WO2000033490A1 - Optical transceiver module - Google Patents

Optical transceiver module Download PDF

Info

Publication number
WO2000033490A1
WO2000033490A1 PCT/JP1998/005384 JP9805384W WO0033490A1 WO 2000033490 A1 WO2000033490 A1 WO 2000033490A1 JP 9805384 W JP9805384 W JP 9805384W WO 0033490 A1 WO0033490 A1 WO 0033490A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting element
circuit
transceiver module
optical transceiver
Prior art date
Application number
PCT/JP1998/005384
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyuki Mori
Tamotsu Akashi
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP1998/005384 priority Critical patent/WO2000033490A1/en
Publication of WO2000033490A1 publication Critical patent/WO2000033490A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the present invention relates to crosstalk suppression in an optical transceiver module, and more particularly to a downlink transmission bit rate in an ATM-PON (Passive Optical Ne two rk) described in ITU-T Recommendation G.983.
  • the present invention relates to suppression of electrical crosstalk between transmission and reception in an optical transceiver module suitable for asymmetric transmission of 622 MbZ s and 156 Mb / s upstream transmission.
  • an optical transceiver module in which an optical transmission module and an optical reception module are housed in a single case, a part of the electric signal on the transmission side leaks to the reception side, and electrical crosstalk becomes a problem.
  • a shield structure is employed in which the receiving module is shielded with metal.
  • a transmitter / receiver separation module is used instead of a transceiver structure.
  • An object of the present invention is to provide an inexpensive optical transceiver module capable of suppressing electric crosstalk.
  • a light emitting element a transmitting circuit for driving the light emitting element, a light receiving element, a receiving circuit connected to the light receiving element, and a driving current for the light emitting element are provided between the light emitting element and the transmitting circuit.
  • a low-pass filter that removes high-frequency components of the light-emitting element within a range where the light output from the light-emitting element satisfies a predetermined rule and suppresses crosstalk from the transmission circuit to the reception circuit.
  • An optical transceiver module characterized by the following is provided. BRIEF DESCRIPTION OF THE FIGURES
  • Fig. 1 is a schematic diagram illustrating electrical crosstalk in an optical transceiver module.
  • FIG. 2 is an equivalent circuit diagram of FIG.
  • FIG. 3 is a circuit diagram of the optical transceiver module according to the first embodiment of the present invention.
  • Figures 4A, 4B, 5A and 5B are diagrams illustrating the reduction of crosstalk noise by extending the signal rise / fall time.
  • Figures 6A, 6B and 6C are waveform diagrams illustrating the delay of the optical signal at the beginning of the burst and the improvement.
  • FIG. 7 is a circuit diagram of an optical transceiver module according to a second embodiment of the present invention.
  • FIG. 8 is a circuit diagram of a modification of the circuit of FIG.
  • 9A, 9B and 9C are waveform diagrams illustrating the improvement of the delay at the head of the burst by the circuit of FIG.
  • Figure 10 shows the I-L characteristics of the laser diode at high and low temperatures. It is a graph.
  • FIG. 11 is a principle block diagram of an optical transceiver module according to a third embodiment of the present invention.
  • FIG. 12 is a graph showing the relationship between the reverse bias voltage of the diode and the capacitance.
  • FIG. 13 is a diagram showing a change in voltage at points A to C in FIG. 12 at the time of low drive power and at the time of high drive power.
  • FIG. 14 is a more detailed circuit diagram of FIG.
  • FIG. 15 is a diagram similar to FIG. 13 in which a change in the potential at point C due to a change in data is considered.
  • FIG. 16 is a circuit diagram of a modification of the circuit of FIG.
  • FIG. 17 is a waveform chart for explaining the operation of the circuit of FIG.
  • FIG. 18 is a diagram similar to FIG. 15 in the circuit of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • Fig. 1 is a schematic diagram illustrating electrical crosstalk in an optical transceiver module.
  • LD and PD indicate a laser diode and a photo diode for optical transmission and optical reception, respectively.
  • I indicates the drive current of the LD, and R in is the input impedance of the receiving circuit. Since electric crosstalk is capacitive, it is indicated by capacitance Cx.
  • the equivalent circuit of Fig. 1 is shown in Fig. 2.
  • the LD is current-biased to near the light emission threshold, and the equivalent resistance (differential resistance) at that time is indicated by Rd.
  • the impedance of PD is so high that it is omitted.
  • I LD Rd I (R in +).
  • Equation (2) shows that mainly high-frequency components of the components of the drive current I cause crosstalk, and the higher the frequency, the greater the effect of crosstalk.
  • FIG. 3 is a circuit diagram of the optical transceiver module according to the first embodiment of the present invention.
  • a low-pass consisting of a resistor 14 connected in series with the transmission circuit 12 and a capacitor 16 connected in parallel with the transmission circuit 12
  • a filter 18 is provided between the laser diode (LD) 10 for optical transmission and the transmission circuit 12.
  • the low-pass filter 18 removes high-frequency components by extending the rise time and fall time of the drive current of the LD 10, and thereby removes the high-frequency component to the receiving side including the photodiode (PD) 20 and the receiving circuit 22. No electricity Reduces mechanical cross talk.
  • Fig. 4A schematically shows the waveform of the LD drive current in the time domain when the low-pass filter 18 is not provided
  • Fig. 5A shows the LD drive current when the low-pass filter 18 is provided
  • 5 schematically shows a waveform in the time domain.
  • T Indicates the pulse width
  • tr1 and tr2 indicate the rise and fall times of the pulse
  • Figures 4B and 5B show the spectral envelop in the frequency domain when this pulse is continuous, along with a graph of the crosstalk transfer function. Since the crosstalk noise is the product of the LD drive current and the crosstalk transfer function, the amount of crosstalk can be expressed by the shaded area in Figs. 4B and 5B.
  • the low-pass filter 18 removes the high-frequency components, thereby reducing the crosstalk noise. It is desirable that the low-pass filter 18 be disposed near the transmitting circuit 12.
  • the constant of the low-pass filter 18 must be set so that the light output from the LD 10 satisfies a predetermined mask specification.
  • the transmitting side when the bit rate of the receiving side is higher than that of the transmitting side, such as the subscriber side of the ATM-P0N system, the transmitting side removes high-frequency components that cause crosstalk. Since the bit rate on the transmitting side is lower than that on the receiving side, even if high-frequency components that affect reception are removed on the transmitting side, it is possible to satisfy the specifications of the optical output waveform on the transmitting side
  • the first pulse starts from the state where there is no voltage change in the capacitance of LD 10 and capacitor 16. Therefore, as shown by the solid line in FIG. 6B, the rise of the voltage is delayed by the time required for the charge. Therefore, the light emission of the LD is delayed as shown by the solid line in FIG. 6C, and the mask specification cannot be satisfied.
  • FIG. 7 is a circuit diagram of an optical transceiver module according to a second embodiment of the present invention that solves this problem.
  • the same components as those in FIG. 3 are denoted by the same reference numerals, and the circuit on the receiving side is omitted.
  • a constant voltage is applied to the base terminal of the transistor 24, and plays a role of constantly flowing a constant minute current to the LD 10, as shown by the broken line in FIG. 6A.
  • the capacitance of the LD 10 and the capacitor 16 are charged with the voltage, and the voltage rises with the rise of the signal current as shown by the broken line in FIG.
  • the light emission of LD 10 is not delayed.
  • FIG. 8 shows a modification of the circuit of FIG. In the circuit of Figure 8, the transformer Rather than always flowing a constant bias current, the register 24 follows the control voltage 28 and, as indicated by the dashed line in FIG. 9A, a period beginning at the end prior to the burst transmission and ending at the end of the burst. At, a bias current is supplied to LD.
  • Fig. 10 shows the I-L characteristics of the glue.
  • the higher the temperature of an LD the higher the current threshold value and the lower the luminous efficiency. Therefore, in order to always obtain a constant optical power, the magnitude of the drive current is controlled by monitoring the optical output or the temperature of the LD. As a result, when the LD temperature rises, the drive current I increases accordingly.
  • the cross current I x increases with an increase in the LD drive current I.
  • FIG. 11 is a principle block diagram on the transmitting side of the optical transceiver module according to the third embodiment of the present invention in consideration of the above points.
  • the power controller 30 generates a control voltage such that the optical output from the LD 10 becomes constant according to the output of the temperature sensor or the optical monitor, and sends the control voltage to the LD drive circuit 12.
  • the comparator 32 compares the output of the personal controller 30 with the reference voltages V and e Pl, and provides the comparison result to the diode 34 node.
  • the diode 34 is provided in place of the capacitor 16 in FIG. 3 as a capacitance element whose value changes according to the change of the reverse bias voltage.
  • FIG. 12 shows the relationship between the reverse bias voltage of the diode 34 and the capacitance.
  • Ma FIG. 13 shows the voltages at A to C in FIG. As shown in FIG. 13, when the output of the node controller 30 (point A) indicates a low driving current with small crosstalk, the output voltage of the comparator 32 (point B) becomes a low value. becomes, the reverse bias voltage between the BC becomes V 2. At this time Daio - volume of de 34, as shown in FIG. 12, the removal of high frequency components is not carried out by the low-pass full I filter consisting of a lower value C 2, and the resistors 14 and Daio de 34.
  • the low-pass filter 36 composed of the resistor 14 and the diode 34 in FIG. 11 has variable pass characteristics, and when the LD drive current is large and the crosstalk is large, the high frequency of the drive current is high.
  • the component has a pass characteristic that suppresses crosstalk by removing the component. When the LD drive current is small and the crosstalk is small, the pass characteristic does not remove the high-frequency component of the drive current.
  • FIG. 14 is a circuit diagram showing the circuit of FIG. 11 in more detail.
  • the increase or decrease of the optical output due to the temperature change of the LD is detected by the temperature sensor 38 such as a thermistor for detecting the temperature of the LD or the photo diode 40 for detecting the optical output itself.
  • the voltage is converted into a voltage by the voltage converter 42.
  • Part controller 30 is a controller. It is composed of Laywei 44 and 46 controllers.
  • the comparator 44 compares the output of the current-Z voltage converter 42 with the reference voltage V rep 2 and outputs a comparison signal.
  • the controller 46 generates a control voltage to keep the optical output of the LD 10 constant based on the comparison result of the comparator 44.
  • Fig. 15 is similar to Fig.
  • FIG. 16 is a modification of the circuit of FIG. FIG. 17 shows waveforms at points C to G in FIG. In FIG. 16, the data signal (D) is delayed by delay elements 48 and 50 and supplied to the LD drive circuit 12.
  • the reference value supplied to the comparator 32 is obtained by taking NAND of a data signal that is delayed by a delay time longer than the delay time of the delay elements 48 and 50 (E) and a data signal that is not delayed (F). Generated (G). Therefore, as shown in FIG. 17, the potential at the point G is maintained at the high potential during the period when the potential at the point C changes.
  • the reverse bias voltage of the diode becomes smaller at the change point of the signal where the high frequency component is large and the crosstalk is increased. The crosstalk can be effectively suppressed.

Abstract

An optical transceiver module which can suppress electrical crosstalk from the transmission side to the reception side. A low-pass filter composed of a resistor (14) and a capacitive element (16) removes the high-frequency components of the driving current of a laser diode (10) on the transmission side.

Description

明 細 書 光 ト ラ ンシーバモジュール 技術分野  Description Optical transceiver module Technical field
本発明は、 光 ト ラ ンシーバモジュールにおけるク ロス トーク抑圧 に関し、 特に I TU- T 勧告 G. 983 に示される ATM-PON (Pas s i v e Op t i c a l Ne two rk) での下り伝送ビッ ト レ一 卜 622MbZ s 、 上り伝送 156 Mb/ sの非対称伝送を行うに適した光 トラ ンシーバモジュ一ルにお ける送受信間の電気的ク ロス トーク抑圧に関する。 背景技術  The present invention relates to crosstalk suppression in an optical transceiver module, and more particularly to a downlink transmission bit rate in an ATM-PON (Passive Optical Ne two rk) described in ITU-T Recommendation G.983. The present invention relates to suppression of electrical crosstalk between transmission and reception in an optical transceiver module suitable for asymmetric transmission of 622 MbZ s and 156 Mb / s upstream transmission. Background art
光送信モジュ一ルと光受信モジュールを 1 つのケースに収容した 光 トラ ンシ一バモジュ一ルにおいては、 送信側の電気信号の一部が 受信側に漏洩する、 電気的クロス トークが問題となることがある。 従来の光 ト ラ ンシーバモジュールにおける送受信間の電気的ク 口 ス ト一クの抑圧方法と して、 受信側モジュールを金属によ り シール ドするシール ド構造が取られている。 また、 ト ラ ンシーバ構造を避 け、 送受分離モジュ一ルが用いられている場合もある。  In an optical transceiver module in which an optical transmission module and an optical reception module are housed in a single case, a part of the electric signal on the transmission side leaks to the reception side, and electrical crosstalk becomes a problem. There is. In a conventional optical transceiver module, as a method of suppressing the electrical shortage between transmission and reception, a shield structure is employed in which the receiving module is shielded with metal. In some cases, a transmitter / receiver separation module is used instead of a transceiver structure.
従来の送受信間の電気的クロス トーク抑圧法での問題点と して、 金属シール ドを用いる場合には、 組立工程で金属シール ドを取り付 ける工程が発生する、 プリ ン ト基板などに取り付けのための穴を形 成する工数が発生する、 物理的に小型化が困難である、 などの問題 点力くあった。  One problem with the conventional method of suppressing electrical crosstalk between transmission and reception is that when a metal shield is used, a process of attaching the metal shield occurs during the assembly process. However, there were many problems such as the need for man-hours for forming holes for holes, and the difficulty of physically reducing the size.
また、 送受分離モジュールとすると組立時の部品点数が増え、 コ ス トが増大するという問題があつた。 発明の開示 In addition, there is a problem that the number of parts at the time of assembling is increased when the transmission / reception separation module is used, and the cost is increased. Disclosure of the invention
本発明の目的は、 電気的ク ロス トークの抑圧が可能な光 トラ ンシ ーバモジュールを安価に提供することにある。  An object of the present invention is to provide an inexpensive optical transceiver module capable of suppressing electric crosstalk.
本発明によれば、 発光素子と、 発光素子を駆動する送信回路と、 受光素子と、 受光素子に接続された受信回路と、 発光素子と送信回 路の間に設けられ、 発光素子の駆動電流の高周波成分を、 発光素子 からの光出力が所定の規定を満足する範囲で除去して、 送信回路か ら受信回路へのク ロス トークを抑圧する低域通過フ ィ ルタ とを具備 するこ とを特徴とする光 ト ラ ンシーバモジュールが提供される。 図面の簡単な説明  According to the present invention, a light emitting element, a transmitting circuit for driving the light emitting element, a light receiving element, a receiving circuit connected to the light receiving element, and a driving current for the light emitting element are provided between the light emitting element and the transmitting circuit. A low-pass filter that removes high-frequency components of the light-emitting element within a range where the light output from the light-emitting element satisfies a predetermined rule and suppresses crosstalk from the transmission circuit to the reception circuit. An optical transceiver module characterized by the following is provided. BRIEF DESCRIPTION OF THE FIGURES
図 1 は光 ト ラ ンシーバモジュールにおける電気的ク ロス トークを 説明する模式図である。  Fig. 1 is a schematic diagram illustrating electrical crosstalk in an optical transceiver module.
図 2 は図 1 の等価回路図である。  FIG. 2 is an equivalent circuit diagram of FIG.
図 3 は本発明の第 1 の実施例に係る光 ト ラ ンシーバモジュールの 回路図である。  FIG. 3 is a circuit diagram of the optical transceiver module according to the first embodiment of the present invention.
図 4 A, 4 B, 5 Aおよび 5 Bは信号立ち上がり /立ち下がり時 間を伸ばすことによるク ロス トーク ノ イズの低減を説明する図であ る。  Figures 4A, 4B, 5A and 5B are diagrams illustrating the reduction of crosstalk noise by extending the signal rise / fall time.
図 6 A, 6 Bおよび 6 Cはバース ト先頭における光信号の遅れお よびその改善を説明する波形図である。  Figures 6A, 6B and 6C are waveform diagrams illustrating the delay of the optical signal at the beginning of the burst and the improvement.
図 7 は本発明の第 2の実施例に係る光 トラ ンシーバモジュールの 回路図である。  FIG. 7 is a circuit diagram of an optical transceiver module according to a second embodiment of the present invention.
図 8 は図 7の回路の一変形の回路図である。  FIG. 8 is a circuit diagram of a modification of the circuit of FIG.
図 9 A , 9 Bおよび 9 Cは図 8の回路によるバース ト先頭の遅れ の改善を説明する波形図である。  9A, 9B and 9C are waveform diagrams illustrating the improvement of the delay at the head of the burst by the circuit of FIG.
図 10は高温と低温における レーザダイォ一 ドの I 一 L特性を示す グラフである。 Figure 10 shows the I-L characteristics of the laser diode at high and low temperatures. It is a graph.
図 11は本発明の第 3の実施例に係る光 ト ラ ンシーバモジュールの 原理プロ ッ ク図である。  FIG. 11 is a principle block diagram of an optical transceiver module according to a third embodiment of the present invention.
図 12はダイオー ドの逆バイアス電圧と容量の関係を示すグラフで ある。  FIG. 12 is a graph showing the relationship between the reverse bias voltage of the diode and the capacitance.
図 13は低駆動電力時と高駆動電力時の図 12の A〜 C点における電 圧の変化を示す図である。  FIG. 13 is a diagram showing a change in voltage at points A to C in FIG. 12 at the time of low drive power and at the time of high drive power.
図 14は図 11をより詳細にした回路図である。  FIG. 14 is a more detailed circuit diagram of FIG.
図 15はデータの変化による C点の電位の変化を考慮した図 13と同 様な図である。  FIG. 15 is a diagram similar to FIG. 13 in which a change in the potential at point C due to a change in data is considered.
図 16は図 14の回路の一変形の回路図である。  FIG. 16 is a circuit diagram of a modification of the circuit of FIG.
図 17は図 16の回路の動作を説明する波形図である。  FIG. 17 is a waveform chart for explaining the operation of the circuit of FIG.
図 18は図 16の回路における図 15と同様な図である。 発明を実施するための最良の形態  FIG. 18 is a diagram similar to FIG. 15 in the circuit of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
図 1 は光 トラ ンシーバモジュールにおける電気的ク ロス トークを 説明する模式図である。 L Dおよび P Dはそれぞれ光送信および光受信 のためのレーザダイォー ドおよびフ ォ トダイォ一 ドを示す。 I は LD の駆動電流を示し、 R i n は受信回路の入力イ ンピーダンスである。 電気的ク ロス トークは容量性であるので容量 Cxで示す。  Fig. 1 is a schematic diagram illustrating electrical crosstalk in an optical transceiver module. LD and PD indicate a laser diode and a photo diode for optical transmission and optical reception, respectively. I indicates the drive current of the LD, and R in is the input impedance of the receiving circuit. Since electric crosstalk is capacitive, it is indicated by capacitance Cx.
図 1 の等価回路が図 2 に示されている。 LDは発光の閾値付近まで 電流バイアスされており、 そのときの等価抵抗 (微分抵抗) を Rdで 示す。 PDのィ ンピ一ダンスは非常に高いので省略されている。  The equivalent circuit of Fig. 1 is shown in Fig. 2. The LD is current-biased to near the light emission threshold, and the equivalent resistance (differential resistance) at that time is indicated by Rd. The impedance of PD is so high that it is omitted.
図 2 より  From Figure 2
I = I I  I = I I
1  1
I L D Rd = I (R i n + ) . I LD Rd = I (R in +).
j ω C x であるから、 これらより、 j ω C x Therefore, from these,
IRd  IRd
I - i - 2 π fCx IRd … ( 1 ) I-i-2 π fC x IRd… (1)
Rin+ Rd +  Rin + Rd +
j ω C:  j ω C:
が得られる。 したがって、 送信側の駆動電流 I から受信側のク ロス トーク電圧 Rin へのクロス トーク伝達関数 X ( f ) = Ix Rin / I は、 Is obtained. Therefore, the crosstalk transfer function X (f) = IxRin / I from the driving current I on the transmitting side to the crosstalk voltage Rin on the receiving side is
X (f) - }2 π fCxRinRd … ( 2 ) と る。  X (f)-} 2π fCxRinRd… (2)
( 2 ) 式より駆動電流 I の成分のうち主と して高周波の成分がク ロス トークを生じ、 周波数が高ければ高い程クロス トークの影響が 大きいことがわかる。  Equation (2) shows that mainly high-frequency components of the components of the drive current I cause crosstalk, and the higher the frequency, the greater the effect of crosstalk.
光 トラ ンシーバモジュールにおいて、 送信側のビッ ト レ一 卜が高 く なると送信信号中の高周波成分が増え、 そうすると、 前述したよ うにク ロス トークが増大する。 一方、 受信側では、 ビッ ト レー トが 高い程受信帯域を広くする必要があるので、 受信側の帯域制限でク ロス トークの影響を回避することは、 ビッ ト レー トが高く なる程、 難かしく なる。 すなわち、 光 トラ ンシーバモジュールにおいて、 ビ ッ ト レー 卜が高く なればなる程、 電気的ク ロス トークの問題は深刻 に <£>  In the optical transceiver module, as the bit rate on the transmission side increases, the high-frequency component in the transmission signal increases, and as a result, crosstalk increases as described above. On the other hand, on the receiving side, the higher the bit rate, the wider the receiving band needs to be.Therefore, it is more difficult to avoid the effect of crosstalk by limiting the band on the receiving side as the bit rate increases. It becomes bad. In other words, in optical transceiver modules, the higher the bit rate, the more serious the problem of electrical crosstalk becomes <£>.
図 3 は本発明の第 1の実施例に係る光 トラ ンシーバモジュールの 回路図である。 光送信のためのレーザダイオー ド (LD) 10と送信回 路 12の間には送信回路 12に直列に接続された抵抗 14と、 送信回路 12 に並列に接続されたコンデンサ 16からなる低域通過フ ィ ルタ 18が設 けられる。 低域通過フ イ ルク 18は LD10の駆動電流の立ち上がり時間 および立ち下がり時間を伸ばして高域成分を除去し、 これによつて フ ォ トダイオー ド (PD) 20および受信回路 22からなる受信側への電 気的ク ロス トークを低減する。 FIG. 3 is a circuit diagram of the optical transceiver module according to the first embodiment of the present invention. Between the laser diode (LD) 10 for optical transmission and the transmission circuit 12, a low-pass consisting of a resistor 14 connected in series with the transmission circuit 12 and a capacitor 16 connected in parallel with the transmission circuit 12 A filter 18 is provided. The low-pass filter 18 removes high-frequency components by extending the rise time and fall time of the drive current of the LD 10, and thereby removes the high-frequency component to the receiving side including the photodiode (PD) 20 and the receiving circuit 22. No electricity Reduces mechanical cross talk.
図 4 Aは低域通過フィ ルタ 1 8を設けないときの L D駆動電流の時間 領域における波形を模式的に示し、 図 5 Aは低域通過フ ィ ルタ 1 8を 設けたときの L D駆動電流の時間領域における波形を模式的に示す。 図中、 T。 はパルス幅を、 t r 1 および t r 2 はパルスの立ち上がりお よび立ち下がり時間を示す。 また、 図 4 Bおよび図 5 Bにはこのパ ルスが連続する時の周波数領域におけるスペク トルの縫絡線をク ロ ス トーク伝達関数のグラフとともに示す。 ク ロス トーク ノイズは LD 駆動電流とク ロス トーク伝達関数の積であるから、 クロス トークの 量は図 4 Bおよび図 5 B中、 斜線を施した部分の面積で表わすこと ができる。 図から明らかなように、 低域通過フィ ルタ 1 8で信号パル スの立ち上がり時間および立ち下がり時間を伸ばすことにより高域 周波数成分が除去され、 それによつて、 ク ロス トークノ イズが低減 されることがわかる。 なお、 この低域通過フ ィ ルタ 18は送信回路 12 の近傍に配置することが望ま しい。  Fig. 4A schematically shows the waveform of the LD drive current in the time domain when the low-pass filter 18 is not provided, and Fig. 5A shows the LD drive current when the low-pass filter 18 is provided. 5 schematically shows a waveform in the time domain. In the figure, T. Indicates the pulse width, and tr1 and tr2 indicate the rise and fall times of the pulse. Figures 4B and 5B show the spectral envelop in the frequency domain when this pulse is continuous, along with a graph of the crosstalk transfer function. Since the crosstalk noise is the product of the LD drive current and the crosstalk transfer function, the amount of crosstalk can be expressed by the shaded area in Figs. 4B and 5B. As is evident from the figure, extending the rise and fall times of the signal pulse with the low-pass filter 18 removes the high-frequency components, thereby reducing the crosstalk noise. I understand. It is desirable that the low-pass filter 18 be disposed near the transmitting circuit 12.
一方、 立ち上がり Z立ち下がり時間を極端に伸ばすと送信光の出 力波形に対して適用されるマスク規定を満足しなく なる。 したがつ て低域通過フ ィ ルタ 1 8の定数は L D 1 0からの光出力が所定のマスク規 定を満足する範囲に設定しなければならない。  On the other hand, if the rise-Z fall time is extremely extended, the mask specification applied to the output waveform of the transmitted light will not be satisfied. Therefore, the constant of the low-pass filter 18 must be set so that the light output from the LD 10 satisfies a predetermined mask specification.
ATM-P0N システムの加入者側のように、 受信側のビッ 卜 レー ト力く 送信側より も高い場合、 クロス トークの原因となる高周波成分を送 信側で除去する本発明の手法によれば、 送信側のビッ ト レー トが受 信側より低いので、 受信に影響を与える高周波成分を送信側で除去 しても、 送信側の光出力波形の規定を満足させることが可能である  According to the method of the present invention, when the bit rate of the receiving side is higher than that of the transmitting side, such as the subscriber side of the ATM-P0N system, the transmitting side removes high-frequency components that cause crosstalk. Since the bit rate on the transmitting side is lower than that on the receiving side, even if high-frequency components that affect reception are removed on the transmitting side, it is possible to satisfy the specifications of the optical output waveform on the transmitting side
ATM-P0 のようなバース ト送信では、 信号を発出 しない時間にお いて他の加入者の伝送を妨害しないため、 この時間に発光しないこ とが必要である。 しかしながら、 バース ト先頭の 1 ビッ ト目から、 マスク規定を満足する必要があり、 これを防止するため発光素子と して、 低しきい値のものを採用する必要があった。 これに本発明に より、 例えば RCによる低域透過フィ ルタを揷入すると、 パター ン効 果などにより、 1 ビッ ト目の発光が遅れると言う、 新たな問題が発 生することとなる。 In a burst transmission such as ATM-P0, do not emit light during this time because the transmission of other subscribers is not interrupted during the time when no signal is emitted. Is necessary. However, it was necessary to satisfy the mask specification from the first bit of the burst, and to prevent this, it was necessary to use a light emitting element with a low threshold. If the present invention introduces a low-pass filter by RC, for example, a new problem occurs in that the light emission of the first bit is delayed due to a pattern effect or the like.
すなわち、 図 6 A中実線で示すような矩形波の駆動電流が与えら れたとき、 1 つの目のパルスは L D 1 0の容量とコ ンデンサ 1 6に電圧チ ャ一ジがない状態から始まるため、 図 6 Bに実線で示すように、 チ ャ一ジに要する時間だけ電圧の立ち上がりが遅れる。 そのため、 図 6 Cに実線で示すように LDの発光が遅れ、 マスク規定を満足できな く る。  That is, when a rectangular wave driving current as shown by the solid line in Fig. 6A is given, the first pulse starts from the state where there is no voltage change in the capacitance of LD 10 and capacitor 16. Therefore, as shown by the solid line in FIG. 6B, the rise of the voltage is delayed by the time required for the charge. Therefore, the light emission of the LD is delayed as shown by the solid line in FIG. 6C, and the mask specification cannot be satisfied.
図 7 はこの点を解決した本発明の第 2の実施例に係る光 トラ ンシ —バモジュールの回路図である。 図 3 と同一の構成要素には同一の 参照番号が付され、 また、 受信側の回路は省略されている。  FIG. 7 is a circuit diagram of an optical transceiver module according to a second embodiment of the present invention that solves this problem. The same components as those in FIG. 3 are denoted by the same reference numerals, and the circuit on the receiving side is omitted.
ト ラ ンジスタ 24のベース端子には一定の電圧が与えられ、 図 6 A 中破線で示すように L D 10に常に一定の微少電流を流す役割を果たし ている。 これによつて信号がないときでも L D 1 0の容量とコ ンデンサ 1 6に電圧がチャージされており、 図 6 Bに破線で示すように信号電 流の立ち上がり とともに電圧が立ち上がり、 図 6 Cに破線で示すよ う に LD 10の発光が遅れない。  A constant voltage is applied to the base terminal of the transistor 24, and plays a role of constantly flowing a constant minute current to the LD 10, as shown by the broken line in FIG. 6A. As a result, even when there is no signal, the capacitance of the LD 10 and the capacitor 16 are charged with the voltage, and the voltage rises with the rise of the signal current as shown by the broken line in FIG. As shown by the broken line, the light emission of LD 10 is not delayed.
なお、 ATM- P0N の加入者装置の場合、 複数の加入者装置からの光 が光力ブラで合波されて局側装置へ到達する構成となる。 したがつ て、 無信号時にバイアス電流によって生じる弱い光が光力ブラで多 数合波されても、 局側装置の受信感度に影響を与えないように、 バ ィァス電流は微少な値でなければならない。  In the case of an ATM-P0N subscriber unit, light from multiple subscriber units is multiplexed by an optical power brass and reaches the optical line terminal. Therefore, even if weak light generated by the bias current when there is no signal is multiplexed by the optical power blur, the bias current must be very small so as not to affect the receiving sensitivity of the optical line terminal. Must.
図 8 は図 7 の回路の一変形を示す。 図 8 の回路において、 トラ ン ジスタ 24は常に一定のバイァス電流を流すのでなく 、 制御電圧 28に 従い、 図 9 Aに破線で示すように、 バース トの送出に先立って始ま り遅く と もバース 卜の終了までには終わる期間においてバイアス電 流を LD 10に流す。 FIG. 8 shows a modification of the circuit of FIG. In the circuit of Figure 8, the transformer Rather than always flowing a constant bias current, the register 24 follows the control voltage 28 and, as indicated by the dashed line in FIG. 9A, a period beginning at the end prior to the burst transmission and ending at the end of the burst. At, a bias current is supplied to LD.
このようにすることによつても、 図 9 B中に破線で示すように、 LDの電圧の立ち上がりの遅れがな く なり、 図 9 C中に破線で示すよ うに、 LD 10の発光の遅れがなく なる。 また、 遅く と もバース ト終了 まではバイアス電流はオフになっているので、 ATM- P0N の加入者装 置に適用 したと しても、 バイアス電流による多数の加入者装置から の弱い光が局側装置の受信感度に悪影響を及ぼすことはない。  This also eliminates the delay in the rise of the LD voltage as shown by the broken line in FIG. 9B, and the delay in the emission of LD 10 as shown by the broken line in FIG. 9C. Is lost. Also, since the bias current is turned off at the latest until the end of the burst, even if it is applied to the ATM-P0N subscriber equipment, weak light from a large number of subscriber equipment due to the bias current will be transmitted to the station. There is no adverse effect on the receiving sensitivity of the side device.
図 10にしりの I 一 L特性を示す。 図 10に示されるように、 LDは一般 に、 温度が高く なる程、 電流閾値が上昇し、 発光効率が低下する。 したがって、 常に一定の光パワーを得るために、 光出力または LDの 温度を監視して駆動電流の大きさが制御される。 その結果、 LDの温 度が上昇するとそれに応じて駆動電流 I も増大する。 一方、 式 ( 1 ) から明らかなように、 クロス 卜一ク電流 I x は LDの駆動電流 I の 増大とともに増加する。 Fig. 10 shows the I-L characteristics of the glue. As shown in FIG. 10, in general, the higher the temperature of an LD, the higher the current threshold value and the lower the luminous efficiency. Therefore, in order to always obtain a constant optical power, the magnitude of the drive current is controlled by monitoring the optical output or the temperature of the LD. As a result, when the LD temperature rises, the drive current I increases accordingly. On the other hand, as is clear from equation (1), the cross current I x increases with an increase in the LD drive current I.
図 1 1は上記の点を考慮した本発明の第 3 の実施例に係る光 トラ ン シーバモジュールの送信側の原理ブロ ッ ク図である。 図 1 1において 、 前述のようにパワーコ ン トロ一ラ 30は温度センサまたは光モニタ の出力に応じて LD 10からの光出力が一定になるような制御電圧を発 生して LD駆動回路 12へ与える。 コ ンパレータ 32はパヮ一コ ン ト ロー ラ 30の出力を基準電圧 V , e P lと比較し、 比較結果をダイォー ド 34の ァノー ドへ与える。 ダイオー ド 34は逆バイアス電圧の変化に応じて 値が変化する容量素子と して、 図 3 のコ ンデンサ 16の代わりに設け られる。 FIG. 11 is a principle block diagram on the transmitting side of the optical transceiver module according to the third embodiment of the present invention in consideration of the above points. In FIG. 11, as described above, the power controller 30 generates a control voltage such that the optical output from the LD 10 becomes constant according to the output of the temperature sensor or the optical monitor, and sends the control voltage to the LD drive circuit 12. give. The comparator 32 compares the output of the personal controller 30 with the reference voltages V and e Pl, and provides the comparison result to the diode 34 node. The diode 34 is provided in place of the capacitor 16 in FIG. 3 as a capacitance element whose value changes according to the change of the reverse bias voltage.
図 12はダイォー ド 34の逆バイァス電圧と容量との関係を示す。 ま た、 図 13は図 11の A〜 Cにおける電圧を示す。 図 13に示すように、 ノ ヮーコ ン ト ローラ 30の出力 ( A点) がク ロス トークの小さい低駆 動電流を示しているとき、 コ ンパレータ 32の出力電圧 ( B点) は低 い値になり、 BC間の逆バイアス電圧は V 2 となる。 このときダイォ — ド 34の容量は、 図 12に示すように、 より低い値 C 2 となり、 抵抗 14およびダイォー ド 34からなる低域通過フ ィ ルタによる高周波成分 の除去は行なわれない。 LDの温度が上昇してパワーコ ン ト ローラ 30 の出力 ( A点) がクロス トークの大きい高駆動電流を示すとき、 コ ンパレータ 32の出力電圧 ( B点) は高く なり、 BC間の逆バイ アス電 圧は V , となる。 このときダイオー ド 34の容量はより高い値 C , に なり (図 12) 、 低域通過フ ィ ルタによる高周波成分の除去が行なわ れ、 ク ロス トークが抑圧される。 FIG. 12 shows the relationship between the reverse bias voltage of the diode 34 and the capacitance. Ma FIG. 13 shows the voltages at A to C in FIG. As shown in FIG. 13, when the output of the node controller 30 (point A) indicates a low driving current with small crosstalk, the output voltage of the comparator 32 (point B) becomes a low value. becomes, the reverse bias voltage between the BC becomes V 2. At this time Daio - volume of de 34, as shown in FIG. 12, the removal of high frequency components is not carried out by the low-pass full I filter consisting of a lower value C 2, and the resistors 14 and Daio de 34. When the temperature of the LD rises and the output of the power controller 30 (point A) indicates a high drive current with large crosstalk, the output voltage of the comparator 32 (point B) increases, and the reverse bias between BC and The voltage is V ,. At this time, the capacitance of the diode 34 becomes a higher value C, (FIG. 12), and the high-frequency component is removed by the low-pass filter, and the crosstalk is suppressed.
すなわち、 図 11の抵抗 14とダイォー ド 34から構成される低域通過 フ ィ ルタ 36は通過特性が可変であり、 LDの駆動電流が大き くてク ロ ス トークが大きいときは駆動電流の高周波成分を除去してクロス ト 一クを抑圧する通過特性となり、 LDの駆動電流が小さ く てク ロス ト —クが小さいときは駆動電流の高周波成分を除去しない通過特性に なる。  In other words, the low-pass filter 36 composed of the resistor 14 and the diode 34 in FIG. 11 has variable pass characteristics, and when the LD drive current is large and the crosstalk is large, the high frequency of the drive current is high. The component has a pass characteristic that suppresses crosstalk by removing the component. When the LD drive current is small and the crosstalk is small, the pass characteristic does not remove the high-frequency component of the drive current.
図 14は図 11の回路をより詳細に示す回路図である。 図 14において 、 LDの温度変化による光出力の増減は、 LDの温度を検出するサー ミ スタ等の温度センサ 38または光出力その ものを検出するフ ォ トダイ ォー ド 40により検出され、 電流/電圧変換器 42により電圧に変換さ れる。 パヮ一コ ン ト ローラ 30はコ ンノ、。レー夕 44とコ ン ト ロ ーラ 46力、 ら構成される。 コ ンパレータ 44は電流 Z電圧変換器 42の出力を基準 電圧 V r e p 2と比較して比較信号を出力する。 コ ン ト 口一ラ 46はコ ン パレ一タ 44の比較結果に基づき、 LD10の光出力を一定になるような 制御電圧を発生する。 図 15は図 13と同様な図であり、 デ一夕の変化による C点の電圧の 変化が考慮されている。 図 15によれば、 データの変化により C点の 電位も変化し、 それに伴ってダイオー ド 34の逆バイアス電圧 (BC間 の電圧) も変化する。 しかしながら、 データが存在し LD10が発光し ていてク ロス トークが発生する期間では C点の電圧はより低く なる ので、 逆バイアス電圧はク ロス トークの抑圧が可能な V , になる。 図 16は図 14の回路の変形である。 また、 図 17は図 16の C〜G点に おける波形を示す。 図 16において、 データ信号 (D ) は遅延素子 48 , 50で遅延されて LD駆動回路 12へ供給される。 コ ンパレータ 32へ供 給される基準値は、 データ信号を遅延素子 48, 50の遅延時間より も 長い遅延時間で遅延されたもの ( E ) と遅延させないもの ( F ) と で NANDをとることにより生成される (G ) 。 したがって、 図 17に示 すように、 G点の電位は C点の電位に変化のある期間は高電位に維 持される。 コ ンパレータ 32の基準値をこのように変化させることに より、 図 18に示すように、 高周波成分が多く てク ロス トークが多く なる信号の変化点においてダイォー ドの逆バイァス電圧が小さ く な り、 効果的にクロス トークを抑圧することができる。 FIG. 14 is a circuit diagram showing the circuit of FIG. 11 in more detail. In FIG. 14, the increase or decrease of the optical output due to the temperature change of the LD is detected by the temperature sensor 38 such as a thermistor for detecting the temperature of the LD or the photo diode 40 for detecting the optical output itself. The voltage is converted into a voltage by the voltage converter 42. Part controller 30 is a controller. It is composed of Laywei 44 and 46 controllers. The comparator 44 compares the output of the current-Z voltage converter 42 with the reference voltage V rep 2 and outputs a comparison signal. The controller 46 generates a control voltage to keep the optical output of the LD 10 constant based on the comparison result of the comparator 44. Fig. 15 is similar to Fig. 13 and takes into account the change in the voltage at point C due to the change over time. According to FIG. 15, the potential of the point C also changes due to the change in the data, and the reverse bias voltage (voltage between BC) of the diode 34 changes accordingly. However, the voltage at point C becomes lower during the period in which data exists and LD10 emits light and crosstalk occurs, so the reverse bias voltage becomes V, at which crosstalk can be suppressed. FIG. 16 is a modification of the circuit of FIG. FIG. 17 shows waveforms at points C to G in FIG. In FIG. 16, the data signal (D) is delayed by delay elements 48 and 50 and supplied to the LD drive circuit 12. The reference value supplied to the comparator 32 is obtained by taking NAND of a data signal that is delayed by a delay time longer than the delay time of the delay elements 48 and 50 (E) and a data signal that is not delayed (F). Generated (G). Therefore, as shown in FIG. 17, the potential at the point G is maintained at the high potential during the period when the potential at the point C changes. By changing the reference value of the comparator 32 in this manner, as shown in FIG. 18, the reverse bias voltage of the diode becomes smaller at the change point of the signal where the high frequency component is large and the crosstalk is increased. The crosstalk can be effectively suppressed.

Claims

請 求 の 範 囲 The scope of the claims
1. 発光素子と、 1. a light emitting element;
発光素子を駆動する送信回路と、  A transmission circuit for driving the light emitting element,
受光素子と、  A light receiving element,
受光素子に接続された受信回路と、  A receiving circuit connected to the light receiving element,
発光素子と送信回路の間に設けられ、 発光素子の駆動電流の高周 波成分を、 発光素子からの光出力が所定の規定を満足する範囲で除 去して、 送信回路から受信回路へのク ロス トークを抑圧する低域通 過フィルタとを具備することを特徴とする光 ト ラ ンシーバモジユー ル。  Provided between the light emitting element and the transmission circuit, removes the high frequency component of the driving current of the light emitting element within a range where the light output from the light emitting element satisfies a predetermined regulation, and transmits the signal from the transmission circuit to the reception circuit. An optical transceiver module comprising: a low-pass filter for suppressing crosstalk.
2. 受信側のビッ ト レー トが送信側のビッ ト レ一 卜より も高い非 対称伝送を行なう請求の範囲 1 記載の光 トラ ンシーバモジユール。  2. The optical transceiver module according to claim 1, wherein the receiving side performs asymmetric transmission at a higher bit rate than the transmitting side.
3. 前記低域通過フ ィ ルタは、  3. The low-pass filter is
送信回路に直列に接続された抵抗素子と、  A resistance element connected in series to the transmission circuit,
送信回路に並列に接続された容量素子とを含む請求の範囲 1 記載 の光 ト ラ ンシ一バモジュール。  2. The optical transceiver module according to claim 1, further comprising a capacitance element connected in parallel to the transmission circuit.
4. 発光素子に微少なバイ アス電流を流して発光素子および容量 素子をチャージ し、 バース ト先頭における発光の遅れを防止する微 少バイ アス回路をさ らに具備する請求の範囲 3記載の光 トラ ンシー バモジュール。  4. The light according to claim 3, further comprising a micro-bias circuit for supplying a micro-bias current to the light-emitting element to charge the light-emitting element and the capacitive element, thereby preventing a light emission delay at the head of the burst. Transceiver module.
5. バース トの送出に先立って始ま り遅く と もバース トの終了ま では終わる期間においてバイァス電流を発光素子に流して発光素子 および容量素子をチャージ し、 バース 卜先頭における発光の遅れを 防止するプリバイ アス回路をさ らに具備する請求の範囲 3記載の光 ト ラ ンシーバモジュール。  5. A bias current is applied to the light-emitting element to charge the light-emitting element and the capacitor element at the beginning of the burst and before the end of the burst, but before the end of the burst, to prevent the delay of light emission at the beginning of the burst. 4. The optical transceiver module according to claim 3, further comprising a pre-bias circuit.
6. 前記低域通過フ ィ ルタの通過特性は可変であり、 前記発光素 子の駆動電流に応じて通過特性が変更される請求の範囲 1 記載の光 ト ラ ンシーバモジュール。 6. The pass characteristic of the low-pass filter is variable; 2. The optical transceiver module according to claim 1, wherein a transmission characteristic is changed according to a drive current of the optical transceiver.
7. 前記低域通過フ ィ ルタは、  7. The low-pass filter is
送信回路に直列に接続された抵抗素子と、  A resistance element connected in series to the transmission circuit,
送信回路に並列に接続されたダイォー ドとを含み、  A diode connected in parallel with the transmitting circuit,
発光素子の駆動電流の制御電圧と基準電圧とを比較することによ つて、 駆動電流が所定値より も大であるときダイォ一 ドの逆バイァ ス電圧を下げてダイオー ドの容量を大き く し、 それによつて低域通 過フ ィ ルタに発光素子の電流の高周波成分を除去させるコ ンパレー タをさ らに具備する請求の範囲 6記載の光 トラ ンシ一バモジュール o  By comparing the control voltage of the driving current of the light emitting element with the reference voltage, when the driving current is larger than a predetermined value, the reverse bias voltage of the diode is reduced to increase the capacitance of the diode. 7. The optical transceiver module according to claim 6, further comprising a comparator that causes the low-pass filter to remove a high-frequency component of the current of the light-emitting element.
8. 前記低域通過フイルクは、  8. The low-pass film includes:
送信回路に直列に接続された抵抗素子と、  A resistance element connected in series to the transmission circuit,
送信回路に並列に接続されたダイオー ドとを含み、  A diode connected in parallel with the transmitting circuit,
発光素子の駆動電流の制御電圧と基準電圧とを比較して、 制御電 圧が基準電圧より も大であるときダイォー ドの逆バイアス電圧を下 げてダイオー ドの容量を大き く し、 それによつて低域通過フ ィルタ に発光素子の電流の高周波成分を除去させるコ ンパレータと、 送信データが変化する期間において基準電圧を上げて高周波成分 の除去を確実にする基準電圧制御回路をさ らに具備する請求の範囲 6 記載の光 ト ラ ンシーバモジュール。  The control voltage of the driving current of the light emitting element is compared with the reference voltage, and when the control voltage is higher than the reference voltage, the reverse bias voltage of the diode is reduced to increase the capacitance of the diode. In addition, the low-pass filter further includes a comparator that removes the high-frequency component of the current of the light-emitting element, and a reference voltage control circuit that raises the reference voltage during the period in which the transmission data changes to ensure that the high-frequency component is removed. The optical transceiver module according to claim 6, wherein
PCT/JP1998/005384 1998-11-30 1998-11-30 Optical transceiver module WO2000033490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/005384 WO2000033490A1 (en) 1998-11-30 1998-11-30 Optical transceiver module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/005384 WO2000033490A1 (en) 1998-11-30 1998-11-30 Optical transceiver module

Publications (1)

Publication Number Publication Date
WO2000033490A1 true WO2000033490A1 (en) 2000-06-08

Family

ID=14209496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005384 WO2000033490A1 (en) 1998-11-30 1998-11-30 Optical transceiver module

Country Status (1)

Country Link
WO (1) WO2000033490A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2386779A (en) * 2002-03-19 2003-09-24 Denselight Semiconductors Pte Multi-channel optical transmitter module
US7720393B2 (en) 2005-01-20 2010-05-18 Fujitsu Limited Optical module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111446A (en) * 1981-12-25 1983-07-02 Canon Inc Transmission and reception module of optical fiber
JPH0368088U (en) * 1989-11-01 1991-07-03
JPH07162186A (en) * 1993-12-08 1995-06-23 Fujitsu Ltd Light transceiver unit
JPH0993221A (en) * 1995-09-21 1997-04-04 Matsushita Electric Ind Co Ltd Optical transmitter
JPH09214440A (en) * 1996-02-05 1997-08-15 Kokusai Denshin Denwa Co Ltd <Kdd> Two-way transmission system for pulse information and optical transmitter-receiver
JPH09275375A (en) * 1996-04-05 1997-10-21 Toshiba Corp Optical communication equipment
JPH1091113A (en) * 1996-09-11 1998-04-10 Pfu Ltd Internal filter selecting type display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111446A (en) * 1981-12-25 1983-07-02 Canon Inc Transmission and reception module of optical fiber
JPH0368088U (en) * 1989-11-01 1991-07-03
JPH07162186A (en) * 1993-12-08 1995-06-23 Fujitsu Ltd Light transceiver unit
JPH0993221A (en) * 1995-09-21 1997-04-04 Matsushita Electric Ind Co Ltd Optical transmitter
JPH09214440A (en) * 1996-02-05 1997-08-15 Kokusai Denshin Denwa Co Ltd <Kdd> Two-way transmission system for pulse information and optical transmitter-receiver
JPH09275375A (en) * 1996-04-05 1997-10-21 Toshiba Corp Optical communication equipment
JPH1091113A (en) * 1996-09-11 1998-04-10 Pfu Ltd Internal filter selecting type display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2386779A (en) * 2002-03-19 2003-09-24 Denselight Semiconductors Pte Multi-channel optical transmitter module
US7720393B2 (en) 2005-01-20 2010-05-18 Fujitsu Limited Optical module

Similar Documents

Publication Publication Date Title
US20050271101A1 (en) High speed laser array driver
JP4060696B2 (en) Optical transmission module
JP3432620B2 (en) Optical transmitter and laser diode module
EP1788639B1 (en) Led drive circuit
US7555218B2 (en) Optical transceiver having optical receiver with function to cancel noise originated to optical transmitter
JP2007274032A (en) Optical receiver
US20070183790A1 (en) Optical transmitter with EA-modulator
US6901091B2 (en) Electronic driver circuit for directly modulated semiconductor lasers
US6882667B2 (en) Optical semiconductor device and method for controlling the same
JP4566692B2 (en) LIGHT EMITTING DIODE DRIVING DEVICE AND OPTICAL TRANSMISSION DEVICE HAVING THE SAME
WO2000033490A1 (en) Optical transceiver module
JP2011165714A (en) Optical transceiver
CN106953697B (en) Analog programmable OLT (optical line terminal) receiving and transmitting integrated chip
WO2005110004A2 (en) Driving circuit for electro absorption modulator
JP2002343984A (en) Optical transmitter and receiver
GB2444147A (en) Adaptive decision threshold setting circuit, preferably with high and low thresholds
US6535308B1 (en) Method and apparatus for converting electrical signals and optical signals for bidirectional communication over a single optical fiber
TW571471B (en) Driving circuit for light emitting element, and optical communication device using same
JP2009099803A (en) Laser diode drive circuit
JP5780282B2 (en) Limiter amplifier circuit and driver circuit
JP2005252783A (en) Optical transmitter
US20080074156A1 (en) Current driving type light source driving circuit
JP2000299663A (en) Light emitting element bias current superimposing circuit
JP4003620B2 (en) Optical transmitter
RU2222078C2 (en) Laser diode control device (alternatives)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000586024

Format of ref document f/p: F