for the second piezoelectric element to the second setting value for the second piezoelectric element.
  • each first set value is set to a voltage value “0”, and the second set value is set according to the amount of displacement required for the piezoelectric elements 14A and 14B to be used and the piezoelectric elements 14A and 14B. Has been.
  • the longitudinal dimensions of the piezoelectric elements 14A and 14B are made longer when the voltage of the second set value is applied than when the voltage of the first set value is applied. ing.
  • the piezoelectric element support plate 12 is made of a metal material such as stainless steel, and is cut into a predetermined shape described below by wire cutting or the like. It is manufactured by. That is, as shown in FIG. 5A, the piezoelectric element support plate 12 includes a base portion 121 provided at the central axis portion thereof, and a first base end portion 122A formed continuously from one end side of the base portion 121. And the second base end portion 122B, the first drive portion 124A and the second drive portion 124B formed continuously from the other end side of the base portion 121 via the first hinge portion 123, and the base end portions. The first displacement transmitting portion 127A and the second displacement transmitting portion 127B formed continuously from the second hinge portion 125 to 122A and 122B and the third hinge portion 126 to the driving portions 124A and 124B. And.
  • the material of the piezoelectric element support plate 12 is not limited, but it is particularly preferable to use a hard stainless steel that has little thermal expansion and can reduce the influence of temperature changes.
  • Each base end portion 122A, 122B and drive portion 124A, 124B are provided with a piezoelectric element fixing portion 129 via a fourth hinge portion 128, and piezoelectric elements 14A, 14 B are provided between the piezoelectric element fixing portions 129. Is stretched and fixed. At this time, the piezoelectric elements 14A and 14B have a thermal expansion coefficient of “0” or a negative numerical value. For this reason, a metal plate made of a material having a large thermal expansion coefficient (not shown) is sandwiched and bonded between the piezoelectric element fixing portion 129 and the piezoelectric elements 14A and 14B so as to reduce the influence of temperature change.
  • Each of the hinge portions 123, 125, 126, 128 is formed to have a width dimension force S narrower than that of the other portions and can be elastically deformed when a force is applied.
  • the base portion 121 is formed with a rectangular guide hole 130 that extends in the axial direction of the liquid ejection device 1, that is, the main body (the direction connecting the container 4 and the cover 5).
  • a protrusion 131 is formed on the container side of the base portion 121.
  • the base end portions 122A and 122B extend from the end portion (connector 18 side) of the base portion 121 in the left-right direction orthogonal to the axial direction, and further toward the container 4 side along the piezoelectric elements 14A and 14B. However, it may be extended and formed in a substantially L-shape on the front surface so as to be directly continuous with the second hinge portion 125. However, in this embodiment, the base end portions 122A and 122B and the displacement transmission portions 127A and 127 A folding part 133 is provided between B.
  • the folding part 133 is continued to the base end parts 122A and 122B, and is continued to the displacement transmitting parts 127A and 127B via the second hinge part 125.
  • the folding part 133 is alternately cut in the direction intersecting the axial direction.
  • the screw 132 is screwed through the bent portion. By tightening this screw 132 to reduce the gap size of the cut portion, the length of the folded portion 133 in the direction (axial direction) along the piezoelectric elements 14A and 14B can be finely adjusted. . Therefore, the axial position of each displacement transmitting portion 127A, 127B relative to the base end portions 122A, 122B can be finely adjusted by the tightening amount of the screw 132.
  • each drive arm member 15A, 15B is configured to include a fixed portion 151 and a drive arm portion 152 extended from the fixed portion 151.
  • two drive arm members 15A and 15B are prepared, the first drive arm member 15A is disposed with the first displacement transmitting portion 127A interposed therebetween, and the second drive arm member 15B is The second displacement transfer section 127B is placed and fixed.
  • the drive arm members 15A and 15B can be fixed by using appropriate means such as an adhesive, but in this embodiment, the drive arm members 15A and 15B and the pins 153 penetrating the displacement transmitting portions 127A and 127B are press-fitted.
  • the drive arm members 15A and 15B are fixed to the displacement transmitting portions 127A and 127B without rattling.
  • the drive arm portion 152 of the second drive arm member 15B is disposed on the outer side of the protrusion 131 so that the drive of the first drive arm member 15A is performed.
  • the arm portions 152 are respectively arranged outside the drive arm portions 152 of the second drive arm member 15B.
  • the guide member 11 is fixed to the drive unit base 3 with screws while being arranged in the guide hole 130.
  • a push spring 13 composed of a coil panel is disposed in the guide member 11.
  • One end of the pressing lens 13 is in contact with the end surface of the guide hole 130 on the container 4 side. For this reason, the piezoelectric element support plate 12 is constantly urged toward the container 4 with respect to the guide member 11 by the push panel 13.
  • the voltage of the first set value is applied to the piezoelectric elements 14A and 14B. That is, in the present embodiment, the first set value is the voltage value “0”.
  • the hinges 125, 126, and 128 are configured so as not to be deformed in a state where the input is not performed. In this state, the surface of the protrusion 131 on the container 4 side and each drive key The drive arms 152 of the first members 15A and 15B are set so as to be arranged on the same height, that is, on the same plane.
  • the longitudinal dimension of each of the piezoelectric elements 14A and 14B becomes longer as shown in FIG. 5B.
  • the base end portions 122A and 122B are integrated with the base portion 121 and hardly move, whereas the drive portions 124A and 124B are connected to the base portion 121 by the hinge portion 123.
  • the hinge part 123 is deformed, and the drive parts 124A and 124B are moved to the container 4 side.
  • the displacement transmission units 127A and 127B connected via the third hinge 126 are also moved.
  • the third hinge portion 126 is provided at a position close to the piezoelectric elements 14A and 14B of the displacement transmitting portions 127A and 127B (inside the piezoelectric element support plate 12), and the second hinge portion 125 is the third hinge portion 125. Since it is provided outside the part 126 (a position away from the piezoelectric elements 14A and 14B), if the third hinge part 126 side is stretched to the container 4 side by the movement of the drive parts 124A and 124B, the displacement is transmitted.
  • the parts 127A and 127B are inclined so that the end on the container side faces outward.
  • the drive arm members 15A and 15B are also inclined, and the tip of the drive arm portion 152 moves to the container side. Since the expansion of the piezoelectric elements 14A and 14B is converted into the inclination of the drive arm members 15A and 15B in this way, the amount of movement of the tip of the drive arm 152 is several times to several tens of times the amount of expansion of the piezoelectric element 14A. In the embodiment, the power can be increased to about 10 times. Therefore, in the present embodiment, the first displacement transmission portion 127A and the first drive arm member 15A constitute a first displacement enlargement portion, and the second displacement transmission portion 127B and the second drive arm member 15B constitute a second displacement enlargement portion. Composed. The piezoelectric element support plate 12 and the drive arm members 15A and 15B constitute a piezoelectric element support member.
  • the pump holder 2 is provided with a pump mechanism driven by the drive mechanism.
  • a through hole is formed in the central axis of the pump holder 2, and as shown in FIG. 6A, a substantially cylindrical inlet valve holder 21 is disposed in the through hole.
  • Inlet valve holder 2 A substantially cylindrical metering plunger holder 22 is disposed in 1, and a substantially cylindrical needle valve holder 23 is disposed in the metering plunger holder 22. That is, in the pump holder 2, the needle valve holder 23, the metering plunger holder 22, and the inlet valve holder 21 are arranged in a concentric manner toward the outer side of the central axial force.
  • the inlet valve holder 21 includes a large-diameter portion 211 that is slidably contacted with the inner surface of the through-hole of the pump holder 2, and a small-diameter portion 212 that has a smaller diameter.
  • a concave portion is formed on the outer peripheral surface of the large-diameter portion 211, and a sealing material such as an O-ring is interposed in the concave portion so that liquid does not leak from between the pump holder 2 and the inlet valve holder 21 to the drive mechanism side. It is composed.
  • the small-diameter portion 212 is guided by an inlet valve guide 213 provided in the pump holder 2 so as to be movable in the axial direction.
  • an inlet return line 214 made of a coil panel is arranged to urge the inlet valve holder 21 toward the drive mechanism side (the piezoelectric element support plate 12 side), thereby driving arm It is in contact with the drive arm 152 of the member 15A.
  • a C-ring shaped inlet valve stopper 215 is attached to the small diameter portion 212 of the inlet valve holder 21.
  • the measuring plunger holder 22 and the needle valve holder 23 have the same structure as the inlet valve holder 21.
  • the metering plunger holder 22 includes a large-diameter portion 221 that is in sliding contact with the inner surface of the through hole of the inlet valve holder 21 and a small-diameter portion 222 that has a smaller diameter.
  • a concave portion is formed in the outer peripheral surface of the large-diameter portion 221.
  • a sealing material such as an O-ring is interposed in the concave portion so that liquid does not leak from between the inlet valve holder 21 and the measuring plunger holder 22 to the drive mechanism side. ing.
  • the small diameter portion 222 is guided by a measuring plunger guide 223 provided in the inlet valve holder 21 so as to be movable in the axial direction.
  • a measuring return spring 224 comprising a coil panel is arranged, and the measuring plunger holder 22 is urged toward the piezoelectric element support plate 12 side to drive the driving arm of the second driving arm member 15B. It is in contact with the part 152.
  • the small-diameter portion 222 of the measuring plunger holder 22 has a C-ring measuring plunger Topsupa 225 is installed.
  • the needle valve holder 23 includes a large-diameter portion 231 that is in sliding contact with the inner surface of the through hole of the measuring plunger holder 22, and a small-diameter portion 232 that is smaller in diameter.
  • a concave portion is formed on the outer peripheral surface of the large-diameter portion 231.
  • a sealing material such as an O-ring is interposed in the concave portion so that liquid does not leak from between the measuring plunger holder 22 and the needle valve holder 23 to the drive mechanism side. Has been.
  • the small diameter portion 232 is guided by a needle valve guide 233 provided in the measuring plunger holder 22 so as to be movable in the axial direction.
  • a needle return spring 234 made of a coil panel is disposed between the needle valve guide 233 and the large-diameter portion 231 to urge the needle valve holder 23 toward the piezoelectric element support plate 12 and to the protrusion 131 of the piezoelectric element support plate 12. They are in contact.
  • the end of the needle valve holder 23 on the piezoelectric element support plate 12 side is provided with a step, and the drive arm 152 of the second drive arm member 15B is located on the discharge port 422 side.
  • a C-ring shaped needle valve stopper 235 is attached to the small diameter portion 232 of the needle valve holder 23.
  • the stoppers 215, 225, 235 are arranged so that the return springs 214, 224, 234 and the large diameter portions 211, 221, 231 and guides 213, 213, when the pump holder 2 is removed from the drive unit base 3, respectively. It is placed between 223 and 2 33 so that it does not exceed the specified size. Stopper 215, 225, 235 If the liquid discharge device 1 is assembled without any force S, the springs 214, 224, 234 will be stretched. Work force to be inserted S Complicated and assembly is reduced.
  • the stoppers 215, 225, and 235 limit the amount of elongation of the screws 213, 224, and 234, so that the liquid ejection device can be used when reassembled after disassembly for cleaning. 1 can be assembled easily.
  • one end of two inlet valve rods 311 is fixed to the inlet valve holder 21.
  • an inlet valve base 312 is stretched over the other end of the inlet valve rod 311 and fixed.
  • the inlet valve stem 312 is formed in a disc shape and formed in the center.
  • An inlet valve member 313 is attached to the through hole.
  • the inlet valve member 313 is formed in a substantially cylindrical shape, and one end thereof is press-fitted and fixed to the inlet valve base 312.
  • the other end of the inlet valve member 313 is formed in a tapered shape, and is configured to be in close contact with a tapered inner surface of a container 4 described later.
  • one end of two measuring plunger rods 321 is fixed to the measuring plunger holder 22.
  • the arrangement of the metering plunger rod 321 is arranged so as to be orthogonal to the arrangement direction force of each metering plunger rod 321 in the direction perpendicular to the axis of the liquid discharge device 1, and to each inlet valve port 311.
  • the rods 311 and 321 are configured so that they do not interfere with each other.
  • a measuring plunger base 322 is stretched over and fixed to the other end of the measuring plunger rod 321.
  • the measuring plunger base 322 is formed in a substantially rectangular plate shape so as not to interfere with the inlet valve rod 311, and a measuring plunger member 323 is attached to a through hole formed at the center thereof.
  • the measuring plunger member 323 is formed in a substantially cylindrical shape, and one end thereof is press-fitted and fixed to the measuring plunger base 322. The other end side of the metering plunger member 323 is inserted into the through hole of the inlet valve member 313.
  • One end of a rod-shaped needle valve base 331 is press-fitted and fixed to the needle valve holder 23.
  • One end of a rod-shaped needle 333 is fixed to the other end of the needle valve base 331.
  • the other end side of the needle 333 is inserted into the through hole of the measuring plunger member 323.
  • the end face of the needle 333 is formed in a spherical shape, and is configured to be able to open and close an outlet / outlet 422 formed in the container 4 described later.
  • One end of the container 4 is attached to the pump holder 2 via a cap nut 6, and a valve seat base 41 is attached to the other end.
  • a valve seat 42 is fixed to the inner surface 4 of the container 4 of the valve seat base 41.
  • a tapered hole portion 421 with a gradually decreasing diameter is formed on one end surface side of the valve seat 42 facing the container 4, and a discharge port 422 penetrates between the tapered hole portion 421 and the other end surface of the valve seat 42. Is formed.
  • the valve seat base 41 is formed with a through-hole 411 communicating with the discharge port 422.
  • the through-hole 411 communicates with a nozzle 43 fixed to the valve seat base 41, and the liquid in the container 4 is discharged from the discharge port 422 of the valve seat 42, the through-hole 411 of the valve seat base 41, and the nozzle 43. 1 It is configured to be discharged to the outside.
  • the supply of the liquid into the container 4 may be performed by removing the container 4 from the pump holder 2.
  • the liquid can be supplied without removing the container 4, as shown in FIG.
  • a port 45 communicating with the inside of the container 4 is formed. That is, an external container (not shown) is connected to the port 45 via a tube (not shown).
  • This external container is provided with a liquid level gauge (not shown) for detecting the liquid level in the external container.
  • it is configured so that the liquid can be supplied from the tank into the external container by a valve controlled according to the liquid level detected by the liquid level gauge.
  • the valve is opened to supply the liquid into the external container, and the valve is closed when it is filled to the predetermined level.
  • the liquid can always be supplied from the external container to the container 4 through the tube. For this reason, the liquid discharge apparatus 1 can be continuously operated automatically for 24 hours.
  • a discharge port opening / closing member is configured by a needle 333 capable of opening and closing the discharge port 422 by contacting the opening of the discharge port 422, and communicates from the inside of the container 4 to the discharge port 422 by contacting the tapered hole portion 421.
  • An inlet valve member 313 that can open and close the liquid supply unit is configured as a supply unit opening / closing member.
  • the measuring plunger member 323 constitutes a discharge member.
  • drain ports are formed in the inlet valve holder 21 and the pump holder 2, respectively, and liquid that has entered between the inlet valve holder 21 and the metering plunger holder 22 or between the inlet valve holder 21 and the pump holder 2 is supplied.
  • the liquid discharge device 1 is configured to be discharged to the outside.
  • FIGS. 6A to 11B are cross-sectional views taken along line BB in FIG. 4, and both the inlet valve rod 311 and the metering plunger rod 32 1 are displayed.
  • the control device Before the operation is started, that is, when the liquid discharge device 1 is stopped (origin state), the control device applies voltages of the first set value for the first piezoelectric element and the first set value for the second piezoelectric element to each of the piezoelectric elements 14A and 14B. Apply. In the present embodiment, since each first set value is “0”, control is performed so that no voltage is applied to the piezoelectric elements 14A and 14B in the origin state.
  • each of the piezoelectric elements 14A and 14B is in an initial state, that is, a state in which the length in the longitudinal direction is the shortest, and the displacement transmitting portions 127A and 127B are not displaced.
  • the surface on the discharge port 422 side of the drive arm portion 152 of each drive arm member 15A, 15B is aligned with the surface on the discharge port 422 side of the protrusion 131 of the piezoelectric element support plate 12.
  • the piezoelectric element support plate 12 and the drive arm members 15A, 15B are urged in the direction away from the discharge port 422 by the urging force of the return springs 214, 2 24, 234.
  • 234 is urged toward the discharge port 422 by the pressing spring 13 having a larger urging force than the maximum urging force, and the needle valve holder 23, needle valve base 331, and needle 333 are discharged into the discharge port.
  • the 422 side is energized.
  • the lengths of the needle valve base 331 and the needle 333 are set so that the needle 333 contacts the opening of the discharge port 422 and closes the discharge port 422. ing.
  • the dimensions of the inlet valve rod 311 and the inlet valve member 313 are set so that the tip of the inlet valve member 313 is located at a predetermined distance from the taper hole 421 of the valve seat 42.
  • the length dimensions of the measuring plunger rod 321 and the measuring plunger member 323 are set such that the leading end of the measuring plunger member 323 is located at a predetermined distance from the tapered hole portion 421 of the valve seat 42. .
  • the control device applies the voltage of the first set value for the first piezoelectric element to the first piezoelectric element 14A and the voltage of the third set value for the second piezoelectric element previously set to the second piezoelectric element 14B.
  • the third set value is not less than the first set value for the second piezoelectric element and less than the second set value for the second piezoelectric element, and is controlled according to the amount of liquid to be discharged, as will be described later.
  • a voltage of the third set value for the second piezoelectric element is applied to the second piezoelectric element 14B, the second piezoelectric element 14B expands by a dimension corresponding to the applied voltage.
  • the second drive section 124B, the second displacement transmission section 127B, and the second drive arm member 15B are tilted, and as shown in FIG. 6B, the tip end side of the drive arm section 152 moves to the discharge port 422 side. To do.
  • the measuring plunger holder 22 moves toward the discharge port 422 against the urging force of the measuring return spring 224.
  • the measuring plunger rod 321, the measuring plunger base 322, and the measuring plunger member 323 also move to the discharge port 422 side, and the tip of the measuring plunger member 323 moves to the adjustment position according to the applied voltage.
  • the discharge amount is set by the movement amount of the measuring plunger member 323, and this movement amount is determined from the adjustment position of FIG. 7B by the voltage of the second set value for the second piezoelectric element. It is determined by the amount of movement to the movement position when applying.
  • the movement end position of the metering plunger member 323 at the end of the discharge process is fixed, and the movement start position of the metering plunger member 323 is adjusted to adjust the applied voltage.
  • the movement amount of 323, that is, the discharge amount is adjusted.
  • the discharge amount can be freely adjusted simply by adjusting the voltage value applied to the second piezoelectric element 14B (the third set value for the second piezoelectric element) in the measuring step, the discharge liquid amount is measured. Become.
  • the control device applies the voltage of the second setting value for the first piezoelectric element to the first piezoelectric element 14A while applying the voltage of the third setting value for the second piezoelectric element to the second piezoelectric element 14B. Then, the first piezoelectric element 14A extends by a dimension corresponding to the applied voltage.
  • the first drive unit 124A, the first displacement transmitting unit 127A, and the first drive arm member 15A are tilted, and as shown in FIG. 8A, the distal end side of the drive arm unit 152 moves to the discharge port 422 side. .
  • the inlet valve holder 21 moves toward the discharge port 422 against the urging force of the inlet return spring 214, and as shown in FIG. 9A, the inlet valve rod 311, the inlet valve base 312, the inlet valve member 313 Also moves to the discharge port 422 side.
  • the clearance dimension between the inlet valve member 313 and the valve seat 42 before the movement is the amount of movement of the tip end portion of the driving arm portion 152 of the first driving arm member 15A when the voltage of the second setting value is applied, that is, the inlet.
  • the amount of movement of the valve member 313 is made smaller. For this reason, when the inlet valve member 313 is moved by applying the voltage of the second set value for the first piezoelectric element to the first piezoelectric element 14A, the inlet valve member 313 first contacts the valve seat 42, and the liquid supply section ( The inlet valve) is closed.
  • the needle return panel 234 moves in the direction away from the needle valve valve, 23, the needle valve base 331, the needle nozzle 333, and the soil outlet 422 force. For this reason, the outlet valve is opened and the soil outlet 422 force S is opened.Therefore, from the state where the inlet valve is opened and the outlet valve is closed, the inlet valve is closed and the outlet valve is opened. Since it is switched to the state, the valve switching process is executed.
  • the valve switching is mechanically performed by further extending and moving the piezoelectric element support plate 12.
  • One valve is always closed, and there is no direct communication between the container 4 and the discharge port 422.
  • the control device applies the voltage of the second set value for the second piezoelectric element to the second piezoelectric element 14B while applying the voltage of the second set value for the first piezoelectric element to the first piezoelectric element 14A.
  • the second piezoelectric element 14B expands according to the applied voltage, and with this operation, the second drive unit 124B, the second displacement transmission unit 127B, and the second drive arm member 15B are tilted, as shown in FIG. 8B.
  • the distal end side of the drive arm portion 152 moves to the discharge port 422 side.
  • the measuring plunger holder 22 moves toward the discharge port 422 against the urging force of the measuring return spring 224, and the measuring plunger rod 321, the measuring plunger base 32 2, the measuring plunger member 323 Also moves to the discharge port 422 side.
  • the control device applies the voltage of the first set value for the first piezoelectric element to the first piezoelectric element 14A while applying the voltage of the second set value for the second piezoelectric element to the second piezoelectric element 14B. Turn off application. Then, the first piezoelectric element 14A returns to the initial length dimension, and the drive arm portion 152 of the first drive arm member 15A moves away from the discharge port 422 as shown in FIG. 10A.
  • the inlet valve holder 21 moves away from the discharge port 422 by the biasing force of the inlet return spring 214, and as shown in FIG. 11A, the inlet valve rod 311, the inlet valve base 312, the inlet valve member 313 Also moves away from the discharge port 422.
  • the inlet valve member 313 is separated from the valve seat 42 and the inlet valve is opened.
  • control device applies the voltage of the first set value for the second piezoelectric element to the second piezoelectric element 14B while applying the voltage of the first set value for the first piezoelectric element to the first piezoelectric element 14A. Turn off application. Then, the second piezoelectric element 14B returns to the initial length dimension, and the drive arm portion 152 of the second drive arm member 15B is separated from the discharge port 422 as shown in FIG. 10B. Move in the direction
  • the measuring plunger holder 22 moves away from the discharge port 422 by the biasing force of the measuring return spring 224, and the measuring plunger rod 321, the measuring plunger base 322, and the measuring plunger member 323 also discharge as shown in FIG. 11B.
  • the outlet valve Moving away from the outlet 422 At this time, the outlet valve is closed and the inlet valve is opened, so that the liquid in the container 4 passes through the inlet valve in the space formed by the movement of the metering plunger member 323. Inhaled.
  • the measuring plunger member 323 returns to the initial position, it returns to the origin state.
  • a predetermined amount of liquid is sequentially discharged.
  • the discharge amount of each liquid can be adjusted by adjusting the third set value for the second piezoelectric element.
  • the drive speeds of the inlet valve member 313, the metering plunger member 323, and the needle 333 can be controlled, and the liquid discharge cycle time can be adjusted.
  • the liquid discharge device 1 is installed to the same extent as when driven using an air cylinder. Small and lightweight. That is, the liquid ejection device 1 can be easily downsized as compared with the case where a drive mechanism such as a servo motor, solenoid, cam or the like is employed.
  • liquid discharge device 1 of this embodiment when using the liquid discharge device 1 of this embodiment for discharging adhesives and various pastes in the production line of various products, it can be attached to the robot arm and moved at high speed and high acceleration. This can reduce the tact time of the production line and contribute to productivity improvement.
  • the piezoelectric elements 14A and 14B can be driven at a high speed, for example, the discharge operation can be performed 10 times or more per second, and a liquid discharge operation can be realized at a higher speed than the air cylinder drive. .
  • the piezoelectric elements 14A, 14B have a larger generated force than the air cylinder drive, Even if the resistance is increased by thinning the nozzle, the liquid can be discharged and discharged. For this reason, for example, even 0.01 microliters of water can be blown cleanly, and stable operation can be realized.
  • the discharge process ends when the needle 333 blocks the discharge port 422, it is possible to improve the drainage of the discharge liquid.
  • the liquid can be blown cleanly, and the accuracy of the discharge amount can be improved and stable. Can be realized.
  • the amount of the discharged liquid can be easily changed by adjusting the second set value for the second piezoelectric element to be added to the second piezoelectric element 14B in the measuring step. For this reason, even during the discharge operation, the discharge amount for each discharge operation can be automatically adjusted.
  • the amount of liquid discharged on the substrate may be changed in order to apply a different amount of adhesive at each electronic component mounting location. In a production line in which multiple products are sent in a mixed manner, even when the amount of liquid discharged must be changed for each product, it is possible to provide a liquid discharge device 1 that can be easily handled and is easy to use.
  • the piezoelectric element support plate 12 is provided so as to be slidable with respect to the main body of the liquid ejection device 1 by the pressing member 13 and the guide member 11, or the inlet valve member 313 is provided in the middle of the stroke.
  • the reaction force By making contact with the inner surface of the container 4 and utilizing the reaction force, it is possible to control only the driving of the two piezoelectric elements 14A and 14B by three members (inlet valve member 313, metering plunger member 323, needle 333 ) Can be controlled. Therefore, the arrangement and drive control of the piezoelectric elements are complicated, as in the case where three parts are driven by three piezoelectric elements. The manufacturing cost of the liquid ejecting apparatus 1 that does not cause a problem can also be reduced.
  • the liquid discharge device 1 can be downsized compared to the case where a drive source is a cam, motor, ball screw, solenoid, etc. It is suitable for.
  • the displacement amount of 127B can be set with high accuracy.
  • each drive arm member 15A, 15B is fixed to the displacement transmission parts 127A, 127B without rattling, the displacement amount of the displacement transmission parts 127A, 127B is set to each drive arm member 15A.
  • each drive arm member 15A, 15B can be accurately transmitted, and the displacement amount of each drive arm member 15A, 15B corresponding to the expansion and contraction of each piezoelectric element 14A, 14B, that is, each inlet valve member 313, measuring plunger member 323
  • the amount of movement of the needle 333 can be set with high accuracy, and even a very small amount of liquid can be discharged with high accuracy.
  • the state where the protrusions 131 and the surfaces of the drive arms 152 on the discharge port 422 side are aligned is the designed state, it can be easily determined whether the piezoelectric element support plate 12 is manufactured and assembled as designed. The generation of errors can be suppressed.
  • the springs 214, 224, 234 are provided, and the honorders 21, 22, 23 are brought into contact with the protrusions 131 of the piezoelectric element support plate 12 and the drive arm members 15A, 15B. Since the driving force is transmitted, if the drive unit base 3 and the pump holder 2 are separated, the drive mechanism side including the piezoelectric element support plate 12 and the pump unit side including the holders 21, 22, and 23 are separated. Easy to separate. For this reason, the inlet valve member 313, the measuring plunger member 323, and the needle 333 can be easily removed and cleaned, and the maintenance work can be performed easily and efficiently.
  • the liquid can be discharged from above the adherend such as the substrate, a sensor such as an infrared ray can be provided outside the liquid discharge apparatus 1 to check whether the discharge has been performed. Since no check valve is provided, the liquid can be sent under pressure. Therefore, even a highly viscous liquid can be easily supplied into the liquid ejection apparatus 1.
  • the liquid discharge apparatus 1A of the present embodiment is mainly different from the liquid discharge apparatus 1 of the first embodiment in that the screw 132 and the folding part 133 are omitted, and the second hinge part.
  • the length of 12 5 is slightly increased, and a strain gauge is attached to the second hinge part 125, and when the drive arm members 15A and 15B are fixed to the displacement transmission parts 127A and 127B, the drive The difference is that the position of the tip of the arm portion 152 can be finely adjusted.
  • each drive arm member 15A, 15B has a hole 154 through which the pin 153 is passed, and a groove 155 in which the other pin 153 is arranged. It is equipped with.
  • the groove 155 is formed to have a dimension that creates a gap with the pin 153, and the drive arm members 15A and 15B have the pin 153 inserted through the scissors 154 as the inside until the groove 155 contacts the pin 153. It can be rotated within the range of.
  • strain gauges are attached to both the front and back surfaces of the second hinge part 125.
  • the surface of the second hinge 125 facing the piezoelectric elements 14A and 14B is defined as the back surface
  • the surface facing the cover 5 is defined as the front surface.
  • strain gauges 101A and 101B are attached to the surface of the second hinge part 125 that is deformed by expansion and contraction of the first piezoelectric element 14A, and two strain gauges 102A and 102B are attached to the back surface. Is pasted.
  • strain gauges 103A and 103B and strain gauges 104A and 104B are respectively attached to the front and back surfaces of the second hinge portion 125 that is deformed by expansion and contraction of the second piezoelectric element 14B.
  • the four strain gauges 101A, 101B, 102A, 102B attached to one second hinge part 125 are connected to a bridge circuit 105 as shown in FIG. Similarly, although not shown, the four strain gauges 103A, 10 attached to the other second hinge portion 125 are omitted. 3B, 104A, and 104B are also connected to the bridge circuit.
  • the input voltage wiring and output voltage wiring to the bridge circuit 105 are connected to an external control device via a sensor output connector (not shown) configured in the same manner as the connector 18.
  • drive wiring and sensor wiring may be provided in one connector by shielding the wiring.
  • the second hinge portion 125 is deformed when the displacement transmitting portions 127A and 127B are inclined due to the extension of the piezoelectric elements 14A and 14B, and a bending strain is generated. . Therefore, the strain gauges 101A, 101B, 102A, 102B, 103A, 103B, 104A, 104B (hereinafter referred to as strain gauges 101 mm to
  • each of the drive arm members 15A and 15B is driven by the same operation as that of the first embodiment, and the liquid is discharged.
  • the drive arm member 15A is moved during the valve switching process as shown in FIG. 15 in the diagram ⁇
  • the drive arm member 15B is moved in the metering process, the discharge process, and the suction process as shown in the graph B of FIG. Sometimes moved.
  • T1 to T11 the timings from T1 to T11 are the origin state (T1), weighing process (T2), measurement completion (T3), valve switching process (T4), valve switching completion (T5), and discharge process, respectively.
  • T6 discharge completion (T7), valve switching step (T8), valve switching completion (T9), suction stroke (T10), and origin state (T11) are shown.
  • the discharge amount is set according to the movement position of the measurement plunger member 323 when the measurement process is completed. For this reason, the amount of bending strain of the second hinge portion 125 when the measuring plunger member 323 moves to the position corresponding to the set discharge amount, that is, the output voltage of the bridge circuit 105 is set as the target voltage.
  • the output voltage of the bridge circuit 105 at the completion of the quantity process is compared with the target voltage, and feedback control is performed to adjust the voltage applied to the piezoelectric elements 14A and 14B in the next measurement process according to the difference.
  • the relationship between the discharge amount and the output voltage of the bridge circuit 105 indicates the relationship between the amount of liquid actually discharged in advance and the output voltage at that time (the amount of bending strain of the second hinge part 125). Obtain a positive curve, and determine the voltage value (bending strain amount) corresponding to the discharge rate set based on the calibration curve during actual measurement.
  • the amount of liquid may be determined visually, or may be obtained by measuring the area of the discharged liquid using image processing, and may be obtained by measuring the weight of the discharged liquid.
  • the strain gauges 103A, 103B, 104A, and 104B are provided on the second hinge part 125 that is deformed by expansion and contraction of the second piezoelectric element 14B, the drive arm part of the second drive arm member 15B when the weighing process is completed It can detect the amount of movement of 152, and can detect the measured amount of liquid, that is, the discharge amount.
  • the liquid discharge operation of the liquid discharge apparatus 1A can be controlled by feedback control, and even a small amount of liquid can be discharged with high accuracy.
  • strain gauges 101A, 101B, 102A, 102B are also provided in the second hinge part 125 which is deformed by the expansion and contraction of the first piezoelectric element 14A, an input valve member which is a supply part opening / closing member It is possible to reliably detect the position of the needle 333 as the discharge port opening / closing member 313, that is, the open / closed state of the liquid supply unit and the discharge port. Therefore, by monitoring the output of each bridge circuit 105, the operating state of the liquid ejection apparatus 1A can be grasped.
  • the bending strain amount that is, the moving amount of the measuring plunger member 323 can be detected with high accuracy. Therefore, the amount of movement of the measuring plunger member 323 can be detected with an accuracy of 0.1 micron or less, and a very small amount of liquid can be discharged with high accuracy.
  • the strain gauges 101A to 104B are small and thin sensors, the size of the liquid ejection device 1A can be reduced.
  • the strain gauges 101A to 104B are attached to the second hinge part 125 that is most deformed among the hinge parts, the output voltage of the bridge circuit 105 can be increased, and the bending strain amount of the second hinge part 125, that is, the measuring plunger. The amount of movement of the member 323 can be reliably detected.
  • Strain gauge 101A ⁇ No need to measure and control the output of 104B in real time. This eliminates the need to process data in real time, enabling even faster operation, and the control voltage does not fluctuate in real time, resulting in vibration when the piezoelectric element is operated at high speed. Generation
  • production can be prevented and an optimal drive state can be maintained.
  • 16 to 18 show a liquid ejection apparatus 500 according to the third embodiment.
  • the liquid ejection device 500 is roughly provided with a drive unit 501 and a pump unit 600.
  • the liquid ejection device 500 of the present embodiment is normally used with the drive unit 501 side upward and the pump unit 600 side downward, so that the direction of force from the pump unit 600 to the drive unit 501 is upward.
  • the direction of the direction of force from the drive unit 501 to the pump unit 600 is defined as the downward direction.
  • the drive unit 501 includes a side plate 511A, a lower flange 511B, an upper flange 511C, and a frame 511 having a substantially U-shaped side surface, and a lower flange 511B of the frame 511.
  • Frame 51 A substantially cylindrical joint 515 is also connected to the lower flange 511B of 1 by a screw.
  • a first motor 521 and a second motor 522 are fixed to the motor flange 513, and driving parts driven by the motors 521 and 522 are arranged in the case 510.
  • each motor 521, 522 uses a servo motor.
  • any motor can be used as long as it has a built-in encoder or the like and can change by the displacement amount instructed by the drive signal, that is, a motor that can set the displacement amount.
  • a spline shaft 523 is fixed to the output shaft of the first motor 521 with a pin. Further, a substantially disk-shaped upper panel seat 524 is fitted to the spline shaft 523, and the upper spring seat 524 is rotatably supported with respect to the case 510 by a bearing 525.
  • the spline shaft 523 and the upper spring seat 524 are rotatably supported by the bearing 525 and rotated integrally with the output shaft of the first motor 521.
  • An outer cylinder (boss) 526 is engaged with the spline shaft 523 so as to be movable in the axial direction of the spline shaft 523 and to be rotatable together with the spline shaft 523.
  • a coil spring (coil spring) 527 force S is interposed between the outer cylinder 526 and the above-described spring seat 524 to urge the outer cylinder 526 downward. Further, in the outer cylinder 526, the end portion force of the spacer 528 and the screw shaft 529 is fixed by a spring pin.
  • the screw shaft 529 is integrated with an inlet nut 530 as a first nut member and a measuring nut 540 as a second nut member.
  • a ball screw capable of using a normal screw shaft and nut, particularly a high transmission efficiency and high position accuracy.
  • the inlet nut 530 is sandwiched between an inlet nut receiving plate 531 and an inlet nut holding member 532 screwed to the inlet nut receiving plate 531.
  • the inlet nut receiving plate 531 is formed in a substantially square plate shape.
  • the sensor head guide 533 is screwed to the protruding portion protruding into the concave groove 511D formed in the side plate 511A of the frame 511 on the inlet nut receiving plate 531.
  • a through hole is formed in the sensor head guide 533, and a screw (bolt) 534 is passed through the through hole.
  • a sensor head 535 is screwed to the tip of the screw 534.
  • a coil spring 537 is disposed between the sensor head guide 533 and the sensor head 535.
  • the sensor head 535 and the screw 534 are urged in the direction away from the screw 534 (upward) by the coil spring 537, and are held in a position where the head of the screw 534 (the lower end of the screw 534) is engaged with the sensor head guide 533. Talk to me.
  • a proximity sensor 536 is fixed to the motor flange 513 so as to face the sensor head 535. Accordingly, when the first motor 521 rotates, the inlet nut 530 rises and the sensor head 535 also rises as a whole and approaches the proximity sensor 536, and the proximity sensor 536 detects the proximity state.
  • the detection signal output from the proximity sensor 536 is output to a drive control device (drive control means) (not shown).
  • the coil spring 537 contracts and the position of the sensor head 535 is displaced, so that the proximity sensor 536 and the like can be prevented from being damaged.
  • the measuring nut 540 is formed in a stepped cylindrical shape having a small diameter portion and a large diameter portion.
  • a bearing 541 is attached to the small diameter portion of the measuring nut 540.
  • the bearing 541 is sandwiched between a measuring nut receiving plate 542 and a measuring nut holding member 543 screwed to the measuring nut receiving plate 542.
  • the measuring nut receiving plate 542 is formed in a planar substantially rectangular plate shape, and a gear 540A formed on the outer peripheral surface of the large-diameter portion of the measuring nut 540 at a substantially central portion thereof.
  • An intermediate gear 544 that is screwed onto is rotatably attached.
  • the measuring nut receiving plate 542 includes a bearing 545 sandwiched between the measuring nut receiving plate 542 and the measuring nut holding member 543, and a motor gear 550 that is rotatably supported by the bearing 545 with respect to the measuring nut receiving plate 542. And are provided.
  • a gear 550 A that is screwed into the intermediate gear 544 is formed on the outer peripheral surface of the motor gear 550.
  • teeth that mesh with the motor gear shaft 551 are formed in a through hole formed in the central shaft of the motor gear 550.
  • the motor gear shaft 551 is a spline shaft, and is coupled to the output shaft of the second motor 522 via a coupling 552 so as to be integrally rotatable. For this reason, the motor gear 550 The motor gear shaft 551 can be moved in the vertical direction, and can be rotated integrally with the rotation of the motor gear shaft 551.
  • the measuring nut 540 is rotated via the motor gear 550 and the intermediate gear 544. At this time, since the screw shaft 529 is stopped, the measuring nut 540 moves upward or downward along the screw shaft 529.
  • the measuring nut 540 is moved upward and downward. The position does not change and is held at the same position.
  • the inlet nut 530 is moved upward or downward as the screw shaft 529 rotates.
  • the inlet nut 530 and the measuring nut 540 move. Further, when only the second motor 522 is rotationally driven, only the measuring nut 540 is moved. Further, when the first motor 521 and the second motor 522 are driven to rotate, only the inlet nut 530 moves. At this time, the moving direction of the nuts 530 and 540 is set according to the rotation direction of the motors 521 and 522.
  • the intermediate gear 544 and the motor gear 550 constitute a transmission gear that transmits the rotation of the second motor 522 to the measuring nut 540.
  • a needle pushing member 561 is arranged on the lower flange 511B of the frame 511 so as to be movable in the axial direction (vertical direction).
  • the needle pushing member 561 has a shape having two cylindrical parts having different diameters of a small diameter part and a large diameter part, and the other end of the screw shaft 529 is rotatable through a bearing 562 and a bush 563 in the large diameter part. And is supported so as to be movable upward with respect to the bushing 563.
  • a return spring receiving member 564 that also serves as a flanged cylindrical member is fixed with screws. Inside the return spring receiving member 564, the needle pressing member 561 and the return spring 565 are arranged. The return spring 565 is disposed between the return spring receiving member 564 and the needle pressing member 561, and urges the needle pressing member 561 upward (on the screw shaft 529 side) with respect to the return spring receiving member 564, that is, the frame 511. .
  • rods 571 and 572 which will be described later, are formed at notches 564A in the two opposing force points of the flange of the return spring receiving member 564, and each rod 571 is formed. , 572 is configured so that it does not interfere with the return line receiving member 564.
  • a cylindrical magnet 566 is fixed to the lower end of the needle pushing member 561.
  • the upper flange 511C and the lower flange 511B of the frame 511 are provided with four guide holes 511E.
  • an inlet rod 571 and a measuring rod 572 are threaded so as to be movable in the axial direction (vertical direction) of each rod 571, 572.
  • Two inlet rods 571 are provided, and are arranged at positions that are point-symmetric with respect to the central axis of the screw shaft 529 as shown in FIGS.
  • Each inlet rod 571 is fixed to an inlet nut receiving plate 531 that moves in the vertical direction together with the inlet nut 530. Accordingly, the inlet rod 571 moves up and down integrally with the inlet nut 530 as the inlet nut 530 is moved up and down by the drive of the first motor 521.
  • Two measuring rods 572 are provided, and are arranged at positions that are symmetric with respect to the central axis of the screw shaft 529, as shown in FIGS.
  • Each measuring rod 572 is fixed to a measuring nut receiving plate 542 that moves in the vertical direction together with the measuring nut 540. Accordingly, the measuring rod 572 moves up and down together with the measuring nut 540 as the measuring nut 540 is moved in the vertical direction.
  • the inlet nut receiving plate 531 has a through hole 531A through which the inlet rod 571 is fixed and a through hole 531B through which the measuring rod 572 can be inserted.
  • the measuring nut receiving plate 542 is formed with a through hole 542A through which the measuring rod 572 is fixed and a through hole 542B through which the inlet rod 571 can be inserted.
  • Each through hole 531A, 542A is formed with a slit groove, and the inlet rod 571 and the measuring rod 572 are inserted into the inlet nut receiving plate 53 1, by tightening the slot groove with the fixing bolt 54 6.
  • the measuring nut receiving plate 542 is fixed so as not to move.
  • each insertion hole 531B, 542B is a through-hole having a diameter larger than the diameter of each rod 571, 572, the measuring rod 572 is provided so as to be movable with respect to the inlet nut receiving plate 531, and the inlet rod 571 is measured.
  • the nut receiving plate 542 is provided to be movable.
  • a measuring push member 582 made of a cylindrical member with a flange is disposed on the outside of the return panel receiving member 564.
  • the lower end of the measuring rod 572 is fixed to the flange of the measuring push member 582 with a screw.
  • a disc-shaped inlet pushing member 581 is disposed outside the measuring pushing member 582.
  • the lower end of the inlet rod 571 is fixed to the inlet pushing member 581 with a screw.
  • the pump unit 600 includes a container 601 that is detachably attached to the joint 515 via a cap nut 602.
  • a substantially cylindrical inlet panel receiving member 610 is disposed in the joint 515, a substantially cylindrical measuring guide member 620 is disposed in the inlet panel receiving member 610, and a needle rod 630 is disposed in the measuring guide member 620. Is arranged.
  • the needle rod 630, the measuring guide member 620, and the inlet spring receiving member 610 are arranged in a concentric manner outward from the central axis.
  • An inlet valve return spring 611 is interposed between the inlet spring receiving member 610 and the joint 515.
  • the inlet spring receiving member 610 is biased upward by the inlet valve return spring 611 and is always in contact with the inlet pushing member 581.
  • a concave groove is formed on the inner peripheral surface of the joint 515, and a sealing material 612 such as a ring is arranged. As a result, the liquid is leaked to the inlet spring receiving member 610 and the joint 515 force drive unit 501 side.
  • a ring magnet 621 is attached to the upper part of the weighing guide member 620.
  • the measuring guide member 620 is detachably attached to the measuring push member 582 by the magnetic force of the ring magnet 621.
  • a concave groove is formed in the outer peripheral surface of the measuring guide member 620, and a sealing material 622 such as a ring is arranged.
  • a magnet receiver 631 is attached to the upper portion of the needle rod 630. For this reason, the needle rod 630 is detachably attached to the needle pressing member 561 by the magnetic force acting between the magnet 566 and the magnet receiver 631.
  • a concave groove is formed on the outer peripheral surface of the needle rod 630, and a sealing material 632 such as an O-ring is disposed.
  • a sealing material 632 such as an O-ring is disposed.
  • One end of two inlet valve rods 613 is fixed to the inlet spring receiving member 610.
  • An inlet valve member 614 is attached to the other end of the inlet valve rod 613.
  • the inlet valve member 614 is formed in a substantially cylindrical shape with a flange, and the tip thereof is formed in a taper shape so as to be in close contact with a tapered inner surface of a container 601 described later.
  • One end of two measuring plunger rods 623 is fixed to the measuring guide member 620. As shown in FIG. 27, the arrangement of the metering plunger rod 623 is orthogonal to the arrangement direction of each inlet valve port 613 in the direction perpendicular to the axis of the liquid discharge device 500. The rods 613 and 623 are configured so that they do not interfere with each other.
  • a measuring plunger member 624 is stretched around the other end of the measuring plunger rod 623 and fixed.
  • the measuring plunger member 624 is formed in a substantially cylindrical shape with a flange, and the flange portion is formed in a substantially elliptical plate shape so that it does not interfere with the inlet valve rod 613.
  • the lower end side of the measuring plunger member 624 is inserted into a through hole formed in the central axis of the inlet valve member 614.
  • One end of a rod-shaped needle 633 is fixed to the needle rod 630.
  • the lower end side of the needle 633 is inserted into a through hole formed in the central axis of the measuring plunger member 624.
  • the end surface of the needle 633 is formed in a spherical shape, and is configured to be able to open and close a discharge port 642 formed in a container 601 described later.
  • the needle pushing member 561, the needle rod 630, and the needle 633 integrated by the magnet 566 are biased upward by the return spring 565.
  • the screw wheel 529, the bush 563, and the bearing 562 are pressed downward.
  • the urging force of the coil spring 527 is set to be larger than the urging force of the return spring 565, the needle 633 normally contacts the discharge port 642 and closes the discharge port 642.
  • the container 601 has one end attached to the joint 515 via a cap nut 602.
  • the space in the container 601 forms a liquid storage space.
  • One end surface (inner surface) side of the valve seat 640 facing the container 601 is formed with a tapered hole portion 641 having a gradually decreasing diameter, and a discharge port 642 is formed between the tapered hole portion 641 and the other end surface of the valve seat 640. It is formed through.
  • the discharge port 642 communicates with a nozzle 643 fixed to the valve seat 640, and the liquid in the container 601 is configured to be discharged to the outside of the liquid discharge device 500 through the discharge port 642 and the nozzle 643 of the valve seat 640. Yes.
  • the supply of the liquid into the container 601 may be performed by removing the container 601 from the joint 515.
  • the liquid can be supplied without removing the container 601.
  • a port 603 communicating with the port is formed. That is, an external container (not shown) is connected to the port 603 via a tube (not shown).
  • the external container is provided with a liquid level gauge (not shown) for detecting the liquid level in the external container.
  • the liquid is supplied from the tank into the external container by a valve controlled according to the liquid level detected by the liquid level gauge.
  • a discharge port opening / closing member is configured by a needle 633 capable of opening and closing the discharge port 642 by contacting the opening of the discharge port 642, and contacts the taper hole 641 from the inside of the container 601 to the discharge port 642.
  • An inlet valve member 614 that can open and close the fluid supply section communicated with each other constitutes a supply section opening / closing member.
  • the inlet valve member 614 has a tapered hole 641.
  • the inlet pushing member 581, the inlet rod 571, the inlet nut receiving plate 531, the inlet nut 530, the screw shaft 529, the first motor 521, and the like constitute the supply section opening / closing driving means.
  • the measurement plunger member 624 which is a discharge member, moves in the up and down direction, the measurement plunger rod 623, the measurement guide member 620, the measurement push member 582, the measurement rod 572, the measurement nut receiving plate 542, the measurement nut 540, the intermediate gear 544, a motor gear 550, a motor gear shaft 551, a second motor 522, and the like constitute discharge driving means.
  • the main body of the liquid ejection device 500 is configured including the container 601, the joint 515, the frame 511, and the like.
  • FIGS. 28 and 47 are cross-sectional views taken along line FF in FIG. 27.
  • the inlet valve rod 613 and the metering plunger rod 623 is displayed together.
  • S is a detection signal from the proximity sensor 536
  • M1-CW is a signal for rotating the first motor 521 in the CW direction
  • M1-CCW is rotating the first motor 521 in the CCW direction
  • Signal, Ml-Z is the Z-phase signal of the first motor 521
  • M2-CW is the CW direction signal of the second motor 522
  • M2-CCW is the CCW direction signal of the second motor 522
  • M2-Z is the first signal 2 represents the Z phase signal of motor 522.
  • T31 force T41 is at the origin setting work start (T31), the proximity sensor 536 is turned on as the inlet nut 530 is moved upward () 32), and when the first motor 521 phase is detected. ( ⁇ 33), Proximity sensor 536 turned on as the weighing nut 540 moves (T34), when the Z phase of the second motor 522 is detected (T35), the origin state of the pump operation (T36), when the suction process is completed ( ⁇ 37), switching the first valve to the inlet valve closed and outlet opening states It represents the time when the process is completed ( ⁇ 38), the time when the discharge process is completed ( ⁇ 39), the time when the second valve switching process to the inlet valve open and discharge closed state is completed ( ⁇ 40), and the home position return state (T41).
  • each motor 521, 522 in order to control the rotation operation of each motor 521, 522 by the number of drive pulses, the origin of each motor 521, 522 is first set.
  • the discharge port 642 is in a closed state by the contact of the needle 633 biased by the coil spring 527.
  • the drive control device rotates the two motors 521 and 522 in CCW (Counter Clock Wise, counterclockwise as viewed from the motor output shaft).
  • CCW Counter Clock Wise, counterclockwise as viewed from the motor output shaft.
  • the measuring nut 540 rotates in the CCW direction via the motor gear shaft 551, the motor gear 550, and the intermediate gear 544 as the second motor 522 rotates in the CCW direction, so that the screw shaft 529 and the measuring nut 540 are in the same direction.
  • the metering nut 540 does not move up and down and stops at the same position.
  • the proximity sensor 536 When the sensor head 535 gradually approaches the proximity sensor 536 as the inlet nut 530 moves upward, and approaches a predetermined distance, the proximity sensor 536 is turned on and a detection signal is output.
  • the drive control device rotates the two motors 521 and 522 in CW (clockwise as viewed from the motor output shaft).
  • the first motor 521 detects a Z-phase (C-phase) signal that is output one pulse per rotation of its output shaft, and the first pulse is detected when an output pulse is detected.
  • the motor 521 is stopped and the position is set to the origin position of the first motor 521. That is, the inlet nut 530 and the inlet valve member 614 operated by the first motor 521 are The state shown in Figs. 32 and 33 is the origin position.
  • the drive control device rotates the second motor 522 in the CCW direction at the same time as the first motor 521 is stopped when the Z phase of the first motor 521 is detected.
  • the measuring nut 540 moves downward as shown in FIGS.
  • the needle pressing member 561 is biased by the coil spring 527 and reaches the position of the lower stroke end. Since it cannot move downward any more, the screw shaft 529 moves upward against the urging force of the coil spring 527. That is, the screw shaft 529 moves upward with respect to the bush 563.
  • the drive control device rotationally drives the second motor 522 in the CW direction. Then, as shown in FIGS. 36 and 37, the measuring nut 540 rotates in the CW direction, and the screw shaft 529 moves downward. At the same time, since the sensor head 535 is separated from the proximity sensor 536, the detection signal from the proximity sensor 536 is also turned off.
  • the second motor 522 After the output of the proximity sensor 536 is turned off, the second motor 522 detects a Z-phase (C-phase) signal that is output by one pulse for each rotation of the output shaft, and when the output pulse is detected, 2 Stop the motor 522 and set its position to the origin position of the second motor 522.
  • C-phase Z-phase
  • the needle pressing member integrated with the screw shaft 529 urged by the coil panel 527 or the measuring nut 540 screwed to the screw shaft 529 is also provided. Since any force of 561 abuts against the needle pushing member 561 and urges it, The needle 633 is maintained in a state where the discharge port 642 is closed.
  • the origins of the motors 521 and 522 are set, and the liquid ejection device 500 is set to the origin state shown in FIGS. 36 and 37 (the same applies to FIGS. 38 and 39). Further, the subsequent operation is controlled by the number of drive pulses input to the motors 521 and 522.
  • the needle 633 is in contact with the opening portion of the discharge port 642 and the discharge port 642 is closed.
  • the measuring plunger member 624 that moves together with the measuring nut 540 is at the position of the lower stroke end. At this position, the measuring plunger member 624 is slightly away from the tapered hole 641 of the valve seat 640. In this way, the length dimensions of the measuring plunger rod 623 and needle 633 are set.
  • the inlet valve member 614 that moves up and down together with the inlet nut 530 has an inlet valve rod 613 and a tip so that its tip is located at a predetermined distance from the tapered hole 641 of the valve seat 640.
  • the length dimension of the inlet valve member 614 is set.
  • the drive control device rotates only the second motor 522 in the CW direction by the preset number of ejection setting pulses while the first motor 521 is stopped.
  • the measuring nut 540 moves upward by a predetermined stroke amount.
  • the measuring nut receiving plate 542, the measuring port 572, the measuring pressing member 582, the measuring guide member 620, the measuring plunger rod 623, and the measuring plunger member 624 also move upward, and the tip of the measuring plunger member 624 is set to the discharge setting pad. Move to the position corresponding to the number of Nores.
  • the drive control device stops the second motor 522 and simultaneously rotates the first motor 521 in the CW direction by the number of switching setting pulses.
  • both the inlet nut 530 and the metering nut 540 move downward.
  • the inlet nut 530 moves downward, the inlet nut receiving plate 531 and the inlet rod 571
  • the inlet pushing member 581, the inlet spring receiving member 610, the inlet valve rod 613, and the inlet valve member 614 also move downward.
  • the inlet valve member 614 is in contact with the tapered hole portion 641.
  • the screw shaft 529 moves upward against the biasing force of the coin panel 527.
  • the needle spring pushing member 561, the needle rod 630, and the needle 633 are also moved upward by the urging force of the return spring 565, and the discharge port 642 that has been blocked by the needle 633 is opened. . That is, the outlet valve is opened and the discharge port 642 is opened.
  • the opening degree of the discharge port 642 by the needle 633 is set by the moving amount of the screw shaft 529, that is, the number of switching setting pulses in the CW direction of the first motor 521.
  • the inlet valve is opened and the outlet valve is closed, the inlet valve is closed and the outlet valve is opened, so that the valve switching process is executed.
  • the valve is switched by bringing the inlet valve member 614 into contact with the valve seat 640 by the rotational drive of the first motor 521 and then further rotating the first motor 521 to move the screw shaft 529. Since one of the valves is always closed, the inside of the container 601 and the discharge port 642 are not directly communicated with each other.
  • the measuring nut 540 is a force that moves downward as the first motor 521 rotates in the CW direction. As described above, after the inlet valve member 614 comes into contact with the tapered hole portion 641, the screw shaft Since 529 moves upward and the downward movement of the metering nut 540 is canceled, it is maintained at the same height, and the position of the metering plunger member 624 does not change.
  • the metering plunger member 624 moves from the position at the completion of the suction process (position in FIG. 41) to the position at which the inlet valve member 614 contacts the tapered hole 641 at the end of the valve switching process shown in FIG. Move down by the minute.
  • the control device stops the first motor 521 and simultaneously moves the second motor 522 in the CCW direction. Rotation is driven for the number of discharge setting pulses (the same number of pulses as the discharge setting no-load number in the suction process). Then, the measuring nut 540 moves downward according to the number of discharge setting pulses, and the measuring plunger member 624 also moves to the discharge port 642 side as shown in FIG.
  • the discharge amount is set by the movement amount of the metering plunger member 624, and this movement amount is determined based on the number of discharge setting pulses when the second motor 522 is driven.
  • the movement end position of the measurement plunger member 624 at the end of the discharge process is fixed, and the movement start position of the measurement plunger member 624 is adjusted by the number of discharge set pulses, whereby the measurement at the time of the discharge process is performed.
  • the movement amount of the plunger member 624 that is, the discharge amount is adjusted. Accordingly, since the discharge amount can be freely adjusted only by adjusting the number of pulses for driving the second motor 522 in the suction (measurement) step, the discharge liquid amount is measured.
  • the metering nut 540 and the metering nut pressing member 543 move downward to a position where they abut against the needle pressing member 561.
  • the needle 633 also contacts the discharge port 642 and closes the discharge port 642.
  • the drive control device stops the second motor 522, and simultaneously rotates the first motor 521 in the CCW direction by the set number of switches (the same as the set number of pulses set in the valve switching process). .
  • the inlet nut 530 moves upward with respect to the screw shaft 529.
  • the screw shaft 529 is biased downward by the coil spring 527, the screw shaft 529 moves relatively downward until the screw shaft 529 contacts the bush 563.
  • the inlet valve member 614 remains in contact with the tapered hole portion 641 until the screw shaft 529 contacts the bush 563 of the needle pushing member 561.
  • the inlet nut 530 and the inlet valve member 614 move upward to open the inlet valve.
  • the measuring nut 540 moves upward as the first motor 521 rotates in the CCW direction, but is biased downward by the coil spring 527 via the screw shaft 529, so that the screw shaft The screw shaft 529 moves relatively downward until 529 contacts the bush 563, and the measuring nut 540 is maintained in a state where the measuring nut pressing member 543 is in contact with the needle pressing member 561.
  • the first motor 521 is driven by the same number of switching setting pulses in the CW direction and CCW direction from the origin state
  • the second motor 522 is also driven by the same number of discharge setting pulses in the CW direction and CCW direction, respectively.
  • the members such as the motors 5 21 and 522 and nuts 530 and 540 are returned to the original state (the states shown in FIGS. 38 and 39).
  • a predetermined amount of liquid is sequentially discharged.
  • the discharge amount of each liquid can be adjusted by adjusting the number of discharge setting pulses.
  • the drive speed of the inlet valve member 614, the metering plunger member 624, and the needle 633 is controlled by adjusting the frequency of the drive pulse input to the motors 521 and 522, thereby adjusting the liquid discharge cycle time. be able to.
  • the liquid discharge device 500 of this embodiment when using the liquid discharge device 500 of this embodiment for discharging adhesives and various pastes in the production line of various products, it can be attached to the robot arm and moved at high speed and high acceleration. It is possible to reduce the tact time of the production line and contribute to productivity improvement.
  • the discharge process ends when the needle 633 closes the discharge port 642, so that the discharge liquid can be completely drained.
  • the liquid can be discharged cleanly, and the accuracy of the discharge amount can be improved and stable. Can be realized.
  • the amount of discharged liquid can be easily and accurately adjusted by the number of drive pulses for driving the motors 521 and 522. For this reason, even during the discharge operation, the discharge amount for each discharge operation can be automatically adjusted.
  • the amount of liquid discharged on the substrate may be changed in order to apply a different amount of adhesive at each electronic component mounting location.
  • a liquid discharge apparatus 500 that is easy to use.
  • the magnets 566 and 621, the return springs 565 and 611, etc. are provided. Therefore, if the container 601 and the joint 515 are removed, the inlet spring receiving member 610, the inlet valve rod 613, the inlet The valve member 614 can be easily removed, and the weighing guide member 620 The quantity plunger rod 623 and the metering plunger member 624 can be easily removed, and the needle rod 630 and the needle 633 can be easily removed. For this reason, it is possible to easily remove and clean the inlet rov member 614, the measuring plunger member 624, and the needle 633, and the maintenance work can be performed easily and efficiently.
  • a high-viscosity liquid such as a paste
  • the pump unit and the discharge port 642 are separated from each other, there is a delay in the discharge of the liquid, but according to this embodiment, the needle 633 for discharging the liquid, etc. Since the pump unit having the discharge port 642 and the discharge port 642 are very close to each other, there is no delay in discharging the liquid. Also, alcohol and other solvents that have a low boiling point and are easily vaporized generate bubbles when the flow becomes complicated, such as when sucking into the pump or passing through a check valve, and the bubbles accumulate immediately and the liquid is discharged. May not be. However, according to the present embodiment, the flow of the liquid that is very close to the pump unit and the discharge port 642 is not complicated, and thus the liquid that does not generate bubbles can be discharged normally.
  • the liquid can be ejected from above the adherend such as the substrate, by providing an infrared sensor or the like outside the liquid ejecting apparatus 500, the ejected force can be confirmed.
  • the liquid ejection device 500 Since the liquid ejection device 500 is not provided with a check valve, the liquid can be sent under pressure. Therefore, even a highly viscous liquid can be easily supplied into the liquid ejection apparatus 500.
  • the shapes of the inlet valve member 313, the metering plunger member 323, the needle 333 are not limited to those of the first to third embodiments, and other shapes may be used.
  • the nozzle 333, the metering plunger member 323, and the inlet valve member 313 are arranged concentrically from the inside to the outside in this order.
  • the state shown in Figs. 6A and 7A is the stopped state of the liquid ejection device 1, that is, the origin state. However, depending on the type of liquid to be ejected, etc.
  • the state shown in 9A may be the origin state.
  • the state shown in FIGS. 38 and 39 is the stopped state of the liquid ejection device 500, that is, the origin state. However, depending on the type of liquid to be ejected, the states shown in FIGS. It is good also as an origin state.
  • the shapes of the pump holder 2, the drive unit base 3, and the container 4 are not limited to the shapes of the above-described embodiments, but may be other shapes.
  • the container 4, 601 is provided.
  • the container 4, 601 is not provided, and the inlet valve members 313, 614 are provided with pipes or the like communicating with an external tank. It may be configured to supply liquid directly to the valve part.
  • the piezoelectric element support plate 12 and the drive arm members 15A and 15B which are separate members from the piezoelectric element support plate 12, constitute the piezoelectric element support member.
  • the one made by the body can be used as the piezoelectric element support member.
  • the dimension adjusting means is provided between the base end portions 122A and 122B and the displacement enlarged portion.
  • the dimensions can be reduced. Adjustment means may be eliminated.
  • the dimension adjusting means is not limited to the configuration of the above embodiment, and any means capable of adjusting the length dimension may be used.
  • the voltage of the first set value applied to the piezoelectric elements 14A and 14B is "
  • a voltage having a predetermined value may be applied.
  • the voltage values should be set so that the length dimensions of the piezoelectric elements 14A and 14B change between the state where the first set value is applied and the state where the second set value is applied.
  • the force S applied to the strain gauges 101A to 104B on the second hinge part 125 may be applied to the other hinge parts 123, 126, 128.
  • the piezoelectric element 14 What is necessary is just to provide in the part which deform
  • the second hinge portion 125 is provided in the second hinge portion 125 where the deformation amount is the largest and the space for attaching the strain gauges 101A to 104B is easily secured.
  • the force in which the strain gauges 101A to 104B are attached to the two second hinge portions 125 respectively.
  • the strain plunger member 323 is moved by attaching the strain gauge only to one of the second hinge portions 125. You can detect only the amount or only the movement of the inlet valve member 31 3 or the needle 333.
  • the strain gauges 101A to 104B are attached to both the second hinge portions 125 in that the liquid ejection apparatus 1A can be driven and controlled with high accuracy.
  • the strain gauges 101A to 104B may be provided and controlled.
  • the operation (displacement amount) of the piezoelectric elements 14A and 14B is the drive voltage if the force applied to the metering plunger member 323 or the like hardly changes during the liquid discharge operation as in the case of discharging the same type of liquid. Since the control can be performed with high accuracy, it is possible to perform highly accurate liquid discharge without providing the strain gauges 101A to 104B as in the first embodiment.
  • the position of the measurement plunger member 323 at the completion of the measurement process is detected using the strain gauges 101A to 104B, and the voltage value applied to the piezoelectric elements 14A and 14B at the next measurement process
  • the voltage values applied to the piezoelectric elements 14A and 14B may be controlled by processing the outputs of the force strain gauges 101A to 104B in real time.
  • the bending strain amount of the second hinge portion 125 is detected in real time from the start of the movement of the measuring plunger member 323, and when the bending strain amount reaches a predetermined amount, that is, the measuring plunger member 323 has a predetermined amount.
  • the ejection amount may be adjusted by stopping the driving of the piezoelectric elements 14A and 14B at the time of movement.
  • only one proximity sensor 536 is used to set the origin of the two motors 521 and 522.
  • Two sensors are provided, and the origin position for each motor 521 and 522, that is, The origin can be set by detecting the origin position of the inlet nut 530 and measuring nut 540, respectively.
  • the measuring nut pressing member 543 is brought into contact with the needle pressing member 561 and the screw shaft 529 is moved upward. This eliminates the need to adjust the origin position of the second motor 522, so that it is not necessary to set the position where the measuring nut pushing member 543 contacts the needle pushing member 561 as the origin position.
  • the liquid ejection devices 1, 1A, 500 of the present invention control the driving of the piezoelectric elements 14A, 14B and the motors 521, 522 so that, for example, the liquid such as solder is adjusted to the shape of the component. It can also be used for short line drawing by discharging. In particular, if the amount of movement of the measuring plunger members 323 and 624 is detected in real time using the strain gauges 101A to 104B or the like, the liquid can be drawn with certainty and accuracy.
  • the liquid discharge apparatus 1, 1A, 500 of the present invention may be incorporated into an electronic component manufacturing apparatus and used for IJ. That is, the electronic component manufacturing apparatus includes the above-described liquid ejecting apparatuses 1, 1A, 500, liquid supply means for supplying liquid into the containers 4, 601 of the liquid ejecting apparatus 1, the liquid ejecting apparatus 1, And a control device that controls the drive means of 1A, 500, and the liquid supplied from the liquid supply means is discharged from the nozzles 43, 643 via the liquid discharge devices 1, 1A, 500 to be electronic. What is necessary is just to manufacture a component.
  • the present invention can discharge a very small amount of liquid at high speed, can automatically adjust the discharge amount, can simplify the structure, reduce manufacturing costs, can be easily downsized, and can be used for semiconductor manufacturing and chemicals. It can be used for liquid ejection devices used in the field of dispensing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating Apparatus (AREA)
  • Reciprocating Pumps (AREA)

Abstract

 液体吐出装置1は、容器4内に同心円状に配置されたニードル333、計量プランジャ部材323、入口バルブ部材313を駆動する駆動機構を備える。駆動機構は、圧電素子14A,14Bが取り付けられた圧電素子支持板12と、圧電素子支持板12を吐出口側に付勢するバネ13と、圧電素子を個別に駆動可能な制御装置とを備える。圧電素子支持板12は、各圧電素子の一端側が固定された基端部と、各圧電素子の他端側が固定された駆動部と、圧電素子の伸縮駆動に連動して前記各駆動部が変位すると、その変位を拡大して出力する変位拡大部を備える。2つの圧電素子で3つの部材を駆動できるため、高速駆動が可能となり、液体吐出装置1を容易に小型化できる。

Description

明 細 書
液体吐出装置
技術分野
[0001] 本発明は、液体を吐出する液体吐出装置(デイスペンサ)に係り、特に、微量の液 体を高精度でかつ高速に吐出可能な液体吐出装置に利用できる。
背景技術
[0002] 従来より、液体の吐出装置として様々な形式のものが知られているが、特に銀ぺー スト等の高粘度の液体を高精度、微量および高速で吐出できる吐出装置として、同 心円状に配置された 3つの部材を駆動するものが知られている(特許文献 1参照)。
[0003] この特許文献 1の液体吐出装置は、液体を吸入する吸入路を開閉する吸入路開閉 部材と、液体を吐出する吐出口を開閉する吐出口開閉部材と、液体を吐出する吐出 用部材とを備えるとともに、これらを内側から外側に向かって吐出口開閉部材、吐出 用部材、吸入路開閉部材の順に同心円状に配置し、これらの吐出口開閉部材、吐 出用部材および吸入路開閉部材をそれぞれ所定動作で駆動する駆動機構を備えて 構成されている。
このポンプにおける吸入動作は、前記吸入路開閉部材を開いて吐出用部材を吐出 口より離れる方向に移動させ、吐出口および吐出用部材間に形成される空間に液体 を吸入させている。また、吐出動作は、液体吸入後に吸入路開閉部材を閉じて吐出 液を計量し、吐出口開閉部材を開き吐出用部材を吐出口側に移動させて液体を吐 出させ、最後に吐出口開閉部材を閉めて吐出動作を完了している。
[0004] この液体吐出装置では、各部材ゃ吐出用部材をエアシリンダで駆動しており、各部 材を強制的に駆動することで液体を各部材間の空間に閉じこめて容積計量できるた め、微量の液体であっても高精度に吐出でき、かつ、液体吐出装置を軽量化できて 製造ラインのロボットなどに装着して液吐出箇所に高速移動できるとともに、吐出口 開閉部材を閉じることで、一定量毎の液体を飛ばして吐出できるという利点があり、広 く利用されるようになった。
[0005] 特許文献 1 :特許第 2521332号公報 発明の開示 発明が解決しょうとする課題
[0006] し力しながら、エアシリンダによる駆動は、エア供給によって各部材ゃ吐出用部材 が駆動し始めるまでの時間、つまり立ち上がり時間が遅ぐ通常は、 0. 5秒で一回動 作する程度の動作速度である。このため、毎秒 10回動作などの高速駆動の要求に は対応できなレ、とレ、う問題があった。
また、高速駆動の場合、液を飛ばしたほうが利点となるが、エアシリンダ駆動の場合 、極微量、例えば水で 0. 1マイクロリットノレ以下程度の量を安定して飛ばすことができ ないという問題もあった。すなわち、液体吐出装置の吐出口に設けられるノズルを細 くして微量の液体を吐出しょうとしても、抵抗が増えて液体を飛ばすことができない。 一方、太いノズノレを用いるとスピードを出せないため、液を飛ばすことができない。 また、吐出量の調整は、エアシリンダによって駆動される部材のストローク量を調整 することで行われる力 このストローク調整機構には通常マイクロメータを用いている ので、ストローク量を手動で設定することはできる力 自動調整はできないことが多い 。さらに、サーボモータを用いてマイクロメータを駆動することで自動調整を行うことも 考えられたが、調整速度が遅ぐデイスペンサ重量が増大し、比較的大型のロボット アームでなければ取り付けることができず、限られたところでしか利用できないという 問題もあった。
[0007] また、本出願人は、エアシリンダ駆動以外の駆動方法として、ソレノイド駆動、カム 駆動などに関しても利用可能力を検証したが、いずれの方法にも問題があり、実用化 が困難であった。
[0008] すなわち、ソレノイド駆動は、エアシリンダ駆動に比べて、液を飛ばすなどの性能面 で若干の改善があつたが、ストロークを得ることが難しぐ構造が複雑であった。また、 銅製のコイルと電磁軟鉄が重いため、取扱いが難しぐ各分野のデイスペンサとして 実用性が低いと共に、吐出量の調整を自動的に行うことが難しい点でも利点がないと レ、う問題があった。
[0009] さらに、カム駆動はコンパクトにまとめることが難しぐデイスペンザが大型化してしま うという問題があった。また、機械的に駆動するため、動作スピードと液の出方は期待 できる力 吐出量の調整の自動化は困難であるという問題もあった。
[0010] 本発明の目的は、微量の液体を高速に吐出できるとともに、その吐出量を自動的 に調整でき、構造も簡易にできて製造コストを抑えることができ、小型化も容易な液体 吐出装置を提供することにある。
課題を解決するための手段
[0011] 本発明の液体吐出装置は、内部に吐出用の液体が収容される液体収容空間およ びこの液体収容空間に連通された吐出口が形成された本体と、前記本体の液体収 容空間内に配置されて前記吐出口を開閉する吐出口開閉部材と、前記本体の液体 収容空間内に配置されかつ吐出口開閉部材の外側に同心円状に配置されて液体 を吐出する吐出用部材と、前記本体の液体収容空間内に配置されかつ吐出用部材 の外側に同心円状に配置されて液体収容空間から吐出口に連通する液体供給部を 開閉する供給部開閉部材と、前記吐出口開閉部材、吐出用部材および供給部開閉 部材をそれぞれ所定動作で駆動させる変位量設定可能な駆動機構とを備え、前記 駆動機構は、前記供給部開閉部材を吐出口に近づく第 1方向および吐出ロカ 離 れる第 2方向に進退移動させる供給部開閉用駆動手段と、前記吐出用部材を前記 第 1方向および第 2方向に進退移動させる吐出用駆動手段と、前記吐出口開閉部材 を前記第 1方向に付勢する付勢手段とを備え、前記供給部開閉部材は、前記供給 部開閉用駆動手段によって前記第 1方向に移動されると、本体に当接されて前記液 体供給部を閉塞し、前記供給部開閉用駆動手段によって前記第 2方向に移動される と、その移動に伴って吐出口から離れる方向に移動されると、本体から離れて前記液 体供給部を開放し、前記吐出用部材は、前記吐出用駆動手段によって前記第 1方 向に移動されると、その移動に伴って吐出口に近づく方向に移動されて吐出口から 液体を吐出し、前記吐出用駆動手段によって前記第 2方向に移動されると、液体供 給部から液体を吸入し、前記吐出口開閉部材は、前記供給部開閉部材が本体から 離れていて前記液体供給部が開放されている状態では、前記付勢手段によって吐 出口側に付勢されて吐出口に当接して吐出口を閉塞し、前記供給部開閉用駆動手 段によって供給部開閉部材が前記第 1方向に移動して本体に当接した後、さらに供 給部開閉用駆動手段によって前記第 1方向に移動された場合には、前記付勢手段 の付勢力に抗して吐出口から離れる方向に移動されて吐出口を開放することを特徴 とする。
[0012] ここで、変位量設定可能な駆動手段とは、圧電素子のように駆動電圧値によって変 位量を制御できたり、サーボモータやステッピングモータのように駆動パルス数などに よって変位量を制御できる駆動手段を意味する。
本発明においては、圧電素子、サーボモータ、ステッピングモータ等の変位量設定 可能な駆動手段を利用して前記吐出口開閉部材、吐出用部材および供給部開閉部 材を駆動しているので、エアシリンダを利用した場合と同等程度に小型、軽量化する ことができ、ソレノイド、カムなどの駆動機構を採用した場合に比べて、液体吐出装置 を容易に小型化できる。従って、各種製品の生産ラインにおいて、接着剤や各種べ 一スト等の吐出に本発明の液体吐出装置を利用する際にも、ロボットのアームに取り 付けて、高速、高加速度で移動させることができ、生産ラインのタクトタイムの短縮を 実現でき、生産性向上に寄与することができる。
[0013] また、圧電素子やサーボモータ等はエアシリンダ駆動に比べて高速駆動が可能な ため、例えば、 1秒間に 10回以上の吐出動作が可能であり、エアシリンダ駆動に比 ベて高速に液体吐出動作を実現できる。
さらに、圧電素子やサーボモータ等は、エアシリンダ駆動に比べて発生力が大きい ため、ノズノレを細くして抵抗が増えても液体を飛ばして吐出することができる。このた め、例えば、 0. 01マイクロリットルの水でもきれいに飛ばすことができ、安定した動作 を実現できる。
その上、圧電素子やサーボモータ、ステッピングモータ等の変位量設定可能な駆 動手段を利用しているので、駆動電圧や駆動パルス数などを調整することで、駆動 手段の変位量を容易にかつ正確に調整できる。このため、吐出用部材のストローク量 を容易に調整でき、駆動動作中であっても 1回毎の吐出量を自動的に調整すること ができる。従って、基板上に複数の電子部品を取り付ける工程において、各電子部 品の取付場所毎に異なる液量の接着剤を塗布するために、基板上に吐出する液体 の量を変更する場合や、複数の製品が混在して送られる生産ラインにおいて、製品 毎に液体の吐出量を変更する場合でも、容易に対応でき、使い勝手のよい液体吐出 装置を提供できる。
ここで、付勢手段としては、例えばコイルパネ(コイルスプリング)等が利用できる。 本発明の液体吐出装置は、内部に吐出用の液体が収容される液体収容空間およ びこの液体収容空間に連通された吐出口が形成された本体と、前記本体の液体収 容空間内に配置されて前記吐出口を開閉する吐出口開閉部材と、前記本体の液体 収容空間内に配置されかつ吐出口開閉部材の外側に同心円状に配置されて液体 を吐出する吐出用部材と、前記本体の液体収容空間内に配置されかつ吐出用部材 の外側に同心円状に配置されて液体収容空間から吐出口に連通する液体供給部を 開閉する供給部開閉部材と、前記吐出口開閉部材、吐出用部材および供給部開閉 部材をそれぞれ所定動作で駆動させる駆動機構とを備え、前記駆動機構は、第 1圧 電素子および第 2圧電素子と、各圧電素子が取り付けられた圧電素子支持部材と、 前記圧電素子支持部材を本体に対して吐出口側に付勢する付勢手段と、各圧電素 子を個別に駆動可能な駆動制御手段とを備え、前記圧電素子支持部材は、各圧電 素子の一端側が固定された第 1基端部および第 2基端部と、各圧電素子の他端側が 固定された第 1駆動部および第 2駆動部と、前記圧電素子の伸縮駆動に連動して前 記各駆動部が変位すると、その変位を拡大して出力する第 1変位拡大部および第 2 変位拡大部とを備え、前記供給部開閉部材は、前記第 1圧電素子の伸長に伴い、前 記第 1駆動部および第 1変位拡大部を介して吐出口に近づく方向に移動されて本体 に当接して前記液体供給部を閉塞し、第 1圧電素子の縮小に伴い、前記第 1駆動部 および第 1変位拡大部を介して吐出口から離れる方向に移動されて本体から離れて 前記液体供給部を開放し、前記吐出用部材は、前記第 2圧電素子の伸長に伴い、 前記第 2駆動部および第 2変位拡大部を介して吐出口に近づく方向に移動されて吐 出口から液体を吐出し、第 2圧電素子の縮小に伴い、前記第 2駆動部および第 2変 位拡大部を介して吐出口から離れる方向に移動されて液体供給部から液体を吸入し 、前記吐出口開閉部材は、前記第 1圧電素子が縮小されている状態では、前記付勢 手段によって吐出口側に付勢される圧電素子支持部材を介して吐出口に近づく方 向に移動されて吐出口に当接して吐出口を閉塞し、前記第 1圧電素子が伸長して供 給部開閉部材が本体に当接後さらに第 1圧電素子が伸長することで前記圧電素子 支持部材が前記付勢手段の付勢力に杭して吐出口から離れる方向に移動されること で吐出口から離れて吐出口を開放することを特徴とする。
[0015] このような本発明においては、圧電素子を利用して前記吐出口開閉部材、吐出用 部材および供給部開閉部材を駆動しているので、エアシリンダを利用した場合と同 等程度に小型、軽量ィ匕することができ、サーボモータ、ソレノイド、カムなどの駆動機 構を採用した場合に比べて、液体吐出装置を容易に小型化できる。従って、各種製 品の生産ラインにおいて、接着剤や各種ペースト等の吐出に本発明の液体吐出装 置を利用する際にも、ロボットのアームに取り付けて、高速、高加速度で移動させるこ とができ、生産ラインのタクトタイムの短縮を実現でき、生産性向上に寄与することが できる。
[0016] また、圧電素子は高速駆動が可能なため、例えば、 1秒間に 10回以上の吐出動作 が可能であり、エアシリンダ駆動に比べて高速に液体吐出動作を実現できる。
さらに、圧電素子は、エアシリンダ駆動に比べて発生力が大きいため、ノズルを細く して抵抗が増えても液体を飛ばして吐出することができる。このため、例えば、 0. 01 マイクロリットルの水でもきれいに飛ばすことができ、安定した動作を実現できる。 その上、圧電素子の変位量は、圧電素子に加える電圧値で容易に調整できるため
、吐出用部材のストローク量を電圧値で調整することで、駆動動作中であっても 1回 毎の吐出量を自動的に調整することができる。このため、基板上に複数の電子部品 を取り付ける工程において、各電子部品の取付場所毎に異なる液量の接着剤を塗 布するために、基板上に吐出する液体の量を変更する場合や、複数の製品が混在し て送られる生産ラインにおいて、製品毎に液体の吐出量を変更する場合でも、容易 に対応でき、使い勝手のよい液体吐出装置を提供できる。
また、 2つの圧電素子の動作によって、吐出用部材および供給部開閉部材の駆動 を制御するとともに、圧電素子を支持する圧電素子支持部材を付勢手段で吐出口側 に付勢し、供給部開閉部材が本体に当接した後も圧電素子を伸長させることで、圧 電素子支持部材を付勢手段の付勢力に杭して吐出ロカ 離れる方向に移動可能に 構成して吐出口開閉部材の駆動を制御しているので、 2つの圧電素子の駆動を制御 するだけで、 3つの部材の駆動を制御することができる。このため、駆動機構の構造 を比較的簡単にでき、液体吐出装置の製造コストも低減できる。
[0017] 本発明において、前記圧電素子支持部材は、一体成形された圧電素子支持板と、 圧電素子支持板に取り付けられた駆動アーム部材とで構成され、前記圧電素子支持 板は、各圧電素子間に設けられたベース部と、このベース部の一端側から連続して 形成された前記第 1基端部および第 2基端部と、前記ベース部の他端側から変形可 能な第 1ヒンジ部を介して連続して形成された前記第 1駆動部および第 2駆動部と、 前記各基端部に対して変形可能な第 2ヒンジ部および前記各駆動部に対して変形 可能な第 3ヒンジ部を介して連続して形成された前記第 1変位伝達部および第 2変位 伝達部とを備え、前記各圧電素子が初期状態から伸長すると、前記各駆動部は第 1 ヒンジ部が変形し、第 3ヒンジ部側が圧電素子の伸長方向に移動するように傾斜し、 この各駆動部の傾斜に伴い、各変位拡大部は、第 3ヒンジ部側が各駆動部の傾斜に よって圧電素子の伸長方向に移動し、その移動に伴い第 2ヒンジ部が変形することで 傾斜するように構成され、前記駆動アーム部材は、前記各変位伝達部に固定された 固定部と、この固定部力 延長された駆動アーム部とを備え、前記変位伝達部が傾 斜した際に、前記圧電素子の伸長量に比べて駆動アーム部先端の移動量が大きく なるように構成され、この駆動アーム部材および前記各変位伝達部によって前記各 変位拡大部が構成されていることが好ましい。
[0018] このような本発明によれば、圧電素子支持板を一体成形したので、各圧電素子の 伸縮に対応する駆動部の変位量を精度良く設定できる。
すなわち、圧電素子の伸長量は非常に小さいため、変位を伝達する経路途中にピ ンゃカムなどが存在すると、その部分の「がた」で変位が吸入されてしまうおそれがあ る。これに対し、本発明では、圧電素子支持板をワイヤーカットなどで一体成形した ので、変位が吸入されてしまうことがなぐ圧電素子の伸長に伴い変位拡大部を所定 量だけ確実に変位させることができる。
[0019] ここで、前記各ヒンジ部の少なくとも一つのヒンジ部には、ひずみゲージが取り付け られていることが好ましい。
第 1〜3のいずれかのヒンジ部に、ひずみゲージを取り付けておけば、圧電素子の 伸縮によって各ヒンジ部が変形した際に、そのヒンジ部の歪み量 (変形量)を計測で きる。この歪み量は、変位伝達部の傾斜量つまり駆動アーム部先端の移動量にほぼ 比例する。そして、駆動アーム部先端の移動に伴い吐出用部材が移動され、この吐 出用部材の移動量に応じて液体の吐出量が調整されるため、前記ひずみゲージでヒ ンジ部の歪み量を計測することで、吐出量を間接的に計測できる。
[0020] 従って、例えば、予めひずみゲージで測定されるひずみ量と液体吐出量との関係 を測定しておき、所定量の液体を吐出する際には、その吐出量に対応するひずみ量 を制御目標として設定し、ひずみゲージで検出される実際のひずみ量をフィードバッ クさせて目標ひずみ量との差を求め、その差を無くすように圧電素子の駆動電圧を 制御するフィードバック制御を行うことで、より精度の高レ、液体吐出を行うことができる さらに、ひずみゲージは非常に小型かつ薄いため、圧電素子で駆動される小型の 液体吐出装置内にも容易に組み込むことができる。
[0021] ここで、前記ひずみゲージは、前記第 2ヒンジ部の両面にそれぞれ 2枚ずつ計 4枚 貝占り付けられ、これらの 4枚のひずみゲージはブリッジ状に接続されてレ、ることが好ま しい。
このような構成のひずみゲージを用いれば、温度補償が可能となり、リード線の温 度影響も消去できるとともに、圧縮(引張)ひずみも消去できて第 2ヒンジ部の曲げひ ずみを高精度に検出できる。
なお、吐出用部材の移動に伴い変形する第 2ヒンジ部にひずみゲージを取り付け れば、駆動アーム部材の先端の移動量を、例えば 0. 1ミクロン以下の精度で検出で きる。従って、この駆動アーム部材で移動される吐出用部材の移動量つまり吐出量を 高精度に検出できる。
また、供給部開閉部材の移動に伴い変形する第 2ヒンジ部にひずみゲージを取り 付ければ、液体供給部の閉塞'開放状態を確実に検出することができる。
従って、本発明では、いずれか一方の第 2ヒンジ部のみにひずみゲージを取り付け てもよいが、 2つの第 2ヒンジ部にそれぞれ 4枚ずつ、計 8枚のひずみゲージを取り付 けること力 液体吐出装置の動作を確実に検出でき、その検出情報に基づいた適切 な制御を行える点で好ましレ、。 [0022] ここで、前記各基端部および変位拡大部間には、前記基端部から変位拡大部まで の長さ寸法を調整する寸法調整手段が設けられていることが好ましい。
このような寸法調整手段を備えていれば、拡大変位部の位置を微調整でき、吐出 口開閉部材、供給路開閉部材、吐出用部材などに対して拡大変位部を正確に位置 決めすることができ、動作の誤差を抑えることができる。
[0023] この際、前記寸法調整手段は、各基端部および駆動部間に設けられた折り畳み部 と、この折り畳み部を貫通して設けられたネジ部材とを備えて構成され、前記ネジ部 材の締め付け量を調整することで折り畳み部の長さ寸法を調整することが好ましい。 このような構成の寸法調整手段を備えてレ、れば、ネジ部材を締め付けて折り畳み 部の肉薄部分 (ヒンジ部)を変形させることで折り畳み部の長さ寸法 (厚さ寸法)を短く することができ。基端部に対する変位拡大部の位置を容易に微調整できる。
[0024] ここで、前記本体および供給部開閉部材間に設けられ、供給部開閉部材を本体に 対して圧電素子支持部材側に付勢する第 2の付勢手段と、供給部開閉部材および 前記吐出用部材間に設けられ、吐出用部材を供給部開閉部材に対して圧電素子支 持部材側に付勢する第 3の付勢手段と、吐出用部材および前記吐出口開閉部材間 に設けられ、吐出口開閉部材を吐出用部材に対して圧電素子支持部材側に付勢す る第 4の付勢手段とを備え、第 2〜4の付勢手段の付勢力は、徐々に小さく設定され 、前記圧電素子支持部材を本体に対して吐出口側に付勢する付勢手段の付勢力は 、第 2の付勢手段の付勢力よりも大きくされていることが好ましい。
ここで各付勢手段としては、例えば、コイルパネなどが利用できる。
[0025] このような構成によれば、第 2〜4の付勢手段によって供給部開閉部材、吐出用部 材、吐出口開閉部材を、圧電素子支持部材側に押し付けることで、圧電素子支持部 材自体の移動や、変位拡大部の動作に連動して各部材を駆動することができる。 また、供給部開閉部材、吐出用部材、吐出口開閉部材と、圧電素子支持部材側と は当接されているだけであるため、圧電素子支持部材側に対して供給部開閉部材、 吐出用部材、吐出口開閉部材を簡単に取り外すことができる。このため、供給部開閉 部材、吐出用部材、吐出口開閉部材を取り外して洗浄することも容易に行え、メンテ ナンス作業を簡単にかつ効率的に行うことができる。 本発明の液体吐出装置において、前記駆動制御部は、前記第 1圧電素子に加え る電圧値を第 1圧電素子用第 1設定値から第 1圧電素子用第 2設定値まで変更可能 であり、かつ、前記第 2圧電素子に加える電圧値を第 2圧電素子用第 1設定値から第 2圧電素子用第 2設定値まで変更可能であるとともに、前記各圧電素子に第 1設定 値の電圧を印加し、前記付勢手段によって吐出口開閉部材を吐出口側に付勢して 吐出口が閉じられた初期状態と、第 1圧電素子に加える電圧値を第 1圧電素子用第 1設定値に維持するとともに、第 2圧電素子に加える電圧値を第 2圧電素子用第 1設 定値カ この第 1設定値よりも大きく第 2圧電素子用第 2設定値よりも小さい第 2圧電 素子用第 3設定値まで変化させて第 2圧電素子を所定量伸長することで吐出用部材 を吐出口側の所定の位置まで移動し、吐出用部材および本体間の計量空間の容積 を設定して前記空間部分の液体を計量する計量工程と、第 2圧電素子に加える電圧 値を第 2圧電素子用第 3設定値に維持するとともに、第 1圧電素子に加える電圧値を 第 1圧電素子用第 1設定値から第 1圧電素子用第 2設定値まで変化させて第 1圧電 素子を所定量伸長することで、供給部開閉部材を本体に当接させて前記液体供給 部を閉塞し、さらに本体に当接された供給部開閉部材を介して圧電素子支持部材を 前記付勢手段の付勢力に杭して吐出口から離れる方向に移動し、その移動に伴レ、 吐出口開閉部材を吐出口から離れる方向に移動して吐出口を開くバルブ切替工程 と、前記第 1圧電素子に加える電圧値を第 1圧電素子用第 2設定値に維持するととも に、前記第 2圧電素子に加える電圧値を第 2圧電素子用第 3設定値から第 2圧電素 子用第 2設定値まで変化させて第 2圧電素子をさらに所定量伸長することで吐出用 部材を吐出口側に移動して吐出用部材および本体間の計量空間の容積を減少させ て計量空間内の液体を吐出口から吐出させる吐出工程と、第 2圧電素子にカ卩える電 圧値を第 2圧電素子用第 2設定値に維持するとともに、前記第 1圧電素子に加える電 圧値を第 1圧電素子用第 2設定値から第 1圧電素子用第 1設定値まで変化させて第 1圧電素子を元の長さまで縮小し、供給部開閉部材を本体力 離して前記液体供給 部を開く入口弁開放工程と、第 1圧電素子に加える電圧値を第 1圧電素子用第 1設 定値に維持するとともに、前記第 2圧電素子に加える電圧値を第 2圧電素子用第 2設 定値から第 2圧電素子用第 1設定値まで変化させて第 2圧電素子を元の長さまで縮 小し、吐出用部材を本体から離して初期状態に戻す原点復帰工程と、を実行するこ とが好ましい。
[0027] このような本発明においては、吸入工程では吐出側開閉部材で開閉される出ロバ ノレブを密閉し、吐出工程では供給部側開閉部材で開閉される入口バルブを密閉し、 少なくとも出口バルブまたは入口バルブのいずれか一方は必ず閉じられているので 、各工程において吐出口から供給路に液体が逆流することがなレ、。従って、各部材 の動作のみで確実に液体の逆流を防止でき、チェック弁を設ける必要がない。
また、吐出用部材の移動量のみで液体の吐出量を設定できるため、極微量の液体 であっても高精度に計量して吐出することができる。
[0028] ここで、前記駆動制御部は、各圧電素子に加える電流値を制御することで前記吐 出口開閉部材、吐出用部材および供給部開閉部材の駆動スピードを制御可能に構 成されてレ、ることが好ましレ、。
各部材の駆動スピードを電流値で制御できれば、吐出動作のサイクルタイムを制御 でき、液体をほぼ連続して吐出する程度に高速に駆動することもできる。
[0029] また、前記本体は、圧電素子支持部材が収納された駆動機構収納部と、この駆動 機構収納部に対して着脱可能に取り付けられた容器部とを備え、前記容器部には前 記吐出口が形成されていることが好ましい。
容器部を備えていれば、ある程度の液体を溜めておくことができ、例えば、 1日の作 業分の液体を容器内に溜めて作業することができる。このように構成すれば、液体吐 出装置に液体を供給するためのパイプを不要にすることもでき、液体吐出装置の取 扱性を向上できる。
また、この容器部に対してチューブなどを介して液体供給用の容器を接続し、この 外部の容器内の液面レベルを検出する液面計と、この液面計で検出される液面レべ ルに応じて制御されるバルブを設けてもよい。このように構成すれば、容器内の液面 レベルが所定レベルまで低下した場合にはバルブを開いて容器内に液体を供給し、 所定のレベルまで充填されたらバルブを閉じるように制御することで、容器からチュー ブを介して容器部に常時液体を供給することができる。このため、液体吐出装置を 2 4時間連続して自動的に運転し続けることができる。 本発明の液体吐出装置は、内部に吐出用の液体が収容される液体収容空間およ びこの液体収容空間に連通された吐出口が形成された本体と、前記本体の液体収 容空間内に配置されて前記吐出口を開閉する吐出口開閉部材と、前記本体の液体 収容空間内に配置されかつ吐出口開閉部材の外側に同心円状に配置されて液体 を吐出する吐出用部材と、前記本体の液体収容空間内に配置されかつ吐出用部材 の外側に同心円状に配置されて液体収容空間から吐出口に連通する液体供給部を 開閉する供給部開閉部材と、前記吐出口開閉部材、吐出用部材および供給部開閉 部材をそれぞれ所定動作で駆動させる駆動機構とを備え、前記駆動機構は、第 1モ ータおよび第 2モータと、第 1モータで回転駆動されるネジ軸と、ネジ軸に螺合された 第 1ナット部材および第 2ナット部材と、前記第 2モータで回転駆動されかつ前記第 2 ナット部材に対して第 2モータの回転を伝達可能に螺合された伝達用歯車と、ネジ軸 を吐出口側に付勢する付勢手段と、各モータを個別に駆動可能な駆動制御手段とを 備え、前記ネジ軸は、一端側が前記第 1モータの回転軸と一体的に回転可能かつ軸 方向にスライド移動可能に連結され、他端側が前記吐出口開閉部材に連結され、前 記第 1ナット部材は、前記供給部開閉部材に連結され、前記第 2ナット部材は、前記 吐出用部材に連結され、前記供給部開閉部材は、前記第 1モータの回転駆動に伴 レ、、前記第 1ナット部材が吐出口に近づく方向に移動されると、その移動に伴って吐 出口に近づく方向に移動されて本体に当接して前記液体供給部を閉塞し、前記第 1 モータの回転駆動に伴い、第 1ナット部材が吐出ロカ 離れる方向に移動されると、 その移動に伴って吐出口から離れる方向に移動されて本体から離れて前記液体供 給部を開放し、前記吐出用部材は、前記第 2モータの回転駆動に伴い、前記第 2ナ ット部材が吐出口に近づく方向に移動されると、その移動に伴って吐出口に近づく方 向に移動されて吐出口から液体を吐出し、前記第 2モータの回転駆動に伴レ、、第 2 ナット部材が吐出口から離れる方向に移動されて液体供給部から液体を吸入し、前 記吐出口開閉部材は、前記供給部開閉部材が本体力 離れていて前記液体供給 部が開放されている状態では、前記付勢手段およびネジ軸を介して吐出口側に付 勢されて吐出口に当接して吐出口を閉塞し、前記第 1モータの回転駆動に伴レ、、供 給部開閉部材が本体に当接後さらに第 1モータが回転された場合には、前記ネジ軸 が前記付勢手段の付勢力に抗して吐出口から離れる方向に移動されることで吐出口 から離れて吐出口を開放することを特徴とする。
[0031] 本発明においては、サーボモータ等からなる第 1モータおよび第 2モータを利用し て前記吐出口開閉部材、吐出用部材および供給部開閉部材を駆動しているので、 エアシリンダ駆動に比べて高速に液体吐出動作を実現できる。
さらに、モータは、エアシリンダ駆動に比べて発生力が大きいため、ノズルを細くし て抵抗が増えても液体を飛ばして吐出することができる。このため、例えば、 0. 01マ イク口リットルの水でもきれいに飛ばすことができ、安定した動作を実現できる。
その上、サーボモータやステッピングモータ等の変位量設定可能な駆動手段を利 用してレ、るのでモータの変位量(回転量)を容易にかつ正確に調整できる。このため 、吐出用部材のストローク量を駆動ノ^レス数等で調整することで、駆動動作中であつ ても 1回毎の吐出量を自動的に調整することができる。このため、基板上に複数の電 子部品を取り付ける工程において、各電子部品の取付場所毎に異なる液量の接着 剤を塗布するために、基板上に吐出する液体の量を変更する場合や、複数の製品 が混在して送られる生産ラインにおいて、製品毎に液体の吐出量を変更する場合で も、容易に対応でき、使い勝手のよい液体吐出装置を提供できる。
[0032] また、 2つのモータの動作によって、吐出用部材および供給部開閉部材の駆動を 制御するとともに、第 1のモータで回転されるボールねじ等のネジ軸を付勢手段で吐 出口側に付勢し、供給部開閉部材が本体に当接した後もネジ軸を回して第 2ナット 部材を吐出口側に移動させることで、ネジ軸を付勢手段の付勢力に抗して吐出口か ら離れる方向に移動可能に構成して吐出口開閉部材の駆動を制御しているので、 2 つのモータの駆動を制御するだけで、 3つの部材の駆動を制御することができる。こ のため、駆動機構の構造を比較的簡単にでき、液体吐出装置の製造コストも低減で きる。
また、付勢手段としては、例えばコイルパネ(コイルスプリング)等が利用でき、この 点でも安価でかつ駆動機構の構造を簡単にできる。
また、第 1モータや第 2モータとしては、パルスモータやステッピングモータのように 駆動パルス数などによって変位量を制御できるモータが利用できる。 [0033] 本発明において、前記第 2モータの回転軸には、この回転軸と同軸上でかつ回転 軸と一体に回転するスプライン軸が接続され、前記伝達用歯車は、前記スプライン軸 に沿って移動可能にかつスプライン軸と一体に回転可能とされたモータギヤと、この モータギヤおよび前記第 2ナット部材の外周面に形成された歯車に螺合された中間 歯車とを備えて構成されてレ、ることが好ましレ、。
[0034] このような本発明によれば、第 1モータおよび第 2モータを同方向に回転させること で、第 2ナット部材をネジ軸の回転方向と同じ方向に回転させることができ、第 2ナット 部材のネジ軸に対する螺合位置を一定の位置に維持することができる。このため、例 えば中間歯車を 1つ追加し、各モータを逆回転させた際に上記の状態になるように設 計された場合に比べて、各モータの回転制御による各ナット部材の移動制御を容易 に行うことができる。
[0035] 本発明の液体吐出装置において、前記駆動制御手段は、前記供給部開閉部材は 本体から離れて配置されて前記液体供給部が開放され、前記吐出用部材は吐出口 側に近づく方向のストロークエンドの位置に配置され、前記吐出口開閉部材は前記 付勢手段によって吐出口側に付勢して吐出口が閉じられた位置に配置された初期 状態 (原点状態)と、前記初期状態から第 2モータを所定量回転駆動して第 2ナット部 材に連結された吐出用部材を吐出ロカ 離れる方向に所定距離移動し、供給部開 閉部材内の前記吐出用部材が移動して形成された空間に液体を吸入する吸入工程 (計量工程)と、前記第 1モータを所定量回転駆動して第 1ナット部材に連結された供 給部開閉部材を本体に当接させて前記液体供給部を閉塞し、さらに本体に当接され た供給部開閉部材を介してネジ軸を前記付勢手段の付勢力に抗して吐出口から離 れる方向に移動し、その移動に伴い吐出口開閉部材を吐出口から離れる方向に移 動して吐出口を開く第 1バルブ切替工程と、前記第 2モータを所定量回転駆動して第 2ナット部材に連結された吐出用部材を吐出口側に移動して供給部開閉部材内の空 間の容積を減少させて空間内の液体を吐出口から吐出させる吐出工程と、前記第 1 モータを所定量回転駆動して第 1ナット部材に連結された供給部開閉部材を本体か ら離して前記液体供給部を開くとともに、前記吐出用部材で吐出口を閉じる第 2バノレ ブ切替工程と、を実行することが好ましい。 [0036] このような本発明においては、吸入工程では吐出側開閉部材で開閉される出ロバ ノレブを密閉し、吐出工程では供給部側開閉部材で開閉される入口バルブを密閉し、 少なくとも出口バルブまたは入口バルブのいずれか一方は必ず閉じられているので 、各工程において吐出口から供給路に液体が逆流することがなレ、。従って、各部材 の動作のみで確実に液体の逆流を防止でき、チェック弁を設ける必要がない。
また、吐出用部材の移動量のみで液体の吐出量を設定できるため、極微量の液体 であっても高精度に計量して吐出することができる。
[0037] この際、前記初期状態においては、前記吐出口開閉部材は前記第 2ナット部材に よって押されて吐出口が閉じられた位置に配置され、前記吐出工程の完了時におい ては、前記吐出口開閉部材は前記第 2ナット部材によって押されて吐出口が閉じら れる位置に配置されてレ、ることが好ましレ、。
[0038] このような構成にすれば、吐出工程は、吐出口開閉部材が吐出口を塞ぐことで終了 するため、吐出液の液切れを良くでき、液をきれいに飛ばすことができ、吐出量の精 度を向上できかつ安定した吐出動作を実現できる。
[0039] ここで、前記駆動制御手段は、各モータの回転速度を制御することで前記吐出口 開閉部材、吐出用部材および供給部開閉部材の駆動スピードを制御可能に構成さ れていることが好ましい。
各部材の駆動スピードを制御できれば、吐出動作のサイクルタイムを制御でき、液 体をほぼ連続して吐出する程度に高速に駆動することもできる。
[0040] また、前記本体は、駆動機構が収納された駆動機構収納部と、この駆動機構収納 部に対して着脱可能に取り付けられた容器部とを備え、前記容器部には前記吐出口 が形成されていることが好ましい。
容器部を備えていれば、ある程度の液体を溜めておくことができ、例えば、 1日の作 業分の液体を容器内に溜めて作業することができる。このように構成すれば、液体吐 出装置に液体を供給するためのパイプを不要にすることもでき、液体吐出装置の取 扱性を向上できる。
また、この容器部に対してチューブなどを介して液体供給用の容器を接続し、この 外部の容器内の液面レベルを検出する液面計と、この液面計で検出される液面レべ ルに応じて制御されるバルブを設けてもよい。このように構成すれば、容器内の液面 レベルが所定レベルまで低下した場合にはバルブを開いて容器内に液体を供給し、 所定のレベルまで充填されたらバルブを閉じるように制御することで、容器からチュー ブを介して容器部に常時液体を供給することができる。このため、液体吐出装置を 2 4時間連続して自動的に運転し続けることができる。
図面の簡単な説明
[図 1]本発明の第 1実施形態の液体吐出装置を示す断面図である。
[図 2]図 1の A— A線に沿った断面図である。
[図 3]前記第 1実施形態の駆動機構の要部を示す斜視図である。
[図 4]前記第 1実施形態の駆動機構を示す平面図である。
[図 5A]前記第 1実施形態における圧電素子支持板の圧電素子が伸長していない状 態を示す正面図である。
[図 5B]前記第 1実施形態における圧電素子支持板の圧電素子が伸長した状態を示 す正面図である。
[図 6A]前記第 1実施形態における駆動機構の原点状態を示す断面図である。
[図 6B]前記第 1実施形態における駆動機構の計量工程終了時を示す断面図である
[図 7A]前記第 1実施形態におけるポンプ機構の原点状態を示す断面図である。
[図 7B]前記第 1実施形態におけるポンプ機構の計量工程終了時を示す断面図であ る。
[図 8A]前記第 1実施形態における駆動機構のバルブ切替工程終了時を示す断面図 である。
[図 8B]前記第 1実施形態における駆動機構の吐出工程終了時を示す断面図である
[図 9A]前記第 1実施形態におけるポンプ機構のバルブ切替工程終了時を示す断面 図である。
[図 9B]前記第 1実施形態におけるポンプ機構の吐出工程終了時を示す断面図であ る。 [図 10A]前記第 1実施形態における駆動機構の入口弁開工程終了時を示す断面図 である。
園 10B]前記第 1実施形態における駆動機構の吸入工程終了時を示す断面図である 園 11A]前記第 1実施形態におけるポンプ機構の入口弁開工程終了時を示す断面 図である。
園 11B]前記第 1実施形態におけるポンプ機構の吸入工程終了時を示す断面図であ る。
園 12]本発明の第 2実施形態の液体吐出装置を示す断面図である。
[図 13]第 2実施形態の要部を示す断面図である。
園 14]第 2実施形態のひずみセンサの測定回路の構成を示す回路図である。
園 15]第 2実施形態の動作を説明するタイミングチャートである。
[図 16]本発明の第 3実施形態の液体吐出装置を示す正面図である。
[図 17]第 3実施形態の液体吐出装置を示す断面図である。
[図 18]第 3実施形態の液体吐出装置を示す断面図である。
[図 19]第 3実施形態の液体吐出装置の駆動部の要部を示す断面図である。
[図 20]第 3実施形態の液体吐出装置のポンプ部の要部を示す断面図である。
[図 21]第 3実施形態の液体吐出装置の駆動部の要部を示す断面図である。
[図 22]第 3実施形態の液体吐出装置のポンプ部の要部を示す断面図である。
[図 23]図 21の A— A線に沿った断面図である。
[図 24]図 21の B— B線に沿つた断面図である。
[図 25]図 22の C— C線に沿った断面図である。
[図 26]図 22の D— D線に沿った断面図である。
[図 27]図 22の E— E線に沿った断面図である。
[図 28]第 3実施形態の駆動部における原点設定作業の開始状態を示す断面図であ る。
[図 29]第 3実施形態のポンプ部における原点設定作業の開始状態を示す断面図で ある。 園 30]第 3実施形態の駆動部における第 1モータを近接センサオン位置に移動した 状態を示す断面図である。
園 31]第 3実施形態のポンプ部における第 1モータを近接センサオン位置に移動し た状態を示す断面図である。
園 32]第 3実施形態の駆動部における第 1モータを原点位置に移動した状態を示す 断面図である。
園 33]第 3実施形態のポンプ部における第 1モータを原点位置に移動した状態を示 す断面図である。
園 34]第 3実施形態の駆動部における第 2モータを近接センサオン位置に移動した 状態を示す断面図である。
園 35]第 3実施形態のポンプ部における第 2モータを近接センサオン位置に移動し た状態を示す断面図である。
園 36]第 3実施形態の駆動部における第 2モータを原点位置に移動して原点設定作 業を完了した状態を示す断面図である。
園 37]第 3実施形態のポンプ部における第 2モータを原点位置に移動し原点設定作 業を完了した状態を示す断面図である。
園 38]第 3実施形態の駆動部におけるポンプ動作の開始状態 (原点状態)を示す断 面図である。
園 39]第 3実施形態のポンプ部におけるポンプ動作の開始状態 (原点状態)を示す 断面図である。
園 40]第 3実施形態の駆動部における吸入工程終了時を示す断面図である。
園 41]第 3実施形態のポンプ部における吸入工程終了時を示す断面図である。 園 42]第 3実施形態の駆動部におけるバルブ切替工程終了時を示す断面図である。
[図 43]第 3実施形態のポンプ部におけるバルブ切替工程終了時を示す断面図であ る。
[図 44]第 3実施形態の駆動部における吐出工程終了時を示す断面図である。
園 45]第 3実施形態のポンプ部における吐出工程終了時を示す断面図である。 園 46]第 3実施形態の駆動部における原点復帰状態を示す断面図である。 [図 47]第 3実施形態のポンプ部における原点復帰状態を示す断面図である。
[図 48]第 3実施形態の動作を説明するタイミングチャートである。
符号の説明
[0042] 1, 1A…液体吐出装置、 2…ポンプホルダ、 3…駆動部台、 4…容器、 11…ガイド 部材、 12…圧電素子支持板、 13…押レ ネ、 14A…第 1圧電素子、 14B…第 2圧 電素子、 15A…第 1駆動アーム部材、 15B…第 2駆動アーム部材、 21…入口弁ホル ダ、 22···計量プランジャホノレダ、 23···ニードノレ弁ホノレタ、、、 42···ノく/レブシート、 43··· ノズノレ、 101A, 101B, 102A, 102B,103A, 103B, 104A, 104Β···ひずみゲー ジ、 105…ブリッジ回路、 122A…第 1基端部、 122B…第 2基端部、 123, 125, 12 6, 128…ヒンジ部、 124A…第 1駆動部、 124B…第 2駆動部、 127A…第 1変位伝 達部、 127B…第 2変位伝達部、 130…ガイド孔、 131…突起、 152…駆動アーム部 、 214…入口戻しバネ、 22Φ··計量戻しバネ、 23Φ··ニードノレ戻しバネ、 313…入口 ノ ノレブ咅材、 323···計量プランジャ咅 才、 333···ニードノレ、 422···Ρ土出口、 500···夜 体吐出装置、 501…駆動部、 510…ケース、 515…継ぎ手、 521…第 1モータ、 522 ···第 2モータ、 523···スプライン車由、 527···コィノレ/ネ、 529···ネジ車由、 530···人ロナ ット、 531…入口ナット受板、 532…入口ナット押さえ部材、 535…センサ頭、 536··· 近接センサ、 540…計量ナット、 542…計量ナット受板、 543…計量ナット押さえ部材 、 544…中間歯車、 550…モータギヤ、 561…ニードノレ押し部材、 563…ブッシュ、 5 64…戻しバネ受け部材、 565…戻しバネ、 571…入口ロッド、 572…計量ロッド、 58 1…入口押し部材、 582…計量押し部材、 600…ポンプ部、 601…容器、 601A…容 器本体、 610…入口バネ受け部材、 611…入口バルブ戻しバネ、 613…入口弁口ッ ド、 614·.·入ロノくノレブ音材、 620.·-計量ガイド音材、 623·.·計量プランジャロッド、 6 24··-計量プランジャ 材、 630···ニードノレロッド、 633··-ニードノレ、 640··-ノ ノレブシ ート、 641…テーノヽ。孑し咅 ^ 642…吐出口、 643…ノズノレ。
発明を実施するための最良の形態
[0043] [第 1実施形態]
以下に、本発明の第 1実施形態を図面に基づいて説明する。
図 1, 2には、第 1実施形態の液体吐出装置 1が示されている。 液体吐出装置 1は、ポンプホルダ 2と、駆動部台 3と、容器 4と、カバー 5とを備えて いる。ポンプホルダ 2および容器 4は駆動部台 3を挟んで配置されて駆動部台 3に対 してそれぞれビス止めされている。また、容器 4は、袋ナット 6を介してポンプホルダ 2 に対して着脱自在に取り付けられている。これらのポンプホルダ 2、駆動部台 3、容器 4、カバー 5によって液体吐出装置 1の本体が構成されている。
[0044] [駆動機構の構成]
カバー 5内には液体吐出装置 1の駆動機構が内蔵されている。駆動機構は、駆動 部台 3に固定されたガイド部材 11と、ガイド部材 11に対してスライド移動可能に設け られた圧電素子支持板 12と、圧電素子支持板 12をガイド部材 11に対して容器 4側 に付勢する押しパネ 13と、圧電素子支持板 12に固定された第 1圧電素子 14Aおよ び第 2圧電素子 14Bと、圧電素子支持板 12に取り付けられた第 1駆動アーム部材 15 Aおよび第 2駆動アーム部材 15Bとを備えている。
さらに、カバー 5には、駆動制御手段である外部の制御装置(図示略)に接続される コネクタ 18が設けられ、制御装置から出力される駆動信号によって各圧電素子 14A , 14Bが駆動されるように構成されている。
[0045] なお、本実施形態においては、制御装置は、第 1圧電素子 14Aに対しては、第 1圧 電素子用第 1設定値から第 1圧電素子用第 2設定値までの電圧を印加可能に構成さ れ、第 2圧電素子 14Bに対しては、第 2圧電素子用第 1設定値から第 2圧電素子用 第 2設定値までの電圧を印加可能に構成されている。さらに、本実施形態では、各第 1設定値は電圧値「0」に設定され、第 2設定値は使用する圧電素子 14A, 14Bやそ の圧電素子 14A, 14Bに求める変位量に応じて設定されている。
このため、各圧電素子 14A, 14Bの長手方向の寸法は、第 1設定値の電圧を印加 された場合に比べて、第 2設定値の電圧を印加された場合の方が長くなるようにされ ている。
[0046] [圧電素子支持板の構造]
圧電素子支持板 12は、図 3, 4, 5A, 5Bにも示すように、ステンレスなどの金属材 で構成され、:!枚の板材をワイヤカットなどで以下に説明する所定の形状に切断する ことで製造されている。 すなわち、圧電素子支持板 12は、図 5Aに示すように、その中心軸部分に設けられ たベース部 121と、このベース部 121の一端側から連続して形成された第 1基端部 1 22Aおよび第 2基端部 122Bと、前記ベース部 121の他端側から第 1ヒンジ部 123を 介して連続して形成された第 1駆動部 124Aおよび第 2駆動部 124Bと、前記各基端 部 122A, 122Bに対して第 2ヒンジ部 125および前記各駆動部 124A, 124Bに対し て第 3ヒンジ部 126を介して連続して形成された前記第 1変位伝達部 127Aおよび第 2変位伝達部 127Bとを備えている。
なお、圧電素子支持板 12の材質は限定されないが、特に熱膨張が少なく硬い種 類のステンレスを用いれば、温度変化の影響を軽減できる点で好ましい。
[0047] 各基端部 122A, 122Bおよび駆動部 124A, 124Bには、第 4ヒンジ部 128を介し て圧電素子固定部 129が設けられ、各圧電素子固定部 129間に圧電素子 14A, 14 Bが掛け渡されて固定されている。この際、圧電素子 14A, 14Bは、熱膨張係数が「 0」またはマイナスの数値のものが利用されている。このため、圧電素子固定部 129 および圧電素子 14A, 14B間に、図示略の熱膨張係数の大きな材質の金属板を挟 んで接着し、温度変化の影響を少なくするようにしてレ、る。
なお、各ヒンジ部 123, 125, 126, 128は、他の部分に比べて幅寸法力 S狭レヽ糸田幅 に形成され、力が加わると弾性変形可能に形成されている。
ベース部 121には、液体吐出装置 1つまり本体の軸方向(容器 4およびカバー 5を 結ぶ方向)に延びる矩形状のガイド孔 130が形成されている。ベース部 121の容器 側には突起 131が形成されている。
[0048] 基端部 122A, 122Bは、例えば、ベース部 121の端部(コネクタ 18側)から軸方向 に直交する左右方向に延長し、さらに圧電素子 14A, 14Bに沿って容器 4側に向か つて延長して正面略 L字状に形成し、第 2ヒンジ部 125に直接連続するように構成し てもよいが、本実施形態では、基端部 122A, 122Bおよび変位伝達部 127A, 127 B間に折り畳み部 133が設けられている。
[0049] 折り畳み部 133は、基端部 122A, 122Bに連続され、変位伝達部 127A, 127Bに 対して第 2ヒンジ部 125を介して連続されている。
折り畳み部 133は、軸方向に交差する方向に向かって互い違いに切れ込みが形 成されて折曲されており、この折曲部分を貫通してネジ 132がねじ込まれている。こ のネジ 132を締め付けて切れ込み部分の隙間寸法を小さくすることで、折り畳み部 1 33の圧電素子 14A, 14Bに沿った方向(軸方向)の長さ寸法を微調整できるように 構成されている。このため、ネジ 132の締め付け量によって、基端部 122A, 122Bに 対する各変位伝達部 127A, 127Bの軸方向の位置を微調整できるように構成され ている。
[0050] 各駆動アーム部材 15A, 15Bは、図 3, 4に示すように、固定部 151と、固定部 151 から延長された駆動アーム部 152とを備えて構成されている。そして、本実施形態で は、各駆動アーム部材 15A, 15Bをそれぞれ 2枚ずつ用意し、第 1駆動アーム部材 1 5Aは第 1変位伝達部 127Aを挟んで配置し、第 2駆動アーム部材 15Bは第 2変位伝 達部 127Bを挟んで配置して固定している。ここで、各駆動アーム部材 15A, 15Bの 固定方法は接着剤などの適宜な手段が利用できるが、本実施形態では駆動アーム 部材 15A, 15Bおよび変位伝達部 127A, 127Bを貫通するピン 153を圧入すること で、各駆動アーム部材 15A, 15Bをがたつき無く変位伝達部 127A, 127Bに固定し ている。
なお、本実施形態では、図 4にも示すように、第 2駆動アーム部材 15Bの駆動ァー ム部 152は、突起 131を挟んでその外側に配置され、第 1駆動アーム部材 15Aの駆 動アーム部 152は第 2駆動アーム部材 15Bの駆動アーム部 152の外側にそれぞれ 配置されている。
[0051] ガイド部材 11は、ガイド孔 130内に配置された状態で駆動部台 3にビスで固定され ている。そして、ガイド部材 11内にはコイルパネで構成された押しバネ 13が配置され ている。押レ ネ 13の一端は、ガイド孔 130の容器 4側の端面に当接されている。こ のため、圧電素子支持板 12は、押しパネ 13によってガイド部材 11に対して容器 4側 に常時付勢されている。
[0052] このような構成の駆動機構では、圧電素子 14A, 14Bに第 1設定値の電圧を印カロ、 つまり本実施形態では第 1設定値は電圧値「0」であるため、駆動信号の入力を行わ なレヽ状態で fま、図 5Aに示すように、各ヒンジ咅 125, 126, 128カ変形しなレヽ ように構成されている。そして、この状態では、突起 131の容器 4側の面と、各駆動ァ 一ム部材 15A, 15Bの駆動アーム部 152の容器側の面とが同じ高さ、つまり同一平 面上に配置されるように設定されてレ、る。
[0053] 一方、各圧電素子 14A, 14Bに第 2設定値の電圧を印加すると、図 5Bに示すよう に、各圧電素子 14A, 14Bの長手方向寸法が長くなる。この際、基端部 122A, 122 Bはベース部 121に対して一体化されていて移動しにくいのに対し、駆動部 124A, 124Bはヒンジ部 123でベース部 121に連結されているため、各圧電素子 14A, 14 Bの長手方向寸法が長くなると、ヒンジ部 123が変形し、駆動部 124A, 124Bは容器 4側に移動する。
駆動部 124A, 124Bの移動に伴レ、、第 3ヒンジ部 126を介して連結された変位伝 達部 127A, 127Bも移動される。この際、第 3ヒンジ部 126は、変位伝達部 127A, 1 27Bの圧電素子 14A, 14Bに近接する位置 (圧電素子支持板 12の内側)に設けら れ、第 2ヒンジ部 125は第 3ヒンジ部 126よりも外側(圧電素子 14A, 14Bから離れた 位置)に設けられているので、駆動部 124A, 124Bの移動によって第 3ヒンジ部 126 側が容器 4側に弓 1つ張られると、変位伝達部 127A, 127Bは容器側の端部が外側 に向くように傾斜される。
変位伝達部 127A, 127Bの傾斜に伴い、駆動アーム部材 15A, 15Bも傾斜し、駆 動アーム部 152の先端が容器側に移動する。このように圧電素子 14A, 14Bの伸長 を駆動アーム部材 15A, 15Bの傾斜に変換しているため、駆動アーム部 152先端の 移動量を圧電素子 14Aの伸長量の数倍〜数十倍 (本実施形態では約 10倍)に拡大 すること力 Sできる。従って、本実施形態では、第 1変位伝達部 127Aおよび第 1駆動 アーム部材 15Aによって第 1変位拡大部が構成され、第 2変位伝達部 127Bおよび 第 2駆動アーム部材 15Bによって第 2変位拡大部が構成される。また、圧電素子支 持板 12および駆動アーム部材 15A, 15Bによって圧電素子支持部材が構成される
[0054] [ポンプ機構の構造]
一方、ポンプホルダ 2には、前記駆動機構によって駆動されるポンプ機構が設けら れている。ポンプホルダ 2の中心軸には貫通孔が形成されており、図 6Aにも示すよう に、この貫通孔には略円筒状の入口弁ホルダ 21が配置されている。入口弁ホルダ 2 1内には、略円筒状の計量プランジャホルダ 22が配置され、計量プランジャホルダ 2 2内には略円筒状のニードル弁ホルダ 23が配置されている。すなわち、ポンプホル ダ 2内には、中心軸力 外側に向かって同心円状に、ニードル弁ホルダ 23、計量プ ランジャホルダ 22、入口弁ホルダ 21が 3重に配置されてレ、る。
[0055] 入口弁ホルダ 21は、ポンプホルダ 2の貫通孔内面に摺接される大径部 211と、そ れよりも小径な小径部 212とを備えて構成されている。大径部 211の外周面には凹 部が形成され、この凹部に Oリング等のシール材が介在されてポンプホルダ 2および 入口弁ホルダ 21間から駆動機構側に液が漏れなレ、ように構成されてレ、る。
また、小径部 212はポンプホルダ 2内に設けられた入口弁ガイド 213によって軸方 向に移動可能にガイドされてレ、る。この入口弁ガイド 213および大径部 211間にはコ ィルパネからなる入口戻レ ネ 214が配置され、入口弁ホルダ 21を駆動機構側 (圧 電素子支持板 12側)に付勢し、駆動アーム部材 15Aの駆動アーム部 152に当接さ せている。
さらに、入口弁ホルダ 21の小径部 212には、 Cリング状の入口弁ストッパ 215が取り 付けられている。
[0056] 計量プランジャホルダ 22およびニードル弁ホルダ 23は入口弁ホルダ 21と同様な構 造とされている。
すなわち、計量プランジャホルダ 22は、入口弁ホルダ 21の貫通孔内面に摺接する 大径部 221と、それよりも小径な小径部 222とを備えて構成されている。大径部 221 の外周面には凹部が形成され、この凹部に Oリング等のシール材が介在されて入口 弁ホルダ 21および計量プランジャホルダ 22間から駆動機構側に液が漏れないように 構成されている。
また、小径部 222は入口弁ホルダ 21内に設けられた計量プランジャガイド 223によ つて軸方向に移動可能にガイドされている。この計量プランジャガイド 223および大 径部 221間にはコイルパネからなる計量戻しバネ 224が配置され、計量プランジャホ ルダ 22を圧電素子支持板 12側に付勢し、第 2駆動アーム部材 15Bの駆動アーム部 152に当接させている。
さらに、計量プランジャホルダ 22の小径部 222には、 Cリング状の計量プランジャス トツパ 225が取り付けられてレ、る。
[0057] ニードル弁ホルダ 23は、計量プランジャホルダ 22の貫通孔内面に摺接する大径部 231と、それよりも小径な小径部 232とを備えて構成されている。大径部 231の外周 面には凹部が形成され、この凹部に Oリング等のシール材が介在されて計量プラン ジャホルダ 22およびニードル弁ホルダ 23間から駆動機構側に液が漏れないように構 成されている。
また、小径部 232は計量プランジャホルダ 22内に設けられたニードル弁ガイド 233 によって軸方向に移動可能にガイドされている。このニードル弁ガイド 233および大 径部 231間にはコイルパネからなるニードル戻しバネ 234が配置され、ニードル弁ホ ルダ 23を圧電素子支持板 12側に付勢し、圧電素子支持板 12の突起 131に当接さ せている。なお、図 6Aにも示すように、ニードル弁ホルダ 23の圧電素子支持板 12側 の端部は段差が設けられており、第 2駆動アーム部材 15Bの駆動アーム部 152は、 吐出口 422側にある程度移動すると、計量プランジャホルダ 22とともにニードル弁ホ ノレダ 23に当接し、計量プランジャ部材 323およびニードル 333を同時に移動すること ができるように構成されてレ、る。
さらに、ニードル弁ホルダ 23の小径部 232には、 Cリング状のニードル弁ストッパ 23 5が取り付けられている。
[0058] 各ストッパ 215, 225, 235は、ポンプホルダ 2を駆動部台 3から取り外した際に、各 戻しバネ 214, 224, 234を、各大径部 211, 221 , 231および各ガイド 213, 223, 2 33間に納めて所定寸法以上とならないようにしている。ストッパ 215, 225, 235力 S無 い状態で、液体吐出装置 1を組み立てると、バネ 214, 224, 234が伸びきつてしまう ため、ホノレダ 21, 22, 23でノ ネ 214, 224, 234を甲し込む作業力 S煩雑になり、組立 性が低下する。これに対し、本実施形態では、ストッパ 215, 225, 235によりノ ネ 21 4, 224, 234の伸び量を制限しているので、洗浄のために分解した後に再度組み立 てる際にも液体吐出装置 1を容易に組み立てることができる。
[0059] 入口弁ホルダ 21には、図 2に示すように、 2本の入口弁ロッド 311の一端が固定さ れている。入口弁ロッド 311の他端には、図 7Aにも示すように、入口弁台 312が掛け 渡されて固定されている。入口弁台 312は、円板状に形成され、その中心に形成さ れた貫通孔に入口バルブ部材 313が取り付けられている。
入口バルブ部材 313は、略円筒状に形成されており、一端が前記入口弁台 312に 圧入固定されている。入口バルブ部材 313の他端は、テーパ状に形成され、後述す る容器 4のテーパ状の内面に密着可能に構成されている。
[0060] 計量プランジャホルダ 22には、図 1に示すように、 2本の計量プランジャロッド 321 の一端が固定されている。なお、計量プランジャロッド 321の配置は、液体吐出装置 1の軸直交方向において、各計量プランジャロッド 321の配置方向力 各入口弁口ッ ド 311の配置方向と直交するように配置されており、各ロッド 311, 321が互いに干渉 しなレ、ように構成されてレ、る。
計量プランジャロッド 321の他端には、計量プランジャ台 322が掛け渡されて固定さ れている。計量プランジャ台 322は、入口弁ロッド 311に干渉しないように略矩形板 状に形成され、その中心に形成された貫通孔に計量プランジャ部材 323が取り付け られている。
計量プランジャ部材 323は、略円筒状に形成されており、一端が前記計量プランジ ャ台 322に圧入固定されている。計量プランジャ部材 323の他端側は、入口バルブ 部材 313の貫通孔内に挿入されてレ、る。
[0061] ニードル弁ホルダ 23には、ロッド状のニードル弁台 331の一端が圧入固定されて いる。ニードル弁台 331の他端には、ロッド状のニードル 333の一端が固定されてい る。
ニードル 333の他端側は、計量プランジャ部材 323の貫通孔内に挿入されている。 そして、ニードル 333の端面は球面状に形成され、後述する容器 4に形成された吐 出口 422を開閉可能に構成されている。
[0062] 容器 4は、一端側が袋ナット 6を介してポンプホルダ 2に取り付けられ、他端側には バルブシート台 41が取り付けられている。バルブシート台 41の容器 4内面側にはバ ルブシート 42が固定されている。バルブシート 42の容器 4内に面する一端面側は、 徐々に直径が小さくなるテーパ孔部 421が形成され、このテーパ孔部 421およびバ ルブシート 42の他端面間は吐出口 422が貫通して形成されている。
バルブシート台 41には前記吐出口 422に連通する貫通孔 411が形成されてレ、る。 この貫通孔 411はバルブシート台 41に固定されたノズノレ 43に連通され、容器 4内の 液体はバルブシート 42の吐出口 422、バルブシート台 41の貫通孔 411およびノズル 43を介して液体吐出装置 1外部に吐出されるように構成されている。
[0063] なお、容器 4内への液体の供給は、容器 4をポンプホルダ 2から取り外して行っても よいが、本実施形態では容器 4を取り外さずに液体を供給できるように、図 1に示すよ うに、容器 4内部に連通するポート 45が形成されている。すなわち、ポート 45にはチ ユーブ(図示略)を介して外部容器(図示略)が接続されている。この外部容器には、 外部容器内の液面レベルを検出する液面計(図示略)が設けられている。また、液面 計で検出される液面レベルに応じて制御されるバルブによって液体をタンクから外部 容器内に供給できるように構成されてレ、る。
このように構成すれば、外部容器内の液面レベルが所定レベルまで低下した場合 にはバルブを開いて外部容器内に液体を供給し、所定のレベルまで充填されたらバ ルブを閉じるように制御することで、外部容器からチューブを介して容器 4に常時液 体を供給することができる。このため、液体吐出装置 1を 24時間連続して自動的に運 転し続けることができる。
[0064] ここで、吐出口 422の開口に当接して吐出口 422を開閉可能なニードル 333により 吐出口開閉部材が構成され、テーパ孔部 421に当接して容器 4内から吐出口 422に 連通される液体供給部を開閉可能な入口バルブ部材 313により供給部開閉部材が 構成されている。
また、後述するように、入口バルブ部材 313がテーパ孔部 421に当接して供給部を 閉塞し、かつ、吐出口 422が開口された状態で計量プランジャ部材 323が吐出口 42 2側に移動すると、入口バルブ部材 313内に区画された液体が吐出口 422から吐出 するため、計量プランジャ部材 323により吐出用部材が構成されている。
[0065] また、入口弁ホルダ 21およびポンプホルダ 2には、ドレンポートがそれぞれ形成さ れ、入口弁ホルダ 21および計量プランジャホルダ 22間や、入口弁ホルダ 21および ポンプホルダ 2間に浸入した液体を液体吐出装置 1外部に排出可能に構成されてい る。
[0066] [吐出動作説明] 次に、本実施形態の液体吐出装置 1における液体の吐出動作について、図 6Aか ら図 11Bの動作説明図をも参照して説明する。なお、図 6Aから図 11Bの各図は、図 4の B— B線に沿った断面図とされ、入口弁ロッド 311および計量プランジャロッド 32 1が共に表示されるようにしている。
[0067] [原点状態]
運転開始前即ち液体吐出装置 1の停止状態 (原点状態)においては、制御装置は 各圧電素子 14A, 14Bに第 1圧電素子用第 1設定値および第 2圧電素子用第 1設定 値の電圧を印加する。本実施形態では、各第 1設定値は「0」とされているため、原点 状態では各圧電素子 14A, 14Bには電圧が印加されないように制御される。
このため、各圧電素子 14A, 14Bは、図 5Aや図 6Aに示すように、初期状態つまり 長手方向の長さ寸法が最も短くなる状態とされ、変位伝達部 127A, 127Bも変位し ていないので、各駆動アーム部材 15A, 15Bの駆動アーム部 152の吐出口 422側 の面は、圧電素子支持板 12の突起 131の吐出口 422側の面に揃っている。
また、圧電素子支持板 12および駆動アーム部材 15A, 15Bは、各戻しバネ 214, 2 24, 234の付勢力で吐出口 422から離れる方向に付勢されている力 これらの各バ ネ 214, 224, 234の各付勢力のうちの最大の付勢力よりも大きな付勢力を有する押 しバネ 13によって吐出口 422側に付勢され、ニードル弁ホルダ 23、ニードル弁台 33 1およびニードル 333を吐出口 422側に付勢している。
[0068] この原点状態では、図 7Aに示すように、ニードル 333が吐出口 422の開口部分に 当接して吐出口 422を閉鎖するようにニードル弁台 331やニードル 333の長さ寸法 が設定されている。また、入口バルブ部材 313は、その先端がバルブシート 42のテ 一パ孔部 421から所定距離離れた位置となるように入口弁ロッド 311や入口バルブ 部材 313の寸法などが設定されている。さらに、計量プランジャ部材 323も、その先 端がバルブシート 42のテーパ孔部 421から所定距離離れた位置となるように計量プ ランジャロッド 321や計量プランジャ部材 323の長さ寸法などが設定されている。
[0069] [計量工程]
次に、制御装置は、第 1圧電素子 14Aに第 1圧電素子用第 1設定値の電圧を印加 したまま、第 2圧電素子 14Bに予め設定された第 2圧電素子用第 3設定値の電圧を 印加する。この第 3設定値は、第 2圧電素子用第 1設定値以上、第 2圧電素子用第 2 設定値未満とされ、後述するように、吐出する液量に応じて制御されるものである。 第 2圧電素子 14Bに第 2圧電素子用第 3設定値の電圧を印加すると、第 2圧電素 子 14Bは、印加電圧に応じた寸法だけ伸長する。この動作に伴レ、、第 2駆動部 124 B、第 2変位伝達部 127Bおよび第 2駆動アーム部材 15Bが傾き、図 6Bに示すように 、駆動アーム部 152の先端側が吐出口 422側に移動する。
駆動アーム部 152の移動に伴い、計量プランジャホルダ 22は、計量戻しバネ 224 の付勢力に抗して吐出口 422側に移動する。その結果、図 7Bに示すように、計量プ ランジャロッド 321、計量プランジャ台 322、計量プランジャ部材 323も吐出口 422側 に移動し、計量プランジャ部材 323の先端が印加電圧に応じた調整位置に移動する 本実施形態では、後述するように吐出量は、計量プランジャ部材 323の移動量によ つて設定され、この移動量は、図 7Bの調整位置から、第 2圧電素子用第 2設定値の 電圧を印加した際の移動位置までの移動量によって決められる。つまり、本実施形 態では、吐出工程終了時の計量プランジャ部材 323の移動終了位置は固定し、計 量プランジャ部材 323の移動開始位置を印加電圧を調整することで、吐出工程時の 計量プランジャ部材 323の移動量つまりは吐出量を調整している。
従って、計量工程において第 2圧電素子 14Bに印加する電圧値 (第 2圧電素子用 第 3設定値)を調整するだけで吐出量を自由に調整できるため、吐出液量の計量が 行われることになる。
[バルブ切替工程]
次に、制御装置は、第 2圧電素子 14Bに第 2圧電素子用第 3設定値の電圧を印加 したまま、第 1圧電素子 14Aに第 1圧電素子用第 2設定値の電圧を印加する。すると 、第 1圧電素子 14Aは、印加電圧に応じた寸法だけ伸長する。この動作に伴レ、、第 1 駆動部 124A、第 1変位伝達部 127Aおよび第 1駆動アーム部材 15Aが傾き、図 8A に示すように、駆動アーム部 152の先端側が吐出口 422側に移動する。
従って、入口弁ホルダ 21は、入口戻しバネ 214の付勢力に抗して吐出口 422側に 移動し、図 9Aに示すように、入口弁ロッド 311、入口弁台 312、入口バルブ部材 313 も吐出口 422側に移動する。
ここで、移動前の入口バルブ部材 313とバルブシート 42間の隙間寸法は、第 2設 定値の電圧を印加した際に第 1駆動アーム部材 15Aの駆動アーム部 152の先端部 の移動量つまり入口バルブ部材 313の移動量に比べて小さくされている。このため、 第 1圧電素子 14Aに第 1圧電素子用第 2設定値の電圧を印加して入口バルブ部材 3 13を移動すると、まず入口バルブ部材 313がバルブシート 42に当接し、液体供給部 (入口バルブ)が閉じられる。
[0071] 入口バルブ部材 313がバルブシート 42に当接した後も、第 1圧電素子 14Aが伸長 すると、入口バルブ部材 313や入口弁ロッド 311、入口弁ホルダ 21は液体吐出装置 1の本体に対してそれ以上移動できないため、その反力によってパネ 13の付勢力に 抗して第 1駆動アーム部材 15Aおよび圧電素子支持板 12が吐出口 422から離れる 方向に移動する。
圧電素子支持板 12が吐出口 422から離れる方向に移動すると、ニードル戻しパネ 234によってニードノレ弁ホノレタ、、 23、ニードノレ弁台 331、ニードノレ 333ち 0土出口 422力 ら離れる方向に移動する。このため、出口バルブが開かれ、 0土出口 422力 S開口される 従って、入口バルブが開かれ、かつ出口バルブが閉じられた状態から、入口バル ブが閉じられ、かつ出口バルブが開かれた状態に切り替えられるため、バルブの切 替工程が実行される。
また、バルブの切替は、第 1圧電素子 14Aが入口バルブ部材 313をバルブシート 4 2に当接させた後、さらに伸長して圧電素子支持板 12を移動することで機械的に行 われるので、一方のバルブは必ず閉じられた状態にあり、容器 4内と吐出口 422と力 S 直接連通されることはない。
[0072] [吐出工程]
次に、制御装置は、第 1圧電素子 14Aに第 1圧電素子用第 2設定値の電圧を印加 したまま、第 2圧電素子 14Bに第 2圧電素子用第 2設定値の電圧を印加する。すると 、第 2圧電素子 14Bは、印加電圧に応じて伸長し、この動作に伴レ、、第 2駆動部 124 B、第 2変位伝達部 127Bおよび第 2駆動アーム部材 15Bが傾き、図 8Bに示すように 、駆動アーム部 152の先端側が吐出口 422側に移動する。
従って、計量プランジャホルダ 22は、図 9Bに示すように、計量戻しバネ 224の付勢 力に抗して吐出口 422側に移動し、計量プランジャロッド 321、計量プランジャ台 32 2、計量プランジャ部材 323も吐出口 422側に移動する。
[0073] この際、入口バルブは閉じられ、出口バルブが開かれているので、計量プランジャ 部材 323の移動に伴レ、、液体が吐出口 422を介してノズノレ 43から吐出される。 また、図 8Bに示すように、第 2駆動アーム部材 15Bの駆動アーム部 152は、ニード ル弁ホルダ 23に対して所定量移動した後、ニードル弁ホルダ 23の大径部 231にも 係合するように構成されているため、最初は計量プランジャ部材 323が単独で移動し ていても、最後は、計量プランジャ部材 323およびニードル 333がー緒に移動する。 そして、ニードル 333が吐出口 422に当接して吐出口 422が塞がれると、計量プラン ジャ部材 323の移動も停止し、吐出工程が終了する。
[0074] [入口弁開工程]
次に、制御装置は、第 2圧電素子 14Bに第 2圧電素子用第 2設定値の電圧を印加 したまま、第 1圧電素子 14Aに第 1圧電素子用第 1設定値の電圧を印加つまり電圧 印加をオフにする。すると、第 1圧電素子 14Aは初期状態の長さ寸法に戻り、図 10A に示すように、第 1駆動アーム部材 15Aの駆動アーム部 152は吐出口 422から離れ る方向に移動する。
このため、入口弁ホルダ 21は、入口戻しバネ 214の付勢力によって吐出口 422か ら離れる方向に移動し、図 11Aに示すように、入口弁ロッド 311、入口弁台 312、入 口バルブ部材 313も吐出口 422から離れる方向に移動する。
従って、入口バルブ部材 313がバルブシート 42から離れ、入口バルブが開かれる
[0075] [吸入工程および原点復帰]
次に、制御装置は、第 1圧電素子 14Aに第 1圧電素子用第 1設定値の電圧を印加 したまま、第 2圧電素子 14Bに第 2圧電素子用第 1設定値の電圧を印加つまり電圧 印加をオフにする。すると、第 2圧電素子 14Bは初期状態の長さ寸法に戻り、図 10B に示すように、第 2駆動アーム部材 15Bの駆動アーム部 152は吐出口 422から離れ る方向に移動する。
このため、計量プランジャホルダ 22は、計量戻しバネ 224の付勢力によって吐出口 422から離れる方向に移動し、図 11Bに示すように、計量プランジャロッド 321、計量 プランジャ台 322、計量プランジャ部材 323も吐出口 422から離れる方向に移動する この際、出口バルブは閉じられ、入口バルブが開かれているので、計量プランジャ 部材 323の移動によって形成された空間には、容器 4内の液体が入口バルブを介し て吸入される。そして、計量プランジャ部材 323が初期位置に戻ることで、原点状態 に復帰する
ことになる。
[0076] 以上の工程を繰り返すことで、所定量の液体が順次吐出されることになる。また、各 液体吐出工程において、第 2圧電素子用第 3設定値を調整することで、液体の 1回 毎の吐出量を調整することができる。さらに、圧電素子 14A, 14Bに加える駆動信号 の電流値を調整することで入口バルブ部材 313、計量プランジャ部材 323、ニードノレ 333の駆動スピードが制御され、液体吐出のサイクルタイムを調整することができる。
[0077] このような本実施形態によれば、次のような効果がある。
(1)圧電素子 14A, 14Bを利用して入口バルブ部材 313、計量プランジャ部材 323 、ニードル 333を駆動しているので、エアシリンダを利用して駆動する場合と同等程 度に液体吐出装置 1を小型、軽量ィ匕することができる。すなわち、サーボモータ、ソレ ノイド、カムなどの駆動機構を採用した場合に比べて、液体吐出装置 1を容易に小型 化できる。
従って、各種製品の生産ラインにおいて、接着剤や各種ペースト等の吐出に本実 施形態の液体吐出装置 1を利用する際にも、ロボットのアームに取り付けて、高速、 高加速度で移動させることができ、生産ラインのタクトタイムの短縮を実現でき、生産 性向上に寄与することができる。
[0078] (2)圧電素子 14A, 14Bは高速駆動が可能なため、例えば、 1秒間に 10回以上の吐 出動作が可能であり、エアシリンダ駆動に比べて高速に液体吐出動作を実現できる 。さらに、圧電素子 14A, 14Bは、エアシリンダ駆動に比べて発生力が大きいため、 ノズノレを細くして抵抗が増えても液体を飛ばして吐出することができる。このため、例 えば、 0. 01マイクロリットルの水でもきれいに飛ばすことができ、安定した動作を実現 できる。
その上、吐出工程は、ニードル 333が吐出口 422を塞ぐことで終了するため、吐出 液の液切れを良くでき、この点でも液をきれいに飛ばすことができ、吐出量の精度を 向上できかつ安定した吐出動作を実現できる。
[0079] (3)吐出液の液量は、計量工程において、第 2圧電素子 14Bに加える第 2圧電素子 用第 3設定値を調整することで容易に設定変更できる。このため、吐出動作中であつ ても 1回の吐出動作毎の吐出量を自動的に調整することができる。従って、例えば、 基板上に複数の電子部品を取り付ける工程において、各電子部品の取付場所毎に 異なる液量の接着剤を塗布するために、基板上に吐出する液体の量を変更する場 合や、複数の製品が混在して送られる生産ラインにおいて、製品毎に液体の吐出量 を変更しなければならない場合でも、容易に対応でき、使い勝手のよい液体吐出装 置 1を提供できる。
[0080] (4)また、 2つの圧電素子 14A, 14Bの動作によって、吐出用部材である計量プラン ジャ部材 323および供給部開閉部材である入口バルブ部材 313の駆動を制御する とともに、圧電素子 14A, 14Bを支持する圧電素子支持板 12を押しパネ 13で吐出 口 422側に付勢し、入口バルブ部材 313がバルブシート 42のテーパ面に当接した 後も圧電素子 14Aを伸長させることで、圧電素子支持板 12をパネ 13の付勢力に抗 して吐出口 422から離れる方向に移動して吐出口開閉部材であるニードル 333の駆 動を制御している。
このように、本実施形態では、圧電素子支持板 12を押レ ネ 13およびガイド部材 1 1によって液体吐出装置 1の本体に対してスライド移動可能に設けたり、入口バルブ 部材 313をストロークの途中で容器 4の内面に当接させ、その反力を利用することで 、 2本の圧電素子 14A, 14Bの駆動を制御するだけで 3つの部材(入口バルブ部材 3 13、計量プランジャ部材 323、ニードル 333)の駆動を制御できる。従って、 3つの部 材を 3個の圧電素子で駆動する場合のように、圧電素子の配置や駆動制御が複雑 になるとい う問題が生じることがなぐ液体吐出装置 1の製造コストも低減できる。
その上、圧電素子 14A, 14Bで駆動できるため、カム、モータおよびボールネジ、ソ レノイド等を駆動源とする場合に比べて、液体吐出装置 1を小型化でき、特に極微量 の液体を吐出するのに好適である。
[0081] (5)圧電素子 14A, 14Bが固定される圧電素子支持板 12を一体成形したので、各 圧電素子 14A, 14Bの伸縮に対応する駆動部 124A, 124Bや変位伝達部 127A,
127Bの変位量を精度良く設定できる。
また、各駆動アーム部材 15A, 15Bは、変位伝達部 127A, 127Bにがたつき無く 固定されているので、変位伝達部 127A, 127Bの変位量を各駆動アーム部材 15A
, 15Bに精度良く伝達でき、各圧電素子 14A, 14Bの伸縮に対応する各駆動アーム 部材 15A, 15Bの変位量つまりは各入口バルブ部材 313、計量プランジャ部材 323
、ニードル 333の移動量を精度よく設定でき、微量の液体であっても高精度に吐出で きる。
[0082] (6)各圧電素子 14A, 14Bへの印加電圧を「0」にした際に、液体吐出装置 1が原点 状態(停止状態)となるように設定したので、動作停止中に圧電素子 14A, 14Bが発 熱して温度が上昇することがなレ、。このため、圧電素子 14A, 14Bが温度変化の影 響を受けてその変位量がばらつくことを防止でき、圧電素子 14A, 14Bの変位量の 精度つまり液体の吐出量の精度を向上できる。
[0083] (7)圧電素子支持板 12の基端部 122A, 122Bには、切れ込みおよびネジ 132によ る寸法調整手段が設けられているので、各変位伝達部 127A, 127Bの軸方向の位 置をネジ 132の締め付け量を調整するだけで容易に微調整できる。このため、圧電 素子支持板 12の加工精度が多少悪くても、原点状態における突起 131および各駆 動アーム部 152の吐出口 422側の面を揃えることができる。このように、突起 131や 各駆動アーム部 152の吐出口 422側の面を揃えた状態を設計状態とすれば、圧電 素子支持板 12が設計通りに製造、組み立てられているかを容易に判断でき、誤差の 発生を抑えることができる。
[0084] (8)本実施形態では、計量プランジャ部材 323のストロークのみで液体の吐出量が 設定されるため、外気温などによって容器 4等が膨張しても吐出量の精度はその影 響を受けず、極微量であっても精度の高い液量を吐出できる。
[0085] (9)本実施形態では、バネ 214, 224, 234を設けて各ホノレダ 21, 22, 23を圧電素 子支持板 12の突起 131や、駆動アーム部材 15A, 15Bに当接させて駆動力を伝達 しているので、駆動部台 3とポンプホルダ 2とを分離すれば、圧電素子支持板 12を含 む駆動機構側と、各ホルダ 21 , 22, 23を含むポンプ部側とを簡単に分離できる。こ のため、入口バルブ部材 313、計量プランジャ部材 323、ニードル 333を取り外して 洗浄することも容易に行え、メンテナンス作業を簡単にかつ効率的に行うことができる
[0086] (10)ペーストのように高粘度の液体では、ポンプ部と吐出口 422が離れていると液体 の吐出に遅れが生じるが、本実施形態によれば、液体を吐出するニードル 333等を 有するポンプ部と、吐出口 422が極めて近いので、液体の吐出の遅れがない。 また、沸点が低く気化しやすいアルコール等の溶剤は、ポンプ内への吸入時あるい はチェック弁通過時等、流れが複雑になる時に泡が発生しやすぐこの泡が溜まって しまい液体が吐出されない場合がある。しかし、本実施形態によればポンプ部と吐出 口 422が極めて近ぐ液体の流れも複雑でないので、泡が発生することもなぐ液体 を正常に吐出できる。
[0087] (11)入口バルブ部材 313をニードル 333の外側かつ同心円状に設けたので、液体 吸入路より入口バルブ部材 313内に液体を吸入する際の吸入面積を広くすることが でき、液体の吸入時間、つまりは作業時間を短くできる。
[0088] (12)高粘度の液体を高速で吐出するには、液体を高圧で押し出す必要があるが、駆 動源として圧電素子 14A, 14Bの機械的な駆動力を用いているので、エアシリンダを 駆動源とした場合に比べて、駆動力が高くなり、液体を高速で吐出できる。
また、液体を基板等の被付着物より離れた上方から吐出できるので、液体吐出装 置 1の外部に赤外線等のセンサを設けることにより、吐出が行われたかを確認できる 液体吐出装置 1には、チヱック弁を設けていないので、液体を加圧して送ることがで きる。従って、粘性の高い液体であっても液体吐出装置 1内への供給が容易である。
[0089] [第 2実施形態] 次に本発明の第 2実施形態について図 12〜: 15を参照して説明する。なお、本実 施形態において、前記第 1実施形態と同一または同様の構成には同一符号を付し、 説明を省略または簡略する。
本実施形態の液体吐出装置 1Aは、図 12に示すように、第 1実施形態の液体吐出 装置 1とは、主に、ネジ 132、折り畳み部 133が省略されている点と、第 2ヒンジ部 12 5の長さ寸法が若干長くされ、この第 2ヒンジ部 125にひずみゲージが取り付けられて レ、る点と、変位伝達部 127A, 127Bに駆動アーム部材 15A, 15Bを固定する際に、 駆動アーム部 152の先端の位置を微調整可能に構成した点が相違する。
[0090] すなわち、液体吐出装置 1Aでは、図 13にも示すように、各駆動アーム部材 15A, 15Bは、ピン 153が揷通される孔 154と、他のピン 153が配置される溝 155とを備え ている。溝 155は、ピン 153との間に隙間が生じる寸法で形成され、駆動アーム部材 15A, 15Bは、孑し 154に挿通されたピン 153を中 、とし、溝 155カピン 153に当接す るまでの範囲内で回動できるようにされている。そして、支持板 12の突起 131と各駆 動アーム部材 15A, 15Bの駆動アーム部 152の先端下面とを同一平面に当接させ て同一高さ位置にした状態で、前記溝 155内に接着剤を充填して固定することで、 支持板 12や駆動アーム部材 15A, 15B等に加工誤差などが生じても、その誤差を 容易に調整できるように構成されてレ、る。
[0091] また、本実施形態では、第 2ヒンジ部 125の裏表両面にひずみゲージが取り付けら れている。なお、本実施形態では、第 2ヒンジ部 125の圧電素子 14A, 14Bに対向す る面を裏面、カバー 5に対向する面を表面と定義している。
具体的には、第 1圧電素子 14Aの伸縮によって変形する第 2ヒンジ部 125の表面に は、 2枚のひずみゲージ 101A, 101Bが貼り付けられ、裏面には 2枚のひずみゲー ジ 102A, 102Bが貼り付けられている。同様に、第 2圧電素子 14Bの伸縮によって 変形する第 2ヒンジ部 125の表面および裏面にはひずみゲージ 103A, 103Bおよび ひずみゲージ 104A, 104Bがそれぞれ貼られている。
一方の第 2ヒンジ部 125に取り付けられた 4枚のひずみゲージ 101A, 101B, 102 A, 102Bは、図 14に示すように、ブリッジ回路 105に接続されている。同様に、図示 を略すが、他方の第 2ヒンジ部 125に取り付けられた 4枚のひずみゲージ 103A, 10 3B, 104A, 104Bもブリッジ回路に接続されている。
ブリッジ回路 105の出力 eOは、 eO = KS - ε 0 ·Εであるため、第 2ヒンジ部 125に曲 げひずみ ε 0が発生すると、そのひずみ量に応じた電圧が出力される。ここで、 KSは ゲージ率、 Εはブリッジ電圧である。
なお、ブリッジ回路 105への入力電圧用の配線や、出力電圧の配線は、コネクタ 18 と同様に構成されたセンサ出力用のコネクタ(図示略)を介して外部の制御装置に接 糸冗
れている。このように駆動用のコネクタ 18と、センサ用のコネクタとを別々に設ければ 、ノイズ対策上、有利である。但し、配線のシールドなどを行うことで 1つのコネクタに 駆動用配線およびセンサ用配線を設けてもよい。
[0092] 前記第 1実施形態にも記載したように、第 2ヒンジ部 125は、圧電素子 14A, 14Bの 伸長によって変位伝達部 127A, 127Bが傾斜される際に変形されて曲げひずみが 発生する。従って、第 2ヒンジ部 125にひずみゲージ 101A, 101B, 102A, 102B, 103A, 103B, 104A, 104B (以下、ひずみゲージ 101Α〜
104Bと表記する)を設けて、第 2ヒンジ部 125の曲げひずみを測定することで、変位 伝達部 127A, 127Bの傾斜量つまりは駆動アーム部 152の移動量を測定できる。
[0093] ここで、本実施形態では、各駆動アーム部材 15A, 15Bは、前記第 1実施形態と同 じ動作で駆動されて液体が吐出される。つまり、駆動アーム部材 15Aは、図 15のダラ フ Αに示すように、バルブ切替工程時に移動され、駆動アーム部材 15Bは、図 15の グラフ Bに示すように、計量工程、吐出工程、吸入工程時に移動される。
なお、図 15において、 T1から T11のタイミングは、それぞれ、原点状態 (T1)、計 量工程 (T2)、計量完了(T3)、バルブ切替工程 (T4)、バルブ切替完了(T5)、吐出 工程 (T6)、吐出完了(T7)、バルブ切替工程 (T8)、バルブ切替完了(T9)、吸入ェ 程 (T10)、原点状態 (T11)を表している。
[0094] そして、本実施形態においても、前記第 1実施形態と同様に、計量工程完了時の 計量プランジャ部材 323の移動位置によって吐出量が設定される。このため、設定さ れた吐出量に応じた位置まで計量プランジャ部材 323が移動した際の第 2ヒンジ部 1 25の曲げひずみ量つまりブリッジ回路 105の出力電圧を目標電圧として設定し、計 量工程の完了時のブリッジ回路 105の出力電圧を前記目標電圧と比較し、その差に 応じて次の計量工程時に圧電素子 14A, 14Bに加える電圧を調整するフィードバッ ク制御を行っている。
なお、吐出量とブリッジ回路 105の出力電圧との関係は、予め実際に液を吐出し、 その液量とその際の出力電圧(第 2ヒンジ部 125の曲げひずみ量)との関係を表す校 正曲線を求めておき、実際の測定時にはその校正曲線に基づいて設定された吐出 量に対応する電圧値(曲げひずみ量)を求めればょレ、。
ここで、液量は、 目視で判断してもよいし、画像処理を用いて吐出液の面積等を測 定して求めてもょレ、し、吐出液の重量を測定して求めてもょレ、。
[0095] このような本実施形態においても、前記第 1実施形態と同様の作用効果を奏するこ とができる上、次のような効果も得られる。
(13)第 2圧電素子 14Bの伸縮により変形する第 2ヒンジ部 125にひずみゲージ 103 A, 103B, 104A, 104Bを設けたので、計量工程完了時の第 2駆動アーム部材 15 Bの駆動アーム部 152の移動量を検出でき、計量された液量つまり吐出量を検出す ること力 Sできる。
このため、液体吐出装置 1Aの液体吐出動作をフィードバック制御で制御でき、微 量の液体でも高精度に吐出することができる。
[0096] (14)さらに、第 1圧電素子 14Aの伸縮により変形する第 2ヒンジ部 125にも、ひずみ ゲージ 101A, 101B, 102A, 102Bを設けたので、供給部開閉部材である入ロバ ルブ部材 313や、吐出口開閉部材であるニードル 333の位置、つまり液体供給部や 吐出口の開閉状態を確実に検出できる。このため、各ブリッジ回路 105の出力をモニ ターすることで、液体吐出装置 1Aの動作状態を把握できる。
[0097] (15)ひずみゲージ 103A, 103B, 104A, 104Bを用いて変位量を検出しているの で、曲げひずみ量つまりは計量プランジャ部材 323の移動量を高精度に検出できる 。このため、計量プランジャ部材 323の移動量を 0. 1ミクロン以下の精度で検出する こともでき、極微量の液体吐出を高精度に実現できる。
その上、ひずみゲージ 101A〜: 104Bは、小型.薄型のセンサであるため、液体吐 出装置 1Aのサイズも抑えることができる。 また、各ヒンジ部の中で最も変形する第 2ヒンジ部 125にひずみゲージ 101A〜10 4Bを取り付けたので、ブリッジ回路 105の出力電圧も大きくできて第 2ヒンジ部 125の 曲げひずみ量つまり計量プランジャ部材 323の移動量を確実に検出することができ る。
[0098] (16)吐出サイクルの中で、計量工程完了時の第 2ヒンジ部 125のひずみ量に基づい て、次の計量工程時の計量プランジャ部材 323の移動量を調整しているので、ひず みゲージ 101A〜: 104Bの出力をリアルタイムに測定して制御する必要が無レ、。この ため、リアルタイムにデータを処理する必要がないためより一層高速動作が可能とな り、かつ、制御電圧がリアルタイムで細力べ変動することがないため、圧電素子を高速 動作させた際の振動発生を防止でき、最適な駆動状態を維持することができる。
[0099] (17)駆動アーム部材 15A, 15Bに溝 155を形成し、駆動アーム部 152の先端の高さ 位置を微調整できるように構成したので、第 1実施形態のネジ 132や、折り畳み部 13 3を設ける必要が無ぐ支持板 12の形状が簡易になって容易に製造できるとともに、 突起 131および各駆動アーム部 152の下面の高さ位置を簡単にかつ正確に合わせ ること力 Sできる。
[0100] [第 3実施形態]
次に、本発明の第 3実施形態を図 16〜48に基づいて説明する。
図 16〜: 18には、第 3実施形態の液体吐出装置 500が示されている。
液体吐出装置 500は、大きく分けて駆動部 501と、ポンプ部 600とを備えている。な お、本実施形態の液体吐出装置 500は、通常、駆動部 501側を上方、ポンプ部 600 側を下方とする向きで使用されるため、ポンプ部 600から駆動部 501に向力 方向を 上方、駆動部 501からポンプ部 600に向力 方向を下方と定義する。
[0101] [駆動部の構成]
駆動部 501は、図 19〜22にも示すように、側板 511A、下部フランジ 511B、上部 フランジ 511Cを備えて側面形状が略コ字状に形成されたフレーム 511と、フレーム 5 11の下部フランジ 511Bにねじ止めされたスぺーサ 512と、フレーム 511の上部フラ ンジ 511Cに固定されたモータフランジ 513と、フレーム 511の開口された側面部分 を覆うカバー 514とを備えた駆動機構収納部であるケース 510を有する。フレーム 51 1の下部フランジ 511Bには略円筒状の継ぎ手 515もねじで接続されている。
[0102] 前記モータフランジ 513には、第 1モータ 521と、第 2モータ 522とが固定され、前 記ケース 510内には各モータ 521 , 522で駆動される駆動部品が配置されている。 なお、本実施形態では、各モータ 521, 522は、サーボモータが利用されているが
、ステッピングモータでもよレ、。要するに、モータ 521 , 522としては、エンコーダなど を内蔵し、駆動信号によって指示された変位量だけ変化可能なモータ、つまり変位 量を設定可能なモータであれば利用できる。
[0103] 図 21に示すように、第 1モータ 521の出力軸にはスプライン軸 523がピンによって 固定されている。また、スプライン軸 523には略円盤状の上パネ座 524が嵌合され、 この上バネ座 524はベアリング 525によりケース 510に対して回転自在に支持されて いる。
従って、スプライン軸 523および上バネ座 524は、ベアリング 525によって回転自在 に支持されて第 1モータ 521の出力軸と一体に回転される。
[0104] 前記スプライン軸 523には、外筒(ボス) 526がスプライン軸 523の軸方向に移動可 能にかつスプライン軸 523とともに回転可能に係合されている。この外筒 526と、前 記上バネ座 524間には、付勢手段としてのコイルバネ(コイルスプリング) 527力 S介在 され、外筒 526を下方に付勢している。また、外筒 526内には、スぺーサ 528および ネジ軸 529の端部力 スプリングピンによって固定されている。
このネジ軸 529には、第 1ナット部材である入口ナット 530と、第 2ナット部材である 計量ナット 540と力 S虫累合されている。なお、ネジ車由 529および各ナット 530, 540とし ては、通常のネジ軸およびナットを用いることもできる力 特に、伝達効率が高ぐ位 置精度も高くできるボールネジを利用することが好ましい。
[0105] 入口ナット 530は、入口ナット受板 531と、この入口ナット受板 531にねじ止めされ た入口ナット押さえ部材 532とで挟持されている。入口ナット受板 531は、図 23にも 示すように、略四角板状に形成されている。
入口ナット受板 531におレ、て、フレーム 511の側板 511 Aに形成された凹溝 511D 内に突出された突出部にはセンサ頭ガイド 533がねじ止めされている。センサ頭ガイ ド 533には貫通孔が形成され、この貫通孔にはビス(ボルト) 534が揷通されている。 ビス 534の先端にはセンサ頭 535がねじ止めされている。
[0106] センサ頭ガイド 533およびセンサ頭 535間にはコイルバネ 537が配置されている。
従って、センサ頭 535およびビス 534は、コイルバネ 537によってビス 534から離れる 方向(上方)に付勢され、ビス 534の頭(ビス 534の下端)がセンサ頭ガイド 533に係 止される位置で保持されてレヽる。
[0107] モータフランジ 513には、センサ頭 535に対向して近接センサ 536が固定されてい る。従って、第 1モータ 521の回転に伴い入口ナット 530が上昇し、センサ頭 535も一 体的に上昇して近接センサ 536に近接すると、近接センサ 536によってその近接状 態が検出される。この近接センサ 536から出力される検出信号は、図示しない駆動制 御装置 (駆動制御手段)に出力される。
また、仮に、センサ頭 535が近接センサ 536に当接したとしても、コイルバネ 537が 縮んでセンサ頭 535の位置が変位するので、近接センサ 536等の破損を防止できる
[0108] 計量ナット 540は、小径部および大径部を有する段付き円筒状に形成されている。
計量ナット 540の小径部にはベアリング 541が取り付けられている。
ベアリング 541は、計量ナット受板 542と、この計量ナット受板 542にねじ止めされ た計量ナット押さえ部材 543とで挟持されている。
[0109] 計量ナット受板 542は、図 24に示すように、平面略矩形状の板状に形成され、その 略中央部には計量ナット 540の大径部の外周面に形成された歯車 540Aに螺合す る中間歯車 544が回転自在に取り付けられてレ、る。
また、計量ナット受板 542には、計量ナット受板 542および計量ナット押さえ部材 54 3で挟持されたベアリング 545と、このベアリング 545によって計量ナット受板 542に 対して回転自在に支持されたモータギヤ 550とが設けられている。モータギヤ 550の 外周面には前記中間歯車 544に螺合する歯車 550Aが形成されている。また、モー タギヤ 550の中心軸に形成された貫通孔には、モータギヤ軸 551に嚙み合う歯が形 成されている。
[0110] モータギヤ軸 551は、スプライン軸で構成され、第 2モータ 522の出力軸にカツプリ ング 552を介して一体的に回転可能に連結されている。このため、モータギヤ 550は 、モータギヤ軸 551に沿って上下方向に移動可能に、かつ、モータギヤ軸 551の回 転に伴い一体的に回転可能に設けられている。
[0111] 従って、第 1モータ 521を停止させた状態で、第 2モータ 522を駆動させてモータギ ャ軸 551を回転させると、モータギヤ 550、中間歯車 544を介して、計量ナット 540が 回転する。この際、ネジ軸 529は停止しているので、計量ナット 540はネジ軸 529に 沿って上方あるいは下方に移動する。
一方、第 2モータ 522を停止させた状態で、第 1モータ 521を駆動させてボールね じ 528のネジ軸 529を回転させると、入口ナット 530および計量ナット 540はそれぞれ 上方あるいは下方に移動する。
[0112] さらに、第 1モータ 521および第 2モータ 522を同方向に回転駆動させて、計量ナツ ト 540およびネジ軸 529が同方向に同速度で回転させると、計量ナット 540の上下方 向の位置は変化せず、同じ位置に保持される。一方、入口ナット 530はネジ軸 529の 回転に伴い、上方または下方に移動される。
[0113] 従って、第 1モータ 521のみを回転駆動すると、入口ナット 530および計量ナット 54 0が移動する。また、第 2モータ 522のみを回転駆動すると、計量ナット 540のみが移 動する。さらに、第 1モータ 521および第 2モータ 522を回転駆動すると、入口ナット 5 30のみが移動する。この際、各ナット 530, 540の移動方向は、各モータ 521, 522 の回転方向によって設定される。
このため、中間歯車 544およびモータギヤ 550により第 2モータ 522の回転を計量 ナット 540に伝達する伝達用歯車が構成されている。
[0114] 図 22に示すように、フレーム 511の下部フランジ 511Bには、ニードル押し部材 56 1が軸方向(上下方向)に移動可能に配置されている。ニードル押し部材 561は、小 径部および大径部の直径の異なる 2つの円筒部を有する形状とされ、大径部には、 ベアリング 562およびブッシュ 563を介してネジ軸 529の他端が回転自在にかつブッ シュ 563に対して上方に移動可能に支持されている。
[0115] フレーム 511の下部フランジ 511Bの下面には、フランジ付きの円筒部材カもなる 戻しバネ受け部材 564がねじ止め固定されている。この戻しバネ受け部材 564の内 部には、前記ニードル押し部材 561と、戻しバネ 565とが配置されている。 戻しバネ 565は、戻しバネ受け部材 564およびニードル押し部材 561間に配置さ れ、ニードル押し部材 561を戻しバネ受け部材 564つまりフレーム 511に対して上方 (ネジ軸 529側)に付勢している。
[0116] また、戻しバネ受け部材 564のフランジの対向する 2力所には、図 20に示すように、 後述するロッド 571 , 572力 S揷通される切欠き 564Aカ形成され、各ロッド 571 , 572 が戻レ ネ受け部材 564と干渉しなレ、ように構成されてレ、る。
ニードル押し部材 561の下端には、円柱状の磁石 566が固定されている。
[0117] ここで、図 19, 20に示すように、フレーム 511の上部フランジ 511Cおよび下部フラ ンジ 511Bには、 4つのガイド穴 511Eが設けられている。これらの各ガイド穴 511Eに は、入口ロッド 571および計量ロッド 572が各ロッド 571, 572の軸方向(上下方向) に移動可能に揷通されている。
入口ロッド 571は、 2本設けられ、図 23〜26に示すように、ネジ軸 529の中心軸に 対して点対称となる位置に配置されている。各入口ロッド 571は、入口ナット 530とと もに上下方向に移動する入口ナット受板 531に固定されている。従って、入口ロッド 5 71は、第 1モータ 521の駆動によって入口ナット 530が上下方向に移動されるのに 伴レ、、入口ナット 530と一体に上下方向に移動する。
[0118] 計量ロッド 572は、 2本設けられ、図 23〜25に示すように、ネジ軸 529の中心軸に 対して点対称となる位置に配置されている。各計量ロッド 572は、計量ナット 540とと もに上下方向に移動する計量ナット受板 542に固定されている。従って、計量ロッド 5 72は、計量ナット 540が上下方向に移動されるのに伴い、計量ナット 540と一体に上 下方向に移動する。
[0119] なお、入口ナット受板 531には、入口ロッド 571が揷通固定される揷通孔 531Aと、 計量ロッド 572が揷通可能な揷通孔 531Bとが形成されている。
同様に、計量ナット受板 542には、計量ロッド 572が揷通固定される揷通孔 542Aと 、入口ロッド 571が揷通可能な揷通孔 542Bとが形成されてレ、る。
[0120] 各揷通孔 531A, 542Aにはすり割り溝が形成され、このすり割り溝を固定ボルト 54 6で締め付ける割り締めにより、入口ロッド 571、計量ロッド 572は、入口ナット受板 53 1、計量ナット受板 542に対してそれぞれ移動不能に固定されている。 また、各挿通孔 531B, 542Bは、各ロッド 571, 572の直径よりも大きな直径の貫通 孔とされ、計量ロッド 572は入口ナット受板 531に対して移動可能に設けられ、入口 ロッド 571は計量ナット受板 542に対して移動可能に設けられている。
[0121] 前記戻しパネ受け部材 564の外側には、フランジ付きの円筒部材からなる計量押し 部材 582が配置されている。計量押し部材 582のフランジには、前記計量ロッド 572 の下端がねじで固定されてレ、る。
また、計量押し部材 582の外側には、円盤状の入口押し部材 581が配置されてい る。入口押し部材 581には、前記入口ロッド 571の下端がねじで固定されている。
[0122] [ポンプ部の構成]
ポンプ部 600は、袋ナット 602を介して継ぎ手 515に着脱自在に取り付けられた容 器 601を備えている。
継ぎ手 515内には、略円筒状の入口パネ受け部材 610が配置され、入口パネ受け 部材 610内には略円筒状の計量ガイド部材 620が配置され、計量ガイド部材 620内 にはニードルロッド 630が配置されている。
すなわち、継ぎ手 515および容器 601内には、中心軸から外側に向かって同心円 状に、ニードルロッド 630、計量ガイド部材 620、入口バネ受け部材 610が 3重に配 置されている。
[0123] 入口バネ受け部材 610および継ぎ手 515間には、入口バルブ戻しバネ 611が介在 されている。入口バネ受け部材 610は、入口バルブ戻しバネ 611によって上方に付 勢され、常時、入口押し部材 581に当接されている。
また、継ぎ手 515の内周面には凹溝が形成され、〇リング等のシール材 612が配置 されている。これにより、入口バネ受け部材 610および継ぎ手 515間力 駆動部 501 側に液が漏れなレ、ように構成されてレ、る。
[0124] 計量ガイド部材 620の上部には、リング磁石 621が取り付けられている。このリング 磁石 621の磁力により、計量ガイド部材 620は、計量押し部材 582に対して着脱可 能に取り付けられている。
計量ガイド部材 620の外周面には凹溝が形成され、〇リング等のシール材 622が 配置されている。これにより、入口バネ受け部材 610および計量ガイド部材 620間か ら駆動部 501側に液が漏れなレ、ように構成されてレ、る。
[0125] ニードルロッド 630の上部には、磁石受け 631が取り付けられている。このため、二 ードノレロッド 630は、磁石 566および磁石受け 631間に働く磁力によって、ニードル 押し部材 561に対して着脱可能に取り付けられている。
ニードルロッド 630の外周面には凹溝が形成され、 Oリング等のシール材 632が配 置されている。これにより、計量ガイド部材 620およびニードルロッド 630間から駆動 部 501側に液が漏れないように構成されている。
[0126] 入口バネ受け部材 610には、 2本の入口弁ロッド 613の一端が固定されている。入 口弁ロッド 613の他端には、入口バルブ部材 614が取り付けられている。
入口バルブ部材 614は、フランジ付きの略円筒状に形成されており、その先端は、 テーパ状に形成され、後述する容器 601のテーパ状の内面に密着可能に構成され ている。
[0127] 計量ガイド部材 620には、 2本の計量プランジャロッド 623の一端が固定されている 。なお、計量プランジャロッド 623の配置は、図 27にも示すように、液体吐出装置 50 0の軸直交方向において、各計量プランジャロッド 623の配置方向力 各入口弁口ッ ド 613の配置方向と直交するように配置されており、各ロッド 613, 623が互いに干渉 しなレ、ように構成されてレ、る。
計量プランジャロッド 623の他端には、計量プランジャ部材 624が掛け渡されて固 定されている。計量プランジャ部材 624は、フランジ付きの略円筒状に形成されてお り、フランジ部分は入口弁ロッド 613に干渉しなレ、ように略楕円板状に形成されてレヽ る。この計量プランジャ部材 624の下端側は、前記入口バルブ部材 614の中心軸に 形成された貫通孔内に挿入されている。
[0128] ニードノレロッド 630には、ロッド状のニードル 633の一端が固定されている。
ニードル 633の下端側は、計量プランジャ部材 624の中心軸に形成された貫通孔 内に挿入されている。そして、ニードル 633の端面は球面状に形成され、後述する容 器 601に形成された吐出口 642を開閉可能に構成されている。
なお、磁石 566によって一体化されているニードル押し部材 561、ニードノレロッド 63 0、ニードノレ 633は、前記戻しバネ 565によって上方に付勢されている。一方で、コィ ノレ/くネ 527ίこよって、ネジ車由 529、ブッシュ 563、ベアリング 562を介して、下方【こ付 勢されている。ここで、コイルバネ 527の付勢力は、戻しバネ 565の付勢力よりも大き く設定されているので、ニードノレ 633は、通常は、吐出口 642に当接して吐出口 642 を閉塞している。
[0129] 容器 601は、一端側が袋ナット 602を介して継ぎ手 515に取り付けられた容器本体
601Aと、容器本体 601Aの他端に取り付けられたバルブシート 640とを備えている。 そして、この容器 601内の空間によって液体収納空間が形成されている。
バルブシート 640の容器 601内に面する一端面(内面)側は、徐々に直径が小さく なるテーパ孔部 641が形成され、このテーパ孔部 641およびバルブシート 640の他 端面間は吐出口 642が貫通して形成されている。
吐出口 642はバルブシート 640に固定されたノズノレ 643に連通され、容器 601内の 液体はバルブシート 640の吐出口 642、ノズノレ 643を介して液体吐出装置 500外部 に吐出されるように構成されている。
[0130] なお、容器 601内への液体の供給は、容器 601を継ぎ手 515から取り外して行って もよいが、本実施形態では容器 601を取り外さずに液体を供給できるように、容器 60 1内部に連通するポート 603が形成されている。すなわち、ポート 603にはチューブ( 図示略)を介して外部容器(図示略)が接続されている。この外部容器には、外部容 器内の液面レベルを検出する液面計(図示略)が設けられている。また、液面計で検 出される液面レベルに応じて制御されるバルブによって液体をタンクから外部容器内 に供給できるように構成されている。このように構成すれば、外部容器内の液面レべ ルが所定レベルまで低下した場合にはバルブを開いて外部容器内に液体を供給し 、所定のレベルまで充填されたらバルブを閉じるように制御することで、外部容器から チューブを介して容器 601に常時液体を供給することができる。このため、液体吐出 装置 500を 24時間連続して自動的に運転し続けることができる。
[0131] ここで、吐出口 642の開口に当接して吐出口 642を開閉可能なニードル 633により 吐出口開閉部材が構成され、テーパ孔部 641に当接して容器 601内から吐出口 64 2に連通される液体供給部を開閉可能な入口バルブ部材 614により供給部開閉部 材が構成されている。また、後述するように、入口バルブ部材 614がテーパ孔部 641 に当接して供給部を閉塞し、かつ、吐出口 642が開口された状態で計量プランジャ 部材 624が吐出口 642側に移動すると、入口バルブ部材 614内に区画された液体 が吐出口 642から吐出するため、計量プランジャ部材 624により吐出用部材が構成 されている。
[0132] また、供給部開閉部材である入口バルブ部材 614を下方(第 1方向)および上方( 第 2方向)に移動する入口弁ロッド 613、入口バネ受け部材 610、入口バルブ戻しバ ネ 611、入口押し部材 581、入口ロッド 571、入口ナット受板 531、入口ナット 530、 ネジ軸 529、第 1モータ 521等によって供給部開閉用駆動手段が構成されている。 さらに、吐出用部材である計量プランジャ部材 624を上下方向に移動する計量ブラ ンジャロッド 623、計量ガイド部材 620、計量押し部材 582、計量ロッド 572、計量ナ ット受板 542、計量ナット 540、中間歯車 544、モータギヤ 550、モータギヤ軸 551、 第 2モータ 522等によって吐出用駆動手段が構成されている。
また、容器 601、継ぎ手 515、フレーム 511等を含んで液体吐出装置 500の本体が 構成されている。
[0133] [吐出動作説明]
次に、本実施形態の液体吐出装置 500における液体の吐出動作について、図 28 力 図 47の動作説明図および図 48のタイミングチャートをも参照して説明する。なお 、図 29, 31, 33, 35, 37, 39, 41 , 43, 45, 47の各図は、図 27の F— F線に沿った 断面図とされ、入口弁ロッド 613および計量プランジャロッド 623が共に表示されるよ うにしている。
また、図 48のタイミングチャートにおいて、 Sは近接センサ 536からの検出信号、 M 1— CWは第 1モータ 521を CW方向に回転する信号、 M1— CCWは第 1モータ 521 を CCW方向に回転する信号、 Ml—Zは第 1モータ 521の Z相の信号、 M2— CWは 第 2モータ 522の CW方向の信号、 M2— CCWは第 2モータ 522の CCW方向の信 号、 M2— Zは第 2モータ 522の Z相の信号を表す。
また、 T31力 T41は、それぞれ、原点設定作業開始時 (T31)、入口ナット 530の 上方への移動に伴い近接センサ 536がオンされた状態 (Τ32)、第 1モータ 521の Ζ 相の検出時 (Τ33)、計量ナット 540の移動に伴い近接センサ 536がオンされた状態 (T34)、第 2モータ 522の Z相の検出時 (T35)、ポンプ動作の原点状態 (T36)、吸 入工程完了時 (Τ37)、入口バルブ閉および吐出口開状態への第 1バルブ切替工程 完了時 (Τ38)、吐出工程完了時 (Τ39)、入口バルブ開および吐出ロ閉状態への第 2バルブ切替工程完了時 (Τ40)、原点復帰状態 (T41)を表す。
[0134] [原点設定]
本実施形態では、各モータ 521 , 522の回転動作を駆動パルス数で制御するため 、最初に各モータ 521 , 522の原点設定を行っている。
原点設定処理の開始時は、図 28, 29に示すように、吐出口 642は、コイルバネ 52 7によって付勢されるニードル 633が当接することで閉じられた状態とされている。 そして、原点設定処理が開始されると、駆動制御装置は、 2台のモータ 521 , 522を CCW (Counter Clock Wise,モータの出力軸から見て反時計方向)に回転する。第 1 モータ 521の回転に伴いネジ軸 529が CCW方向に回転すると、図 30, 31に示すよ うに、入口ナット 530は上方に移動する。一方、計量ナット 540は、第 2モータ 522の CCW方向の回転に伴い、モータギヤ軸 551、モータギヤ 550、中間歯車 544を介し て CCW方向に回転するため、ネジ軸 529および計量ナット 540が同方向にかつ同 速度で回転し、計量ナット 540は上下方向に移動せず、同じ位置に停止している。
[0135] 入口ナット 530の上方への移動に伴い、センサ頭 535が近接センサ 536に徐々に 近接し、所定の距離まで近づくと、近接センサ 536がオンされて検出信号が出力され る。
[0136] 近接センサ 536がオンされると、駆動制御装置は、 2台のモータ 521, 522を CW ( Clock Wise,モータの出力軸から見て時計方向)に回転する。
第 1モータ 521の CW方向の回転に伴レ、、図 32, 33に示すように、入口ナット 530 は下方に移動し、センサ頭 535が近接センサ 536から徐々に離れて近接センサ 536 の出力はオフとなる。
近接センサ 536の出力がオフとなった後、第 1モータ 521からその出力軸 1回転に つき 1パルス出力される Z相(C相)の信号を検出し、出力パルスを検出した時点で第 1モータ 521を停止し、その位置を第 1モータ 521の原点位置に設定する。すなわち 、第 1モータ 521によって動作される入口ナット 530および入口バルブ部材 614が、 図 32, 33に示す位置にある状態を原点位置とする。
[0137] 一方、各モータ 521, 522が CW方向に回転されている場合にも、ネジ軸 529と計 量ナット 540の回転方向が同方向でかつ同速度に回転するため、計量ナット 540は 上下方向に移動せず、同じ位置に停止している。
[0138] 駆動制御装置は、第 1モータ 521の Z相が検出されて第 1モータ 521が停止される のと同時に、第 2モータ 522を CCW方向に回転駆動する。計量ナット 540は、ネジ軸 529が停止されている状態で、第 2モータ 522によって CCW方向に回転されると、図 34, 35に示すように、下方に移動する。そして、計量ナット 540と一体に移動する計 量ナット押さえ部材 543がニードル押し部材 561に当接すると、ニードル押し部材 56 1はコイルバネ 527で付勢されて下方のストロークエンドの位置に達していてそれ以 上下方に移動できないため、前記コイルバネ 527の付勢力に抗してネジ軸 529が上 方に移動する。すなわち、ネジ軸 529はブッシュ 563に対して上方に移動する。 ネジ軸 529が上方に移動すると、ネジ軸 529に対して回転していない入口ナット 53 0もネジ軸 529と共に上方に移動し、センサ頭 535が近接センサ 536に近接する。 この際、ニードル押し部材 561は計量ナット 540と一体で移動する計量ナット押さえ 部材 543に押されているため、ネジ軸 529が上方に移動してもニードル 633は吐出 口 642に当接した状態のままに維持される。
[0139] センサ頭 535が近接して近接センサ 536から検出信号が出力されると、駆動制御 装置は、第 2モータ 522を CW方向に回転駆動する。すると、図 36, 37に示すように 、計量ナット 540が CW方向に回転し、ネジ軸 529は下方に移動する。同時に、セン サ頭 535が近接センサ 536から離れるため、近接センサ 536からの検出信号もオフ 信号となる。
この近接センサ 536の出力がオフとなった後、第 2モータ 522からその出力軸 1回 転につき 1パルス出力される Z相(C相)の信号を検出し、出力パルスを検出した時点 で第 2モータ 522を停止し、その位置を第 2モータ 522の原点位置に設定する。
[0140] なお、第 2モータ 522を原点位置に設定する間も、コイルパネ 527で付勢されたネ ジ軸 529またはこのネジ軸 529に螺合されている計量ナット 540と一体のニードル押 し部材 561のいずれ力、が、前記ニードル押し部材 561に当接して付勢しているので、 ニードル 633は吐出口 642を塞いだ状態に維持される。
[0141] [原点状態 (初期状態) ]
以上の処理により、各モータ 521 , 522の原点が設定され、液体吐出装置 500は図 36, 37 (図 38, 39も同じ)に示す原点状態に設定される。また、その後の動作は、各 モータ 521, 522に入力する駆動パルス数によって制御することになる。
なお、運転開始前即ち液体吐出装置 500の停止状態 (原点状態)においては、図 39に示すように、ニードル 633が吐出口 642の開口部分に当接して吐出口 642を閉 鎖する状態に設定されている。また、本実施形態では、原点状態において、計量ナツ ト 540とともに移動する計量プランジャ部材 624は下方ストロークエンドの位置にある 、この位置においてバルブシート 640のテーパ孔部 641から僅かに離れた位置と なるように、計量プランジャロッド 623やニードル 633の長さ寸法などが設定されてい る。
[0142] さらに、原点状態において、入口ナット 530とともに上下動する入口バルブ部材 61 4は、その先端がバルブシート 640のテーパ孔部 641から所定距離離れた位置とな るように入口弁ロッド 613や入口バルブ部材 614の長さ寸法などが設定されている。
[0143] [吸入 (計量)工程]
次に、駆動制御装置は、第 1モータ 521を停止したまま、第 2モータ 522のみを CW 方向に、予め設定された吐出設定パルス数分だけ回転駆動する。
すると、第 2モータ 522の回転駆動に伴い、図 40, 41に示すように、計量ナット 540 が上方に所定のストローク量だけ移動する。その結果、計量ナット受板 542、計量口 ッド 572、計量押し部材 582、計量ガイド部材 620、計量プランジャロッド 623、計量 プランジャ部材 624も上方に移動し、計量プランジャ部材 624の先端が吐出設定パ ノレス数に応じた位置に移動する。
[0144] [第 1バルブ切替工程]
次に、駆動制御装置は、第 2モータ 522を停止し、同時に第 1モータ 521を切替設 定パルス数分だけ CW方向に回転駆動する。
すると、図 42, 43に示すように、入口ナット 530および計量ナット 540は共に下方に 移動する。入口ナット 530が下方に移動すると、入口ナット受板 531、入口ロッド 571 、入口押し部材 581、入口バネ受け部材 610、入口弁ロッド 613、入口バルブ部材 6 14も下方に移動する。
そして、入口バルブ部材 614がバルブシート 640のテーパ孔部 641に当接すること で、液体供給部(入口バルブ)が閉じられる。
[0145] また、入口バルブ部材 614がテーパ孔部 641に当接した状態でさらに第 1モータ 5 21が CW方向に回転されると、入口バルブ部材 614がテーパ孔部 641に当接してい ることで、入口ナット 530はそれ以上下方に移動できないため、ネジ軸 529がコィノレ パネ 527の付勢力に抗して上方に移動する。ネジ軸 529が上方に移動すると、戻し バネ 565の付勢力でニードノレ押し部材 561、ニードノレロッド 630、ニードル 633も上 方に移動し、ニードル 633で塞がれていた吐出口 642が開口される。すなわち、出口 バルブが開かれ、吐出口 642が開口される。なお、ニードノレ 633による吐出口 642の 開度は、ネジ軸 529の移動量つまり第 1モータ 521の CW方向の切替設定パルス数 によって設定される。
従って、入口バルブが開かれ、かつ出口バルブが閉じられた状態から、入口バル ブが閉じられ、かつ出口バルブが開かれた状態に切り替えられるため、バルブの切 替工程が実行される。また、バルブの切替は、第 1モータ 521の回転駆動によって入 口バルブ部材 614をバルブシート 640に当接させた後、さらに第 1モータ 521を回転 駆動してネジ軸 529を移動することで機械的に行われるので、一方のバルブは必ず 閉じられた状態にあり、容器 601内と吐出口 642とが直接連通されることはない。
[0146] また、計量ナット 540は、第 1モータ 521の CW方向の回転に伴い下方に移動しょう とする力 前述の通り、入口バルブ部材 614がテーパ孔部 641に当接した後は、ネジ 軸 529が上方に移動し、計量ナット 540の下方への移動が打ち消されるので、同じ 高さに維持され、計量プランジャ部材 624の位置も変化しない。
すなわち、計量プランジャ部材 624は、図 43に示すバルブ切替工程終了時には、 吸入工程完了時の位置(図 41の位置)から、入口バルブ部材 614がテーパ孔部 64 1に当接する位置まで移動するストローク分だけ下方に移動してレ、る。
[0147] [吐出工程]
次に、制御装置は、第 1モータ 521を停止し、同時に第 2モータ 522を CCW方向に 吐出設定パルス数(前記吸入工程における吐出設定ノ^レス数と同じパルス数)だけ 回転駆動する。すると、計量ナット 540は、吐出設定パルス数に応じて下方に移動し 、図 45に示すように、計量プランジャ部材 624も吐出口 642側に移動する。
[0148] この際、入口バルブは閉じられ、出口バルブが開かれているので、計量プランジャ 部材 624の移動に伴レ、、液体が吐出口 642を介してノズル 643から吐出される。 本実施形態では、吐出量は、計量プランジャ部材 624の移動量によって設定され、 この移動量は、第 2モータ 522を駆動する際の吐出設定パルス数に基づいて決めら れる。つまり、本実施形態では、吐出工程終了時の計量プランジャ部材 624の移動 終了位置は固定し、計量プランジャ部材 624の移動開始位置を前記吐出設定パル ス数で調整することで、吐出工程時の計量プランジャ部材 624の移動量つまりは吐 出量を調整している。従って、吸入(計量)工程において第 2モータ 522を駆動する パルス数を調整するだけで吐出量を自由に調整できるため、吐出液量の計量が行わ れることになる。
[0149] また、図 44に示すように、吐出工程の完了時には、計量ナット 540および計量ナツ ト押さえ部材 543は、下方に移動してニードル押し部材 561に当接する位置まで移 動するため、吐出完了時には、ニードル 633も吐出口 642に当接して吐出口 642を 閉じることになる。
[0150] [第 2バルブ切替工程]
次に、駆動制御装置は、第 2モータ 522を停止し、同時に第 1モータ 521を CCW方 向に切替設定ノ^レス数 (前記バルブ切替工程における切替設定パルス数と同じ)だ け回転駆動する。
すると、入口ナット 530はネジ軸 529に対して上方に移動する。但し、ネジ軸 529は コイルバネ 527で下方に付勢されているので、ネジ軸 529がブッシュ 563に当接する まではネジ軸 529が相対的に下方に移動する。このネジ軸 529が、ニードル押し部 材 561のブッシュ 563に当接するまでは、入口バルブ部材 614はテーパ孔部 641に 当接したままである。
そして、ネジ軸 529がブッシュ 563に当接して下方に移動できない状態になると、 入口ナット 530および入口バルブ部材 614が上方に移動して入口バルブが開かれる [0151] また、計量ナット 540は、第 1モータ 521が CCW方向に回転されるのに伴い上方に 移動するが、ネジ軸 529を介してコイルバネ 527で下方に付勢されているので、ネジ 軸 529がブッシュ 563に当接するまではネジ軸 529が相対的に下方に移動し、計量 ナット 540は計量ナット押さえ部材 543がニードル押し部材 561に当接した状態に維 持される。
そして、ネジ軸 529がブッシュ 563に当接して下方に移動できない状態になった後 も第 1モータ 521の回転が続いていれば、計量ナット 540は上方に移動する。
そして、原点状態から第 1モータ 521は CW方向および CCW方向にそれぞれ同じ 切替設定パルス数だけ駆動され、第 2モータ 522も CW方向および CCW方向にそれ ぞれ同じ吐出設定パルス数だけ駆動されるため、図 46, 47に示すように、各モータ 5 21 , 522やナット 530, 540等の各部材は原点状態(図 38, 39の状態)に復帰する ことになる。
[0152] 以上の工程を繰り返すことで、所定量の液体が順次吐出されることになる。また、各 液体吐出工程において、吐出設定パルス数を調整することで、液体の 1回毎の吐出 量を調整することができる。さらに、各モータ 521 , 522に入力される駆動パルスの周 波数等を調整することで入口バルブ部材 614、計量プランジャ部材 624、ニードル 6 33の駆動スピードが制御され、液体吐出のサイクルタイムを調整することができる。
[0153] このような第 3実施形態によれば、次のような効果がある。
(1) 2台のモータ 521 , 522、ボーノレねじ(ネジ軸 529および各ナット 530, 540)およ びコイルバネ 527、戻しバネ 565等を利用して入口バルブ部材 614、計量プランジャ 部材 624、ニードル 633の 3つの部材を駆動しているので、例えば、 3台のモータを 用いて各部材を駆動する場合に比べて、液体吐出装置 500を小型、軽量化すること ができる。
従って、各種製品の生産ラインにおいて、接着剤や各種ペースト等の吐出に本実 施形態の液体吐出装置 500を利用する際にも、ロボットのアームに取り付けて、高速 、高加速度で移動させることができ、生産ラインのタクトタイムの短縮を実現でき、生 産性向上に寄与することができる。 [0154] (2)モータ 521, 522を禾 IJ用して入ロノくノレブ部材 614、計量プランジャ部材 624、二 一ドル 633等を駆動しているので、エアシリンダ駆動に比べて高速に液体吐出動作 を実現できる。さらに、モータ 521 , 522は、エアシリンダ駆動に比べて発生力が大き いため、ノズルを細くして抵抗が増えても液体を飛ばして吐出することができる。この ため、例えば、 0. 01マイクロリットルの水でもきれいに飛ばすことができ、安定した動 作を実現できる。
その上、吐出工程は、ニードル 633が吐出口 642を塞ぐことで終了するため、吐出 液の液切れを良くでき、この点でも液をきれいに飛ばすことができ、吐出量の精度を 向上できかつ安定した吐出動作を実現できる。
[0155] (3)吐出液の液量は、各モータ 521, 522を駆動する駆動パルス数で容易にかつ正 確に調整できる。このため、吐出動作中であっても 1回の吐出動作毎の吐出量を自 動的に調整することができる。従って、例えば、基板上に複数の電子部品を取り付け る工程において、各電子部品の取付場所毎に異なる液量の接着剤を塗布するため に、基板上に吐出する液体の量を変更する場合や、複数の製品が混在して送られる 生産ラインにおいて、製品毎に液体の吐出量を変更しなければならない場合でも、 容易に対応でき、使い勝手のよい液体吐出装置 500を提供できる。
[0156] (4)また、各モータ 521 , 522を駆動する際に、駆動ノ^レス数のみで制御し、センサ 類を用いて駆動制御していないので、センサ検出時の誤差が駆動精度に影響するこ とを防止でき、精度の高い駆動制御が可能となる。
[0157] (5)さらに、各モータ 521 , 522の原点を設定する際に、 1つの近接センサ 536のみ で原点設定できるように制御したため、センサ部品数を少なくでき、コストも低減でき る。
[0158] (6)本実施形態では、計量プランジャ部材 624のストロークのみで液体の吐出量が 設定されるため、外気温などによって容器 601等が膨張しても吐出量の精度はその 影響を受けず、極微量であっても精度の高い液量を吐出できる。
[0159] (7)本実施形態では、磁石 566、 621や戻しバネ 565, 611等を設けているので、容 器 601および継ぎ手 515を取り外せば、入口バネ受け部材 610、入口弁ロッド 613、 入口バルブ部材 614を簡単に取り外すことができ、さらに、計量ガイド部材 620、計 量プランジャロッド 623、計量プランジャ部材 624を簡単に取り外すことができ、さらに 、ニードノレロッド 630、ニードル 633を簡単に取り外すことができる。このため、入ロバ ノレブ部材 614、計量プランジャ部材 624、ニードル 633を取り外して洗浄することも容 易に行え、メンテナンス作業を簡単にかつ効率的に行うことができる。
[0160] (8)ペーストのように高粘度の液体では、ポンプ部と吐出口 642が離れていると液体 の吐出に遅れが生じるが、本実施形態によれば、液体を吐出するニードル 633等を 有するポンプ部と、吐出口 642が極めて近いので、液体の吐出の遅れがない。 また、沸点が低く気化しやすいアルコール等の溶剤は、ポンプ内への吸入時あるい はチェック弁通過時等、流れが複雑になる時に泡が発生しやすぐこの泡が溜まって しまい液体が吐出されない場合がある。しかし、本実施形態によればポンプ部と吐出 口 642が極めて近ぐ液体の流れも複雑でないので、泡が発生することもなぐ液体 を正常に吐出できる。
[0161] (9)入口バルブ部材 614をニードル 633の外側かつ同心円状に設けたので、液体吸 入路より入口バルブ部材 614内に液体を吸入する際の吸入面積を広くすることがで き、液体の吸入時間、つまりは作業時間を短くできる。
[0162] (10)高粘度の液体を高速で吐出するには、液体を高圧で押し出す必要があるが、駆 動源としてモータ 521, 522の機械的な駆動力を用いているので、エアシリンダを駆 動源とした場合に比べて、駆動力が高くなり、液体を高速で吐出できる。
また、液体を基板等の被付着物より離れた上方から吐出できるので、液体吐出装 置 500の外部に赤外線等のセンサを設けることにより、吐出が行われた力を確認でき る。
液体吐出装置 500には、チヱック弁を設けていないので、液体を加圧して送ること ができる。従って、粘性の高い液体であっても液体吐出装置 500内への供給が容易 である。
[0163] なお、本発明は前記実施形態の構成に限定されるものではなぐ本発明の目的を 達成できる範囲の変形は本発明に含まれるものである。
例えば、入口バルブ部材 313、計量プランジャ部材 323、ニードル 333の形状等は 、前記第 1〜3実施形態のものに限定されず他の形状等でもよぐ要するに、ニード ノレ 333、計量プランジャ部材 323、入口バルブ部材 313の順に内側から外側に同心 円状に配置されてレ、ればよレ、。
[0164] 前記第 1、 2実施形態では、図 6A、図 7Aに示す状態を液体吐出装置 1の停止状 態、つまり原点状態としていたが、吐出する液体の種類等によっては、図 8A、図 9A に示す状態を原点状態としてもよい。 同様に、前記第 3実施形態では、図 38, 39に 示す状態を液体吐出装置 500の停止状態、つまり原点状態としていたが、吐出する 液体の種類等によっては、第 42, 43に示す状態を原点状態としてもよい。
これらの場合、液体吐出装置 1の駆動と同時に液体を吐出できるという効果がある。 この基準状態の選択は、制御装置で制御できるようにすれば、種々の液体に対応で きる。
その他、ポンプホルダ 2、駆動部台 3、容器 4の形状等は前記各実施形態の形状等 に限定されるものではなぐ他の形状等でもよい。
[0165] 前記各実施形態では、容器 4, 601を設けていたが、容器 4, 601を設けずに、入 口バルブ部材 313, 614部分に外部のタンクに連通するパイプ等を設けて、入ロバ ルブ部分に直接液体を供給するように構成してもよレ、。
[0166] 前記第 1 , 2実施形態では、圧電素子支持板 12と、圧電素子支持板 12とは別部材 の駆動アーム部材 15A, 15Bとで圧電素子支持部材を構成していた力 これらを一 体で製造したものを圧電素子支持部材としてもよレ、。
[0167] さらに、前記第 1, 2実施形態では、基端部 122A, 122Bおよび変位拡大部間に寸 法調整手段を設けていたが、圧電素子支持板 12を精度良く加工することで、寸法調 整手段を無くしても良い。また、寸法調整手段としては、前記実施形態の構成に限ら ず、長さ寸法を調整できるものであればよい。
[0168] 前記第 1 , 2実施形態では、圧電素子 14A, 14Bに印加する第 1設定値の電圧は「
0」としていたが、所定の値の電圧を印加するようにしてもよい。要するに、第 1設定値 を印加した状態から第 2設定値を印加した状態間で圧電素子 14A, 14Bの長さ寸法 が変化するように各電圧値を設定すればょレ、。
[0169] 前記第 2実施形態では、第 2ヒンジ部 125にひずみゲージ 101A〜104Bを貼り付 けていた力 S、他のヒンジ部 123, 126, 128に貼り付けてもよぐ要するに圧電素子 14 A, 14Bの伸縮に応じて変形する部分に設ければよい。但し、最も変形量が大きぐ かつ、ひずみゲージ 101 A〜104Bを貼り付けるスペースを確保しやすい第 2ヒンジ 部 125に設けることが好ましい。
また、第 2実施形態では、 2つの第 2ヒンジ部 125にそれぞれひずみゲージ 101A 〜104Bを取り付けていた力 例えば、一方の第 2ヒンジ部 125のみにひずみゲージ を取り付けて、計量プランジャ部材 323の移動量のみ、あるいは入口バルブ部材 31 3やニードル 333の動作のみを検出してもよレ、。但し、両方の第 2ヒンジ部 125にひず みゲージ 101A〜104Bを取り付けた方が液体吐出装置 1Aを高精度に駆動制御で きる点で好ましい。
なお、前記第 1実施形態の液体吐出装置 1においても、ひずみゲージ 101A〜: 10 4Bを設けて制御してもよレ、。但し、圧電素子 14A, 14Bの動作(変位量)は、同じ種 類の液体を吐出する場合のように、液体吐出動作時に計量プランジャ部材 323等に 加わる力が殆ど変化しなければ、駆動電圧で精度良く制御できるので、第 1実施形 態のように、ひずみゲージ 101A〜: 104Bを設けなくても精度の高い液体吐出を行う ことは十分に可能である。
[0170] 第 2実施形態では、計量工程の完了時の計量プランジャ部材 323の位置を、前記 ひずみゲージ 101A〜104Bを用いて検出し、次の計量工程時に圧電素子 14A, 1 4Bに加える電圧値を制御していた力 ひずみゲージ 101A〜104Bの出力をリアル タイムに処理して圧電素子 14A, 14Bに加える電圧値を制御してもよい。例えば、計 量プランジャ部材 323の移動を開始した時点から第 2ヒンジ部 125の曲げひずみ量 をリアルタイムで検出し、その曲げひずみ量が所定量になった時点、つまり計量ブラ ンジャ部材 323が所定量移動した時点で圧電素子 14A, 14Bの駆動を停止すること で、吐出量を調整してもよい。
[0171] 前記第 3実施形態では、 1つの近接センサ 536のみで 2つのモータ 521 , 522の原 点設定を行っていた力 2つのセンサを設けて、各モータ 521 , 522毎の原点位置、 つまり入口ナット 530、計量ナット 540の原点位置をそれぞれ検出することで原点設 定してもよレ、。このように 2つのセンサを設けた場合には、図 34に示すように、計量ナ ット押さえ部材 543をニードル押し部材 561に当接してネジ軸 529を上方に移動させ ることで、第 2モータ 522の原点位置を調整する必要がなくなるため、計量ナット押さ ぇ部材 543がニードル押し部材 561に当接する位置を原点位置に設定する必要も 無くなる。
[0172] 本発明の液体吐出装置 1, 1A, 500は、圧電素子 14A, 14Bや各モータ 521, 52 2の駆動を制御することで、例えば、はんだ等の液体を部品の形状などに合わせて 吐出して短い線書きに使用することもできる。特に、計量プランジャ部材 323, 624の 移動量をひずみゲージ 101A〜: 104Bなどを用いてリアルタイムに検出していれば、 確実にかつ精度よく液体を線書きすることができる。
[0173] また、本発明の液体吐出装置 1, 1A, 500は、電子部品の製造装置に組み込んで 禾 IJ用してもよレ、。すなわち、電子部品の製造装置は、前述の液体吐出装置 1, 1A, 5 00と、この液体吐出装置 1の容器 4, 601内に液体を供給する液体供給手段と、前 記液体吐出装置 1 , 1A, 500の駆動手段を制御する制御装置とを備えて構成され、 前記液体供給手段から供給される液体を前記液体吐出装置 1, 1A, 500を介してノ ズノレ 43, 643から吐出して電子部品を製造するものとすればよい。
このような電子部品の製造装置では、極微量の液体を精度良く移送できる前述の 液体吐出装置 1 , 1A, 500を用いているので、前記ノズノレ 43、 643から極微量の液 体を高精度に吐出できる。
産業上の利用可能性
[0174] 本発明は、微量の液体を高速に吐出でき、吐出量を自動的に調整でき、構造も簡 易にできて製造コストを抑えることができ、容易に小型化でき、半導体製造や薬液分 注などの分野で用いられる液体吐出装置に利用できる。

Claims

請求の範囲
内部に吐出用の液体が収容される液体収容空間およびこの液体収容空間に連通 された吐出口が形成された本体と、
前記本体の液体収容空間内に配置されて前記吐出口を開閉する吐出口開閉部材 と、
前記本体の液体収容空間内に配置されかつ吐出口開閉部材の外側に同心円状 に配置されて液体を吐出する吐出用部材と、
前記本体の液体収容空間内に配置されかつ吐出用部材の外側に同心円状に配 置されて液体収容空間から吐出口に連通する液体供給部を開閉する供給部開閉部 材と、
前記吐出口開閉部材、吐出用部材および供給部開閉部材をそれぞれ所定動作で 駆動させる変位量設定可能な駆動機構とを備え、
前記駆動機構は、
前記供給部開閉部材を吐出口に近づく第 1方向および吐出口から離れる第 2方向 に進退移動させる供給部開閉用駆動手段と、
前記吐出用部材を前記第 1方向および第 2方向に進退移動させる吐出用駆動手 段と、
前記吐出口開閉部材を前記第 1方向に付勢する付勢手段とを備え、
前記供給部開閉部材は、前記供給部開閉用駆動手段によって前記第 1方向に移 動されると、本体に当接されて前記液体供給部を閉塞し、前記供給部開閉用駆動手 段によって前記第 2方向に移動されると、その移動に伴って吐出口から離れる方向 に移動されると、本体から離れて前記液体供給部を開放し、
前記吐出用部材は、前記吐出用駆動手段によって前記第 1方向に移動されると、 その移動に伴って吐出口に近づく方向に移動されて吐出口から液体を吐出し、前記 吐出用駆動手段によって前記第 2方向に移動されると、液体供給部から液体を吸入 し、
前記吐出口開閉部材は、前記供給部開閉部材が本体力 離れていて前記液体供 給部が開放されている状態では、前記付勢手段によって吐出口側に付勢されて吐 出口に当接して吐出口を閉塞し、前記供給部開閉用駆動手段によって供給部開閉 部材が前記第 1方向に移動して本体に当接した後、さらに供給部開閉用駆動手段に よって前記第 1方向に移動された場合には、前記付勢手段の付勢力に抗して吐出口 力 離れる方向に移動されて吐出口を開放することを特徴とする液体吐出装置。 内部に吐出用の液体が収容される液体収容空間およびこの液体収容空間に連通 された吐出口が形成された本体と、
前記本体の液体収容空間内に配置されて前記吐出口を開閉する吐出口開閉部材 と、
前記本体の液体収容空間内に配置されかつ吐出口開閉部材の外側に同心円状 に配置されて液体を吐出する吐出用部材と、
前記本体の液体収容空間内に配置されかつ吐出用部材の外側に同心円状に配 置されて液体収容空間から吐出口に連通する液体供給部を開閉する供給部開閉部 材と、
前記吐出口開閉部材、吐出用部材および供給部開閉部材をそれぞれ所定動作で 駆動させる駆動機構とを備え、
前記駆動機構は、第 1圧電素子および第 2圧電素子と、各圧電素子が取り付けられ た圧電素子支持部材と、前記圧電素子支持部材を本体に対して吐出口側に付勢す る付勢手段と、各圧電素子を個別に駆動可能な駆動制御手段とを備え、
前記圧電素子支持部材は、各圧電素子の一端側が固定された第 1基端部および 第 2基端部と、各圧電素子の他端側が固定された第 1駆動部および第 2駆動部と、前 記圧電素子の伸縮駆動に連動して前記各駆動部が変位すると、その変位を拡大し て出力する第 1変位拡大部および第 2変位拡大部とを備え、
前記供給部開閉部材は、前記第 1圧電素子の伸長に伴い、前記第 1駆動部および 第 1変位拡大部を介して吐出口に近づく方向に移動されて本体に当接して前記液 体供給部を閉塞し、第 圧電素子の縮小に伴い、前記第 1駆動部および第 1変位拡 大部を介して吐出口から離れる方向に移動されて本体から離れて前記液体供給部 を開放し、
前記吐出用部材は、前記第 2圧電素子の伸長に伴い、前記第 2駆動部および第 2 変位拡大部を介して吐出口に近づく方向に移動されて吐出口から液体を吐出し、第
2圧電素子の縮小に伴い、前記第 2駆動部および第 2変位拡大部を介して吐出口か ら離れる方向に移動されて液体供給部から液体を吸入し、
前記吐出口開閉部材は、前記第 1圧電素子が縮小されている状態では、前記付勢 手段によって吐出口側に付勢される圧電素子支持部材を介して吐出口に近づく方 向に移動されて吐出口に当接して吐出口を閉塞し、前記第 1圧電素子が伸長して供 給部開閉部材が本体に当接後さらに第 1圧電素子が伸長することで前記圧電素子 支持部材が前記付勢手段の付勢力に杭して吐出口から離れる方向に移動されること で吐出口から離れて吐出口を開放することを特徴とする液体吐出装置。
[3] 請求項 2に記載の液体吐出装置において、
前記圧電素子支持部材は、一体成形された圧電素子支持板と、圧電素子支持板 に取り付けられた駆動アーム部材とで構成され、
前記圧電素子支持板は、各圧電素子間に設けられたベース部と、このベース部の 一端側から連続して形成された前記第 1基端部および第 2基端部と、前記ベース部 の他端側から変形可能な第 1ヒンジ部を介して連続して形成された前記第 1駆動部 および第 2駆動部と、前記各基端部に対して変形可能な第 2ヒンジ部および前記各 駆動部に対して変形可能な第 3ヒンジ部を介して連続して形成された前記第 1変位 伝達部および第 2変位伝達部とを備え、前記各圧電素子が初期状態から伸長すると 、前記各駆動部は第 1ヒンジ部が変形し、第 3ヒンジ部側が圧電素子の伸長方向に移 動するように傾斜し、この各駆動部の傾斜に伴レ、、各変位拡大部は、第 3ヒンジ部側 が各駆動部の傾斜によって圧電素子の伸長方向に移動し、その移動に伴い第 2ヒン ジ部が変形することで傾斜するように構成され、
前記駆動アーム部材は、前記各変位伝達部に固定された固定部と、この固定部か ら延長された駆動アーム部とを備え、前記変位伝達部が傾斜した際に、前記圧電素 子の伸長量に比べて駆動アーム部先端の移動量が大きくなるように構成され、 この駆動アーム部材および前記各変位伝達部によって前記各変位拡大部が構成 されていることを特徴とする液体吐出装置。
[4] 請求項 3に記載の液体吐出装置において、 前記各ヒンジ部の少なくとも一つのヒンジ部には、ひずみゲージが取り付けられてい ることを特徴とする液体吐出装置。
[5] 請求項 4に記載の液体吐出装置にぉレ、て、
前記ひずみゲージは、前記第 2ヒンジ部の両面にそれぞれ 2枚ずつ計 4枚貼り付け られ、これらの 4枚のひずみゲージはブリッジ状に接続されてレ、ることを特徴とする液 体吐出装置。
[6] 請求項 2から請求項 5のいずれかに記載の液体吐出装置において、
前記本体および供給部開閉部材間に設けられ、供給部開閉部材を本体に対して 圧電素子支持部材側に付勢する第 2の付勢手段と、
供給部開閉部材および前記吐出用部材間に設けられ、吐出用部材を供給部開閉 部材に対して圧電素子支持部材側に付勢する第 3の付勢手段と、
吐出用部材および前記吐出口開閉部材間に設けられ、吐出口開閉部材を吐出用 部材に対して圧電素子支持部材側に付勢する第 4の付勢手段とを備え、
第 2〜4の付勢手段の付勢力は、徐々に小さく設定され、前記圧電素子支持部材 を本体に対して吐出口側に付勢する付勢手段の付勢力は、第 2の付勢手段の付勢 力よりも大きくされていることを特徴とする液体吐出装置。
[7] 請求項 2から請求項 6のいずれかに記載の液体吐出装置において、
前記駆動制御部は、
前記第 1圧電素子に加える電圧値を第 1圧電素子用第 1設定値から第 1圧電素子 用第 2設定値まで変更可能であり、かつ、前記第 2圧電素子に加える電圧値を第 2圧 電素子用第 1設定値力 第 2圧電素子用第 2設定値まで変更可能であるとともに、 前記各圧電素子に第 1設定値の電圧を印加し、前記付勢手段によって吐出口開 閉部材を吐出口側に付勢して吐出口が閉じられた初期状態と、
第 1圧電素子に加える電圧値を第 1圧電素子用第 1設定値に維持するとともに、第 2圧電素子に加える電圧値を第 2圧電素子用第 1設定値からこの第 1設定値よりも大 きく第 2圧電素子用第 2設定値よりも小さい第 2圧電素子用第 3設定値まで変化させ て第 2圧電素子を所定量伸長することで吐出用部材を吐出口側の所定の位置まで 移動し、吐出用部材および本体間の計量空間の容積を設定して前記空間部分の液 体を計量する計量工程と、
第 2圧電素子に加える電圧値を第 2圧電素子用第 3設定値に維持するとともに、第 1圧電素子に加える電圧値を第 1圧電素子用第 1設定値から第 1圧電素子用第 2設 定値まで変化させて第 1圧電素子を所定量伸長することで、供給部開閉部材を本体 に当接させて前記液体供給部を閉塞し、さらに本体に当接された供給部開閉部材を 介して圧電素子支持部材を前記付勢手段の付勢力に杭して吐出ロカ 離れる方向 に移動し、その移動に伴い吐出口開閉部材を吐出口から離れる方向に移動して吐 出口を開くバルブ切替工程と、
前記第 1圧電素子に加える電圧値を第 1圧電素子用第 2設定値に維持するとともに 、前記第 2圧電素子に加える電圧値を第 2圧電素子用第 3設定値から第 2圧電素子 用第 2設定値まで変化させて第 2圧電素子をさらに所定量伸長することで吐出用部 材を吐出口側に移動して吐出用部材および本体間の計量空間の容積を減少させて 計量空間内の液体を吐出口から吐出させる吐出工程と、
第 2圧電素子に加える電圧値を第 2圧電素子用第 2設定値に維持するとともに、前 記第 1圧電素子に加える電圧値を第 1圧電素子用第 2設定値から第 1圧電素子用第 1設定値まで変化させて第 1圧電素子を元の長さまで縮小し、供給部開閉部材を本 体力 離して前記液体供給部を開く入口弁開放工程と、
第 1圧電素子に加える電圧値を第 1圧電素子用第 1設定値に維持するとともに、前 記第 2圧電素子に加える電圧値を第 2圧電素子用第 2設定値から第 2圧電素子用第 1設定値まで変化させて第 2圧電素子を元の長さまで縮小し、吐出用部材を本体か ら離して初期状態に戻す原点復帰工程と、
を実行することを特徴とする液体吐出装置。
[8] 請求項 2から請求項 7のいずれかに記載の液体吐出装置において、
前記駆動制御部は、各圧電素子に加える電流値を制御することで前記吐出口開 閉部材、吐出用部材および供給部開閉部材の駆動スピードを制御可能に構成され ていることを特徴とする液体吐出装置。
[9] 請求項 2から請求項 8のいずれかに記載の液体吐出装置において、
前記本体は、圧電素子支持部材が収納された駆動機構収納部と、この駆動機構収 納部に対して着脱可能に取り付けられた容器部とを備え、
前記容器部には前記吐出口が形成されていることを特徴とする液体吐出装置。 内部に吐出用の液体が収容される液体収容空間およびこの液体収容空間に連通 された吐出口が形成された本体と、
前記本体の液体収容空間内に配置されて前記吐出口を開閉する吐出口開閉部材 と、
前記本体の液体収容空間内に配置されかつ吐出口開閉部材の外側に同心円状 に配置されて液体を吐出する吐出用部材と、
前記本体の液体収容空間内に配置されかつ吐出用部材の外側に同心円状に配 置されて液体収容空間から吐出口に連通する液体供給部を開閉する供給部開閉部 材と、
前記吐出口開閉部材、吐出用部材および供給部開閉部材をそれぞれ所定動作で 駆動させる駆動機構とを備え、
前記駆動機構は、第 1モータおよび第 2モータと、第 1モータで回転駆動されるネジ 軸と、ネジ軸に螺合された第 1ナット部材および第 2ナット部材と、前記第 2モータで 回転駆動されかつ前記第 2ナット部材に対して第 2モータの回転を伝達可能に螺合 された伝達用歯車と、ネジ軸を吐出口側に付勢する付勢手段と、各モータを個別に 駆動可能な駆動制御手段とを備え、
前記ネジ軸は、一端側が前記第 1モータの回転軸と一体的に回転可能かつ軸方 向にスライド移動可能に連結され、他端側が前記吐出口開閉部材に連結され、 前記第 1ナット部材は、前記供給部開閉部材に連結され、
前記第 2ナット部材は、前記吐出用部材に連結され、
前記供給部開閉部材は、前記第 1モータの回転駆動に伴い、前記第 1ナット部材 が吐出口に近づく方向に移動されると、その移動に伴って吐出口に近づく方向に移 動されて本体に当接して前記液体供給部を閉塞し、前記第 1モータの回転駆動に伴 レ、、第 1ナット部材が吐出口から離れる方向に移動されると、その移動に伴って吐出 ロカ 離れる方向に移動されて本体から離れて前記液体供給部を開放し、 前記吐出用部材は、前記第 2モータの回転駆動に伴い、前記第 2ナット部材が吐 出口に近づく方向に移動されると、その移動に伴って吐出口に近づく方向に移動さ れて吐出ロカ 液体を吐出し、前記第 2モータの回転駆動に伴い、第 2ナット部材が 吐出口から離れる方向に移動されて液体供給部から液体を吸入し、
前記吐出口開閉部材は、前記供給部開閉部材が本体力 離れていて前記液体供 給部が開放されている状態では、前記付勢手段およびネジ軸を介して吐出口側に 付勢されて吐出口に当接して吐出口を閉塞し、前記第 1モータの回転駆動に伴い、 供給部開閉部材が本体に当接後さらに第 1モータが回転された場合には、前記ネジ 軸が前記付勢手段の付勢力に杭して吐出口力 離れる方向に移動されることで吐出 口から離れて吐出口を開放することを特徴とする液体吐出装置。
[11] 請求項 10に記載の液体吐出装置において、
前記第 2モータの回転軸には、この回転軸と同軸上でかつ回転軸と一体に回転す るスプライン軸が接続され、
前記伝達用歯車は、前記スプライン軸に沿って移動可能にかつスプライン軸と一体 に回転可能とされたモータギヤと、このモータギヤおよび前記第 2ナット部材の外周 面に形成された歯車に螺合された中間歯車とを備えて構成されてレ、ることを特徴とす る液体吐出装置。
[12] 請求項 10または請求項 11のいずれかに記載の液体吐出装置において、
前記駆動制御手段は、
前記供給部開閉部材は本体力 離れて配置されて前記液体供給部が開放され、 前記吐出用部材は吐出口側に近づく方向のストロークエンドの位置に配置され、前 記吐出口開閉部材は前記付勢手段によって吐出口側に付勢して吐出口が閉じられ た位置に配置された初期状態と、
前記初期状態から第 2モータを所定量回転駆動して第 2ナット部材に連結された吐 出用部材を吐出口から離れる方向に所定距離移動し、供給部開閉部材内の前記吐 出用部材が移動して形成された空間に液体を吸入する吸入工程と、
前記第 1モータを所定量回転駆動して第 1ナット部材に連結された供給部開閉部 材を本体に当接させて前記液体供給部を閉塞し、さらに本体に当接された供給部開 閉部材を介してネジ軸を前記付勢手段の付勢力に杭して吐出ロカ 離れる方向に 移動し、その移動に伴い吐出口開閉部材を吐出口から離れる方向に移動して吐出 口を開く第 1バルブ切替工程と、
前記第 2モータを所定量回転駆動して第 2ナット部材に連結された吐出用部材を吐 出口側に移動して供給部開閉部材内の空間の容積を減少させて空間内の液体を吐 出口力 吐出させる吐出工程と、
前記第 1モータを所定量回転駆動して第 1ナット部材に連結された供給部開閉部 材を本体力 離して前記液体供給部を開くとともに、前記吐出用部材で吐出ロを閉 じる第 2バノレブ切替工程と、
を実行することを特徴とする液体吐出装置。
[13] 請求項 12に記載の液体吐出装置において、
前記初期状態においては、前記吐出口開閉部材は前記第 2ナット部材によって押 されて吐出口が閉じられた位置に配置され、
前記吐出工程の完了時においては、前記吐出口開閉部材は前記第 2ナット部材に よって押されて吐出口が閉じられる位置に配置されていることを特徴とする液体吐出 装置。
[14] 請求項 10から請求項 13のいずれかに記載の液体吐出装置において、
前記駆動制御手段は、各モータの回転速度を制御することで前記吐出口開閉部 材、吐出用部材および供給部開閉部材の駆動スピードを制御可能に構成されている ことを特徴とする液体吐出装置。
PCT/JP2006/300974 2005-01-24 2006-01-23 液体吐出装置 WO2006078018A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006553986A JP4621692B2 (ja) 2005-01-24 2006-01-23 液体吐出装置
US11/814,392 US7815422B2 (en) 2005-01-24 2006-01-23 Liquid discharging device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-015691 2005-01-24
JP2005015691 2005-01-24
JP2005-185716 2005-06-24
JP2005185716 2005-06-24

Publications (1)

Publication Number Publication Date
WO2006078018A1 true WO2006078018A1 (ja) 2006-07-27

Family

ID=36692390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300974 WO2006078018A1 (ja) 2005-01-24 2006-01-23 液体吐出装置

Country Status (3)

Country Link
US (1) US7815422B2 (ja)
JP (1) JP4621692B2 (ja)
WO (1) WO2006078018A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054492A (ja) * 2006-07-28 2008-03-06 Noiberuku Kk 圧電駆動装置および液体吐出装置
JP2010168952A (ja) * 2009-01-21 2010-08-05 Noiberuku Kk 液体吐出装置
CN104901582A (zh) * 2015-05-19 2015-09-09 西安交通大学 基于压电-平行四杆机构的平面行走作动器及行走方法
JP2016100154A (ja) * 2014-11-20 2016-05-30 株式会社ホロン 移動・傾斜機構
JP2016197970A (ja) * 2015-04-06 2016-11-24 有限会社メカノトランスフォーマ アクチュエータ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012109123A1 (de) 2012-09-27 2014-03-27 Vermes Microdispensing GmbH Dosiersystem, Dosierverfahren und Herstellungsverfahren
DE102012109124A1 (de) 2012-09-27 2014-03-27 Vermes Microdispensing GmbH Dosiersystem, Dosierverfahren und Herstellungsverfahren
JP6467132B2 (ja) * 2013-12-27 2019-02-06 蛇の目ミシン工業株式会社 ロボット、ロボットの制御方法、およびロボットの制御プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189891A (ja) * 1993-12-28 1995-07-28 Noiberuku Kk ポンプ
JP2521332B2 (ja) * 1988-08-16 1996-08-07 健二 小川 ポンプ
JPH1077960A (ja) * 1996-09-03 1998-03-24 Noiberuku Kk ポンプ及びそのポンプを利用した液体吐出方法
JP2001263260A (ja) * 2000-03-15 2001-09-26 Noiberuku Kk ポンプ
JP2002021715A (ja) * 2000-07-10 2002-01-23 Matsushita Electric Ind Co Ltd 流体供給装置及び流体供給方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0412978B1 (de) * 1988-04-20 1992-11-11 Lenhardt Maschinenbau GmbH Vorrichtung zum abgeben hochviskoser, pastöser, kompressibler substanzen
US4983103A (en) * 1988-08-16 1991-01-08 Neuberg Company Limited Annular plunger pump
US5467899A (en) * 1994-02-08 1995-11-21 Liquid Control Corporation Dispensing device for flowable materials
JP2003003952A (ja) * 2001-06-22 2003-01-08 Noiberuku Kk 流体吐出装置
US6467655B1 (en) * 2001-11-28 2002-10-22 Neuberg Company Limited Pump dispenser
WO2004090331A1 (ja) * 2003-04-01 2004-10-21 Neuberg Company Limited 液体吐出装置
JP4695870B2 (ja) * 2004-05-13 2011-06-08 ノイベルク有限会社 ダイアフラムポンプおよび電子部品の製造装置
US7432637B2 (en) * 2006-07-28 2008-10-07 Neuberg Company Limited Piezoelectric drive device and liquid discharging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521332B2 (ja) * 1988-08-16 1996-08-07 健二 小川 ポンプ
JPH07189891A (ja) * 1993-12-28 1995-07-28 Noiberuku Kk ポンプ
JPH1077960A (ja) * 1996-09-03 1998-03-24 Noiberuku Kk ポンプ及びそのポンプを利用した液体吐出方法
JP2001263260A (ja) * 2000-03-15 2001-09-26 Noiberuku Kk ポンプ
JP2002021715A (ja) * 2000-07-10 2002-01-23 Matsushita Electric Ind Co Ltd 流体供給装置及び流体供給方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054492A (ja) * 2006-07-28 2008-03-06 Noiberuku Kk 圧電駆動装置および液体吐出装置
JP2010168952A (ja) * 2009-01-21 2010-08-05 Noiberuku Kk 液体吐出装置
JP2016100154A (ja) * 2014-11-20 2016-05-30 株式会社ホロン 移動・傾斜機構
JP2016197970A (ja) * 2015-04-06 2016-11-24 有限会社メカノトランスフォーマ アクチュエータ
CN104901582A (zh) * 2015-05-19 2015-09-09 西安交通大学 基于压电-平行四杆机构的平面行走作动器及行走方法

Also Published As

Publication number Publication date
US20090053079A1 (en) 2009-02-26
JP4621692B2 (ja) 2011-01-26
JPWO2006078018A1 (ja) 2008-06-19
US7815422B2 (en) 2010-10-19

Similar Documents

Publication Publication Date Title
WO2006078018A1 (ja) 液体吐出装置
US10300505B2 (en) Modular jetting devices
JP6773826B2 (ja) 基材上に粘性材料を供給する方法
US9387504B2 (en) Cartridge dispenser
US20060147313A1 (en) Microdosing apparatus and method for dosed dispensing of liquids
US7432637B2 (en) Piezoelectric drive device and liquid discharging device
CN106964522B (zh) 压电驱动喷射装置
US7303728B2 (en) Fluid dispensing device
JP4695870B2 (ja) ダイアフラムポンプおよび電子部品の製造装置
JP4994126B2 (ja) 圧電駆動装置および液体吐出装置
US7150791B2 (en) Floating head liquid dispenser with dispensing head sensor
KR101949120B1 (ko) 디스펜싱 헤드유닛
JP2008197037A (ja) 分注装置およびそのコントローラと分注方法
WO2002092228A2 (en) A method and device for dispensing of droplets
JP5368122B2 (ja) 液体吐出装置
CN112317255B (zh) 用于流体微量喷射装置的位置闭环检测方法
JP3550531B2 (ja) ポンプ式ディスペンサ
CN114203584A (zh) 集成在时间压力分配器中的体积测量及调节装置
JPH09145720A (ja) 分注装置
JP2004202295A (ja) ノズルおよびそのノズルを使用した液体供給装置
JPH0957984A (ja) 位置決め装置及びその制御方法、インクジェットヘッド製造装置及びその制御方法、インクジェットヘッド
IE20020333A1 (en) A method and device for dispensing of droplets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11814392

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006553986

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06712190

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712190

Country of ref document: EP