WO2006075388A1 - インバータ装置 - Google Patents

インバータ装置 Download PDF

Info

Publication number
WO2006075388A1
WO2006075388A1 PCT/JP2005/000403 JP2005000403W WO2006075388A1 WO 2006075388 A1 WO2006075388 A1 WO 2006075388A1 JP 2005000403 W JP2005000403 W JP 2005000403W WO 2006075388 A1 WO2006075388 A1 WO 2006075388A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
lower arm
high voltage
voltage
supply terminal
Prior art date
Application number
PCT/JP2005/000403
Other languages
English (en)
French (fr)
Inventor
Kensaku Matsuda
Shinzou Tomonaga
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2006552811A priority Critical patent/JP4675910B2/ja
Priority to PCT/JP2005/000403 priority patent/WO2006075388A1/ja
Priority to US10/586,243 priority patent/US7492618B2/en
Priority to CNB2005800090064A priority patent/CN100530927C/zh
Priority to DE112005000417T priority patent/DE112005000417T5/de
Priority to GB0615843A priority patent/GB2426130B/en
Priority to TW094101643A priority patent/TWI280740B/zh
Publication of WO2006075388A1 publication Critical patent/WO2006075388A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control

Definitions

  • the present invention relates to an inverter device, and in particular, includes a circuit that prevents breakdown and malfunction of a high voltage IC that performs drive control of an inverter circuit including a switching element for driving a load.
  • the present invention relates to an inverter device.
  • Patent Document 1 a high-voltage IC is prevented from being destroyed by clamping a negative voltage generated by a slight inductance such as a chip pattern or wiring that causes destruction of the high-voltage IC with a clamp diode.
  • Patent Document 2 a negative voltage that cannot be suppressed only by a clamp diode is divided by a clamp diode and a resistance element of a voltage dividing circuit, so that the negative voltage applied to a high voltage IC is reduced. .
  • Patent Document 1 Japanese Patent Laid-Open No. 10-42575
  • Patent Document 2 Patent No. 3577478
  • a general high voltage IC is configured to include, for example, an input buffer, a MOS transistor, a resistor, a driver circuit, etc., so that when a negative voltage as described above is generated, the MOS transistor Through-current through the parasitic capacitance of the high-voltage IC flows into the high-breakdown voltage IC, and this through-current may cause a phenomenon called latch-up in which the driver circuit of the high-voltage IC outputs an incorrect signal.
  • latch-up the driver circuit of the high-voltage IC outputs an incorrect signal.
  • the present invention has been made in view of the above, and provides an inverter device capable of preventing breakdown and malfunction (latch-up) of a high voltage IC for controlling an inverter circuit, and a circuit.
  • the purpose is to provide circuit technology that can control the increase in scale and cost.
  • an inverter device includes an upper arm unit composed of a switching element and a diode of an upper arm connected in reverse parallel to each other and reverse parallel to each other.
  • An inverter circuit having a bridge circuit formed by connecting a switching element of a lower arm and a lower arm portion made of a diode connected in series and connected between the positive and negative electrodes of a DC power supply, and the switching element of the upper arm
  • an inverter drive unit having a high voltage IC for driving the switching elements of the lower arm, a reference power supply terminal for driving the lower arm of the high voltage IC, and a high voltage side power supply terminal for driving the upper arm of the high voltage IC, Clamping means for clamping the potential difference between It is a sign.
  • the wiring inductance is controlled by the clamping means for clamping the potential difference between the reference power supply terminal for driving the lower arm of the high breakdown voltage IC and the high voltage power supply terminal for driving the upper arm of the high breakdown voltage IC.
  • the negative voltage that causes breakdown of the high voltage IC due to the circulating current is clamped and the through current that flows into the high voltage IC is reduced.
  • the clamping means for clamping the potential difference between the lower arm driving reference power supply terminal of the high breakdown voltage IC and the upper arm driving high voltage side power supply terminal of the high breakdown voltage IC includes the high voltage IC. It can clamp the negative voltage that causes the breakdown voltage of the high voltage IC and block most of the through current that flows into the high voltage IC, thus preventing the breakdown and malfunction (latch-up) of the high voltage IC, If the increase in circuit scale and cost can be suppressed, there will be an effect!
  • FIG. 1 is a diagram showing a schematic configuration for explaining an inverter device (single-phase inverter configuration) according to a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a malfunction of a high voltage IC in an inverter device to which a clamp diode is not connected.
  • FIG. 3 is a diagram showing a state in which, in the inverter device according to the first embodiment, a through-current that is about to flow into the high voltage IC is drawn to the clamp diode side.
  • FIG. 4 is a diagram showing a schematic configuration for explaining an inverter device (three-phase inverter configuration: independent power supply) according to the second embodiment of the present invention.
  • FIG. 5 is a diagram showing a schematic configuration for explaining an inverter device (three-phase inverter configuration: common power supply) according to the third embodiment of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration for explaining the inverter device according to the first embodiment of the present invention.
  • the configuration of a general single-phase inverter device configured to drive the switching elements Tl and ⁇ 2 of the upper and lower arms of the inverter circuit 3 by the inverter drive unit 2 having the high voltage IC 10. It is shown.
  • the configuration of the inverter device according to this embodiment will be described with reference to FIG.
  • the inverter circuit 3 shown in FIG. 1 the upper arm switching element (upper arm switching element) T1 and the diode (upper arm diode) D connected in reverse parallel to each other
  • a bridge in which the upper arm 4 consisting of 1 force and the lower arm 5 consisting of the lower arm switching element (lower arm switching element) T2 and the diode (lower arm diode) D2 connected in reverse parallel to each other are connected in series.
  • Circuit 6 is configured.
  • the positive electrode of the DC power supply 7 is connected to the collector of the upper arm switching element T1 of the bridge circuit 6, and the negative electrode of the DC power supply 7 is connected to the emitter of the lower arm switching element T2.
  • the inverter circuit 3 shown in FIG. 1 constitutes a single-phase inverter circuit.
  • the high withstand voltage IC 10 of the inverter drive unit 2 shown in FIG. 1 is an IC that drives the upper arm switching element T1 and the lower arm switching element T2 of the inverter circuit 3, respectively.
  • the high voltage IC 10 has the following input / output terminals.
  • VDD which is its own high-voltage power supply terminal for control
  • COM which is its own reference power supply terminal for control
  • upper arm control signal input terminal HIN to which a control signal for controlling the upper arm unit 4 is input
  • Lower arm control signal input terminal LIN to which a control signal for controlling the arm unit 5 is input
  • upper arm driving high voltage side power source terminal VB connected to the high voltage side of the driving power source that drives the upper arm unit 4
  • upper arm driving reference power supply terminal VS which is the reference terminal of the driving power source for driving the arm unit 4
  • Lower arm drive high-voltage side power supply terminal VCC connected to the high-voltage side of the drive power supply that drives the lower arm unit 5
  • lower arm drive reference power supply terminal COM that is the reference terminal of the drive power source that drives the lower arm unit 5
  • lower Drive signal for driving arm 5 And a respective terminal of the lower arm switching element drive signal output terminal LO output.
  • a decoupling capacitor C1 is connected between the upper arm driving high voltage side power supply terminal VB and the upper arm driving reference power supply terminal VS, and the lower arm driving high voltage side power supply terminal VCC and the lower arm driving circuit.
  • a decoupling capacitor C2 is connected to the reference power supply terminal COM.
  • a gate resistance R1 for controlling the gate current between the upper arm switching element drive signal output terminal HO and the gate of the upper arm switching element T1.
  • the upper arm drive reference power supply terminal VS and the upper arm switching element T1 emitter are directly connected.
  • the lower arm switching element drive signal output terminal LO and the gate of the lower arm switching element T2. Are connected via a gate resistor R2, and the lower arm driving reference power supply COM and the emitter of the lower arm switching element T2 are directly connected.
  • the upper arm switching element T1 and the lower arm switching element T2 are connected by a plurality of wires (wire bundles), or each of these switching elements and the output terminal are connected.
  • Wiring inductance is possible by taking measures such as connecting directly to a bonding pad without using a wire or connecting the collector and emitter of each switching element separately on the front and back surfaces of the board. He tries to make it as small as possible.
  • the combined inductance L11 shown between the lower arm switching element T2 emitter of the inverter circuit 3 and the lower arm drive reference power supply terminal COM of the high voltage IC 10 includes the lower arm diode D2 through which the circulating current flows.
  • the combined inductance of the circuit is shown, and by these measures, it can be suppressed to a value of several nH-several tens of nH.
  • the period in which the circulating current flows is a short period, and the amount of current change per unit time (di Zdt) is large. Therefore, even if the combined inductance of the circuit section through which the circulating current flows is reduced as described above, An induced voltage of several volts is generated.
  • the polarity of this induced voltage is a negative voltage that makes the potential of the reference power supply terminal VS for the upper arm drive negative with respect to the potential of the reference power supply terminal COM for driving the lower arm. It will cause destruction.
  • This negative voltage also causes a latch-up in which the driver circuit of the high voltage IC 10 outputs an incorrect signal.
  • the potential difference between the lower arm driving reference power supply terminal COM and the upper arm driving high voltage power supply terminal VB is clamped to a predetermined voltage.
  • a clamp diode D10 having its own anode connected to the lower arm drive reference power supply terminal COM and its own power sword connected to the upper arm drive high voltage power supply terminal VB is provided. Yes.
  • the connection site of the clamp diode D10 in the present invention is different from the connection sites of the clamp diodes disclosed in Patent Documents 1 and 2 described above, and the reason will be described later.
  • FIG. 2 is a diagram for explaining the malfunction of the high voltage IC in the inverter device to which the clamp diode is not connected.
  • FIG. 3 is a diagram of the high voltage IC in the inverter device according to the first embodiment.
  • FIG. 5 is a diagram showing a state in which a through-current that is about to flow into is drawn to the clamp diode side.
  • FIG. 2 shows the inside of the high voltage IC 10 shown in FIG. 1 in more detail.
  • the high voltage IC 10 includes an input buffer 14, an NMOS transistor 16, a parasitic diode 17, a resistor 20, and a driver circuit 12.
  • the input end of the input can 14 is connected to the upper arm control signal input end HIN, and the output end is connected to the gate of the NMOS transistor 16.
  • a parasitic diode 17 is connected to the NMOS transistor 16 in parallel.
  • the collector of the NMOS transistor 16 is connected to the input terminal of the driver circuit 12, and is connected to the upper arm drive high-voltage power supply terminal VB via a resistor 20 having one end connected to the input terminal of the driver circuit 12. Has been.
  • FIG. 2 first, when the upper arm switching element T1 is turned on, the main circuit current II as shown by the broken line in the figure flows into the load 8 shown as having an inductance component. After that, when the upper arm switching element T1 is turned off, the current flowing in the load 8 flows to the load 8 through the lower arm diode D2 as the recirculating current 12 having a steep slope.
  • each part of the inverter circuit 3 is connected by a pattern, a wire, or the like, and an inductor component exists between these parts.
  • the inductance component of the part where the circulating current 12 flows is represented by LI 1 as shown in the figure. If the induced voltage generated in the inductance component L11 when the circulating current 12 flows is VL, this induced voltage VL can be expressed by the following equation.
  • VL L11 X (di / dt) ⁇ ⁇ ⁇ ⁇ (1)
  • the high voltage IC 10 includes the input buffer 14, the NMOS transistor 16, the parasitic diode 17, the resistor 20, and the driver circuit 12 as described above, when this ⁇ VI is applied, the parasitic diode 17 A through current 13 flows through the resistor 20.
  • the through current 13 is a main cause of a phenomenon called latch-up in which the driver circuit 12 outputs an erroneous signal.
  • a clamp diode D10 is provided between the lower arm driving reference power supply terminal COM and the upper arm driving high voltage power supply terminal VB! /, Therefore, in the circuit configuration shown in FIG. 2, the through current 13 that flows inside the high voltage IC 10 can be drawn to the clamp diode D10 side as shown in FIG. Note that a part of the through current is likely to flow inside the high voltage IC 10. Compared to the impedance of the series circuit of the parasitic diode D17 and the resistor 20 through which the through current 13 flows, it is connected between the same terminals.
  • the impedance of the clamp diode D10 is smaller, most of the through current 13 can be drawn to the clamp diode D10 side. Therefore, the through current 13 flowing inside the high voltage IC 10 can be reduced, and the malfunction due to the latch-up described above can be prevented.
  • the cathode of the clamp diode D10 is connected to the high-voltage power supply terminal VB for driving the upper arm of the high voltage IC 10 (for example, + 15V terminal).
  • the current flowing through the clamp diode D10 can be made smaller than the current flowing through the clamp diode disclosed in Patent Documents 1 and 2, for example. Therefore, select a diode with a smaller rated current than the clamp diodes shown in Patent Documents 1 and 2. Can be determined.
  • the inverter device of this embodiment between the reference power supply terminal for driving the lower arm of the high voltage IC and the high voltage side power supply terminal for driving the upper arm of the high voltage IC. Since the connected clamp diode clamps the potential difference between the lower arm drive reference power supply end and the upper arm drive high-voltage power supply end, destruction of the high voltage IC and high voltage IC Can be prevented, and an increase in circuit scale and cost can be suppressed.
  • the clamp diode is externally attached to the high voltage IC, but may be provided inside the high voltage IC. However, it is more effective to attach externally to the high voltage IC without the need to change the design of the high voltage IC or to apply the present invention to the inverter device using the existing high voltage IC. It can be used for
  • a diode is used as a clamping means for clamping a potential difference between the lower arm driving reference power supply terminal and the upper arm driving high voltage power supply terminal.
  • the present invention is limited to the diode. Is not to be done.
  • any element that can turn on at a specific voltage or higher and output a substantially constant voltage such as a Zener diode or a PN junction of a bipolar transistor, may be used. .
  • FIG. 4 is a diagram showing a schematic configuration for explaining the inverter device according to the second embodiment of the present invention.
  • the inverter device of the first embodiment includes a single-phase inverter circuit
  • the inverter device of this embodiment is configured to include a three-phase inverter circuit. That is, in the inverter device shown in the figure, the inverter driving unit 2a having a high withstand voltage IClOa drives the upper arm switching elements Tl, T3, T5 and the lower arm switching elements T2, T4, T6 of the inverter circuit 3a.
  • the configuration of a three-phase inverter device configured as shown is shown.
  • the configuration of the inverter device according to this embodiment will be described with reference to FIG. Note that portions that are the same as or equivalent to those in Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted or simplified.
  • the upper arm switches connected in reverse parallel to each other Upper arm 4a composed of switching element Tl and upper arm diode Dl, upper arm 4b composed of upper arm switching element T3 and upper arm diode D3, and upper arm 4c composed of upper arm switching element T5 and upper arm diode D5
  • Upper arm switching element T2 and lower arm diode D2 connected in reverse parallel to each other Lower arm part 5a consisting of lower arm switching element T4 and lower arm diode D4
  • the lower arm 5c consisting of D6 is configured, and each of the anti-parallel connection circuits of the upper arms 4a, 4b, 4c and the anti-parallel connection circuit of the lower arm 5a are connected in series.
  • Circuit 6a is constructed.
  • the positive pole of the DC power supply 7 is connected to each collector of the upper arm switching elements Tl, T3, T5 of the bridge circuit 6a, and the negative pole of the DC power supply 7 is connected to each emitter of the lower arm switching elements T2, T4, T6.
  • the inverter circuit 3a shown in FIG. 4 constitutes a three-phase inverter circuit.
  • the high pressure IClOa of the inverter drive unit 2a shown in FIG. 4 is an IC that drives the upper arm switching elements Tl, T3, T5 and the lower arm switching elements T2, T4, T6 of the inverter circuit 3a, respectively.
  • This high voltage IClOa has the following input / output terminals.
  • decoupling capacitors CI, C3, C5 are provided between the terminals of the upper arm drive high-voltage side power supply terminals VB1, VB3, VB5 and the upper arm drive reference power supply terminals VSl, VS3, VS5. Are connected, and a decoupling capacitor C2 is connected between the high-voltage power supply terminal VCC for driving the lower arm and the reference power supply terminal COM for driving the lower arm.
  • the upper arm drive reference power supply terminals VS1, VS3, and VS5 are directly connected to the terminals of the upper arm switching element T1.
  • the lower arm switching element drive signal output terminals LOl, H03, H05 and the lower arm switching elements T2, T4, T6 are connected to each gate via the gate resistances R2, R4, R6, respectively.
  • the lower arm driving reference power supply terminal COM and each of the lower arm switching elements T2 are directly connected.
  • each potential difference between the terminals of the lower arm driving reference power supply terminal COM and the upper arm driving high voltage side power supply terminals VB1, VB3, and VB5 is determined in advance.
  • a clamping means for clamping to voltage its own anode is connected to the lower arm drive reference power supply terminal COM, and its own power sword is connected to the upper arm drive high voltage side power supply terminal VB1, VB3, VB5.
  • the clamp diodes D11, D12, and D13 are provided.
  • the force swords of the clamp diodes Dll, D12, and D13 are connected to the terminals of the upper arm driving high-voltage side power supply terminals VB1, VB3, and VB5. Therefore, the currents flowing through the clamp diodes Dll, D12, and D13 can be made smaller than the currents flowing through the clamp diodes disclosed in Patent Documents 1 and 2, for example. Therefore, it is possible to select a diode having a smaller rated current than the clamp diodes disclosed in Patent Documents 1 and 2.
  • the reference power supply terminal for driving the lower arm of the high voltage IC and the terminals on the high voltage side power supply terminal for driving the upper arm of the high voltage IC Since each clamp diode connected between the terminals clamps each potential difference between the reference power supply terminal for driving the lower arm and the high-voltage power supply terminal for driving the upper arm, In addition to preventing destruction and malfunction of high voltage ICs, An increase in circuit scale and cost can be suppressed.
  • each clamping diode may be provided inside the high withstand voltage IC so as to be externally attached to the outside of the high withstand voltage IC.
  • it is more effective to attach externally to the high voltage IC, because it is not necessary to change the design of the high voltage IC and that the present invention can be applied to the inverter device using the existing high voltage IC. It can be used for
  • a diode is used as a clamping means for clamping each potential difference between each terminal of the lower arm driving reference power supply terminal and the upper arm driving high voltage side power supply terminal.
  • the force is not limited to diodes.
  • any element that can turn on at a specific voltage or higher and output a substantially constant voltage such as a Zener diode or a PN junction of a bipolar transistor, may be used.
  • FIG. 5 is a diagram showing a schematic configuration for explaining the inverter device according to the third embodiment of the present invention.
  • the power source for driving each switching element of the upper arm unit is individually used as an independent power source
  • the power source for driving each switching element of the lower arm unit is a common power source.
  • the inverter device of this embodiment is characterized in that a common power source is used as a power source for driving the switching elements of the upper and lower arm portions. For this reason, the connection configuration of the clamp diode is different from that of the second embodiment.
  • Other configurations are the same as or equivalent to those of the second embodiment, and these portions are denoted by the same reference numerals and description thereof is omitted.
  • each potential difference between the terminals of the lower arm drive reference power supply terminal COM and the upper arm drive high voltage side power supply terminals VB1, VB3, and VB5 is calculated.
  • clamping means for clamping to a predetermined voltage first, the anode is connected to the reference power supply terminal COM for driving the lower arm, and the force sword is connected to the high voltage power supply terminal VCC for driving the lower arm.
  • the clamp diode D10 and anode are connected to the high-voltage power supply VCC for lower arm drive, and the force sword is connected to the high-voltage power supply for upper arm drive.
  • a second clamp diode D21, D22, D23 connected to each terminal of the source terminal VB1, VB3, VB5 is provided.
  • the inverter device as in the first and second embodiments, most of the through current that tends to flow inside the high withstand voltage IClOa is supplied to the first clamp diode D10. And the second clamp diodes Dl l, D12, and D13 can be pulled in, so that the through current that tends to flow inside the high voltage IC10 can be reduced, thereby preventing malfunction caused by latch-up. be able to.
  • the force swords of the second clamp diodes D21, D22, D23 are connected to the terminals of the upper arm driving high-voltage side power supply terminals VB1, VB3, VB5. Therefore, the currents flowing through the second clamp diodes D21, D22, and D23 can be made smaller than the currents flowing through the clamp diodes disclosed in Patent Documents 1 and 2, for example. Therefore, it is possible to select a diode having a smaller rated current compared to the clamp diodes disclosed in Patent Documents 1 and 2.
  • the inverter device of this embodiment between the reference power supply terminal for driving the lower arm of the high voltage IC and the high voltage side power supply terminal for driving the lower arm of the high voltage IC.
  • a second clamp connected between the first clamp diode connected to the high-voltage power supply terminal for driving the lower arm of the high voltage IC and the high-voltage power supply terminal for driving the upper arm of the high voltage IC.
  • Each of the clamp diodes clamps each potential difference between the lower arm drive reference power supply terminal and the upper arm drive high voltage power supply terminal. IC malfunction can be prevented, and increase in circuit scale and cost can be suppressed.
  • each clamping diode may be provided inside the high withstand voltage IC that is externally attached to the high withstand voltage IC.
  • it is more effective to attach externally to the high voltage IC, because it is not necessary to change the design of the high voltage IC and that the present invention can be applied to the inverter device using the existing high voltage IC. It can be used for
  • a diode is used as a clamping means for clamping each potential difference between each terminal of the lower arm driving reference power supply terminal and the upper arm driving high voltage side power supply terminal. It is not limited to force diodes that are intended to use a diode. For example, any element that can turn on at a specific voltage or higher and output a substantially constant voltage, such as a Zener diode or a PN junction of a bipolar transistor, may be used.
  • the inverter device according to the present invention can be widely applied to, for example, an inverter device provided with a single-phase inverter circuit or a three-phase inverter circuit. Suitable for inverter devices where prevention is important

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Electronic Switches (AREA)

Abstract

 インバータ装置において、高耐圧ICの破壊および誤動作(ラッチアップ)を防止する。  互いに逆並列接続された上アームのスイッチング素子(T1)およびダイオード(D1)からなる上アーム部(4)と互いに逆並列接続された下アームのスイッチング素子(T2)およびダイオード(D2)からなる下アーム部(5)とが直列に接続され、かつ直流電源(7)の正負極間に接続されてなるブリッジ回路(6)を具備するインバータ回路(3)と、上アームのスイッチング素子および前記下アームのスイッチング素子をそれぞれ駆動する高耐圧IC(10)を具備するインバータ駆動部(2)と、高耐圧ICの下アーム駆動用基準電源端と該高耐圧ICの上アーム駆動用高圧側電源端との間の電位差をクランプするクランプ手段(D10)とを備える。

Description

明 細 書
インバータ装置
技術分野
[0001] 本発明は、インバータ装置に関するものであり、特に負荷を駆動するためのスイツ チング素子を具備するインバータ回路の駆動制御を行う高耐圧 ICの耐圧破壊およ び誤動作を防止する回路を備えたインバータ装置に関するものである。
背景技術
[0002] 従来のインバータ装置において、負荷の駆動を行うスイッチング素子のスイッチング 時に、電流の単位時間あたりの変化量 (diZdt)と配線のインダクタンスとに起因して 発生するマイナスサージ対策として、このスイッチング素子を駆動制御する高耐圧 IC の低圧側基準端子と高圧側基準端子との間にクランプダイオードを接続する技術が 開示されて!ヽる (特許文献 1参照)。
[0003] この特許文献 1では、高耐圧 ICの破壊原因となるチップパターンや配線などの僅か なインダクタンスにより発生する負電圧をクランプダイオードによりクランプすることで、 高耐圧 ICの破壊を防止するようにして 、る。
[0004] また、特許文献 1に開示されたクランプダイオードにカ卩え、このクランプダイオードに 直列に接続される分圧回路 (抵抗素子)を備えたインバータ装置の構成例が開示さ れている (特許文献 2参照)。
[0005] この特許文献 2では、クランプダイオードだけでは抑圧できない負電圧をクランプダ ィオードと分圧回路の抵抗素子とで分圧することにより、高耐圧 ICに印加される負電 圧を低減するようにしている。
[0006] 特許文献 1:特開平 10— 42575号公報
特許文献 2:特許第 3577478号明細書
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、上記特許文献 1に示される従来技術では、クランプダイオードと下ァ ームのスイッチング素子に逆並列接続されたダイオード (環流電流を流すためのダイ オード)とが並列に接続されるため、クランプダイオード自身にも環流電流が流れる可 能性があり、電流定格の大きなダイオード (逆並列接続ダイオードと同程度定格のダ ィオード)を選定する必要があり、コスト増とサイズ増に直結するといつた不利点が存 在していた。
[0008] また、上記特許文献 2に示される従来技術では、クランプダイオードおよび分圧回 路の双方に環流電流が流れる可能性があり、特許文献 1に示される従来技術と同様 に、電流定格の大きなダイオードと抵抗素子とをそれぞれ選定する必要があり、コスト 増とサイズ増に直結するという前述の不利点を回避することができな力つた。
[0009] 一方、一般的な高耐圧 ICは、例えば入カノくッファ、 MOSトランジスタ、抵抗、ドライ バ回路などを含んで構成されるため、前述のような負電圧が発生した場合に、 MOS トランジスタの寄生容量を介した貫通電流が高耐圧 ICの内部に流れ、この貫通電流 に起因して高耐圧 ICのドライバ回路が誤った信号を出力するラッチアップと呼ばれる 現象が生起する場合があるといった問題点があった。なお、上記特許文献 1および 2 に示される双方の従来技術では、このラッチアップの問題点を解決するには不十分 であった。
[0010] 本発明は、上記に鑑みてなされたものであって、インバータ回路を制御するための 高耐圧 ICの破壊および誤動作 (ラッチアップ)の防止を可能とするインバータ装置を 提供するとともに、回路規模の増加やコストの増加を抑制可能な回路技術を提供す ることを目的とする。
課題を解決するための手段
[0011] 上述した課題を解決し、目的を達成するため、本発明にかかるインバータ装置は、 互 ヽに逆並列接続された上アームのスイッチング素子およびダイオードからなる上ァ ーム部と互いに逆並列接続された下アームのスイッチング素子およびダイオードから なる下アーム部とが直列に接続され、かつ直流電源の正負極間に接続されてなるブ リッジ回路を具備するインバータ回路と、前記上アームのスイッチング素子および前 記下アームのスイッチング素子をそれぞれ駆動する高耐圧 ICを具備するインバータ 駆動部と、前記高耐圧 ICの下アーム駆動用基準電源端と該高耐圧 ICの上アーム駆 動用高圧側電源端との間の電位差をクランプするクランプ手段と、を備えたことを特 徴とする。
[0012] この発明によれば、高耐圧 ICの下アーム駆動用基準電源端と高耐圧 ICの上ァー ム駆動用高圧側電源端との間の電位差をクランプするクランプ手段によって、配線ィ ンダクタンスゃ環流電流などに起因して高耐圧 ICの耐圧破壊を引き起こす負電圧が クランプされるととも〖こ、高耐圧 ICの内部に流れ込もうとする貫通電流が低減される。 発明の効果
[0013] 本発明にかかるインバータ装置によれば、高耐圧 ICの下アーム駆動用基準電源端 と高耐圧 ICの上アーム駆動用高圧側電源端との間の電位差をクランプするクランプ 手段が、高耐圧 ICの耐圧破壊を引き起こす負電圧をクランプするとともに、高耐圧 IC の内部に流れ込む貫通電流の大部分を阻止することができるので、高耐圧 ICの破 壊および誤動作 (ラッチアップ)の防止し、回路規模の増加やコストの増加を抑制する ことができると!/、う効果を奏する。
図面の簡単な説明
[0014] [図 1]図 1は、本発明の実施の形態 1にかかるインバータ装置(単相インバータ構成) を説明するための概略構成を示す図である。
[図 2]図 2は、クランプダイオードが接続されていないインバータ装置における高耐圧 I Cの誤動作を説明するための図である。
[図 3]図 3は、実施の形態 1にかかるインバータ装置において、高耐圧 ICに流れ込もう とする貫通電流をクランプダイオード側に引き込んだ状態を示す図である。
[図 4]図 4は、本発明の実施の形態 2にかかるインバータ装置(3相インバータ構成: 独立電源)を説明するための概略構成を示す図である。
[図 5]図 5は、本発明の実施の形態 3にかかるインバータ装置(3相インバータ構成: 共通電源)を説明するための概略構成を示す図である。
符号の説明
[0015] 2, 2a インバータ駆動部
3, 3a インバータ回路
4, 4a, 4b, 4c 上アーム部
5, 5a, 5b, 5c 下アーム部 6, 6a ブリッジ回路
7 直流電源
8 負荷
10, 10a 高而圧 IC
12 ドライバ回路
14 入力バッファ
16 NMOSトランジスタ
17 寄生ダイオード
20 抵抗
CI, C2, C3, C5 デカップリングコンデンサ
Dl, D3, D5 上アームダイオード
D2, D4, D6 下アームダイオード
DIO, Dl l, D12, D13, D21, D22, D23 クランプダイオード
D17 寄生ダイオード
Rl, R2, R3, R4, R5, R6 ゲート抵抗
Tl, Τ3, Τ5 上アームスイッチング素子
Τ2, Τ4, Τ6 下アームスイッチング素子
発明を実施するための最良の形態
[0016] 以下に、本発明にかかるインバータ装置の実施の形態を図面に基づいて詳細に説 明する。なお、この実施の形態により本発明が限定されるものではない。
[0017] 実施の形態 1.
図 1は、本発明の実施の形態 1にかかるインバータ装置を説明するための概略構成 を示す図である。同図に示すインバータ装置では、高耐圧 IC10を具備するインバー タ駆動部 2にてインバータ回路 3の上下アームのスイッチング素子 Tl, Τ2を駆動する ように構成された一般的な単相インバータ装置の構成が示されている。以下、図 1を 用いて、この実施の形態に力かるインバータ装置の構成を説明する。
[0018] 図 1に示すインバータ回路 3において、互いに逆並列接続された上アームのスイツ チング素子(上アームスイッチング素子) T1およびダイオード(上アームダイオード) D 1力 なる上アーム部 4と、互いに逆並列接続された下アームのスイッチング素子(下 アームスイッチング素子) T2およびダイオード(下アームダイオード) D2からなる下ァ ーム部 5とが直列接続されたブリッジ回路 6が構成される。ブリッジ回路 6の上アーム スイッチング素子 T1のコレクタには直流電源 7の正極が接続され、下アームスィッチ ング素子 T2のェミッタには直流電源 7の負極が接続される。このように、図 1に示すィ ンバータ回路 3は、単相インバータ回路を構成している。
[0019] 一方、図 1に示すインバータ駆動部 2の高耐圧 IC10は、インバータ回路 3の上ァー ムスイッチング素子 T1および下アームスイッチング素子 T2をそれぞれ駆動する ICで ある。この高耐圧 IC10は、以下に示す各入出力端を有している。すなわち、自身の 制御用高圧側電源端である VDD、同じく自身の制御用基準電源端である COM、上 アーム部 4を制御するための制御信号が入力される上アーム制御信号入力端 HIN、 下アーム部 5を制御するための制御信号が入力される下アーム制御信号入力端 LIN 、上アーム部 4を駆動する駆動電源の高圧側に接続される上アーム駆動用高圧側電 源端 VB、上アーム部 4を駆動する駆動電源の基準端である上アーム駆動用基準電 源端 VS、上アーム部 4を駆動するための駆動信号が出力される上アームスィッチン グ素子駆動信号出力端 HO、下アーム部 5を駆動する駆動電源の高圧側に接続され る下アーム駆動用高圧側電源端 VCC、下アーム部 5を駆動する駆動電源の基準端 である下アーム駆動用基準電源端 COM、下アーム部 5を駆動するための駆動信号 が出力される下アームスイッチング素子駆動信号出力端 LOの各端子を備えている。
[0020] また、上アーム駆動用高圧側電源端 VBと上アーム駆動用基準電源端 VSとの間に はデカップリングコンデンサ C1が接続され、下アーム駆動用高圧側電源端 VCCと下 アーム駆動用基準電源端 COMとの間にはデカップリングコンデンサ C2が接続され ている。
[0021] さらに、インバータ回路 3と高耐圧 IC10との間は、上アームスイッチング素子駆動信 号出力端 HOと上アームスイッチング素子 T1のゲートとの間がゲート電流を制御する ためのゲート抵抗 R1を介して接続され、上アーム駆動用基準電源端 VSと上アーム スイッチング素子 T1のェミッタとの間が直接的に接続されている。同様に、下アーム スイッチング素子駆動信号出力端 LOと下アームスイッチング素子 T2のゲートとの間 がゲート抵抗 R2を介して接続され、下アーム駆動用基準電源端 COMと下アームス イッチング素子 T2のェミッタとの間が直接的に接続されている。
[0022] ところで、図 1に示すインバータ装置では、例えば上アームスイッチング素子 T1と下 アームスイッチング素子 T2との間を複数本のワイヤ(ワイヤ束)で接続したり、これら の各スイッチング素子と出力端との接続に際してワイヤを用いずにボンディングパッド などに直結したり、各スイッチング素子のコレクタとェミッタとを基板の表面と裏面とに それぞれ分離して設けるなどの措置を施すことで、配線インダクタンスが可能な限り 小さくなるよう〖こしている。なお、インバータ回路 3の下アームスイッチング素子 T2の ェミッタと高耐圧 IC10の下アーム駆動用基準電源端 COMとの間に示されている合 成インダクタンス L11は、環流電流が流れる下アームダイオード D2を含む回路部の 合成インダクタンスを示しており、これらの措置によって数 nH—数十 nH程度の値に 抑え込むことができる。
[0023] 一方、環流電流が流れる期間は短期間であり、単位時間当たりの電流変化量 (di Zdt)が大きいため、上述のように環流電流が流れる回路部の合成インダクタンスを 小さくしたとしても、数 V程度の誘起電圧が発生する。この誘起電圧の極性は、下ァ ーム駆動用基準電源端 COMの電位を基準とすると上アーム駆動用基準電源端 VS の電位が負となるような負電圧となるので、高耐圧 IC10が耐圧破壊を起こしてしまう 。また、この負電圧は、高耐圧 IC10のドライバ回路が誤った信号を出力するラッチァ ップを引き起こす。
[0024] そこで、図 1に示す実施の形態 1にかかるインバータ装置では、下アーム駆動用基 準電源端 COMと上アーム駆動用高圧側電源端 VBとの間の電位差を所定電圧にク ランプするためのクランプ手段として、 自身のアノードが下アーム駆動用基準電源端 COMに接続されるとともに、自身の力ソードが上アーム駆動用高圧側電源端 VBに 接続されるクランプダイオード D10を備えるようにしている。なお、本発明におけるクラ ンプダイオード D10の接続部位は、上述の特許文献 1, 2に示された各クランプダイ オードの接続部位とは異なっており、その理由については後述する。
[0025] つぎに、図 1において、クランプダイオード D10を下アーム駆動用基準電源端 CO Mと上アーム駆動用高圧側電源端 VBとの間に接続した理由について、図 2および 図 3を用いて説明する。なお、図 2は、クランプダイオードが接続されていないインバ ータ装置における高耐圧 ICの誤動作を説明するための図であり、図 3は、実施の形 態 1にかかるインバータ装置において、高耐圧 ICに流れ込もうとする貫通電流をクラ ンプダイオード側に引き込んだ状態を示す図である。
[0026] 図 2では、図 1に示した高耐圧 IC10の内部をより詳細に示している。同図において 、高耐圧 IC10は、入力バッファ 14、 NMOSトランジスタ 16、寄生ダイオード 17、抵 抗 20、ドライバ回路 12を備えている。入カノ ッファ 14の入力端は上アーム制御信号 入力端 HINに接続され、出力端は NMOSトランジスタ 16のゲートに接続されている 。 NMOSトランジスタ 16には寄生ダイオード 17が並列に接続される。また、 NMOSト ランジスタ 16のコレクタはドライバ回路 12の入力端に接続されるとともに、ドライバ回 路 12の入力端に一端が接続された抵抗 20を介して上アーム駆動用高圧側電源端 VBに接続されている。
[0027] つぎに高耐圧 IC10が誤動作を引き起こすメカニズムについて説明する。図 2にお いて、まず、上アームスイッチング素子 T1がオンすると、同図の波線で示すような主 回路電流 IIがインダクタンス成分を有するものとして示した負荷 8に流れる。その後、 上アームスイッチング素子 T1がオフすると負荷 8に流れていた電流が急峻な傾きを 持った環流電流 12として下アームダイオード D2を介して負荷 8に流れる。上述したよ うに、インバータ回路 3の各部品間はパターンやワイヤ等で接続されており、これらの 部品間には少な力ゝらずインダクタ成分が存在している。これらのインダクタンス成分の 中で環流電流 12が流れる部位のインダクタンス成分を同図に示すように LI 1で表す 。いま、環流電流 12が流れた際にインダクタンス成分 L 11に発生する誘起電圧を VL とすれば、この誘起電圧 VLは次式で表すことができる。
[0028] VL=L11 X (di/dt) · · · (1)
[0029] なお、負荷 8のインピーダンスが低ければ低いほど急峻な傾きを持つ電流が流れる
(すなわち式(1)の「diZdt」が大となる)ので、誘起電圧 VLが大きくなる。
[0030] また、環流電流 12が流れることで下アームダイオード D2にはオン電圧 VFが発生す る。したがって上アームスイッチング素子 T1のェミッタと下アームスイッチング素子 T2 のェミッタとの間には、次式で示される電位差が生ずる。 [0031] AV=VL+VF · · · (2)
[0032] 上アームスイッチング素子 Tlのェミッタおよび下アームスイッチング素子 T2のエミ ッタは、それぞれ高耐圧 IC10の上アーム駆動用基準電源端 VSおよび下アーム駆 動用基準電源端 COMに接続されているので、これらの端子間には式(2)で示される Δνが印加される。
[0033] 高耐圧 IC10は、上述のように入力バッファ 14、 NMOSトランジスタ 16、寄生ダイォ ード 17、抵抗 20、ドライバ回路 12を備えているので、この Δ VIが印加されると寄生 ダイオード 17から抵抗 20を通じて貫通電流 13が流れる。なお、この貫通電流 13は、 ドライバ回路 12が誤った信号を出力するラッチアップと呼ばれる現象を生起させる主 因となる。
[0034] 一方、この実施の形態に力かるインバータ装置では、下アーム駆動用基準電源端 COMと上アーム駆動用高圧側電源端 VBとの間にクランプダイオード D 10を備える ようにして!/、るので、図 2に示す回路構成では高耐圧 IC10の内部を流れて 、た貫通 電流 13を図 3に示すように、クランプダイオード D10側に引き込むことができる。なお 、貫通電流の一部は高耐圧 IC10の内部を流れる可能性もある力 貫通電流 13が流 れる寄生ダイオード D17と抵抗 20との直列回路のインピーダンスに比べて、同一端 子間に接続されるクランプダイオード D10のインピーダンスの方が小さいので、貫通 電流 13の大部分をクランプダイオード D10側に引き込むことができる。したがって、高 耐圧 IC10の内部に流れる貫通電流 13を減少させることができ、上述したラッチアップ に起因する誤動作の発生を防止することができる。
[0035] なお、上述の特許文献 1、 2に示されたインバータ装置では、クランプダイオードの 一端 (力ソード)が上アーム駆動用基準電源端 VSに接続されているので、貫通電流 を引き込む効果が、この実施の形態のクランプダイオード D10に比べて小さい。
[0036] また、この実施の形態に力かるインバータ装置では、クランプダイオード D10のカソ 一ドが高耐圧 IC10の上アーム駆動用高圧側電源端 VB (例えば + 15V端)に接続さ れているので、クランプダイオード D10に流れる電流を、例えば特許文献 1、 2に示さ れたクランプダイオードに流れる電流に比べて小さくすることができる。したがって、特 許文献 1、 2に示されたクランプダイオードに比べて定格電流の小さなダイオードを選 定することができる。
[0037] 以上説明したように、この実施の形態のインバータ装置によれば、高耐圧 ICの下ァ ーム駆動用基準電源端と高耐圧 ICの上アーム駆動用高圧側電源端との間に接続さ れたクランプダイオードが、下アーム駆動用基準電源端と上アーム駆動用高圧側電 源端との間の電位差をクランプするようにして ヽるので、高耐圧 ICの破壊および高耐 圧 ICの誤動作を防止することができるとともに、回路規模の増加やコストの増加を抑 ff¾することができる。
[0038] なお、この実施の形態では、クランプダイオードを高耐圧 ICの外部に外付けするよ うにしているが、高耐圧 ICの内部に備えるようにしてもよい。ただし、高耐圧 ICの外部 に外付けする方が、高耐圧 ICの設計変更が不要であるといった利点や、既存の高耐 圧 ICを使用したインバータ装置にも本発明を適用できるといった利点を有効に活用 することができる。
[0039] また、この実施の形態では、下アーム駆動用基準電源端と上アーム駆動用高圧側 電源端との間の電位差をクランプするクランプ手段としてダイオードを用いるようにし ているが、ダイオードに限定されるものではない。例えば、ツエナーダイオードや、ノ イポーラトランジスタの PN接合部のように、特定の電圧以上でオン状態となって略一 定の電圧を出力することができるような任意の素子を利用してもよい。
[0040] 実施の形態 2.
図 4は、本発明の実施の形態 2にかかるインバータ装置を説明するための概略構成 を示す図である。実施の形態 1のインバータ装置が単相インバータ回路を備えていた のに対し、この実施の形態のインバータ装置は、 3相インバータ回路を備えるように構 成されている。すなわち、同図に示すインバータ装置では、高耐圧 IClOaを具備する インバータ駆動部 2aによりインバータ回路 3aの上アームスイッチング素子 Tl, T3, T 5および下アームスイッチング素子 T2, T4, T6の各素子を駆動するように構成され た 3相インバータ装置の構成が示されている。以下、図 4を用いて、この実施の形態 にかかるインバータ装置の構成を説明する。なお、実施の形態 1と同一あるいは同等 の部分については同一符号を付して示し、その説明を省略、あるいは簡潔化する。
[0041] 図 4に示すインバータ回路 3aにおいて、互いに逆並列接続された上アームスィッチ ング素子 Tlおよび上アームダイオード Dlからなる上アーム部 4a、上アームスィッチ ング素子 T3および上アームダイオード D3からなる上アーム部 4bならびに上アームス イッチング素子 T5および上アームダイオード D5からなる上アーム部 4cと、互いに逆 並列接続された下アームスイッチング素子 T2および下アームダイオード D2からなる 下アーム部 5a、下アームスイッチング素子 T4および下アームダイオード D4からなる 下アーム部 5bならびに下アームスイッチング素子 T6および下アームダイオード D6か らなる下アーム部 5cが構成され、上アーム部 4a, 4b, 4cの逆並列接続回路のぞれ ぞれと、下アーム部 5aの逆並列接続回路のそれぞれとが直列接続されたブリッジ回 路 6aが構成される。また、ブリッジ回路 6aの上アームスイッチング素子 Tl, T3, T5 の各コレクタには直流電源 7の正極が接続され、下アームスイッチング素子 T2, T4, T6の各のェミッタには直流電源 7の負極が接続される。このように、図 4に示すインバ ータ回路 3aは、 3相インバータ回路を構成している。
[0042] 一方、図 4に示すインバータ駆動部 2aの高而圧 IClOaは、インバータ回路 3aの上 アームスイッチング素子 Tl, T3, T5および下アームスイッチング素子 T2, T4, T6を それぞれ駆動する ICである。この高耐圧 IClOaは、以下に示す各入出力端を有して いる。すなわち、制御用高圧側電源端 VDD、制御用基準電源端 COM、上アーム制 御信号入力端 HIN、下アーム制御信号入力端 LIN、上アーム駆動用高圧側電源端 VB1, VB3, VB5、上アーム駆動用基準電源端 VSl, VS3, VS5、上アームスイツ チング素子駆動信号出力端 HOI, H03, H05、下アーム駆動用高圧側電源端 VC C、下アーム駆動用基準電源端 COM、下アームスイッチング素子駆動信号出力端 L 02, L04, L06の各端子を備えている。
[0043] また、上アーム駆動用高圧側電源端 VB1, VB3, VB5の各端子と上アーム駆動用 基準電源端 VSl, VS3, VS5の各端子との間にはデカップリングコンデンサ CI, C3 , C5がそれぞれ接続され、下アーム駆動用高圧側電源端 VCCと下アーム駆動用基 準電源端 COMとの間にはデカップリングコンデンサ C2が接続されている。
[0044] さらに、インバータ回路 3aと高耐圧 IClOaとの間は、上アームスイッチング素子駆 動信号出力端 HOI, H03, H05の各端子と上アームスイッチング素子 Tl, T3, T 5の各ゲートとのそれぞれの間力 ゲート抵抗 Rl, R3, R5を介してそれぞれ接続さ れ、上アーム駆動用基準電源端 VS1, VS3, VS5の各端子との間と、上アームスィ ツチング素子 T1の各ェミッタとのそれぞれの間が直接的に接続されている。同様に、 下アームスイッチング素子駆動信号出力端 LOl, H03, H05の各端子と、下アーム スイッチング素子 T2, T4, T6各ゲートとのそれぞれの間力 ゲート抵抗 R2, R4, R6 を介してそれぞれ接続され、下アーム駆動用基準電源端 COMと下アームスィッチン グ素子 T2の各ェミッタとの間が直接的に接続されている。
[0045] 上述のように構成された実施の形態 2にかかるインバータ装置では、下アーム駆動 用基準電源端 COMと上アーム駆動用高圧側電源端 VB1, VB3, VB5の端子間の 各電位差を所定電圧にクランプするためのクランプ手段として、自身のアノードが下 アーム駆動用基準電源端 COMに接続され、自身の力ソードが上アーム駆動用高圧 側電源端 VB1, VB3, VB5の各端子にそれぞれ接続されるクランプダイオード D11 , D12, D13をそれぞれ備えるようにしている。
[0046] したがって、この実施の形態に力かるインバータ装置では、実施の形態 1のときと同 様に、高耐圧 IClOaの内部を流れようとする貫通電流の大部分をクランプダイオード Dl l, D12, D13側に引き込むことができるので、高耐圧 IC10の内部に流れようと する貫通電流を減少させることができ、ラッチアップに起因する誤動作の発生を防止 することができる。
[0047] また、この実施の形態に力かるインバータ装置では、クランプダイオード Dl l, D12 , D13の各力ソードが上アーム駆動用高圧側電源端 VB1, VB3, VB5の各端子に 接続されているので、クランプダイオード Dl l, D12, D13にそれぞれ流れる電流を 、例えば特許文献 1、 2に示されたクランプダイオードに流れる電流に比べて小さくす ることができる。したがって、特許文献 1、 2に示されたクランプダイオードに比べて定 格電流の小さなダイオードを選定することができる。
[0048] 以上説明したように、この実施の形態のインバータ装置によれば、高耐圧 ICの下ァ ーム駆動用基準電源端と高耐圧 ICの上アーム駆動用高圧側電源端の各端子との 間に接続された各クランプダイオードが、下アーム駆動用基準電源端と上アーム駆 動用高圧側電源端の各端子との間の各電位差をそれぞれクランプするようにしてい るので、高耐圧 ICの破壊および高耐圧 ICの誤動作を防止することができるとともに、 回路規模の増加やコストの増加を抑制することができる。
[0049] なお、この実施の形態では、各クランプダイオードを高耐圧 ICの外部に外付けする ようにしている力 高耐圧 ICの内部に備えるようにしてもよい。ただし、高耐圧 ICの外 部に外付けする方が、高耐圧 ICの設計変更が不要であるといった利点や、既存の高 耐圧 ICを使用したインバータ装置にも本発明を適用できるといった利点を有効に活 用することができる。
[0050] また、この実施の形態では、下アーム駆動用基準電源端と上アーム駆動用高圧側 電源端の各端子との間の各電位差をそれぞれクランプするクランプ手段としてダイォ ードを用いるようにしている力 ダイオードに限定されるものではない。例えば、ツエナ 一ダイオードや、バイポーラトランジスタの PN接合部のように、特定の電圧以上でォ ン状態となって略一定の電圧を出力することができるような任意の素子を利用しても よい。
[0051] 実施の形態 3.
図 5は、本発明の実施の形態 3にかかるインバータ装置を説明するための概略構成 を示す図である。実施の形態 2のインバータ装置が、上アーム部の各スイッチング素 子を駆動するための電源を独立電源としてそれぞれ個別に用いるとともに、下アーム 部の各スイッチング素子を駆動するための電源は共通電源を用いているのに対し、こ の実施の形態のインバータ装置では、上下アーム部の各スイッチング素子を駆動す るための電源を共通電源としている点に特徴を有している。このため、クランプダイォ ードの接続構成が実施の形態 2とは異なっている。なお、その他の構成については、 実施の形態 2同一あるいは同等であり、これらの部分には同一符号を付して示し、そ の説明を省略する。
[0052] 図 5のように構成された実施の形態 3にかかるインバータ装置では、下アーム駆動 用基準電源端 COMと上アーム駆動用高圧側電源端 VB1, VB3, VB5の端子間の 各電位差を所定電圧にクランプするためのクランプ手段として、まず、アノードが下ァ ーム駆動用基準電源端 COMに接続されるとともに、力ソードが下アーム駆動用高圧 側電源端 VCCに接続される第 1のクランプダイオード D10と、アノードが下アーム駆 動用高圧側電源端 VCCに接続されるとともに、力ソードが上アーム駆動用高圧側電 源端 VB1, VB3, VB5の各端子に接続される第 2のクランプダイオード D21, D22, D23をそれぞれ備えるようにして ヽる。
[0053] したがって、この実施の形態に力かるインバータ装置では、実施の形態 1, 2のとき と同様に、高耐圧 IClOaの内部を流れようとする貫通電流の大部分を第 1のクランプ ダイオード D10および第 2のクランプダイオード Dl l, D12, D13側に引き込むこと ができるので、高耐圧 IC10の内部に流れようとする貫通電流を減少させることができ 、ラッチアップに起因する誤動作の発生を防止することができる。
[0054] また、この実施の形態に力かるインバータ装置では、第 2のクランプダイオード D21 , D22, D23の各力ソードが上アーム駆動用高圧側電源端 VB1, VB3, VB5の各 端子に接続されているので、第 2のクランプダイオード D21, D22, D23にそれぞれ 流れる電流を、例えば特許文献 1、 2に示されたクランプダイオードに流れる電流に 比べて小さくすることができる。したがって、特許文献 1、 2に示されたクランプダイォ ードに比べて定格電流の小さなダイオードを選定することができる。
[0055] 以上説明したように、この実施の形態のインバータ装置によれば、高耐圧 ICの下ァ ーム駆動用基準電源端と高耐圧 ICの下アーム駆動用高圧側電源端との間に接続さ れた第 1のクランプダイオードと、高耐圧 ICの下アーム駆動用高圧側電源端と高耐 圧 ICの上アーム駆動用高圧側電源端の各端子との間に接続された第 2のクランプダ ィオードのそれぞれとが、下アーム駆動用基準電源端と上アーム駆動用高圧側電源 端の各端子との間の各電位差をそれぞれクランプするようにしているので、高耐圧 IC の破壊および高耐圧 ICの誤動作を防止することができるとともに、回路規模の増加 やコストの増加を抑制することができる。
[0056] なお、この実施の形態では、各クランプダイオードを高耐圧 ICの外部に外付けする ようにしている力 高耐圧 ICの内部に備えるようにしてもよい。ただし、高耐圧 ICの外 部に外付けする方が、高耐圧 ICの設計変更が不要であるといった利点や、既存の高 耐圧 ICを使用したインバータ装置にも本発明を適用できるといった利点を有効に活 用することができる。
[0057] また、この実施の形態では、下アーム駆動用基準電源端と上アーム駆動用高圧側 電源端の各端子との間の各電位差をそれぞれクランプするクランプ手段としてダイォ ードを用いるようにしている力 ダイオードに限定されるものではない。例えば、ツエナ 一ダイオードや、バイポーラトランジスタの PN接合部のように、特定の電圧以上でォ ン状態となって略一定の電圧を出力することができるような任意の素子を利用しても よい。
産業上の利用可能性
以上のように、本発明に力かるインバータ装置は、例えば単相インバータ回路や 3 相インバータ回路の備えたインバータ装置に対して広く適用することができ、特に、 高耐圧 ICの誤動作や耐圧破壊の防止が重要視されるインバータ装置に好適である

Claims

請求の範囲
[1] 互いに逆並列接続された上アームのスイッチング素子およびダイオードからなる上 アーム部と互いに逆並列接続された下アームのスイッチング素子およびダイオードか らなる下アーム部とが直列に接続され、かつ直流電源の正負極間に接続されてなる ブリッジ回路を具備するインバータ回路と、
前記上アームのスイッチング素子および前記下アームのスイッチング素子をそれぞ れ駆動する高耐圧 ICを具備するインバータ駆動部と、
前記高耐圧 ICの下アーム駆動用基準電源端と該高耐圧 ICの上アーム駆動用高 圧側電源端との間の電位差をクランプするクランプ手段と、
を備えたことを特徴とするインバータ装置。
[2] 前記インバータ回路が、単相インバータ回路であることを特徴とする請求項 1に記 載のインバータ装置。
[3] 前記クランプ手段が、クランプダイオードであることを特徴とする請求項 2に記載の インバータ装置。
[4] 前記クランプダイオードに必要とされる定格電流が、下アームのスイッチング素子に 逆並列接続されたダイオードに必要とされる定格電流よりも小さいことを特徴とする請 求項 3に記載のインバータ装置。
[5] 前記クランプダイオードは、前記高耐圧 ICに外付けされていることを特徴とする請 求項 3に記載のインバータ装置。
[6] 前記インバータ回路が、 3相インバータ回路であることを特徴とする請求項 1に記載 のインバータ装置。
[7] 前記クランプ手段が、 3相インバータ回路の各相ごとに設けられたクランプダイォー ドであることを特徴とする請求項 6に記載のインバータ装置。
[8] 前記クランプダイオードが、前記高耐圧 ICの下アーム駆動用基準電源端と該高耐 圧 ICの上アーム駆動用高圧側電源端との間のそれぞれに接続されていることを特徴 とする請求項 7に記載のインバータ装置。
[9] 前記クランプダイオードが、
前記高耐圧 ICの下アーム駆動用基準電源端と該高耐圧 ICの下アーム駆動用高 圧側電源端との間に接続される第 1のクランプダイオードと、
前記高耐圧 ICの下アーム駆動用高圧側電源端と該高耐圧 ICの上アーム 高圧側電源端との間のそれぞれに接続される第 2のクランプダイオードと、 を具備していることを特徴とする請求項 7に記載のインバータ装置。
PCT/JP2005/000403 2005-01-14 2005-01-14 インバータ装置 WO2006075388A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006552811A JP4675910B2 (ja) 2005-01-14 2005-01-14 インバータ装置
PCT/JP2005/000403 WO2006075388A1 (ja) 2005-01-14 2005-01-14 インバータ装置
US10/586,243 US7492618B2 (en) 2005-01-14 2005-01-14 Inverter device
CNB2005800090064A CN100530927C (zh) 2005-01-14 2005-01-14 逆变器装置
DE112005000417T DE112005000417T5 (de) 2005-01-14 2005-01-14 Invertervorrichtung
GB0615843A GB2426130B (en) 2005-01-14 2005-01-14 Inverter device
TW094101643A TWI280740B (en) 2005-01-14 2005-01-20 Inverter circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/000403 WO2006075388A1 (ja) 2005-01-14 2005-01-14 インバータ装置

Publications (1)

Publication Number Publication Date
WO2006075388A1 true WO2006075388A1 (ja) 2006-07-20

Family

ID=36677424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000403 WO2006075388A1 (ja) 2005-01-14 2005-01-14 インバータ装置

Country Status (7)

Country Link
US (1) US7492618B2 (ja)
JP (1) JP4675910B2 (ja)
CN (1) CN100530927C (ja)
DE (1) DE112005000417T5 (ja)
GB (1) GB2426130B (ja)
TW (1) TWI280740B (ja)
WO (1) WO2006075388A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857814B2 (ja) * 2006-02-28 2012-01-18 株式会社日立製作所 モータ駆動装置
CN102427220B (zh) * 2011-11-01 2014-06-04 深圳麦格米特电气股份有限公司 一种高压逆变保护电路
KR20140072543A (ko) * 2012-12-05 2014-06-13 삼성전기주식회사 게이트 구동 장치 및 이를 갖는 인버터
EP2811641A1 (en) * 2013-06-05 2014-12-10 Siemens Aktiengesellschaft Controlling the operation of an converter having a plurality of semiconductor switches for converting high power electric signals from DC to AC or from AC to DC
KR101983158B1 (ko) * 2013-11-26 2019-05-28 삼성전기주식회사 게이트 구동 장치 및 이를 갖는 인버터
CN105940453B (zh) * 2014-01-28 2019-08-23 施耐德电气It公司 双极栅极驱动器
JP6639103B2 (ja) * 2015-04-15 2020-02-05 株式会社東芝 スイッチングユニット及び電源回路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684798U (ja) * 1993-04-30 1994-12-02 株式会社島津製作所 ブリッジインバータ回路
JPH1042575A (ja) * 1996-07-23 1998-02-13 Mitsubishi Electric Corp インバータ装置
WO2001059918A1 (fr) * 2000-02-09 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Dispositif onduleur

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2896342B2 (ja) * 1995-05-04 1999-05-31 インターナショナル・レクチファイヤー・コーポレーション 半波ブリッジ構成における複数のパワートランジスタを駆動し、かつ出力ノードの過度の負の振動を許容する方法及び回路、並びに上記回路を組み込む集積回路
GB2328565B (en) * 1997-03-18 2001-08-29 Mitsubishi Electric Corp Power converting apparatus
TWI220591B (en) 2003-05-05 2004-08-21 Rou-Yong Duan A current-source sine wave voltage driving circuit via voltage-clamping and soft-switching techniques

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684798U (ja) * 1993-04-30 1994-12-02 株式会社島津製作所 ブリッジインバータ回路
JPH1042575A (ja) * 1996-07-23 1998-02-13 Mitsubishi Electric Corp インバータ装置
WO2001059918A1 (fr) * 2000-02-09 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Dispositif onduleur

Also Published As

Publication number Publication date
US7492618B2 (en) 2009-02-17
GB2426130B (en) 2008-03-12
GB2426130A (en) 2006-11-15
JPWO2006075388A1 (ja) 2008-06-12
CN100530927C (zh) 2009-08-19
TWI280740B (en) 2007-05-01
JP4675910B2 (ja) 2011-04-27
DE112005000417T5 (de) 2007-11-29
CN1934775A (zh) 2007-03-21
GB0615843D0 (en) 2006-09-20
US20070153556A1 (en) 2007-07-05
TW200625800A (en) 2006-07-16

Similar Documents

Publication Publication Date Title
US8213146B2 (en) Semiconductor power conversion apparatus
KR100323867B1 (ko) 단안정게이트구동장치용부트스트랩다이오드와직렬로연결된저항을갖는전력회로
EP3767315A1 (en) Short circuit detection and protection for a gate driver circuit and methods of detecting the same using logic analysis
US20130343103A1 (en) Protection control system for a multilevel power conversion circuit
US7948276B2 (en) Gate driver circuit, switch assembly and switch system
CN107181420B (zh) 逆变器驱动装置以及半导体模块
US7696650B2 (en) Driving circuit for switching elements
WO2006075388A1 (ja) インバータ装置
CN106533129B (zh) 自举补偿电路及功率模块
JP6950828B2 (ja) 駆動回路内蔵型パワーモジュール
KR20060100840A (ko) 파워 모듈 회로
JP2006271042A (ja) マルチレベルインバータ
JPWO2016030933A1 (ja) 電力変換装置
CN111865128A (zh) 具有集成浪涌电压限制元件的功率模块和功率电路
CN1550066A (zh) 半桥电路
Motto Hybrid circuits simplify IGBT module gate drive
US20230308008A1 (en) Semiconductor device
US11601083B1 (en) Power module with protection circuit
US11606090B2 (en) Semiconductor device
US20230208278A1 (en) Power conversion device
JP2010088175A (ja) インバータ装置
US20230231549A1 (en) Overcurrent detection circuit, drive control device, and power conversion device
JP2004242382A (ja) インバータ装置及びこれを用いたモータ駆動装置
JP2005006426A (ja) 並列ゲート駆動回路
JP6344054B2 (ja) 直列接続コンデンサの配置配線構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006552811

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10586243

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 0615843.0

Country of ref document: GB

Ref document number: 0615843

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 1120050004171

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580009006.4

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 10586243

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112005000417

Country of ref document: DE

Date of ref document: 20071129

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 05703642

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5703642

Country of ref document: EP