WO2006077639A1 - 光モジュール - Google Patents

光モジュール Download PDF

Info

Publication number
WO2006077639A1
WO2006077639A1 PCT/JP2005/000677 JP2005000677W WO2006077639A1 WO 2006077639 A1 WO2006077639 A1 WO 2006077639A1 JP 2005000677 W JP2005000677 W JP 2005000677W WO 2006077639 A1 WO2006077639 A1 WO 2006077639A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
light receiving
optical
receiving unit
unit
Prior art date
Application number
PCT/JP2005/000677
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Hakomori
Masakazu Horishita
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2006553797A priority Critical patent/JP4540680B2/ja
Priority to PCT/JP2005/000677 priority patent/WO2006077639A1/ja
Publication of WO2006077639A1 publication Critical patent/WO2006077639A1/ja
Priority to US11/826,975 priority patent/US7720393B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the present invention relates to an optical module in which an optical signal transmission unit and a reception unit are integrated, and to an optical module that can reduce crosstalk between the transmission unit and the reception unit.
  • IP Internet 'protocol
  • optical transceivers for transmitting and receiving optical signals are becoming smaller and more densely mounted.
  • a signal flowing through a transmitter in the optical transceiver leaks into an adjacent receiver, and crosstalk that generates noise or the like is a problem.
  • a radio wave absorber is attached to the crosstalk radio wave generation part of the transmitter and the sensitive circuit part of the receiver (for example, refer to Patent Document 1 below), or the transmitter.
  • a technique such as providing a low-pass filter is disclosed.
  • ferrite is formed into a small cylindrical shape or the like as an element capable of suppressing crosstalk over a frequency band handled by an optical transceiver for optical communication, and is interposed in a signal path.
  • ferrite beads There are ferrite beads. This ferrite bead absorbs high-frequency noise components among the components included in the signal that passes through, and converts them into heat for removal.
  • a technology for providing ferrite beads in a cable for connection to a communication device see, for example, Patent Document 3
  • a technology for providing ferrite beads in the ground line of each device for example, see Patent Document 4).
  • FIG. 9 is a diagram showing a crosstalk countermeasure example of a conventional optical transceiver.
  • the optical transceiver 10 emits light that drives an LD, which is a light emitting element, on a single printed circuit board 11.
  • a transmitting unit 12 including an element driving circuit (LD driving circuit or the like) and a receiving unit 13 including a main amplifier circuit are provided.
  • the transmitting unit 12 is connected to a light emitting unit 14 including an LD or the like, and the receiving unit 13 is connected to a light receiving unit 15 including a PD or the like.
  • the distance between the light emitting unit 14 and the light receiving unit 15 is several mm.
  • the receiving portion 13 of the printed board 11 is covered with the shield 16 to prevent crosstalk due to spatial propagation.
  • the shield 16 a shield plate or a shield case is used.
  • the transmitter 12 and the receiver 13 provided in one miniaturized optical transceiver 10 are supplied with the same power supply line power and are grounded to the same ground line. For this reason, a common impedance is generated, and the reception unit 13 is affected by the operation of the high-output transmission unit 12. The effect of this common impedance was also considered as one of the causes of crosstalk. Therefore, it was thought that the crosstalk caused by the common impedance could be reduced by providing the shield 16 as shown in FIG. 9 and separating the transmitter 12 and the receiver 13.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-185408
  • Patent Document 2 Pamphlet of International Publication No. 00Z33490
  • Patent Document 3 JP-A-10-208818
  • Patent Document 4 Japanese Patent Laid-Open No. 10-209664
  • optical transmitters and receivers in Internet 'traffic using optical fiber networks have been developed as standardized optical modules such as SFP (Small Form-Factor Pluggable, SFF (Small Form Factory, Common specifications such as XFP and ⁇ 0 Gigabit Small Form Factor Pluggable) have been established and functions and shapes have been unified!
  • SFP Small Form-Factor Pluggable
  • SFF Small Form Factory, Common specifications such as XFP and ⁇ 0 Gigabit Small Form Factor Pluggable
  • the present invention has been made in view of the above, and is simple even if the size is limited.
  • An object of the present invention is to provide an optical module that can reduce crosstalk at a low cost with a simple structure and can be miniaturized.
  • the present invention provides an optical module in which a transmitter and a receiver that input and output an optical signal are stored in a housing, the transmitter and the transmitter
  • the receiving unit is characterized in that a common power supply line and a ground line are connected, and ferrite beads are arranged on the dotted line of the receiving unit.
  • the high frequency current component of the electrical signal flowing through the ground line is absorbed by the ferrite beads arranged on the ground line. That is, the oscillation of the series resonance circuit formed by the inductance component generated in the power supply line and the ground line of the light receiving element of the receiving unit and the capacitance component of the light receiving element is suppressed. This reduces cross talk.
  • the optical module according to the present invention can be reduced in overall size and provided with a shield by disposing an element that blocks high-frequency components at a location suitable for crosstalk suppression on the circuit of the optical module. It is possible to reduce crosstalk with a simple configuration without any problems.
  • FIG. 1 is a diagram showing a configuration of an optical module according to Example 1 of the present invention.
  • FIG. 2 is a diagram showing a circuit configuration of a light emitting unit.
  • FIG. 3 is a diagram showing a circuit configuration of a light receiving unit.
  • FIG. 4 is a model diagram showing the circuit configuration of the optical module before taking measures against crosstalk.
  • FIG. 5 is a diagram showing a circuit configuration of an optical module in which measures against crosstalk are taken.
  • FIG. 6 is a chart showing the effect of improving crosstalk by attaching ferrite beads.
  • FIG. 7 is a diagram showing a configuration of an optical module according to Example 2 of the present invention.
  • FIG. 8 is a perspective view showing a configuration of a support portion in the optical module according to Embodiment 2 of the present invention.
  • FIG. 9 is a diagram showing an example of crosstalk countermeasures in a conventional optical transceiver. Explanation of symbols
  • FIG. 1 is a diagram illustrating a configuration of an optical module according to Embodiment 1 of the present invention.
  • the optical module 100 is connected to the transmission unit 102 in the standardized casing 101, the printed circuit board 104 including the reception unit 103, and the transmission unit 102 of the printed circuit board 104, and outputs an optical signal to a transmission path (not shown).
  • a light receiving unit 106 that is connected to the receiving unit 103 of the printed circuit board 104 and receives light from a transmission path (not shown).
  • the transmitting unit 102 and the receiving unit 103 in the printed circuit board 104 are supplied with power by a common power (Vcc) force and are grounded to a common ground (GND).
  • Vcc common power
  • GND common ground
  • FIG. 2 is a diagram showing a circuit configuration of the light emitting unit.
  • the light emitting unit 105 is an LD (laser diode) 200 that is a light emitting element for outputting light (optical signal) to a transmission line that also has a connected optical fiber force, and a light receiving element for monitoring the output of the LD 200.
  • PD photodiode
  • LD laser diode
  • the LD drive circuit in the transmitter 102 is repeatedly turned on and off to generate a binary electric signal and input it to the light emitter 105.
  • the LD200 of the light emitting unit 105 The signal is converted into a synchronized optical signal and output to the transmission line.
  • the PD 201 outputs an electrical signal corresponding to the light reception intensity of the light of the LD 200 and outputs it to the transmission unit 102.
  • the output signal of the LD 200 can be monitored and stable light output can be performed.
  • FIG. 3 is a diagram illustrating a circuit configuration of the light receiving unit.
  • the light receiving unit 106 includes a light transmission element (PD) 300 for converting input light (optical signal) into an electric signal, a preamplifier 301 for amplifying the electric signal from the PD 300, and a transmission path force that is a connected optical fiber force. It is constituted by.
  • a receiving unit 103 (see FIG. 1) connected to the light receiving unit 106 serves as a main amplifier circuit and receives electrical signals.
  • the transmitter 102 and the receiver 103 are provided on the same printed circuit board 104 (see FIG. 1). As described above, the power is supplied by the same power (Vcc) and the same ground. Grounded to (GND).
  • the installation interval between the light emitting unit 105 and the light receiving unit 106 is only a few millimeters.
  • the current that drives the LD 200 of the light emitting unit 105 is a state in which an output current of several thousand times the current received by the PD 300 of the light receiving unit 106 is constantly flowing. For this reason, as mentioned above, there are concerns about the effects of spatial propagation, which was considered to be the largest cause of crosstalk.
  • the largest cause of crosstalk is that the power source (Vcc) of the transmission unit 102 and the reception unit 103 and the ground (GND) The common impedance generated by making them the same.
  • FIG. 4 is a diagram showing a circuit configuration of the optical module before taking measures against crosstalk. Using Fig. 4, we explain the principle by which common impedance causes crosstalk.
  • FIG. 4 shows a circuit configuration mainly including the receiving unit 103 and the light receiving unit 106 of the optical module 100 (see FIG. 1).
  • the preamplifier 301 in the figure is connected to a power supply (Vcc) line and a ground (GND) line.
  • the output of the preamplifier 301 is connected to an amplifier 401 for further amplifying the output signal.
  • a power line and a ground line connected to the amplifier 401 are omitted here.
  • the capacitor 402 is a bypass capacitor, and lowers the impedance of the power supply (Vcc) line and has a role of preventing noise from being added to the electric signal transmitted through the circuit.
  • the EO unit is the transmitting unit 102, and the power source (Vcc) and a plurality of grounds (GND) are connected to the receiving unit 103 and the transmitting unit (EO unit) 102. Vcc) and ground (GND).
  • Vcc) and ground (GND ground
  • an inductance component is generated on the power supply (Vcc) line that supplies power.
  • a coil 403 in the figure represents an equivalent inductance rather than a circuit element such as a coil actually provided.
  • the coil 404 represents the equivalent inductance generated in the ground (GND) line.
  • the transmission unit 102 and the reception unit 103 have a difference in the output of the current to be handled, but in order to form a common impedance, the ground (under the influence of the high output current flowing through the transmission unit 102) GND) Generates a voltage that is the source of the component force of the inductance generated on the line.
  • the ground under the influence of the high output current flowing through the transmission unit 102 GND
  • GND GND
  • the PD 300 is regarded as a capacitor (capacitance) when viewed as an AC circuit. Therefore, the series resonance circuit formed by the inductance component by the coils 403 and 404 and the capacitance component by the PD 300 resonates, and a high output through current flows in the circuit as crosstalk. Therefore, even if the capacitor 402 is used as the bypass capacitor described above, the effect of reducing the crosstalk cannot be expected. As a result of consideration, the most effective way to prevent crosstalk is to block the high-frequency component of the current caused by crosstalk flowing through the series resonant circuit and prevent oscillation.
  • FIG. 5 is a diagram showing a circuit configuration of an optical module that has taken measures against crosstalk.
  • an element that cuts off the high frequency on the arranged circuit is used.
  • General-purpose ferrite beads can be used as an element for blocking high frequency. Specifically, as shown in the figure, the ferrite bead 500a attached to the power supply (Vcc) line of the PD300 and the power supply (Vcc) line of the preamplifier 301 are connected. Place ferrite beads in three locations: the ferrite bead 500b attached and the ferrite bead 500c attached to the ground (GND) line other than the line on which the signal received by the PD300 is transmitted.
  • Vcc power supply
  • Vcc power supply
  • the ferrite beads 500 (500a-500c) attached to the optical module 100 according to the present invention has a structure in which an internal electrode for energization is embedded in the ferrite element. Acts as a magnetic substance, and has a function of absorbing high-frequency current components in electrical signals flowing through the wiring of the lines to which the ferrite beads 500 (500a-500c) are attached, and converting them into Joule heat. In other words, it is an element having a characteristic that it has a low resistance to a direct current flowing through an electric wire and a high resistance to an alternating current. Compared to other elements such as coils, which have similar functions, ferrite beads attenuate only high-frequency currents, so that high-frequency radiation to the surroundings can be greatly reduced. It has a feature that the influence of crosstalk due to propagation can be improved.
  • ⁇ ⁇ is the bandwidth around the resonance frequency
  • L is the coil inductance (Coinole 403, 404 equivalent inductance for the optical module 100)
  • C is the capacitor capacity ( ⁇ D300 junction capacity)
  • R represents the electrical resistance of the resonant circuit.
  • the ferrite beads 500a to 500c have a maximum resistance component in the tens of MHz to 1GHz band, so the frequency band is less than lGHzbitZsec. It is extremely effective for crosstalk. For example, crosstalk can be reduced by using the 155MHz, 622MHz, and 1.25GHz bands.
  • FIG. 6 is a chart showing the effect of improving crosstalk by attaching ferrite beads.
  • FIG. 6 shows that when the transmitter 102 is not transmitting light (transmitter 102 is OFF) and when it is transmitting light (transmitter 102 is ON) This is a numerical value (dBm) of the receiving sensitivity in part 103.
  • dBm the amount of improvement (dB) by crosstalk countermeasures is shown. The smaller the numerical value, the higher the sensitivity, and the smaller the improvement, the better the result.
  • Fig. 6 shows the circuit configuration as follows: 1. When ferrite beads 500 (500a-500c) are attached to preamplifier 301, PD300 and GND (line). 2. Ferrite beads 500 (only to GND (line) When 500c) was installed, 3. Measurement was made for each case where no ferrite beads 500 were used and crosstalk was not taken.
  • the transmission unit 102 If no optical transmission is performed in the transmission unit 102, crosstalk does not occur. Therefore, the transmission unit 102 is OFF and the crosstalk non-measurement state ( ⁇ 34.4 dBm) is used as a reference. Try to verify the amount of improvement. If the light receiving sensitivity is measured when transmitter 102 is turned on without taking any measures, it is 33. OdB, and the improvement is 1.4 dB. / It is expressed that! /
  • the photosensitivity is -34.2 dBm, which indicates that the standard photosensitivity is higher than when no ferrite beads are used.
  • the light receiving sensitivity is -33.4 dBm, and the improvement is 0.8 dB. Compared to the case, the deterioration was small.
  • the photosensitivity is -34.OdBm, and the improvement is 0.2dB, which is not yet taken countermeasures. Compared to the case, it could be suppressed with slight deterioration.
  • the ferrite beads are attached to the circuit constituting the receiving unit 103, thereby forming the common impedance and equivalent inductance of the transmitting unit 102 and the receiving unit 103. It is possible to prevent the occurrence of crosstalk between the transmission unit 102 and the reception unit 103 without causing an equivalent series oscillation circuit to oscillate.
  • FIG. 7 is a diagram illustrating a configuration of an optical module according to the second embodiment of the present invention.
  • FIG. 8 is a perspective view showing the configuration of the support portion in the optical module according to Embodiment 2 of the present invention.
  • the optical module 700 includes a printed circuit board 104 including a transmitting unit 102 and a receiving unit 103 in a standardized casing 101 such as an SFP, and a printed circuit board.
  • power is supplied from a common power source (Vcc) to the transmission unit 102 and the reception unit 103 of the printed circuit board 104, and a common ground (GND) is grounded.
  • Vcc common power source
  • GND common ground
  • a support 701 for attaching the light emitting unit 105 and the light receiving unit 106 to the housing 101 is provided.
  • the support 701 includes a light emitting portion 105 in the optical module 700 and a flange portion 800 protruding from the outer periphery of the light receiving portion 106 in a groove 701c formed in the upper support 701a and the lower support 701b. Fix to the housing 101.
  • the support 701 is made of an insulating material, an insulated metal or a ferrite material, and serves as a radio wave absorber.
  • the support 701 can absorb a voltage component that generates crosstalk, and can further reduce crosstalk. In particular, it is effective for small optical modules that perform optical transmission of wavelengths below lGHzbitZsec.
  • the optical module according to the present invention is useful for reducing the crosstalk caused by the common impedance, and in particular, the small size specification such as SFP and SFF is standardized. Suitable for optical transmitter / receiver type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 光信号を入出力する送信部と受信部(103)とが筐体に格納された光モジュールにおいて、送信部と、受信部(103)は共通の電源ラインとグランドラインが接続されるとともに、受信部(103)のグランドラインにフェライトビーズ(500c)を配置する。フェライトビーズ(500c)は、取り付けたグランドラインを流れる電気信号のうちの高周波電流成分を吸収する。すなわち、受光素子(300)の電源ラインおよびグランドラインに生じるインダクタンスの成分と、受光素子(300)が有する容量の成分により形成される直列共振回路の発振を抑えて、クロストークを低減させる。

Description

明 細 書
光モシユール
技術分野
[0001] 本発明は、光信号の送信部と受信部が一体化された光モジュールに関し、送信部 と受信部との間のクロストークを低減できる光モジュールに関するものである。
背景技術
[0002] 近年、急速な普及をみせる IP (インターネット 'プロトコル)を用いたインターネット 'ト ラフィックは、伝送路に光ファイバ網を用いることによって、より大容量の伝送サービス が実現されている。
[0003] また、光信号の送受信を行うための光送受信器にっ 、ては、小型化、高密度実装 化が進んでいる。このような光送受信器においては、光送受信器内の送信部を流れ る信号が隣接した受信部へ漏れ込み、雑音等を発生させるクロストークの発生が課 題となっている。このクロストークの対策としては、送信部のクロストークの電波発生箇 所と、受信部の感度の高い回路部分に電波吸収体を貼り付けたり(例えば、下記特 許文献 1参照。)、送信部に低域通過フィルタを設ける (例えば、下記特許文献 2参照 。)等の技術が開示されている。
[0004] また、現在用いられて 、る光通信の光送受信器が扱う周波数帯域にぉ 、てクロスト ークを抑圧可能な素子として、フェライトを小型の円筒形状等に成形し信号路に介在 して設けるフェライトビーズがある。このフェライトビーズは、通過する信号に含まれる 成分のうち、高周波のノイズ成分をフ ライトが吸収し、熱に変換して除去する。この 原理を利用し、通信装置へ接続を行うケーブルにフェライトビーズを設ける技術 (例 えば、特許文献 3参照。)や、各装置のグランドラインにフェライトビーズを設ける技術 (例えば、特許文献 4参照。)等が開示されている。
[0005] ところで、隣接した回線に信号が漏れ込むクロストークの最大の原因は、送信部を 流れる出力の高い信号が空間を伝播して受信部に流れる信号に干渉することが原 因と考えられていた。図 9は、従来の光送受信器のクロストーク対策例を示す図であ る。光送受信器 10は、 1枚のプリント基板 11上に発光素子である LDを駆動する発光 素子駆動回路 (LD駆動回路等)を含む送信部 12と、主増幅回路を含む受信部 13 が設けられる。送信部 12には LD等を含む発光部 14が接続され、受信部 13には PD 等を含む受光部 15が接続されて 、る。発光部 14と受光部 15との間隔は数 mmであ る。このような小型化された光送受信器 10において、プリント基板 11のうち受信部 13 をシールド 16で覆うことにより、空間伝播によるクロストークを防いでいた。シールド 1 6としては、シールド板やシールドケースを用いる。
[0006] また、小型化された一つの光送受信器 10内に設けられる送信部 12と受信部 13は 、同一の電源ライン力 電力の供給が行われ、同一のグランドラインに接地されてい る。このため、共通インピーダンスが生じ、高出力の送信部 12の動作によって受信部 13が影響を受ける。この共通インピーダンスによる影響もクロストークの要因の一つと 考えられていた。よって、図 9のようなシールド 16を設けて送信部 12と受信部 13とを 分離させること力 共通インピーダンスを要因とするクロストークを低減できるものと考 えられていた。
[0007] 特許文献 1:特開 2002-185408号公報
特許文献 2:国際公開第 00Z33490号パンフレット
特許文献 3 :特開平 10- 208818号公報
特許文献 4:特開平 10— 209664号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、近年、光ファイバ網を用いたインターネット 'トラフィックにおける光送 受信器は、規格化された光モジュールとして、 SFP (Small Form-Factor Plugg ableノ、 SFF (Small Form Factory、 XFP、丄 0 Gigabit Small Form Factor Pluggable)などの共通仕様が制定され、機能と形状が統一されてきて!/、る。
[0009] したがって、光モジュールとしてのサイズに制約がある条件でシールド 16を設けるこ とは困難になってきて 、る。仮にシールド 16であるシールド板やシールドケースを組 み立ててシールド 16内部に受信部 13を収容した場合には全体の大きさを小型化す ることができない。
[0010] 本発明は、上記に鑑みてなされたものであって、制約されたサイズであっても簡単 な構成で低コストにクロストーク低減を施すことができ、小型化できる光モジュールを 提供することを目的とする。
課題を解決するための手段
[0011] 上述した課題を解決し、目的を達成するために、本発明は、光信号を入出力する 送信部と受信部とが筐体に格納された光モジュールにおいて、前記送信部と、前記 受信部は共通の電源ラインとグランドラインが接続されるとともに、当該受信部のダラ ンドラインにフェライトビーズを配置したことを特徴とする。
[0012] 上記構成によれば、グランドラインに配置したフェライトビーズによって、グランドライ ンを流れる電気信号のうちの高周波電流成分を吸収する。すなわち、受信部の受光 素子の電源ラインおよびグランドラインに生じるインダクタンスの成分と、受光素子が 有する容量の成分により形成される直列共振回路の発振を抑える。これにより、クロス トークを低減させる。
発明の効果
[0013] 本発明に力かる光モジュールは、光モジュールの回路上でクロストークの抑圧に適 した箇所に高周波成分を遮断する素子を配置することにより、全体サイズを小型化で き、シールドを設けることなく簡単な構成でクロストークを低減できるという効果を奏す る。
図面の簡単な説明
[0014] [図 1]図 1は、本発明の実施例 1にかかる光モジュールの構成を示す図である。
[図 2]図 2は、発光部の回路構成を示す図である。
[図 3]図 3は、受光部の回路構成を示す図である。
[図 4]図 4は、クロストーク対策を施す前の光モジュールの回路構成を示すモデル図 である。
[図 5]図 5は、クロストーク対策を施した光モジュールの回路構成を示す図である。
[図 6]図 6は、フェライトビーズ取り付けによるクロストーク改善効果を示す図表である。
[図 7]図 7は、本発明の実施例 2にかかる光モジュールの構成を示す図である。
[図 8]図 8は、本発明の実施例 2にかかる光モジュールにおける支持部の構成を示す 斜視図である。 [図 9]図 9は、従来の光送受信器のクロストーク対策例を示す図である。 符号の説明
[0015] 100 光モジュール
101 筐体
102 送信部
103 受信部
104 プリント基板
105 発光部
106 受光部
500 (500a— 500c) フェライ卜ビーズ
701 支持具
発明を実施するための最良の形態
[0016] 以下に、本発明に力かる光モジュールの実施例を図面に基づいて詳細に説明する 実施例 1
[0017] 図 1は、本発明の実施例 1にかかる光モジュールの構成を示す図である。光モジュ ール 100は、規格化された筐体 101内に送信部 102と、受信部 103を備えたプリント 基板 104と、プリント基板 104の送信部 102に接続され、図示しない伝送路に光出力 を行う発光部 105と、プリント基板 104の受信部 103に接続され、図示しない伝送路 から光入力される受光部 106と、が備えられている。プリント基板 104内の送信部 10 2と受信部 103は、共通の電源 (Vcc)力も電力が供給されるとともに、共通のグランド (GND)に接地されている。
[0018] 図 2は、発光部の回路構成を示す図である。発光部 105は、接続された光ファイバ 力もなる伝送路に光 (光信号)を出力するための発光素子である LD (レーザーダイォ ード) 200と、 LD200の出力を監視するための受光素子である PD (フォトダイオード) 201とによって構成されている。光モジュール 100 (図 1参照)から光信号を送信する 際は、送信部 102内の LD駆動回路が ONと OFFを繰り返すことで 2値による電気信 号を発生させ、発光部 105へ入力する。発光部 105の LD200は、入力された電気 信号を同期した光信号に変換して伝送路へ出力する。このとき、 PD201は、 LD200 の光の受光強度に応じた電気信号を出力して送信部 102へ出力する。これにより、 L D200の出力信号を監視し、安定した光出力を行うことができる。
[0019] 図 3は、受光部の回路構成を示す図である。受光部 106は、接続された光ファイバ 力 なる伝送路力 入力された光 (光信号)を電気信号に変換するための受光素子( PD) 300と、 PD300からの電気信号を増幅するプリアンプ 301とによって構成されて いる。受光部 106に接続された受信部 103 (図 1参照)は、主増幅回路となり電気信 号の受信を行う。これら送信部 102と受信部 103は、同一のプリント基板 104 (図 1参 照)上に設けられており、前述したように、電力の供給は同一の電源 (Vcc)力 行わ れ、同一のグランド(GND)に接地されている。
[0020] 以上述べたような光モジュール 100を SFP等の仕様に基づいて製作した場合、発 光部 105と、受光部 106の設置間隔は、わずか数 mmである。そして、発光部 105の LD200を駆動する電流は、受光部 106の PD300により光受信した電流の数千倍程 度の出力の電流が常時流れている状態である。このため、前述したように、クロストー クの最大の原因と考えられていた空間伝播による影響が懸念される。
[0021] 発明者等による本発明に力かる光モジュール 100におけるクロストークの考察の結 果、クロストークの最大の原因は、送信部 102と受信部 103の電源 (Vcc)と、グランド (GND)を同一にすることで生じる共通インピーダンスであることがわ力つた。
[0022] 図 4は、クロストーク対策を施す前の光モジュールの回路構成を示す図である。図 4 を用いて共通インピーダンスがクロストークを発生させる原理を説明する。この図 4に は、光モジュール 100 (図 1参照)の受信部 103と受光部 106を主とした回路構成を 記載してある。
[0023] 図中のプリアンプ 301は、電源 (Vcc)ラインと、グランド(GND)ラインに接続されて いる。プリアンプ 301の出力は、出力信号をさらに増幅するための増幅器 401に接続 されている。実際には、増幅器 401にも電源ラインとグランドラインが接続されている 力 こでは省略する。コンデンサ 402は、バイパスコンデンサであり、電源 (Vcc)ライ ンのインピーダンスを下げ、回路を伝送する電気信号に雑音が加わるのを防ぐ役割 をもつ。 [0024] また、 EO部とは、送信部 102であり、電源 (Vcc)と、複数記されたグランド (GND) は、受信部 103と送信部 (EO部) 102に接続されている電源 (Vcc)およびグランド( GND)と共通である。図 4には送信部 (EO部) 102を複数記載したが、実際には単一 の送信部 (EO部) 102がグランド (GND)に接続されていることを表している。
[0025] 図 4に示したような電気回路では、電力の供給を行う電源 (Vcc)ライン上には、イン ダクタンスの成分が生じる。図中のコイル 403は、実際に備えたコイル等の回路素子 ではなく等価インダクタンスを表している。また、コイル 404も同様にグランド(GND) ラインに生じた等価インダクタンスを表したものである。これらの等価インダクタンスの 成分は、バイパスコンデンサとして動作するコンデンサ 402を備えただけでは除去す ることができない。
[0026] 以上のように送信部 102と受信部 103は、取り扱う電流の出力の差がありながら、共 通インピーダンスを形成するために、送信部 102を流れる高出力な電流の影響でグ ランド (GND)ライン上に生じるインダクタンスの成分力クロストークの発生源となる電 圧を発生させる。その結果、電流が PD300へ漏れ込み、受信部 103における光受 信感度の低下を生じたり、未受信時においても光信号を受信した如く光受信警報機 能が誤動作する等の原因となる。
[0027] PD300は、交流回路としてみればコンデンサ(容量)として見なされる。したがって 、コイル 403とコイル 404によるインダクタンスの成分と、 PD300による容量の成分と により形成される直列共振回路は共振を起こし、高出力の貫通電流がクロストークと して回路中を流れる。したがって、前述したバイパスコンデンサとしてコンデンサ 402 を用いてもクロストーク低減の効果は期待できない。考察の結果、クロストーク対策と して最も効果的な方法は、直列共振回路を流れるクロストークによる電流の高周波成 分を遮断し、発振が起こらないように構成することである。
[0028] 図 5は、クロストーク対策を施した光モジュールの回路構成を示す図である。光モジ ユール 100におけるクロストーク対策として本実施例では、配置した回路上における 高周波を遮断する素子を用いる。高周波を遮断するための素子としては汎用のフエ ライトビーズを用いることができる。具体的には、図示のように、 PD300の電源 (Vcc) ラインに取り付けたフェライトビーズ 500aと、プリアンプ 301の電源 (Vcc)ラインに取 り付けたフェライトビーズ 500bと、 PD300が受信した信号が伝送するライン以外のグ ランド (GND)ラインに取り付けたフェライトビーズ 500cという 3つの箇所にそれぞれ フェライトビーズを配置する。
[0029] ここで、フェライトビーズの特性にっ 、て詳しく述べる。本発明にかかる光モジユー ル 100 (後述する光モジュール 700に関しても同様)に取り付けたフェライトビーズ 50 0 (500a— 500c)は、フェライト素子の内部に通電用の内部電極を埋め込んだ構造 であり、フェライトが磁性体として働き、このフェライトビーズ 500 (500a— 500c)を取 り付けたラインの配線を流れる電気信号のうちの高周波電流成分を吸収し、ジュール 熱に変換する機能を有する。すなわち、電線を流れる直流電流に対しては低抵抗で あり、交流電流に対しては高抵抗となる特性をもった素子である。また、類似した機能 を有する他のコイルなどの素子と比較しても、フェライトビーズは、高周波電流のみを 減衰させることから、周囲に対する高周波輻射を大幅に低減させることができるもの であるため、空間伝播によるクロストークの影響も改善できるという特徴を有する。
[0030] 一般的に共振回路における発振の鋭さは、 Q (Quality factor)という物理量で表 す力 前述した直列共振回路の場合、下記の式(1)によって求められる。式中の f は
0 共振周波数、 Δ ίは共振周波数の周りの帯域幅、 Lはコイルのインダクタンス (光モジ ユーノレ 100の場合はコィノレ 403, 404等価インダクタンス)、 Cはコンデンサの容量(Ρ D300の接合容量)、 Rは共振回路の電気抵抗を表す。
[0031] Q=f / Δ ί
ο
= 2 π ί L/R
o
= 1/ (2 π ί CR)
o
= (L/C) 1 2/R …ひ)
[0032] Qの値が大きいほど、直列共振回路の発振時に流れる電流量が大きくなる。したが つて、 Qの値をなるベく小さくするためには、式(1)から明らかなように、電気抵抗と容 量を大きくし、インダクタンスを小さくすればよい。フェライトビーズ 500a— 500c〖こより 、高周波成分の抵抗値が上がり、 Qの値は小さくなる。このように Qの値を低下させる ことによって、送信部 102からのクロストークによる電流を PD300に流れにくくさせる ことができる。 [0033] 以上のようにして本発明はクロストークを抑圧するものである力 特にフェライトビー ズ 500a— 500cは、数 10MHz— 1GHz帯において抵抗成分が極大となるため、周 波数帯域が lGHzbitZsec以下のクロストークに対しては極めて効果的である。例え ば、 155MHz, 622MHz, 1. 25GHzの帯域に対して利用してクロストークを低減で きる。
[0034] 図 6は、フェライトビーズ取り付けによるクロストーク改善効果を示す図表である。図 6に示したのは、送信部 102が光の伝送を行っていない状態 (送信部 102が OFF)と 、光の伝送を行っている状態 (送信部 102が ON)のそれぞれのとき、受信部 103に おける受信感度を数値化 (dBm)したものである。併せてクロストーク対策別の改善量 (dB)を示してある。受光感度は、数値が小さいほど高感度であり、改善量は小さい ほどよ 、結果であることを示して 、る。
[0035] 図 6には、回路構成として、 1.プリアンプ 301、 PD300および GND (ライン)にフエ ライトビーズ 500 (500a— 500c)を取り付けた場合、 2. GND (ライン)のみにフェライ トビーズ 500 (500c)を取り付けた場合、 3.フェライトビーズ 500を全く用いないクロス トーク未対策の場合と、をそれぞれ測定した。
[0036] 送信部 102において光の伝送が行われていなければ、クロストークは発生しないた め、送信部 102が OFF、クロストーク未対策の状態 (-34. 4dBm)を基準として、各 対策による改善量を検証してみる。未対策のまま送信部 102を ONとした場合の受光 感度を測定すると、 33. OdBであり、改善量が 1. 4dBであるため、受光感度が劣化 して!/、ることが表されて!/、る。
[0037] 送信部 102が OFFの状態でフェライトビーズ 500 (500a— 500c)をプリアンプ、 P D300および GND (ライン)に備えた場合、もしくはフェライトビーズ 500 (500c)を G ND (ライン)のみに備えた場合、受光感度は、—34. 2dBmとなり、フェライトビーズ未 対策時よりも基準となる受光感度が向上していることがわかる。この状態で、送信部 1 02が ONとなった状態では、フェライトビーズを GND (ライン)のみに備えた場合、受 光感度は、 -33. 4dBmとなり、改善量は 0. 8dBとなり、未対策の場合に比べて少な い劣化となった。さらに、フェライトビーズをプリアンプ 301、 PD300および GND (ライ ン)に備えた場合、受光感度は、 -34. OdBmとなり、改善量は、 0. 2dBと未対策の 場合と比較してわずかな劣化で抑えることができた。
[0038] 以上述べたように、本発明の実施例 1では、受信部 103を構成する回路中にフェラ イトビーズを取り付けることにより、送信部 102と受信部 103の共通インピーダンスと 等価インダクタンスによって形成される等価的な直列発振回路を発振させず、送信部 102と受信部 103との間におけるクロストークの発生を防止できる。
実施例 2
[0039] 図 7は、本発明の実施例 2にかかる光モジュールの構成を示す図である。また、図 8 は、本発明の実施例 2にかかる光モジュールにおける支持部の構成を示す斜視図で ある。
[0040] 光モジュール 700は、実施例 1における光モジュール 100と同様に、 SFP等の規格 化された筐体 101内に送信部 102と、受信部 103を備えたプリント基板 104と、プリン ト基板 104上に設けられる送信部 102と、送信部 102に接続される発光部 105と、プ リント基板 104上に設けられる受信部 103と、受信部 103に接続される受光部 106と を備えている。また、プリント基板 104の送信部 102と、受信部 103には、共通の電源 (Vcc)から電力が供給され、共通のグランド (GND)が接地されている。また、発光部 105と受光部 106を筐体 101に取り付けるための支持具 701が設けられる。
[0041] 支持具 701は、光モジュール 700における発光部 105と、受光部 106の外周に突 出形成された鍔部 800を上部支持具 701aと下部支持具 701bに形成した溝部 701c に挟み込むことで筐体 101に固定させる。支持具 701は、絶縁体もしくは絶縁処理を 施した金属またはフェライト材を材料としており、電波吸収体の役割を果たして 、る。 この支持具 701によってクロストークを発生させる電圧の成分を吸収することができ、 クロストークをさらに低減ィ匕させることが可能となる。特に、 lGHzbitZsec以下の波 長の光伝送を行う小型の光モジュールに有効である。
[0042] なお、実施例 2において説明した支持具 701と、実施例 1で説明したフェライトビー ズ 500 (500a— 500c)と併せて用いることができる。
産業上の利用可能性
[0043] 以上のように、本発明に力かる光モジュールは、共通インピーダンスを原因とするク ロストークの低減に有用であり、特に SFPや SFFなどサイズの仕様が規格ィ匕された小 型の光送受信器に適して 、る。

Claims

請求の範囲
[1] 光信号を入出力する送信部と受信部とが筐体に格納された光モジュールにお 、て 前記送信部と、前記受信部は共通の電源ラインとグランドラインが接続されるととも に、当該受信部のグランドラインにフェライトビーズを配置したことを特徴とする光モジ ユーノレ o
[2] 前記受信部の電源ラインにフェライトビーズを配置したことを特徴とする請求項 1に 記載の光モジュール。
[3] 前記受信部と、前記送信部は、同一のプリント基板上に配置されていることを特徴 とする請求項 1に記載の光モジュール。
[4] 光信号を入出力する送信部と受信部とが筐体に格納された光モジュールにお 、て 前記送信部と、前記受信部は共通の電源ラインとグランドラインが接続され、 前記受信部は、
入力された光信号を受光し電気信号に変換する受光素子と、当該受光素子が出 力する電気信号を増幅するプリアンプとを備えた受光部と、
前記受光部に接続されるプリント基板上に搭載され、前記受光部から出力される電 気信号を増幅する主増幅回路と、によって構成され、
前記受光素子の電源ラインと、前記プリアンプの電源ラインおよびグランドラインに それぞれフェライトビーズを配置したことを特徴とする光モジュール。
[5] 前記送信部は、
電気信号を光信号に変換させ光信号を出力する発光素子を備えた発光部と、 前記発光素子を駆動する発光素子駆動回路と、によって構成され、
前記受信部の前記主増幅回路と、前記送信部の前記発光素子駆動回路とが、同 一のプリント基板上に配置されていることを特徴とする請求項 4に記載の光モジユー ル。
[6] 絶縁体もしくは絶縁処理を施した金属によって形成され、前記発光部および前記 受光部を前記筐体に取り付けるための支持具を備えたことを特徴とする請求項 1一 5 の!、ずれか一つに記載の光モジュール。
前記支持具は、フ ライト材により形成されていることを特徴とする請求項 6に記載 の光モジュール。
PCT/JP2005/000677 2005-01-20 2005-01-20 光モジュール WO2006077639A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006553797A JP4540680B2 (ja) 2005-01-20 2005-01-20 光モジュール
PCT/JP2005/000677 WO2006077639A1 (ja) 2005-01-20 2005-01-20 光モジュール
US11/826,975 US7720393B2 (en) 2005-01-20 2007-07-19 Optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/000677 WO2006077639A1 (ja) 2005-01-20 2005-01-20 光モジュール

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/826,975 Continuation US7720393B2 (en) 2005-01-20 2007-07-19 Optical module

Publications (1)

Publication Number Publication Date
WO2006077639A1 true WO2006077639A1 (ja) 2006-07-27

Family

ID=36692037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000677 WO2006077639A1 (ja) 2005-01-20 2005-01-20 光モジュール

Country Status (3)

Country Link
US (1) US7720393B2 (ja)
JP (1) JP4540680B2 (ja)
WO (1) WO2006077639A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009027414A (ja) * 2007-07-19 2009-02-05 Oki Electric Ind Co Ltd 光電波融合通信装置
JP2016119375A (ja) * 2014-12-19 2016-06-30 ホシデン株式会社 光電変換モジュール及びアクティブ光ケーブル

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2775806B1 (en) * 2013-03-07 2015-03-04 Tyco Electronics Svenska Holdings AB Optical receiver and transceiver using the same
JP6483634B2 (ja) * 2016-03-09 2019-03-13 シチズンファインデバイス株式会社 検出装置および検出システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365491A (ja) * 2001-06-11 2002-12-18 Sumitomo Electric Ind Ltd 光モジュール及び光通信モジュール
JP2003188458A (ja) * 2001-12-19 2003-07-04 Sumitomo Electric Ind Ltd 光モジュール
JP2004228552A (ja) * 2002-06-03 2004-08-12 Sumitomo Electric Ind Ltd 光モジュール

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941201A (en) * 1985-01-13 1990-07-10 Abbott Laboratories Electronic data storage and retrieval apparatus and method
JPH04144109A (ja) 1990-10-04 1992-05-18 Toshiba Corp 配線装置
JPH05134147A (ja) * 1991-05-01 1993-05-28 Sumitomo Electric Ind Ltd 光モジユール
JPH05284431A (ja) 1992-03-31 1993-10-29 Fujitsu General Ltd テレビ受信機能を付加したパソコン
JPH0745858A (ja) * 1993-07-30 1995-02-14 Matsushita Electric Works Ltd 半導体リレー
DE69737929T2 (de) * 1996-11-22 2008-04-10 Sony Corp. Verbindungskabel, Kommunikationsvorrichtungen und Kommunikationsverfahren
JPH10208818A (ja) 1996-11-22 1998-08-07 Sony Corp 接続ケーブル、通信装置、および、通信方法
JPH10209664A (ja) 1997-01-24 1998-08-07 Oki Inf Syst インタフェースノイズフィルタ
WO2000033490A1 (en) 1998-11-30 2000-06-08 Fujitsu Limited Optical transceiver module
JP2002185408A (ja) 2000-12-11 2002-06-28 Mitsubishi Electric Corp 光送受信器
JP2002288864A (ja) * 2001-03-28 2002-10-04 Sankyo Seiki Mfg Co Ltd 光ヘッドの光源装置
US6791159B2 (en) * 2002-06-03 2004-09-14 Sumitomo Electric Industries, Ltd. Optical module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365491A (ja) * 2001-06-11 2002-12-18 Sumitomo Electric Ind Ltd 光モジュール及び光通信モジュール
JP2003188458A (ja) * 2001-12-19 2003-07-04 Sumitomo Electric Ind Ltd 光モジュール
JP2004228552A (ja) * 2002-06-03 2004-08-12 Sumitomo Electric Ind Ltd 光モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009027414A (ja) * 2007-07-19 2009-02-05 Oki Electric Ind Co Ltd 光電波融合通信装置
JP2016119375A (ja) * 2014-12-19 2016-06-30 ホシデン株式会社 光電変換モジュール及びアクティブ光ケーブル

Also Published As

Publication number Publication date
US7720393B2 (en) 2010-05-18
US20070264022A1 (en) 2007-11-15
JP4540680B2 (ja) 2010-09-08
JPWO2006077639A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
US6856769B1 (en) Optical transceiver module
JP5397209B2 (ja) 光モジュール
JP2009527904A (ja) 信号フィードバックを抑止するための光受信機におけるディスクリート・ブートストラップ
JP2014175663A (ja) 光レシーバ及びそれを用いるトランシーバ
WO2006077639A1 (ja) 光モジュール
CN101341637B (zh) 光学发送/接收装置
CA3010136A1 (en) Bidirectional optical sub assembly
US8175461B2 (en) Optical module implemented with tri-plexer optical subassembly
KR102624304B1 (ko) 수신기 광 서브-어셈블리, 양방향 광 서브-어셈블리, 광 모듈 및 광 네트워크 디바이스
JP2008193002A (ja) 光送受信モジュール
US8145061B2 (en) Optical module implementing a light-receiving device and a light-transmitting device within a common housing
JP2009251600A (ja) Tri−Plexer光サブアセンブリを搭載した光モジュール
CN112425100B (zh) 光接收电路、光接收器、光终端装置以及光通信系统
JP2004303752A (ja) 半導体装置、および光送受信器
JP2005294709A (ja) 双方向光モジュール
EP2283595B1 (en) Dual-filter optical network interface unit and method of removing noise using same
JP2009282453A (ja) 光送受信器
JP4279517B2 (ja) アンテナ特性測定方法
KR100403723B1 (ko) 히트 싱크를 구비한 광 서브-어셈블리
JP4925142B2 (ja) アンテナ特性測定方法
JP5228585B2 (ja) 双方向光モジュール
WO2006008879A1 (ja) 光パッケージモジュールおよびそれを備えた光通信用モジュール
CN116418402A (zh) 一种光电转换电路
KR20160116354A (ko) 전송 잡음 특성이 개선된 광 송신 장치, 이를 포함하는 광 송수신 장치, 및 이의 검출 장치
JP2006220942A (ja) 光送受信モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006553797

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11826975

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11826975

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05703905

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5703905

Country of ref document: EP