WO2006077233A1 - Verfahren zur herstellung eines xylylendiamins - Google Patents

Verfahren zur herstellung eines xylylendiamins Download PDF

Info

Publication number
WO2006077233A1
WO2006077233A1 PCT/EP2006/050302 EP2006050302W WO2006077233A1 WO 2006077233 A1 WO2006077233 A1 WO 2006077233A1 EP 2006050302 W EP2006050302 W EP 2006050302W WO 2006077233 A1 WO2006077233 A1 WO 2006077233A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogenation
catalyst
alkali metal
metal hydroxide
carried out
Prior art date
Application number
PCT/EP2006/050302
Other languages
English (en)
French (fr)
Inventor
Martin Ernst
Thilo Hahn
Kirsten Dahmen
Randolf Hugo
Johann-Peter Melder
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to JP2007551670A priority Critical patent/JP2008528459A/ja
Priority to EP06707753A priority patent/EP1843998A1/de
Priority to US11/814,390 priority patent/US20080214871A1/en
Publication of WO2006077233A1 publication Critical patent/WO2006077233A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/27Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains

Definitions

  • the present invention relates to a process for preparing a xylylenediamine by heterogeneously catalyzed hydrogenation of a phthalonitrile.
  • Xylylenediamine bis (aminomethyl) benzene
  • Xylylenediamine is a useful starting material, e.g. for the synthesis of polyamides, epoxy hardeners or as an intermediate for the preparation of isocyanates.
  • xylylenediamine includes the three isomers orffto-xylylenediamine, mefa-xylylenediamine (MXDA) and para-xylylenediamine.
  • the phthalonitriles are solids (e.g., isophthalonitrile (IPN) melts at 161 ° C) and have relatively poor solubilities in many organic solvents.
  • IPN isophthalonitrile
  • US-A-4,482,741 (UOP Inc.) describes the hydrogenation of PDN in the presence of ammonia, a supported Co / Ti catalyst and XDA as a solvent.
  • DE-A-21 64 169 (Mitsubishi Gas Chemical Co., Inc.) describes on page 6, last paragraph, the hydrogenation of IPDN to meta-XDA in the presence of a Ni and / or Co catalyst in ammonia as solvent.
  • JP-B-46008283 (Toray Industries Inc., ACS Abstract 75: 5222) relates to the hydrogenation of nitriles to primary amines in the presence of lead-containing nickel or cobalt catalysts.
  • FR-A1-2 722 784 (Rhone Poulenc) teaches the hydrogenation of dinitriles, such as adiponitrile, to diamines in the presence of nickel catalysts.
  • US Pat. No. 3,862,911 (and DE-A-2 260 978) (Rhone Poulenc) describes Ni / Cr / Fe / Al catalysts for the hydrogenation of amines.
  • Example 6 B succeeds the hydrogenation of IPDN to MXDA at 85 0 C and 40 bar with a yield of 75%.
  • JP-A-2003 327563 discloses a process for the continuous hydrogenation of aromatic dinitriles in ammonia as a solvent in a fixed bed irrigation liquid type reactor in the presence of nickel or cobalt catalysts.
  • EP-A1-1 449 825 (Mitsubishi Gas) describes a two-stage preparation of aromatic diamines from aromatic dinitriles, such as IPDN, in the presence of Pd and Ni or Co catalysts.
  • EP-A-538 865 (Mitsubishi Gas) describes the use of ruthenium catalysts for the hydrogenation of aromatic dinitriles.
  • DD Patent 77,983 (Baltz et al.) Discloses a process for the selective hydrogenation of phthalonitriles in the presence of platinum or palladium-containing catalysts and ammonia.
  • US 2,970,170 and GB-B-821 404 (California Research Corp.) relate to a multi-step production process for xylylenediamines starting from the corresponding phthalic acids.
  • pressures in the range of 1500 to 10,000 psig (103.4 to 689.5 bar), especially 2000 to 5000 psig (137.9 to 344.7 bar), are taught.
  • EP-A1-1 454 895 describes a two-stage process for the hydrogenation of dicyano-benzenes at pressures of 5 to 300 bar, in particular 10 to 200 bar, in the presence of Co, Ni, Pd, Ru or Rh catalysts and optionally in the presence of additives such as alkali metal hydroxides or alkaline earth metal hydroxides.
  • US-B1-6,476,267 (Sagami Chemical Research Center) relates to the preparation of aromatic primary amines from nitriles, such as IPDN, in the presence of Ni catalysts and polar solvents and at pressures of 0.1 to 50 kg / cm 2 G (0, 1 to 49 bar), eg ⁇ 19 kg / cm 2 G (18.6 bar).
  • GB-B-810 530 Teaches the hydrogenation of iso- or terephthalodinitrile in the presence of ammonia, nickel or cobalt catalysts and aromatic hydrocarbons, water, DMF, methanol or ethanol as solvent.
  • EP-A1-913 388 (Air Products) relates to the hydrogenation of nitriles, such as DMAPN, to amines in the presence of Raney cobalt catalysts, LiOH and water and, in the absence of senheit of organic solvents, at pressures in the range of 1 to 300 bar, in particular 5 to 80 bar.
  • the present invention has for its object to find an improved economical process for the preparation of a xylylenediamine.
  • the method should overcome one or more disadvantages of the prior art methods.
  • the xylylenediamine, in particular MXDA, should thereby be obtained in high yield, in particular space-time yield, selectivity, purity and / or color quality.
  • a process for the preparation of a xylylenediamine by heterogeneously catalyzed hydrogenation of a phthalonitrile is found, which is characterized in that the hydrogenation in the presence of a cobalt skeleton catalyst, an alkali metal hydroxide and an alcohol and / or ether as a solvent, at an absolute pressure in Range of 1 to 100 bar and a temperature in the range of 40 to 150 0 C is performed.
  • the process according to the invention preferably finds application for the preparation of meta-xylylenediamine (MXDA) by hydrogenation of isophthalonitrile (IPDN).
  • MXDA meta-xylylenediamine
  • IPDN isophthalonitrile
  • Advantages of the method according to the invention include, inter alia, due to the possible driving without NH 3 addition and low pressure driving, lower technical equipment and safety expenses and thus lower fixed costs (investment) and variable costs.
  • the PDN used in the process as starting material can be synthesized in a previous stage by ammoxidation of the corresponding xylene isomer.
  • Such synthesis methods are e.g. in BASF patent applications EP-A-767 165, EP-A-699 476, EP-A-222 249, DE-A-35 40 517 and DE-A-37 00 710, as well as in the above-mentioned.
  • the starting material PDN is preferably used in a purity of ⁇ 90% by weight, in particular ⁇ 98% by weight, e.g. 98.2 to 99.9 wt .-%, used. Such purities may e.g. obtained by distillation or rectification of commercially available goods.
  • the PDN is dissolved and / or suspended in an alcohol and / or ether.
  • the dissolution process at elevated temperature e.g. at 50 to 145 ° C, take place.
  • the solvent and / or suspending agent is preferably a Ci -4 alkanol, C 4 - I2 - dialkyl ethers and / or C 3 i 2 -alicyclic ether, in particular a C 4-6 dialkyl ethers and / or C 4-6 - alicyclic ether used.
  • THF tetrahydrofuran
  • 2-methyl-THF tetrahydropyran
  • 1-methyl-THF 2-methyl-THF
  • tetrahydropyran 1, 3-dioxepane
  • 4-dioxane 1, 3-dioxane and 1, 3-dioxolane.
  • Particularly preferred is THF.
  • solvent and / or suspending agent it is also possible to use a mixture of two or more of the solvents mentioned.
  • a cobalt skeleton catalyst is used according to the invention.
  • Typical examples of such catalysts are Raney cobalt catalysts.
  • the active catalyst is prepared as a 'metal sponge' from a binary alloy (nickel, iron, cobalt, copper with aluminum or silicon) by dissolving a partner with acid or alkali. Residues of the original alloying partner often act synergistically.
  • the catalysts used in the process according to the invention are preferably prepared starting from an alloy of cobalt and a further alloying component which is soluble in alkalis.
  • a further alloying component which is soluble in alkalis.
  • aluminum is preferably used, but other components such as zinc and silicon or mixtures of such components may be used.
  • the soluble alloy component is wholly or partially extracted with alkali, for which example aqueous sodium hydroxide solution can be used.
  • alkali for which example aqueous sodium hydroxide solution can be used.
  • the catalyst can then z. B. be washed with water or organic solvents.
  • promoters are metals of subgroups IB, VIB and / or VIII of the Periodic Table, such as chromium, iron, molybdenum, nickel, copper, etc.
  • the activation of the catalysts by leaching the soluble component can either be in the reactor itself or before it is charged to the reactor.
  • the preactivated catalysts are sensitive to air and pyrophoric and are therefore usually under a medium such.
  • a medium such as water, an organic solvent or a substance which is added in the reaction according to the invention.
  • gene solvent, educt, product
  • the catalysts can be used as powders for suspension hydrogenations or as shaped articles such as tablets or rods for fixed bed reactors.
  • the present invention uses a cobalt skeletal catalyst composed of a Co / Al alloy by leaching with aqueous alkali metal hydroxide solution, e.g. Sodium hydroxide solution, and subsequent washing with water was obtained, and preferably contains as promoters at least one of the elements Fe, Ni, Cr.
  • aqueous alkali metal hydroxide solution e.g. Sodium hydroxide solution
  • Such catalysts typically still contain cobalt in addition
  • Al 1 to 30% by weight Al, especially 2 to 12% by weight Al, very particularly 3 to 6% by weight Al,
  • a cobalt skeleton catalyst "Raney 2724" from W.R. Grace & Co. can be used advantageously as catalyst in the process according to the invention.
  • Al 2-6 wt.%, Co: ⁇ 86 wt.%, Fe: 0-1 wt.%, Ni: 1-4 wt.%, Cr: 1.5-3.5 wt. -%.
  • the PDN is in the presence of alkali metal hydroxide (MOH), especially 0.001 to 5 mol% MOH, more preferably 0.002 to 1.5 mol% MOH, more preferably 0.005 to 1.2 mol% MOH, e.g. 1 mol%, MOH, in each case based on the PDN used reacted.
  • MOH alkali metal hydroxide
  • the appropriate amount of MOH is an aqueous solution, e.g. as 1 to 25 wt .-% aqueous solution used.
  • the catalyst used is previously treated with alkali metal hydroxide (M'OH).
  • M'OH alkali metal hydroxide
  • This treatment is particularly advantageous when the hydrogenation is carried out in the absence of MOH in the reaction mixture presented.
  • This treatment of the catalyst with M'OH can be carried out by methods known to the person skilled in the art, for example by saturating the catalyst with M'OH, for example from 0.01 to 5.0% by weight of M'OH (based on the support material) Presence of a suitable solvent, eg water. (EP-A1-913388, US 6,429,338, US 3,636,108).
  • the hydrogenation is particularly preferably and advantageously carried out without the addition of ammonia.
  • the reaction temperature of the hydrogenation is in the range of 40 to 150 0 C, preferably 50 to 120 0 C, in particular 60 to 110 ° C, especially 70 and 105 0 C, for example 80 to 100 ° C.
  • the absolute pressure in the hydrogenation is in the range from 1 to 100 bar, preferably from 2 to 80 bar, in particular from 5 to 60 bar, very particularly from 10 to 50 bar, e.g. 20 to 40 bar.
  • reactors for the process according to the invention for example, conventional high-pressure autoclave can be used.
  • the reactors known to the person skilled in the art for this reaction for example fixed-bed or suspension operation
  • processes continuously, semibatch, batch
  • suspension mode a continuous process or semibatch process is preferred.
  • the hydrogenation reactor can be run in straight passage.
  • a circulation procedure is possible in which a part of the reactor discharge is returned to the reactor inlet, preferably without prior workup of the circulation stream.
  • an optimal dilution of the reaction solution can be achieved, which has a favorable effect on the selectivity.
  • the circulation stream can be cooled by means of an external heat exchanger in a simple and cost-effective manner and thus the heat of reaction can be dissipated.
  • the reactor can also be operated adiabatically, wherein the temperature rise of the reaction solution can be limited by the cooled circulation stream. Since the reactor does not have to be cooled even then, a simple and cost-effective design is possible.
  • An alternative is a cooled tube bundle reactor.
  • the XDA corresponding to the PDN used is also presented, e.g. in amounts of 500-1500% by weight, based on the PDN to be used.
  • the XDA corresponding to the PDN used is the ortho-XDA, in the case of the meta-dinitrile the MXDA and in the case of the para-dinitrile the para-XDA.
  • the conversions of PDN achievable with the method according to the invention are in the range of ⁇ 95%, in particular ⁇ 99%, e.g. ⁇ 96 to 99.9% or 99.5 to 100%, with selectivities (for the formation of XDA) in the range of ⁇ 80%, in particular ⁇ 85%, e.g. 86 to 99.5% or 90 to 99%.
  • the solvent-freed reaction product contains, in particular, ⁇ 2% by weight, very particularly ⁇ 1% by weight, e.g. 0 to 0.5% by weight, amidines of formula I and / or higher than the XDA boiling products, e.g. the corresponding (bisaminoalkyl) diarylamine II.
  • the isolation of the XDAs can be carried out e.g. by distillation or rectification.
  • the autoclave was closed, the mixture made inert, and pressed to 10 bar hydrogen. It was heated to 100 ° C. under autogenous pressure and with stirring (500 rpm). Upon reaching this temperature was pressed to 36 bar of hydrogen and the stirrer speed to 1200 rev / min, increased. Subsequently, a solution of 7.2 g of IPDN in 83 g of THF was pumped in over 5 h, hydrogen being fed continuously (under pressure maintenance at 36 bar). After 5 h, a sample was taken. GC analysis of the samples showed a conversion of 100% and a content of 99.4% after 5 h, which corresponds to a selectivity of 97.7% after deduction of the submitted MXDA. No formation of high boilers was observed. The mixture was held at this temperature for an additional 2 hours without lowering the selectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Verfahren zur Herstellung eines Xylylendiamins durch heterogenkatalysierte Hydrierung eines Phthalodinitrils, wobei die Hydrierung in Gegenwart eines Kobalt-Skelett-Katalysators, eines Alkalimetallhydroxids und eines Alkohols und/oder Ethers als Lösungsmittel, bei einem Absolutdruck im Bereich von 1 bis 100 bar und einer Temperatur im Bereich von 40 bis 150°C durchgeführt wird.

Description

Verfahren zur Herstellung eines Xylylendiamins
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Xylylendiamins durch heterogenkatalysierte Hydrierung eines Phthalodinitrils.
Xylylendiamin (Bis(aminomethyl)benzol) ist ein nützlicher Ausgangsstoff, z.B. für die Synthese von Polyamiden, Epoxyhärtem oder als Zwischenstufe zur Herstellung von Isocyanaten.
Die Bezeichnung „Xylylendiamin" (XDA) umfasst die drei Isomere orffto-Xylylendiamin, mefa-Xylylendiamin (MXDA) und para-Xylylendiamin.
Der Begriff „Phthalodinitril" (PDN) umfasst die drei Isomere 1 ,2-Dicyanbenzol = o-Phthalodinitril, 1 ,3-Dicyanbenzol = Isophthalodinitril = IPDN und 1 ,4-Dicyanbenzol = Terephthalodinitril.
Die Phthalodinitrile sind Feststoffe (z.B. schmilzt Isophthalodinitril (IPDN) bei 161°C) und weisen relativ schlechte Löslichkeiten in vielen organischen Lösungsmitteln auf.
Die zweistufige Synthese von Xylylendiamin durch Ammonoxidation von XyIoI und anschließender Hydrierung des erhaltenen Phthalodinitrils ist im Prinzip bekannt.
US-A-4,482,741 (UOP Inc.) beschreibt die Hydrierung von PDN in Gegenwart von Ammoniak, einem geträgerten Co/Ti-Katalysator und XDA als Lösungsmittel.
DE-A-21 64 169 (Mitsubishi Gas Chemical Co., Inc.) beschreibt auf Seite 6, letzter Absatz, die Hydrierung von IPDN zu meta-XDA in Gegenwart eines Ni- und/oder Co- Katalysators in Ammoniak als Lösungsmittel.
JP-B-46008283 (Toray Industries Inc.; ACS-Abstract 75:5222) betrifft die Hydrierung von Nitrilen zu primären Aminen in Gegenwart von Blei-haltigen Nickel- oder Kobaltkatalysatoren.
US-B1 -6,660,887 (Solutia Inc.) beschreibt die Herstellung von 3-Dimethylaminopropyl- amin (DMAPA) aus N,N-Dimethylaminopropionitril (DMAPN) bei niedrigem Druck in Gegenwart eines Nickelkatalysators.
FR-A1-2 722 784 (Rhone Poulenc) lehrt insbesondere die Hydrierung von Dinitrilen, wie Adipodinitril, zu Diaminen in Gegenwart von Nickelkatalysatoren. US 3,862,911 (und DE-A-2 260 978) (Rhone Poulenc) beschreibt Ni/Cr/Fe/Al- Katalysatoren zur Hydrierung von Aminen. Gemäß Example 6 B gelingt die Hydrierung von IPDN zu MXDA bei 85 0C und 40 bar mit einer Ausbeute von 75 %.
JP-A-2003 327563 (Mitsubishi Gas) offenbart ein Verfahren zur kontinuierlichen Hydrierung von aromatischen Dinitrilen in Ammoniak als Lösungsmittel in einem ,fixed bed irrigation liquid type reactor' in Gegenwart von Nickel- oder Kobaltkatalysatoren.
EP-A1-1 449 825 (Mitsubishi Gas) beschreibt eine zweistufige Herstellung von aroma- tischen Diaminen aus aromatischen Dinitrilen, wie IPDN, in Gegenwart von Pd- und Ni- oder Co-Katalysatoren.
EP-A-538 865 (Mitsubishi Gas) beschreibt die Verwendung von Ruthenium-Katalysatoren zur Hydrierung von aromatischen Dinitrilen.
DD-Patent 77983 (Baltz et al.) offenbart ein Verfahren zur selektiven Hydrierung von Phthalsäuredinitrilen in Gegenwart von platin- oder palladiumhaltigen Katalysatoren und Ammoniak.
US 2,970,170 und GB-B-821 404 (California Research Corp.) betreffen ein mehrstufiges Produktionsverfahren für Xylylendiamine ausgehend von den entsprechenden Phthalsäuren. Für die Dinitril-Hydrierung in Gegenwart von Kobalt- oder Nickelkatalysatoren werden Drucke im Bereich von 1500 bis 10.000 psig (103,4 - 689,5 bar), besonders 2000 bis 5000 psig (137,9 - 344,7 bar), gelehrt.
EP-A1-1 454 895 beschreibt ein zweistufiges Verfahren zur Hydrierung von Dicyano- benzolen bei Drucken von 5 bis 300 bar, insbesondere 10 bis 200 bar, in Gegenwart von Co-, Ni-, Pd-, Ru- oder Rh-Katalysatoren und optional in Gegenwart von Additiven, wie Alkali metal I hydroxiden oder Erdalkalimetallhydroxiden.
US-B1 -6,476,267 (Sagami Chemical Research Center) betrifft die Herstellung von aromatischen primären Aminen aus Nitrilen, wie IPDN, in Gegenwart von Ni-Katalysatoren und polaren Lösungsmitteln und bei Drucken von 0,1 bis 50 kg/cm2G (0,1 bis 49 bar), z.B. ≤ 19 kg/cm2G (18,6 bar).
GB-B-810 530 (Brindley et al.) lehrt die Hydrierung von Iso- oder Terephthalodinitril in Gegenwart von Ammoniak, Nickel- oder Kobalt-Katalysatoren und aromatischen Kohlenwasserstoffen, Wasser, DMF, Methanol oder Ethanol als Lösungsmittel.
EP-A1-913 388 (Air Products) betrifft die Hydrierung von Nitrilen, wie DMAPN, zu Aminen in Gegenwart von Raney-Kobalt-Katalysatoren, LiOH und Wasser und in Abwe- senheit von organischen Lösungsmitteln, bei Drucken im Bereich von 1 bis 300 bar, insbesondere 5 bis 80 bar.
Nachteile ergeben sich hier durch den Aufwand, das Edukt-Nitril im Falle eines Fest- Stoffs dem Reaktor zuzuführen und dadurch, dass das Edukt-Nitril und/oder Intermedi- ate, wie Imine, mit dem Produkt-Amin in zu hohem Maß unerwünschte Nebenprodukte bilden.
Die sechs deutschen Patentanmeldungen mit den Aktenzeichen 10341615.3, 10341632.3, 10341614.5, 10341633.1 , 10341612.9 und 10341613.7 (BASF AG) vom 10.09.03 und die zwei deutschen Patentanmeldungen mit den Aktenzeichen 102004042947.2 und 102004042954.5 (BASF AG) vom 02.09.04 betreffen jeweils Verfahren zur Herstellung von XDA.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein verbessertes wirtschaftliches Verfahren zur Herstellung eines Xylylendiamins aufzufinden. Das Verfahren sollte ein oder mehrere Nachteile der Verfahren des Stands der Technik überwinden. Das Xylylendiamin, insbesondere MXDA, sollte dabei in hoher Ausbeute, insbesondere Raum-Zeit-Ausbeute, Selektivität, Reinheit und/oder Farbqualität anfallen.
[Raum-Zeit-Ausbeuten werden angegeben in .Produktmenge / (Katalysatorvolumen • Zeit)' (kg/(lKat. • h)) und/oder .Produktmenge / (Reaktorvolumen • Zeit)' (kg/(lRΘaktor • h)].
Demgemäß wurde ein Verfahren zur Herstellung eines Xylylendiamins durch hetero- genkatalysierte Hydrierung eines Phthalodinitrils gefunden, welches dadurch gekennzeichnet ist, dass die Hydrierung in Gegenwart eines Kobalt-Skelett-Katalysators, eines Alkalimetallhydroxids und eines Alkohols und/oder Ethers als Lösungsmittel, bei einem Absolutdruck im Bereich von 1 bis 100 bar und einer Temperatur im Bereich von 40 bis 1500C durchgeführt wird.
Bevorzugt findet das erfindungsgemäße Verfahren Anwendung zur Herstellung von meta-Xylylendiamin (MXDA) durch Hydrierung von Isophthalodinitril (IPDN).
Vorteile des erfindungsgemäßen Verfahrens sind u.a. der, bedingt durch die mögliche Fahrweise ohne NH3-Zugabe und die Niederdruckfahrweise, geringere apparatetechnische und sicherheitstechnische Aufwand und damit niedrigere fixe Kosten (Investment) und variable Kosten.
Weiterhin fallen im erfindungsgemäßen, selektiven Verfahren besonders geringe Men- gen an Nebenprodukten, wie z.B. höher als das Xylylendiamin siedende Produkte (bei gleichem Druck) und Amidine, z.B. der Formel I, sowie deren Folgeprodukte (Dimeres von MXDA der Formel II) an.
Figure imgf000005_0001
Figure imgf000005_0002
Das im Verfahren als Edukt eingesetzte PDN kann in einer vorherigen Stufe durch Ammonoxidation des entsprechenden Xylol-Isomers synthetisiert werden. Solche Syntheseverfahren sind z.B. in den BASF-Patentanmeldungen EP-A-767 165, EP-A-699 476, EP-A-222 249, DE-A-35 40 517 und DE-A-37 00 710, sowie in den o.g. acht BASF-Patentanmeldungen zur Herstellung von XDA vom 10.09.03 und 02.09.04 beschrieben.
Das erfindungsgemäße Verfahren lässt sich wie folgt ausführen:
Der Einsatzstoff PDN wird bevorzugt in einer Reinheit von ≥ 90 Gew.-%, insbesondere ≥ 98 Gew.-%, z.B. 98,2 bis 99,9 Gew.-%, eingesetzt. Solche Reinheiten können z.B. durch Destillation oder Rektifikation von kommerziell erhältlicher Ware erzielt werden.
Für die Hydrierung des Phthalodinitrils zum entsprechenden Xylylendiamin (o-, m- bzw. p-Xylylendiamin) nach der Gleichung
Figure imgf000005_0003
wird das PDN in einem Alkohol und/oder Ether gelöst und/oder suspendiert. Zur Erhöhung der Geschwindigkeit des Auflösens und/oder zur Erhöhung der Menge an gelös- tem PDN kann der Lösungsvorgang bei erhöhter Temperatur, z.B. bei 50 bis 145°C, erfolgen.
Bevorzugt werden im erfindungsgemäßen Verfahren 15 bis 75 Gew.-%ige, insbesondere 20 bis 50 Gew.-%ige, Lösungen und/oder Suspensionen des PDNs im Lösungs- mittel oder Lösungsmittelgemisch eingesetzt. Als Lösungsmittel und/oder Suspensionsmittel wird bevorzugt ein Ci-4-Alkanol, C4--I2- Dialkylether und/oder C3-i2-alicyclischer Ether, insbesondere ein C4-6-Dialkylether und/oder C4-6-alicyclischer Ether, eingesetzt.
Beispiele hierfür sind Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol, iso- Butanol, tert.-Butanol, Methyl-tert.-butylether (MTBE), Diethylether (DEE), Di-n-propyl- ether, Di-n-butylether, Tetrahydrofuran (THF), 2-Methyl-THF, Tetrahydropyran, 1 ,3- Dioxepan, 1 ,4-Dioxan, 1 ,3-Dioxan und 1 ,3-Dioxolan. Besonders bevorzugt ist THF.
Als Lösungsmittel und/oder Suspensionsmittel kann auch ein Gemisch von zwei oder mehr der genannten Lösungsmittel eingesetzt werden.
Als Katalysator für die Hydrierung wird erfindungsgemäß ein Kobalt-Skelett-Katalysator eingesetzt.
Typische Beispiele für solche Katalysatoren sind Raney-Kobalt-Katalysatoren. Hierbei wird der aktive Katalysator als .Metallschwamm' aus einer binären Legierung (Nickel, Eisen, Kobalt, Kupfer mit Aluminium oder Silicium) durch Herauslösen eines Partners mit Säure oder Lauge hergestellt. Reste des ursprünglichen Legierungspartners wirken oft synergetisch.
Die im erfindungsgemäßen Verfahren eingesetzten Katalysatoren werden bevorzugt ausgehend von einer Legierung aus Kobalt und einer weiteren Legierungskomponente, die in Alkalien löslich ist, hergestellt. Bei dieser löslichen Legierungskomponente wird bevorzugt Aluminium verwendet, es können aber auch andere Komponenten wie Zink und Silicium oder Gemische aus solchen Komponenten eingesetzt werden.
Zur Aktivierung des Katalysators wird die lösliche Legierungskomponente ganz oder teilweise mit Alkali extrahiert, wofür zum Beispiel wässrige Natronlauge verwendet werden kann. Der Katalysator kann danach z. B. mit Wasser oder organischen Lösungsmittel gewaschen werden.
In dem Katalysator können einzelne oder mehrere weitere Elemente als Promotoren anwesend sein. Beispiele für Promotoren sind Metalle der Nebengruppen IB, VIB und/oder VIII des Periodensystems, wie Chrom, Eisen, Molybdän, Nickel, Kupfer usw.
Die Aktivierung der Katalysatoren durch Auslaugen der löslichen Komponente (typischerweise Aluminium) kann entweder im Reaktor selbst oder vor Einfüllen in den Reaktor erfolgen. Die voraktivierten Katalysatoren sind luftempfindlich und pyrophor und werden deshalb in der Regel unter einem Medium wie z. B. Wasser, einem organischen Lösungsmittel oder einem Stoff, der bei der erfindungsgemäßen Reaktion zuge- gen ist (Lösungsmittel, Edukt, Produkt) aufbewahrt und gehandhabt oder in eine organische Verbindung, die bei Raumtemperatur fest ist, eingebettet.
Die Katalysatoren können als Pulver für Suspensionshydrierungen oder als Formkör- per wie Tabletten oder Stränglinge für Festbettreaktoren eingesetzt werden.
Bevorzugt wird erfindungsgemäß ein Kobalt-Skelett-Katalysator eingesetzt, der aus einer Co/Al-Legierung durch Laugung mit wässriger Alkalimetallhydroxid-Lösung, z.B. Natronlauge, und nachfolgender Waschung mit Wasser erhalten wurde, und bevorzugt als Promotoren mindestens eines der Elemente Fe, Ni, Cr enthält.
Solche Katalysatoren enthalten typischerweise neben Kobalt noch
1 - 30 Gew.-% AI, besonders 2 - 12 Gew.-% AI, ganz besonders 3 - 6 Gew.-% AI,
0 - 10 Gew.-% Cr, besonders 0,1 - 7 Gew.-% Cr, ganz besonders 0,5 - 5 Gew.-% Cr, insbesondere 1 ,5 - 3,5 Gew.-% Cr,
0 - 10 Gew.-% Fe, besonders 0,1 - 3 Gew.-% Fe, ganz besonders 0,2 - 1 Gew.-% Fe, und/oder
0 - 10 Gew.-% Ni, besonders 0,1 - 7 Gew.-% Ni, ganz besonders 0,5 - 5 Gew.-% Ni, insbesondere 1 - 4 Gew.-% Ni, wobei die Gewichtsangaben jeweils auf das Katalysatorgesamtgewicht bezogen sind.
Als Katalysator im erfindungsgemäßen Verfahren kann zum Beispiel vorteilhaft ein Kobalt-Skelett-Katalysator „Raney 2724" von W. R. Grace & Co. eingesetzt werden. Dieser Katalysator weist folgende Zusammensetzung auf:
AI: 2-6 Gew.-%, Co: ≥ 86 Gew.-%, Fe: 0-1 Gew.-%, Ni: 1-4 Gew.-%, Cr: 1,5 - 3,5 Gew.-%.
Das PDN wird in Gegenwart von Alkalimetallhydroxid (MOH), insbesondere 0,001 bis 5 Mol-% MOH, ganz besonders 0,002 bis 1 ,5 Mol-% MOH, besonders bevorzugt 0,005 bis 1 ,2 Mol-% MOH, z.B. 1 Mol-%, MOH, jeweils bezogen auf das eingesetzte PDN, umgesetzt.
In einer bevorzugten Ausführungsform wird die entsprechende Menge an MOH als wässrige Lösung, z.B. als 1 bis 25 Gew.-%ige wässrige Lösung, eingesetzt.
Mögliche Alkalimetalle M sind Li, Na, K, Rb und Cs. Besonders bevorzugt ist M = Li.
In einer besonderen Ausführungsform wird der eingesetzte Katalysator zuvor mit Alkali- metallhydroxid (M'OH) behandelt. Diese Behandlung ist besonders dann vorteilhaft, wenn die Hydrierung in Abwesenheit von MOH im vorgelegten Reaktionsgemisch durchgeführt wird. Diese Behandlung des Katalysators mit M'OH kann nach dem Fachmann bekannten Verfahren erfolgen, z.B. durch Sättigen des Katalysators mit M'OH, z.B. 0,01 bis 5,0 Gew.-% M'OH (bez. auf das Trägermaterial), in Gegenwart eines geeigneten Lö- sungsmittels, z.B. Wasser. (EP-A1-913 388, US 6,429,338, US 3,636,108).
Mögliche Alkalimetalle M' sind Li, Na, K, Rb und Cs. Besonders bevorzugt ist M' = Li.
Die Hydrierung wird besonders bevorzugt und vorteilhaft ohne Zugabe von Ammoniak durchgeführt.
Die Reaktionstemperatur der Hydrierung liegt im Bereich von 40 bis 1500C, bevorzugt 50 bis 1200C, insbesondere 60 bis 110°C, ganz besonders 70 bis 1050C, z.B. 80 bis 100°C.
Der Absolutdruck liegt bei der Hydrierung im Bereich von 1 bis 100 bar, bevorzugt 2 bis 80 bar, insbesondere 5 bis 60 bar, ganz besonders 10 bis 50 bar, z.B. 20 bis 40 bar.
Als Reaktoren für das erfindungsgemäße Verfahren können zum Beispiel übliche Hochdruckautoklaven eingesetzt werden.
Für die Hydrierung können die dem Fachmann für diese Umsetzung bekannten Reaktoren (z.B. Festbett- oder Suspensionsfahrweise) sowie Verfahren (kontinuierlich, halbkontinuierlich (Semibatch), diskontinuierlich (Batch)) angewendet werden. Bei der Suspensionsfahrweise ist ein kontinuierliches Verfahren oder Semibatch- Verfahren bevorzugt.
Bei der Katalysatorfestbettfahrweise ist sowohl die Sumpf- als auch die Rieselfahrwei- se möglich. Bevorzugt ist eine Rieselfahrweise.
Der Hydrierreaktor kann in geradem Durchgang gefahren werden. Alternativ ist auch eine Kreislauffahrweise möglich, bei der ein Teil des Reaktoraustrages an den Reaktoreingang zurückgeführt wird, bevorzugt ohne vorherige Aufarbeitung des Kreislaufstromes. Damit lässt sich eine optimale Verdünnung der Reaktionslösung erreichen, was sich günstig auf die Selektivität auswirkt. Insbesondere kann der Kreislaufstrom mittels eines externen Wärmeüberträgers auf einfache und kostengünstige Weise gekühlt und somit die Reaktionswärme abgeführt werden. Der Reaktor lässt sich dadurch auch adiabat betreiben, wobei der Temperaturanstieg der Reaktionslösung durch den gekühlten Kreislaufstrom begrenzt werden kann. Da der Reaktor selbst dann nicht ge- kühlt werden muss, ist eine einfache und kostengünstige Bauform möglich. Eine Alternative stellt ein gekühlter Rohrbündelreaktor dar. Bei der bevorzugten Suspensionsfahrweise im Semibatch-Verfahren wird bevorzugt der Kobalt-Skelett-Katalysator, das Alkalimetallhydroxid und Wasser im Reaktor vorgelegt und nachfolgend unter den eingestellten Reaktionsbedingungen (Druck, Temperatur) das Phthalodinitril im Lösungsmittel über einen bestimmten Zeitraum (z.B. 2 - 8 h) zugefahren (halbkontinuierliche Fahrweise).
In einer besonderen Ausgestaltung dieser Fahrweise wird zusätzlich das dem eingesetzten PDN entsprechende XDA mit vorgelegt, z.B. in Mengen von 500 - 1500 Gew.-% bezogen auf einzusetzendes PDN.
Das dem eingesetzten PDN entsprechende XDA ist im Fall des ortho-Dinitrils das or- tho-XDA, im Fall des meta-Dinitrils das MXDA und im Fall des para-Dinitrils das para- XDA.
Die mit dem erfindungsgemäßen Verfahren erzielbaren Umsätze an PDN liegen im Bereich von ≥ 95 %, insbesondere ≥ 99 %, z.B. ≥ 96 bis 99,9 % oder 99,5 bis 100 %, bei Selektivitäten (für die Bildung von XDA) im Bereich von ≥ 80 %, insbesondere ≥ 85 %, z.B. 86 bis 99,5 % oder 90 bis 99 %.
Der vom Lösungsmittel befreite Reaktionsaustrag enthält insbesondere ≤ 2 Gew.-%, ganz besonders ≤ 1 Gew.-%, z.B. 0 bis 0,5 Gew.-%, Amidine der Formel I und/oder höher als das XDA siedende Produkte, wie z.B. das entsprechende (Bisaminoalkyl)- diarylamin II.
Nach der Durchführung des erfindungsgemäßen Verfahrens kann die Isolierung des XDAs z.B. durch Destillation oder Rektifikation erfolgen.
Beispiel
In einem 300 ml Hochdruckautoklav mit magnetisch gekoppeltem Begasungsrührer, Probennahmestutzen, Temperaturregelung und einem Einlass für die kontinuierliche Zuführung von Edukten, wurden 60 g MXDA, 1,19 g wasserfeuchtes Raney-Kobalt 2724 der Firma Grace und 0,052 g LiOH - Monohydrat in 0,65 g Wasser zusammen- gegeben.
Der Autoklav wurde verschlossen, das Gemisch inertisiert, und auf 10 bar Wasserstoff aufgepresst. Es wurde unter Eigendruck und Rühren (500 U/Min.) auf 100°C erhitzt. Bei Erreichen dieser Temperatur wurde auf 36 bar Wasserstoff aufgepresst und die Rührerdrehzahl auf 1200 U/Min, erhöht. Anschließend wurde über 5 h eine Lösung von 7,2 g IPDN in 83 g THF zugepumpt, wobei kontinuierlich Wasserstoff zugeführt wurde (unter Druckhaltung bei 36 bar). Nach 5 h wurde eine Proben genommen. GC-Analyse der Proben ergab nach 5 h einen Umsatz von 100 % und einen Gehalt von 99,4 %, was einer Selektivität von 97,7 % unter Herausrechnung des vorgelegten MXDAs entspricht. Es wurde keine Bildung von Hochsiedern beobachtet. Das Gemisch wurde weitere 2 h bei dieser Temperatur gehalten, ohne dass die Selektivität sank.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Xylylendiamins durch heterogen katalysierte Hydrierung eines Phthalodinitrils, dadurch gekennzeichnet, dass die Hydrierung in Gegenwart eines Kobalt-Skelett-Katalysators, eines Alkalimetallhydroxids und eines Alkohols und/oder Ethers als Lösungsmittel, bei einem Absolutdruck im Bereich von 1 bis 100 bar und einer Temperatur im Bereich von 40 bis 150°C durchgeführt wird.
2. Verfahren nach Anspruch 1 zur Herstellung von meta-Xylylendiamin (MXDA) durch Hydrierung von Isophthalodinitril (IPDN).
3. Verfahren nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung ohne Zugabe von Ammoniak durchgeführt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung bei einem Absolutdruck im Bereich von 5 bis 60 bar durchgeführt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung bei einer Temperatur im Bereich von 60 bis 120°C durchgeführt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kobalt-Skelett-Katalysator aus einer Co/Al-Legierung durch Laugung mit wässriger Alkalimetallhydroxid-Lösung und Waschung erhalten wurde.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kobalt-Skelett-Katalysator als Promotor Fe, Ni und/oder Cr enthält.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kobalt-Skelett-Katalysator neben Kobalt noch 1 - 30 Gew.-% AI, 0,1 - 10 Gew.-% Cr, 0,1 - 10 Gew.-% Fe und/oder 0,1 - 10 Gew.-% Ni, jeweils bezogen auf das Katalysatorgesamtgewicht, enthält.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung in Gegenwart eines Ci-4-Alkanols, C4-i2-Dialkylethers und/oder C3-i2-alicyclischen Ethers als Lösungsmittel durchgeführt wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung in Gegenwart von Tetra hydrofu ran (THF) als Lösungsmittel durchgeführt wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung in Gegenwart von 0,001 bis 5 Mol-% Alkalimetallhydroxid bezogen auf das eingesetzte Phthalodinitril durchgeführt wird.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man das Alkalimetallhydroxid als wässrige Lösung einsetzt.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man als Alkalimetallhydroxid Lithiumhydroxid (LiOH) einsetzt.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der eingesetzte Heterogenkatalysator zuvor mit einem Alkalimetallhydroxid behandelt wurde.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der eingesetzte Heterogenkatalysator zuvor mit Lithiumhydroxid behandelt wurde.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Semibatch-Fahrweise und keine Batch-Fahrweise durchgeführt wird.
17. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass eine kontinuierliche Fahrweise und keine Semibatch- oder Batch-Fahrweise durchgeführt wird.
18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung in Gegenwart von zugesetztem Xylylendiamin, das dem eingesetzten Phthalodinitril entspricht, durchgeführt wird.
PCT/EP2006/050302 2005-01-24 2006-01-19 Verfahren zur herstellung eines xylylendiamins WO2006077233A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007551670A JP2008528459A (ja) 2005-01-24 2006-01-19 キシリレンジアミンの製造方法
EP06707753A EP1843998A1 (de) 2005-01-24 2006-01-19 Verfahren zur herstellung eines xylylendiamins
US11/814,390 US20080214871A1 (en) 2005-01-24 2006-01-19 Method For Producing A Xylylene Diamine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005003315.6 2005-01-24
DE102005003315A DE102005003315A1 (de) 2005-01-24 2005-01-24 Verfahren zur Herstellung eines Xylylendiamins

Publications (1)

Publication Number Publication Date
WO2006077233A1 true WO2006077233A1 (de) 2006-07-27

Family

ID=36228571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/050302 WO2006077233A1 (de) 2005-01-24 2006-01-19 Verfahren zur herstellung eines xylylendiamins

Country Status (7)

Country Link
US (1) US20080214871A1 (de)
EP (1) EP1843998A1 (de)
JP (1) JP2008528459A (de)
KR (1) KR20070107714A (de)
CN (1) CN101107215A (de)
DE (1) DE102005003315A1 (de)
WO (1) WO2006077233A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728174B2 (en) 2005-08-02 2010-06-01 Basf Se Continuous hydrogenation processes for the preparation of xylylenediamines
WO2016009195A1 (en) * 2014-07-15 2016-01-21 The University Of Manchester Enzymatic processes and uses
WO2016030383A1 (de) * 2014-08-28 2016-03-03 Basf Se Verfahren zur herstellung von primären aminen unter verwendung eines kobalt-vollkontaktkatalysators
US10988572B2 (en) 2017-11-20 2021-04-27 Alliance For Sustainable Energy, Llc Polymers and methods of making the same
EP4186887A4 (de) * 2020-07-22 2024-01-17 Mitsubishi Gas Chemical Company, Inc. Verfahren zur herstellung von aromatischem aminomethyl

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005008929A1 (de) * 2005-02-24 2006-08-31 Basf Ag Verfahren zur Herstellung eines Xylylendiamins
DE102005045806A1 (de) * 2005-09-24 2007-03-29 Basf Ag Verfahren zur Herstellung von Xylylendiamin
EP1984320B1 (de) 2006-02-01 2013-10-23 Basf Se Verfahren zur herstellung von reinem xylylendiamin (xda)
CN101955433B (zh) * 2010-04-20 2013-04-03 南通泰禾化工有限公司 制备间苯二甲胺的方法
CN102180799A (zh) * 2011-03-23 2011-09-14 南通泰禾化工有限公司 一种对苯二甲胺的制备方法
WO2023277192A1 (ja) * 2021-07-02 2023-01-05 日揮触媒化成株式会社 スポンジコバルト触媒組成物およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1164354A (en) * 1966-07-04 1969-09-17 Toyo Rayon Co Ltd Process for the Hydrogenation of Nitriles.
EP0913388A1 (de) * 1997-10-30 1999-05-06 Air Products And Chemicals, Inc. Hydrierung von Nitrilen zur Herstellung von Aminen
EP1378504A2 (de) * 2002-07-01 2004-01-07 Mitsubishi Gas Chemical Company, Inc. Verfahren zur Herstellung von Xylylendiamin und/oder Cyanobenzylamin
EP1454895A1 (de) * 2003-03-07 2004-09-08 Mitsubishi Gas Chemical Company, Inc. Herstellungsverfahren von Xylylendiamin

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970170A (en) * 1957-03-22 1961-01-31 California Research Corp Preparation of xylylenediamines
US3636108A (en) * 1965-12-23 1972-01-18 Du Pont Catalytic hydrogenation of aromatic nitrogen containing compounds over alkali moderated ruthenium
BE792649A (fr) * 1971-12-13 1973-06-12 Rhone Poulenc Sa Catalyseur a base de nickel raney au fer
US4482741A (en) * 1984-01-09 1984-11-13 Uop Inc. Preparation of xylylenediamine
DE3540517A1 (de) * 1985-11-15 1987-05-21 Basf Ag Verfahren zur herstellung von aromatischen nitrilen
DE4428595A1 (de) * 1994-08-12 1996-02-15 Basf Ag Für die Ammonoxidation geeignete Trägerkatalysatoren
DE19537446A1 (de) * 1995-10-07 1997-04-10 Basf Ag Verfahren zur Herstellung von aromatischen oder heteroaromatischen Nitrilen
US6476267B1 (en) * 1999-02-04 2002-11-05 Sagami Chemical Research Center Process for producing aromatic primary amine by low-pressure
CN1483016A (zh) * 2000-12-23 2004-03-17 �������¹ɷ����޹�˾ 通过氢化腈和亚胺制备伯胺和仲胺的方法
US6429338B1 (en) * 2002-01-17 2002-08-06 Air Products And Chemicals, Inc. Hydrogenation of single ring aromatic diamines
US6660887B1 (en) * 2002-12-23 2003-12-09 Solutia Inc. Low pressure process for manufacture of 3-dimethylaminopropylamine (DMAPA)
DE10341614A1 (de) * 2003-09-10 2005-04-28 Basf Ag Verfahren zur Herstellung von Xylylendiamin (XDA)
DE10341613A1 (de) * 2003-09-10 2005-04-14 Basf Ag Verfahren zur Herstellung von Xylylendiamin
DE10341612A1 (de) * 2003-09-10 2005-04-28 Basf Ag Verfahren zur Herstellung von Xylylendiamin
DE502004005974D1 (de) * 2003-09-10 2008-03-06 Basf Ag Verfahren zur herstellung von xylylendiamin durch kontinuierliche hydrierung von flüssigem phthalodinitril
DE102005008929A1 (de) * 2005-02-24 2006-08-31 Basf Ag Verfahren zur Herstellung eines Xylylendiamins

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1164354A (en) * 1966-07-04 1969-09-17 Toyo Rayon Co Ltd Process for the Hydrogenation of Nitriles.
EP0913388A1 (de) * 1997-10-30 1999-05-06 Air Products And Chemicals, Inc. Hydrierung von Nitrilen zur Herstellung von Aminen
EP1378504A2 (de) * 2002-07-01 2004-01-07 Mitsubishi Gas Chemical Company, Inc. Verfahren zur Herstellung von Xylylendiamin und/oder Cyanobenzylamin
EP1454895A1 (de) * 2003-03-07 2004-09-08 Mitsubishi Gas Chemical Company, Inc. Herstellungsverfahren von Xylylendiamin

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728174B2 (en) 2005-08-02 2010-06-01 Basf Se Continuous hydrogenation processes for the preparation of xylylenediamines
WO2016009195A1 (en) * 2014-07-15 2016-01-21 The University Of Manchester Enzymatic processes and uses
WO2016030383A1 (de) * 2014-08-28 2016-03-03 Basf Se Verfahren zur herstellung von primären aminen unter verwendung eines kobalt-vollkontaktkatalysators
US9981904B2 (en) 2014-08-28 2018-05-29 Basf Se Process for preparing primary amines using an unsupported cobalt catalyst
US10988572B2 (en) 2017-11-20 2021-04-27 Alliance For Sustainable Energy, Llc Polymers and methods of making the same
US11518847B2 (en) 2017-11-20 2022-12-06 Alliance For Sustainable Energy, Llc Polymers and methods of making the same
EP4186887A4 (de) * 2020-07-22 2024-01-17 Mitsubishi Gas Chemical Company, Inc. Verfahren zur herstellung von aromatischem aminomethyl

Also Published As

Publication number Publication date
EP1843998A1 (de) 2007-10-17
DE102005003315A1 (de) 2006-08-03
KR20070107714A (ko) 2007-11-07
JP2008528459A (ja) 2008-07-31
CN101107215A (zh) 2008-01-16
US20080214871A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
WO2006077233A1 (de) Verfahren zur herstellung eines xylylendiamins
EP1856025A1 (de) Verfahren zur herstellung eines xylylendiamins
EP2114860B1 (de) Herstellungsverfahren für ethylenamingemische
EP2114861B1 (de) Verfahren zur herstellung von triethylentetraamin
EP1107941B1 (de) Verbessertes verfahren zur gleichzeitigen herstellung von 6-aminocapronitril und hexamethylendiamin
EP2129651B1 (de) Neues verfahren zur herstellung von teta über eddn
EP2132162B1 (de) Verfahren zur herstellung von ethylenaminen
EP2114857B1 (de) Verfahren zur herstellung von tetraethylenpentaamin
EP2132163A1 (de) Verfahren zur herstellung von ethylenaminen aus roh-aan
EP2443088B1 (de) Methyl-substituierte teta-verbindungen
EP0913387A2 (de) Verfahren zur Herstellung von Aminen aus Iminen oder Nitrilen
EP0771784A1 (de) Verfahren zur Herstellung von 3-Aminomethyl-3,5,5-trimethylcyclohexylamin
EP0925276B1 (de) Verfahren zur herstellung von aliphatischen alpha, omega-aminonitrilen
EP1663947B1 (de) Verfahren zur herstellung von xylylendiamin durch kontinuierliche hydrierung von flüssigem phthalodinitril
EP1098869B1 (de) Verbessertes verfahren zur gleichzeitigen herstellung von 6-aminocapronitril und hexamethylendiamin
WO2005026101A1 (de) Verfahren zur herstellung von xylylendiamin
WO2007033932A1 (de) Verfahren zur herstellung von xylylendiamin
EP3180308B1 (de) Verfahren zur herstellung von 2,2-difluorethylamin
DE19646436A1 (de) Verfahren zur Herstellung von aliphatischen, alpha,omega-Aminonitrilen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006707753

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11814390

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007551670

Country of ref document: JP

Ref document number: 200680003035.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077019237

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006707753

Country of ref document: EP