WO2006075569A1 - 半導体薄膜の製造方法および半導体薄膜の製造装置 - Google Patents

半導体薄膜の製造方法および半導体薄膜の製造装置 Download PDF

Info

Publication number
WO2006075569A1
WO2006075569A1 PCT/JP2006/300127 JP2006300127W WO2006075569A1 WO 2006075569 A1 WO2006075569 A1 WO 2006075569A1 JP 2006300127 W JP2006300127 W JP 2006300127W WO 2006075569 A1 WO2006075569 A1 WO 2006075569A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
semiconductor thin
laser beam
laser light
energy density
Prior art date
Application number
PCT/JP2006/300127
Other languages
English (en)
French (fr)
Inventor
Hiroshi Tsunazawa
Masanori Seki
Junichiro Nakayama
Tetsuya Inui
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2006075569A1 publication Critical patent/WO2006075569A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters

Definitions

  • the present invention relates to a semiconductor thin film manufacturing method and a semiconductor thin film manufacturing apparatus, and in particular, long crystal grains can be efficiently obtained by suppressing variation in crystal grain length for each laser light irradiation.
  • the present invention relates to a semiconductor thin film manufacturing method and a semiconductor thin film manufacturing apparatus.
  • An amorphous semiconductor thin film is once melted and then recrystallized to form a polycrystalline semiconductor thin film.
  • a polycrystalline thin film transistor in which a transistor is formed on the polycrystalline semiconductor thin film generally has a higher electron mobility than an amorphous thin film transistor in which a transistor is formed directly on an amorphous semiconductor thin film. It has the potential to realize large-scale integrated circuits on glass substrates as well as device drive systems.
  • a driving circuit and a part of peripheral circuits can be formed in the peripheral portion of the pixel as long as the switching element can be formed in the pixel portion of the display device.
  • These elements and circuits can be formed on a single substrate. This eliminates the need to separately mount a driver IC and a drive circuit board on the display device, and thus enables the display device to be provided at a low price.
  • the size of the transistor can be reduced, so that a switching element formed in a pixel portion of the display device can be reduced, and a high aperture ratio of the display device can be achieved. . Therefore, it is possible to provide a display device with high brightness and high definition.
  • a polycrystalline silicon thin film is obtained by thermally annealing an amorphous semiconductor thin film obtained by vapor deposition on a glass substrate at a glass strain point (approximately 600 to 650 ° C) or lower for a long time. It can be obtained by optical annealing by irradiating a laser beam having a density. Photoanneal is very effective in forming a polycrystalline silicon thin film with high electron mobility because only the amorphous silicon thin film can be raised to a temperature above the strain point of glass. In recent years, excimer laser light has been used to lower the temperature below 600 ° C.
  • a technology for forming a polycrystalline silicon thin film from an amorphous silicon thin film has been generalized, and a display device in which a polycrystalline silicon thin film transistor is formed on a low-cost glass substrate can be provided at a low price.
  • the recrystallization technique using the excimer laser beam is generally ELA (Excimer Laser
  • a linear excimer laser beam having a length of about 200 to 400 mm and a width of about 0.2 to 1. Omm is applied to an amorphous silicon thin film on a glass substrate while moving the glass substrate at a constant speed. Irradiates in a pulsed manner.
  • a polycrystalline silicon thin film having an average grain size comparable to the thickness of the amorphous silicon thin film is formed.
  • the portion of the amorphous silicon thin film irradiated with the excimer laser beam is melted leaving a part of the amorphous region that is not melted over the entire thickness direction. For this reason, silicon crystal nuclei are generated everywhere over the entire surface of the laser light irradiation region, and silicon crystal grains grow in a direction perpendicular to the surface of the glass substrate.
  • the length of the crystal grain formed by one laser beam irradiation is about 1 ⁇ m, but it overlaps with a part of the needle-shaped crystal grain formed by the previous laser beam irradiation. Sequentially irradiates laser light in pulses. As a result, when crystal grains already grown by laser light irradiation are taken over and longer V and needle-like crystal grains are obtained, it has the following characteristics.
  • the length of the needle-like crystal grains formed by one laser light irradiation is about 1 ⁇ m and is very short.
  • a fine crystal grain 32 is formed at the center of the melted region as shown in the schematic plan view of FIG.
  • the fine crystal grains 32 are grown in a direction perpendicular to the surface of the glass substrate, controlled by the heat outflow to the glass substrate, which is not the laterally grown crystal grains 31. For this reason, it is not possible to obtain needle-like crystal grains whose crystal grains are remarkably long by enlarging the melting region.
  • Patent Document 3 Japanese Patent Laid-Open No. Hei. 4 No. 338631 (see Patent Document 3).
  • the technique described in Patent Document 3 is to detect the temperature of a laser light irradiation portion with a radiation thermometer and modulate the laser light according to the result.
  • the response speed of a radiation thermometer that can detect temperature changes is the fastest and is on the order of a few milliseconds (1 to 10 milliseconds), so a pulse width of less than 1 millisecond is required.
  • Patent Document 1 Pamphlet of W097Z45827
  • Patent Document 2 JP-A-6-291034
  • Patent Document 3 Japanese Patent Laid-Open No. 4-338631
  • Patent Document 4 JP-A-5-235169
  • An object of the present invention is to provide a semiconductor thin film manufacturing method and a semiconductor thin film manufacturing apparatus capable of efficiently obtaining long crystal grains by suppressing variation in length of crystal grains for each laser light irradiation. Is to provide.
  • the present invention relates to a method for producing a semiconductor thin film by irradiating at least two types of laser beams to melt a solid state precursor semiconductor thin film contained in a precursor semiconductor thin film substrate and then recrystallizing the semiconductor thin film.
  • the energy density and irradiation timing of at least one of the two types of laser light based on the change in the energy density of the reflected light of the reference laser light irradiated to the precursor semiconductor thin film substrate.
  • a method for producing a semiconductor thin film comprising the step of controlling at least one of the group consisting of irradiation time.
  • At least two kinds of laser beams are: A first laser beam capable of melting the precursor semiconductor thin film in a solid state and a second laser beam capable of delaying recrystallization of the melted precursor semiconductor thin film can be included.
  • “retarding the recrystallization of the molten precursor semiconductor thin film” means recrystallization of the molten precursor semiconductor thin film as compared to the case where the molten precursor semiconductor thin film is not irradiated with laser light. This means increasing the conversion time.
  • the second laser beam can be used as a reference laser beam.
  • the second laser light is irradiated in a pulse shape, and at least the energy density of the reflected light of the second laser light irradiated one time before is changed. Based on this, the energy density of the second laser light can be controlled.
  • “based at least on the energy density change of the reflected light of the second laser light irradiated one time before” means the energy density change of the reflected light of the second laser light irradiated one time before If it is based on the above, it means that the change in the energy density of the reflected light of the second laser beam irradiated before the first time may be considered.
  • the energy density of the second laser light can be controlled based at least on the energy density change of the reflected light.
  • “at least based on the energy density change of the reflected light of the second laser light irradiated one time before and the energy density change of the reflected light of the second laser light irradiated two times before” Is based on the energy density change of the reflected light of the second laser light emitted before and twice before, and the second laser light emitted before the second time. It means that the energy density change of reflected light may be taken into consideration.
  • the second laser beam is irradiated in a pulse shape, and the energy density of the reflected light of the second laser beam irradiated one time before is small.
  • “based at least on the energy density change of the reflected light of the second laser light irradiated one time before” means the energy density of the reflected light of the second laser light irradiated one time before If based on change, the second irradiated before the first time This means that the energy density change of the reflected light of the laser beam may be taken into consideration.
  • the energy density change of the reflected light of the second laser beam irradiated once and the second laser beam irradiated twice. At least one of the irradiation timing and the irradiation time of the second laser beam can be controlled based at least on the energy density change of the reflected light.
  • the first laser beam has a wavelength in the ultraviolet region
  • the second laser beam has a wavelength in the visible region or the infrared region.
  • the second laser beam may have a wavelength in the range of 9 ⁇ m to 11 ⁇ m.
  • the crystal grains grown upon recrystallization may grow substantially parallel to the surface of the precursor semiconductor thin film.
  • the present invention can detect the energy density of the reflected light of the reference laser light irradiated to at least two types of laser light sources capable of irradiating at least two types of laser light and the precursor semiconductor thin film substrate. Based on the energy density change of the reflected light of the reference laser light and the detection means, at least one of the group consisting of energy density, irradiation timing and irradiation time of at least one of the at least two types of laser light And a control device that can be controlled.
  • the detection means has a response speed of 100 microseconds or less.
  • the first or second laser light sources can melt the solid state precursor semiconductor thin film included in the precursor semiconductor thin film substrate.
  • a first laser light source for irradiating laser light, and a second laser light source for irradiating a second laser light capable of delaying recrystallization of the molten precursor semiconductor thin film
  • the reference laser light is the second laser light
  • the detection means can detect the energy density of the reflected light of the second laser light.
  • “retarding the recrystallization of the molten precursor semiconductor thin film” means that the recrystallization time of the molten precursor semiconductor thin film is different from that when the molten precursor semiconductor thin film is not irradiated with laser light. It means to lengthen.
  • the detection means includes an optical sensor and a signal processing circuit capable of processing an optical sensor force signal
  • the optical sensor is a precursor semiconductor thin film substrate.
  • the signal processing circuit can detect the energy density of the reflected light of the second laser light with respect to the sensor, and can output a signal indicating the energy density of the reflected light of the second laser light to the control means. be able to.
  • the control means irradiates the second laser light with the energy density change of the reflected light of the second laser light based on the signal output from the signal processing circuit. And the energy density change of the reflected light of the second laser light irradiated one time before and the energy density change of the reflected light of the second laser light irradiated twice before At least one of the groups of energy density, irradiation timing and irradiation time of the second laser light can be controlled based on at least.
  • the first laser light source irradiates the first laser light having a wavelength in the ultraviolet region, and the second laser light source emits in the visible region or the infrared region.
  • a second laser beam having a wavelength can be irradiated.
  • the second laser light irradiated by the second laser light source may have a wavelength of 9 ⁇ m or more and 11 ⁇ m or less. .
  • a semiconductor thin film manufacturing method and a semiconductor thin film manufacturing apparatus capable of efficiently obtaining long crystal grains by suppressing variation in length of crystal grains for each laser light irradiation.
  • a semiconductor thin film manufacturing method and a semiconductor thin film manufacturing apparatus capable of efficiently obtaining long crystal grains by suppressing variation in length of crystal grains for each laser light irradiation.
  • the laser beam irradiation feed pitch in the super lateral growth method can be stably increased, so that the manufacturing efficiency of the semiconductor thin film can be improved.
  • FIG. 1 is a schematic cross-sectional view of a preferred example of a precursor semiconductor thin film substrate irradiated with at least two types of laser beams in the present invention.
  • FIG. 2 is a diagram showing an example of waveforms (changes in energy density with respect to elapsed time) of the first laser beam and the second laser beam irradiated to the precursor semiconductor thin film in the present invention.
  • FIG. 3 The waveform shown in FIG. 2 shows the relationship between the energy fluence of the first laser beam and the crystal grain length when the first and second laser beams are irradiated to the silicon thin film once. It is a figure.
  • FIG. 4 is a graph showing a change in energy density in one irradiation of a second laser beam irradiated to a certain region.
  • FIG. 5 is a diagram schematically showing a configuration of a preferred example of an apparatus for producing a semiconductor thin film according to the present invention.
  • FIG. 6 is a schematic plan view of an example of needle-like crystal grains formed in the super lateral growth method.
  • FIG. 1 shows a schematic cross-sectional view of a preferred example of a precursor semiconductor thin film substrate irradiated with at least two types of laser beams in the present invention.
  • the “precursor semiconductor thin film substrate” includes a precursor semiconductor thin film and a substrate which are semiconductor thin films in a state before being irradiated with laser light.
  • a precursor semiconductor thin film substrate 5 shown in FIG. 1 has a structure in which a precursor semiconductor thin film 6 is formed on an insulating substrate 7 via a buffer layer 8.
  • the precursor semiconductor thin film 6 any semiconductor material can be used. For example, it has been conventionally used in the manufacturing process of a liquid crystal display device, and is easy to manufacture!
  • the precursor semiconductor thin film 6 is not limited to a material that can only have silicon, but may be a material mainly composed of silicon containing other elements such as germanium.
  • the forbidden band width of the precursor semiconductor thin film 6 can be arbitrarily controlled by adding germanium.
  • the thickness of the precursor semiconductor thin film 6 is preferably 30 nm or more and 200 nm or less.
  • the precursor semiconductor thin film 6 is formed by, for example, a CVD (Chemical Vapor deposition) method.
  • the insulating substrate 7 a known substrate formed of a material including glass, quartz or the like can be suitably used. Among these materials, it is preferable to use a glass substrate because it is inexpensive and can easily produce an insulating substrate having a large area.
  • the thickness of the insulating substrate is not particularly limited, but is preferably 0.5 mm or more and 1.2 mm or less. When the thickness of the insulating substrate is less than 0.5 mm, it tends to be difficult to produce a substrate that is excellent in flatness or that the insulating substrate is cracked. In addition, if the thickness of the insulating substrate exceeds 1.2 mm, the insulating substrate becomes too thick, making it difficult to reduce the size and weight of the final product such as a display device. "It is in.
  • the precursor semiconductor thin film 6 is preferably formed on the insulating substrate 7 via the buffer layer 8.
  • the buffer layer 8 it is possible to prevent the heat of the molten precursor semiconductor thin film 6 from affecting the insulating substrate 7 during melting and recrystallization by laser light irradiation. The tendency to prevent impurity diffusion from the insulating substrate 7 to the precursor semiconductor thin film 6 Because it is in.
  • a material such as silicon oxide or silicon nitride can be formed by the CVD method, and is not particularly limited.
  • the thickness of the noffer layer 8 is not particularly limited, but is preferably from lOOnm to 500 nm.
  • the thickness of the nofer layer 8 is less than lOOnm, the effect of preventing the diffusion of impurities from the insulating substrate 7 to the precursor semiconductor thin film 6 tends to be insufficient, and when the thickness exceeds 500 nm, the buffer layer 8 is formed. This is because the manufacturing efficiency tends to decrease due to excessive time.
  • the precursor semiconductor thin film 6 in the precursor semiconductor thin film substrate 5 shown in FIG. 1 includes, for example, a first laser beam capable of melting the precursor semiconductor thin film 6 in a solid state by one irradiation, and one time.
  • the precursor semiconductor thin film 6 in the solid state cannot be melted by the irradiation, but is irradiated with the second laser beam that can delay the recrystallization of the melted precursor semiconductor thin film 6.
  • the first laser beam and the second laser beam can be irradiated with the waveform shown in FIG. 2, for example.
  • the vertical axis in Fig. 2 indicates the energy density
  • the horizontal axis indicates the elapsed time.
  • reference numeral 1 in FIG. 2 indicates the waveform of the first laser beam (energy density change with respect to elapsed time)
  • reference numeral 2 indicates the waveform of the second laser beam.
  • the second laser beam is irradiated in a pulsed manner.
  • the first laser beam is irradiated in a pulsed manner during the irradiation of the second laser beam.
  • the irradiation of the second laser beam is completed after the irradiation of the first laser beam is completed.
  • the first laser beam and the second laser beam are positioned at a position where the irradiation region of the first laser beam on the precursor semiconductor thin film partially contacts or partially overlaps.
  • the first laser beam and the second laser beam are irradiated again in the same manner as described above after moving the irradiation region of the laser beam.
  • the precursor semiconductor thin film in the solid state heated by the irradiation of the second laser light is irradiated with the first laser light to melt the precursor semiconductor thin film, and the second precursor semiconductor thin film is melted into the second precursor semiconductor thin film.
  • the time required for recrystallization of the precursor semiconductor thin film can be delayed to make the crystal grains obtained by recrystallization longer.
  • the irradiation and irradiation area of the first laser beam and the second laser beam described above By repeating the movement of the region, crystal grains grow substantially parallel to the surface of the precursor semiconductor thin film, and longer crystal grains can be obtained.
  • “pulsed irradiation” includes not only intermittent irradiation of laser light having a high energy density but also intermittent irradiation of laser light having a low energy density.
  • Fig. 3 shows the energy fluence of the first laser beam when the silicon thin film, which is the precursor semiconductor thin film, is irradiated with the first laser beam and the second laser beam once each in the waveform shown in Fig. 2.
  • Total energy injection amount per unit area of irradiated area; jZm 2 and the length of crystal grains obtained by recrystallization after melting of the silicon thin film (represented by the square positions in Fig. 3) ).
  • the horizontal axis represents the energy fluence of the first laser beam
  • the vertical axis represents the crystal grain length m).
  • the horizontal axis in Fig. 3 is!
  • the energy fluence of the first laser beam increases from the left to the right.
  • the film thickness of the silicon thin film is set to be the same for all irradiations.
  • the length of the crystal grain varies with each irradiation of the first laser beam. Therefore, the variation in crystal grain length that occurs when the first laser beam and the second laser beam are irradiated is due to the energy density variation with each irradiation of the second laser beam. Conceivable. That is, since the energy density of the second laser beam irradiated to the silicon thin film varies with each irradiation, the delay time, which is the difference between the irradiation start time of the first laser beam and the irradiation start time of the second laser beam.
  • the energy fluence of the first laser beam in FIG. 3 is obtained by measuring the thermal change as the energy fluence by irradiating the energy meter after the first laser beam is branched by the beam splitter.
  • the maximum length of the crystal grains is measured by observation using an optical microscope.
  • FIG. 4 is a graph showing a change in energy density in one irradiation of the second laser beam irradiated to a certain region. Note that the energy density variation of the second laser beam in FIG. 4 is measured by irradiating the energy meter with the second laser beam.
  • Figure 4 Odor The vertical axis indicates the energy density of the second laser beam, and the horizontal axis indicates the irradiation time of the second laser beam. Referring to FIG. 4, the energy density of the second laser beam changes with a certain period during one irradiation, and this periodic change becomes a variation in the energy density of the second laser beam. This causes the variation in crystal grain length shown in 3.
  • Such variations in the energy density of the second laser beam are considered to be caused by the external environment such as the irradiation atmosphere. Therefore, even if the light source of the second laser beam is set so that the change in the energy density of the second laser beam with respect to the elapsed time is constant, the irradiation atmosphere, etc. As shown in Fig. 4, the energy density varies depending on the external environment.
  • the precursor semiconductor thin film substrate is irradiated with the reference laser beam at a constant energy density together with the first laser beam and the second laser beam at the same time as the second laser beam.
  • the change in the energy density of the reflected light of the reference laser light is detected (the reference laser light is also affected by the external environment such as the irradiation atmosphere, so the energy density of the reflected light of the reference laser light changes).
  • the energy density change of the second laser light (waveform shown in FIG.
  • At least one of the group consisting of the energy density, irradiation timing, and irradiation time of the second laser beam is controlled so that the energy fluence of the laser beam approaches a preset reference.
  • the present invention for detecting such a change in the energy density of the reflected light of the reference laser light, it becomes possible to detect at a higher speed than the conventional method using a radiation thermometer.
  • the present invention can also be applied to a method using laser light having a pulse width of less than 1 millisecond.
  • the semiconductor material constituting the precursor semiconductor thin film has a predetermined reflectance (energy density of reflected light Z energy density of incident light) with respect to light of each wavelength. This is because the reflectance depends on the refractive index of the semiconductor material for light of each wavelength. Furthermore, since the refractive index depends on the temperature of the semiconductor material, the reflectance depends on the temperature of the semiconductor material.
  • the reflectivity changes with the temperature change of the precursor semiconductor thin film, and the energy density of the reflected light of the reference laser light changes. Therefore, the energy density change of the reflected light due to the temperature change of the precursor semiconductor thin film is also taken into consideration. It is preferable to control at least one of the group consisting of the energy density of the second laser beam, the irradiation timing, and the irradiation time. Needless to say, this is also applied to the case where a temperature change occurs in a portion other than the precursor semiconductor thin film when the reference laser beam is irradiated.
  • both the first laser light and the second laser light may be controlled by controlling at least one of the group consisting of the energy density of the first laser light, the irradiation timing, and the irradiation time. At least one of the group consisting of energy density, irradiation timing, and irradiation time may be controlled.
  • the reference laser light at least one of the first laser light and the second laser light may be used, and a third laser other than the first laser light and the second laser light may be used. Light may be used.
  • the laser beam in which at least one of the group consisting of energy density, irradiation timing, and irradiation time is controlled as the reference laser beam.
  • the first laser light is well absorbed by the precursor semiconductor thin film made of a solid-state silicon thin film, and from the viewpoint of making the solid-state silicon thin film meltable by a single irradiation. It is preferable to use laser light having an ultraviolet wavelength. Where purple
  • the wavelength in the outer region means a wavelength of 1 nm or more and less than 400 nm.
  • an excimer laser beam having a wavelength of 308 nm is used, among others, which can suitably use various solid-state laser beams typified by triple wave of excimer laser beam and YAG laser beam. It is particularly preferred.
  • the second laser light has a wavelength in the visible region or in the infrared region from the viewpoint of enabling delay of recrystallization of the silicon thin film melted by irradiation with the first laser beam. It is preferable to use laser light.
  • the second laser beam is absorbed by the molten silicon thin film, and the molten silicon thin film can be heated.
  • the visible wavelength means a wavelength of 400 nm or more and less than 750 nm.
  • the wavelength in the infrared region means a wavelength of 750 nm to 1 mm.
  • Examples of such second laser beam include a double wave of a YAG laser beam having a wavelength of 532 nm, a YAG laser beam having a wavelength of 1064 ⁇ m, or a CO laser beam having a wavelength of 10.6 m.
  • the absorption rate at which the second harmonic of YAG laser light having a wavelength of 532 nm and YAG laser light having a wavelength of 1064 nm is absorbed by the molten silicon thin film is about 60% (Japanese Patent Laid-Open No. 5-235169 (Patent Document) 4)), and the absorptance of CO laser light having a wavelength of 10.6 IX m absorbed by the molten silicon thin film is
  • the second laser beam is irradiated for the nth time! In the (n-1) th time, preferably at the (n-1) th time and (n-2) th time of irradiation.
  • This is a method for controlling the energy density of the second laser light irradiated n times based on the energy density change of the reflected light of the second laser light.
  • the first laser beam and the second laser beam are irradiated in a pulse shape with the waveform shown in FIG. 2, and the energy fluence of the first laser beam and the irradiation of the first laser beam.
  • Difference in time (pulse width), second laser light irradiation time (pulse width), second laser light irradiation timing, and second laser light irradiation start time relative to the first laser light irradiation start time The delay time is fixed.
  • the energy density of the reflected light of the second laser beam tends to decrease as a whole, the energy density of the second laser beam is increased. Controlled. Further, for example, when the energy density of the reflected light of the second laser beam tends to increase as a whole, the energy density of the second laser beam is controlled to be low.
  • the energy of the first laser beam in the waveform shown in FIG. fluence is more preferably 1500JZm 2 more 3500JZm 2 it is preferred instrument 2500 J / m 2 or more 3000 J / m 2 or less less.
  • the insulating substrate is deformed and Z or damaged. 2 and the energy fluence of the second laser beam in the waveform shown in FIG. 2 is preferably 7500 jZm 2 or more and lOOOOjZm 2 or less. More preferred U,. be Mashigu 8000jZm is 2 or more on 9000JZm 2 below
  • the second method is for the n-th irradiation of the second laser beam !, (n—1), preferably (n—1) and (n—2)
  • This is a method of controlling the irradiation timing and irradiation time of the second laser light irradiated n times based on the energy density change of the reflected light of the second laser light.
  • the first laser beam and the second laser beam are irradiated in a pulse shape with the waveform shown in FIG. 2, and the energy fluence of the first laser beam, the first laser beam.
  • the delay time which is the difference between the irradiation start time of the first laser beam with respect to the irradiation time (pulse width) of the light, the energy fluence of the second laser beam, and the irradiation start time of the second laser beam is fixed.
  • the irradiation start time of the second laser beam is shortened or By controlling the irradiation time of the second laser beam to be longer, the delay time that is the difference between the irradiation start time of the first laser beam and the irradiation start time of the second laser beam is lengthened.
  • the delay time which is the difference between the irradiation start time of the first laser beam and the irradiation start time of the second laser beam, is shortened.
  • the energy fluence of the first laser beam is 3000 j / m 2
  • the energy fluence of the second laser beam is 8100 J / m 2
  • the first waveform in the waveform shown in FIG. When the irradiation time of the second laser light is 120 microseconds or more and 140 microseconds or less, from the viewpoint of increasing the length of crystal grains per irradiation, the first waveform in the waveform shown in FIG. It is preferable to control the laser beam irradiation start time so that it is 110 microseconds to 130 microseconds after the second laser light irradiation start. It is more preferable.
  • the first method and the second method are combined by using only one of the first method and the second method described above. Can also be used.
  • methods other than the first method and the second method described above may be used!
  • FIG. 5 schematically shows a configuration of a preferred example of the semiconductor thin film manufacturing apparatus of the present invention.
  • the manufacturing apparatus 10 includes, as the two or more laser light sources, a first laser light source 11 that irradiates the first laser light and a second laser light source 12 that irradiates the second laser light. Including. Further, the manufacturing apparatus 10 includes a detecting means including a detector 22 capable of detecting the energy density of reflected light of the second laser light, and a signal processing circuit 27, and is further connected to the signal processing circuit 27. Including control means 23. The signal processing circuit 27 can process a signal indicating the energy density of the reflected light of the second laser beam transmitted from the detector 22 and output it to the control means 23.
  • the second laser light emitted from the second laser light source 12 passes through the attenuator 14, and then the energy density distribution is made uniform by the uniform irradiation optical system 16, so that the appropriate size is obtained.
  • the pattern forming surface of the mask 18 is uniformly irradiated.
  • the second laser beam that has passed through the mask 18 is reflected by the mirror 21 to form an image forming layer.
  • the precursor semiconductor thin film in the precursor semiconductor thin film substrate 5 is irradiated in a state where the image of the mask 18 is formed at a predetermined magnification (for example, 1Z4) by the process 24.
  • the first laser light emitted from the first laser light source 11 passes through the attenuator 13, and after that, the uniform irradiation optical system 15 makes the energy density distribution uniform and shapes it to an appropriate size.
  • the pattern forming surface of the mask 17 is uniformly irradiated.
  • the first laser beam that has passed through the mask 17 is reflected by the mirror 21, and the image of the mask 17 is formed at a predetermined magnification (for example, 1Z4) by the imaging lens 20 in the precursor semiconductor thin film substrate 5.
  • the precursor semiconductor thin film is irradiated.
  • the precursor semiconductor thin film substrate 5 is placed on a stage 19 that can move at a predetermined speed in the horizontal direction.
  • only one mirror 21 is installed, but it is possible to appropriately set the installation location where the quantity is not limited.
  • the second laser light source 12 for example, a double wave of a YAG laser beam having a wavelength of 532 nm, a YAG laser beam having a wavelength of 1064 nm, or CO having a wavelength of 10.6 m What irradiates a laser beam is particularly suitable.
  • the first laser light source 11 for example, a light source capable of irradiating various solid-state laser light typified by excimer laser light and YAG laser light can be suitably used.
  • the first laser light source 11 is particularly preferably a light source that emits excimer laser light having a wavelength of 308 nm.
  • the first laser light source 11 is preferably a light source that can irradiate the first laser light in a pulse shape.
  • the energy density of the reflected light is measured over time by the detector 22.
  • an optical sensor or a pyroelectric sensor can be used as the powerful detector 22.
  • the optical sensor for example, an optical sensor in which the photosensitive portion is made of silicon may be used.
  • a YAG laser beam having a wavelength of 1064 nm is used as the second laser beam
  • the photosensitive part is composed of AgOCs or InGaAs.
  • the second laser beam has a wavelength of 10.6 ⁇ m (when using CO laser beam
  • the optical sensor preferably has an attenuating optical system (not shown) in order to prevent destruction due to irradiation of reflected light.
  • a signal indicating the energy density of the reflected light of the second laser light measured by the detector 22 is converted by the signal processing circuit 27 and output to the control means 23 as needed.
  • the detection means including the detector 22 and the signal processing circuit 27 preferably has a response speed of 100 microseconds or less.
  • “having a response speed of 100 microseconds or less” means that the time taken until the reflected light enters the detector 22 and the force is output to the control means 23 is 100 microseconds or less. It means that.
  • the control means 23 is connected to the first laser light source 11 and the second laser light source 12, and the control means 23 uses the energy density of the reflected light of the second laser light as a voltage value, for example. It is stored as needed, and the energy density change of the reflected light of the second laser beam is stored as a voltage value fluctuation. Then, the first laser light source 11 and Z or the second laser light source 12 are controlled according to the stored voltage value fluctuation, and the energy density of the first laser light and the Z or second laser light is controlled. At least one of the groups of irradiation timing and irradiation time can be controlled.
  • the control means 23 outputs at least one time before output from the signal processing circuit 27, Preferably, the voltage value fluctuation indicating the energy density change of the reflected light of the second laser beam irradiated in a pulse form at least once and two times before is stored, and based on the fluctuation of the voltage value.
  • the energy density of the irradiated second laser light is controlled.
  • the control unit 23 starts to decrease the energy density of the second laser beam. A signal is output to the second laser light source 12.
  • the control means 23 controls the second laser beam so that the energy density of the second laser beam is increased. A signal is output to the laser light source 12.
  • the control means 23 is the energy density of the reflected light of the second laser light outputted from the signal processing circuit 27 at least once before, preferably at least once before and twice before being irradiated in a nose shape.
  • the change in the voltage value indicating the change is stored, and a signal is output to the second laser light source 12 based on the change in the voltage value. Is controlled.
  • the fluctuation of the voltage value indicating the energy density change of the reflected light of the second laser light tends to increase, for example, the irradiation start time of the second laser light is delayed or the second laser light
  • a signal is output from the control means 23 to the second laser light source 12 so as to shorten the irradiation time.
  • the fluctuation of the voltage value indicating the energy density change of the reflected light of the second laser beam tends to decrease, for example, the irradiation start time of the second laser beam is earlier or the irradiation time of the second laser beam
  • a signal is output from the control means 23 to the second laser light source 12 so that the length becomes longer.
  • control means 23 can control the position of the stage 19, store the target position of the laser light irradiation, control the temperature inside the manufacturing apparatus 10, or control the atmosphere inside the manufacturing apparatus 10.
  • U preferred to be configured and able to.
  • a third laser beam other than the first laser beam and the second laser beam can be used as the reference laser beam, and the wavelength of the third laser beam can be used as the detector 22.
  • a 300 nm thick buffer layer made of silicon oxide is formed on a 0.7 mm thick glass substrate by a CVD method, and a precursor semiconductor thin film having a 50 nm thickness silicon thin film is formed on this buffer layer by a CVD method.
  • a precursor semiconductor thin film substrate was formed.
  • a semiconductor thin film was manufactured by a manufacturing apparatus having the configuration shown in FIG. First, a mask having a slit (opening) width of 50 ⁇ m is fixed above the surface of the precursor semiconductor thin film, and the size of the square on the surface of the precursor semiconductor thin film is 5.5 mm ⁇ 5.5 mm. After irradiating the surface of the precursor semiconductor thin film substrate 5 with an oblique direction force with the waveform shown in FIG. Irradiate the first laser beam shaped in a rectangular shape with a size of 40 m x 500 m on the surface of the precursor semiconductor thin film in the direction perpendicular to the surface of the precursor semiconductor thin film with the waveform shown in Fig. 2. did.
  • the irradiation region of the first laser beam in the precursor semiconductor thin film was once melted and then recrystallized to grow crystal grains parallel to the surface of the precursor semiconductor thin film.
  • the stage 19 is moved in the horizontal direction by a predetermined distance so that the irradiation area of the first laser beam in the precursor semiconductor thin film is in contact with the previous irradiation area, and then the second laser is again formed.
  • the light and the first laser beam were irradiated sequentially.
  • the semiconductor thin film was manufactured by repeating this several times.
  • Example 1 the length of the crystal grains was measured by observation using an optical microscope for each irradiation of the first laser beam and the second laser beam. The results are shown in Table 1.
  • Example 1 an excimer laser beam with a wavelength of 308 nm that is irradiated in a pulsed manner is used as the first laser beam, and a wavelength that is irradiated in a pulsed manner as the second laser beam is 10.6. ⁇ m ⁇ CO laser light was used. The energy fluence of the first laser beam is
  • the energy fluence of the second laser beam is a 8 lOOjZm 2
  • the irradiation time of the second laser beam was 130 microseconds.
  • the detector 22 is an optical sensor (product name: PD-10. 6 Series Photovoltaic CO L
  • a signal is output to the signal processing circuit 27 from the detector 22 which also has the optical sensor force, and this signal is converted into a signal indicating a voltage value indicating the energy density of the reflected light of the second laser beam by the signal processing circuit 27. Is output to the control means 23 and stored in the control means 23.
  • the second time with respect to the elapsed time is calculated.
  • a signal for controlling the energy density of the second laser beam is sent from the control means 23 to the second laser light source 12 so that the change in energy density of the laser beam (the waveform shown in FIG. 2) approaches the preset reference. Was output.
  • the surface of the precursor semiconductor thin film also serves as a reference laser beam.
  • the second laser beam was irradiated for 130 microseconds at an energy density of 62.3 MWZm 2 (energy density at the first and second irradiations), and the first laser beam was irradiated 120 microseconds after the start of the second laser beam irradiation.
  • Laser light was irradiated.
  • the energy density of the second laser light after the third irradiation was controlled based on the energy density change of the reflected light one and two times before the irradiation.
  • Example 1 the energy fluence of the first laser beam, the irradiation time (pulse width) of the first laser beam, the irradiation time (pulse width) of the second laser beam, and the second laser beam
  • the delay time which is the difference between the irradiation timing of the light and the irradiation start time of the first laser beam with respect to the irradiation start time of the second laser beam, was fixed, and the energy density of the second laser beam was controlled. Therefore, Example 1 substantially corresponds to (1) the first method described above.
  • a semiconductor thin film was manufactured under the same conditions as in Example 1 except that the irradiation time and irradiation timing of the second laser beam were controlled so that the energy fluence of the second laser beam approached a preset reference.
  • the lengths of crystal grains per one irradiation of the first laser beam and the second laser beam in this semiconductor thin film were measured. The results are shown in Table 1.
  • the second laser beam as the reference laser beam is applied to the surface of the precursor semiconductor thin film with an energy density of 62.3 MW / m 2 (during the first irradiation and the second irradiation). (Energy density) was irradiated for 130 microseconds, and the first laser beam was irradiated 120 seconds after the start of the second laser beam irradiation.
  • the irradiation time and irradiation timing of the second laser light after the third irradiation were controlled based on the energy density change of the reflected light one and two times before the irradiation.
  • Example 2 the energy fluence of the first laser beam, the irradiation time (pulse width) of the first laser beam, the energy fluence of the second laser beam, and the irradiation of the second laser beam.
  • the delay time which is the difference between the first laser beam irradiation start time and the start time, was fixed, and the second laser beam irradiation time and irradiation timing were controlled. Therefore, Example 2 substantially corresponds to (2) the second method described above. [0086] (Comparative Example 1)
  • a semiconductor thin film was manufactured under the same conditions as in Example 1 except that the second laser beam was irradiated without any control of the energy density, irradiation time, and irradiation timing of the second laser beam.
  • irradiation of the second laser beam is started after irradiating the surface of the precursor semiconductor thin film substrate with the second laser beam at an energy density of 62.3 MWZm 2 for 130 microseconds. 120 microseconds later, the first laser beam was irradiated, and after the first laser beam irradiation was completed, the second laser beam irradiation was completed. Thereafter, the stage 19 shown in FIG. 5 is moved in the horizontal direction by a predetermined distance so that the irradiation area of the first laser beam in the precursor semiconductor thin film is in contact with the previous irradiation area, and the first laser beam is moved. The first laser beam and the second laser beam were irradiated without completely controlling the energy density, irradiation time, and irradiation timing of the second laser beam. This was repeated a plurality of times to produce a semiconductor thin film.
  • Example 1 As shown in Table 1, the irradiation time of Example 1 and the second laser light in which the energy density of the second laser light was controlled based on the energy density change of the reflected light of the second laser light.
  • Example 2 in which the irradiation timing was controlled, the length of crystal grains grown per one irradiation of the first laser beam and the second laser beam was 17-18 / ⁇ ⁇ .
  • the energy density, irradiation time, and irradiation timing of the first laser beam and the second laser beam are all completely controlled.
  • the crystal There was a tendency to obtain longer crystal grains with no variation in grain length.
  • the crystal grains are grown in the direction parallel to the surface of the precursor semiconductor thin film. However, in the present invention, the crystal grains are perpendicular to the surface of the precursor semiconductor thin film. It can also be applied to the case of growing to
  • the present invention can be suitably used for forming a gate insulating film made of, for example, a polycrystalline silicon semiconductor thin film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

 少なくとも二種類のレーザ光を照射して前駆体半導体薄膜基板(5)に含まれる固体状態の前駆体半導体薄膜(6)を溶融した後に再結晶化させることによって半導体薄膜を製造する方法であって、前駆体半導体薄膜基板(5)に照射される基準レーザ光の反射光のエネルギ密度変化に基づいて、少なくとも二種類のレーザ光のうち少なくとも一種類のレーザ光の、エネルギ密度、照射タイミングおよび照射時間からなる群のうち少なくとも一つを制御する工程を含む半導体薄膜の製造方法と半導体薄膜の製造装置(10)である。

Description

明 細 書
半導体薄膜の製造方法および半導体薄膜の製造装置
技術分野
[0001] 本発明は半導体薄膜の製造方法および半導体薄膜の製造装置に関し、特にレー ザ光の照射ごとの結晶粒の長さのばらつきを抑制して、長い結晶粒を効率的に得る ことができる半導体薄膜の製造方法および半導体薄膜の製造装置に関する。
背景技術
[0002] アモルファス半導体薄膜を一旦溶融した後に再結晶化して多結晶半導体薄膜とし
、当該多結晶半導体薄膜にトランジスタを形成した多結晶薄膜トランジスタは、ァモ ルファス半導体薄膜に直接トランジスタを形成したアモルファス薄膜トランジスタと比 較して、通常、電子移動度が大きいため高速動作が期待でき、液晶デバイスの駆動 系のみならずガラス基板上での大規模集積回路を実現できる可能性を有している。
[0003] たとえば、多結晶シリコン薄膜トランジスタを用いた場合には、表示装置の画素部 分にスイッチング素子を形成できるだけでなぐ画素の周辺部分に駆動回路や一部 の周辺回路を形成することもでき、これらの素子や回路を一枚の基板上に形成するこ とができる。このため、別途ドライバ ICや駆動回路基板を表示装置に実装する必要が なくなるので、これらの表示装置を低価格で提供することが可能となる。
[0004] また、多結晶シリコン薄膜トランジスタを用いた場合には、トランジスタの寸法を微細 化できるので、表示装置の画素部分に形成されるスイッチング素子が小さくなり、表 示装置の高開口率化が図れる。このため、高輝度、高精細な表示装置を提供するこ とが可能となる。
[0005] 多結晶シリコン薄膜は、たとえばガラス基板上に気相成長法によって得られたァモ ルファス半導体薄膜を長時間ガラスの歪点(約 600〜650°C)以下で熱ァニールする 、高いエネルギ密度を有するレーザ光などを照射して光ァニールすることによって 得られる。光ァニールは、アモルファスシリコン薄膜のみをガラスの歪点以上の温度 まで高くすることが可能であるため、電子移動度が高い多結晶シリコン薄膜の形成に 非常に有効である。また、近年では、エキシマレーザ光を用いて 600°C以下の低温 でアモルファスシリコン薄膜から多結晶シリコン薄膜を形成する技術が一般化され、 低価格のガラス基板に多結晶シリコン薄膜トランジスタを形成した表示装置を低価格 で提供できるようになって 、る。
[0006] 上記エキシマレーザ光を用いた再結晶化技術は一般的に ELA(Excimer Laser
Annealing)法と称され、生産性に優れるレーザ結晶化技術として、工業的に用い られている。 ELA法は、具体的には、ガラス基板を一定速度で移動させながら、長さ 200〜400mm、幅 0. 2〜1. Omm程度の線状のエキシマレーザ光をガラス基板上 のアモルファスシリコン薄膜にパルス状に照射するものである。この方法によって、ァ モルファスシリコン薄膜の厚さと同程度の平均粒径を有する多結晶シリコン薄膜が形 成される。このとき、エキシマレーザ光を照射した部分のアモルファスシリコン薄膜は 、厚さ方向全域にわたって溶融させるのではなぐ一部のアモルファス領域を残して 溶融させる。そのためレーザ光の照射領域の全面にわたって、至るところにシリコン の結晶核が発生するので、ガラス基板の表面に対して垂直方向にシリコンの結晶粒 が成長する。
[0007] ここで、さらに高性能な表示装置を得るためには、上記の多結晶シリコンの結晶粒 径を大きくすることや、結晶粒の方位を制御することなどが必要である。そこで、単結 晶シリコンに近い性能を有する多結晶シリコン薄膜を得ることを目的として、数多くの 提案がなされている。その中でも特に、結晶粒を水平方向に成長させる技術 (たとえ ば W097Z45827号パンフレット(特許文献 1)参照)がある(以下、「スーパーラテラ ル成長法」と記す)。
[0008] これは、まずガラス基板上に形成されたシリコン薄膜に数 μ m程度の微細幅のレー ザ光をパルス状に照射し、シリコン薄膜をレーザ照射領域の厚さ方向全域にわたつ て溶融させた後に凝固させて再結晶化を行なう。これによりガラス基板の表面に対し て垂直に形成された溶融部と非溶融部との境界で発生した結晶核力 結晶粒が全 て水平方向に成長する。その結果、 1回のレーザ光の照射により、ガラスの基板の表 面に対して平行で、長さが均一な針状の結晶粒が得られる。 1回のレーザ光の照射 により形成される結晶粒の長さは 1 μ m程度であるが、その 1回前のレーザ光の照射 で形成された針状の結晶粒の一部に重複するように順次レーザ光をパルス状に照射 していくことにより、レーザ光の照射により既に成長した結晶粒を引き継いで、より長 V、針状の結晶粒が得られると!、つた特徴を有して 、る。
[0009] し力しながら、スーパーラテラル成長法においては、 1回のレーザ光の照射により形 成される針状の結晶粒の長さは 1 μ m程度であって非常に短いという問題がある。た とえば結晶粒の長さの 2倍以上の領域を溶融させた場合は、図 6の模式的な平面図 に示すように、溶融領域の中央部に微細な結晶粒 32が形成される。この微細な結晶 粒 32は、ラテラル成長した結晶粒 31ではなぐガラス基板への熱の流出に支配され て、ガラス基板の表面に対して垂直方向に成長したものである。そのため、溶融領域 を拡大することにより、結晶粒の長さが飛躍的に長い針状の結晶粒を得ることはでき ない。したがって、スーパーラテラル成長法では、 0. 4〜0. 7 m程度の極めて微小 なレーザ光の照射送りピッチでレーザ光の照射を繰り返し行な 、、既に成長した結晶 粒の長さを順次引き継がせて、より長い針状の結晶粒が得られている。このため、表 示装置などに用いられるガラス基板の表面全面にわたってシリコン薄膜を再結晶化 するには極めて長い時間が必要であり、製造効率が極めて悪いという問題が指摘さ れている。
[0010] そこで、製造効率を向上させることを目的として、 1回のレーザ光の照射当たりの結 晶粒の成長を促進するため、ガラス基板などの基板をヒータで加熱する方法や、基 板もしくは基板上の下地膜をレーザ光で加熱する方法が数多く提案されている (たと えば、特開平 6— 291034号公報 (特許文献 2)参照)。しカゝしながら、ヒータで基板を 加熱する場合、基板の表面の広範囲に対して長時間の温度維持が必要となるので、 基板や半導体薄膜の変質の原因となる可能性がある。また、温度が一定でないと、 冷却時間に差が生じるため、結晶粒の大きさにばらつきが生じ、半導体薄膜の特性 のばらつきの原因となる。これは結晶粒の平均的な大きさが大きくなるほど顕著にな る。また、レーザ光による加熱の場合には、レーザ光の照射エネルギ密度のばらつき がそのまま温度のばらつきになるため、基板や下地膜の温度を一定に保つのは困難 である。上記の特許文献 2においては、スーパーラテラル成長法への適用について は言及していないが、スーパーラテラル成長法への適用を考えた場合、結晶粒の大 きさのばらつきが上述したレーザ光の照射送りピッチの設定に大きく寄与することに なる。したがって、製造効率の向上のためには、より長い針状の結晶粒を形成すると 同時に、結晶粒の大きさのばらつきを抑える必要があるが、現行技術では困難性を 有している。
[0011] そこで、照射ごとのレーザ光のエネルギ密度のばらつきを抑制するために、基板の 表面での温度変化を検知して、レーザ光源を制御する技術が提案されている(たとえ ば、特開平 4 338631号公報 (特許文献 3)参照)。この特許文献 3に記載の技術 は、詳しくは、レーザ光の照射部の温度を放射温度計により検知して、その結果に応 じてレーザ光を変調するというものである。しかし、温度変化を検知することができる 放射温度計の応答速度は、最も速いもので数ミリ秒オーダー(1ミリ秒以上 10ミリ秒未 満)程度であるため、 1ミリ秒未満のパルス幅を有するレーザ光を用いた方法には適 用できな!/、と!/、う問題点があった。
特許文献 1: W097Z45827号パンフレット
特許文献 2:特開平 6 - 291034号公報
特許文献 3 :特開平 4— 338631号公報
特許文献 4:特開平 5— 235169号公報
発明の開示
発明が解決しょうとする課題
[0012] 本発明の目的は、レーザ光の照射ごとの結晶粒の長さのばらつきを抑制して、長い 結晶粒を効率的に得ることができる半導体薄膜の製造方法および半導体薄膜の製 造装置を提供することにある。
課題を解決するための手段
[0013] 本発明は、少なくとも二種類のレーザ光を照射して前駆体半導体薄膜基板に含ま れる固体状態の前駆体半導体薄膜を溶融した後に再結晶化させることによって半導 体薄膜を製造する方法であって、前駆体半導体薄膜基板に照射される基準レーザ 光の反射光のエネルギ密度変化に基づいて、少なくとも二種類のレーザ光のうち少 なくとも一種類のレーザ光の、エネルギ密度、照射タイミングおよび照射時間からなる 群のうち少なくとも一つを制御する工程を含む、半導体薄膜の製造方法である。
[0014] また、本発明の半導体薄膜の製造方法において、少なくとも二種類のレーザ光は、 固体状態の前駆体半導体薄膜を溶融することができる第一のレーザ光と、溶融した 前駆体半導体薄膜の再結晶化を遅延することができる第二のレーザ光と、を含むこと ができる。ここで、「溶融した前駆体半導体薄膜の再結晶化を遅延」とは、溶融した前 駆体半導体薄膜にレーザ光を照射しな 、場合と比べて、溶融した前駆体半導体薄 膜の再結晶化時間を長くすることを意味する。
[0015] また、本発明の半導体薄膜の製造方法においては、第二のレーザ光を基準レーザ 光とすることができる。
[0016] また、本発明の半導体薄膜の製造方法において、第二のレーザ光はパルス状に照 射され、 1回前に照射された第二のレーザ光の反射光のエネルギ密度変化に少なく とも基づいて、第二のレーザ光のエネルギ密度を制御することができる。ここで、「1回 前に照射された第二のレーザ光の反射光のエネルギ密度変化に少なくとも基づいて 」とは、 1回前に照射された第二のレーザ光の反射光のエネルギ密度変化に基づい ていれば、 1回前よりもさらに前に照射された第二のレーザ光の反射光のエネルギ密 度変化を考慮してもよ!ヽことを意味する。
[0017] また、本発明の半導体薄膜の製造方法においては、 1回前に照射された第二のレ 一ザ光の反射光のエネルギ密度変化と 2回前に照射された第二のレーザ光の反射 光のエネルギ密度変化とに少なくとも基づいて、第二のレーザ光のエネルギ密度を 制御することができる。ここで、「1回前に照射された第二のレーザ光の反射光のエネ ルギ密度変化と 2回前に照射された第二のレーザ光の反射光のエネルギ密度変化と に少なくとも基づいて」とは、 1回前と 2回前に照射された第二のレーザ光の反射光の エネルギ密度変化に基づいていれば、 2回前よりもさらに前に照射された第二のレー ザ光の反射光のエネルギ密度変化を考慮してもよいことを意味する。
[0018] また、本発明の半導体薄膜の製造方法においては、第二のレーザ光はパルス状に 照射され、 1回前に照射された第二のレーザ光の反射光のエネルギ密度変化に少な くとも基づいて、第二のレーザ光の照射タイミングおよび照射時間の少なくとも一方を 制御することができる。ここで、「1回前に照射された第二のレーザ光の反射光のエネ ルギ密度変化に少なくとも基づいて」とは、 1回前に照射された第二のレーザ光の反 射光のエネルギ密度変化に基づいていれば、 1回前よりもさらに前に照射された第二 のレーザ光の反射光のエネルギ密度変化を考慮してもよいことを意味する。
[0019] また、本発明の半導体薄膜の製造方法においては、 1回前に照射された第二のレ 一ザ光の反射光のエネルギ密度変化と 2回前に照射された第二のレーザ光の反射 光のエネルギ密度変化とに少なくとも基づ 、て、第二のレーザ光の照射タイミングお よび照射時間の少なくとも一方を制御することができる。ここで、 「1回前に照射された 第二のレーザ光の反射光のエネルギ密度変化と 2回前に照射された第二のレーザ 光の反射光のエネルギ密度変化とに少なくとも基づいて」とは、 1回前と 2回前に照射 された第二のレーザ光の反射光のエネルギ密度変化に基づいていれば、 2回前より もさらに前に照射された第二のレーザ光の反射光のエネルギ密度変化を考慮しても よいことを意味する。
[0020] また、本発明の半導体薄膜の製造方法においては、第一のレーザ光が紫外域の 波長を有し、第二のレーザ光が可視域または赤外域の波長を有して 、てもよ 、。
[0021] また、本発明の半導体薄膜の製造方法においては、第二のレーザ光が 9 μ m以上 11 μ m以下の範囲内の波長を有していてもよい。
[0022] また、本発明の半導体薄膜の製造方法において、再結晶化の際に成長する結晶 粒は、前駆体半導体薄膜の表面に対して略平行に結晶成長してもよい。
[0023] さらに、本発明は、少なくとも二種類のレーザ光を照射可能な二つ以上のレーザ光 源と、前駆体半導体薄膜基板に照射される基準レーザ光の反射光のエネルギ密度 を検知可能な検知手段と、基準レーザ光の反射光のエネルギ密度変化に基づいて 少なくとも二種類のレーザ光のうち少なくとも一種類のレーザ光の、エネルギ密度、 照射タイミングおよび照射時間からなる群のうち少なくとも一つを制御可能な制御手 段と、を含む、半導体薄膜の製造装置である。
[0024] また、本発明の半導体薄膜の製造装置において、検知手段は 100マイクロ秒以下 の応答速度を有することが好まし ヽ。
[0025] また、本発明の半導体薄膜の製造装置においては、二つ以上のレーザ光源が、前 駆体半導体薄膜基板に含まれる固体状態の前駆体半導体薄膜を溶融することがで きる第一のレーザ光を照射する第一のレーザ光源と、溶融した前駆体半導体薄膜の 再結晶化を遅延することができる第二のレーザ光を照射する第二のレーザ光源と、を 含み、基準レーザ光が第二のレーザ光であって、検知手段は第二のレーザ光の反 射光のエネルギ密度を検知することができる。ここで、「溶融した前駆体半導体薄膜 の再結晶化を遅延」とは、溶融した前駆体半導体薄膜にレーザ光を照射しな 、場合 と比べて、溶融した前駆体半導体薄膜の再結晶化時間を長くすることをいう。
[0026] また、本発明の半導体薄膜の製造装置においては、検知手段が、光センサと、光 センサ力 の信号を処理することができる信号処理回路とを含み、光センサは前駆体 半導体薄膜基板に対する第二のレーザ光の反射光のエネルギ密度を検知すること ができ、信号処理回路は光センサ力もの第二のレーザ光の反射光のエネルギ密度を 示す信号を処理して制御手段に出力することができる。
[0027] また、本発明の半導体薄膜の製造装置において、制御手段は、信号処理回路から 出力された信号に基づいて第二のレーザ光の反射光のエネルギ密度変化を第二の レーザ光の照射ごとに記憶することができ、 1回前に照射された第二のレーザ光の反 射光のエネルギ密度変化と 2回前に照射された第二のレーザ光の反射光のエネル ギ密度変化とに少なくとも基づいて、第二のレーザ光の、エネルギ密度、照射タイミン グおよび照射時間からなる群のうち少なくとも一つを制御することができる。
[0028] また、本発明の半導体薄膜の製造装置においては、第一のレーザ光源は紫外域 の波長を有する第一のレーザ光を照射し、第二のレーザ光源は可視域または赤外 域の波長を有する第二のレーザ光を照射することができる。
[0029] また、本発明の半導体薄膜の製造装置においては、第二のレーザ光源により照射 される第二のレーザ光は 9 μ m以上 11 μ m以下の波長を有して 、てもよ 、。
発明の効果
[0030] 本発明によれば、レーザ光の照射ごとの結晶粒の長さのばらつきを抑制して、長い 結晶粒を効率的に得ることができる半導体薄膜の製造方法および半導体薄膜の製 造装置を提供することができる。このような本発明によれば、従来と比較して性能が大 幅に向上した多結晶薄膜トランジスタを形成することができる。また、本発明によれば 、スーパーラテラル成長法におけるレーザ光の照射送りピッチを安定して長くすること ができるため、半導体薄膜の製造効率を向上することができる。
図面の簡単な説明 [0031] [図 1]本発明において、少なくとも二種類のレーザ光が照射される前駆体半導体薄膜 基板の好ま 、一例の模式的な断面図である。
[図 2]本発明にお 、て、前駆体半導体薄膜に照射される第一のレーザ光および第二 のレーザ光の波形 (経過時間に対するエネルギ密度変化)の一例を示した図である。
[図 3]図 2に示す波形で第一のレーザ光および第二のレーザ光をシリコン薄膜に 1回 ずつ照射したときの第一のレーザ光のエネルギフルエンスと結晶粒の長さとの関係を 示した図である。
[図 4]一定領域に照射された第二のレーザ光の 1回の照射におけるエネルギ密度の 変化を示すグラフである。
[図 5]本発明の半導体薄膜の製造装置の好ましい一例の構成を概略的に示した図で ある。
[図 6]スーパーラテラル成長法において形成される針状の結晶粒の一例の模式的な 平面図である。
符号の説明
[0032] 1 第一のレーザ光の波形、 2 第二のレーザ光の波形、 5 前駆体半導体薄膜基 板、 6 前駆体半導体薄膜、 7 絶縁性基板、 8 バッファ層、 10 製造装置、 11 第 一のレーザ光源、 12 第二のレーザ光源、 13, 14 アツテネータ、 15, 16 均一照 射光学系、 17, 18 マスク、 19 ステージ、 20, 24 結像レンズ、 21 ミラー、 22 検 知器、 23 制御手段、 27 信号処理回路、 31 結晶粒、 32 微細な結晶粒。
発明を実施するための最良の形態
[0033] 以下、本発明の実施の形態について説明する。なお、本発明の図面において、同 一の参照符号は、同一部分または相当部分を表わすものとする。
[0034] (前駆体半導体薄膜基板)
図 1に、本発明にお 、て少なくとも二種類のレーザ光が照射される前駆体半導体薄 膜基板の好ましい一例の模式的な断面図を示す。ここで、本発明において、「前駆体 半導体薄膜基板」はレーザ光が照射される前の状態の半導体薄膜である前駆体半 導体薄膜と基板とを含む。図 1に示す前駆体半導体薄膜基板 5は、絶縁性基板 7上 にバッファ層 8を介して前駆体半導体薄膜 6が形成された構造を有している。 [0035] 前駆体半導体薄膜 6としては、任意の半導体材料を用いることができ、たとえば従 来より液晶表示装置の製造工程にお 、て用いられて 、て、製造が容易であると!/、う 理由から、水和したアモルファスシリコン(a— Si: H)をはじめとするアモルファスシリコ ンを含むシリコンを用いることが好ましいが、多結晶シリコンを含むシリコンであっても よぐ微結晶シリコンを含むシリコンであってもよい。また、前駆体半導体薄膜 6として は、シリコンのみ力もなる材質に限られるものではなぐゲルマニウムなどの他の元素 を含んだシリコンを主成分とする材質であってもよい。たとえば、ゲルマニウムを添カロ することにより前駆体半導体薄膜 6の禁制帯幅を任意に制御することができる。前駆 体半導体薄膜 6の厚みは 30nm以上 200nm以下であることが好まし 、。前駆体半導 体薄膜 6の厚みが 30nm未満である場合には前駆体半導体薄膜 6を均一な厚みに 形成することが困難となる傾向にあり、 200nmを超える場合には前駆体半導体薄膜 6の形成に時間が力かり過ぎる傾向にあるためである。なお、前駆体半導体薄膜 6は たとえば CVD (Chemical Vapor deposition;化学気相堆積)法などによって形成さ れる。
[0036] 絶縁性基板 7としては、ガラスや石英などを含む材質にて形成された公知の基板を 好適に用いることができる。また、これらの材質の中でも、安価である点、大面積の絶 縁性基板を容易に製造することができる点でガラス基板を用いることが好ま ヽ。また 、絶縁性基板の厚みは特に限定されるものではないが、 0. 5mm以上 1. 2mm以下 であることが好ましい。絶縁性基板の厚みが 0. 5mm未満である場合には絶縁性基 板が割れやすぐ平坦性に優れた基板を製造することが困難となる傾向にある。また 、絶縁性基板の厚みが 1. 2mmを超えている場合には絶縁性基板が厚くなりすぎて たとえば表示装置などの最終製品の小型化および軽量ィ匕を図ることが困難となる傾 I口」にある。
[0037] また、図 1に示す前駆体半導体薄膜基板 5において、前駆体半導体薄膜 6は絶縁 性基板 7上にバッファ層 8を介して形成されることが好ましい。バッファ層 8を形成する ことにより、レーザ光の照射による溶融および再結晶化の際に、溶融した前駆体半導 体薄膜 6の熱の影響が絶縁性基板 7に及ばないようにすることができる傾向にあり、 絶縁性基板 7から前駆体半導体薄膜 6への不純物拡散を防止することができる傾向 にあるためである。ノ ッファ層 8としては、酸ィ匕シリコンまたは窒化シリコンなどの材料 を CVD法を用いて形成することができ、特に制限されるものではない。また、ノ ッファ 層 8の厚みは特に制限されるものではないが、 lOOnm以上 500nm以下であることが 好ましい。ノ ッファ層 8の厚みが lOOnm未満である場合には絶縁性基板 7から前駆 体半導体薄膜 6への不純物の拡散防止効果が不十分となる傾向にあり、 500nmを 超えるとバッファ層 8の形成に時間が力かり過ぎて製造効率が低下する傾向にあるた めである。
[0038] (半導体薄膜の製造方法)
図 1に示す前駆体半導体薄膜基板 5中の前駆体半導体薄膜 6には、たとえば、 1回 の照射で固体状態の前駆体半導体薄膜 6を溶融することができる第一のレーザ光と 、 1回の照射で固体状態の前駆体半導体薄膜 6を溶融することはできないが溶融し た前駆体半導体薄膜 6の再結晶化を遅延することができる第二のレーザ光と、が照 射される。
[0039] ここで、第一のレーザ光と第二のレーザ光とは、たとえば図 2に示す波形で照射す ることができる。なお、図 2の縦軸はエネルギ密度を示し、横軸は経過時間を示して いる。また、図 2中の参照符号 1は第一のレーザ光の波形 (経過時間に対するエネル ギ密度変化)を示しており、参照符号 2は第二のレーザ光の波形を示している。
[0040] 図 2を参照すると、まず第二のレーザ光がパルス状に照射される。次に、第二のレ 一ザ光の照射中に第一のレーザ光がパルス状に照射される。続いて、第一のレーザ 光の照射が完了した後に第二のレーザ光の照射を完了する。そして、第二のレーザ 光の照射を完了した後は、第一のレーザ光の前駆体半導体薄膜への照射領域が一 部接触する位置または一部重なる位置に第一のレーザ光および第二のレーザ光の 照射領域を移動して再度上記と同様にして第一のレーザ光および第二のレーザ光 が照射される。これにより、第二のレーザ光の照射によって加熱された固体状態の前 駆体半導体薄膜に第一のレーザ光が照射されて前駆体半導体薄膜が溶融し、溶融 した前駆体半導体薄膜に第二のレーザ光が照射されることによって前駆体半導体薄 膜が再結晶化する時間を遅延させて再結晶化により得られる結晶粒をより長くするこ とができる。そして、上記の第一のレーザ光および第二のレーザ光の照射と照射領 域の移動とが繰り返されることによって、前駆体半導体薄膜の表面に略平行に結晶 粒が成長して、より長い結晶粒を得ることができる。なお、本発明において「パルス状 に照射」には、エネルギ密度の高いレーザ光が間欠的に照射される場合だけでなぐ エネルギ密度の低いレーザ光が間欠的に照射される場合も含まれる。
[0041] 図 3に、前駆体半導体薄膜であるシリコン薄膜に図 2に示す波形で第一のレーザ光 および第二のレーザ光をそれぞれ 1回ずつ照射したときの第一のレーザ光のエネル ギフルエンス(照射領域の単位面積当たりのエネルギ総注入量; jZm2)とシリコン薄 膜の溶融後に再結晶化して得られた結晶粒の長さとの関係(図 3において四角形の 位置により表わされている)を示す。図 3において、横軸は第一のレーザ光のエネル ギフルエンスを示し、縦軸は結晶粒の長さ m)を示している。なお、図 3の横軸に お!、ては、左から右へ進むにつれて第一のレーザ光のエネルギフルエンスが増大し ている。また、シリコン薄膜の膜厚はすべての照射において同一に設定されている。
[0042] 図 3を参照すると、第一のレーザ光のエネルギフルエンスがほぼ同じ値であるにも かかわらず、第一のレーザ光の照射ごとに結晶粒の長さがばらついている。したがつ て、上記の第一のレーザ光および第二のレーザ光を照射したときに生じる結晶粒の 長さのばらつきは第二のレーザ光の照射ごとのエネルギ密度のばらつきによるもので あると考えられる。すなわち、シリコン薄膜に照射される第二のレーザ光のエネルギ 密度が照射ごとにばらつくことから、第二のレーザ光の照射開始時間に対する第一 のレーザ光の照射開始時間の差である遅延時間がたとえ照射ごとに同一であっても 、溶融したシリコン薄膜が再結晶化する時間が第二のレーザ光の照射ごとに異なつ てしまうため結晶粒の長さがばらつくと考えられる。なお、図 3における第一のレーザ 光のエネルギフルエンスは第一のレーザ光をビームスプリッタにより分岐させた後に エネルギメータに照射することによって熱的な変化をエネルギフルエンスとして測定 したものであり、結晶粒の長さは光学顕微鏡を用いた観察によって結晶粒の最大長 を測定したものである。
[0043] 図 4は、一定領域に照射された第二のレーザ光の 1回の照射におけるエネルギ密 度の変化を示すグラフである。なお、図 4における第二のレーザ光のエネルギ密度変 ィ匕は第二のレーザ光をエネルギメータに照射して測定されたものである。図 4におい て、縦軸は第二のレーザ光のエネルギ密度を示し、横軸は第二のレーザ光の照射時 間を示している。図 4を参照すると、第二のレーザ光のエネルギ密度は 1回の照射の 中である周期をもって変化しており、この周期的な変化が第二のレーザ光のエネルギ 密度のばらつきとなって図 3に示した結晶粒の長さのばらつきを引き起こす。このよう な第二のレーザ光のエネルギ密度のばらつきは、照射雰囲気などの外部環境によつ て生じるものと考えられる。したがって、経過時間に対する第二のレーザ光のエネル ギ密度変化が一定になるように第二のレーザ光の光源を設定したとしても、実際に照 射される第二のレーザ光においては照射雰囲気などの外部環境によって図 4に示す ようなエネルギ密度のばらつきが生じてしまう。
[0044] そこで、本発明においては、上記の第一のレーザ光および第二のレーザ光とともに 前駆体半導体薄膜基板に基準レーザ光を一定のエネルギ密度で第二のレーザ光と 同時に照射し、照射された基準レーザ光の反射光のエネルギ密度の変化を検知す る (基準レーザ光も照射雰囲気などの外部環境の影響を受けるため基準レーザ光の 反射光のエネルギ密度が変化する)。そして、検知された基準レーザ光の反射光の エネルギ密度の変化に基づいて、次回照射時における、経過時間に対する第二の レーザ光のエネルギ密度変化(図 2に示す波形)および Zまたは第二のレーザ光の エネルギフルエンスが予め設定されている基準に近づくように第二のレーザ光のェ ネルギ密度、照射タイミングおよび照射時間からなる群のうち少なくとも一つを制御す る。
[0045] これにより、照射雰囲気などの外部環境による第二のレーザ光のエネルギ密度の ばらつきを抑制することができるため、照射ごとの結晶粒の長さのばらつきが抑制さ れ、さらに第二のレーザ光の照射により再結晶化時間を遅延させてより長い結晶粒 の作製が可能となる。したがって、本発明においては、 1回の照射によってより長い結 晶粒を得ることができることから照射領域の移動距離 (照射送りピッチ)を大きくするこ とができ、さらに結晶粒の長さのばらつきを抑制して照射送りピッチを安定して長くす ることができることから半導体薄膜の製造効率を向上させることができる。また、このよ うな基準レーザ光の反射光のエネルギ密度の変化を検知する本発明の方法におい ては、放射温度計を用 、た従来の方法よりも高速に検知することが可能になるため、 1ミリ秒未満のパルス幅を有するレーザ光を用いた方法にも適用することができる。
[0046] また、基準レーザ光を前駆体半導体薄膜基板中の前駆体半導体薄膜に照射する 場合には、基準レーザ光が照射される前駆体半導体薄膜の温度変化によって反射 光のエネルギ密度が影響を受けてしまう。すなわち、一般に、前駆体半導体薄膜を 構成する半導体材料は、各波長の光に対して所定の反射率 (反射光のエネルギ密 度 Z入射光のエネルギ密度)を有している。これは反射率が各波長の光における半 導体材料の屈折率に依存するためである。さらに、屈折率は半導体材料の温度に依 存するため、反射率は半導体材料の温度に依存することになる。したがって、前駆体 半導体薄膜の温度変化に伴い反射率が変化して基準レーザ光の反射光のエネルギ 密度が変化するため、前駆体半導体薄膜の温度変化による反射光のエネルギ密度 変化も考慮して第二のレーザ光のエネルギ密度、照射タイミングおよび照射時間から なる群のうち少なくとも一つを制御することが好ましい。これは、基準レーザ光を前駆 体半導体薄膜以外の箇所に照射した場合にその箇所の温度変化が生じる場合にも 適用されることが好まし 、ことは言うまでもな 、。
[0047] なお、上記においては、第二のレーザ光のエネルギ密度のばらつきに着目して第 二のレーザ光のエネルギ密度、照射タイミングおよび照射時間からなる群のうち少な くとも一つを制御する場合について説明したが、第一のレーザ光のエネルギ密度、照 射タイミングおよび照射時間からなる群のうち少なくとも一つを制御してもよぐ第一の レーザ光および第二のレーザ光の双方のエネルギ密度、照射タイミングおよび照射 時間からなる群のうち少なくとも一つを制御してもよい。
[0048] また、上記において、基準レーザ光としては第一のレーザ光および第二のレーザ光 の少なくとも一方を用いてもよぐ第一のレーザ光および第二のレーザ光以外の第三 のレーザ光を用いてもよい。ただし、装置の構造を簡略ィ匕する観点からは、エネルギ 密度、照射タイミングおよび照射時間からなる群のうち少なくとも一つが制御されるレ 一ザ光を基準レーザ光とすることが好ま 、。
[0049] また、上記において、第一のレーザ光としては、固体状態のシリコン薄膜からなる前 駆体半導体薄膜によく吸収され、 1回の照射で固体状態のシリコン薄膜を溶融可能 にする観点から、紫外域の波長を有するレーザ光を用いることが好ましい。ここで、紫 外域の波長とは、 lnm以上 400nm未満の波長を意味する。このような第一のレーザ 光としては、たとえばエキシマレーザ光、 YAGレーザ光の三倍波に代表される各種 固体レーザ光などを好適に用いることができる力 なかでも波長 308nmのエキシマ レーザ光を用いることが特に好適である。
[0050] また、上記において、第二のレーザ光としては、第一のレーザ光の照射によって溶 融したシリコン薄膜の再結晶化を遅延可能にする観点から、可視域または赤外域の 波長を有するレーザ光を用いることが好まし 、。この場合には第二のレーザ光は溶 融状態のシリコン薄膜に吸収され、溶融状態のシリコン薄膜の加熱を行なうことがで きる。ここで、可視域の波長とは、 400nm以上 750nm未満の波長を意味する。また 、赤外域の波長とは、 750nm以上 lmm以下の波長を意味する。このような第二のレ 一ザ光としては、たとえば 532nmの波長を有する YAGレーザ光の二倍波、 1064η mの波長を有する YAGレーザ光または 10. 6 mの波長を有する COレーザ光など
2
を好適に用いることができる。なお、 532nmの波長を有する YAGレーザ光の二倍波 および 1064nmの波長を有する YAGレーザ光が溶融状態のシリコン薄膜に吸収さ れる吸収率は約 60% (特開平 5— 235169号公報 (特許文献 4)参照)であり、 10. 6 IX mの波長を有する COレーザ光が溶融状態のシリコン薄膜に吸収される吸収率は
2
約 10〜20% (本発明者らの実験結果)である。
[0051] 上述した本発明の半導体薄膜の製造方法の一例として、たとえば以下の(1)およ び(2)の 2つの方法を挙げることができる。
[0052] (1)第一の方法
第一の方法は、 n回目の第二のレーザ光の照射時にお!、て、(n— 1)回目、好まし くは (n— 1)回目および (n— 2)回目の照射時における第二のレーザ光の反射光の エネルギ密度変化に基づいて、 n回目に照射される第二のレーザ光のエネルギ密度 を制御する方法である。ここで、第一の方法においては、第一のレーザ光および第二 のレーザ光は図 2に示す波形でパルス状に照射され、第一のレーザ光のエネルギフ ルエンス、第一のレーザ光の照射時間(パルス幅)、第二のレーザ光の照射時間(パ ルス幅)、第二のレーザ光の照射タイミングおよび第二のレーザ光の照射開始時間 に対する第一のレーザ光の照射開始時間の差である遅延時間が固定される。 [0053] このような第一の方法においては、たとえば、第二のレーザ光の反射光のエネルギ 密度が全体的に減少傾向にある場合には、第二のレーザ光のエネルギ密度が高く なるように制御される。また、たとえば、第二のレーザ光の反射光のエネルギ密度が 全体的に増加傾向にある場合には、第二のレーザ光のエネルギ密度が低くなるよう に制御される。
[0054] このような第一の方法にぉ 、ては、前駆体半導体薄膜をアブレーシヨンさせることな く結晶粒の大きさを増大させる観点から、図 2に示す波形における第一のレーザ光の エネルギフルエンスは 1500jZm2以上 3500jZm2以下であることが好ましぐ 2500J /m2以上 3000j/m2以下であることがより好ましい。
[0055] また、第一の方法においては、図 2に示す波形における第二のレーザ光の照射時 間が 120マイクロ秒以上 140マイクロ秒以下であるときは、絶縁性基板の変形および Zまたは破損を防止し、前駆体半導体薄膜をアブレーシヨンさせることなく結晶粒の 長さを増大させる観点から、図 2に示す波形における第二のレーザ光のエネルギフ ルエンスは 7500jZm2以上 lOOOOjZm2以下であることが好ましぐ 8000jZm2以 上 9000jZm2以下であることがより好ま U、。
[0056] (2)第二の方法
第二の方法は、 n回目の第二のレーザ光の照射時にお!、て、(n— 1)回目、好まし くは (n— 1)回目および (n— 2)回目の照射時における第二のレーザ光の反射光の エネルギ密度変化に基づいて、 n回目に照射される第二のレーザ光の照射タイミング および照射時間を制御する方法である。ここで、第二の方法においては、第一のレ 一ザ光および第二のレーザ光は図 2に示す波形でパルス状に照射され、第一のレー ザ光のエネルギフルエンス、第一のレーザ光の照射時間(パルス幅)、第二のレーザ 光のエネルギフルエンスおよび第二のレーザ光の照射開始時間に対する第一のレ 一ザ光の照射開始時間の差である遅延時間が固定される。
[0057] このような第二の方法においては、たとえば、第二のレーザ光の反射光のエネルギ 密度が全体的に減少傾向にある場合には、第二のレーザ光の照射開始時間が早く または第二のレーザ光の照射時間が長くなるように制御することで、第二のレーザ光 の照射開始時間に対する第一のレーザ光の照射開始時間の差である遅延時間を長 くする。また、たとえば、第二のレーザ光の反射光のエネルギ密度が全体的に増加傾 向にある場合には、第二のレーザ光の照射開始時間が遅くまたは第二のレーザ光の 照射時間が短くなるように制御することで、第二のレーザ光の照射開始時間に対する 第一のレーザ光の照射開始時間の差である遅延時間を短くする。
[0058] このような第二の方法においては、図 2に示す波形における、第一のレーザ光のェ ネルギフルエンスを 3000j/m2、第二のレーザ光のエネルギフルエンスを 8100J/ m2および第二のレーザ光の照射時間が 120マイクロ秒以上 140マイクロ秒以下であ る場合には、 1回の照射あたりの結晶粒の長さを増大させる観点から、図 2に示す波 形において、第一のレーザ光の照射開始時間が第二のレーザ光の照射開始後 110 マイクロ秒以上 130マイクロ秒以下となるように制御することが好ましぐ 120マイクロ 秒以上 130マイクロ秒以下となるように制御することがより好ましい。
[0059] なお、本発明の半導体薄膜の製造方法においては、上述した第一の方法または第 二の方法のいずれか一方を用いるだけでなぐ第一の方法と第二の方法とを組み合 わせて用いることもできる。また、本発明の半導体薄膜の製造方法においては、上述 した第一の方法および第二の方法以外の方法を用いてもよ!、ことは言うまでもな!/、。
[0060] (半導体薄膜の製造装置)
図 5に、本発明の半導体薄膜の製造装置の好ましい一例の構成を概略的に示す。 この製造装置 10は、上記の二つ以上のレーザ光源として、上記の第一のレーザ光を 照射する第一のレーザ光源 11と、上記の第二のレーザ光を照射する第二のレーザ 光源 12とを含んでいる。また、製造装置 10は、第二のレーザ光の反射光のエネルギ 密度を検知可能な検知器 22と、信号処理回路 27と、からなる検知手段を含み、さら に信号処理回路 27に接続されて 、る制御手段 23を含んで 、る。信号処理回路 27 は検知器 22から送信される第二のレーザ光の反射光のエネルギ密度を示す信号を 処理して制御手段 23に出力することができる。
[0061] 製造装置 10において、第二のレーザ光源 12から照射された第二のレーザ光は、 アツテネータ 14を通過した後、均一照射光学系 16によってエネルギ密度分布が均 一化されて適当な寸法に整形され、マスク 18のパターン形成面に均一に照射される 。次いで、マスク 18を通過した第二のレーザ光はミラー 21によって反射され、結像レ ンズ 24によってマスク 18の像が所定の倍率 (たとえば 1Z4)に結像された状態で前 駆体半導体薄膜基板 5中の前駆体半導体薄膜に照射される。
[0062] そして、第一のレーザ光源 11から照射された第一のレーザ光は、アツテネータ 13 を通過した後、均一照射光学系 15によってエネルギ密度分布が均一化されて適当 な寸法に整形され、マスク 17のパターン形成面に均一に照射される。次いで、マスク 17を通過した第一のレーザ光はミラー 21によって反射され、結像レンズ 20によって マスク 17の像が所定の倍率 (たとえば 1Z4)に結像された状態で前駆体半導体薄膜 基板 5中の前駆体半導体薄膜に照射される。ここで、前駆体半導体薄膜基板 5は水 平方向に所定速度で移動可能なステージ 19上に設置されている。また、上記におい てミラー 21は 1個のみ設置されているが数量に制限はなぐ設置箇所についても適 宜設定することができる。
[0063] ここで、第二のレーザ光源 12としては、たとえば、 532nmの波長を有する YAGレ 一ザ光の二倍波、 1064nmの波長を有する YAGレーザ光または 10. 6 mの波長 を有する COレーザ光を照射するものが特に好適である。
2
[0064] また、第一のレーザ光源 11としては、たとえば、エキシマレーザ光、 YAGレーザ光 に代表される各種固体レーザ光を照射可能な光源を好適に用いることができる。な かでも第一のレーザ光源 11としては、波長 308nmのエキシマレーザ光を照射する 光源が特に好適である。また、第一のレーザ光源 11としては、第一のレーザ光をパ ルス状に照射することができる光源であることが好ましい。
[0065] 前駆体半導体薄膜基板 5に照射されて反射した第二のレーザ光の反射光は検知 器 22によって反射光のエネルギ密度が経時的に計測される。力かる検知器 22として はたとえば光センサまたは焦電センサなどを用いることができる。なかでも、検知器 2 2としては高速応答性に優れた光センサを用いることが好ま 、。
[0066] 光センサとしては、たとえば感光部がシリコンにより構成されているものを用いてもよ い。また、第二のレーザ光として、波長 1064nmの YAGレーザ光を用いる場合には 感光部が AgOCs若しくは InGaAsにより構成されている光センサを用いることが好ま しい。また、第二のレーザ光として波長 10. 6 μ m( COレーザ光を用いる場合には
2
感光部が HdCdZnTeにより構成されて 、る光センサを用いることが好まし 、。また、 光センサは、反射光の照射による破壊を防止するために、減衰光学系(図示せず)を 有することが好ましい。
[0067] 検知器 22によって計測された第二のレーザ光の反射光のエネルギ密度を示す信 号は随時、信号処理回路 27によって変換処理されて制御手段 23に出力される。ここ で、検知器 22と信号処理回路 27とを含む検知手段は 100マイクロ秒以下の応答速 度を有することが好ましい。ここで、本発明において「100マイクロ秒以下の応答速度 を有する」とは、検知器 22に反射光が入射して力も制御手段 23に信号が出力される までに力かる時間が 100マイクロ秒以下であることをいう。
[0068] また、制御手段 23は第一のレーザ光源 11および第二のレーザ光源 12に接続され ており、制御手段 23は第二のレーザ光の反射光のエネルギ密度をたとえば電圧値と して随時記憶し、第二のレーザ光の反射光のエネルギ密度変化を電圧値の変動とし て記憶する。そして、この記憶された電圧値の変動に応じて第一のレーザ光源 11お よび Zまたは第二のレーザ光源 12を制御して、第一のレーザ光および Zまたは第二 のレーザ光のエネルギ密度、照射タイミングおよび照射時間からなる群のうち少なくと も一つを制御することができる。
[0069] たとえば、図 5に示す製造装置 10を用いて上述した(1)第一の方法を行なう場合に は、制御手段 23は、信号処理回路 27から出力されてきた、少なくとも 1回前、好まし くは少なくとも 1回前と 2回前にパルス状に照射された第二のレーザ光の反射光のェ ネルギ密度変化を示す電圧値の変動を記憶し、この電圧値の変動に基づいて、第 二のレーザ光源 12に信号を出力することによって、照射される第二のレーザ光のェ ネルギ密度が制御される。
[0070] すなわち、第二のレーザ光の反射光のエネルギ密度変化を示す電圧値の変動が 増加傾向にある場合には、第二のレーザ光のエネルギ密度が低くなるように制御手 段 23から第二のレーザ光源 12に信号が出力される。一方、第二のレーザ光の反射 光のエネルギ密度変化を示す電圧値の変動が減少傾向にある場合には、第二のレ 一ザ光のエネルギ密度が高くなるように制御手段 23から第二のレーザ光源 12に信 号が出力される。
[0071] また、図 5に示す製造装置 10を用いて上述した (2)第二の方法を行なう場合には、 制御手段 23は、信号処理回路 27から出力されてきた、少なくとも 1回前、好ましくは 少なくとも 1回前と 2回前にノ ルス状に照射された第二のレーザ光の反射光のェネル ギ密度変化を示す電圧値の変動を記憶し、この電圧値の変動に基づいて、第二のレ 一ザ光源 12に信号を出力することによって、照射される第二のレーザ光の照射時間 および照射タイミングが制御される。
[0072] すなわち、第二のレーザ光の反射光のエネルギ密度変化を示す電圧値の変動が 増加傾向にある場合には、たとえば第二のレーザ光の照射開始時間が遅くまたは第 二のレーザ光の照射時間が短くなるように制御手段 23から第二のレーザ光源 12に 信号が出力される。また、第二のレーザ光の反射光のエネルギ密度変化を示す電圧 値の変動が減少傾向にある場合には、たとえば第二のレーザ光の照射開始時間が 早くまたは第二のレーザ光の照射時間が長くなるように制御手段 23から第二のレー ザ光源 12に信号が出力される。
[0073] なお、上記において、制御手段 23は、ステージ 19の位置の制御、レーザ光の照射 目標位置の記憶、製造装置 10内部の温度制御または製造装置 10内部の雰囲気制 御などを行なうことができるように構成されて 、ることが好ま U、。
[0074] また、上記においては、基準レーザ光として第一のレーザ光および第二のレーザ光 以外の第三のレーザ光を用いることもでき、検知器 22としてこの第三のレーザ光の波 長に対して検知可能な光センサを用いてもょ 、。
実施例
[0075] (実施例 1)
厚さ 0. 7mmのガラス基板上に CVD法により酸化シリコンよりなる厚さ 300nmのバ ッファ層を形成し、このバッファ層上に CVD法により厚さ 50nmのシリコン薄膜力 な る前駆体半導体薄膜を形成することによって、前駆体半導体薄膜基板を形成した。
[0076] この前駆体半導体薄膜を用いて図 5に示した構成の製造装置により半導体薄膜を 製造した。まず、前駆体半導体薄膜の表面上方にスリット(開口部)幅が 50 μ mであ るマスクを固定し、前駆体半導体薄膜の表面上におけるおけるサイズが 5. 5mm X 5 . 5mmの正方形状となるように整形された基準レーザ光を兼ねた第二のレーザ光を 図 2に示す波形で前駆体半導体薄膜基板 5の表面に斜め方向力 照射した後に、 前駆体半導体薄膜の表面上におけるサイズが 40 m X 500 mの長方形状となる ように整形された第一のレーザ光を図 2に示す波形で前駆体半導体薄膜の表面に 対して垂直方向に照射した。これにより、前駆体半導体薄膜における第一のレーザ 光の照射領域を一旦溶融した後に再結晶化して前駆体半導体薄膜の表面と平行に 結晶粒を成長させた。そして、再結晶化後は前駆体半導体薄膜における第一のレー ザ光の照射領域が前回の照射領域と接触するようにしてステージ 19を水平方向に 所定の距離だけ移動させて再度第二のレーザ光および第一のレーザ光を順次照射 した。これを複数回繰り返すことによって半導体薄膜を製造した。
[0077] ここで、実施例 1においては、第一のレーザ光および第二のレーザ光の 1回の照射 ごとに結晶粒の長さを光学顕微鏡を用いた観察によって測定した。その結果を表 1に 示す。
[0078] なお、実施例 1において、第一のレーザ光としてはパルス状に照射される波長 308 nmのエキシマレーザ光を用い、第二のレーザ光としてはパルス状に照射される波長 10. 6 μ m< COレーザ光を用いた。また、第一のレーザ光のエネルギフルエンスは
2
3000jZm2であった。さらに、第二のレーザ光のエネルギフルエンスは 8 lOOjZm2 であって、第二のレーザ光の照射時間は 130マイクロ秒であった。
[0079] また、検知器 22としては、光センサ(製品名: PD- 10.6 Series Photovoltaic CO L
2 aser Detectors (Vigo System社製)、感光部: HdCdZnTe、立ち上がり時間:約 1ナ ノ秒以下)を用いた。この光センサ力もなる検知器 22から信号処理回路 27に信号が 出力され、この信号が信号処理回路 27によって第二のレーザ光の反射光のェネル ギ密度を示す電圧値を示す信号に変換処理されて制御手段 23に出力されて制御 手段 23にお 、て記憶された。
[0080] そして、制御手段 23に記憶された 1回前と 2回前に照射された第二のレーザ光の 反射光のエネルギ密度変化を示す電圧値の変動に基づいて、経過時間に対する第 二のレーザ光のエネルギ密度変化(図 2に示す波形)が予め設定されている基準に 近づくように、制御手段 23から第二のレーザ光源 12に第二のレーザ光のエネルギ 密度を制御する信号が出力された。
[0081] 詳しくは、図 2に示す波形で、前駆体半導体薄膜の表面上に基準レーザ光を兼ね た第二のレーザ光をエネルギ密度 62. 3MWZm2 (初回照射時および 2回目照射時 のエネルギ密度)で 130マイクロ秒間照射し、第二のレーザ光の照射開始時から 120 マイクロ秒後に第一のレーザ光を照射した。ここで、 3回目の照射以降の第二のレー ザ光のエネルギ密度はその照射の 1回前と 2回前の反射光のエネルギ密度変化に 基づいて制御された。
[0082] なお、実施例 1においては、第一のレーザ光のエネルギフルエンス、第一のレーザ 光の照射時間(パルス幅)、第二のレーザ光の照射時間(パルス幅)、第二のレーザ 光の照射タイミングおよび第二のレーザ光の照射開始時間に対する第一のレーザ光 の照射開始時間の差である遅延時間が固定されて、第二のレーザ光のエネルギ密 度が制御された。したがって、実施例 1は、上述した(1)第一の方法に実質的に相当 するものである。
[0083] (実施例 2)
第二のレーザ光のエネルギフルエンスが予め設定されている基準に近づくように第 二のレーザ光の照射時間および照射タイミングを制御したこと以外は実施例 1と同様 の条件で半導体薄膜を製造した。そして、実施例 1と同様にして、この半導体薄膜に おける第一のレーザ光および第二のレーザ光の 1回の照射あたりの結晶粒の長さを 測定した。その結果を表 1に示す。
[0084] 詳しくは、図 2に示す波形で、前駆体半導体薄膜の表面上に基準レーザ光としての 第二のレーザ光をエネルギ密度 62. 3MW/m2 (初回照射時および 2回目照射時の エネルギ密度)で 130マイクロ秒間照射し、第二のレーザ光の照射開始時から 120マ イク口秒後に第一のレーザ光を照射した。ここで、 3回目の照射以降の第二のレーザ 光の照射時間および照射タイミングはその照射の 1回前と 2回前の反射光のェネル ギ密度変化に基づ 、て制御された。
[0085] なお、実施例 2においては、第一のレーザ光のエネルギフルエンス、第一のレーザ 光の照射時間(パルス幅)、第二のレーザ光のエネルギフルエンスおよび第二のレー ザ光の照射開始時間に対する第一のレーザ光の照射開始時間の差である遅延時間 が固定されて、第二のレーザ光の照射時間および照射タイミングが制御された。した がって、実施例 2は、上述した(2)第二の方法に実質的に相当するものである。 [0086] (比較例 1)
第二のレーザ光のエネルギ密度、照射時間および照射タイミングのすべてが全く制 御されずに第二のレーザ光が照射されたこと以外は実施例 1と同様の条件で半導体 薄膜を製造した。
[0087] 詳しくは、図 2に示す波形で、前駆体半導体薄膜基板の表面上に第二のレーザ光 をエネルギ密度 62. 3MWZm2で 130マイクロ秒間照射した後に、第二のレーザ光 の照射開始時から 120マイクロ秒後に第一のレーザ光を照射し、第一のレーザ光の 照射完了後に第二のレーザ光の照射を完了した。その後、前駆体半導体薄膜にお ける第一のレーザ光の照射領域が前回の照射領域と接触するようにして図 5に示す ステージ 19を水平方向に所定の距離だけ移動し、第一のレーザ光および第二のレ 一ザ光のエネルギ密度、照射時間および照射タイミングを全く制御することなぐ第 一のレーザ光および第二のレーザ光を照射した。これを複数回繰り返して半導体薄 膜を製造した。
[0088] ここで、比較例 1においても、実施例 1と同様にして、第一のレーザ光および第二の レーザ光の 1回の照射あたりの結晶粒の長さを測定した。その結果を表 1に示す。
[0089] [表 1]
Figure imgf000024_0001
[0090] 表 1に示すように、第二のレーザ光の反射光のエネルギ密度変化に基づいて、第 二のレーザ光のエネルギ密度が制御された実施例 1および第二のレーザ光の照射 時間および照射タイミングが制御された実施例 2にお 、ては、第一のレーザ光および 第二のレーザ光の 1回の照射あたりに成長する結晶粒の長さが 17〜18 /ζ πιとなって 、第一のレーザ光および第二のレーザ光のエネルギ密度、照射時間および照射タイ ミングのすべてが全く制御されて 、な 、比較例 1の場合( 12〜 18 m)と比べて、結 晶粒の長さのばらつきがなぐより長い結晶粒が得られる傾向があった。 [0091] なお、上記の実施例においては、結晶粒を前駆体半導体薄膜の表面に対して平 行方向に成長させたが、本発明は結晶粒を前駆体半導体薄膜の表面に対して垂直 方向に成長する場合にも応用可能である。
[0092] 今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求 の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が 含まれることが意図される。
産業上の利用可能性
[0093] 本発明は、たとえば多結晶シリコン半導体薄膜からなるゲート絶縁膜の形成に好適 に利用することができる。

Claims

請求の範囲
[1] 少なくとも二種類のレーザ光を照射して前駆体半導体薄膜基板 (5)に含まれる固 体状態の前駆体半導体薄膜 (6)を溶融した後に再結晶化させることによって半導体 薄膜を製造する方法であって、前記前駆体半導体薄膜基板 (5)に照射される基準レ 一ザ光の反射光のエネルギ密度変化に基づ 、て、前記少なくとも二種類のレーザ光 のうち少なくとも一種類のレーザ光の、エネルギ密度、照射タイミングおよび照射時間 カゝらなる群のうち少なくとも一つを制御する工程を含むことを特徴とする、半導体薄膜 の製造方法。
[2] 前記少なくとも二種類のレーザ光は、固体状態の前記前駆体半導体薄膜 (6)を溶 融することができる第一のレーザ光と、溶融した前記前駆体半導体薄膜 (6)の再結 晶化を遅延することができる第二のレーザ光と、を含むことを特徴とする、請求項 1に 記載の半導体薄膜の製造方法。
[3] 前記第二のレーザ光を前記基準レーザ光とすることを特徴とする、請求項 2に記載 の半導体薄膜の製造方法。
[4] 前記第二のレーザ光はパルス状に照射され、 1回前に照射された第二のレーザ光 の反射光のエネルギ密度変化に少なくとも基づいて、第二のレーザ光のエネルギ密 度を制御することを特徴とする、請求項 3に記載の半導体薄膜の製造方法。
[5] 1回前に照射された第二のレーザ光の反射光のエネルギ密度変化と 2回前に照射 された第二のレーザ光の反射光のエネルギ密度変化とに少なくとも基づいて、第二 のレーザ光のエネルギ密度を制御することを特徴とする、請求項 4に記載の半導体 薄膜の製造方法。
[6] 前記第二のレーザ光はパルス状に照射され、 1回前に照射された第二のレーザ光 の反射光のエネルギ密度変化に少なくとも基づいて、第二のレーザ光の照射タイミン グおよび照射時間の少なくとも一方を制御することを特徴とする、請求項 3に記載の 半導体薄膜の製造方法。
[7] 1回前に照射された第二のレーザ光の反射光のエネルギ密度変化と 2回前に照射 された第二のレーザ光の反射光のエネルギ密度変化とに少なくとも基づいて、第二 のレーザ光の照射タイミングおよび照射時間の少なくとも一方を制御することを特徴 とする、請求項 6に記載の半導体薄膜の製造方法。
[8] 前記第一のレーザ光が紫外域の波長を有し、前記第二のレーザ光が可視域また は赤外域の波長を有することを特徴とする、請求項 2に記載の半導体薄膜の製造方 法。
[9] 前記第二のレーザ光が 9 m以上 11 m以下の範囲内の波長を有することを特徴 とする、請求項 2に記載の半導体薄膜の製造方法。
[10] 前記再結晶化の際に成長する結晶粒は、前記前駆体半導体薄膜 (6)の表面に対 して略平行に結晶成長することを特徴とする、請求項 1に記載の半導体薄膜の製造 方法。
[11] 少なくとも二種類のレーザ光を照射可能な二つ以上のレーザ光源(11, 12)と、前 駆体半導体薄膜基板 (5)に照射される基準レーザ光の反射光のエネルギ密度を検 知可能な検知手段(22)と、前記基準レーザ光の反射光のエネルギ密度変化に基づ いて前記少なくとも二種類のレーザ光のうち少なくとも一種類のレーザ光の、ェネル ギ密度、照射タイミングおよび照射時間からなる群のうち少なくとも一つを制御可能な 制御手段 (23)と、を含む、半導体薄膜の製造装置(10)。
[12] 前記検知手段(22)は 100マイクロ秒以下の応答速度を有することを特徴とする、 請求項 11に記載の半導体薄膜の製造装置( 10)。
[13] 前記二つ以上のレーザ光源(11, 12)が、前記前駆体半導体薄膜基板 (5)に含ま れる固体状態の前駆体半導体薄膜 (6)を溶融することができる第一のレーザ光を照 射する第一のレーザ光源(11)と、溶融した前記前駆体半導体薄膜 (6)の再結晶化 を遅延することができる第二のレーザ光を照射する第二のレーザ光源(12)と、を含 み、前記基準レーザ光が前記第二のレーザ光であって、前記検知手段(22)は前記 第二のレーザ光の反射光のエネルギ密度を検知することができることを特徴とする、 請求項 11に記載の半導体薄膜の製造装置( 10)。
[14] 前記検知手段(22)が、光センサと、前記光センサからの信号を処理することができ る信号処理回路 (27)とを含み、前記光センサは前記前駆体半導体薄膜基板 (5)に 対する前記第二のレーザ光の反射光のエネルギ密度を検知することができ、前記信 号処理回路(27)は前記光センサからの前記第二のレーザ光の反射光のエネルギ 密度を示す信号を処理して前記制御手段 (23)に出力することができることを特徴と する、請求項 13に記載の半導体薄膜の製造装置(10)。
[15] 前記制御手段(23)は、前記信号処理回路(27)から出力された信号に基づいて前 記第二のレーザ光の反射光のエネルギ密度変化を第二のレーザ光の照射ごとに記 憶することができ、 1回前に照射された第二のレーザ光の反射光のエネルギ密度変 化と 2回前に照射された第二のレーザ光の反射光のエネルギ密度変化とに少なくとも 基づいて、第二のレーザ光の、エネルギ密度、照射タイミングおよび照射時間からな る群のうち少なくとも一つを制御することができる、請求項 14に記載の半導体薄膜の 製造装置(10)。
[16] 前記第一のレーザ光源(11)は紫外域の波長を有する第一のレーザ光を照射し、 前記第二のレーザ光源(12)は可視域または赤外域の波長を有する第二のレーザ 光を照射することを特徴とする、請求項 13に記載の半導体薄膜の製造装置(10)。
[17] 前記第二のレーザ光源(12)により照射される第二のレーザ光は 9 μ m以上 11 m 以下の波長を有することを特徴とする、請求項 13に記載の半導体薄膜の製造装置( 10)。
PCT/JP2006/300127 2005-01-11 2006-01-10 半導体薄膜の製造方法および半導体薄膜の製造装置 WO2006075569A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-004124 2005-01-11
JP2005004124A JP2006196534A (ja) 2005-01-11 2005-01-11 半導体薄膜の製造方法および半導体薄膜の製造装置

Publications (1)

Publication Number Publication Date
WO2006075569A1 true WO2006075569A1 (ja) 2006-07-20

Family

ID=36677594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300127 WO2006075569A1 (ja) 2005-01-11 2006-01-10 半導体薄膜の製造方法および半導体薄膜の製造装置

Country Status (2)

Country Link
JP (1) JP2006196534A (ja)
WO (1) WO2006075569A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073260B2 (ja) * 2006-09-29 2012-11-14 日立コンピュータ機器株式会社 レーザアニール装置及びレーザアニール方法
JP5105984B2 (ja) * 2007-07-26 2012-12-26 住友重機械工業株式会社 ビーム照射装置、及び、レーザアニール方法
JP6221088B2 (ja) * 2012-01-31 2017-11-01 株式会社ブイ・テクノロジー レーザアニール装置及びレーザアニール方法
TWI545627B (zh) * 2012-06-13 2016-08-11 Sumitomo Heavy Industries 半導體裝置的製造方法及雷射退火裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203918A (ja) * 2001-12-28 2003-07-18 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2004207691A (ja) * 2002-12-11 2004-07-22 Sharp Corp 半導体薄膜の製造方法、その製造方法により得られる半導体薄膜、その半導体薄膜を用いる半導体素子および半導体薄膜の製造装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203918A (ja) * 2001-12-28 2003-07-18 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2004207691A (ja) * 2002-12-11 2004-07-22 Sharp Corp 半導体薄膜の製造方法、その製造方法により得られる半導体薄膜、その半導体薄膜を用いる半導体素子および半導体薄膜の製造装置

Also Published As

Publication number Publication date
JP2006196534A (ja) 2006-07-27

Similar Documents

Publication Publication Date Title
KR100709651B1 (ko) 반도체 박막의 제조 방법 및 반도체 박막 제조 장치
KR100713750B1 (ko) 반도체 박막의 제조 방법 및 제조 장치
JP3213338B2 (ja) 薄膜半導体装置の製法
JP4748836B2 (ja) レーザ照射装置
US6451631B1 (en) Thin film crystal growth by laser annealing
US8598588B2 (en) Systems and methods for processing a film, and thin films
TWI575571B (zh) 部分熔融膜之非週期性脈衝處理系統及方法
US20130210242A1 (en) Laser annealing treatment apparatus and laser annealing treatment method
JP3573811B2 (ja) 線状レーザー光の照射方法
WO2011148788A1 (ja) レーザアニール方法及び装置
JP2641101B2 (ja) 半導体装置の製造方法および装置
WO2006075569A1 (ja) 半導体薄膜の製造方法および半導体薄膜の製造装置
JP2009164321A (ja) 半導体装置の製造方法とその製造装置、結晶化方法、結晶化装置、半導体装置及び表示装置
JP2603418B2 (ja) 多結晶半導体薄膜の製造方法
JP2004207691A (ja) 半導体薄膜の製造方法、その製造方法により得られる半導体薄膜、その半導体薄膜を用いる半導体素子および半導体薄膜の製造装置
JP3587900B2 (ja) 結晶性珪素膜の作製方法
JP2000021776A (ja) 半導体薄膜の形成方法、パルスレーザ照射装置、および半導体装置
JP4354015B2 (ja) 半導体装置の製造方法
WO2004064133A1 (ja) 結晶化半導体薄膜の製造方法ならびにその製造装置
JP2007208044A (ja) 半導体薄膜の製造方法および半導体薄膜の製造装置
US6759284B2 (en) Method for polysilicon crystallization by simultaneous laser and rapid thermal annealing
US20040084679A1 (en) Semiconductor devices and methods of manufacture thereof
JP2001176814A (ja) 薄膜半導体装置の製造方法および装置
JP2000012461A (ja) 結晶質半導体薄膜の作製方法
JP2006135192A (ja) 半導体デバイスの製造方法と製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711497

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711497

Country of ref document: EP